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Abstract. Obtaining the most representative set of words in a document is a 

very significant task, since it allows characterizing the document and simplifies 

search and classification activities. This paper presents a novel method, called 

LIKE, that offers the ability of automatically extracting keywords from a 

document regardless of the language used in it. To do so, it uses a three-stage 

process: the first stage identifies the most representative terms, the second stage 

builds a numeric representation that is appropriate for those terms, and the third 

one uses a feed-forward neural network to obtain a predictive model. To 

measure the efficacy of the LIKE method, the articles published by the 

Workshop of Computer Science Researchers (WICC) in the last 14 years 

(1999-2012) were used. The results obtained show that LIKE is better than the 

KEA method, which is one of the most widely mentioned solutions in literature 

about this topic. 

Keywords: Text Mining, Document characterization, Back-propagation, 

WICC. 

1   Introduction 

Text mining presents interesting challenges to solve, since the lack of structure in the 

texts analyzed makes it difficult to extract information from them. Nowadays, given 

the large number of texts that are published each day, be these scientific articles, 

books, journals, periodicals or web pages, facing these challenges can prove to be 

interesting, as well as developing strategies that allow obtaining information from 

relevant texts. 

One way of briefly describing the topic of a document is by means of a list of 

keywords. The keywords in a document are of the utmost importance, since they 

allow carrying out several tasks, such as searching for a specific topic, classifying 

documents, clustering [1], summarization [2] [3] [4], etc. 

Even though most of the times the author of the document is the one in charge of 

proposing the list of keywords, as in the case of scientific publications, there are other 

times when this list is not present at all and, therefore, it would be interesting to have 

an automated method that can propose a list of keywords by analyzing the text of the 

document. 
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Within text mining, there have been various alternatives proposed for the task of 

extracting keywords. There are statistical methods that typically do not have prior 

training with the documents; in such cases, only statistical information is collected 

from the words that are present in the document to identify which of them can be 

chosen as keywords. The most widely used statistical methods include TF-IDF [5] [6] 

[7] [8], word co-occurrence [9], etc. 

On the other hand, there are machine learning-based methods that, from a given 

corpus, carry out a training process and generate a model that allows performing 

classifications afterwards or, in the case of keyword extraction, establishing which 

words in the document are candidates to be chosen as keywords. In these cases, each 

document in the initial corpus must have a list of keywords that are used as positive 

cases during training. Some of the machine learning methods used in this type of tasks 

are Naïve Bayes [8] [10], Support Vector Machine [11], etc. 

The methods that analyze the linguistic aspects of the documents are those that 

offer the most interesting solutions, since they combine lexical analysis, syntactic 

analysis, etc. [12] [13]; however, their disadvantage is that they are strongly 

dependant on the language used to write the documents. 

One of the main concepts pertaining to the specific task of extracting keywords 

from documents is that of n-grams. Any word within a document is a unigram, while 

any sequence of two or more words forms an n-gram, where n indicates the number of 

words in the sequence. When extracting keywords, any n-gram in the document is a 

potential keyword for that document. Most of the techniques that carry out this task 

perform calculations and measurements on each n-gram in the document, and then 

process them by means of a machine learning technique [14] or by assigning a given 

score [15] to obtain a model that can be used as predictor for future documents. 

In order to extract keywords, some methods require a corpus from which to 

generate a first model [7] [8], while others do so from a single document [9]. There 

are techniques that carry out numeric and/or statistical calculations for all n-grams in 

the document [16] [17], while others exploit certain linguistic information [12] [13]. 

Most of the existing strategies pre-process the documents with stemming and word 

filtering techniques by means of a stop-word list. 

In this paper, a novel method is proposed, called LIKE (Language Independent 

Keyword Extraction), which uses texts from documents from a given corpus to obtain 

a model that can be used to extract keywords. To this end, it uses a three-phase 

algorithm. The first phase consists in extracting any n-grams that are detected as 

candidates for keyword, the second phase calculates a set of numerical features for 

each n-gram that was detected, and the third and final stage uses those features to 

produce a model by training a feed-forward network. This trained network is used as 

model to decide, given a new document, possible keywords. LIKE is independent 

from the source language of the documents, provided that the same language is 

maintained throughout each individual document, since it does not carry out the usual 

pre-processing steps of stemming or word filtering using a stop-word list. 

This article is organized as follows: in Section 2, LIKE is described; in Section 3, 

the results obtained in the experiments carried out are presented; and in Section 4, 

conclusions and future work are presented. 
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2   LIKE 

The method proposed in this paper, called LIKE, is a three-phase method that allows 

extracting a list of keywords by analyzing the text in a document. LIKE is 

independent from the source language of the documents, since it does not carry out 

the pre-processing steps of stemming or word filtering using a stop-word list. LIKE 

analyzes the documents in a document corpus to train a back-propagation network 

that will then be used as model to determine the list of keywords for new documents. 

LIKE starts by identifying all existing n-grams in each document in the corpus. 

Since the number of all possible n-grams would be excessively high, a strategy is 

required to reduce this number. In this proposal, the method presented by [18] is used, 

since it allows identifying a much lower number of n-grams.  

During the second stage, each n-gram obtained in the previous stage is transformed 

into a features numeric vector; these vectors are labeled as one of two classes of data. 

One class includes the vectors corresponding to those n-grams that are part of the list 

of keywords proposed by the author(s) of the document, while the other class is 

formed by the vectors corresponding to all remaining n-grams. The third stage 

consists in using these two data classes to train a back-propagation network. 

2.1   Phase 1. N-gram Extraction 

The first phase of the method proposed consists in identifying the n-grams in the 

corpus. For each document, all existing n-grams are extracted. An n-gram is 

considered to be valid if it is formed by consecutive words within the same sentence 

with no punctuation marks between any of them.  

In general, the number of existing n-grams is excessively high. For the tests carried 

out for this work, which has a corpus of 96 documents, more than 580,000 n-grams 

can be extracted. Therefore, a strategy to identify a lower number of n-grams is 

required. In this proposal, the algorithm presented in [18] is used. This strategy, 

inspired in the Apriori algorithm, builds sets of elements from other smaller sets. In 

this algorithm, the maximum n value (number of words in the n-gram) and the 

minimum occurrence frequency for each n-gram have to be determined. N-grams are 

built from the (n-1)-grams that meet the requirement of a minimum specified 

frequency. To do this, it is assumed that an n-gram whose frequency is k is built from 

the intersection of two (n-1)-grams whose frequency is at least k, i.e., an n-gram 

cannot be more frequent than its parts. For each n-gram, the first n-1 and last n-1 

words are taken, and it is checked that these (n-1)-grams meet the minimum allowed 

frequency criterion. If this criterion is not met, the n-gram is discarded. Finally, there 

are n runs on the text, first to obtain 1-grams, then 2-grams based on these, then 

3-grams, and so forth. 

The use of this strategy in LIKE allows identifying a low number of n-grams in 

each document. In the experiments that were carried out for this work, the total 

number of n-grams for the entire corpus was reduced to little more than 70,000.  

The result of this phase is a list of n-grams, which are then labeled. Once this list of 

keywords is known for each document, a label is assigned to each n-gram to indicate 

if the n-gram is a keyword or not. Thus, a two-class set of data is generated. 
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2.2   Phase 2. N-gram Characterization  

The purpose of this phase is converting each of the n-grams that were identified in the 

previous phase into a features vector. In this article, we propose that the eight features 

detailed below are calculated. 

i) TF (Term Frequency): TF is perhaps, together with IDF, one of the 

descriptors most widely-used to characterize n-grams. Term Frequency is 

the number of times the n-gram occurs in the document divided by the 

total word count of the document. 

ii) IDF (Inverse Document Frequency): It is the ratio between the number of 

documents in the corpus that include the n-gram d(g) and the total number 

of documents D.  

            
 

    
  

iii) First occurrence of the term: This represents the relative position of the 

first occurrence of the n-gram. It is calculated as the number of words 

before the first occurrence of the n-gram divided by the total word count 

of the document. 

iv) Position within the sentence: This is the relative position of the n-gram in 

the sentence that contains it. The same as the previous one, it is calculated 

as the number of words before the occurrence of the n-gram in the 

sentence divided by the total word count of the sentence itself. If the same 

n-gram appears several times in different sentences in the same document, 

then all n-gram occurrences are averaged. 

v) Part of the title: This feature is a binary value that indicates if the n-gram 

appears in the title of the document or not. 

vi) Part of the n-gram present in the title: This feature (only valid for n-grams 

with two or more words) counts the number of words in the n-gram that 

also appear in the title, regardless of the order of the words in the title. 

This number of occurrences is normalized by the number of words in the 

n-gram. In the case of unigrams, the same as the previous feature, this is a 

binary value that indicates either presence or absence. 

vii) NSL (Normalized Sentence Length): This is the length of the sentence 

where the n-gram appears divided by the length of the longest sentence in 

the document. If the n-gram appears in more than one sentence in the 

document, all occurrences are averaged. 

viii) Z-score: This is a statistical measure that normalizes the frequency of the 

n-gram. It requires knowing the mean and standard deviation of the 

frequency for each n-gram. 

           
         

 
 

If the n-gram appears in more than one sentence in the document, all 

occurrences are averaged. 

Of the eight features proposed, only two (IDF and Z-score) require the corpus in 

order to be calculated. 

The result of this phase is a features vector for each of the n-grams identified in the 

previous phase.  
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2.3   Phase 3. Creating the Model 

The third phase of the method proposed consists in creating a model that can learn 

from a given corpus and allows classifying n-grams from new documents as possible 

keywords or not. The prediction model is built by training a back-propagation 

network.  

The problem that arises when trying to use the set of vectors obtained in the 

previous phase as data for training the back-propagation network is that the classes in 

this data set are not balanced, since the “not a keyword” class has a lot more elements 

than the “is a keyword” class. In the corpus used to carry out the experiments 

presented here, the ratio of elements in both classes was approximately 150 to 70,000.  

When there is a data set with unbalanced classes, training a back-propagation 

network is not an easy task, since the training set prevents the generation of a model 

that can accurately predict the data in the minority class. In light of this problem, 

several solutions have been proposed ([19] [20] [21]). In particular, the solution 

described in [21] proposes that, before the training process, a clustering operation is 

performed on the data in the larger class in order reduce its number of elements. In 

this work, the idea in [21] is used – the data in the larger class are clustered using the 

k-means algorithm. 

Be u the number of data present in the minority class, the value of k is then 

established as k=u/10. A clustering of k clusters is performed, and 10 random 

elements are extracted from each resulting cluster. These 10*k elements thus selected 

form a new data set that replaces the original data from the majority class. Following 

this methodology, the back-propagation network can be trained using a data set whose 

classes have similar numbers of elements. 

To train the back-propagation network, the classic algorithm is used. After several 

tests and empirical observation, a decision was made to use seven neurons for the 

hidden layer, the logsig function as transfer function for the hidden layer, the tansig 

function for the output layer, an alfa of 0.25, and a maximum of 1,000 iterations. The 

best results were obtained with this configuration. 

The result of this training process is a model that can predict keywords for new 

documents. The procedure to establish the keywords for a new document is as 

follows: first, the n-grams are extracted as described in Section 2.1; then, features 

vectors are calculated for each n-gram as explained in Section 2.2; and finally, these 

new vectors are presented to the trained network to determine if a given n-gram is a 

keyword for the document or not. 

3   Results 

The method proposed here was tested using as corpus all papers submitted to WICC 

(http://redunci.info.unlp.edu.ar/wicc.html) between 1999 and 2012. Only those 

articles written in English were included in the corpus (96 articles). The rationale for 

using only articles written in English was that, at a later stage, the results obtained 

with this method would be compared with those obtained with other keyword 

extraction method that is widely used in the literature: KEA [8]. Even though KEA 
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can be adapted to work with languages other than English, since it depends on a 

stemmer and a stop-word list, those developed by the authors were used, which are in 

English. 

KEA [8] is an automated keyword extraction algorithm that identifies candidate 

words by using lexical methods to calculate a set of features, and then apply an 

automated learning algorithm that allows predicting which candidates are good 

keywords.  

The same as LIKE, KEA builds a prediction model using a training corpus with 

specified keywords, and it then uses this model to extract keywords from new 

documents.  

KEA allows the free extraction of keywords, as well as the extraction of keywords 

using a vocabulary list that is controlled by means of a thesaurus. For these tests, the 

first mode was used, establishing as parameter a number of three keywords per 

document. In order to train KEA, a stop-word list and a stemmer are required. The 

stop-word list contains words of low semantic content (conjunctions, articles, 

prepositions, etc.) that should not be considered as keyword candidates. 

The first step in the KEA method consists in filtering out the words that appear in 

the stop-word list, and then apply a stemming process to reduce to their syntactic root 

all n-grams that were not filtered out. The next step is to calculate the features of all 

candidate words, which include: TF-IDF, the initial position of the n-gram in the text 

and the length of the n-gram (the number of individual words that form the n-gram). 

Based on this representation, KEA uses Naïve Bayes as learning algorithm. 

Both LIKE and KEA were trained using the same corpus. From that corpus, some 

documents were selected randomly for the training stage and the rest were used for 

testing. For each test, accuracy, recall and f-measure are calculated. 

Both methods were run with the 10-fold cross-validation procedure, and average 

accuracy, recall and f-measure were obtained. The 10-fold cross-validation procedure 

was run 30 separate times with both methods in order to measure the statistical 

significance of the various results obtained. 

One of the greatest disadvantages of LIKE (also present in KEA) is that, for each 

n-gram, two features are calculated whose result depends on the entire corpus (IDF 

and Z-score). Depending on a corpus for calculating features is not desirable, so two 

versions of the LIKE method were run – LIKE-8, which uses the eight features 

proposed in this article (see Section 2.2), and LIKE-6 which uses only the six features 

that do not depend on the corpus (i.e., all but IDF and Z-score). 

Table 1 shows the average accuracy, recall and f-measure for the 30 separate runs 

with LIKE-8, LIKE-6 and KEA. With these results, a statistical test was carried out to 

determine the statistical significance for LIKE-8 vs. KEA, LIKE-6 vs. KEA and 

LIKE-8 vs. LIKE-6 (Table 2). As it can be seen in Table 2, both LIKE-8 and LIKE-6 

achieved better results than KEA, while the version that used all eight attributes 

improved only accuracy and f-measure results when compared to the version that 

used only those six that are not corpus-dependent. 

958



Table 1.  Average precision, recall and f-measure for LIKE-8, LIKE-6 and KEA (standard 

deviation indicated between parentheses). 

 LIKE-8 LIKE-6 KEA 

Precision 0.76 (0.051) 0.65 (0.101) 0.52 (0.006) 

Recall 0.75 (0.094) 0.72 (0.141) 0.37 (0.004) 

f-measure 0.74 (0.053) 0.68 (0.116) 0.43 (0.005) 

Table 2.  Results of the statistical significance for precision, recall and f-measure for LIKE-8 

vs. KEA, LIKE-6 vs. KEA and LIKE-8 vs. LIKE-6. For α=0.01 the “+” sign indicates that the 

result is statistically significant, while the “–” sign indicates that there is no statistical 

significance (p-value indicated between parenthesis). 

 LIKE-8 vs. KEA LIKE-6 vs. KEA LIKE-8 vs. 

LIKE-6 

Precision + (5.48x10-22) + (5.19x10-08) + (4.12x10-06) 

Recall + (1.50x10-19) + (4.08x10-14) - (0.4832) 

f-measure + (2.18x10-24) + (2.51x10-12) + (0.0096) 

4   Conclusions and Future Work 

The novel automated method LIKE for extracting keywords from the text of a set of 

documents has been presented. This method extracts n-grams from the documents and 

then calculates a series of features to convert them into numeric vectors. It then uses 

these vectors as data to train a back-propagation network and thus obtain a model that 

works as predictor and that can be used to extract keywords from new documents.  

In this paper, the calculation of eight features is proposed for each n-gram, with 

only two of these being dependent on the entire corpus. LIKE was trained using the 

eight features, and then a second test was carried out using only the six features that 

do not depend on the corpus. Articles written in English submitted to the WICC 

between 1999 and 2012 were used for the experiments. The results obtained were 

compared with KEA, and it was shown that both the six-feature and the eight-feature 

LIKE models were better. When comparing the results obtained with both versions of 

LIKE, using all eight features turned out to be superior than using just six when 

calculating precision and f-measure, while for the recall parameter, neither of the 

versions appeared to be better than the other. 

The main advantage of the method presented here is that it does not depend on the 

language of the texts analyzed, since it does not pre-process them because it does not 

use stemming or a stop-word list.  

As future work, it would be interesting to study in detail the n-grams that are 

negatively classified so as to determine their nature and analyze the possibility of 

detecting grammar structures that help improve the performance of the method. Also, 

if less candidate n-grams are identified, the majority class of negative cases would be 

reduced and this could possibly lead to being able to omitting the clustering stage 

before training the network. 
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Another aspect to be studied in relation to the method proposed here is the 

possibility of assigning keywords from a list of controlled vocabulary. Different 

authors may choose different key words in articles dealing with the same topic, so it 

would be interesting if an automated assignment method were available to assign key 

words from a list of controlled vocabulary. This would ensure that documents on 

related topics would have the same key words, which would in turn improve the 

results obtained in future searches, classifications or statistical analyses. 
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