
A Variant of Simulated Annealing to Solve Unrestricted

Identical Parallel Machine Scheduling Problems

Claudia Gatica1, Susana Esquivel1 and Guillermo Leguizamón1,

1 LIDIC

Universidad Nacional de San Luis

Ejército de Los Andes 950 - Local 106

San Luis, Argentina

Telephone: (0266) 4420823

Fax: (0266) 4430224

{crgatica,esquivel,legui}@ unsl.edu.ar

Abstract. In this paper we propose a modification to the Simulated Annealing

(SA) basic algorithm that includes an additional local search cycle after

finishing every Metropolis cycle. The added search finishes when it improves

the current solution or after a predefined number of tries. We applied the

algorithm to minimize the Maximum Tardiness objective for the Unrestricted

Parallel Identical Machines Scheduling Problem for which no benchmark have

been found in the literature. In previous studies we found, by using Genetic

Algorithms, solutions for some adapted instances corresponding to Weighted

Tardiness problem taken from the OR-Library. The aim of this work is to find

improved solutions (if possible) to be considered as the new benchmark values

and make them available to the community interested in scheduling problems.

Evidence of the improvement obtained with proposed approach is also

provided.

Keywords: Unrestricted Parallel Identical Machines Scheduling Problem,

Simulating Annealing. Maximum Tardiness.

1 Introduction

The schedule of activities is a decision process that has an important role in

production and multiprocessor systems, manufacturing and information environments,

and transportation distribution[17]. In particular, this paper considers the unrestricted

identical parallel machine scheduling problem in which the maximum tardiness has to

be minimized. Objectives such as the completion time of the last job to leave the

system, known as Makespan (Cmax), is one the more important objective function to

be optimized, because it usually implies high resource utilization. In different systems

of real world it is also usual stress minimization of the due-date based objectives as

Maximum Tardiness (Tmax) among others. Branch and Bound and other partial

enumeration based methods, which guarantee exact solutions, are prohibitively time

consuming even with only 20 jobs. The parallel machine environment has been

100

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/18303633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

studied for several years due to its importance both academic and industrial. The

scheduling literature provides a set of dispatching rules and heuristics. Different

metaheuristics have been used to solve scheduling problems. For example, the

population-based metaheuristics such as Evolutionary Algorithms and Ant Colony

Optimization [2], [4], [11]. The trajectory-based heuristics have also been applied to

solve these types of problems. In [13] VNS was used to solve the makespan in

uniform parallel machine scheduling problem with release dates. In other related work

[1] the authors applied an Iterated Local Search metaheuristic to solve the unrestricted

parallel machine with unequal ready time problem. In [18] VNS with an efficient

search mechanism, is proposed to solve the problem of maximum Cmax in unrelated

parallel machine scheduling. A comparative study [19] was conducted between SA

and GRASP to solve the problem of maximum Cmax in single machine scheduling,

there SA outperforms GRASP. A hybrid approach is addressed in [5] which integrates

features of Tabu Search (TS), SA, and VNS to solve a parallel machine problem with

total tardiness objective. Another hybrid approach is presented in [14] where the

authors combine TS with VNS in a way that the TS algorithm is embedded into VNS

acting as a local search operator for parallel machine scheduling problem. In [6], [7],

and [8] the authors face the same problem with an approach involving Evolutionary

Algorithms with multirecombination and insertion of specific knowledge of the

problem.

The rest of this paper is organized as follows. The next section presents the

scheduling problem. After this, in section 3, the proposed algorithm is described.

Section 4 explains the experimental design. In section 5 the results are shown and

discussed. Finally, in section 6 we present our conclusions and outline our future

work.

2 Scheduling Problem

The problem we are facing can be stated as follows: there are n jobs to be
processed without interruption on some of the m identical machines belonging to the

system; each machine can process not more than one job at a time, job j (j = 1, 2, ...,

n) is made available for the processing at time zero. It requires an uninterrupted

positive processing time pj on a machine and it has a due date dj by which it should

ideally be finished. For a given processing order of the jobs (schedule) the earliest

completion time Cj and the maximum delay time Tj = {Cj - dj , 0} of the job j can
readily be computed. The problem is to find a processing order of the jobs with

minimum objective values. The objective to be minimized is:

Maximum Tardiness: Tmax = max j (Tj) (1)

This problem is NP-hard when 2 ≤ m ≤ n [17].

101

3 The Proposed SA Algorithm

In a previous study [3] we work on the same problem but we address it with

different local search metaheuristics: SA, VNS, Iterated Local Search (ILS) and

Greedy Random Adaptive Search Procedure (GRASP). This comparative study

showed that the best algorithm was SA although it was only able to improve

benchmark values in ten instances (see Table 1). For reasons of space only the results

obtained for m = 5 and n= 100 are showed. From the results obtained we assumed

that the algorithm lacked of higher exploration capacity. With the main idea of

overcoming these difficulties, we design a variant of the SA algorithm.

I Bench ILS GRASP VNS SA

 1 548 587 597 547 542

 6 1594 1594 1581 1572 1567

 11 2551 2577 2626 2552 2539

 19 3703 3756 3784 3717 3718

 21 5187 5193 5232 5197 5177

 26 84 148 407 101 70

 31 1134 1160 1366 1145 1135

 36 2069 2128 2360 2091 2061

 41 3651 3631 3821 3621 3607

 46 4439 4475 4599 4443 4440

 56 617 725 1104 655 609

 61 1582 1779 2453 1705 1580

 66 2360 2483 2870 2427 2359

 71 3786 3924 4413 3862 3791

 86 1194 1455 2281 1393 1194

 91 2204 2427 2953 2412 2222

 96 3185 3256 3780 3216 3187

111 1365 1846 3216 1781 1458

116 2222 2537 3055 2457 2266

121 2999 3407 3890 3286 3099

 Table 1: Best values achieved by each metaheuristic

The pseudo-code of the proposed SA algorithm is given in Algorithm 1. The search

processes of our algorithm is divided into two stages, based on the equilibrium

condition as follows: SA starts with a high initial temperature (IT = 14256), it

generates a random initial solution, and it initializes the counter to the equilibrium

condition, which is achieved with the length of the Markov chain (LMC = 9716),

which represents a constant number of search steps that are performed without

updating the temperature (T). The justification for the initial value of temperature

(IT), the length of the Markov chain (LMC) as the selection of operators (op1 and

op2) is given in subsection 4.2 Then, depending on the condition of equilibrium, the

search process is divided into two stages. In the first stage, the solutions are generated

through the perturbation operator (op1 = scramble) (step: 7) and in the second stage,

once the equilibrium condition is reached, and before updating the temperature (step:

16) it applies an extra exploration procedure called Explore (step: 15) which is

described in Algorithm 2. Algorithms 1 and 2 show schematically the search process

performed SA.

102

Algorithm 1 SA Algorithm including a call to an exploration
procedure.

1: c = 0 {Used for the equilibrium condition}
2: s = s

0
 {Initial solution}

3: T = T
0
 {Starting temperature}

4: repeat
5: repeat
6: c = c + 1
7: Generate a solution s

0
 applying a

 perturbation operator (op1)
8: ∆E = f(s

0
) − f(s)

9: if ∆E ≤ 0 then

10: s = s
0

11: else
12: Accept s

0
 with a probability e

-∆E/T

13: end if
14: until c == Markov-chain-length
15: s

0
 = Explore(s)

16: Update (T) {Geometric temperature update}
17: c = 0
18: ∆E = f(s

0
) − f(s)

19: if ∆E ≤ 0 then

20: s = s
0

21: else
22: Accept s

0
 with a probability e

-∆E/T

23: end if
24: until Stopping Criteria
25: return s

Algorithm 2 Explore(s): the exploration procedure.
1: Input: s solution from SA, tries is the number of attempts
2: i = 1
3: while i ≤ tries do

4: Generate a solution s
0
 applying a perturbation

 operator (op2)
5: if f(s

0
) < f(s) then

6: s = s
0

7: return s
8: else
9: i = i + 1
10: end if
11: end while
12: return s

The function Explore performs (i = 1, ... , tries) attempts to find a solution s0 that

improves s, as follows: generates a solution s0 by applying a perturbation operator

(op2 = 4-opt). If f(s0) < f(s), s is replaced by s0 and Explore returns s, otherwise,

another attempt is made by (steps : 4−6).

Following Algorithm 1, the acceptance criteria is applied (steps: 8 − 13 and 18 -

23). The search process ends when it reaches a maximum number of evaluations

(step: 25).

In our implementation, the representation of the solutions is a permutation of

integers in the range 1... n, which represent the job indexes.

The initial solution is a integer permutation randomly generated as follows: from 1

to n, for each index i generates a random number between i and n. This process

checks that the solution is a valid representation, i.e. it is a permutation without

repetition.

103

4 Experimental Design

4.1 Instances for the Unrestricted Parallel Identical Machines Scheduling

Problem

Unlike other scheduling problems as Flow Shop or Job Shop, after an intensive

search in the literature we could not find significant benchmarks for the problem we

worked on. With the purpose of creating our own benchmarks, we extracted value

pairs (pj, dj) based on selected data corresponding to Weighted Tardiness problem

taken from the OR Library [10]. The values pj and dj correspond to the processing

time and due date, respectively. These data were taken from problem sizes of 40 and

100 jobs. For each problem size, twenty instances were selected, each one with the

same identification number although they were not the same problem, i.e., we had a

problem numbered 1 with 40 jobs, another 1 with 100 jobs, and so on.

m=2, n=40 m=5, n=40 #I

DR MCMP-SE DR MCMP-SE

 1 235 (EDD) 216 284 (SLACK) 230

 6 599 (SLACK) 595 652 (SLACK) 606

 11 1060 (EDD) 998 1130 (SLACK) 1016

 19 1628 (EDD) 1624 1700 (SLACK) 1639

 21 1660 (SLACK) 1634 1720 (SLACK) 1647

 26 55 (EDD) 35 100 (SLACK) 61

 31 494 (EDD) 474 644 (SLACK) 546

 36 869 (SLACK) 852 984 (SLACK) 887

 41 1280 (EDD) 1271 1340 (EDD) 1317

 46 1240 (EDD) 1195 1310 (SLACK) 1235

 56 247 (SLACK) 229 318 (SLACK) 252

 61 604 (EDD) 604 737 (SLACK) 669

 66 1090 (SLACK) 1071 1240 (SLACK) 1129

 71 1280 (EDD) 1254 1330 (SLACK) 1272

 86 493 (SLACK) 457 589 (SLACK) 508

 91 896 (EDD) 874 1040 (EDD) 955

 96 1537 (EDD) 1531 1690 (SLACK) 1607

111 659 (EDD) 621 794 (SLACK) 689

116 650 (SLACK) 627 810 (SLACK) 695

121 1430 (EDD) 1377 1580 (SLACK) 1469

 Table 2: Obtained values for 2 - 5 machines and 40 jobs

The numbers of the instances are not consecutive because each one was selected

randomly from different groups. The tardiness factor is harder for those with the

highest identification number.

These instances are available on request (email: crgatica@unsl.edu.ar). In a

previous work [7], those value pairs were used as input for different dispatching rules

(SPT: Shorted Processing Time first, EDD: Earliest Due Date first, SLACK: Least

Slack, HODG Algorithm, and R&M: Rachamadugu and Morton Heuristic) provided

by PARSIFAL [17], a Software Package provided by Morton and Pentico, and a

Multi Crossover Multi Parent Genetic Algorithm (MCMP-SE) with insertion of

knowledge [8]. The results obtained are showed in Table 1 (cases m=2, n=40 and

m=5, n=40) and Table 2 (cases m=2, n=100 and m=5, n=100).

104

m=2, n=100 m=5, n=100 #I

DR MCMP-SE DR MCMP-SE

 1 562 (EDD) 536 590 (SLACK) 548

 6 1550 (EDD) 1544 1680 (SLACK) 1594

 11 2560 (EDD) 2516 2620 (SLACK) 2551

 19 3690 (SLACK) 3679 3720 (SLACK) 3703

 21 5150 (EDD) 5143 5240 (SLACK) 5187

 26 60 (R&M) 21 168 (SLACK) 84

 31 1110 (SLACK) 1092 1180 (SLACK) 1134

 36 2040 (SLACK) 2041 2120 (SLACK) 2069

 41 3590 (EDD) 3576 3710 (SLACK) 3651

 46 4420 (EDD) 4396 4580 (SLACK) 4439

 56 582 (HODG) 556 670 (SLACK) 617

 61 1560 (EDD) 1549 1630 (SLACK) 1582

 66 2360 (EDD) 2313 2440 (SLACK) 2360

 71 3780 (EDD) 3741 3820 (SLACK) 3786

 86 1200 (EDD) 1153 1240 (SLACK) 1194

 91 2180 (SLACK) 2132 2230 (EDD) 2204

 96 3110 (SLACK) 3093 3250 (SLACK) 3185

111 5340 (WLPT) 1325 1420 (SLACK) 1365

116 2200 (EDD) 2164 2320 (SLACK) 2222

121 2940 (EDD) 2934 3060 (SLACK) 2999

 Tabla 3: Obtained values for 2 - 5 machines and 100 jobs

In both Tables, #I indicates the instance identification and DR stands for Dispatching

Rules. In the case of the dispatching rules, the displayed values correspond to the best

obtained by the different rules used, whose names are enclosed in brackets. Bold

values from both tables are considered as benchmarks in the present work.

4.2 Parameter Settings

In this subsection we describe the method used to determine the set of appropriate

parameter values for our metaheuristic. There are different ways to do this, but can

distinguish two main groups of techniques: one, when the sample used is formed with

extreme values of the design space (no space-filling) or otherwise, when data values

correspond to the interior of the design space (space-filling) [21]. The latter approach

is the one we choose because it assumes that the interior of the design space can meet

important characteristics of the true design model. For the generation of the samples

we use the method Latin Hypercube Design (LHD) which generates random points

within the design space. For the SA algorithm and Explore function their relevant

parameters and corresponding application ranges were determined. They are indicated

in Table 4. We use five different operators of disturbance or movement: n swaps (1),

2-opt (2), 4-opt (3), shift (4) and scramble (5). A detailed description of these

operators can be found in [22]. Then LHD was employed using 20 design points

which resulted in 20 different parameter configurations, this task was performed using

the statistical tool R [20]. The resulting points sampling are shown in Table 5.

LMC=Length Markov chain [1000, 10000]
CR=Cooling Rate [0.5, 1.0]
IT=Initial Temperature [10000, 100000]
OP1=Pertubation Operator of SA [1, 5]
OP2=Pertubation Operator of Explore [1, 5]

105

NT=Number of Tries [10, 20]

 Table 4: Parameter Ranges

Ultimately, we perform 20 experiments. Each experiment consisted of 50 runs of
the algorithm SA, each run with 300,000 evaluations of the objective function for
each of the 20 instances of 100 jobs and 5 machines. For the statistical study we use

a software tool proposed by [12]. Such is called CONTROLTEST and automatically

applies various statistical tests, one of which is the Friedman test [15] and other post-

hoc procedures [16]. Resulting from the application on the median values of the runs

of different configurations allowed us obtain the Average Ranking of Friedman Test

and so, we were able to establish that the best performers were the c4 and c8

configurations (See Table 5, in column RF, such corresponds to Average Ranking of

Friedman test) and also we can conclude that there are not statistical significant

differences between them because the corresponding adjusted p-values did not give

values less than 0.05, see Table 6. The only difference of the behaviour of SA with

the specified parameter setup for c4 and c8 (and the reason of selection of c8

configuration) was the lowest number of evaluations used by SA to achieve the best

values. For reasons of space, the tables showing these results are not given here.

Conf. LMC CR IT OP1 OP2 NT RF

c1 1287 0,79391 86906 4 3 17 14,025

c2 6455 0,50691 57118 2 1 11 5,425

c3 2809 0,58518 93290 2 4 15 3,275

c4 8258 0,66540 84705 5 2 16 1,775

c5 3358 0,54591 30000 2 5 18 3,575

c6 4554 0,81334 59801 3 2 14 8,15

c7 4681 0,56859 69300 4 4 16 13,525

c8 9716 0,61812 14256 5 3 11 1,575

c9 8745 0,95200 54194 2 4 12 19,825

C10 5806 0,97936 42010 4 2 10 17,775

C11 3721 0,70923 20184 3 3 20 8,025

C12 7727 0,87080 67559 1 3 14 16,175

C13 1894 0,89262 14825 3 2 17 7,95

C14 9199 0,68212 73597 4 3 12 12,95

C15 6071 0,75536 36234 2 4 15 5,525

C16 7246 0,93239 37356 3 2 18 18,625

C17 7903 0,83626 80125 2 5 13 17,1

C18 5348 0,64777 24275 4 4 19 12,65

C19 2336 0,74463 99708 1 1 13 11,875

C20 2615 0,92429 46197 3 2 19 10,2

 Table 5: Parameter Configurations

config. p-Bonf p-Holm p-Hoch p-Homm

 c4 1,05E+00 5,27E-01 5,27E-01 5,27E-01

 Table 6: Adjusted p-values

4.3 Final Optimization Experiments

For each scenario, 50 runs were executed, each one with 600,000 objective function

evaluations. In each experiment we calculate the following metrics:

1) Best: The best value found in each run.

2) Median: Is the median objective value obtained from the best found individuals

throughout all runs.

3) SD of Median: The standard deviation of median objective value is the square

root of its variance.

4) Miter: Is the mean of iterations where the best value was obtained.

106

5) SD of Miter: The standard deviation of mean of iterations in each run is the

square root of its variance.

All the experiments reported in this work were run on a sub-cluster conformed by 1

CPUs of 64 bits, processor Intel Q9550 Quad Core 2.83GHz, with 4GB DDR3

1333Mz of memory, 500 Gb SATA and 2 TB SATA hard disks, Asus P5Q3

motherboard and 11 CPUs of 64 bits each with processor Intel Q9550 Quad Core

2.83GHz, 4GB DDR3 1333Mz memory, 160 Gb SATA hard disk and Asus P5Q3

motherboard.

5 Results and Discussion

For all cases studied, Table 7 synthesizes the best values of the objective function

found by SA. In Table 7 entries marked in bold indicate that SA improved the

benchmark value while entries in italic show that SA reached benchmark. For the

case of 40 jobs and 2 machines, in almost all instances the benchmark values were

achieved, except in instances 6, 26, and 116 where the algorithm was able to find

smaller values.

 n=40 n=100

 m=2 m=5 m=2 m=5

#I Bench Best Bench Best Bench Best Bench Best

1 216 216 230 229 536 536 548 539

6 595 594 606 604 1544 1544 1594 1569

11 998 998 1016 1016 2516 2516 2551 2544

19 1624 1624 1639 1639 3679 3679 3703 3708

21 1634 1634 1647 1647 5143 5143 5187 5177

26 35 27 61 55 21 21 84 70

31 474 474 546 542 1092 1092 1134 1125

36 852 852 887 885 2041 2037 2069 2061

41 1271 1271 1317 1313 3576 3576 3651 3607

46 1195 1195 1235 1227 4396 4396 4439 4439

56 229 229 252 244 556 556 617 606

61 604 604 669 651 1549 1549 1582 1580

66 1071 1071 1129 1128 2313 2313 2360 2355

71 1254 1254 1272 1266 3741 3741 3786 3791

86 457 457 508 507 1153 1153 1194 1194

91 874 874 955 947 2132 2132 2204 2199

96 1531 1531 1607 1597 3093 3093 3185 3187

111 621 621 689 665 1325 1331 1365 1397

116 627 619 695 661 2164 2164 2222 2264

121 1377 1377 1469 1469 2934 2939 2999 3089

 Table 7: Bench and Best values found

For the case of 40 jobs and 5 machines SA in four instances (11, 19, 21, 121)

obtained the same value as the benchmark. In all other instances found better values.

Furthermore, in the scenario of 100 jobs and 2 machines, SA obtains a value less than

the benchmark in instance 36. In the case of instance 121, the proposed algorithm

does not reach the benchmark value but by a little difference; in all the remaining

instances reaches the benchmark values. In the last case analyzed, 100 jobs and 5

machines, SA improves the benchmark values in 12 instances (1, 6, 11, 21, 26, 31, 36,

41, 56, 61, 66 and 91). In two instances, 46 and 86 matches the benchmark. It reaches

values close to benchmark in instances 19, 71, and 96; but the values obtained in the

instances 111, 116, and 121 are further away from the known values. Previously

observed behaviours allow us to assume that SA behaves fairly well for problems that

107

involve more machines because it improves or reaches the known values of the

objective function. In the case of 2 machines, it reaches in most instances the

benchmark values and also produces some improvements. Since the true optimal

values are unknown, we may not conclude categorically if the number of machines

makes the problem harder or if we do not improve the benchmark is because these are

the true optimum.

6 Conclusion

The parallel machine environment has been studied for several years due to its

importance both academic and industrial. Unlike other scheduling problems we could

not find significant benchmarks for the problem of our interest, so in previous works

we created our own instances, for 40 and 100 jobs, extracting data from the OR-

Library corresponding to Weighted Tardiness and then we adapt them for the Tmax

problem. The main objective of our work was propose an improved version of SA

with additional exploration capabilities in order to find new benchmark values (when

possible) on the 20 instances analyzed in each case. This objective was achieved for

several considered scenarios, the improved version of SA found new benchmark

values. These results encourage us to continue with our research in two main

directions: a) discuss alternatives regarding the combination of trajectory-based

metaheuristics (e.g., SA with VNS or GRASP and also SA with population-based

metaheuristics), and b) increase the quantity of instances to be considered, by

adapting instances of the Weighted Tardiness Problems available in the OR-Library in

order to obtain an extended set of instances for future research.

Acknowledgments. The authors would like to thank to the Universidad Nacional de

San Luis for its continuous support.

References

1. C. Chen, An Iterated Local Search for Unrelated Parallel Machines Problem with Unequal

Ready Times, Proceedings of the IEEE International Conference on Automation and Logistics

Qingdao, China September 2008.

2. C. Mihilᾰ, A. Mihᾰilᾰ, An Evolutionary Algorithm for Uniform Parallel Machines

Scheduling, Second UKSIM European Symposium on Computer Modelling and Simulation,

978-0-7695-3325-4/08, 2008 IEEE DOI 10.1109/EMS.2008.34, 2008.

3. C. Gatica and S. Esquivel and G. Leguizamón, Comparative Study of Trajectory

Metaheuristics for the Resolution of Scheduling Problem of Unrestricted Parallel Identical

Machines, XVIII Congreso Argentino de Ciencias de la Computación, 2012.

4. C. Gatica and S. Esquivel and G. Leguizamón, An ACO approach for the Parallel

Machines Scheduling Problem, Inteligencia Artificial 46(2010), 84-95, doi:

10.4114/ia.v14i46.1550, 2010.

5. D. Anghinolfi and M. Paolucci, Parallel machines total tardiness scheduling with a new

hybrid metaheuristic approach, Computer Operations Res.34:3471-3490, 2007.

6. E. Ferretti and S. Esquivel, Knowledge Insertion: An Efficient Approach to Simple Genetic

Algorithms for Unrestricted for Parallel Equal Machines Scheduling. GECCO’05, 1587-1588,

2005, Washington DC, USA.

108

7. E. Ferretti and S. Esquivel, An Efficient Approach of Simple and Multirecombinated

Genetic Algorithms for Parallel Machine Scheduling, IEEE Congress on Evolutionary

Computation, 1340-1347, September 2005, Scotland, UK, IEEE Centre.

8. E. Ferretti and S. Esquivel, A Comparison of Simple and Multirecombinated Evolutionary

Algorithms with and without Problem Specific Knowledge Insertion, for Parallel Machines

Scheduling, International Transaction on Computer Science and Engineering, 2005, volume 3,

number 1, 207-221.

9. E. G. Talbi, Metaheuristics from design to implementation, by John Wiley & Sons, Canada,

2009.

10. J. E. Beasley, OR-Library: distributing test problems by electronic mail, Journal of the

Operational Research Society 41 (11), 1990, pp 1069-1072, as mentioned on.

http://people.brunel.ac.uk/[squigle]mastjjb/jeb/info.html.

11. J. Arnaout and R. Musa and G. Rabadi, Ant colony optimization algorithm to parallel

machine scheduling problem with setups, 4th IEEE Conference on Automation Science and

Engineering Key Bridge Marriott, Washington DC, USA August 23-26, p:578-582, 2008.

12. J. Derrac, S. Garcıa, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric

statistical tests as a methodology for comparing evolutionary and swarm intelligence

algorithms, Swarm and Evolutionary Computation, 2011.

13. K. Li and B. Cheng, Variable neighbourhood search for uniform parallel machine

makespan scheduling problem with release dates, 2010 International Symposium on

Computational Intelligence and Design.

14. M. Sevaux and K. Sörensen, VNS/TS for a parallel machine scheduling problem, MEC-

VNS: 18th Mini Euro Conference on VNS, 2005.

15. M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis

of variance, Journal of American Statistical Association 3 (1937) 674-701

16. M. Friedman, A comparison of alternative test of significance for the problem of the m

rankings, Annals of Mathematical Statistics 11 (1940) 86-92.

17. M. Pinedo, Scheduling: Theory, Algorithms and System, Prentice Hall, 1995.

18. N. Piersman and W. van Dijk, A local search heuristic for unrelated parallel machine

scheduling with efficient neighbourhood search, Mathematical and Computer Modelling, vol.

24, no. 9, pp. 11-19, 1996.

19. P. Sivasankaran and T. Sornakumar and R. Panneerselvam, Design and Comparison of

Simulated Annealing Algorithm and GRASP to Minimize Makespan in Single Machine

Scheduling with Unrelated Parallel Machines, Intelligent Information Management, 2010, 2,

406-416, doi:10.4236/iim.2010.27050 Published Online July 2010

(http://www.SciRP.org/journal/iim).

20. R Project, The R Project for Statistical Computing, http://www.rproject.org/.

21. T. Bartz-Beielstein, Experimental Research in Evolutionary Computation, The New

Experimentalism, Springer, 2006.

22. T. Bäck, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computation,

Institute of Physics Publishing Bristol Philadelphia and Oxford University Press, New York,

USA, 1997.

109

