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Abstract. Performing visibility determination in densely occluded 

environments is essential to avoid rendering unnecessary objects and achieve 

high frame rates. In this work we present an implementation of the image space 

Occlusion Culling algorithm done completely in GPU, avoiding the latency 

introduced by returning the visibility results to the CPU. Our algorithm utilizes 

the GPU rendering power to construct the Occlusion Map and then performs the 

image space visibility test by splitting the region of the screen space occludees 

into parallelizable blocks. Our implementation is especially applicable for low-

end graphics hardware and the visibility results are accessible by GPU shaders. 

It can be applied with excellent results in scenes where pixel shaders alter the 

depth values of the pixels, without interfering with hardware Early-Z culling 

methods. We demonstrate the benefits and show the results of this method in 

real-time densely occluded scenes. 
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1 Introduction 

Complex scenes with thousands of meshes and expensive shading computations are 

increasingly frequent in current real-time graphics applications. Although commodity 

hardware continues to increase its computational power every day, scenes like these 

cannot be directly supported at real-time frame rates. Optimization techniques are 

crucial in order to manage that kind of graphics complexity. 

Frustum culling is a commonly used technique to avoid rendering meshes that are 

outside the viewing volume. These invisible models can be discarded at an early stage 

in the pipeline obviating expensive computation that will not contribute to the final 

image. Unfortunately it does not consider objects (occludees) that do not contribute to 

the final image because they are being blocked by others in front of them (occluders). 

Because of this, several Occlusion Culling techniques were developed to overcome 

this limitation. Applications with expensive pixel shaders may greatly improve their 

performance by reducing fragments overdraw.  

The Z-PrePass [1] technique avoids computing unnecessary pixel shaders 

following a two step procedure. First it draws the entire scene in order to store in the 
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Z-Buffer all the depth values of the scene visible points. Second the scene is drawn 

once more, but this time the GPU can early reject the occluded fragments based on 

already present depth values in the ZBuffer. This way non visible pixel shaders are 

not executed. 

Fig. 1: Left: The densely occluded scene as viewed from the camera. Middle: The Occlusion Culling 

algorithm avoids rendering completely occluded objects. Right: The simplified occluder set used for 

occlusion. 

This technique is used by many applications to reduce its pixel overdraw but its 

main limitation is that GPU cannot take advantage of the Early-Z [2] or [3] 

optimization when the pixel shader uses a depth writing operation [4], [5]. Since our 

method discards occluded objects before they get rasterized, no restrictions related to 

depth writing are imposed to pixel shaders.  

 

Contributions: In this work we present a technique for solving Occlusion Culling 

in GPU, without the need for special hardware extensions or CPU read back. It 

includes a visibility test in the vertex shader of the application in order to discard 

those vertices that belong to occluded meshes. If the mesh is occluded then all its 

vertices can be discarded in the vertex shader, avoiding the rasterization step and the 

pixel computations. A previous step computes the visibility state of each mesh in the 

GPU and stores its result in an output texture called Occlusion Map. This result is 

acquired after performing a highly parallelized overlap and depth test comparison. 

2 Related work 

There is a great amount of research conducted on Occlusion Culling. A classification 

and overview of all these methods is presented by Cohen-Or et al. [6]. Among those 

techniques the ones that work in point-space are Hierarchical Z-Buffer (HZB) [7] and 

Hierarchical Occlusion Maps (HOM) [8]. 

On modern GPUs hardware occlusion queries [9] provide a built-in way to 

determine if a draw call contributes to the current frame, but suffer from latency and 

stalling effects due to the CPU read back. To address this issue temporal coherence 

techniques are applied [10], [11], but they require spatial hierarchies of objects to 

limit the number of issued queries. 

Some newer hardware capabilities allow conditional rendering without CPU 

intervention like OpenGL conditional rendering which is implemented as GL NV 

conditional render [12] extension and DirectX 11 predicated rendering implemented 

as the ID3D11Predicate interface [13]. These methods determine whether geometry 
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should be processed or culled depending on the results of a previous draw call. 

Current hardware conditional rendering does not allow the GPU shaders to access the 

occlusion results, but Engelhard et al. [14] implement a method that allows this. Other 

authors [15], [16] also implement HZB on GPU using compute shaders. 

More recently Nießner [17] proposes a patch primitive based approach to perform 

occlusion culling applying HZB and temporal coherence. In recent years, since CPUs 

increased the number of cores and the set of SIMD instructions were extended, some 

approaches perform point based Occlusion Culling such as HOM using highly 

optimized software rasterizers [18], [19], [20], [21]. 

3 Vertex Discard Occlusion Culling 

3.1 Algorithm Overview 

In our proposed method we perform a from-point, image-precision [6] occlusion 

culling process completely in GPU without the need for the CPU to read back the 

results. The method consists of a series of steps that must be followed by each frame 

to generate the Occlusion Map, perform the Visibility Test and obtain the Potentially 

Visible Set. Finally the method uses those results, already present in the GPU, to 

discard all the vertices of the occluded objects before they reach further stages of the 

pipeline. The steps are: 

 

1. Occludee Generation: Select occluders and generate simplified volumes. 

2. Occlusion Map Generation: Render occluder simplified volumes into the 
Occlusion Map Texture. 

3. Visibility Testing: Determine which occludees are occluded and stored them in the 
Visibility Map. 

4. Vertex Discard: Cull all the vertices that belong to invisible occludees. 
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Fig. 2. The first step is to obtain the simplified occluders as proxy meshes. The second step is to 

render all proxy meshes to the Occlusion Map texture. 

3.2 Occlusion Map Generation 

The method begins Offline by creating a database of selected occluders that meet a 

predefined criteria [22], and storing the proxy meshes which are simplified, low-poly 

and conservative versions of the original occluders. These simplified occluders will 

be rendered faster than the original meshes, even if it behaves more conservatively. 

See Fig. 2. 

In each frame, object-precision culling techniques such as Frustum Culling, PVS 

and Portal Culling [6] are applied to discard as many occluders as possible. With this 

obtained reduced subset of occluders we perform the first step of the method which is 

to render the proxy meshes into the Occlusion Map. This buffer stores the closest to 

camera depth values of every rasterized occluder and is implemented as a 32-bit 

floating point render target texture which is preferably a one fourth downscaled 

version of the screen framebuffer. 

Unlike the HOM’s Occlusion Map [8], our map does not contain opacity 

information, therefore the buffer is more similar to the HZB [7] which only stores the 

depth values of the occluders in each point, leaving the highest depth value to indicate 

no occluder presence. 

The generation of the Occlusion Map is relatively inexpensive as the GPU 

massively parallel power is utilized to render the low-poly convex volumes of the 

proxy meshes and also because the pixel shader applied is extremely straightforward 

because it only outputs the depth value of each point. 

3.3 Visibility Test 

The core of this image based Occlusion Culling algorithm is to perform the Visibility 

Test for each selected occludee against the fusion of all the occluders represented by 

the Occlusion Map. Then it is used to determine whether the occludee geometry will 

continue along the pipeline or if it will be culled immediately. Visibility testing is 

performed by contrasting the points inside the occludee screen space bounding 

rectangle against the Occlusion Map depth values that contain the aggregated 

information of the occluders. In each frame, for every occludee in the viewing 

frustum, the algorithm performs a screen space projection of the occludee bounding 

box vertices. With those eight screen projected points, it determines the clipped 2D 

screen space bounding rectangle and finds the nearest from camera depth value of 

those extreme points. The resulting occludee bounding rectangle becomes a 

conservative superset of the actual pixels covered by the occludee (see Fig. 3). 

Afterwards, the visibility test determines if the occludee would actually contribute to 

the final image and starts by comparing all the depth values inside the occludee 

bounding rectangle against the ones in the Occlusion Map; when at least one point of 

the occludee is closer to the camera than the one stored in the same position in the 

Occlusion Map, the algorithm can now assume that the point is visible and therefore 

the whole occludee is considered potentially visible. 
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On the other hand, to determine that an occludee is completely culled, all the pixels 

must be examined exhaustively and proved to be farther than the values stored in the 

Occlusion Map. 

 

 

Fig. 3.The occludees in the scene are projected in 2D and the Bounding Rectangle is calculated. For 

each rectangle the algorithm performs the visibility test in GPU accessing the Occlusion Map, storing 

the visibility result in the Visibility Map.  

Some methods implement this overlap and depth test in CPU [19], [20], [23], [21], 

and others use special GPU hardware capabilities such as hardware occlusion queries 

[9] or the more modern predicate/conditional rendering [13], [12]. Our method 

manually computes the visibility result pixel by pixel utilizing GPU pixel shaders. 

However as explained before, to actually conclude that a occludee is culled, we 

have to exhaustively test all the pixels inside the occludee bounding rectangle, 

resulting in MN × texture fetches to the Occlusion Map. As the screen space 

regions covered by the occludees get larger, the number of texels to fetch and test can 

reach very large numbers. 

To accelerate this, some methods build a pyramid of downsized versions of the 

Occlusion Map where each increasing level is half the size in each dimension of the 

previous one. There are two approaches to utilize the pyramid, one is like the method 

used in HOM [8] and HZB [7] which they begin at some level of the pyramid 

depending on the occludee bounding rectangle size and have to go to the finest level 

to assure that the occludee is completely culled by the occluders. 

The other approach [15], [16] only restricts itself to a selected level of the pyramid, 

limiting the possible number of texture fetches to a given constant to avoid the worst 

case scenario where they have to move to levels with greater detail. After 

implementing this last variation we found that the level of conservativeness was 

higher than expected for medium to large screen space occludees. 

In this work we found that using a single level Occlusion Map of a fourth of the 

original screen buffer was a good tradeoff between number of texture fetches and 

level of conservativeness. In the next section we discuss the methods used to leverage 

the GPU hardware to perform this visibility test. 
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3.4 Block Subdivision 

Despite having a downsized version of the Occlusion Map, performing all the 

MN × texture fetches in a single pixel shader execution does not perform as 

expected, because of the serial nature of the algorithm. In the best cases this inner 

loop could take only a few cycles whereas in other cases the same execution could 

take hundreds of thousands of cycles before it is finished. 

For this reason, in our method the visibility test is parallelized taking advantage of 

the parallel execution nature of the pixel shaders, splitting the total region covered by 

each occludee into a series of fixed size blocks where each one only performs a 

maximum of 88×  texture lookups to the Occlusion Map (see Fig. 4). This way each 

occludee bounding rectangle is split up in blocks that concurrently perform the 

visibility test by executing pixel shaders that return only two possible output colors: 0 

meaning the block itself is completely occluded or 1 if the block is potentially visible. 

The output of each pixel shader goes to a rendering target texture called Unreduced 

Visibility Map (UVM) that holds the block visibility results one next to the other as 

seen in Fig. 5. 

In order to simplify the way each region is assigned, every occludee is assumed to 

have a fixed number of blocks, regardless of its screen space size. In our study we 

determined that every occludee would have a preset number of 3232×  blocks 

assigned, resulting in a total of 1024 blocks. This gives us a maximum occludee 

screen size of 256256×  pixels and if the dimensions are larger than those, the 

occludee is simply considered potentially visible. To implement this algorithm using 

shader model 3 (without compute shaders), we carefully position a 3232×  pixel 

quad (GPGPU quad) and render it using a pixel shader that executes the visibility test 

code. Each pixel of this quad represents a block visibility test of the occluder. The 

shader gets the occludee bounding rectangle coordinates, depth value and the block 

number as parameters, and then executes the 88×  pixels overlap and depth test. 

 
Require: occludeeSize 

Require: occludeePos {occludee AABB position} 

Require: occludeeDepth 

Require: occlusionMap 

Require: pos {quad texture coordinates} 

Require: quadSize 

1: base  ← occludeePos × pos + quadSize × 8 

2:  result  ← 0 {not visible} 

3: for i = 0 to 8 do 

4:   for j = 0 to 8 do 

5:    p ← base + (i, j) 

6:    depth ← read p from occlusionMap 

7:    if occludeeDepth ≥ depth then 

8:   result  ← 1 {visible} 

9:    break 

10:    end if 

11:   end for 

12:  end for 
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Fig. 4. Visibility test algorithm performed in a pixel shader 

Using this block subdivision strategy, the visibility test is split into smaller task 

units and performed in parallel making use of the available GPU shader execution 

cores. If all the blocks comprising the occludee rectangle output 0 values, then the 

whole occludee is considered culled, conversely when at least one of the blocks 

results visible the whole occludee is considered potentially visible. 

Fig. 5. The occludee is split into 8x8 blocks, then each block performs the visibility test and stores the 

result into the Unreduced Visibility Map. Each occludee has a pre-assigned region of 32x32 blocks 

inside this Occlusion Map texture. 

 

Nevertheless the visibility result of each occludee is not consolidated into a single 

value, but spread into a series of 3232×  matrices inside some region of the UVM. 

The next step of our method reduces each 3232×  occludee visibility result matrix 

into a consolidated Visibility Map that will hold the results of each visibility test one 

next to the other. 

3.5 Visibility Map Reduction 

In order to reduce the UVM and consolidate each 3232×  region into a single 

value, we need to determine if there is at least a non-zero value inside that matrix. To 

achieve this, we search for the maximum value of the matrix to see if there is any 

value other than zero. The search is done utilizing a parallel reduction approach with 

two rendering passes to limit the total number of operations. In the first pass we 

search the maximum value in each matrix column of 32 pixels and store it in an 

intermediate texture. In the second pass, we obtain the final Visibility Map looking for 

the maximum value in each row. Finally we end up with the Visibility Map containing 

the results of the occlusion culling process for each occludee tested in the current 

frame, which will be heavily accessed in the next step of our method. 
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3.6 Vertex Discard 

This Visibility Map texture could be sent back to the CPU and processed there to 

avoid having to execute the draw calls to occluded objects; however this would 

produce a stalling effect on the GPU while sending the results back. To address this 

issue, we propose an asynchronous mechanism where the CPU does not need the 

results of the visibility test. 

In our method the CPU always performs the draw calls for all the geometry that is 

potentially visible (the subset that passes frustum culling, portal culling, PVS, etc.), 

and the GPU is responsible for discarding the occluded geometry based on the 

Visibility Map content. 

In our implementation we slightly modify the vertex shader that performs the 

World-View-Projection transformation as seen in Fig. 6. Before drawing an occludee, 

we send a parameter to the pixel shader indicating the ID of occludee that is about to 

be rendered. Based on that value, the vertex shader will perform a texture lookup in 

the Visibility Map to find the occlusion status for that particular occludee. If it is 

potentially visible, then the vertex shader does its usual computation letting the vertex 

continue throughout the pipeline. On the other hand, if the occludee is invisible we 

assign a negative z value to the output vertex so it can be culled by the GPU. This 

process is performed for every vertex that constitutes the occludee geometry. 

 

Require: vp {Vertex 3D Position} 

Require: vMap {Visibility Map} 

Require: i {Occludee index} 

1:  vis ← read visibility info from vMap using i 

2:  if vis = 0 then 

3:   {Continue with normal vertex shader calculations}  

4: else 
5:   vp.z = −1 {Discard vertex} 

6: end if 
 

Fig. 6. Vertex cull algorithm performed in a Vertex Shader. 

4 Implementation and Results 

Our method was implemented using C# 4.0 with DirectX 9 and Shader Model 3. 

We decided not to use newer shader models (with Compute Shader capabilities) so we 

could test in the current low-end commodity hardware. The implementation of our 

occlusion culling module was designed in a way that can be easily adapted to other 

graphics frameworks, where only certain parts have to be added or modified. 

We tested our method in a densely occluded 3D city scene Fig. 7, composed of 210 

meshes, adding up a total of 379,664 triangles. For this scene 258 occluder proxies 

were generated in Offline time based on the ideas presented by [22]. In order to 

analyze the algorithm performance, 15 representative scene View Points were taken, 

where in each position we compute the following occlusion metric: 
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Where t  is the total scene meshes and v is the total visible meshes. With this 
metric we can determine the percentage of meshes that were discarded by the GPU in 

each frame due to occlusion culling (see results in Fig. 8). These values are computed 

with Occlusion Culling deactivated and then with it activated. We also include the 

frames per second that resulted from rendering the scene using a pixel shader that 

alters the z value to produce a displacement mapping effect with Z-PrePass and with 

our Occlusion Culling method. On average our method increases the FPS around 20% 

compared to the Z-PrePass technique (see results in Fig. 8). The values were obtained 

using a PC with Intel Core i3 2.40GHz processor with 2GB RAM and Intel HD 

Graphics 3000 GPU. 

5 Conclusions and Future Work 

We have implemented a method that performs image space occlusion culling 

completely in GPU, taking advantage of its rendering power to build the Occlusion 

Map and leveraging its parallel architecture to perform the visibility test. 

According to our results, this occlusion culling method is applicable in densely 

occluded scenes where pixel shaders are computationally expensive and specifically if 

they alter the default depth value of the fragments, like in [4] and [5]. Conversely we 

found that for scenes with lightweight pixel shaders and no depth overrides, our 

method performs similar to the GPU built-in Early-Z culling, making it suitable for 

mixed case scenarios.  

As our implementation is based on Shader Model 3, it does not require special 

hardware requirements, beyond the vertex shader texture lookup capabilities present 

in most GPUs. However we found that in some older hardware, particularly those 

without Unified Shader architecture, the vertex texture lookup may downgrade the 

performance significantly [24]. It is also important to have some considerations 

before applying this technique. As all the occludees are sent to the GPU, no matter if 

they are occluded or not, there is a CPU-GPU bus bandwidth required to transfer the 

primitives to the graphics adapter. Moreover, as many other similar occlusion culling 

algorithms, the occluders have to be preprocessed in order to simplify the geometry 

into simpler conservative volumes. 

Among the numerous enhancements to be made to our method, we would like to 

modify it to overcome the limitation of the 256256×  pixel size occludees and to 

explore built in hardware options to reduce the UVM, avoiding the current two 

rendering pass method. 

Finally as newer versions of DirectX and OpenGL become available we could 

explore the option of implementing this method using compute shaders, orienting it to 

the work presented by Nießner[17] and Rákos[15]. We could also count the number 

of visible blocks in each occludee and utilize the results to determine some level of 

detail in geometry and pixel shaders. 
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Fig. 7. Left: The 3D city scene used to test the algorithm. Right: The simplified occluder set used for 

Occlusion Culling 
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Fig. 8. Left: Discarded mesh percent, first with only Frustum Culling and then activating Occlusion 

Culling, at the fifteen different selected view points. Right: FPS rendering performance with Z-

PrePass and then with Vertex-Discard Occlusion Culling activated, at the 15 different selected view 

points. 
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