

Vertex Discard Occlusion Culling

Leandro R. Barbagallo, Matias N. Leone, Rodrigo N. Garcia

Proyecto de Investigación “Explotación de GPUs y Gráficos Por Computadora”, GIGC –

Grupo de Investigación de Gráficos por Computadora, Departamento de Ingeniería en Sistemas

de Información, UTN-FRBA, Argentina

{lbarbagallo, mleone, rgarcia}@frba.utn.edu.ar

Abstract. Performing visibility determination in densely occluded

environments is essential to avoid rendering unnecessary objects and achieve

high frame rates. In this work we present an implementation of the image space

Occlusion Culling algorithm done completely in GPU, avoiding the latency

introduced by returning the visibility results to the CPU. Our algorithm utilizes

the GPU rendering power to construct the Occlusion Map and then performs the

image space visibility test by splitting the region of the screen space occludees

into parallelizable blocks. Our implementation is especially applicable for low-

end graphics hardware and the visibility results are accessible by GPU shaders.

It can be applied with excellent results in scenes where pixel shaders alter the

depth values of the pixels, without interfering with hardware Early-Z culling

methods. We demonstrate the benefits and show the results of this method in

real-time densely occluded scenes.

Keywords: Occlusion Culling, Visibility Determination, GPU, Shaders

1 Introduction

Complex scenes with thousands of meshes and expensive shading computations are

increasingly frequent in current real-time graphics applications. Although commodity

hardware continues to increase its computational power every day, scenes like these

cannot be directly supported at real-time frame rates. Optimization techniques are

crucial in order to manage that kind of graphics complexity.

Frustum culling is a commonly used technique to avoid rendering meshes that are

outside the viewing volume. These invisible models can be discarded at an early stage

in the pipeline obviating expensive computation that will not contribute to the final

image. Unfortunately it does not consider objects (occludees) that do not contribute to

the final image because they are being blocked by others in front of them (occluders).

Because of this, several Occlusion Culling techniques were developed to overcome

this limitation. Applications with expensive pixel shaders may greatly improve their

performance by reducing fragments overdraw.

The Z-PrePass [1] technique avoids computing unnecessary pixel shaders

following a two step procedure. First it draws the entire scene in order to store in the

397

 Leandro R. Barbagallo, Matias N. Leone, Rodrigo N. Garcia

Z-Buffer all the depth values of the scene visible points. Second the scene is drawn

once more, but this time the GPU can early reject the occluded fragments based on

already present depth values in the ZBuffer. This way non visible pixel shaders are

not executed.

Fig. 1: Left: The densely occluded scene as viewed from the camera. Middle: The Occlusion Culling

algorithm avoids rendering completely occluded objects. Right: The simplified occluder set used for

occlusion.

This technique is used by many applications to reduce its pixel overdraw but its

main limitation is that GPU cannot take advantage of the Early-Z [2] or [3]

optimization when the pixel shader uses a depth writing operation [4], [5]. Since our

method discards occluded objects before they get rasterized, no restrictions related to

depth writing are imposed to pixel shaders.

Contributions: In this work we present a technique for solving Occlusion Culling

in GPU, without the need for special hardware extensions or CPU read back. It

includes a visibility test in the vertex shader of the application in order to discard

those vertices that belong to occluded meshes. If the mesh is occluded then all its

vertices can be discarded in the vertex shader, avoiding the rasterization step and the

pixel computations. A previous step computes the visibility state of each mesh in the

GPU and stores its result in an output texture called Occlusion Map. This result is

acquired after performing a highly parallelized overlap and depth test comparison.

2 Related work

There is a great amount of research conducted on Occlusion Culling. A classification

and overview of all these methods is presented by Cohen-Or et al. [6]. Among those

techniques the ones that work in point-space are Hierarchical Z-Buffer (HZB) [7] and

Hierarchical Occlusion Maps (HOM) [8].

On modern GPUs hardware occlusion queries [9] provide a built-in way to

determine if a draw call contributes to the current frame, but suffer from latency and

stalling effects due to the CPU read back. To address this issue temporal coherence

techniques are applied [10], [11], but they require spatial hierarchies of objects to

limit the number of issued queries.

Some newer hardware capabilities allow conditional rendering without CPU

intervention like OpenGL conditional rendering which is implemented as GL NV

conditional render [12] extension and DirectX 11 predicated rendering implemented

as the ID3D11Predicate interface [13]. These methods determine whether geometry

398

Vertex Discard Occlusion Culling

should be processed or culled depending on the results of a previous draw call.

Current hardware conditional rendering does not allow the GPU shaders to access the

occlusion results, but Engelhard et al. [14] implement a method that allows this. Other

authors [15], [16] also implement HZB on GPU using compute shaders.

More recently Nießner [17] proposes a patch primitive based approach to perform

occlusion culling applying HZB and temporal coherence. In recent years, since CPUs

increased the number of cores and the set of SIMD instructions were extended, some

approaches perform point based Occlusion Culling such as HOM using highly

optimized software rasterizers [18], [19], [20], [21].

3 Vertex Discard Occlusion Culling

3.1 Algorithm Overview

In our proposed method we perform a from-point, image-precision [6] occlusion

culling process completely in GPU without the need for the CPU to read back the

results. The method consists of a series of steps that must be followed by each frame

to generate the Occlusion Map, perform the Visibility Test and obtain the Potentially

Visible Set. Finally the method uses those results, already present in the GPU, to

discard all the vertices of the occluded objects before they reach further stages of the

pipeline. The steps are:

1. Occludee Generation: Select occluders and generate simplified volumes.

2. Occlusion Map Generation: Render occluder simplified volumes into the
Occlusion Map Texture.

3. Visibility Testing: Determine which occludees are occluded and stored them in the
Visibility Map.

4. Vertex Discard: Cull all the vertices that belong to invisible occludees.

399

 Leandro R. Barbagallo, Matias N. Leone, Rodrigo N. Garcia

Fig. 2. The first step is to obtain the simplified occluders as proxy meshes. The second step is to

render all proxy meshes to the Occlusion Map texture.

3.2 Occlusion Map Generation

The method begins Offline by creating a database of selected occluders that meet a

predefined criteria [22], and storing the proxy meshes which are simplified, low-poly

and conservative versions of the original occluders. These simplified occluders will

be rendered faster than the original meshes, even if it behaves more conservatively.

See Fig. 2.

In each frame, object-precision culling techniques such as Frustum Culling, PVS

and Portal Culling [6] are applied to discard as many occluders as possible. With this

obtained reduced subset of occluders we perform the first step of the method which is

to render the proxy meshes into the Occlusion Map. This buffer stores the closest to

camera depth values of every rasterized occluder and is implemented as a 32-bit

floating point render target texture which is preferably a one fourth downscaled

version of the screen framebuffer.

Unlike the HOM’s Occlusion Map [8], our map does not contain opacity

information, therefore the buffer is more similar to the HZB [7] which only stores the

depth values of the occluders in each point, leaving the highest depth value to indicate

no occluder presence.

The generation of the Occlusion Map is relatively inexpensive as the GPU

massively parallel power is utilized to render the low-poly convex volumes of the

proxy meshes and also because the pixel shader applied is extremely straightforward

because it only outputs the depth value of each point.

3.3 Visibility Test

The core of this image based Occlusion Culling algorithm is to perform the Visibility

Test for each selected occludee against the fusion of all the occluders represented by

the Occlusion Map. Then it is used to determine whether the occludee geometry will

continue along the pipeline or if it will be culled immediately. Visibility testing is

performed by contrasting the points inside the occludee screen space bounding

rectangle against the Occlusion Map depth values that contain the aggregated

information of the occluders. In each frame, for every occludee in the viewing

frustum, the algorithm performs a screen space projection of the occludee bounding

box vertices. With those eight screen projected points, it determines the clipped 2D

screen space bounding rectangle and finds the nearest from camera depth value of

those extreme points. The resulting occludee bounding rectangle becomes a

conservative superset of the actual pixels covered by the occludee (see Fig. 3).

Afterwards, the visibility test determines if the occludee would actually contribute to

the final image and starts by comparing all the depth values inside the occludee

bounding rectangle against the ones in the Occlusion Map; when at least one point of

the occludee is closer to the camera than the one stored in the same position in the

Occlusion Map, the algorithm can now assume that the point is visible and therefore

the whole occludee is considered potentially visible.

400

Vertex Discard Occlusion Culling

On the other hand, to determine that an occludee is completely culled, all the pixels

must be examined exhaustively and proved to be farther than the values stored in the

Occlusion Map.

Fig. 3.The occludees in the scene are projected in 2D and the Bounding Rectangle is calculated. For

each rectangle the algorithm performs the visibility test in GPU accessing the Occlusion Map, storing

the visibility result in the Visibility Map.

Some methods implement this overlap and depth test in CPU [19], [20], [23], [21],

and others use special GPU hardware capabilities such as hardware occlusion queries

[9] or the more modern predicate/conditional rendering [13], [12]. Our method

manually computes the visibility result pixel by pixel utilizing GPU pixel shaders.

However as explained before, to actually conclude that a occludee is culled, we

have to exhaustively test all the pixels inside the occludee bounding rectangle,

resulting in MN × texture fetches to the Occlusion Map. As the screen space

regions covered by the occludees get larger, the number of texels to fetch and test can

reach very large numbers.

To accelerate this, some methods build a pyramid of downsized versions of the

Occlusion Map where each increasing level is half the size in each dimension of the

previous one. There are two approaches to utilize the pyramid, one is like the method

used in HOM [8] and HZB [7] which they begin at some level of the pyramid

depending on the occludee bounding rectangle size and have to go to the finest level

to assure that the occludee is completely culled by the occluders.

The other approach [15], [16] only restricts itself to a selected level of the pyramid,

limiting the possible number of texture fetches to a given constant to avoid the worst

case scenario where they have to move to levels with greater detail. After

implementing this last variation we found that the level of conservativeness was

higher than expected for medium to large screen space occludees.

In this work we found that using a single level Occlusion Map of a fourth of the

original screen buffer was a good tradeoff between number of texture fetches and

level of conservativeness. In the next section we discuss the methods used to leverage

the GPU hardware to perform this visibility test.

401

 Leandro R. Barbagallo, Matias N. Leone, Rodrigo N. Garcia

3.4 Block Subdivision

Despite having a downsized version of the Occlusion Map, performing all the

MN × texture fetches in a single pixel shader execution does not perform as

expected, because of the serial nature of the algorithm. In the best cases this inner

loop could take only a few cycles whereas in other cases the same execution could

take hundreds of thousands of cycles before it is finished.

For this reason, in our method the visibility test is parallelized taking advantage of

the parallel execution nature of the pixel shaders, splitting the total region covered by

each occludee into a series of fixed size blocks where each one only performs a

maximum of 88× texture lookups to the Occlusion Map (see Fig. 4). This way each

occludee bounding rectangle is split up in blocks that concurrently perform the

visibility test by executing pixel shaders that return only two possible output colors: 0

meaning the block itself is completely occluded or 1 if the block is potentially visible.

The output of each pixel shader goes to a rendering target texture called Unreduced

Visibility Map (UVM) that holds the block visibility results one next to the other as

seen in Fig. 5.

In order to simplify the way each region is assigned, every occludee is assumed to

have a fixed number of blocks, regardless of its screen space size. In our study we

determined that every occludee would have a preset number of 3232× blocks

assigned, resulting in a total of 1024 blocks. This gives us a maximum occludee

screen size of 256256× pixels and if the dimensions are larger than those, the

occludee is simply considered potentially visible. To implement this algorithm using

shader model 3 (without compute shaders), we carefully position a 3232× pixel

quad (GPGPU quad) and render it using a pixel shader that executes the visibility test

code. Each pixel of this quad represents a block visibility test of the occluder. The

shader gets the occludee bounding rectangle coordinates, depth value and the block

number as parameters, and then executes the 88× pixels overlap and depth test.

Require: occludeeSize

Require: occludeePos {occludee AABB position}

Require: occludeeDepth

Require: occlusionMap

Require: pos {quad texture coordinates}

Require: quadSize

1: base ← occludeePos × pos + quadSize × 8

2: result ← 0 {not visible}

3: for i = 0 to 8 do

4: for j = 0 to 8 do

5: p ← base + (i, j)

6: depth ← read p from occlusionMap

7: if occludeeDepth ≥ depth then

8: result ← 1 {visible}

9: break

10: end if

11: end for

12: end for

402

Vertex Discard Occlusion Culling

Fig. 4. Visibility test algorithm performed in a pixel shader

Using this block subdivision strategy, the visibility test is split into smaller task

units and performed in parallel making use of the available GPU shader execution

cores. If all the blocks comprising the occludee rectangle output 0 values, then the

whole occludee is considered culled, conversely when at least one of the blocks

results visible the whole occludee is considered potentially visible.

Fig. 5. The occludee is split into 8x8 blocks, then each block performs the visibility test and stores the

result into the Unreduced Visibility Map. Each occludee has a pre-assigned region of 32x32 blocks

inside this Occlusion Map texture.

Nevertheless the visibility result of each occludee is not consolidated into a single

value, but spread into a series of 3232× matrices inside some region of the UVM.

The next step of our method reduces each 3232× occludee visibility result matrix

into a consolidated Visibility Map that will hold the results of each visibility test one

next to the other.

3.5 Visibility Map Reduction

In order to reduce the UVM and consolidate each 3232× region into a single

value, we need to determine if there is at least a non-zero value inside that matrix. To

achieve this, we search for the maximum value of the matrix to see if there is any

value other than zero. The search is done utilizing a parallel reduction approach with

two rendering passes to limit the total number of operations. In the first pass we

search the maximum value in each matrix column of 32 pixels and store it in an

intermediate texture. In the second pass, we obtain the final Visibility Map looking for

the maximum value in each row. Finally we end up with the Visibility Map containing

the results of the occlusion culling process for each occludee tested in the current

frame, which will be heavily accessed in the next step of our method.

403

 Leandro R. Barbagallo, Matias N. Leone, Rodrigo N. Garcia

3.6 Vertex Discard

This Visibility Map texture could be sent back to the CPU and processed there to

avoid having to execute the draw calls to occluded objects; however this would

produce a stalling effect on the GPU while sending the results back. To address this

issue, we propose an asynchronous mechanism where the CPU does not need the

results of the visibility test.

In our method the CPU always performs the draw calls for all the geometry that is

potentially visible (the subset that passes frustum culling, portal culling, PVS, etc.),

and the GPU is responsible for discarding the occluded geometry based on the

Visibility Map content.

In our implementation we slightly modify the vertex shader that performs the

World-View-Projection transformation as seen in Fig. 6. Before drawing an occludee,

we send a parameter to the pixel shader indicating the ID of occludee that is about to

be rendered. Based on that value, the vertex shader will perform a texture lookup in

the Visibility Map to find the occlusion status for that particular occludee. If it is

potentially visible, then the vertex shader does its usual computation letting the vertex

continue throughout the pipeline. On the other hand, if the occludee is invisible we

assign a negative z value to the output vertex so it can be culled by the GPU. This

process is performed for every vertex that constitutes the occludee geometry.

Require: vp {Vertex 3D Position}

Require: vMap {Visibility Map}

Require: i {Occludee index}

1: vis ← read visibility info from vMap using i

2: if vis = 0 then

3: {Continue with normal vertex shader calculations}

4: else
5: vp.z = −1 {Discard vertex}

6: end if

Fig. 6. Vertex cull algorithm performed in a Vertex Shader.

4 Implementation and Results

Our method was implemented using C# 4.0 with DirectX 9 and Shader Model 3.

We decided not to use newer shader models (with Compute Shader capabilities) so we

could test in the current low-end commodity hardware. The implementation of our

occlusion culling module was designed in a way that can be easily adapted to other

graphics frameworks, where only certain parts have to be added or modified.

We tested our method in a densely occluded 3D city scene Fig. 7, composed of 210

meshes, adding up a total of 379,664 triangles. For this scene 258 occluder proxies

were generated in Offline time based on the ideas presented by [22]. In order to

analyze the algorithm performance, 15 representative scene View Points were taken,

where in each position we compute the following occlusion metric:

404

Vertex Discard Occlusion Culling

100×







 −
=

t

vt
value

 (1)

Where t is the total scene meshes and v is the total visible meshes. With this
metric we can determine the percentage of meshes that were discarded by the GPU in

each frame due to occlusion culling (see results in Fig. 8). These values are computed

with Occlusion Culling deactivated and then with it activated. We also include the

frames per second that resulted from rendering the scene using a pixel shader that

alters the z value to produce a displacement mapping effect with Z-PrePass and with

our Occlusion Culling method. On average our method increases the FPS around 20%

compared to the Z-PrePass technique (see results in Fig. 8). The values were obtained

using a PC with Intel Core i3 2.40GHz processor with 2GB RAM and Intel HD

Graphics 3000 GPU.

5 Conclusions and Future Work

We have implemented a method that performs image space occlusion culling

completely in GPU, taking advantage of its rendering power to build the Occlusion

Map and leveraging its parallel architecture to perform the visibility test.

According to our results, this occlusion culling method is applicable in densely

occluded scenes where pixel shaders are computationally expensive and specifically if

they alter the default depth value of the fragments, like in [4] and [5]. Conversely we

found that for scenes with lightweight pixel shaders and no depth overrides, our

method performs similar to the GPU built-in Early-Z culling, making it suitable for

mixed case scenarios.

As our implementation is based on Shader Model 3, it does not require special

hardware requirements, beyond the vertex shader texture lookup capabilities present

in most GPUs. However we found that in some older hardware, particularly those

without Unified Shader architecture, the vertex texture lookup may downgrade the

performance significantly [24]. It is also important to have some considerations

before applying this technique. As all the occludees are sent to the GPU, no matter if

they are occluded or not, there is a CPU-GPU bus bandwidth required to transfer the

primitives to the graphics adapter. Moreover, as many other similar occlusion culling

algorithms, the occluders have to be preprocessed in order to simplify the geometry

into simpler conservative volumes.

Among the numerous enhancements to be made to our method, we would like to

modify it to overcome the limitation of the 256256× pixel size occludees and to

explore built in hardware options to reduce the UVM, avoiding the current two

rendering pass method.

Finally as newer versions of DirectX and OpenGL become available we could

explore the option of implementing this method using compute shaders, orienting it to

the work presented by Nießner[17] and Rákos[15]. We could also count the number

of visible blocks in each occludee and utilize the results to determine some level of

detail in geometry and pixel shaders.

405

 Leandro R. Barbagallo, Matias N. Leone, Rodrigo N. Garcia

Fig. 7. Left: The 3D city scene used to test the algorithm. Right: The simplified occluder set used for

Occlusion Culling

AKNOWLEDGMENTS

The authors would like to thank the GIGC Computer Graphics Research Group for

supporting this research, and the Department of Information Systems Engineering for

providing the support and funding. We also thank the Retrovia Project, specially

Marta Garcen and Eva Ferrari (English node) for reviewing our work and to the

Algebra and Analytic Geometry node for making this connection.

Fig. 8. Left: Discarded mesh percent, first with only Frustum Culling and then activating Occlusion

Culling, at the fifteen different selected view points. Right: FPS rendering performance with Z-

PrePass and then with Vertex-Discard Occlusion Culling activated, at the 15 different selected view

points.

6 References

[1] Intel Corporation, “Early Z Rejection”, http://software.intel.com/en-

us/vcsource/samples/early-z-rejection, Accessed June. 2013.

[2] E. Haines and S. Worley, “Fast, low memory z-buffering when performing medium-quality

rendering,” J. Graph. Tools, vol. 1, no. 3, pp. 1–6, Feb. (1996).

[3] G. Riguer, “Performance optimization techniques for ati graphics hardware with directx

9.0,” ATI Technologies Inc, (2002).

[4] V. Krishnamurthy and M. Levoy, “Fitting smooth surfaces to dense polygon meshes,” in

Proceedings of the 23rd annual conference on computer graphics and interactive techniques,

ser. SIGGRAPH ’96. New York, NY, USA: ACM , pp. 313–324. (1996)

[5] A. Lee, H. Moreton, and H. Hoppe, “Displaced subdivision surfaces,” in Proceedings of the

27th annual conference on Computer graphics and interactive techniques, ser. SIGGRAPH

’00. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., pp. 85–94, (2000)

[6] D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Durand, “A survey of visibility for

walkthrough applications,” Visualization and Computer Graphics, IEEE Transactions on

Visualization and Computer Graphics, vol. 9, pp. 412–431, (2003).

[7] N. Greene, M. Kass, and G. Miller, “Hierarchical z-buffer visibility,” Anaheim, CA, pp.

231–238, (1993)

406

Vertex Discard Occlusion Culling

[8] H. Zhang, D. Manocha, T. Hudson, and K. Hoff, “Visibility culling using hierarchical

occlusion maps.” Los Angeles, CA: In Computer Graphics (Proceedings of SIGGRAPH

97), pp. 77–88, (1997)

[9] NVIDIA Corporation, “Nv occlusion query,” http://www.opengl.org/

registry/specs/NV/occlusion query.txt, Accessed Mar. 2013.

[10] K. Hillesland, B. Salomon, A. Lastra, and D. Manocha, “Fast and simple occlusion culling

using hardware-based depth queries,” Techinical Report TR02-039, Dept. Comp. Sci.,

University of North Carolina, 2002.

[11] D. Staneker, D. Bartz, and M. Meissner, “Improving occlusion query efficiency with

occupancy maps,” in Proceedings of the 2003 IEEE Symposium on Parallel and Large-Data

Visualization and Graphics, ser. PVG ’03. Washington, DC, USA: IEEE Computer Society,

p. 15, (2003)

[12] NVIDIA Corporation, “Nv conditional render,” http://www.opengl.org/ ,

registry/specs/NV/conditional render.txt, Accessed Mar. 2013.

[13] Microsoft, “ID3D11Predicate interface,” http://msdn.microsoft.com/en-

us/library/windows/desktop/ff476577%28v=vs.85%29.aspx, Accessed Mar. 2013.

[14] T. Engelhardt and C. Dachsbacher, “Granular visibility queries on the gpu,” Boston, pp.

161–167, (2009)

[15] D. R´akos, “Hierarchical-z map based occlusion culling,” http://rastergrid.

com/blog/2010/10/hierarchical-z-map-based-occlusion-culling/, Mar. 2013.

[16] N. Darnell, “Hierarchical z-buffer occlusion culling,” http://www.

nickdarnell.com/2010/06/hierarchical-z-buffer-occlusion-culling/, Accessed Mar 2013.

[17] M. Nießner and C. Loop, “Patch-based occlusion culling for hardware tessellation,” in

Computer Graphics International, (2012).

[18] W. Vale, “Practical occlusion culling in killzone 3,” p. 49, (2011).

[19] J. Andersson, “Parallel graphics in frostbite-current & future,” SIGGRAPH Course:

Beyond Programmable Shading, (2009).

[20] Intel Corporation, “Software occlusion culling,” http://software.intel. com/en-

us/articles/software-occlusion-culling/, Accessed Jan. 2013.

[21] L. R. Barbagallo, M. N. Leone, M. M. Banquiero, D. Agromayor, and A. Bursztyn,

“Techniques for an image based occlusion culling engine,” in XVIII Argentine Congress on

Computer Sciences, ser. CACIC 2012, Bahia Blanca, pp. 405–415, (2012)

[22] M. N. Leone, L. R. Barbagallo, M. Banquiero, D. Agromayor, and A. Bursztyn,

“Implementing software occlusion culling for real-time applications,” in XVIII Argentine

Congress on Computer Sciences, ser. CACIC 2012, Bahia Blanca, pp. 416–426, (2012)

[23] H. Hey, R. F. Tobler, and W. Purgathofer, “Real-time occlusion culling with a lazy

occlusion grid.” London, UK, UK: Springer-Verlag, pp. 217–222, (2001)

[24] NVIDIA Corporation, “Geforce 8 and 9 series gpu programming guide,”

http://developer.download.nvidia.com/GPU Programming Guide/GPU Programming Guide

G80.pdf, Accessed Mar. 2013.

407

