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resumo 
 

 

A inflamação das articulações, conhecida por artrite, é uma doença que afecta 
mais de 175 milhões de pessoas no mundo e, além de ter um grande impacto 
na qualidade de vida dos doentes, constitui uma carga monetária elevada. 
Mutações em ERAP1 – uma aminopeptidase comummente encontrada no RE 
e responsável pela apresentação de péptidos ao sistema imunitário – e PPARγ 
– um receptor nuclear mais frequentemente associado com o processamento 
de ácidos gordos e glucose – foram previamente associadas com um maior 
risco de desenvolvimento da doença. Com este trabalho, estudaram-se as 
funções de ERAP1 no desenvolvimento de artrite experimental induzida por 
sérum K/BxN e de PPARγ num modelo generalista de inflamação, tanto em 
mastócitos como em macrófagos. Em mastócitos, PPARγ aparenta ter um 
papel pró-inflamatório, visto que células KO libertam significativamente menos 
IL-6. Já em macrófagos, a ausência do receptor faz com que as quantidades 
da citocina encontradas no sobrenandante sejam consideravelmente maiores, 
apontanto para uma acção anti-inflamatória de PPARγ neste tipo celular. 
Quando à acção de ERAP1, esta enzima mostrou-se crucial para o 
desenvolvimento de artrite induzida por sérum K/BxN, visto que ratinhos KO 
não apresentaram sintomas artríticos, ao contrário dos WT. Finalmente, 
animais ERAP1

-/-
 envelhecidos podem ser um modelo espontâneo de 

espondilite anquilosante. 
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abstract 

 
Arthritis affects over 175 million people in the world, heavily decreasing the 
patients’ quality of life and representing a considerable financial weight. 
Mutations in ERAP1, an ER aminopeptidase involved in peptide presentation to 
the immune system, and PPARγ, a nuclear receptor most associated with fatty 
acid and glucose metabolism, have previously been associated with a higher 
risk for arthritic development. In this work, ERAP1’s activity in arthritis was 
assessed using K/BxN serum transfer, an experimental model of arthritis. 
PPARγ’s role in general inflammation was also examined in both mast cells 
and macrophages. It appears that, in mast cells, PPARγ has a pro-
inflammatory effect, resulting in a lower release of IL-6 by KO cells. On the 
contrary, larger amounts of the cytokine were found in supernatants of PPARγ

-/-
 

macrophages, suggesting an anti-inflammatory effect of the receptor in these 
cells. Regarding ERAP1, the enzyme’s presence proved to be crucial for the 
development of K/BxN-induced arthritis, since KO mice were not affected by 
the exposure to the serum. Finally, ERAP1

-/-
 mice might be a spontaneous 

model of ankylosing spondylitis if these are heavily aged, around 40-weeks-old. 
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I. Introdution 

Arthritis is a group of conditions that includes more than one hundred different 

diseases
1
, all characterized by the impairment of the joints and surrounding tissue, but 

different in their causes, mechanisms of action and molecules involved. It is estimated to 

affect over 175 million people in the world
2
, with 10% of the world population above 60 

years old presenting symptoms of arthritis
2
. It costs governments and people about 1500 

euros per person and per year
3
, which totalises almost 250 billion euros every year. 

Osteoarthritis, rheumatoid arthritis, gout, ankylosing spondylitis and juvenile arthritis 

represent some of the most common forms of this pathology
1
. For the purpose of this 

report, emphasis will be given to rheumatoid arthritis and ankylosing spondylitis. 

1. Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease and its most 

striking features are joint swelling followed by a destruction of the synovial joints, an 

outcome that heavily affect patients’ lives
4,5

. These complain of pain, stiffness and 

swelling of the articulations. It is estimated that RA might have an incidence of about 25 

cases in each 100.000 Europeans
6
 and 75 in every 100.000 Americans

7
. Women are 

particularly affected, with an incidence of approximately double of that found in men
6,7

. 

Whereas the latter are unlikely to present symptoms of RA before the age of 45, after 

which the probability of developing the disease rises abruptly
6
, women usually present 

symptoms earlier in life and rarely develop the disease after the age of 80 years-old
6,7

.  

The accepted criteria for RA diagnosis were updated in 2010
8
, substituting the previous 

1987 classification
9
. Currently, the disease is diagnosed if the patient presents with 

symptoms that include synovitis of at least one joint, serological presence of rheumatoid 

factor (RF) or anti–citrullinated protein antibody (ACPA) and abnormal levels of an acute-

phase response, it being erythrocyte sedimentation rate (ESR) or C-reactive protein 

(CRP)
8
. To allow for a more accurate diagnosis, symptoms should also be present for more 

than six weeks
8
. Among other molecules, tumour necrosis factor α (TNFα)

10
, interleukins 

(ILs)-1
11

 and -6
12,13

 and cyclooxygenases (COXs)-1
14,15

 and -2
14,15

 were found to be either 

over-expressed at a mRNA level or present in quantities higher than normal. The auto-

immune aspect of RA comes from the presence of auto-antibodies, such as RF and ACPA, 
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which are often detected in the patients’ sera years before other clinical manifestations
16-18

. 

Despite the large knowledge about RA mediators, the cause for this disease has been 

unknown. Recently, however, some authors have proposed that a Gram-negative bacterium 

most often associated with oral pathologies, Porphyromonas gingivalis, could influence the 

development and the severity of RA
19,20

. They defend that the pathogen citrullinates 

terminal residues or arginine
21

, thus exacerbating the immune response. This association 

explains the fact that smoking individuals are more likely to be positive for ACPA
22

 and to 

be diagnosed with RA
23

, since several studies have connected the practice of smoking with 

the presence of periodontal pathogens
24,25

. Nonetheless, the hypothesis fails to explain the 

origin of RF and it seems more likely that P. gingivalis would only increase the severity of 

the disease rather than cause it on its own.  

RA is currently managed with disease-modifying anti-rheumatic drugs (DMARDs)
8
, a 

group that is mainly composed of TNF inhibitors but also contains molecules that suppress 

the action of IL-1. An early attack on the disease can potentially be beneficial
26

, but 

currently changing diagnostic criteria and ambiguity of some of the parameters make it 

difficult to detect initial stages of this pathology. More research on the origin of RA, stable 

diagnostics criteria and large screenings of RF and ACPA in asymptomatic individuals 

could potentially help unveil new targets for the treatment and management of this disease.  

2. Ankylosing Spondylitis 

Ankylosing spondylitis (AS) is an inflammatory disease belonging to the group of 

spondyloarthropathies, in which, traditionally, four other diseases – reactive arthritis, 

psoriatic arthritis, inflammatory bowel disease-associated spondyloarthropathy and 

undifferentiated spondyloarthropathy – are also included. According to the new diagnostics 

criteria, AS is now the prototype disease for axial spondyloarthritis
27

. It is characterized by 

a chronic inflammation of the axial skeleton, pelvis and possibly peripheral joints. It is 

thought to start by an inflammation of the enthuses – the points at which the ligaments, 

tendons or muscles insert into the bones – which leads to a slight erosion of the 

surrounding osseous tissue. The latter calcification to correct such erosion is too 

accentuated and the joints eventually fuse with the bone. Aside from pain, this causes 

difficulty of movement that might include expansion of the chest, due to the compromising 
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of the joints between the ribs. The onset of the symptoms is usually between late teens and 

early twenty’s but it may also be before 10 or after 30
28

. 

Spondyloarthropathies affect 1,7 to 2,7 millions of caucasian adults in the USA
29

 

and the latest study on AS’ prevalence estimates that 5 in each 1000 Europeans were 

diagnosed with this disease
30

. Aside from the incidence and prevalence of the disease, the 

quality of life of each patient is also heavily altered as it progresses. There is an association 

between AS and sick leaves, both paid and unpaid work productivity, retirement, 

depression and social isolation. In the UK, 40% of the patients with working age are 

unemployed
31

 and, in Central America
32

 and Canada
33

, respectively 39% and 46% of the 

patients are classified as unable to work. Overall, patients go on permanent work disability 

three decades before the retirement age
32

. A Dutch study reported a loss of about 5000€ per 

patient and per year only due to work instability
34

. Work productivity decreases in about 

21% for patients with AS
33

 and 42% of patients in the Netherlands reported the need of 

help in basic daily responsibilities
34

. Similar conclusions arised from a French report
35

.  

Since AS is a genetic disease
36

, most of the research has revolved around candidate 

genes that were possibly deregulating normal mechanisms. The strongest association with 

AS and other spondyloarthropathies is Human Leukocyte Antigen B27 (HLA-B27)
37-39

. 

About 90% to 95% of the patients with AS express this gene
40,41

 and it represents 37% to 

50% of the risk for developing the illness
42,43

. However, it is now known that other factors 

must be involved, given that only 1% to 6% of the individuals that tested positive for 

HLA-B27 develop AS
37,44,45

. Two other genes are also thought to have a role in the 

development of this pathology: interleukin-23 receptor (IL23R) – whose SNPs, namely 

rs11209026
43

, have been associated with AS
43,46

 – and Endoplasmic Reticulum 

Aminopeptidase 1 (ERAP1)
39,47

. After HLA-B27, ERAP1 is the second most significant 

gene, as mutations in the protein’s sequence account for 26% of the risk of developing 

AS
43

.  

3. The Major Histocompatibility Complex (MHC) pathway 

 An essential part of immunity is the presentation of specific antigenic peptides to T 

lymphocytes. This allows the immune system to recognize and eliminate cancerous, virus 

infected or damaged cells and it is intrinsically dependent on the proper functioning of 
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peptide presenting machinery. There are two possible and distinct pathways used by MHC 

class I and class II molecules in order to exhibit peptides to CD8+ and CD4+ T cells, 

respectively. The MHC class I pathway is present in all nucleated cells and its chief 

purpose is to expose their internal proteome, while MHC class II molecules react mainly 

with extracellular pathogens, like bacteria. In both, the presented peptide is stably 

integrated as part of the fully folded protein. 

 

 In mammals, nearly all proteins are degraded by the proteasomes
48,49

 and this 

proteolysis is the biggest source of ligands for MHC class I molecules
48,50

. In fact, this is a 

key step in the peptide presentation pathway, since inhibition of the proteasome also 

inhibits the referred process
50

. There are three types of proteasomes. The most ubiquitous 

form is commonly known as the 26S proteasome and comprises the catalytic 20S core and 

two 19S regulatory subunits. This form can also be referred to as the constitutive 

proteasome. In response to particular stimuli, like interferon-γ (IFNγ)
51

, the core assembly 

is made differently and the complex is then called immunoproteasome due to its role in 

inflammation, as the name suggests. Another form is known as thymus-specific 

proteasome and expressed in thymic epithelial cells (TECs)
52

. The alternative proteasomes 

have different patterns of peptide degradation
53,54

, as expected considering the distinct role 

they play in the organism. The peptides generated through this degradative process often 

have the correct carboxylic terminal (C-terminal) to bind to MHC class I molecules, 

however the amino terminal (N-terminal) is rarely ideal after this step
55-58

. Aside from this 

complex, there is little or no carboxypeptidase activity in the cytoplasm
56

 and N-terminal 

trimming has to be conducted by aminopeptidases, given that blocking the N-terminal also 

blocks the digestion process
55,58

. These N-extended peptides are generated preferentially 

by both proteasome
58

 and immunoproteasome
58-61

, instead of the mature epitope, which 

provides evidence that these might be important intermediates in antigen presentation. 

Indeed, some authors postulate that such peptides have a higher survival rate in the 

cytoplasm and are thus more likely to be presented in the surface of the cell
58,59,62

. Despite 

the equal digestion rate of proteasomes and immunoproteasomes, the former have 

considerably lower efficiency – 60% to 100% less – in generating antigenic precursors and 

that supports their primary part of degrading proteins to amino acids
58

. Only occasionally 

these peptides are able to escape proteasomal degradation and be displayed as antigens. 
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95% of the peptides produced in this first step have 2 to 25 residues in length
62,63

 and 

although this is a critical stage in MHC class I peptide presentation, proteasomes and 

immunoproteasomes (from now on to be indistinctly designated as proteasomes) destroy 

more epitopes than they create. As described below, MHC class I molecules preferably 

bind to peptides between 8 and 10 amino acids in length and only 15% of the peptides 

generated by the proteasome have this size, while 20% are longer and 60% to 70% are too 

short
58,62,63

 (Figure 1). 

As mentioned, proteasomal degradation is capable of generating some antigenic 

peptides but most of them still need additional cleavages by aminopeptidases
48,55,64

. It is in 

the lumen of the endoplasmic reticulum (ER) that this next step takes place and thus an 

intermediate phase is required in which the peptides are transported to this organelle. 

Transporter associated with antigen processing 1 and 2 (TAP1 and 2) dimerize, forming 

the TAP complex that selects peptides of about 7 to 20 amino acids long
65-67

, although it 

binds with higher affinity to those between 9 and 16
65,68,69

, which comprise mainly 

precursors and not mature epitopes
67,69

. Peptides with 20 amino acids have about 50% less 

affinity to TAP than those with 11 amino acids
65

. The fact that longer peptides have lower 

affinity for the enzyme makes them more susceptible to cytosolic degradation
65

 and this in 

turn affects the MHC class I pathway. 

 Some MHC class I molecules bind to 8 residue long peptides while others prefer 

substrates that have 9 or 10 amino acids
65,70,71

. Given that the proteasome generates 

peptides between 2 and 25 residues long, TAP transports those that are 7 to 20 and MHC 

class I molecules need 8 to 10 residue epitopes, there must be a cleavage in the ER prior to 

the final binding. In fact, authors have supported this hypothesis by showing that peptides 

that are not efficiently transported to the ER still appear on the surface of the cell
67

. More 

specifically, MHC class I molecules repeatedly present epitopes that contain proline in one 

of the first three positions, even though TAP is not capable of transporting peptides with 

such characteristics
69,72

. These evidences led to the search of ER aminopeptidases and 

ERAP1
73

 and, later, ERAP2
74

 were described. Humans have both these enzymes, while 

mice do not possess ERAP2
74,75

, though there are some evidences that the latter might have 

an ER aminopeptidase other than ERAP1
75

. The genes for these two proteins are localized 

head to head in chromosome 5
76

 and their role is to trim peptides in the N-terminal, 

therefore contributing to the antigenic repertoire of the cell
73,74

. It appears that ERAP2’s  
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Figure 1: MHC class I peptide presentation. After proteasomal degradation, peptides between 7 and 20 amino acids 
can bind to TAP and be transported into the ER, where they bind to MHC class I molecules with or without suffering and 

intermediate aminopeptidasic step. These are then presented to T lymphocytes, on the surface of the cell. ECM, 
extracellular matrix; MHC, Major Histocompatibility Complex class I molecule; ER, Endoplasmic Reticulum; AP, 
aminopeptidases; TAP, Transporter Associated with Antigen Processing; Ø, cannot bind to TAP. 
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main function is to decrease the presentation of epitopes by cleaving them to peptides that 

are too small for MHC class I binding (S.-C. Chang, N. Bhutani and A.L.G., unpublished 

results, reviewed in 
77

). On the other hand, ERAP1 has a unique mechanism, discussed 

below, that makes it essential to the generation of epitopes of the proper length. If 

incorrectly cleaved, these epitopes will not form stable complexes with MHC class I 

proteins
64

. When bound to these
67

 or glycosylated
65

, antigenic molecules remain stable, 

whereas free epitopes are rapidly exported from the ER
65

. Therefore, in order to be 

exposed on the surface of the cell, peptides must survive proteolytic destruction – from the 

proteasome, cytosolic peptidases and ERAP2 – and compete for TAP binding, ERAP1 

trimming and MHC class I incorporation. 

Considering all that has been said, it seems that these ER aminopeptidases, 

particularly ERAP1, together with other peptide processing machinery have a critical role 

in maintaining the balance between protection against infectious diseases and 

immunological tolerance to somatic peptides. Variants of both ERAP1 and ERAP2 have 

been associated with ankylosing spondylitis
43,46,78

. 

4. ERAP1 

Endoplasmic Reticulum Aminopeptidase 1 (ERAP1)
73

, also known as ER 

Aminopeptidase Associated with Antigen Processing (ERAAP)
79

, Aminopeptidase 

Regulator of Tumour Necrosis Factor Receptor type I shedding (ARTS-1)
80

 and 

Puromycin Insensitive Leucine Specific Aminopeptidase (PILS-AP)
81

, was first described 

in 1999 as Adipocyte-derived Leucine Aminopeptidase (A-LAP)
82

. Given that it is a key 

enzyme in MHC class I peptide presentation – a process that occurs in all nucleated cells –, 

its expression was found in most cells types
81,82

, with higher levels in lung, liver, thymus 

and spleen – tissues that also express greater concentrations of MHC class I molecules
79

.  

4.1. Structure, the “molecular ruler” model and size-dependent cleavage 

 ERAP1 belongs to the M1 family of metalloproteases
82,83

 which are characterized, 

among other features, by the presence of GAMEN and HEXXH(X)18E motifs
a
 and a 

                                                
a
 GAMEN: Gly-Ala-Met-Glu-Asn; HExxHx18E: His-Glu-Xaa-Xaa-His-(Xaa)18-Glu 
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catalytic zinc atom
83

. It comprises four protein domains – I, II, III and IV – with a large 

cavity between domains II and IV. This is the largest cavity known for a protein so far, 

suggesting easy access for longer substrates
84

. Similarly to other members of the M1 

family, the zinc atom, the catalytic centre and the GAMEN and HEXXH(X)18E motifs are 

found in domain II, in a thermolysin-like conformation
84

. It is in this catalytic region that 

may be found one of the differences between the two human ER aminopeptidases. The 

amino acid in the position 181 is glycine (Gln) for ERAP1 and aspartate (Asp) for ERAP2. 

Because this residue is located in the top of the catalytic pocket, a conversion of such type 

will alter its specificity by making it longer and more acidic
84,85

. Domain I is made entirely 

of β-barrels that fit on top of domain II. This “tunnel” allows the interaction with terminal 

amino acids of the substrate peptide, thus completing the catalytic pocket
84

. Domain III is 

the smallest domain of the four, also rich in β-barrels
84,86

 and located in the middle of 

subunits II and IV
84

. The last domain, IV, is the most variable one of the M1 group, with 

10 to 17 α-helices
84

. In ERAP1, it has 16 helices of variable size arranged side by side in a 

way that creates a concave structure facing the catalytic centre
84,86

. Unlike other sister 

proteins, ERAP1 has its fourth domain positioned rather far from the active centre
84

, 

resulting in the previously mentioned uncommonly large cavity.  

There are at least two possible conformations for this protein, one less active than 

the other
84,86

. It is hypothesized that the conversion between these two forms is regulated 

by a centre distinct from the catalytic pocket but physically close to it
84

. The open state of 

the enzyme, although possible, is not catalytically favourable. Instead, by moving 

particular domains, ERAP1 will acquire a more closed conformation that locks the 

substrate in, facilitating cleavage
84

. Even in this closed form, the concave shape of the C-

terminal domain assures that the enzyme is able to accommodate large peptides. It is fairly 

established that the conformational change of the enzyme is responsible for its activation, 

by positioning the highly conserved tyrosine residue located upstream from the GAMEN 

motif (Tyr438) towards the catalytic centre
84,87

. The substitution of this residue by 

phenylalanine (Phe) decreases ERAP1’s activity by 190 times
84

. Similarly, mutations in 

the equivalent conserved residue in S. cerevisiae’s leukotriene A4 hydrolase lead to a 

significant loss of the enzyme’s activity, without affecting its affinity to the substrate, due 

to a drop in the stabilisation of the intermediate product
88

. So, why is it an advantage to 

have both open and closed conformations? The open form facilitates the capture of the 
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substrate. After binding, ERAP1 will switch to the closed conformation, clasping the 

peptide and rotating the Tyr residue, all of which favour catalysis. As mentioned, the 

interactions that prompt conformational conversion are not yet clear but, as it will be 

explained ahead, this is probably due to the occupation of a regulatory domain, critical for 

the protein’s function in the MHC class I pathway. The region of this regulatory centre is 

not yet known but it is thought to be in the C-terminal domain
86

, specifically near helices 

20 and 22
84

, 20 Å away from the catalytic zinc atom, a distance that is consistent with its 

“molecular ruler” function that is yet to be discussed in this paper. This distance will allow 

the enzyme to select peptides 9 to 11 residues long, but longer peptides may also bind to 

ERAP1 in a non-stretched position, i.e., “wrinkling” central portions of the substrate that 

still fit into the large enzyme’s cavity
86

. Comparing with other members of the 

metallopeptidases’ M1 family, homology happens only in the catalytic centre located in the 

N-terminal domain
86,89

, but though the architecture may be unequal, the binding strategies 

are alike, namely through the enzyme’s interaction with both terminals of the substrate, 

allowing flexibility in the size and sequence by wrinkling
70,71

. Hence, both the protein’s 

structure and the fact that it is activated by longer precursors allow ERAP1 to trim longer 

peptides while sparing shorter ones that might have the correct length to bind to MHC 

class I molecules.  

This distinctive catalytic process that is allosterically activated and identifies both 

the peptides’ size and the amino acid content of the C-terminal is titled as the “molecular 

ruler” mechanism
90

 and, to the present knowledge, no other aminopeptidase has the ability 

to generate peptides of specific length. The first indication that ERAP1 had a functioning 

of such sort was the fact that it showed a preference for longer peptides
73

 between 9 and 16 

amino acids
73,74,90,91

. In fact, the enzyme hydrolyses precursors until they are left with 8 or 

9 residues, losing its activity for peptides below that size
90,91

. Regardless of the N- and C-

terminal sequence, approximately 50% of the precursors are cleaved to 9-residue-long 

epitopes, while the other 50% have a final length of 8 residues
90

. Unlike other 

aminopeptidases, that prefer substrates shorter than 4 amino acids, ERAP1 shows 

maximum activity for substrates with 9 to 12 amino acids, even though 16-residue-long 

peptides are still efficiently processed
90

. However, precursors with 18 amino acids already 

have a low rate of cleavage and 20- and 30-residue-long substrates are barely cleaved
90

. 

Unexpectedly, a different set of substrates pushes ERAP1’s maximum activity towards 
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peptides with 10 to 14 amino acids
90

. In an experiment aimed to clarify the enzyme’s 

peculiar mechanism, the amount of peptides with 10, 11 and 12 residues was measured in a 

time-dependent manner. The results revealed an increase in these peptides’ amounts 

followed by a decrease, emphasizing their intermediary role in the trimming reaction
90

. 

Subsequent research that measured the concentrations of epitopes or epitopes’ precursors 

with 8 to 11 amino acids concluded that peptides with 11 residues are the most rapidly 

trimmed, followed by 10- and 9-residue-long substrates, respectively. During this process, 

the percentage of epitopes with a length of 8 amino acids increased and the discontinued 

trimming was not determined by a permanent loss of enzyme’s activity, since the 

supplementation with more suitable peptides yielded again 8-residue-long products
73

. It 

appears that ERAP1’s apparatus evolved to assist in immune surveillance, fitting into the 

specificities of both TAP and MHC class I molecules. As mentioned before, researchers 

believe that a regulatory centre not far from the catalytic domain allosterically activates the 

enzyme’s trimming activity. To be efficiently cleaved, the peptide needs to be able to 

position itself both in the catalytic pocket and the regulatory domain, so that the C-terminal 

induces the change in conformation that will in turn accelerate the cleavage of the N-

terminal placed near the zinc atom
84,86,90

. Accordingly, smaller peptides will not be able to 

stabilize the more active closed conformation, making its processing much slower. 

However, small molecules have been shown to activate the catalysis of other short peptides 

by binding to the regulatory centre while the catalytic pocket is occupied by one of 

them
84,86,90

 (Figure 2). The ovalbumin epitope SIINFEKL, a non-ideal substrate for 

ERAP1, induces hydrolysis of L-leucine-7-amido-4-methylcoumarin (LAMC)
92

. Even 

though smaller peptides might facilitate the trimming of others, this is not the case with 

large size precursors, given that the occupation of the regulatory centre will prevent 

binding of the substrate’s C-terminal, inhibiting its hydrolysis
84

. This provides further 

evidence for the proximity between regulatory and catalytic cores. Despite the fact that it 

all points to a very well adapted mechanism adopted by ERAP1, this enzyme might also 

destroy epitopes by degrading them below the minimum length required for MHC class I 

binding
91

. However, given its inability to trim peptides shorter than 8 amino acids in vitro, 

it seems unlikely that in vivo this will happen. Still, about 90% of the molecules presented 

by MHC class I proteins are 9 or 10 amino acids
93

, which means that in some cases ERAP1 

might cleave and destroy epitopes. Length preferences could potentially attenuate this 
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effect, i.e, the fact that ERAP1 trims 11-residue-long peptides faster than those with 10 or 

9 amino acids could direct its binding towards precursors instead of mature epitopes. 

Nonetheless, proximity to the enzyme due to recent catalysis also has to be taken in 

consideration. So, on a basal level, there is a high chance that ERAP1 will destroy MHC 

class I epitopes with 9 or 10 residues
90

, but, when overexpressed, the total amount of these 

epitopes was only slightly diminished
90

. Presumably, binding to MHC class I proteins 

protected them from further trimming
91

. Even though it may seem contradictory to 

eliminate epitopes on a basal level, these events most likely play a crucial part in avoiding 

exacerbated inflammatory reactions against somatic molecules - autoimmunity. Ultimately, 

“the concept of a molecular ruler is that ERAP1 trims down to a final core size (…) [that] 

may or may not result in a mature epitope”
93

. 

4.2. Substrate specificity 

ERAP1 was first described as a leucine aminopeptidase, due to its preference for 

substrates with this N-terminal residue
73,82

. Despite these initial findings, the enzyme is 

capable of trimming a large scope of residues
73

, displaying however a higher affinity for 

hydrophobic amino acids instead of charged or hydrophilic ones
94

, which may be 

explained by the presence of a hydrophobic region near the terminal amino group
82

. 

Remarkably, proline is the only amino acid that ERAP1 is incapable of removing
64,95,96

. It 

quickly trims leucine and methionine, while glutamate, aspartate, tryptophan, arginine, 

cysteine and glycine are harder to remove
74,90,93,94,96

, possibly because aside from being 

hydrophobic, the catalytic pocket is shallow and occupied by the lateral chains of Ser316, 

Met319, Gln181 e Gln183
84

. Thus, leucine or methionine can easily fit into the core, while 

larger amino acids, like tryptophan, have to position themselves in a very specific manner, 

even though they are able to form the same kind of interactions. On the other hand, 

cysteine and glycine are too small to stably fit into the catalytic pocket
84

. The C-terminal 

content also plays a role in ERAP1 specificity, as this enzyme selects peptides that have 

hydrophobic residues in this terminal as well
90

. The cavity that is thought to be regulatory 

has a strong electronegative potential that can account for the fact that negatively charged 

peptides are poor substrates of ERAP1
94

. Amino acids with positive charges however are 

similarly slowly trimmed
90

. Specifically, peptides with lysine, arginine and aspartate on C-

terminal have a much smaller cleaving rate than when alanine, tyrosine or leucine are in 

the same position
90

. It could be that the regulatory centre is mainly electronegative but with  



 20 

 

Figure 2:  ERAP1’s molecular ruler mechanism. ERAP1’s structure is optimized to trim longer peptides that can bind 
to both to the catalytic pocket and the regulatory center (a), thus activating the protein (b). Since shorter peptides cannot 
simultaneously bind to domains II and IV, these are slowly trimmed due to the inability to convert the enzyme into its 
more active closed form (c). However, if another short peptide binds to the regulatory center, the enzyme changes its 
conformation, closing the opening between domains II and IV and rotating an important tyrosine residue (not shown), 
therefore facilitating catalysis (d). Figure based on data from 75,84,86,90,94.  
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a few hydrophobic residues that reduce the stability of this core, causing it to seek other 

hydrophobic-residue-containing peptides that can therefore reduce the potential energy of 

the complex. Some authors hypothesize that the presence of small depressions near the 

catalytic centre, thought to be responsible for anchoring amino acids’ side chains, can also 

account for C-terminal preferences
84

. The presence of a free carboxylic group, however, 

does not appear to play any role in the enzyme’s specificity, since the substitution of 

leucine for leucine-amide did not alter the velocity at which the peptide was hydrolysed
90

. 

A free N-group, on the other hand, is vital to the enzyme’s function. Acetylation of this 

group completely arrests ERAP1 trimming activity, as it happens with other 

aminopeptidases
90

. Aside from N- and C-terminal selectivity, residues in internal positions 

also affect specificity
94,97

. It was already said that proline was not tolerable if located in the 

first position of the N-terminal but this is also true if this residue appears in P2
93

, because 

its side chain cannot accommodate in the catalytic pocket without disrupting the highly 

conserved GAMEN motif
84

. It is not surprising that immunoproteasomes preferentially 

generate peptides that have a hydrophobic or positively charged C-terminal or, in other 

words, acidic residues rarely appear on the C-terminal of precursors after 

immunoproteasome cleavage, unlike basic and hydrophobic ones
58,98

. Indeed, these 

peptides are favoured by TAP
67,69

, ERAP1
90,94

 and MHC class I molecules
93

, 

demonstrating once again the synchronism present in MHC class I pathway machinery and 

exalting the role of each of these complementary steps.   

5. ERAP1’s polymorphisms and disease 

Often there is a correlation between gene polymorphisms and disease. Because 

ankylosing spondylitis is a genetic disorder, it is fair to assume that the cause can perhaps 

lie on a mutation of such sort. Six ERAP1 polymorphisms were found to be associated 

with ankylosing spondylitis: rs27044
43,47,92,99-101

, rs30187
39,43,46,47,92,99,101-103

, 

rs10050860
43,47,99,101,104

, rs2287987
43,47,99,101,104

, rs17482078
43,101,104

 and rs27037
101

. Out of 

all of them, rs30187, a missense mutation that alters the lysine528 for arginine
99,100

, 

appears to be the most significative one
39,47,92

 followed by rs27044
47,92

. The rs30187 

variant of ERAP1 affects the trimming of the epitopes’ precursors, thus disturbing MHC 

class I antigen presentation
39,92

. This SNP is located in a coding region
46

 and causes a 4-
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fold decrease in the catalytic activity of the enzyme, when compared to the native 

form
92,102

. Rs27044 allele in turn consists of a switch of glutamine by glutamate in the 

residue 730
99,100

. Both these polymorphisms and the native form are able to generate 

antigenic peptides in vitro, though the cleaving activity varies from one to the other
92

. The 

enzyme with the rs30187 SNP is the least active of the three against LAMC, followed by 

the native form and the one carrying the rs27044 allele, this last one representing the most 

active one of the three enzymes. However, when a small activating peptide was added to 

the reaction mixture, rs30187-containing enzyme suffered the biggest increase in activation 

while the one with the rs27044 SNP was the least activated of them all, most probably 

because its architecture was already in a favourable state for catalysis. In the presence of 

this small peptide, the native form is the most active one with small difference from the 

form carrying rs27044
90

. So, extrapolating, rs27044-containing ERAP1 is active even 

when there is no sufficient activation, possibly destroying epitopes due to a failure of the 

“molecular ruler” mechanism. On the other hand, as described
92,102

, the enzyme that 

incorporates the rs30187 mutation has lower activity than the native form, diminishing the 

presentation of some peptides while others are increased, something that will be further 

discussed in the topic Modulation of ERAP1 and its Consequences. In Caucasian 

ankylosing spondylitis patients from the United Kingdom, alleles rs30187 and rs27044 are 

present with a significatively higher frequency than in control patients, while rs10050860, 

rs17482078 and rs2287987 are more likely to be found on the control group than on the 

one diagnosed with ankylosing spondylitis
43

. Rs10050860 allele possesses an asparagine 

instead of aspartate in residue 575, rs17482078 switches arginine725 for glutamine725 and 

rs2287987 changes the amino acid 349 from methionine to valine
99,100

. Lastly, all of the 

polymorphisms that are associated with ankylosing spondylitis are found either on the 

catalytic centre, C-terminal regulatory pocket – responsible for the enzyme’s specificity –, 

domain junctions – potentially and indirectly altering the enzyme’s activity or specificity 

by altering its conformation or its ability to change between the open and closed form –, 

gene promoter or boundaries concerning introns and exons
47,84

, these last two affecting 

splicing. 



 23 

6. Modulation of ERAP1 and its consequences 

 Due to its critical role in the MHC class I pathway, ERAP1’s existence is key for 

the correct cleavage of peptides, as demonstrated by an experience performed with mice 

embryonic fibroblasts (MEFs)
75

. Nonetheless, ERAP1 knock out (KO) mice grow 

normally and present no apparent signs of disease, demonstrating that this is not a vital 

gene
75

. Also, excluding ER cleavage, MHC class I pathway is not altered in ERAP1-

deficient mice
75

, which again proves that this is the most important enzyme in one of the 

last steps of the peptide-presenting machinery. Given the association of ERAP1 mutations 

with AS and other diseases, ERAP1
-/-

 models are highly used to study potential target 

processes. In general, mice KO for this enzyme have diminished MHC class I peptide 

presentation on the surface of the cell
105

 by about 20% when compared with controls
77,91

. 

However, as explained before, ERAP1 deficiency inhibits the presentation of some 

peptides while enabling that of others (see Structure, the “molecular ruler” model and 

size-dependent cleavage). When it comes to the ovalbumin epitope SIINFEKL, precursors 

extended by 1 and 3 amino acids have 75% and 54% less breakdown, respectively, and the 

12-residue precursor HGEFAPGNYPAL is 40% less trimmed, in ER fractions 

immunologically depleted of ERAP1
73

. Reduction of the gene’s expression by interference 

RNA also hinders showing of SIINFEKL by MHC class I molecules, for HeLa cells
91

. A 

contradictory study reported no difference in this epitope’s presentation for wild-type and 

ERAP1-deficient MEF cells
75

. Differences in the cell type can account for this 

inconsistency, but it seems unlikely that, after all the experiences proving ERAP1’s crucial 

role, this would not be the case in MEFs. More studies with a wide range of cell varieties 

and epitopes are indispensible. This is in fact a lack in the research on this topic, given that 

most studies focus solely on ovalbumin precursors and not enough on perhaps more 

significant ones as well as on live animal models that can experience the under- or 

overexpression of the enzyme for longer periods of time. For KO thymocytes and B and T 

cells, MHC class I presentation is reduced
75

. New peptides can be detected on ERAP1
-/-

 

mice cells that were not on the WT ones
105

. As said, some epitopes are presented in higher 

amounts whereas others are less or not at all shown, both for pathogenic proteolytic 

fragments and endogenous peptides
59,75

. So, changes on the enzyme’s activity greatly 

modify the peptide repertoire of a cell and, consequently, of an organism. Expectedly, the 
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immune response varies from WT to ERAP1 KO mice. After infection with Lymphocytic 

Choriomeningitis Virus (LCMV), the ERAP1
-/-

 group grossly exhibited a reduced immune 

response against some model antigens, compared with the WT subjects
59,106

, and when 

transplanted into control individuals, these cells exert an immunogenic role
105

. 

 Given that ERAP1 modulation conditions the immune response, it is only 

appropriate to determine if and how the latter influences the former. IFNγ, an 

inflammatory cytokine, induces MHC class I peptide presentation
73

 through ERAP1 

overexpression
73,79,91

. This result is valid for the tumour model cells HeLa, U937 and 

SW620, without disturbing the abundance of mRNA belonging to other aminopeptidases
73

. 

When wild-type HeLa cells are treated with IFNγ, the conversion from 9- to 8-residue 

peptides is accentuated
73

. Immunodepletion of ERAP1 completely stops this 

phenomenon
73

 and diminishes antigenic presentation
91

. Other factors like conversion of 

proteasome into immunoproteasome – which generates preferentially longer peptides
93,107

 

– and over-expression of TAP
80,91

 are also IFNγ dependent and complement the enzyme’s 

role. Because generation of smaller antigens from longer ones is dependent on ERAP1’s 

presence, its loss leads to reduced and increased inflammatory action, respectively if 

referring to peptides with 8 or 9 to 10 amino acids
75

. So, the enzyme is an important 

regulator of antigenic peptide presentation, enhancing or reducing inflammatory response 

according to the epitopes.  

 Both ERAP1
108

 and ERAP2
109

 are secreted when over-expressed in human cells, 

presumably due to saturation of proteins responsible for the aminopeptidases’ retention
110

. 

In normal circumstances, ERAPs bind to other molecules that prevent their exit from the 

ER. However, once inflammatory molecules like IFNγ are released, these aminopeptidases 

are over-expressed, thus overloading their retaining molecules. In a free state, they can 

leave the ER
109

. Through production of chimeric proteins, Hattori et al. concluded that the 

exon 10-containing sequence between 485 and 615 was responsible for ERAP1’s 

confinement to this compartment
111

. The highest levels of secretion happen when cells are 

exposed to both IFNγ and lipopolysaccharide (LPS)
108

. Research shows that monofactorial 

treatments cannot fully stimulate this process
108

. IFNγ induces the over-expression of 

ERAP1 but not its release from the ER
84,92,108

. On the other hand, LPS does not enhance 

the levels of the enzyme but seems to be responsible for its presence in the extracellular 

medium
108

. So, in order for the enzyme to be secreted, low concentrations of LPS and IFNγ 
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are required, causing a 1.5-fold increase in the aminopeptidasic activity of the extracellular 

medium
108

. These results suggest that IFNγ is mainly responsible for ERAP1’s over-

expression while LPS induces its secretion. Brefeldin A (BFA), a molecule that prevents 

protein transport from the ER to the Golgi complex, highly decreases the aminopeptidase’s 

secretion, exposing the importance of these cell structures in the transport of ERAP1 and, 

consequently, in the processes it is involved in. Different forms of the protein exist in the 

ER and extracellular medium, with 105 kDa and 115 kDa respectively
108

. Altered sugar 

chains account for the observed weight disparity
108

. After 48h, both forms are found in the 

extracellular matrix most probably due to release of the lower molecular weight form from 

dying cells
108

. 

 Summarizing, moulding of ERAP1’s properties further demonstrates its importance 

for MHC class I presentation, enhancing or reducing inflammatory response by shifting 

immunodominance patterns. 

7. Alternative localizations and functions of ERAP1 

 Subcellular localization of ERAP1 has been a target for debate over the past years. 

Some authors refer to it as an ER protein
82,84,89,92

, while others place it on the cell 

membrane
55,94

 or claim it is secreted
112

. In mice, however, it appears that the enzyme is 

present only in the ER. Co-localization with KDEL sequence proves ERAP1’s presence in 

the ER, both for mice
108

 and human cell lines
73

. In bronchial cells, ERAP1 was found to be 

a type II transmembrane protein that co-immunoprecipitates with Tumour Necrosis Factor 

Receptor I (TNFRI)
80

. Although it is found mainly in the ER, the alternative locations of 

the enzyme suggest involvement in different processes, according to the situation. 

 Indeed, aside from functioning in peptide presentation, ERAP1 is associated with 

the shedding of TNFRI, Interleukin-1 Receptor type II (IL-1RII) and Interleukin-6 

Receptor (IL-6R). The enzyme binds to the extracellular domain of TNFRI, promoting its 

cleavage, in vitro
80

. Despite its aminopeptidasic role, ERAP1 is not responsible for the 

cleavage of this receptor
80

. Instead, it complexes with nucleobindin 2 and RNA-binding 

motif protein X chromosome (RBMX)
113,114

, supposedly helping other metalloproteinases 

in their shedding function
80

. It was proposed that abnormal activity of ERAP1 could result 

in a decrease in the levels of soluble cytokines’ receptors, therefore increasing the 
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biological activity of these inflammatory molecules
110

. However, no relationship exists 

between serum cytokine receptors’ levels and three of the most significant ERAP1 

polymorphisms – rs27044, rs10050860 and rs30187 – in patients with AS
115

. This is 

probably due to the fact that ERAP1 is not the enzyme that actually cleaves the receptors 

and therefore its activity might not be crucial. The same paper concluded that TNFRI is 

cleaved as a response to inflammatory molecules
115

, generating decoy receptors that 

neutralize TNF. As mentioned, ERAP1 is also involved in the shedding of IL-6R
116

 and IL-

1RII
117

. Similarly to what happens with TNFRI, the enzyme interacts with the extracellular 

domain of IL-1RII
117

. In this case, however, it is more likely that ERAP1 directly cleaves 

the receptor, given that cells KO for ERAP1 present no basal shedding of IL-1RII, while 

those that overexpress the peptidase have increase shedding, less membrane-associated 

receptor and decreased IL-1β biologic activity
117

. Cleaving the extracellular domain of IL-

1RII generates soluble proteins capable of binding to IL-1, thus preventing the cytokine’s 

excessive pathway stimulation
117

. Type I receptor’s levels (IL-1RI), on the contrary, are 

not affected by the enzyme
117

. So, ERAP1 is associated with the shedding of some 

receptors either by directly cutting them or indirectly promoting their cleavage. More 

information is needed on how the receptor is cleaved when ERAP1 is not the main player. 

 As aforesaid, the enzyme’s location is arguable and some authors defend its 

presence in the extracellular matrix as a secreted protein
108,112

 (see Modulation of ERAP1 

and its Consequences, third paragraph). There certainly seem to be evidences for that but 

ERAP1’s role in those cases is not entirely known. It could merely be a side-effect of 

inflammation due to saturation of the retaining proteins but could also have an impact in 

cancer metastasization, through the degradation of the extracellular matrix. A proven effect 

of ERAP1 in the extracellular medium is the activation of macrophages. Goto et al. have 

found that, after an inflammatory stimulus, ERAP1 is excreted from the macrophages’ ER 

and this process allows the cells a higher phagocytic activity
108

.  To date, nothing else was 

found on this topic, so more research will be needed in order to clarify ERAP1’s potential 

functions.  
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8. Hypotheses on why ERAP1 is related to AS 

As seen, polymorphisms both on ERAP1 and ERAP2 are correlated with AS. 

Abnormal peptide processing can lead to unstable peptide-MHC complexes, susceptible to 

misfolding
118

. In fact, improperly folded HLA-B27 molecules tend to accumulate in the ER 

triggering stress in this compartment, which can culminate in a proinflammatory response 

termed Unfolded Protein Response (UPR)
119-121

. The activation of this pathway first arrests 

protein translation and increases the production of molecular chaperones. If this approach 

is not successful, UPR will direct the cell towards apoptosis. Aberrant peptide processing, 

due to ERAP1’s mutations, is very likely to alter peptide repertoire, as described above, 

and thus represent a disequilibrium in somatic arthritogenic molecules, i.e., the presence of 

abnormal peptides on the surface of cells can potentially lead to an auto-immune response. 

All of the above mentioned mechanisms somehow affect inflammatory processes. An 

inflammation of the bone ligaments prompts bone erosion and the repairing process 

induces calcification that, if too accentuated, translates in AS. It is plausible that the 

presence of soluble cytokine receptors prevents, to some extent, an uncontrolled 

inflammatory response. Therefore, non-shedding of receptors, likely to be associated with 

ERAP1’s function, could be a mechanism by which inflammation is increased (Figure 3). 

Aberrant inflammation has innumerous side-effects, one of which is presumably the 

secretion of ER proteins, mentioned earlier.  This increased extracellular aminopeptidasic 

activity could further enhance the damage done to the bone. Furthermore, extracellular 

ERAP1 has been said to activate macrophages’ phagocytic activity
108

. Although further 

studies examining this mechanism should be conducted, this is yet another possibility to 

how ERAP1 contributes to AS. 
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Figure 3: Possible ERAP1 involvement in ankylosing spondylitis. With a non-mutated ERAP1, the cells’ internal 
peptides are correctly cleaved and presented to lymphocytes in patterns that the body recognizes as normal. Therefore, no 
inflammatory signals are generated and a balance between bone anabolism and catabolism is maintained. When there is 

an inflammatory stimulus in a healthy organism, the ensemble of peptides presented by the cells change and an 
inflammatory reaction begins. In order to negatively regulate this phenomenon, ERAP1 cleaves some of the 
inflammatory receptors, thus reducing the amount of inflammatory signalling. However, when ERAP1 has its functioning 
compromised, the peptide repertoire is aberrant whether there is a stimulus or not, turning inflammation into a constant 
rather than an exceptional situation. Additionally, the fact that the receptors are not cleaved further enhances the extent of 
the inflammation, leading to a destruction of the surrounding bone that can later lead to ankylosing spondylitis. Finally, 
because inflammation is so accentuated, the ER retaining molecules become saturated and ERAP1 is released into the 
extracellular medium, where it might imaginably play a role in bone erosion either directly or by inducing macrophages’ 
phagocytic activity. 
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9. ERAP1 and other diseases 

 Alternative forms of ERAP1 have been correlated with several diseases other than 

AS. An impaired ability to present self- and pathogen-derived peptides can lead to 

inadequate immune responses. Multiple sclerosiss
103

, arterial hypertension
122

, diabetes 

mellitus
123

, hemolytic uremic syndrome
124

, pre-eclampsia (non-direct relashionship)
125

, 

certain forms of cervical cancer
126-128

 and psoriasis
97,129

 are some of the diseases that 

showed an association with the enzyme. While its role in Crohn’s Disease (CD) remains 

uncertain, the allele rs30187 has been significatively correlated with multiple sclerosis 

(MS)
103

, hemolytic syndrome
124

 and hypertension
122

. The exchange of a lysine for arginine 

in position 528 decreases ERAP1’s activity
102

 (see ERAP1’s polymorphisms and disease). 

Because the enzyme is responsible for angiotensin II inactivation and conversion of 

kallidin to bradykinin
112,122

, this reduction in activity leads to vasodilation and, 

consequently, hypertension. The same variant of the protein seems to induce pre-

menopausal osteoporosis in Japanese women, which suggests that this enzyme may be of 

importance for the bone’s catabolic/anabolic metabolism
130

. ERAP1-defficient mice are 

unable to correctly process the peptides produced by the protozoa Toxoplasma gondii and 

die from infection when exposed to this pathogen
131

. A similar mechanism is conceivable 

for cancer spreading, if a certain polymorphism diminishes MHC class I presentation and 

is therefore responsible for a reduced immune surveillance. The numerous and diverse 

diseases that ERAP1 is associated with sustain the assumption that the enzyme is involved 

in multiple pathways and that it may play different and perhaps complementary roles 

according to its location and environment.   

10. PPARγ 

Peroxisome proliferator-activated receptors (PPARs) are nuclear proteins capable 

of regulating the expression of genes. These were initially described as targets for 

molecules that induce the proliferation of peroxisomes
132

, thus their name. To date, three 

types of PPARs have been identified: PPAR-α, -β/-δ and -γ
132

. Of the three, PPAR-γ is the 

most widely studied one, essentially for its role in glucose metabolism
133

, since 

peroxisomes are mainly responsible for fatty acid β-oxidation. Due to alternative splicing, 
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three isoforms of this receptor can be produced: -γ1, -γ2 and γ3. Whereas PPAR-γ1 has a 

diffused expression – skeletal and cardiac muscles, liver, pancreas, kidney and fat
134

 – 

PPAR-γ2, with 30 more amino-acids at the N-terminus, is mainly found in fatty tissue
134

 

and PPAR-γ3 in fat
135

, colon epithelium
135

 and peritoneal macrophages
136

. Upon 

activation, PPAR-γ binds to peroxisome proliferator response elements (PPREs) by 

dimerization with retinoid X receptor (RXR)
137

. These genomic regulatory sequences are 

mainly located upstream from genes related with metabolism, but can also be found near 

those controlling stress response, immunity, development and cell cycle control, among 

others
138

. This highlights the roll of biological functions that PPARγ is able to control or, at 

least, have an influence upon. The regulatory action of this receptor is not only attributed 

to PPRE binding but also to interference with activator protein-1 (AP-1), signal transducer 

and activator of transcription-1 (STAT-1) and nuclear factor-κB (NF-κB) pathways
139,140

. 

In the latter scenario, PPARγ is SUMOylated and directed towards nuclear repressor 

complexes (NCoR) that prevent gene transcription. This interaction inhibits NCoR removal 

via the ubiquitin/proteasome pathway, subsequently preventing the transcription factor’s 

access to the promoter
140

. A continuous state of repression is therefore maintained. The 

exposure of human chondrocytes to 15d-PGJ2, a natural agonist of PPARγ, reduced the IL-

1β-induced mRNA expression of COX-2 and the release of NO, probably by restricting 

NF-κB and AP-1 DNA binding
141

. Similarly, in synovial cells from RA patients, this 

agonist inhibits TNF-α and IL-1β expression and NF-κB activity
142

. So, targeting PPARγ 

appears as a promising anti-inflammatory therapy. Further proof includes the facts that 

non-stimulated human monocytes
143

 and murine macrophages
139

, typical inflammation-

associated cells, express low levels of PPARγ mRNA whereas activated ones have high 

levels of mRNA for this receptor. 15d-PGJ2 treatment of monocytes decreases the release 

of IL-1β, IL-6 and TNF-α
143,144

, while increasing IL-1 receptor antagonist (IL-1Ra) 

production
143

. When exposed to 15d-PGJ2, IFNγ-activated macrophages have the 

morphological characteristics of rest cells
139

, which means that this receptor may be able to 

reverse or prevent macrophage activation. In fact, 15d-PGJ2 supresses genes that become 

over-regulated upon macrophage activation, such as iNOS
139

. However, when an 

inflammatory stimulus is not provided, agonists have no effect on cytokine release
143

. This 

could perhaps be due to the receptor’s agonist-dependent conformational change and/or 

dislocation towards an inflammation-related pathway that upon activation by an 
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inflammatory stimulus will be blocked, at least partially, from transmitting a signal. For 

example, agonist-induced PPARγ activation could leave the receptor in a favourable state 

to bind to NCoR, therefore inhibiting inflammatory signalling. Protein-protein interaction 

studies would help clarify this potential mechanism.  

Aside from its localization in the above-mentioned tissues, PPARγ can also be 

found in cartilage, both at the mRNA and protein levels
145

. In fact, its expression in 

osteoarthritic (OA) cartilage is 2.4-fold lower than in a normal one
146

. However, in RA 

synovial lining, macrophages, fibroblasts and endothelial cells, PPARγ is over-

expressed
147

. These facts demonstrate that arthritis cannot be treated as a homogeneous 

group and that each disease has its own mechanisms, possibly independent from one 

another. On the other hand, some common ground can be found. PPARγ’s under-

expression in OA is attributed to IL-1 and blocking NF-κB signalling inhibits IL-1 

suppression of the receptor’s expression
146

. Intraperitoneal administration of 15d-PGJ2 

improves experimental RA in rats
147

 and an association was found between a PPARγ 

polymorphism and psoriatic arthritis (PsA)
148

. So, even if the mechanisms are not the 

same, this receptor seems to be involved in arthritis in general. A therapy with a synthetic 

PPARγ agonist has been tried in PsA individuals in 2005
149

. Despite the promising results, 

the study population was small and the drug exerted some side effects, like weight gain and 

fluid retention. Coupling of a PPARγ agonist with a diuretic has been previously done
150

 

and a different agonist could resolve the weight gain issues, since PPARγ activation is 

more often associate with increased fat processing
151,152

. Nonetheless, some authors 

postulate that the agonists’ effects may not always be PPARγ-dependent
153,154

 and thus 

care should be exerted when working with these molecules. 

11. Purpose of the work 

The present work aimed at elucidating the role of ERAP1 in an experimental model of 

arthritis. PPARγ’s function in inflammation was also examined to a lesser extent.  
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12. Models and Techniques 

12.1.  Cell culture and animal colonies 

 In order to perform scientific studies and to understand a particular process, it is 

essential to be able to control variables, using models that respect the research ethics. Cell 

and animal models are thus the best approach known so far, but, as the name implies, these 

are models and might not always overlap with the real phenomena intended to be studied. 

For this reason, it is vital to permanently keep in mind the gap that may – and does – exist 

between these two worlds.  

12.1.1. Mast cells and macrophages growth and differentiation 

 Mast cells are present in several types of tissues and some of their biological roles 

include phagocytosis, antigenic processing, cytokine production and release of vasoactive 

peptides. The cells’ vasomodulatory properties are mainly due to their histamine-rich 

granules, a very well-known amine with vasodilatory properties, but can be attributed to 

heparin as well
155

, a glycosaminoglycan also abundant in mast cells’ granules. Researchers 

frequently use this cell type to study immunity
156

 and host-defense mechanisms
157

, among 

other processes, given the diversity of adhesion molecules and immune-response receptors 

that these cells carry, along with the cytokines that they release. Furthermore, mast cells 

are especially known for their determining part in allergy development
158,159

. Although less 

frequently, they have also been associated with arthritis
160

, owing to the cytokines and 

other inflammatory mediators that they release and that can lead to chronic inflammation. 

 Mast cells derive from pluripotential hematopoietic cells in the bone marrow
161,162

 

and have specific growth conditions. In order to differentiate, they require stem cell factor 

(SCF)
163,164

, a molecule specific for mastocytes because, despite the fact that other cells 

also respond to it in the beginning of their differentiation process, they need additional 

lineage-specific growth factors as they mature
165

. This factor induces the proliferation of 

murine mast cells both in vitro
163,166

 and in vivo
167

. Granulocyte-macrophage colony-

stimulating factor (GM-CSF)
168,169

, macrophage-colony-stimulating factor (M-CSF)
169

 and 

IFNγ
169

 inhibit mast cells’ differentiation and transforming growth factor-β1 (TGF-β1) 

conditions their proliferation
170

. For murine mast cells, IL3
171

, IL4
169

, IL9
169,172

, IL-l0
169,173

 

and nerve growth factor (NGF)
174

 have been shown to promote proliferation. However, in 
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the absence of IL-3, neither IL-4
169

 nor IL-9
172

 or NGF
169,174

 alone have the ability to 

promote the proliferation of these cells. Similarly, IL-10 requires both IL-3 and IL-4 for 

the effective stimulation of the cells’ development
173

. So, IL-3 is crucial and sufficient for 

the growth of mast cells, at least in vitro, but the maturation process requires additional 

factors. A combination of IL-3 and SCF generates populations of cells that most resemble 

the mast cell phenotype found in connective tissue
167

. This approach was therefore used 

when obtaining cells for the work described ahead.  

 

 Macrophages, like mast cells, are present in several types of tissues. Their main 

roles are to phagocyte and present pathogens to T-cells during an inflammatory stimulus. 

Due to the fact that macrophages result from the differentiation of monocytes when these 

leave the blood, this cell type can directly be obtained from an abundant tissue
175

 or from 

differentiating either bone marrow monocyte precursors
175,176

 or blood monocytes
177

. Bone 

marrow monocyte differentiation into macrophages simply requires the use of a 

macrophage-specific factor, M-CSF
178

. Macrophage isolation from blood, on the other 

hand, is a long and complicated procedure and, although in humans it is most likely the 

best approach due to the facility and little invasiveness of blood collection, with animals 

alternative options are preferable. Tissue collection is a viable and easy option in animals, 

particularly peritoneum due to the large dimensions of the tissue and its accessibility. 

However, macrophage yield is usually of 0,5-1x10
6
 macrophages per mouse

175
, a low 

amount. In order to increase this number, molecules that stimulate the differentiation of 

monocytes into macrophages, causing the tissue to become rich in these cells, can be 

injected a few days prior to cell gathering. This modification allows for a simple and 

productive method, but the physiological characteristics of the macrophages will be 

different from those observed in cells collected without the stimulation of monocyte 

differentiation
175

. Therefore, and because bone marrow is also extracted for mast cells’ 

isolation, obtaining macrophages from this tissue is the most appropriate method for the 

work in question. Moreover, it allows for the generation of uniform cell populations
175

, an 

important characteristic for further biochemical analysis. 

 



 34 

12.1.2. Inflammatory stimuli and targeted molecules 

 Inflammation induction in cellular and animal models is a widely used technique 

when studying inflammatory processes. LPS is probably the most commonly used 

inflammatory stimulus. It activates the NFκB pathway culminating in the transcription of 

an array of inflammatory molecules, among them IL-1β, IL-6 and TNFα. Although not so 

well known and more controversial
179

, IL-33, a member of the IL-1 family, can also induce 

the release of inflammatory cytokines, including IL-1β, IL-6 and TNFα
180

. 

12.1.3. The K/BxN mouse model 

 The K/BxN mouse model resulted from crossing KBN mice, a strain that is 

transgenic for a T-cell receptor, with a non-obese diabetic (NOD) murine line
181

. Within 25 

to 35 days, the resulting offspring presented with swelling and redness of the distal joints, 

hyperextension of the ankle, valgus deviation of the knee, hyperpronation of the toes and 

compromised mobility, among other symptoms
181

. After further study, it was noted that 

these animals also showed oedema under the synovial lining, neovascularization, synovitis, 

pannus, fibrosis, pyknosis of the chondrocytes and extensive infiltration of inflammatory 

cells, mainly neutrophils. After several months of disease, there was a large decrease in the 

inflammation, but the joints had suffered remodelling of their architecture, with the 

appearance of irregular bone structures – due to bone erosion and uncontrolled restoration 

–, substantial fibrosis and severe loss of cartilage
181

. The mechanism by which these 

animals develop spontaneous arthritis depends on the recognition of glucose-6-phosphate 

isomerase (GPI)
182

 and bovine pancreatic ribonuclease (RNase 42–56)
181

, the later 

presented by the mouse’s MHC class II molecule H2-IA
k
. Since specific haplotypes are 

responsible for the specificity of the autoimmune reaction
183

, the presence of this MHC 

class II molecule is most likely the factor that directs inflammation towards the joints. The 

basis of the anti-GPI-induced arthritis, however, has been a cause for research, since this 

protein is ubiquitously expressed
184

. It appears that, despite the non-specificity of the 

intracellular location, extracellular and membrane-bound expression of this enzyme is 

preferentially located at the synovial fluid and endothelial surface of the synovium
182

. 

Different placement of innate control mechanisms
185

 and antibody-antigen complex 

precipitation in the joints may also explain why these areas are particularly targeted in this 

model, although this question remains unanswered.  
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The theory of arthritis induction through antibody action is further sustained in the 

K/BxN serum transfer model, where serum from K/BxN mice is transferred into animals 

with a different genetic background
186

. In this model, the recipients develop a transient 

state of disease that presents itself with the same symptoms as those perceived in mice with 

spontaneous arthritis. TNF-α and IL-6 were detected in the synovial fluid of K/BxN mice, 

although the former was only present at a messenger state rather than a protein one. 

However, later studies, performed by inducing the disease through K/BxN serum transfer, 

have found that IL-6 has no role in the development of arthritis in this model
187

 and that 

TNF-α, although important, is not essential
187,188

, since IL-6
-/-

, TNF-α
-/-

, TNFR1
-/-

, TNFR2
-

/-
 and TNFR1/TNFR2-double deficient mice developed arthritis similarly to control ones. 

IL-1, on the other hand, has proved crucial for the development of K/BxN-induced 

arthritis. Mice KO for IL-1R did not develop arthritis
187

. They presented with no clinical 

signs of disease, no histological manifestations of joint inflammation and absence of 

cartilage destruction and bone erosion
187

. FcγRII/III
189

, mast cells
190

 and neutrophils
191

 

have also been reported as central for this model of serum transferred arthritis. 

The features presented by K/BxN mice point towards a diagnostics of RA. 

However, some important hallmarks of the disease in humans differ from the mouse 

model, notably the presence of rheumatoid factor
181

. So, although this is a valid model for 

the study of arthritis and its mediators, caution should be exerted when extrapolating the 

results onto humans, such as with any disease model. 

12.1.3.1.   The relevance of the IL-1 pathway  

The purpose of this work is to evaluate the role of ERAP1 in arthritis development. 

As previously mentioned, this enzyme has been associated with the shedding of IL-6R, 

TNFRI and IL-1RII. However, due to the fact that the K/BxN model is independent of IL-6 

and only partially dependent of TNF-α, the results of this work will more likely be 

explained by the cleavage of IL-1RII.  

There are three types of IL-1 receptors – IL-1RI, IL-1RII and IL-1RAcP (accessory 

protein) or IL-1RIII – that can exist either on the soluble or membrane-bound forms. In 

order for a signal to be transduced through the IL-1 pathway, either IL-1α or IL-1β is 

required to bind to the membrane-bound form of IL-1RI. The IL-1RAcP is then recruited 

to dimerize with IL-1R1 and a cascade of events if triggered, activating the NF-κB and AP-
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1 pathways. IL-1Ra, an antagonist for the IL-1 receptors, can also bind to IL-1RI, 

preventing the recruitment of IL-1RAcP and, therefore, the signal transduction
192

. Cleaving 

of either one of these receptors into their soluble form will also affect transduction, since 

they lack the intracellular domain essential for response initiation. Type II receptor for IL-1 

acts as a decoy receptor, since it has affinity for IL-1 but lacks the referred intracellular 

domain. Thus, binding to this receptor results in an absence of response. The presence of 

IL-1Ra, IL-1RII and the soluble forms of the receptors is anything but purposeless, since it 

helps regulate inflammation, preventing an exaggerated response. In fact, signaling of the 

IL-1 pathway might naturally activate genes that will up-regulate these molecules, through 

a negative feedback mechanism
193,194

.  IL-1α  has a relatively similar affinity to all of these 

receptors, however, IL-1β  and IL-1Ra bind preferentially and almost irreversibly to IL-

1RII and IL-1RI, respectively
195

. So, on a normal situation, basal levels of IL-1β will 

almost completely not bind to the type I receptor, not only because this molecule has a 

much higher affinity towards the decoy receptor but also because IL-1RI is practically 

saturated with IL-1 antagonist, all of this thus preventing a signaling cascade (Figure 4). 

When it comes to the soluble forms of these receptors, IL-1β has an even lower affinity 

towards soluble IL-1RI (sIL-1RI) than it does for the membrane-bound one (mIL-1RI). 

Similarly, this cytokine binds with lower affinity for sIL-1RII than for mIL-1RII, although 

it is still greater comparatively with type I receptor. The difference between soluble and 

membrane-bound forms of IL-1RII lies with the recruitment of the accessory protein. mIL-

1RII, unlike mIL-1RI, does not require dimerization with mIL-1RAcP for effective IL-1α/β 

binding. sIL-1RII, on the other hand, does require the soluble form of the accessory protein 

for adequate cytokines’ sequestration, much like sIL-1RI
195

. Despite not necessarily 

dependent of IL-1RAcP recruiting, IL-1RII can engage this receptor, thus seizing not only 

IL-1β but the accessory receptor as well, both essential for IL-1 signalling. Accordingly, 

the presence of the decoy receptor in its membrane-bound form plays an important role in 

the control of the inflammatory response. Thus, IL-1RII shedding by ERAP1 can be 

predicted to have an impact on arthritis development. However, due to the many players 

involved, the direction of this effect cannot be anticipated beforehand. 
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Figure 4: IL-1 signaling pathway. In order for there to be an IL-1 signal, IL-1α/β (IL-1α not depicted) has to bind to IL-
1RI, which recruits IL-1RAcP, forming a dimer. Both these receptors possess an intracellular domain that allows signal 
initiation. IL-1RII, on the other hand, does not have a Toll-Interleukin receptor (TIR) domain and thus cannot initiate any 
signalling. When bound to this receptor, IL-1α/β is captured and cannot bind to IL-1RI. Furthermore, there is a 

recruitment of IL-1AcP, crucial for IL-1 signalling, that also stays trapped by binding with IL-1RII. This molecule is 
therefore a decoy receptor, same as the soluble forms of both IL-1RI and IL-1RII. Aside from decoy receptors, the 
extracellular medium also contains IL-1Ra, an antagonist of IL-1 that can bind the same molecules as IL-1α/β, although 
with different affinities, but prevents the recruitment of the accessory protein, and thus, the signal transduction. It has a  
particularly high affinity for IL-1RI. IL-1β affinities towards each of the receptors are shown, as the amount of cytokine 
necessary for half-maximum (50%) receptor saturation 153.   

 

12.2. Molecular biology 

 The study of biological processes, including diseases, very often requires the use of 

basic molecular biology techniques. In this work, produced and/or released molecules were 

studied both in their messenger and mediator forms, respectively through real-time 

polymerase chain reaction (RT-PCR) and western blot (WB) and enzyme-linked 

immunosorbent assay (ELISA). Due to the characteristics of the K/BxN model, it is also 

important to study joint features for an accurate disease classification. This can easily be 

achieved through histological staining of tissue sections. In this section, these techniques 

will be briefly explained.  
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12.2.1. Real Time PCR 

 By targeting a specific DNA region with primers and incubating these molecules 

with a DNA polymerase, genetic amplification is possible, in a reaction termed PCR. 

When to the reaction mixture are added either fluorescent dyes that intercalate with the 

DNA or DNA probes labelled with a fluorophore, the product amplification can be 

followed in real time. With information regarding the number of cycles used and the 

concentration of a DNA standard, absolute quantification of the targeted gene can be 

achieved. Alternatively, relative quantification is obtained by using internal reference 

genes. 

12.2.2. Western Blot and ELISA 

 When an experience requires the detection of a particular protein, incubating the 

sample with specific antibodies coupled with either fluorescent or luminescent molecules 

is an easy and affordable approach. If the antibody has a high specificity with little cross-

reaction or if the targeted molecule exists in high amounts in the sample, the substrate 

medium can be incubated as a whole, using either slot-blot or ELISA. The latter is a very 

specific method and it requires less antibody than a regular membrane incubation. 

However, when antibody specificity or protein concentration are low, or when different 

proteins or different forms of the same protein are the target, it is necessary to perform a 

separation step prior to antibody incubation. In a western blot, the samples are first 

separated by size with a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) and only after incubated with an antibody directed towards the targeted molecule. 

Because the polyacrylamide gel is a sensitive material that is hard to manoeuvre, the 

proteins are transferred into a membrane that has a high protein affinity. The two most 

common membrane materials are nitrocellulose and polyvinylidene difluoride (PVDF) and 

although both have approximately equal binding properties for different protein types, 

PVDF membranes are preferable when working with hydrophobic proteins. They are also 

more resistant than nitrocellulose though being costlier.   

12.2.3. Histology 

 Histology is the microscopic study of tissues and cells. It can be aided by the use of 

colorants that stain specific structures. Nonetheless, it is a technique that requires previous 
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training to be able to identify the tissue or cell morphology and their characteristics. If the 

sample is in a solution, a simple montage between a microscope slide and a cover slip is 

sufficient, however, when working with tissues it is necessary to either dissolve them into a 

cell suspension or section them in thin layers, using paraffin impregnation to allow for the 

cuts. 
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II. Materials and Methods 

1. PPARγ studies 

1.1. Cell Culture 

Bone marrow-derived mast cells (BMMC) and macrophages (BMM) were obtained 

from KO mice by Doctor David Moulin, according to the following protocols. BMMC
196

 

and BMM
176

 were generated from bone marrow of 8-week-old C57BL/6 male mice as 

previously described. Briefly, mice were sacrificed and intact femurs and tibias were 

removed. Sterile endotoxin-free RPMI-1640 medium (Gibco
®
, Life Technologies

TM
) was 

repeatedly flushed through the bone shaft using a syringe with a 25-G needle. The 

suspension of bone marrow cells was centrifuged at 250 g for 5 min. Red blood cells were 

lysed on ice by incubation with Tris 20 mM and NH4Cl 150 mM during 5 minutes. 

Precursor BMMC were washed and cultured at a concentration of 0.5 to 1 × 10
6
 cells/mL 

in RPMI-1640 supplemented with 10% fetal calf serum (Dominique Dutscher), 100 U/mL 

penicillin (Gibco
®
, Life Technologies

TM
), 100 μg/mL streptomycin (Gibco

®
, Life 

Technologies
TM

), 2 mM L-glutamine (Gibco
®
, Life Technologies

TM
) and 1 mM sodium 

pyruvate (Gibco
®
, Life Technologies

TM
), at 37 °C in a humidified atmosphere with 5% 

carbon dioxide. A combination of stem cell factor (SCF) (PeproTech
®
) 50 ng/mL and 

interleukin-3 (IL-3) (PeproTech
®
) 5 ng/ml was added weekly to the culture medium for 

two weeks and 5 ng/mL of IL-3 alone was supplemented weekly during the following 

weeks. Non-adherent cells were transferred to fresh medium at least once a week. Cells 

were used after 5–7 weeks of culture, when a mast cell purity of >95% was achieved, as 

assessed by toluidine blue staining and fluorescence-activated cell sorting (FACS) analysis 

of c-Kit expression. For BMM differentiation, cells were cultured at 2 x 10
6
 cells/mL in 

Dulbecco's Modified Eagle Medium (DMEM) (Gibco
®
, Life Technologies

TM
), 

supplemented with 10% fetal calf serum (Dominique Dutscher), 1% 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) (Gibco
®
, Life Technologies

TM
), 100 U/mL 

penicillin (Gibco
®
, Life Technologies

TM
) and 100 μg/mL streptomycin (Gibco

®
, Life 

Technologies
TM

). Fresh medium was added at least once a week. A temperature of 37 °C 

and a humidified atmosphere with 5 % carbon dioxide were also used for incubation and 

cells were used at first passage. 
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1.2. Toluidine Blue Staining 

In order to examine the heparin- and histamine-filled granules present in 

mastocytes, and thus evaluate the cells’ quality, these were smeared into a microscope 

slide through cytocentrifugation at 300 g for 10 minutes and then immersed into a solution 

of toluidine blue in methanol for about 5 minutes. The sample was then dehydrated by 

passing it from ethanol 95º to absolute ethanol and, lastly, toluene, approximately 1 minute 

each.  

1.3. Effector IL-6 

Cells were seeded in a 96-well plate at 100 000 cells/well in 200 µL of complete 

culture medium. At t = –12h, cells were treated with 0,1% DMSO or Rosi 10 µmol/L. 

Then, at t = 0h, 0,1 µg/mL LPS or 10 ng/mL IL-33 were added for 24 hours. Cells were 

centrifuged at 250 g for 10 minutes and the supernatants collected. ELISA IL-6 

(Quantikine
®

, R&D Systems
®
) was performed on the samples according to the 

manufacturer’s instructions. The results were normalized to the amounts of either DNA 

(see Hoechst Assay) or protein (see Protein Dosage). For BMMC, six replicates per 

condition were made and the experience was performed twice, whereas for macrophages 

three replicates were used for all conditions and the experience was done once.  

1.4. Hoechst Assay 

The Hoechst assay was performed as previously described
197

. Cell pellets were 

diluted in a solution of Tris 10 mM, EDTA 1mM and NaCl 0,1M (Hoechst Buffer) and 

lysed by freeze/thaw cycles. 0,1 µg/mL of 2'-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-

2,5'-bi-1H-benzimidazole trihydrochloride trihydrate (Hoechst) (Thermo Scientific
®
), 

diluted in Hoechst Buffer, was added to the samples and standards and the fluorescence 

immediately read at 456 nm, with an excitation wavelength of 348 nm. 

1.5. Protein Dosage 

Protein was dosed by the Smith assay. Briefly, bicinchoninic acid and copper sulfate 

50:1 were added to samples and standards. The reaction mixture was left incubating for 

approximately 45 minutes at 37 ºC, after which the absorbance was read at 562 nm. 
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2. ERAP1 studies 

2.1. Mice colonies 

All mice were treated according to the “Guide for the Care and Use of Laboratory 

Animals”, published by the United States National Institutes of Health (NIH publication 

number 85-23, revised in 1996) and according to the French legislation (Décret n° 2013-

118 du 1
er

 février 2013 relatif à la protection des animaux utilisés à des fins scientifiques). 

Mice were bought from The Jackson Laboratory
®
 and placed in reproductive conditions 

whenever necessary in order to maintain the colony. The animals were kept at temp of 20 ± 

2 ºC, with a relative humidity of 50 ± 10 %, in a 12:12h light-dark cycle (light from 7 a.m. 

to 7 p.m.) and fed ad libitum with a standard SAFE diet (Scientific Animals Food & 

Engineering, France). The cages were changed once a week for hygiene purposes.  

2.2. Genotyping  

Mice were identified and 0,3 cm of each tail was collected and frozen in sterile 

RNase/DNase free eppendorfs at -80ºC until processing. DNA was extracted, through a 

hotshot method, as previously described
198

. Briefly, 75 µL of a solution containing 25 mM 

of sodium hydroxide (NaOH) and 0,2 mM of ethylenediaminetetraacetic acid (EDTA) was 

added to each tail and incubated at 98ºC for about 1,5 hours. The solution was then 

neutralized with 75 µL of 40 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-

HCL), centrifuged for 1 minute at 10 000 g and diluted ten times, due to the presence of 

EDTA, before being separated in a 2 % agarose gel.  

2.3. K/BxN arthritis induction 

Eleven wild-type C57BL/6 (six females, five males) and ten (seven females, three 

males) ERAP1
-/-

 mice, all with more than 40 weeks of age, were injected intraperitoneally 

with 200 µL of serum from K/BxN mice (kindly provided by Doctor Gaby Palma, Cem 

Gabay group, Medical University of Geneva), on days 0 and 2 of the experience. 

Throughout days 2 to 6 and 0 to 6, respectively, the clinical scoring of the mice and their 

paw’s oedema were evaluated daily. The clinical scoring of each paw was conducted by 

Engineer Meriem Koufany, using a 0-3 grading scale based on swelling and the back 

limb’s volume variations were assessed with a digital plethysmometer (LE7500, Bioseb). 

The mice’s weight was also measured on days 0 and 6. On the last day of the experience 
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(day 6), mice were sacrificed by exsanguination, having previously been anesthetised with 

a ketamine (65 mg/kg), xylazine (13 mg/kg) and acepromazine (1,5 mg/kg) cocktail, also 

via intraperitoneal injection. The blood, four paws and skeletons were collected for further 

experiences.  

2.4. Skeleton staining 

After gathering the blood and paws, skeletons were cleaned, as much as possible, of skin, 

organs and muscle tissue, keeping the heart and/or kidneys to facilitate staining 

assessment. They were then kept in 95% ethanol until the beginning of the staining 

procedure. 0,03 % m/V of alcian blue, diluted in 76 % ethanol and 20 % acetic acid and 

250 mm filtered, was added to each skeleton until cartilage colouring was evident 

(approximately 35 hours). Next, 95 % ethanol was added again for a minimum of 6 hours, 

followed by potassium hydroxide (KOH) 2 % until the remaining tissue was substantially 

but not completely digested (approximately 18 hours). Skeletons were then exposed to 

3x10
-4

 % of red alizarin in 1 % KOH under mild shaking until bone staining was evident. 

Excess dye and tissue were removed with 2 % KOH while agitating. For skeleton 

preservation, these were passed through mixtures of ethanol/glycerol, starting with a 

glycerol concentration of 50 % until it progressively reached 100 %.  

2.5. mRNA extraction 

Back left paws were roughly cut with a scalpel and grinded in TRIzol
®
 Reagent 

(QIAGEN
®
, Life Technologies

TM
) with an ultra-turrax

®
. The mRNA extraction was 

performed according with the manufacturer’s instructions. Summarily, clarification was 

achieved with supernatant collection after centrifugation at 5000 xg for 10 minutes at 4 ºC. 

Samples were incubated with chloroform and centrifuged 15 minutes at 12 000 xg and 4 ºC 

to allow for phase separation. RNA was precipitated by adding 100 % isopropanol to the 

aqueous phase during 10 minutes. After a centrifugation at 12 000 xg and 4 ºC during 10 

minutes, the supernatant was discarded and the pellet washed with 75 % ethanol. RNA was 

finally diluted in RNase free water, quantified and reverse transcripted using M-MLV 

(Invitrogen
TM

). The protocol was carried according to the manufacturer. RNA was ran 

through a 1 % agarose gel to verify its purity. 
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2.6. Real-Time PCR 

cDNA was amplified and relatively quantified, using retinitis pigmentosa-29 (RP-

29) signal as a reference. The primers follow. COX-2 forward (fwd): 5'-TAC-AAG-CAG-

TGG-CAA-AGG-CC-3'; COX-2 reverse (rev):5'-CAG-TAT-TGA-GGA-GAA-CAG-

ATG-GG-3'; Melting temperature (Tm) = 60 °C . IL-6 fwd: 5'-CCG-GAG-AGG-AGA-

CTT-CAC-AG-3'; IL-6 rev: 5'-ACA-GTG-CAT-CAT-CGC-TGT-TC-3'; Tm =60°C. TNFα 

fwd: 5'-AGC-CCT-GGT-ATG-AGC-CCA-TTG-A-3'; TNFα rev: 5'-CCG-GAC-TCC-

GTG-ATG-TCT-AAG-3'; Tm=59°C. RP-29 fwd:5'-GGA-GTC-ACC-CAC-GGA-AGT-T-

3'; RP-29 rev: 5'-GCC-TAT-GTC-CTT-CGC-GTA-CT-3'; Tm=60°C. 

2.7. Serum ELISA 

Soluble TNFRI (Quantikine
®
, R&D Systems

®
) ELISA was performed according to 

the manufacturer’s instructions.  

2.8. Histology 

Right back and front paws were kept in ethanol 98 % for histological analysis. The 

paws were then rinsed three times with distilled water for approximately ten minutes each 

time and decalcification was achieved overnight with Q Path
TM

 Decalcifier DC3 

(LABOnord). Following decalcification, samples were again washed with water and 

fixated with 10 % neutral buffered formalin until further used (minimum of 24 hours). 

These were then dehydrated in ascending grades of alcohol and impregnated in paraffin. 5 

µm sagittal cuts were stained with safranin O and fast green FCF.  

3. Graphics and statistical analysis 

All graphics and statistical analysis (t-tests and ANOVA) were performed using 

GraphPad Prism
®
 5. Normality distribution was assessed and a confidence interval of 95 % 

was used every time.  
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III. Results and discussion 

1. PPARγ 

 After an inflammatory stimulus, the expression and release of IL-6 from both bone 

marrow-derived mast cells (BMMC) and mastocytes (BMM) were measured. For both cell 

types, PPARγ was shown to have an effect on IL-6 production, although the results were 

opposite. BMMC that were knock-out for the receptor sported a significant decrease on IL-

6 release, after stimulation with LPS or IL-33, when compared to wild-type (WT) cells 

(Figure 6 and Figure 7). The same tendency was observed with messenger IL-6 (Figure 5), 

although these results proved not to be statistically relevant, most likely due to a lack of 

replicates. 
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Figure 5: IL-6 mRNA in mast cells. Mice bone marrow-derived mast cells (BMMC) were treated with either LPS (0,1 
µg/mL) or IL-33  (10 ng/mL) during 12 hours, the RNA extracted and analysed through real-time PCR (RT-PCR). No 
significant differences were detected (p > 0,05). N = 3. 
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Figure 6: IL-6 in mast cells’ supernatants treated with LPS. Mice bone marrow-derived mast cells (BMMC) were 

treated with LPS (0,1 µg/mL) during 24 hours and the supernatants analysed through ELISA. Non-treated samples 
(control) did not show any significant differences between groups (p > 0,05). LPS treatment, on the other hand, allowed 
for the significant (p < 0,05) separation of PPARγ-/- cells from both wild-type (WT) and heterozygote (Het) ones. WT and 
Het samples treated with LPS were also not statistically relevant (p > 0,05). N = 6 for control; N = 3 for LPS.    

 

 In order to further study the effect of PPARγ in BMMC, cells were treated with an 

agonist for the receptor prior to the inflammatory stimulus. Rosiglitazone (ROSI) treatment 

significantly reduced IL-6 release from LPS-stimulated PPARγ
-/-

 cells but not WT ones 

(Figure 7). These results point towards a PPARγ-independent effect of the agonist, a 

phenomenon that has previously been reported by co-treating cells with a PPARγ 

antagonist
199,200

. Nonetheless, the use of antagonists presents the same limitations as 

working with agonists: secondary reactions are always present and the molecule’s effect 

cannot be attributed to the intended target with certainty. By using KO cells, this work has 

fully targeted PPARγ and the obtained results are thus more reliable. 

* 
* 
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Figure 7: IL-6 in mast cells’ supernatants treated with LPS, ROSI and IL-33. Mice bone marrow-derived mast cells 
(BMMC) were treated with DMSO (0,1 %) or rosiglitazone (ROSI) (10 µmol/L). After 12h, either LPS (0,1 µg/mL) or 
IL-33  (10 ng/mL) were added for stimulation during 24 hours. The supernatants and the cells were collected for ELISA 
and Hoechst analysis, respectively. IL-6 values were normalized to DNA concentration. The results from samples treated 
with LPS + DMSO and ROSI + LPS are statistically different from control, DMSO and ROSI groups (p < 0,05). Between 
these two groups (LPS + DMSO vs ROSI + LPS), only PPARγ-/- samples showed a significant difference. Treatment with 
IL-33 proved to be statistically relevant in comparison with all other treatments and WT cells reacted significantly more 
than PPARγ-/- ones. N = 6. 

  

As for BMM, LPS stimulation originated a significantly higher release of IL-6 in 

PPARγ
-/-

 cells compared to WT ones (Figure 8).  
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Figure 8: IL-6 in macrophages’ supernatants. Mice bone marrow-derived macrophages (BMM) were treated with LPS 
(0,1 µg/mL) during 24h and the supernatants analysed through ELISA. All values were normalized to protein 
concentration. PPARγ-/- macrophages released significantly (p < 0,05) more IL-6 than wild-type (WT) ones. N = 3. 

* 

* 

* 
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 Despite the contradictory results, PPARγ effects on both BMMC
201

 and BMM
139,202

 

are supported by previous literature. It could be that, in mast cells, PPARγ functions by 

binding to PPRE and activating genes’ expression, whereas in macrophages it inhibits 

transcription through interference with inflammatory pathways (see Introduction: PPARγ). 

In fact, it has been shown that the anti-inflammatory action of PPARγ in macrophages is 

due to interaction with NF-κB
202

. The environmental conditions that prompt different 

actions in different cells types is yet unknown.  

2. ERAP1 

2.1. Genotyping 

Due to the advanced age of ERAP1-/- mice, direct reproduction was not possible 

and so these were crossed with wild-type (WT) mice and re-crossed amongst each other to 

obtain homozygote animals KO for the protein. A genotyping result of WT, heterozygote 

(Het) and ERAP1
-/-

 mice is shown as an example (Figure 9). Mutant mice have a 216-base 

pair (bp) gene, whereas WT animals bear the 361 bp allele and Het carry both.  

 

Figure 9: ERAP1 genotyping. Wild-type (WT) and ERAP1-/- mice have ERAP1 alleles at 361 bp and 216 bp, 
respectively (A), whereas heterozygote (HET) animals carry both alleles (B). 
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2.2. K/BxN arthritis  

Differences between WT and ERAP1
-/-

 mice, for both oedema (Graph 1) and 

clinical score (Graph 2), were not significant in the first three days (1-3) and became 

statistically relevant from day 4 until the end of the experiment (day 6). For WT mice, the 

time evolution of oedema is significant, whereas for ERAP1
-/-

 it is not, suggesting that the 

latter did not develop arthritis during the six days of the experiment. This is further 

sustained by the significantly lower number of paws affected in ERAP1
-/-

 mice, comparing 

with WT ones (Graph 3). The weight loss observations (Graph 4) accompany these results, 

being that WT mice lost significantly more weight than ERAP1
-/-

 ones, consistent with the 

development of arthritis. The observed differences in arthritis development between 

females and males have proven not to be relevant. Likewise, arthritic development was 

random throughout the four paws. 

 

 

 

Figure 10: Paw appearance. Mice were injected intraperitoneally with 200 µL of K/BxN serum on days 0 and 2. (A) 
Wild-type and (B) ERAP1-/- mice at the day of the sacrifice (day 6).  

 

A 

B 
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Graph 1: Paw oedema during the six days of the K/BxN serum transfer experience. Differences between wild-type 
(WT) and ERAP1-/- mice are not significant for days 1 to 3 and become so (p < 0,05) from day 4 to day 6. Time evolution 
is only significant for WT mice. No statistically relevant differences were noticed between male and female mice for both 
genetic backgrounds.  N (WT) = 11; N (ERAP1-/-) = 10.  
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Graph 2: Clinical score. Clinical scoring was made based on paw oedema, using a 0 to 3 scale. Differences between 
wild-type (WT) and ERAP1-/- mice are significant (p < 0,05) for days 4 to 6. Differences between paws are not 
significant. N (WT) = 11; N (ERAP1-/-) = 10. 

* 
* 
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Graph 3: Number of paws affected per mouse. Based on the clinical scoring, wild-type (WT) mice had significantly (p 
< 0,05) more paws affected than ERAP1-/- during the six days of the experiment. N (WT) = 11; N (ERAP1-/-) = 10. 
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Graph 4: Weight loss. Wild-type (WT) mice lost significantly (p < 0,05) more weight than ERAP1-/- during the six days 
of the experiment. N (WT) = 11; N (ERAP1-/-) = 10. 

 

 Staining of the skeletons for cartilage and bone did not show any relevant 

differences between WT and ERAP1
-/-

 animals (Figure 11), as expected since, in this 

model, arthritis is localised to the distal joints. However, inflammation was found in all 

examined mice from both groups, which is very likely due to their advanced age.  

 

* 
* 

* 

* 
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Figure 11: Skeleton inflammation.  Both wild-type (WT) and ERAP1-/- mice presented with inflammation in the spine 
(A and B) and knees (C to E), without any significant difference between the two. A tail end is shown as a healthy joint 
(F). WT: A, C, E, F; ERAP1-/-: B,D. N (WT) = 4; N (ERAP1-/-) = 2. 

 

 

A B 

C D 

E F 



 53 

 In an ERAP1-deficient mouse, it was possible to observe the fusion of the vertebrae 

in the end of the spine (Figure 12), consistent with AS. A previous study aimed at 

examining joint fusion in untreated ERAP1
-/-

 mice was not able to see this feature of the 

disease (Duval, F.; Moulin, D.; unpublished results), most likely because young mice were 

used instead of old ones. Despite the fact that, in this work, mice were treated in order to 

develop arthritis, it is unlikely that K/BxN treatment was responsible for spinal fusion, 

since this is a typical AS feature and the serum-transfer model originates symptoms that 

most resemble RA.  

 

 

 

 

 

 

 

 

Figure 12: Vertebrae fusion observed in an ERAP1-/- mouse. 

 

 Despite the non-specificity of K/BxN serum arthritis induction in the remaining 

skeleton, histology of the back paws showed a more severe state of disease in WT animals, 

as demonstrated by the disorganization of the cartilage and loss of bone integrity (Figure 

13).  
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A B 

Figure 13: Paw histology. Back paws of WT (A) and  ERAP1-/- (B) mice were cut sagittally and stained with safranin-O 
(red) and fast green FCF (blue), respectively showing cartilage and bone. N = 3. 

 

Since COX-2, TNF-α and IL-6 are some of the cytokines associated with the 

K/BxN model, their presence in a messenger state was measured in the paws (Figure 5). 

There seems to be a tendency pointing to higher cytokines’ expression in WT mice, which 

is consistent with the results shown this far, however the differences were not statistically 

significant for any of the cytokines, probably due to a small number of replicates. More 

samples would intuitively accentuate the differences between the two groups.  
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Graph 5: Cytokines’ mRNA over-expression. Real Time-PCR of COX-2, TNF-α and IL-6 in paws from wild-type 
(WT) and ERAP1-/- mice injected with K/BxN serum. p > 0,05 for all cytokines. N = 3. 
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Therefore, mice KO for ERAP1 appeared resistant to the development of K/BxN-

induced arthritis, during the six days of the experience. As a reminder, ERAP1 is 

responsible for the shedding of IL-6R, IL-1RII and TNFRI, respectively in a direct and 

indirect manner. It was previously mentioned that mice KO for IL-1RI do not develop any 

signs of arthritis, whereas TNF-α and IL-6 did not seem to have an important role in this 

model of arthritis (see Introduction: The K/BxN mouse model). As demonstrated by our 

experience, mIL-1RII might be crucial for IL-1 signalling – or lack thereof. By cleaving 

IL-1RII into its soluble form, IL-1β will preferentially bind to sIL-1RII or mIL-1RI, both 

with similar affinities towards the cytokine and both requiring the accessory protein for 

linkage stabilization. Regardless the fact that IL-1β affinity towards membrane type I 

receptor is close to that for sIL-1RII, the latter is still more likely to interact with the 

cytokine, if affinity is the only factor being considered. Hence, it is purposed that both the 

shedding of IL-1RII and the lack of sIL-1RAcP are responsible for the large difference in 

arthritic symptoms observed between WT and ERAP1
-/-

 mice. If the presence of the 

accessory protein is mainly limited to the membrane-bound form, the interaction between 

IL-1β and mIL-1RI will be more favourable in detriment of that with sIL-1RI, therefore 

allowing IL-1 signalling. In fact, treatment with sIL-1RAcP improves the outcome of mice 

with collagen-induced arthritis (CIA)
203

. Correspondingly, IL-1Ra
204

 and human anti-IL-

1β
205-207

 have also shown effectiveness in clinical trials of different forms of arthritis. So, 

for this particular model, the lack of ERAP1 is protective against the development of 

arthritis and drugs that target the enzyme’s activity may qualify as a possible treatment. 

Campbell et al.
208

 have also found a relationship between ERAP1 over-expression and 

ankylosing spondylitis, in a human study. Nonetheless, for years now that patients treated 

with TNFα blockers show improvements
209,210

, which suggests that, in humans, arthritis is 

TNFα-dependent, raising more awareness to the fact that the murine K/BxN model does 

not fully overlap with human arthritis.  

Another explanation for these results, complementary or not, is the increased 

macrophage activity induced by ERAP1. As mentioned, an inflammatory stimulus may 

cause the enzyme’s over-expression and subsequent release into the extracellular medium 

where it activates macrophages. The elevated activity of these immune cells would thus be 

the factor responsible for an increased inflammation in ERAP1-containing mice. 
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3. PPARγ vs. ERAP1 vs. macrophages 

The results presented in this work show that both PPARγ and ERAP1 might have 

an effect on macrophage function. These cells have, in turn, been associated with arthritis 

on their own, bring that macrophage depletion of arthritic mice reduces the severity of the 

disease
211

. So, it seems that macrophages might be a final player in arthritic development, 

with PPARγ and ERAP1 being capable of controlling their function. Ergo, a combination 

of molecules that target both of these proteins, with an activating effect on PPARγ and a 

silencing action on ERAP1, might be a promising arthritis treatment.  
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IV. Conclusion 

PPARγ can have either a pro- or an anti-inflammatory effect, depending on the cell 

type, respectively BMMC or BMM. When exposed to LPS or IL-33, PPARγ
-/-

 BMMC 

released significantly less effector IL-6 than cells from WT mice. On the contrary, LPS-

stimulated macrophages need the receptor for inflammation control, possibly through 

interaction with NF-κB. The PPARγ agonist rosiglitazone seems to have an effect in IL-6 

release from BMMC. However, it is independent from the receptor since KO cells also 

react to the agonist.  

 In the K/BxN arthritis transfer model, the presence of ERAP1 is crucial for the 

development of the disease. ERAP1
-/-

 mice are resistant to arthritis development, as shown 

by the absence of paw swelling and weight loss, lower clinical scores and cytokines’ 

expression and less severe histological features, comparing with WT mice. ERAP1’s role 

in the disease is possibly due to IL-1RII shedding and/or macrophage activation. Dual 

treatment with PPARγ agonists and ERAP1 blockers could be advantageous for arthritis 

management. 

 Finally, ERAP1
-/-

 mice might be a spontaneous model of AS if these are heavily 

aged, around 40-weeks-old.  
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V. Future work 

Future work should continue to focus on the unveiling of mechanisms responsible 

for arthritis development, since research on this topic is not yet advanced enough to 

attempt new treatments. The K/BxN arthritis induction should be performed a second time, 

using younger mice and non-arthritic controls (i.e. non-injected WT and ERAP1
-/-

 

animals). For WT, ERAP1 could be dosed in an affected tissue to evaluate if it is over-

expressed and if this could be a mechanism controlling macrophages’ activation. To assess 

the macrophages’ role in this model of arthritis, mice depleted of these cells can be 

exposed to the arthritogenic serum. If their part is confirmed, K/BxN-exposed mice can be 

treated with PPARγ agonists to verify if inflammation is indeed smaller. In a later stage, 

the therapeutic effects of combined PPARγ agonists and ERAP1 blockers can be 

appraised.  

Finally, ERAP1
-/-

 mice should be allowed to age naturally and their skeletons 

examined to determine whether this is a spontaneous model of AS. If so, various studies, 

namely disease progression with age, could be performed using this model.   
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