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Abstract. In this paper we propose a modification to the Simulated Annealing 

(SA) basic algorithm that includes an additional local search cycle after 

finishing every Metropolis cycle. The added search finishes when it improves 

the current solution or after a predefined number of tries. We applied the 

algorithm to minimize the Maximum Tardiness objective for the Unrestricted 

Parallel Identical Machines Scheduling Problem for which no benchmark have 

been found in the literature. In previous studies we found, by using Genetic 

Algorithms, solutions for some adapted instances corresponding to Weighted 

Tardiness problem taken from the OR-Library. The aim of this work is to find 

improved solutions (if possible) to be considered as the new benchmark values 

and make them available to the community interested in scheduling problems. 

Evidence of the improvement obtained with proposed approach is also 

provided. 

Keywords: Unrestricted Parallel Identical Machines Scheduling Problem, 

Simulating Annealing. Maximum Tardiness. 

1   Introduction 

The schedule of activities is a decision process that has an important role in 

production and multiprocessor systems, manufacturing and information environments, 

and transportation distribution[17]. In particular, this paper considers the unrestricted 

identical parallel machine scheduling problem in which the maximum tardiness has to 

be minimized. Objectives such as the completion time of the last job to leave the 

system, known as Makespan (Cmax), is one the more important objective function to 

be optimized, because it usually implies high resource utilization. In different systems 

of real world it is also usual stress minimization of the due-date based objectives as 

Maximum Tardiness (Tmax) among others. Branch and Bound and other partial 

enumeration based methods, which guarantee exact solutions, are prohibitively time 

consuming even with only 20 jobs. The parallel machine environment has been 
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studied for several years due to its importance both academic and industrial. The 

scheduling literature provides a set of dispatching rules and heuristics. Different 

metaheuristics have been used to solve scheduling problems. For example, the 

population-based metaheuristics such as Evolutionary Algorithms and Ant Colony 

Optimization [2], [4], [11]. The trajectory-based heuristics have also been applied to 

solve these types of problems. In [13] VNS was used to solve the makespan in 

uniform parallel machine scheduling problem with release dates. In other related work 

[1] the authors applied an Iterated Local Search metaheuristic to solve the unrestricted 

parallel machine with unequal ready time problem. In [18] VNS with an efficient 

search mechanism, is proposed to solve the problem of maximum Cmax in unrelated 

parallel machine scheduling. A comparative study [19] was conducted between SA 

and GRASP to solve the problem of maximum Cmax in single machine scheduling, 

there SA outperforms GRASP. A hybrid approach is addressed in [5] which integrates 

features of Tabu Search (TS), SA, and VNS to solve a parallel machine problem with 

total tardiness objective. Another hybrid approach is presented in [14] where the 

authors combine TS with VNS in a way that the TS algorithm is embedded into VNS 

acting as a local search operator for parallel machine scheduling problem. In [6], [7], 

and [8] the authors face the same problem with an approach involving Evolutionary 

Algorithms with multirecombination and insertion of specific knowledge of the 

problem.  

 

The rest of this paper is organized as follows. The next section presents the 

scheduling problem. After this, in section 3, the proposed algorithm is described. 

Section 4 explains the experimental design. In section 5 the results are shown and 

discussed. Finally, in section 6 we present our conclusions and outline our future 

work. 

2   Scheduling Problem 

The problem we are facing can be stated as follows: there are n jobs to be 
processed without interruption on some of the m identical machines belonging to the 

system; each machine can process not more than one job at a time, job j (j = 1, 2, ..., 

n) is made available for the processing at time zero. It requires an uninterrupted 

positive processing time pj on a machine and it has a due date dj by which it should 

ideally be finished. For a given processing order of the jobs (schedule) the earliest 

completion time Cj and the maximum delay time Tj = {Cj - dj , 0} of the job j can 
readily be computed. The problem is to find a processing order of the jobs with 

minimum objective values. The objective to be minimized is: 

 

Maximum Tardiness: Tmax = max j (Tj) (1) 

 

This problem is NP-hard when 2 ≤ m ≤ n [17]. 

101



3   The Proposed SA Algorithm 

In a previous study [3] we work on the same problem but we address it with 

different local search metaheuristics: SA, VNS, Iterated Local Search (ILS) and 

Greedy Random Adaptive Search Procedure (GRASP). This comparative study 

showed that the best algorithm was SA although it was only able to improve 

benchmark values in ten instances (see Table 1). For reasons of space only the results 

obtained for m = 5 and n= 100 are showed.  From the results obtained we assumed 

that the algorithm lacked of higher exploration capacity. With the main idea of 

overcoming these difficulties, we design a variant of the SA algorithm.  

 
I Bench ILS GRASP VNS SA 

   1   548   587   597 547    542 

   6 1594 1594 1581 1572 1567 

 11 2551 2577 2626 2552 2539 

 19 3703 3756 3784 3717 3718 

 21 5187 5193 5232 5197 5177 

 26     84   148   407    101     70 

 31 1134 1160 1366 1145 1135 

 36 2069 2128 2360 2091 2061 

 41 3651 3631 3821 3621 3607 

 46 4439 4475 4599 4443 4440 

 56   617   725 1104    655    609 

 61 1582 1779 2453 1705 1580 

 66 2360 2483 2870 2427 2359 

 71 3786 3924 4413 3862 3791 

 86 1194 1455 2281 1393 1194 

 91 2204 2427 2953 2412 2222 

 96 3185 3256 3780 3216 3187 

111 1365 1846 3216 1781 1458 

116 2222 2537 3055 2457 2266 

121 2999 3407 3890 3286 3099 

                Table 1: Best values achieved by each metaheuristic 

 

The pseudo-code of the proposed SA algorithm is given in Algorithm 1. The search 

processes of our algorithm is divided into two stages, based on the equilibrium 

condition as follows: SA starts with a high initial temperature (IT = 14256), it 

generates a random initial solution, and it initializes the counter to the equilibrium 

condition, which is achieved with the length of the Markov chain (LMC = 9716), 

which represents a constant number of search steps that are performed without 

updating the temperature (T). The justification for the initial value of temperature 

(IT), the length of the Markov chain (LMC) as the selection of operators (op1 and 

op2) is given in subsection 4.2 Then, depending on the condition of equilibrium, the 

search process is divided into two stages. In the first stage, the solutions are generated 

through the perturbation operator (op1 = scramble) (step: 7) and in the second stage, 

once the equilibrium condition is reached, and before updating the temperature (step: 

16) it applies an extra exploration procedure called Explore (step: 15) which is 

described in Algorithm 2. Algorithms 1 and 2 show schematically the search process 

performed SA. 
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Algorithm 1 SA Algorithm including a call to an exploration 
procedure. 

1: c = 0  {Used for the equilibrium condition} 
2: s = s

0
 {Initial solution} 

3: T = T
0
 {Starting temperature} 

4: repeat 
5:   repeat 
6:      c  = c + 1 
7:      Generate a solution s

0
 applying a  

         perturbation operator (op1) 
8:   ∆E = f(s

0
) − f(s) 

9:   if ∆E ≤ 0 then 

10:   s = s
0
 

11:   else 
12:    Accept s

0
 with a probability e

-∆E/T
 

13:  end if 
14:   until c == Markov-chain-length 
15:   s

0
 = Explore(s) 

16:   Update (T) {Geometric temperature update} 
17:   c = 0 
18:   ∆E = f(s

0
) − f(s) 

19:   if ∆E ≤ 0 then 

20:        s = s
0
 

21:   else 
22:        Accept s

0
 with a probability e

-∆E/T
 

23:   end if 
24: until Stopping Criteria 
25: return s 

 
Algorithm 2 Explore(s): the exploration procedure. 
1: Input: s solution from SA, tries is the number of attempts 
2: i = 1 
3: while i ≤ tries do 

4:  Generate a solution s
0
 applying a perturbation 

    operator (op2) 
5:  if f(s

0
) < f(s) then 

6:   s = s
0
 

7:   return s 
8:  else 
9:   i = i + 1 
10: end if 
11: end while 
12: return s 

 

The function Explore performs (i = 1, ... , tries) attempts to find a solution s0 that 

improves s, as follows: generates a solution s0 by applying a perturbation operator 

(op2 = 4-opt). If f(s0) < f(s), s is replaced by s0 and Explore returns s, otherwise, 

another attempt is made by (steps : 4−6). 

Following Algorithm 1, the acceptance criteria is applied (steps: 8 − 13 and 18 -

23). The search process ends when it reaches a maximum number of evaluations 

(step: 25).  

In our implementation, the representation of the solutions is a permutation of 

integers in the range 1... n, which represent the job indexes.  

The initial solution is a integer permutation randomly generated as follows: from 1 

to n, for each index i generates a random number between i and n.  This process 

checks that the solution is a valid representation, i.e. it is a permutation without 

repetition. 
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4   Experimental Design 

4.1 Instances for the Unrestricted Parallel Identical Machines Scheduling 

Problem 
 

Unlike other scheduling problems as Flow Shop or Job Shop, after an intensive 

search in the literature we could not find significant benchmarks for the problem we 

worked on. With the purpose of creating our own benchmarks, we extracted value 

pairs (pj, dj) based on selected data corresponding to Weighted Tardiness problem 

taken from the OR Library [10]. The values pj and dj correspond to the processing 

time and due date, respectively. These data were taken from problem sizes of 40 and 

100 jobs. For each problem size, twenty instances were selected, each one with the 

same identification number although they were not the same problem, i.e., we had a 

problem numbered 1 with 40 jobs, another 1 with 100 jobs, and so on.  

 
m=2, n=40 m=5, n=40 #I 

DR MCMP-SE DR MCMP-SE 

  1   235 (EDD)   216   284 (SLACK)   230 

  6   599 (SLACK)   595   652 (SLACK)   606 

 11 1060 (EDD)  998 1130 (SLACK) 1016 

 19 1628 (EDD) 1624 1700 (SLACK) 1639 

 21 1660 (SLACK) 1634 1720 (SLACK) 1647 

 26     55 (EDD)     35   100 (SLACK)    61 

 31   494 (EDD)   474   644 (SLACK)   546 

 36   869 (SLACK)   852   984 (SLACK)   887 

 41 1280 (EDD) 1271 1340 (EDD) 1317 

 46 1240 (EDD) 1195 1310 (SLACK) 1235 

 56   247 (SLACK)   229   318 (SLACK)   252 

 61   604 (EDD)   604   737 (SLACK)   669 

 66 1090 (SLACK) 1071 1240 (SLACK)  1129 

 71 1280 (EDD) 1254 1330 (SLACK) 1272 

 86   493 (SLACK)   457   589 (SLACK)   508 

 91   896 (EDD)   874 1040 (EDD)   955 

 96 1537 (EDD) 1531 1690 (SLACK) 1607 

111   659 (EDD)   621   794 (SLACK)   689 

116   650 (SLACK)   627   810 (SLACK)    695 

121 1430 (EDD) 1377 1580 (SLACK) 1469 

                    Table 2: Obtained values for 2 - 5 machines and 40 jobs 

 

The numbers of the instances are not consecutive because each one was selected 

randomly from different groups. The tardiness factor is harder for those with the 

highest identification number.  

 

These instances are available on request (email: crgatica@unsl.edu.ar). In a 

previous work [7], those value pairs were used as input for different dispatching rules 

(SPT: Shorted Processing Time first, EDD: Earliest Due Date first, SLACK: Least 

Slack, HODG Algorithm, and R&M: Rachamadugu and Morton Heuristic) provided 

by PARSIFAL [17], a Software Package provided by Morton and Pentico, and a 

Multi Crossover Multi Parent Genetic Algorithm (MCMP-SE) with insertion of 

knowledge [8]. The results obtained are showed in Table 1 (cases m=2, n=40 and 

m=5, n=40) and Table 2 (cases m=2, n=100 and m=5, n=100).  
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m=2, n=100 m=5, n=100 #I 

DR MCMP-SE DR MCMP-SE 

    1   562 (EDD)   536   590 (SLACK)   548 

    6 1550 (EDD) 1544 1680 (SLACK) 1594 

  11 2560 (EDD) 2516 2620 (SLACK) 2551 

  19     3690 (SLACK) 3679 3720 (SLACK) 3703 

  21 5150 (EDD) 5143 5240 (SLACK) 5187 

  26     60 (R&M)     21   168 (SLACK)    84 

  31     1110 (SLACK) 1092 1180 (SLACK) 1134 

  36     2040 (SLACK) 2041 2120 (SLACK) 2069 

  41 3590 (EDD) 3576 3710 (SLACK) 3651 

  46 4420 (EDD) 4396 4580 (SLACK) 4439 

  56     582 (HODG)   556   670 (SLACK)   617 

  61 1560 (EDD) 1549 1630 (SLACK) 1582 

  66 2360 (EDD) 2313 2440 (SLACK) 2360 

  71 3780 (EDD) 3741 3820 (SLACK) 3786 

  86 1200 (EDD) 1153 1240 (SLACK) 1194 

  91     2180 (SLACK) 2132   2230 (EDD) 2204 

  96     3110 (SLACK) 3093 3250 (SLACK) 3185 

111   5340 (WLPT) 1325 1420 (SLACK) 1365 

116 2200 (EDD) 2164 2320 (SLACK) 2222 

121 2940 (EDD) 2934 3060 (SLACK) 2999 

                        Tabla 3: Obtained values for 2 - 5 machines and 100 jobs 

 

In both Tables, #I indicates the instance identification and DR stands for Dispatching 

Rules. In the case of the dispatching rules, the displayed values correspond to the best 

obtained by the different rules used, whose names are enclosed in brackets. Bold 

values from both tables are considered as benchmarks in the present work. 

 

4.2 Parameter Settings 

 

In this subsection we describe the method used to determine the set of appropriate 

parameter values for our  metaheuristic. There are different ways to do this, but can 

distinguish two main groups of techniques: one, when the sample used is formed with 

extreme values of the design space (no space-filling) or otherwise, when data values 

correspond to the interior of the design space (space-filling) [21]. The latter approach 

is the one we choose because it assumes that the interior of the design space can meet 

important characteristics of the true design model. For the generation of the samples 

we use the method Latin Hypercube Design (LHD) which generates random points 

within the design space. For the SA algorithm and Explore function their relevant 

parameters and corresponding application ranges were determined. They are indicated 

in Table 4. We use five different operators of disturbance or movement: n swaps (1), 

2-opt (2), 4-opt (3), shift (4) and scramble (5). A detailed description of these 

operators can be found in [22]. Then LHD was employed using 20 design points 

which resulted in 20 different parameter configurations, this task was performed using 

the statistical tool R [20]. The resulting points sampling are shown in Table 5. 

 
LMC=Length Markov chain [1000, 10000] 
CR=Cooling Rate [0.5, 1.0] 
IT=Initial Temperature [10000, 100000] 
OP1=Pertubation Operator of SA [1, 5] 
OP2=Pertubation Operator of Explore [1, 5] 

105



NT=Number of Tries [10, 20] 

                                                       Table 4: Parameter Ranges 

 

Ultimately, we perform 20 experiments. Each experiment consisted of 50 runs of 
the algorithm SA, each run with 300,000 evaluations of the objective function for 
each of the 20 instances of 100 jobs and 5 machines. For the statistical study we use 

a software tool proposed by [12]. Such is called CONTROLTEST and automatically 

applies various statistical tests, one of which is the Friedman test [15] and other post-

hoc procedures [16]. Resulting from the application on the median values of the runs 

of different configurations allowed us obtain the Average Ranking of Friedman Test 

and so, we were able to establish that the best performers were the c4 and c8 

configurations (See Table 5, in column RF, such corresponds to Average Ranking of 

Friedman test) and also we can conclude that there are not statistical significant 

differences between them because the corresponding adjusted p-values did  not give 

values less than 0.05, see Table 6. The only difference of the behaviour of SA with 

the specified parameter setup for c4 and c8 (and the reason of selection of c8 

configuration) was the lowest number of evaluations used by SA to achieve the best 

values. For reasons of space, the tables showing these results are not given here. 

  
Conf. LMC CR IT OP1 OP2 NT RF 

c1 1287 0,79391 86906 4 3 17 14,025 

c2 6455 0,50691 57118 2 1 11 5,425 

c3 2809 0,58518 93290 2 4 15 3,275 

c4 8258 0,66540 84705 5 2 16 1,775 

c5 3358 0,54591 30000 2 5 18 3,575 

c6 4554 0,81334 59801 3 2 14 8,15 

c7 4681 0,56859 69300 4 4 16 13,525 

c8 9716 0,61812 14256 5 3 11 1,575 

c9 8745 0,95200 54194 2 4 12 19,825 

C10 5806 0,97936 42010 4 2 10 17,775 

C11 3721 0,70923 20184 3 3 20 8,025 

C12 7727 0,87080 67559 1 3 14 16,175 

C13 1894 0,89262 14825 3 2 17 7,95 

C14 9199 0,68212 73597 4 3 12 12,95 

C15 6071 0,75536 36234 2 4 15 5,525 

C16 7246 0,93239 37356 3 2 18 18,625 

C17 7903 0,83626 80125 2 5 13 17,1 

C18 5348 0,64777 24275 4 4 19 12,65 

C19 2336 0,74463 99708 1 1 13 11,875 

C20 2615 0,92429 46197 3 2 19 10,2 

                                Table 5: Parameter Configurations 

      
config. p-Bonf p-Holm p-Hoch p-Homm 

     c4   1,05E+00 5,27E-01 5,27E-01 5,27E-01 

                                                  Table 6: Adjusted p-values 

4.3  Final Optimization Experiments 

For each scenario, 50 runs were executed, each one with 600,000 objective function 

evaluations. In each experiment we calculate the following metrics: 

1)  Best: The best value found in each run. 

2) Median: Is the median objective value obtained from the best found individuals      

throughout all runs. 

3) SD of Median: The standard deviation of median objective value is the square 

root of its variance. 

4) Miter: Is the mean of iterations where the best value was obtained. 
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5) SD of Miter: The standard deviation of mean of iterations in each run is the 

square root of its variance. 

All the experiments reported in this work were run on a sub-cluster conformed by 1 

CPUs of 64 bits, processor Intel Q9550 Quad Core 2.83GHz, with 4GB DDR3 

1333Mz of memory, 500 Gb SATA and 2 TB SATA hard disks, Asus P5Q3 

motherboard and 11 CPUs of 64 bits each with processor Intel Q9550 Quad Core 

2.83GHz, 4GB DDR3 1333Mz memory, 160 Gb SATA hard disk and Asus P5Q3 

motherboard. 

 

5   Results and Discussion 

 

For all cases studied, Table 7 synthesizes the best values of the objective function 

found by SA. In Table 7 entries marked in bold indicate that SA improved the 

benchmark value while entries in italic show that SA reached benchmark.  For the 

case of 40 jobs and 2 machines, in almost all instances the benchmark values were 

achieved, except in instances 6, 26, and 116 where the algorithm was able to find 

smaller values. 

 
 n=40 n=100 

 m=2 m=5 m=2 m=5 

#I Bench Best Bench Best Bench Best Bench Best 

1 216 216 230 229 536 536 548 539 

6 595 594 606 604 1544 1544 1594 1569 

11 998 998 1016 1016 2516 2516 2551 2544 

19 1624 1624 1639 1639 3679 3679 3703 3708 

21 1634 1634 1647 1647 5143 5143 5187 5177 

26 35 27 61 55 21 21 84 70 

31 474 474 546 542 1092 1092 1134 1125 

36 852 852 887 885 2041 2037 2069 2061 

41 1271 1271 1317 1313 3576 3576 3651 3607 

46 1195 1195 1235 1227 4396 4396 4439 4439 

56 229 229 252 244 556 556 617 606 

61 604 604 669 651 1549 1549 1582 1580 

66 1071 1071 1129 1128 2313 2313 2360 2355 

71 1254 1254 1272 1266 3741 3741 3786 3791 

86 457 457 508 507 1153 1153 1194 1194 

91 874 874 955 947 2132 2132 2204 2199 

96 1531 1531 1607 1597 3093 3093 3185 3187 

111 621 621 689 665 1325 1331 1365 1397 

116 627 619 695 661 2164 2164 2222 2264 

121 1377 1377 1469 1469 2934 2939 2999 3089 

                             Table 7:   Bench and Best values found 

 

For the case of 40 jobs and 5 machines SA in four instances (11, 19, 21, 121) 

obtained the same value as the benchmark. In all other instances found better values. 

Furthermore, in the scenario of 100 jobs and 2 machines, SA obtains a value less than 

the benchmark in instance 36. In the case of instance 121, the proposed algorithm 

does not reach the benchmark value but by a little difference; in all the remaining 

instances reaches the benchmark values. In the last case analyzed, 100 jobs and 5 

machines, SA improves the benchmark values in 12 instances (1, 6, 11, 21, 26, 31, 36, 

41, 56, 61, 66 and 91). In two instances, 46 and 86 matches the benchmark. It reaches 

values close to benchmark in instances 19, 71, and 96; but the values obtained in the 

instances 111, 116, and 121 are further away from the known values. Previously 

observed behaviours allow us to assume that SA behaves fairly well for problems that 
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involve more machines because it improves or reaches the known values of the 

objective function. In the case of 2 machines, it reaches in most instances the 

benchmark values and also produces some improvements. Since the true optimal 

values are unknown, we may not conclude categorically if the number of machines 

makes the problem harder or if we do not improve the benchmark is because these are 

the true optimum.    

 

6 Conclusion 

 

The parallel machine environment has been studied for several years due to its 

importance both academic and industrial. Unlike other scheduling problems we could 

not find significant benchmarks for the problem of our interest, so in previous works 

we created our own instances, for 40 and 100 jobs, extracting data from the OR-

Library corresponding to Weighted Tardiness and then we adapt them for the Tmax 

problem. The main objective of our work was propose an improved version of SA 

with additional exploration capabilities in order to find new benchmark values (when 

possible) on the 20 instances analyzed in each case. This objective was achieved  for 

several considered scenarios, the improved version of SA found new benchmark 

values. These results encourage us to continue with our research in two main 

directions: a) discuss alternatives regarding the combination of trajectory-based 

metaheuristics (e.g., SA with VNS or GRASP and also SA with population-based 

metaheuristics), and b) increase the quantity of instances to be considered, by 

adapting instances of the Weighted Tardiness Problems available in the OR-Library in 

order to obtain an extended set of instances for future research. 
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