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Palavras-chave 
 
 

Queijo da Serra, tecnologia alta-pressão, microrganismos,  
L. innocua, oxidação lipídica 

Resumo 
 
 
 
 

O queijo Serra da Estrela é um queijo tradicional Português 
produzido a partir de leite de ovelha crú, sal e cardo (Cynara 
cardunculus, L.). Como outros queijos, particularmente os feitos 
a partir de leite crú, o Queijo Serra tem na sua composição 
vários microrganismos. 

Este trabalho teve como objetivo estudar o efeito da Alta-
Pressão (AP) no Queijo Serra da Estrela - Denominação de 
Origem Protegida (DOP), após processamento e durante o 
armazenamento (100 dias a 5 °C). Queijos com 45 dias de 
maturação foram tratados com 400, 500 e 600 MPa durante 10, 
5 e 3 minutos, respetivamente, a 4 °C. Amostras não 
pressurizadas foram utilizadas como controlo. 

Os resultados revelaram que os microrganismos benéficos 
para a maturação, bactérias lácticas, foram as menos afetadas 
pela AP, sendo reduzidas no máximo em ~ 0,50 log UFC/g 
(amostras tratadas a 600 MPa foram as mais afetadas). Os 
microrganismos totais aeróbios mesófilos foram reduzidos em 
~ 1,0 log UFC / g (amostras tratadas a 400 MPa foram as menos 
afetadas). No entanto, a contagem de Enterobacteriaceae 
mostrou ≥ 3,5 log reduções, valores que se mantiveram 
constantes durante o armazenamento; bolores e leveduras 
apresentaram reduções ≥ 3,6 logo após o processamento. As 
amostras inoculadas com L. innocua a 8,6 log UFC/g 
apresentaram reduções ≥ 4,8 log após tratamento a AP, mas 
passados 14 dias revelaram níveis abaixo do limite de deteção. 
Foram observadas pequenas alterações nos parâmetros físico-
químicos (pH e acidez titulável) entre o controlo e queijo 
tratado durante o armazenamento. Durante esse período, a 
oxidação lipídica foi mais intensa no queijo não processado. 

Os resultados obtidos permitem concluir que AP apresenta 
um bom potencial para tornar o Queijo Serra livre de 
microrganismos potencialmente patogénicos, sem alterações 
significativas nas características do queijo (azoto solúvel em 
água, atividade e conteúdo de água). 
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Abstract 
 
 
 
 

Serra da Estrela Cheese is a traditional Portuguese cheese 
manufactured from raw milk, salt and cardoon (Cynara 
cardunculus, L.). As other cheeses, particularly those made from 
raw milk, Serra Cheese has in its composition several 
microorganisms. 

This work aimed to study the effect of High Pressure 
Processing (HPP) on Serra da Estrela Cheese – Denominação de 
Origem Protegida (DOP) after pressure processing and during 
storage (100 days at 5 °C). Cheeses with 45 days of ripening 
were treated at 400, 500 and 600 MPa pressures during 10, 5 
and 3 minutes, respectively, at 4 °C. Non-processed samples 
were used as controls.  

The results revealed that microorganisms beneficial to 
cheese maturation (lactic acid bacteria; LAB) were the least 
affected by HPP, being reduced at maximum by ~ 0.50 Log 
CFU/g (samples treated at 600 MPa were the most affected). 
Total aerobic mesophilic microorganisms were reduced by ~ 
1.0 Log CFU/g (samples treated at 400 MPa were least 
affected). However, Enterobacteriaceae counts showed ≥ 3.5 log 
cycle reductions, remaining unchanged during the storage; 
yeasts and moulds counts exhibited ≥ 3.6 log cycle reductions 
after process. Samples inoculated with L. innocua at 8.6 Log 
CFU/g presented ≥ 4.8 log cycle reductions after HPP, but after 
14 days revealed levels below the detection limit. Small changes 
in physicochemical parameters (pH values and titratable 
acidity) were observed between control and treated cheese 
during storage. Throughout this period, lipid oxidation was 
more intense in non-processed cheese. 

The results obtained allow concluding that HPP has good 
potential to render Serra Cheese free of potential pathogenic 
microorganisms, with no significant changes in cheese 
characteristics (water soluble nitrogen, water activity and 
content). 
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I. INTRODUCTION 

 

The present work is structured into seven sections. After this previous 

introduction, the second section consists in a comprehensive literature review and 

state of the art in what concerns 1) cheese in general; 2) Serra cheese manufacture, 

composition, microbial profile (lactic acid bacteria, yeasts, Enterobacteriaceae, 

coliforms and Staphylococci) and biochemical changes already studied (proteolysis, 

lipolysis and flavour); 3) the microbial safety of Serra cheese; and 4) the currently 

used non-thermal high pressure technology in cheese manufacture and the 

corresponding effects on microbiology, quality and cheese characteristics during the 

ripening and storage. Then, in section III, the objectives of this study are described. In 

section IV, the material and methods used during this study are detailed. Section V 

consists in the results obtained and the respective discussion, correlating with the 

available literature. This section was divided into two parts: I) microbiological 

analysis and II) physicochemical analysis. Section VI features the global conclusions 

of the previous sections. Finally, some possibilities are given to future work to be 

done in this research area, in Serra cheese treated by high pressure. 
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II. LITERATURE REVIEW 

1 Cheese 
 

 “Cheese is obtained from curdled milk by removal of whey and by curd ripening in the 

presence of special microflora.” [1]  

 
    

Cheese is known as the oldest fermented food in the world. It is believed that it 

first appeared in Iraqi at about 8000 years ago, during the agricultural revolution. At 

that time, the only way to conserve food was salting it (meat and probably some fruits 

and vegetables) [1]. The first cheese was made accidentally, by bacterial 

contamination of milk. These bacteria grew in milk and produced acid in enough 

quantity that decreased the pH, which led to the isoelectric precipitation of caseins 

[2]. Therefore, the bacterial acidification was spontaneous. However, it is thought that 

the rennet probably resulted from the milk storage in dried calf stomachs. At that 

time, they were used as containers, long before clay pots were invented [3]. Today, 

the main types of cheese are curdled enzymatically. This process is complemented by 

microbiologic acidification.  

There are over than 400 different varieties of cheese known around the world. 

The characteristics of the cheese depend on the milk source (Table 1), the way of 

promoting coagulation (in some cheese starter culture is used) and the ripening 

conditions. Thus, cheeses with a large diversity in flavour, texture and appearance are 

created [4]. 

 

Table 1. General composition in fat, protein, lactose and ash content in sheep's, goat's 
and cow's milk. Adapted from [5, 6]. 

  Sheep Goat Cow 

Fat (%) 6.0 to 6.8 3.4 to 4.0 3.5 to 4.5 

Protein (%) 5.0 to 5.6 3.0 to 3.3 3.0 to 3.3 

Lactose (%) 4.8 to 5.2 4.4 to 4.6 4.6 to 4.8 

Ash (%) 0.90 to 1.0 0.65 to 0.80 0.65 to 0.80 

 

The general process of cheese making can be divided in three steps: coagulation, 

curd processing and ripening (Figure 1). The raw milk is usually pasteurized and 
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filtered before the coagulation. In some traditional cheese making, this step is not 

performed, and raw milk is directly used in the coagulation stage, without being 

submitted to any chemical or physical treatment. The milk coagulation occurs 

simultaneously in two different manners:  

 

1. Fermentation pathway  

This pathway occurs due to bacteria starters, which are fermentative 

microorganisms that promote lactic acid fermentation by metabolizing lactose to 

lactic acid. This step causes a decrease of the pH, which approaches to the isoelectric 

point (pH=4.6) promoting the precipitation of caseins. The negative charges of 

micelles and the surface potential responsible for the electrostatic repulsions are 

neutralized [2]. Lactic bacteria can be added (depending on the type of cheese 

desired) or can be provided by milk native flora [4]. In this case, it occurs when raw 

milk is used in traditional cheese making, without pasteurization or other milk 

treatment. Milk contains lactic bacteria and other microorganisms from 

contamination (during the milking, due to the use of contaminated instruments and 

tools) [2].  

  

2. Enzymatic pathway 

The enzymatic pathway occurs by adding chymosin (also called rennin), which is 

a protease enzyme. It hydrolyzes the peptide bound Phe105-Met106 of k-casein, 

forming two polypeptides: para-k-casein (1-105) that is insoluble in the presence of 

calcium, that forms the curd along with αS1- αS2- and β-casein; and glycomacropeptide 

(106-169) that is soluble and is eliminated when curd is pressed. [3, 6] There are two 

natural origins for this enzyme: animal and vegetal. When it is originated from 

ruminant stomachs it is called rennet. From a vegetable origin, it is obtained from the 

thistle flowers of Cynara cardunculus L., also known as cardoon [3].  

 

Thus, from this first step, curd and whey are obtained. The second step is the 

processing of curd. It is cut and stirred. The whey is drained and the curd is milled 

and salted. Part of this curd is sold like fresh cheese into pots (cottage and cream 
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cheese). The rest of the curd is poured into molds. It is pressed and the draining of 

additional whey takes place. 

The last step of cheese manufacture is ripening. This stage can be prolonged 

between a few days or even years. The ripening is promoted by the action of endogen 

enzymes or by specific microorganisms. In this case, they release their endogen 

enzyme by cell lysis, leading to proteolysis and lipolysis. During this step, cheese 

acquires their organoleptic characteristics [7].  

 

Figure 1. Cheese production scheme. 

 

1.1 Lactic fermentation 

 

Fermentation in milk products can involve not only lactic acid bacteria, but 

also other microorganisms (e. g., yeasts) [1]. Lactic acid bacteria (LAB) used in the 

development of fermented dairy products include Lactobacillus, Lactococcus, 

Leuconostoc, Streptococcus and Pediococcus genera [1, 4]. They have the ability to 

metabolize lactose to lactic acid and reduce the pH [4]. 

There are three fermentation processes: a) via glycolysis pathway, with almost 
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exclusive formation of lactic acid (homofermentation), b) via pentose phosphate 

pathway, with formation of lactic acid, acetic acid (ethanol), and possibly CO2 

(heterofermentation) or c) via both pathways, depending on the microorganisms 

involved [1]. L. lactis and L. bulgaricus are homofermentative microorganisms [1]. 

These bacteria have lactase activity and they are able to hydrolyze lactose to its 

monosaccharide units, glucose and galactose, prior to further metabolism [4]. 

Homofermentative lactic acid bacteria produce lactic acid from these 

monosaccharides, according to the reaction: 
 

Lactose + 4 ADP + 4 H3PO4 → 4 Lactic Acid + 4 ATP + 3H2O 

 

The lactic acid produced by LAB has a significant impact on the safety and 

quality of the cultured dairy products. The reduction in pH increases the shelf life and 

safety of the fermented dairy products through the inhibition of spoilage and 

pathogenic microorganisms. LAB may also contribute to the degradation of proteins 

and lipids through proteolytic and lipolytic reactions to further develop the unique 

texture and flavor characteristics [4].  
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2 Serra da Estrela Cheese  
 

 “Product obtained by slow draining of the curd, after coagulation of the raw pure ewe's 

milk, obtained from milking females of Bordaleira Serra da Estrela or 

 Churra Mondegueira breed and the use of thistle.” [8-10] 

 

The previous citation is the definition of the Serra da Estrela cheese or simply 

Serra Cheese. It is the product description from Serra da Estrela cheese book of 

specifications [8]. Those specifications were published in Diário da República in 2011 

[10].  

In 1994, Serra Cheese won the status for legal protection and it was 

designated DOP product, but it was only registered and protected in the Regulation of 

the European Commission in 1996 [11]. This way, the consumer is protected by the 

certification of the geographical origin of the cheese and by guarantee of its high 

quality [12]. Since 1986, there is a delimited geographic zone to produce Serra's 

cheese. It was described in the Decreto Regulamentar nº 31/86 in 19/08 [13]. The 

legally defined area of production covers some municipalities in the central-north of 

Portugal and it is shown in Figure 2. 

  

Figure 2. Delimited geographic zone of production of the Serra da Estrela cheese [8]. 
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Serra Cheese is probably the most popular and the most appreciated 

traditional Portuguese cheese [14], due to its unique flavour and texture [15]. This 

cheese is manufactured from October to May (the typical lactation period of Serra da 

Estrela ewes) using the unpasteurized milk immediately after collection [8, 15, 16]. 

There are two types of Serra Cheese: Serra da Estrela Cheese and Old Serra da 

Estrela Cheese. The main difference between them is the ripening time: the first, 

between 30 to 120 days and the second, more than 120 days [17]. Serra da Estrela 

Cheese is characterized also by texture - closed, moderately buttery, deformable 

when cutting, well connected, creamy and unctuous, with few or no eyes - and 

sensorially as smooth, clean and slightly acidic bouquet. [8]. 

In 2011, Serra Cheese won in the appetizer category, as one of seven wonders 

of Portuguese gastronomy [18], due to its unique organoleptic characteristics. All 

these characteristics result in high values +US$30/kg or €20/Kg. The production of 

Serra Cheese DOP has been around 120 thousand units per year (information send by 

email by Estrelacoop). However, these production amounts of certified cheese 

correspond only to 10% of total Serra Cheese produced. 

 

2.1 Bordaleira ewe’s milk composition 

The Bordaleira ewe’s milk is white and very nutritive. The taste is smooth and 

slightly sweet with a characteristic flavour. The last studies about its composition are 

from 1997 [19, 20]. Table 2 shows the chemical composition of raw milk of the 

Bordaleira ewe.  

 
 

Table 2. Chemical composition of milk of the Bordaleira Serra da Estrela ewe. Adapted from [14, 19, 20]. 

Water Fat Protein Lactose Ash Reference 

(%) 

80.0 ± 2.7 7.8 ± 1.6 6.0 ± 1.3 4.4 ± 0.5 NA [14] 

80.9 ± 1.6 7.4 ± 1.5 6.0 ± 0.9 4.6 ± 0.6 0.9 ± 0,1 [14] 

NA 8.6 ± 2.0 5.0 ± 0.7 NA NA [14] 

81.2 6.8 5.0 ± 0.7 5.1 0.9 [14] 

NA 
NA 

6.7 
7.0 

6.9 
7.1 

NA 
NA 

NA 
NA 

[19] 
[20] 

NA = Not available 

This milk is generally characterized by higher protein and fat on average of 6% 

and 8%, respectively, than other sheep’s, goat’s and cow’s milk (Table 1).  
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2.2 Serra Cheese manufacture  

The manufacturing techniques used and the environmental conditions lead to 

cheeses with different characteristics. Serra Cheese manufacture is resumed in Figure 

3 and detailed described in Appendix A. 

 

Figure 3. Serra Cheese manufacture. 

 
This Portuguese cheese is made with only three ingredients: milk from 

Bordaleira Serra da Estrela and/or Churra Mondegueira ewes, salt and Cynara 

cardunculus, L. [8]. It is manufactured from raw ewes’ milk, only filtered through a 

cloth (clean, fine and white) to remove impurities (like hair and dust) [8, 17]. 

Milk coagulation is promoted by the addition of an aqueous extract of thistle 
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flower, without any commercial starter culture [21]. In the traditional way, the dry 

cardoon flowers are macerated with salt and water; this paste is placed into a cloth 

with closed ends; it is submersed in the milk, agitated and squeezed [14]. After Serra 

cheese coagulation and pressing, the producers rub the top and bottom surfaces of 

the curd with salt - external salting - which contributes to the formation of the rind 

[8].  

The ripening process of Serra Cheese occurs in two controlled environmental 

chambers. The first is the dry chamber (enxugo), where lactic fermentation starts and 

simultaneously the reima occurs [8]. Reima is a white-reddish viscous smear, which is 

important to obtain a good cheese [14]. In this phase, cheese loses humidity and 

allows microbial growth favourable to maturation. The second chamber is the 

ripening chamber itself. The conditions of ripening process in the controlled 

environmental chambers are listed in Table 3. 

 

Table 3. Environment conditions of curding chambers in the first 15 to 20 days and between 20 to 45 days 
of maturation.  

  Phase Temperature (°C) Relative humidity (%) 

First 15 to 20 days Fermentation or reima 6 to 12 85 to 95 

20 to 45 days Maturation 6 to 14 90 to 95 
 

The ripening period depends on the type of cheese intended. Butter Serra 

Cheese ranges from 30 to 45 days [14], old Serra Cheese needs a minimal of 120 days. 

 

Serra da Estrela Cheese composition  

Table 4 presents the analytical indicators of Serra Cheese and Old Serra Cheese 

composition referred in the Serra Cheese specifications book (merely indicative 

values) [8]. 

 

Table 4. Analytical indicators (in dry residue) of Serra Cheese and Old Serra Cheese composition.  Adapted 
from [8]. 

  Protein (%) Fat (%) Moisture (%) Ash (%) 

Serra Cheese 26 to 33 45 to 60 61 to 69 5 to 6.5 

Old Serra Cheese 36 to 43 > 60 49 to 56 7 to 8 

 

There are some studies that reveal the chemical composition of Serra Cheese, 
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but they are not consistent, as shown in Table 5. This variation can be due to the 

absence of raw milk standardization, the lack of standardized procedures for the 

manufacture and the exact ripening time of the analysed cheese. 

 
Table 5. Chemical composition of Serra Cheese by several authors. Adapted from [14, 19, 22]. 

Moisture Fat Casein Sugar Ash Salt 

(%) 

48.8 28.8 19.9 NA1 4.4 2.6 
46.7 to 48.8 28.1 to 30.7 19.2 to 20.4 NA 4.1 to 4.3 2.2 to 2.6 
31.9 40.1 22.2 2.2 3.4 0.9 
39.4 ± 19.3 27.9 ± 14.4 NA 3.9  ± 4.0 5.8  ± 4.1 2.6 ± 2.9 
34.0 to 48.8 30.6 ± 7.3 NA NA NA 2.9 ± 1.2 
NA 23.0 to 40.0 1.08 to 23.0 NA NA NA 
45.41 ± 1.55 25.15 ± 2.33 22.10 ± 0.39  NA NA  3.05 ± 0.15 
48.43 ± 0.36 53.57 ± 1.99 NA NA NA 1.41 ± 0.10 

NA = Not available 
 

The chemical composition changes during the ripening process. The fat and 

protein content slightly decreases during ripening [23]. If cheese ripening occurs 

under controlled environmental conditions, it will have a slightly more constant 

moisture content than cheeses made in the farmhouses [14]. The final moisture 

content is affected by relative humidity conditions, because the ripening conditions 

control the rate of water evaporation. With lower relative humidity, the moisture 

content of cheeses is quickly lost, like what happens in May [20]. On the other hand, 

high relative humidity reduces evaporation of water. It results in cheese with high 

percentage of moisture contents, high water activity (aw), but it decreases the relative 

percentage of the remaining contents (like salt, fat, protein and residual lactose 

contents). High relative humidity, during the ripening process, increases the 

maturation index. This is observed by extensive proteolysis breakdown, because in 

high aw values, proteases and peptidases appear more active [20]. 

The salt content and the pH in the centre and in cheese surface change during 

the ripening (Figure 4). In the first 7 days, the salt content increases due to the 

diffusion of dry salt from the surface into the centre of the cheese, and also probably 

due to water evaporation from the surface of the cheese along with the decrease of 

the moisture content [23, 24]. After 35 days of ripening, the average of salt-in-

moisture concentration values is 4.8%, which is maintained during the ripening time 

[24]. 
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Figure 4. Salt, pH at the center (pH center) and at the surface (pH surface) of the Serra cheese, during 
ripening process. Adapted from [23]. 

 

The pH at the surface of fresh cheese manufactured with extracts of C. 

cardunculus, slightly decreases comparatively to raw milk: 6.45 and 6.69, respectively 

[14, 23]. The pH in the centre and in the surface, decreases considerably from the day 

of manufacture, reaching 5.23 at 21 day of ripening [14, 23]. This decrease is mainly 

due to the metabolic activity of lactic acid bacteria, which converts the lactose to 

lactic acid (reaching maximum numbers at 21 days of ripening) [15, 16]. The pH in 

the following weeks tends to stabilize. However, the pH in the centre of cheese is 

lower than at the surface, probably due to higher microbial activity inside, which 

leads to higher acidity [14]. Macedo et al. [24] revelled that cheese manufactured in 

November, February and May shows no statistically significant differences in pH 

values at 0, 7 and 21 day of ripening. However, at 35 days, cheese made in May 

presented a higher pH value (5.30) than cheese made in November and February 

(5.16 in both). This conclusion is in accordance with previous results of Macedo et al 

[15, 16] that showed lower numbers of lactic acid bacteria in spring. The composition 

and the pH of curd have a great impact in the texture, flavour and aroma of cheese 

[14]. 

The main minerals present in cheese are: sodium (Na), calcium (Ca), 

phosphorus (P) and potassium (K). Zinc (Zn), cooper (Cu) and magnesium (Mg) are 

only present in trace levels. During ripening, the concentrations of K, Ca, P, Mg and Zn 

decrease significantly, probably due to slower losses of these minerals via whey [25].  
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2.3 Microbial profile of Serra Cheese  

Serra Cheese is made with raw ewe’s milk and, since no starter is added during 

the production, the raw milk contains the endogenous fermentation starter and other 

microflora [26]. This native micro flora of milk and the adventitious flora have an 

important role during cheese ripening.  

 
 

. 
 

 

 

 

 

 

 

Figure 5. Average of microbial counts of Lactobacilli (A), Lactococci (B), Enterococci (C), yeasts (D), 
coliforms and Enterobacteriaceae (E) and Staphylococci (F) during ripening by several authors. Paper 1 
[16], Paper 2 [15], Paper 3 [27], Paper 4 [28] and Paper 5 [22]. 
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(C) Enterococci 
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There are 5 publications [15, 16, 22, 27, 28] published between 1993 and 

2003, about the microbial profile of the Serra Cheese during ripening. These 

publications reported great differences in the counts of some microbial groups, as 

shown in Figure 5. 

 

2.3.1  Lactic acid bacteria 
 

Lactic acid bacteria counts are the major part of total microflora during the 

ripening [28]. In general, in this microbial group are studied the Lactococci and 

Lactobacilli counts [16].  

According to Figure 5 (A), in the first week, the counts of Lactobacilli increased 

103-fold and in the second week, 10-fold more. These values remained for one week, 

afterwards Lactobacilli slightly decreased, but are still present with 106 to 107 CFU/g, 

at the end of the ripening period [22, 28]. This constancy is due to Lactobacilli 

tolerance to dehydrated environments and high salt concentrations [29].  

 By analysing Figure 5, it can be concluded that Lactococci is the major 

contributor for microflora of Serra Cheese. Lactococci were present in high values in 

all studies, as shown in Figure 5 (B). The quantity profile of this microorganism was 

equal in publications 2 to 5 [15, 22, 27, 28] and below 100-fold in publication 1 [16]. 

In the first week, the counts increased 100-fold. Between 7 and 60 days, the 

Lactococci remained with 108 CFU/g. Then, they decreased 10-fold and but remained 

at high levels (107-108 CFU/g) until the end of the ripening period [22, 27]. 

Enterococci were counted only in three publications 3 to 5 [22, 27, 28] (Figure 5 (C)) 

and they showed 107 CFU/g in the day of manufacture. In one week, they increased 

10-fold and remained constant in the next two weeks. The quantified Enterococci 

values were 107 CFU/g at 120 and 180 ripening days. The most abundant LAB found 

in curd were Lactococcus lactis spp [16], which are homofermentative [4] and 

Enterococcus faecium [16].  

 The lactation period has a significant effect in the number of microorganisms, 

being higher in January to February and lower from May to June [15], indicating that 

lower temperature and higher relative humidity during autumn and winter, favours 

the LAB growth [16].  
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2.3.2  Yeasts 
 

 Inside of the cheese, yeasts tended to slowly increase in the first 7 days, from 

104 to 105 CFU/g, and then they seem to decrease (only 10-fold), (see Figure 5 (D)). 

Between 60 and 180 days, the numbers of yeasts had a sharp decrease of 82%, being 

zero at 180 days [28]. This highlights that the highest rate of yeasts death occurred 

after 60 days of ripening [28]. 

Rind samples showed 100-fold higher values than inner cheese samples. 

Moreover, yeasts were found at higher levels after the second week [30]. The rind is 

more exposed to environmental manufacturing conditions, so it can be easily 

contaminated [15]. Ripening rooms, with lower temperature and higher relative 

humidity during autumn and winter, allow and favour the aerobic yeasts growth [16]. 

Some yeasts are able to synthesize proteolytic and lipolytic enzymes, which 

contribute to the development of aroma and flavour during the ripening in daily 

products [31]. The major contribution of yeasts in ripening cheese is their capacity to 

use lactic acid, promoting the increase of pH value, allowing the growth of bacteria 

which are sensitive to acid environments [16]. 

The yeasts that predominated in cheese with 35 days of ripening were 

Leucosporidium scottail, Debaryomyces hansenii and Sporobolomyces roseus [16]. 

 

2.3.3 Enterobacteriaceae, coliforms and Staphylococci 

The quantification of Enterobacteriaceae, coliforms and Staphylococci allows 

knowing the hygienic conditions under which Serra Cheese was made. Some studies 

presented results for coliforms, as publications 1 and 2 [15, 16], and other for 

Enterobacteriaceae, like publications 3 to 5 [22, 27, 28]. 

The Staphylococci counts in raw ewes’ milk changes concerning the different 

seasons. In May-June there was a higher count of Staphylococci due to the 

temperature, near to the 15 °C, which is favourable to their growth [15]. In winter, 

there are more LAB that make cheese matrix more acid, which is unfavourable to 

Staphylococci growth [16]. Thus, higher amounts of this bacteria were found in spring 

and lower in winter [32]. Staphylococci were mainly found in the rind cheese 

compared to the inside, because they require oxygen to survive and grow. Moreover, 



Effect of High Pressure in Serra da Estrela Cheese 

 

  University of Aveiro 16 

the rind is more easily contaminated due to manual washing during the ripening. The 

counts in the rind and inside did not decrease throughout the ripening. Normally, at 7 

days, Staphylococci reached the maximum values, 103 CFU/g [22, 27]. Others 

publications (1, 2 and 4) showed the same behaviour, but counted 100-fold [16] and 

10-fold [27] less than in papers 3 and 5. Afterwards, they decreased slightly, only 10-

fold until 35 ripening days [16]. After 180 ripening days, the viable Staphylococci 

decreased to 104 CFU/g [28]. These results may show the possibility of health hazards 

and it was reported than 14% of the counted Staphylococci belonged to the S. aureus 

spp, which are clinically relevant strains [33].  

There were between 102 to 103 CFU/ml Enterobacteriaceae in raw ewe’s milk 

[15]. In cheese, in papers 1 and 2, during the first 21 ripening days, the counts of 

coliforms increased from 105 to 108 CFU/g. However, between 21 and 35 days [16] 

the counts of coliforms decreased 10-fold and the same occurred in the other study 

with Enterobacteriaceae [27] (see Figure 5 (E)). This decrease suggests that 

Enterobacteriaceae are somewhat controlled by competing species which will 

eventually prevail by the end of ripening [27]. 

In all publications, as shown in Figure 5, the LAB and Enterobacteriaceae are 

present in the same order of magnitude (however in paper 3 [27] were slightly 

lower). Thus, it revels the poor sanitary conditions during milk collection and/or 

cheese manufacture, which was more accented in paper 1 [16] than in paper 3 [27]. 

However, it is possible to verify the improvement of hygienic conditions between 

1995 [16] and 2000 [27].  

The most abundant and proliferative coliform found in the curd was Hafnia alvei 

[19], that is a psychrotrophic bacterium. Escherichia coli was found in all cases of 

cheese that ripens in winter. These bacteria are able to ferment lactose and are 

probably responsible for the formation of cheese eye-holes. The contamination of the 

raw milk by E. coli is very low when compared to other contaminations [16]. 

After 120 days of ripening, the number of yeasts and Enterobacteriaceae 

showed a pronounced decrease [28]. After 4 months of ripening, the number of 

Enterobacteriaceae, yeasts and Staphylococci declined sharply to almost negligible 

levels, making Serra Cheese a microbiologically safe product [28]. 
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2.4 Biochemical changes 

2.4.1 Proteolysis  

Proteolysis has been considered the most important biochemical complex 

process in cheese ripening, because it is responsible for the development of a number 

of organoleptic features [34]. The main proteolytic agents in cheese are: the 

indigenous milk proteinases (plasmin and cathepsin D), the enzymes present in 

coagulant and the enzymes released upon bacteria lysis [23]. Each one plays a specific 

role, but the whole set affects more the final product than each one individually [35]. 

Proteolysis in cheese ripening can be divided in two main processes. Primary 

proteolysis corresponds to the initial step of caseins breakdown, which is made by 

proteases retained in the curd and, to a less extent, by the indigenous milk enzymes 

[36], resulting in a range of small and intermediate sized peptides [37]. These 

peptides act as substrates [38] for secondary proteolysis, performed by proteinases 

and peptidases of bacteria and leading to the release of free amino acids (FAA) [37]. 

The enzymes that are present in the aqueous extract of cardoon induce the 

clotting activity. Some enzymes are trapped in the curd and lead to protein 

breakdown during cheese ripening. Therefore, various peptides are released, having 

important biochemical, rheological and sensorial role in cheese [8]. From the 

standard variety of C. cardunculus L., two aspartic proteinases were isolated [39] 

called cardosins A and B, being responsible for the clotting activity of that plant [40]. 

Cardosin A acts in a similar way to chymosin. Cardosin B acts in a similar way to 

pepsin, a nonspecific and highly proteolytic enzyme, which can hydrolyse peptide 

bonds of αs1-, αs2-, and β-caseins (Table 6) [36]. This dual composition of the plant 

rennet might explain the relatively more extensive hydrolysis of caseins, than when 

animal rennet is used [40].  

In general, αs-caseins are more susceptible to proteolysis than β-caseins [23]. 

In ovine milk cheese, the αs- and β-caseins are degraded in approximately 47.0% and 

33.1%, respectively, by proteinases of C. cardunculus [23]. However, studies revelled 

that 82% and 76% degradation of the αs- and β-caseins, occurred during 35 days of 

ripening [39]. 
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Table 6. Peptide bonds cleaved by proteinases of C. cardunculus. Underlined are the major cleavage bonds 
in ovine caseinate. Adapted of [37, 41]. 

κ-casein Phe105-Met106 and Lys116-Thr117 

β-casein 

Leu6-Asn7, Glu44-Leu45, Val82-Val83, Met93-Gly94, Leu127-Thr128, Thr128-

Asp129, Val140-Gln141, Thr154-Val155, Leu165-Ser166, Lys176-Ala177, Asp182-

Met183, Leu190-Tyr191, Leu196-Gly197 and Arg200-Gly201 

αs1-casein Phe23-Val24, Phe28-Pro29 and Tyr165-Thr166 

αs2-casein Val73-Asp74, Phe88-Tyr89, Ile85- Asn86 and Trp193-Thr194 

 

The proteolysis in cheese can be evaluated by proteolytic indices. For that, 

first it is necessary to determine the total nitrogen content (TN), the nitrogen soluble 

in water (WSN), the nitrogen soluble in 12% (w/v) trichloroacetic acid (TCA) and the 

nitrogen soluble in 5% (w/v) phosphotungstic acid (PTA). Then, with the 

experimental data generated, three proteolytic indices can be calculated: ripening 

extension index, WSN/TN; ripening depth index, TCA/TN; and free amino acid index, 

PTA/TN [35]. 

The WSN/TN ratio has been used to follow the aging of cheese, being 

proportional to proteolytic activity. This ratio was reported to increase throughout 

the ripening period in cheeses manufactured with plant rennet [23], being 9.5% at 1 

day and 36.9% at 35 days of ripening [24]. 

The 12%-TCA soluble nitrogen allows quantifying small peptides containing 

between 2 and 20 amino acid residues and FAA [23]. These peptides basically result 

from secondary proteolysis, by cleavage by the enzymes produced by the starter 

cultures and released thereby upon lysis. However, in Serra Cheese manufacture no 

starter cultures are added, thus, relatively low levels of TCA/TN are obtained [36], 

5.5% at 35 days of ripening [24]. The TCA/TN ratio has also been used in order to 

evaluate the action of lactic acid bacteria in the formation of soluble nitrogen 

compounds in cheese [24].  

The PTA/TN ratio represents the free amino acid index, the smallest peptides 

(that contain less than 6 amino acids residues, with a molecular weight lower than 

600 Da) and FAA [24], that are the final products of proteolysis [35]. In Serra Cheese, 

this value is particularly low, 1.24% [24], which reveals that cardoon has little activity 

against peptides [24]. The PTA/TN ratio can decrease from the 14 to 21 days, by 

microbial consumption of the FAA that are available in the aqueous phase during 
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lactic acid bacteria stage of exponential growth [23]. Ovine cheese manufactured with 

plant rennet has a lower PTA/TN ratio than cheese made with animal rennet. This is 

due to proteinases of cardoon that cleave into high-molecular weight peptides, which 

were not extensively broken down to low-molecular weight peptides and FAA [23].  

 

2.4.2 Lipolysis  

Serra Cheese is known for its high fat content, which is mainly constituted by 

triglycerides [2]. Triglycerides can be hydrolysed by lipases into glycerol and three 

fatty acids. There are some sources of lipases that can be found in native milk, as 

contaminant in plant rennet, or produced by microorganisms with growth activity in 

the first ripening week [19, 42]. In cheese, LAB revealed low lipotytic activity [2], but 

Lactobacilli  [14] and Lactococcus spp. [14] have shown to produce lipases. 

Psychrotrophic bacteria [19, 43] have a great lipolytic activity and their exocellular 

lipases are active at pH 5.0 [2] but only in refrigerated milk [12]. Enterobacteriaceae 

are known to produce lipases that breakdown milk fat [28, 44]. Some yeasts also have 

lipases [2, 19, 28].  

Macedo et al. [42] evaluated the extension of the lipolysis in Serra Cheese. The 

results revealed that lipolysis changes during ripening time, being more intense in the 

first week (the study only analysed 35 ripening days). Seasons also have an impact in 

lipolysis, which is more intensive in spring than in autumn or winter [42]. The 

extension of lipolysis seems to be affected by relative humidity, because cheeses with 

higher moisture content (and lower salt content) lead to higher fat acidity [20].  

Gas chromatography (GC) enables the separation of all triglycerides in milk 

and in cheese, and it was possible to find compounds with carbon number/molecular 

weight between C24 and C56. Cheese with 42 ripening days showed lower value in 

triglycerides with C24 to C38, when compared to milk values [45]. Lipolysis is 

dependent of the number of carbons of fatty acids, being predominant in the low 

molecular weight fatty acids that occupy preferentially the Sn3 position of the 

triglyceride molecule [2]. 

In ewe’s milk samples were found 26 different FFA, however in cheese 

samples were found 39 [45]. The results of the total FFA content are shown in Table 

7. 
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Table 7. Average of total FFA and ratio of Σ C4-C10/Σ C11-C20 in milk and cheese during 0, 21 and 42 
ripening days. Adapted from [45]. 

 
Total FFA 

Ratio* 
  mg/kgproduct mg/100 gfat 

Milk 214.9 268.6 0.29 

0 days 625.6 625.6 0.28 

21 days 1294 646.9 0.28 

42 days 1012 226.9 0.24 
 

*Ratio = Σ C4-C10/Σ C11-C20 of FFA produced from lipolytic activity. 
 

During the first 21 days, the concentration of fatty acids increased from 625.6 

to 1294 mg/kg. Then, fatty acid content slightly decreased to 1012 mg/kg at 42 days 

[45]. 

As far as the ratio between the sum of short volatile fatty acids (C4-C10) and 

the sum of the medium and long chain fatty acids (C11-C20) from lipolytic activity is 

concern, it was smaller after 42 days of cheese ripening (0.24) than in milk (0.29). So, 

the FFA with C4-10 are more extensively transformed (volatilization, esterification, 

bacterial catabolism) [45]. These results are in accordance with those of other 

authors [46] who found higher concentration of long-chair fatty acids in all stages of 

ripening in ovine cheese. 

The FFA composition of ewe’s milk is similar to other kinds of milk used in 

cheese manufacture [45], like cow’s and caprines’ milk, but ovine and caprine milk 

have twice the content of FFA than cow [46]. However, the final FFA composition in 

Serra Cheese, with 35 ripening days, is lower than other cheeses [45]. 

These results can be justified by several reasons. Lower temperatures do not 

favour the lipolytic activity [45] and most cheese makers kept the cheese under 12 °C 

[8]. The short ripening period of Serra Cheese (30-45 days) is another reason for 

lower lipotytic activity. In addition, Serra Cheese is manufactured only with the 

addition of plant rennet, which has a low lipolytic activity. Other cheeses ripen during 

more days and are also made with the addition of other type of rennet with higher 

lipotytic activity [45]. 

FFA are precursors of many other compounds like alcohols, esters, aldehydes, 

ketones, and lactones [47]. 
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2.4.2.1 Lipid oxidation 

Lipid oxidation is a major factor affecting the quality of processed dairy products, 

especially during long periods of storage [48, 49]. It is the major cause of quality 

deterioration during this period [49, 50], especially concerning lipids  that contain 

polyunsaturated fatty acids (PUFAs) [51]. 

Lipid oxidation comprises a complex chain of reactions that firstly yields to the 

production of peroxides (primary products), that give rise to secondary oxidation 

products [52]. Different pathways for lipid oxidation have been described: 

autoxidation (radical mechanism), photooxidation (singlet oxygen-mediated 

mechanism) or enzymatic oxidation (catalyzed by lipooxygenases) [52]. 

Quantification of primary lipid peroxidation products (hydroperoxides) is 

difficult due to the unstable and reactive nature of these compounds [50]. 

Hydroperoxides are further oxidized (as shown in Figure 6), turning into secondary 

oxidation products, which include aldehydes, ketones, epoxides, hydroxy compounds, 

oligomers and polymers [51, 52]. Most of these secondary oxidation products 

produce undesirable sensorial effects [50], known as rancid off-flavour [49]. Among 

the secondary oxidation products, non-volatile compounds can be found, such as 

malondialdehyde (MDA) as main representative, being the most commonly used 

aldehyde as oxidation marker [52]. It is mainly formed from linolenic acid oxidation 

and it is not generated by the oxidation of other lipids, which means that this analysis 

corresponds only to a minor amount of the secondary oxidation products, which 

spoiled its role as a lipid oxidation marker that is usually assumed for this compound 

[52]. 

The most common method to determine MDA in food is the 

spectrophotometric measurement of MDA with 2-thiobarbituric acid (TBA) [51]. The 

reaction occurs by “attack” of the monoenolic form of MDA to the active methylene 

groups of TBA at low pH and high temperature, producing the a chromophore, which 

is a complex formed by TBA-MDA that gives a maximum absorbance at 532 nm [52]. 

However, TBA is not selective to MDA; it also reacts with many other compounds 

(such as: other aldehydes, carbohydrates, amino acids and nucleic acids), interfering 

in the TBA assay, and consequently leading to variability in the results [52]. For that 

reason, this method was called TBA reactive substances method (TBARS).  
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Figure 6. Formation of MDA during peroxidation of PUFAs. Adapted from [53]. 

 

 

2.4.3 Flavour 

Cheese is not only distinguished by its physical feature but also by its flavour, 

which depends on the milk used, the manufacturing methods and the conditions and 

duration of the ripening phase [45]. Cheese manufactured with raw milk acquires 

more intense flavour than cheese made with pasteurized milk, due to the presence of 

high levels of native lactic acid bacteria [44, 54]. The aroma compound and the 

flavour profile of Serra Cheese result mainly from the microorganism and enzymes, 

thus being an enzymatic process with several and interdependent reactions during 

ripening [55]. However, there is low knowledge about the reactions that lead to 

flavour in Serra Cheese matrix [28]. 

The major families of volatile compounds in Serra cheese found by gas 

chromatography mass spectrometry (GCMS) were ketones, pyrazines, alcohols, 

aldehydes, phenolic compounds, ethyl esters and FFA during 180 days of ripening 

[44], as shown in Table 8. The volatile compounds in Serra Cheese with 42 ripening 

days, that are present in low concentration in the order of ppm or mg/Kg, present 

high relevance in flavour profile and are: ethanol, methanol, acid acetic, 2,3-

butanediol (diacetyl) and esters. Acetic acid was associated with a positive flavour 

[56]. Diacetyl has great contribution for the typical flavour, “butter-cream texture” in 

cheese with soft consistency [57]. Esters and ethanol were associated with fruity 

flavours [47]. 
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Table 8. Compounds identified in volatile fraction of Serra cheese by GCMS during 180 ripening days. 
Adapted from [44]. 

Ethyl esters Ethyl: butanoate, pentanoate, hexanoate, octanoate, decanoate and dodecanoate 

Ketones 2-Heptanone; 2-nonanoe and 2-undecanone 

Phenolic compounds 2,4-Dimethylbenzene; 1,2,4-trimethylbenzene and benzoic acid 

Alcohols 
1-Decanethiol; 2-phenyethanol; phenol, 4-methyl phenol; benzyl alcohol and 4-

methyl-4-nonanol 

Pyrazines 2,5-Dimethylpyrazine; trimethylpyrazine  and diethylpyrazine 

Aldehydes 
2-Hydroxy-4-methylbenzaldehyde; 2,4-Decadienal; 2,4-octadienal; 2,4-

nonadienal; 3,7-dimethyl 7-octenal; 2,4-dodecadienal and octadecanal 

Sulfur derivatives Dimethyldisulfide 

 

Fox et al. [58] study the effect of skim milk in flavour profile and proved that 

the milk fat is essential for flavour development. FFA contribute direct or indirectly to 

the flavour, being the precursor for the formation of other compounds [46]; however 

FFA did not seem to contribute to “off flavours” in Serra Cheese [45]. 

The organic acids found with major odour activity values (OAV) 1  were 

isovaleric, capric and butyric acids present in 232, 113 and 88 mg/kg, respectively 

[44]. Caproic and caprylic acids were also found in high concentration, 210 and 100 

mg/kg at 180 ripening days [28]. The high concentration of long-chain fatty acids in 

Serra Cheese [45] do not contribute to aroma due to low relative volatility, thus being 

practically odourless [44]. 

  

                                                        
1 OAV is the concentration of compound/odour threshold for all short-chain FFA 
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3 Microbial Safety of Serra Cheese 

 

As already described, Serra Cheese is produced with raw milk, which during 

the milking and cheese manufacture is subject to several ways of contamination. This 

way, Serra Cheese has a great amount of indigenous microflora as described in 

section 2.3 Microbial profile of Serra Cheese. 

One study realized by INRB-INIA (Instituto Nacional de Recursos Biológicos -

Instituto Nacional de Investigação Agrária) found L. monocytogenes in 39% of 91 

randomly gathered cheeses from several commercial surfaces [59]. Moreover, many 

outbreaks of listeriosis around the world were registered during the last 20 years, 

due to consumption of cheese contaminated with L. monocytogenes [60, 61]. Thus, 

this pathogen can be present and requires strict control due to the risk that Listeria 

represents to the public health. 

Besides the possible presence of some pathogenic charge, Serra Cheese, like other 

cheeses, can allow deteriorative microorganisms growth during ripening and cheese 

storage. They promote chemical and physical changes, which will result in unpleasant 

flavour and odours and also changes in consistency, colour and appearance of cheese. 

In addition, these microorganisms release intra and extracellular enzymes that 

deteriorate the quality of cheese. Thus, it is necessary to control the growth of this 

microorganisms to decrease the deterioration of cheese [4]. The deteriorative 

microorganisms present in cheese are mainly filamentous fungi and moulds.  

A new food processing technology, that could reduce at the same time the risk of 

the presence of Listeria monocytogenes and also deteriorative microorganisms in 

Serra Cheese, will improve the microbiological quality and safety of this traditional 

product.  
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4 High hydrostatic pressure technology 
 

“High pressure offers unique advantages over traditional thermal treatments.” [62] 

 

Pasteurization is the thermal treatment most used in food preservation [62]. 

This technology reduces microbial levels, however, it causes undesired effects in food, 

such as: lost of flavour, colour, texture, smell and nutritional value, that leads to the 

loss of final product quality [63]. Consumers prefer more natural, preservative-free, 

shelf-stable, safety and tastier food that created the need of developing improved 

food processing technologies [64].  

Since 1970, there is interest in application of high pressure processing (HPP) 

in food technology, but only in 1990, a fruit jam was introduced in the market as the 

first HPP product [62]. 

HPP offers unique advantages over traditional thermal treatments. This 

technology produces microbiologically safe products and causes negligible 

impairment in sensory properties and in nutritional quality of foods [65-67]. There 

are many advantages of HPP for preservation of food, such as: elimination or 

reduction of heating, avoiding thermal degradation of some components in products; 

retention of flavour, colour and nutritional value; uniform and instantaneous 

transmission throughout food products and reduced or no need of chemical additives 

addition [63, 64]. HPP is a key to maintain the quality attributes of processed food, 

while improving shelf life and convenience. 

In what concerns the equipment, a typical one consists in four parts: a high-

pressure vessel and its closure, a pressure-generating system, a temperature-control 

device and a material-handling system [65]. Nowadays, there are vessels with a 

volume up to 420 L and machines operating at pressures in the rage 100 to 1000 MPa 

[62, 64]. 

A basic principle governing the effect of HPP in foods is the isostatic principle, 

being the pressure applied in HPP instantaneously and uniformly transmitted 

throughout the food, regardless of size, shape, and composition [67]. Thus, food is 

treated by uniform pressure from every direction and when pressure is released, the 

food returns to original shape.  
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4.1 Application of HPP in cheese manufacture  

There are many areas of interest of HPP application in manufacture of cheese 

[66]. HPP was tested in milk and it was reported the inactivation of microorganisms, 

the reduction of rennet coagulation time and the increase of the yield of cheese [68, 

69]. According with Huppertz et al. and O’Reilly et al. [62, 69, 70], the thermal 

pasteurization of milk can be replaced for HPP in cheese manufacture. HPP was also 

directly applied after pressing the curd or during the ripening and it influences the 

cheese preservation and the ripening process [67], as explained further ahead. 

 

4.1.1 Application of HPP for microorganism inactivation in cheese 

manufactured from raw milk  

Treatment of cheese with pressure between 200 to 800 MPa, showed the 

ability to inactivate or reduce LAB, pathogenic and spoilage microorganisms. This 

technology has been applied in cheese manufactured from raw milk, to improve its 

microbiological quality [71], increasing cheese safety and shelf life [66]. There are 

some publications of HPP in ovine cheese manufactured from raw milk, but none in 

Serra Cheese (Table 14– Appendix B). 

Microbial inactivation by HPP was influenced by microbial characteristics, 

process conditions and product parameters [72]. As far as microbial characteristics 

are concerned, yeasts and moulds are microorganisms that are more sensitive to HPP 

than bacterium. Among bacterium, Gram-positive bacteria are more pressure-

resistant than Gram-negative bacteria [67]. Concerning the process conditions, 

microbial inactivation increases by increasing the treatment intensity and by 

increasing the treatment time. Cheese composition influences the susceptibility of 

microorganisms to inactivation by HPP, since it induces changes in the fluidity of the 

cell membrane making the microorganisms more or less resistant to HPP (more 

fluidity leads to more resistance) [73]. 

 



II. Literature Review 

University of Aveiro – Chemistry Department   27 

4.1.1.1 Effect of HPP in inactivation of pathogenic and spoilage microorganisms 

In order to achieve preservation, HPP was used in cheese to inactivate or 

reduce pathogenic strains such as, Staphylococcus aureus [69, 74], Listeria 

monocytogenes [68, 75-80], Escherichia coli [68, 69, 81, 82], as well as spoilage 

microorganisms (such as Staphylococcus spp. Enterococcus spp.), coliforms [83], 

yeasts and moulds [84].  

S. aureus CECT 976 was studied by Arqués et al. [74], showing more than 5.3 

log reductions after HPP at 500 MPa 5 min at 10 °C, at 50 days of ripening. 

Staphylococci in La Serena cheese were reduced by 0.49 and 1.45 log units after HPP 

at 300 and 400 MPa for 10 min [83]. Alonso et al. [85] at 60 ripening days showed 0.7 

and 1.3 log reductions at 400 and 500 MPa, 10 min at 10 °C of Staphylococci in raw 

ovine milk cheese. 

HPP was applied in raw cow cheese inoculated with Listeria monocytogenes 

Scott A. The HPP (500 MPa, 5min at 10 °C) was applied at 2 and 50 days of ripening, 

showing 5.02 log reductions and complete inactivation (>6.34 log reductions), 

respectively [86]. Listeria monocytogenes ATTC 19115 inoculated in raw ewe milk 

cheese was reduced in 4.9 logs after HPP at 600 MPa during 10 min at 25 °C [87]. 

In Cheddar raw milk cheese, E. coli K-12 was completely inactivated (>6.5 log 

reductions), after HPP at 350 MPa, 3 min at 50 °C [88]. Rodríguez et al. [82] studied 

the effect of HPP at 2 and 50 ripening days (at 500 MPa, 5 min at 10 °C) and the 

authors concluded that the treatment was more effective at 50 days, being reported 

complete inactivation of E. coli O157:H7 (>5.11 log reductions). 

Enterococci were pressure treated at 300 and 400 MPa, (10 min at 10 °C) in La 

Serena cheese (raw milk cheese), being reduced in 2.05 and 2.68 when pressured on 

day 2, and 1.37 and 1.98 on day 50 [83]. In the same publication, using the same HPP 

conditions, coliforms were studied, being reported 4.13 and 5.50 log reductions when 

HPP was applied on day 2, and 4.85 log reductions and complete inactivation, 

respectively, when applied on day 50 of ripening. 

Yeasts are not associated to food-borne diseases, however they are 

responsible for cheese spoilage [84]. HPP above 300 MPa during 5 min in fresh curd 

cheese caused complete inactivation (> 4 log reductions) of spoilage yeasts [84].  
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According with these studies, the barotolerance of spoilage and pathogenic 

bacteria in cheese, follow the order: S. aureus > L. monocytogenes > E. coli > yeasts and 

moulds [89]. 

 

4.1.1.2 Effect of HPP in beneficial microorganisms 

HPP does not affect only pathogenic and spoilage microorganisms, but also 

affects mesophilic and termophilic LAB. Termophilic LAB in raw ewe cheese were 

reduced in 0.46 [90], 1.9 and 2.7 log reductions [85] after HPP at 300, 400 and 500 

MPa, respectively, during 10 min at 10 °C. Mesophilic LAB in the same cheese with the 

same HPP, were reduced in 0.68 [90], 2.1 and 4.2 log reductions [85].  

According to these studies, HPP cheese above 500 MPa cause a great reduction 

of beneficial microorganisms present in cheese.  

 

4.1.2 Effect of HPP in quality of cheese during ripening and storage 

HPP can affect some biochemical characteristics, leading to their change 

during the ripening and storage; it is necessary to understand the effect of this 

technology on proteolysis, lipolysis (Table 15 – Appendix B), physicochemical 

proprieties, on rheological properties and on sensorial properties. However there are 

few studies concerning the effects of HPP during cheese storage. 

 

4.1.2.1 Influence of HPP on proteolysis 

The effect of HPP on proteolysis during ripening was studied in 4 cheese types 

made with ewe’s milk: La Serena (raw milk cheese) [71], Spanish ewe’s milk cheese 

(pasteurized milk cheese) [91-93] and Hispánico cheese (raw milk cheese but made 

with ewe and cow milks) [94] and during storage on Irish blue-veined (raw milk 

cheese) at 4 °C [95] and on Hispánico cheese at -24 °C [85, 90]. 

After 50 days of ripening, La Serena cheese was pressure treated at 300 and 

400 MPa for 10 min at 10 °C and showed a similar proteolysis level compared to the 

control cheese after 10 days [71]. 

Irish blue-veined cheese with 42-days-old was exposed to HPP at 400 to 600 
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MPa for 20 min at 20 °C, which accelerated primary and secondary proteolysis [95]. 

The breakdown of β- and αs2-casein was accelerated and the PTA/TN index increased 

after 28 days of storage (10.8% in HPP cheese and 9.0 % in control cheese) [95]. 

Hispánico cheese made with a mixture of raw cows' and ewes' milk (80:20), 

was treated after 15 days of ripening at 300 [90] and 400-500 MPa [85] (5 min at 10 

°C) and the treatments accelerated the hydrolysis of casein and increased the FAAs 

levels, after 45 days of storage. 

Ewe’s cheese was pressured after 15 days of ripening at 500 MPa (10 min at 

18°C), and at 75 days of ripening were observed lower FAA contents than control 

cheeses [96].  

There are other studies, that verified the influence of HPP in proteolysis 

during storage, in other cheese varieties, mainly in Cheddar [97, 98], Camembert [99], 

Gouda [99, 100], Edam [101] and Garrotxa cheese [102].  

All studies considered, it can be concluded that HPP treatments could 

accelerate or arrest proteolysis in cheese ripening. The results obtained depend on 

the cheese variety and the intensity of treatment. In general, HPP between 300 and 

500 MPa showed: acceleration of casein breakdown, increase of the total FAA content 

and increase of the SN/TN index. 

HPP inactivates enzymes and microorganisms, but also activate some 

enzymes, that may be released through the lysis of starter cells [96] and may 

destabilize casein micelles [70]. According to this, HPP enhances proteolysis due to 

weakening of hydrophobic interactions, which might led to an increased exposure of 

the susceptible bonds allowing their cleavage by proteolytic enzymes [71]. 

 

4.1.2.2 Influence of HPP on lipolysis 

There are few studies about the effect of HPP in lipolysis during the ripening in 

cheese manufactured with ewe milk [93, 103]. 

In ewes’ milk cheese pressure-treated at 400 to 500 MPa on day 15 of ripening 

for 10 min at 12 °C, it was reported a lowest concentration on FFA than in control 

cheese, both evaluated after 45 days of ripening [93]. 
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Hispánico cheese with 15 days of ripening was treated at 300 MPa (10 

minutes at 10 °C) by Alonso et al. [90] and showed lower FFA concentration than 

control cheese at 45 days of ripening, 1259.65 and 1205.49 mg/kg, respectively. In 

another study by Alonso et al. [85], the same type of cheese was treated at 400 MPa 

(10 minutes at 10 °C) after 15 days of ripening and showed higher FFA concentration 

than control cheese at 45 days of storage, 813.9 and 754.4 mg/kg, respectively. 

In general, cheeses treated at 300-500 MPa showed a lower rate of lipolysis 

during storage. 

 

 

4.1.3 Effect of HPP in cheese characteristics 

Serra Cheese has peculiar characteristics, physicochemical and sensorial, 

which may be changed, when processed by high pressure (Table 16 – Appendix B). 

Thus, other studies made with ewe’s cheese can be indicative of possible changes that 

can occur after pressurization. 

 

4.1.3.1 Effect on physicochemical proprieties 

Studies demonstrated that protein, fat, ash, moisture and nutrient content do 

not change with HPP [104-106]. Nevertheless, HPP modify the pH values, the water 

retention capacity, the salt distribution and the colour of the cheese. 

Several cheeses showed a higher pH after HPP, such as: La Serena [71, 86], 

ewes’ milk cheese [91, 92, 107], Cheddar [104], Edam [101], Garrotxa [102, 108], 

Gouda [99, 100], and Manchego cheese [106]. HPP reduces LAB, decreasing the 

capacity to produce lactic acid (as result of damage of glycolytic enzymes). 

HPP treatments also influence the water retention and salt distribution in 

cheese matrix. Ewe’s cheese treated at 200 – 500 MPa on day 1 of ripening showed 

lower moisture content than control cheese, since to HPP promoted water expulsion 

from cheese [107]. But at 15 days of ripening, control cheese and pressured cheese 

showed identical moisture contents [107]. 

As far as salt distribution is concerned, HPP improves solute diffusion in the 

cheese matrix. In ewes’ milk cheese a better salt diffusion was observed after being 
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treated at 300 MPa for 10 min at 12 °C, on day 1 or 15 of ripening. Ewe’s processed 

cheese showed high level of salt content in medium and interior of cheese than 

control cheese [92].  

Colour of cheese is another parameter affected by HPP. The effect depends on 

the pressure intensity, treatment temperature and duration. Ewe’s milk cheese 

treated at 300 MPa on day 1 showed significantly lower L-values (visual lightness) 

and higher b-values (yellowness to blueness), than control cheeses and cheese 

pressured at 15 days of ripening [92]. So, HPP treatment resulted in more yellowness 

of cheese. 

 

4.1.3.2 Effect on rheological properties 

Rheological properties influence texture, eating quality, and physical 

behaviour and are dependent on composition, microstructure, macrostructure, and 

physicochemical state of cheese components [109]. 

In La Serena cheese rheological proprieties after pressure treatments were 

studied. Cheese pressure-treated at 300 or 400 MPa for 10 min at 10 °C on day 2 of 

ripening showed higher fracturability, hardness, and elasticity than control cheese 

and cheese treated at 50 ripening days, at 60days. HPP at 50 days did not influence 

the texture after 10 days of storage after the treatment. Trained panellists revealed 

that HPP on day 2 had a negative effect on texture preference and taste quality. 

However, when pressure was on 50 days applied, it did not affect texture preference 

and taste quality [71]. 

In ewe’s milk cheese, after pressure treatment at 200 to 500 MPa for 10 min at 

12 °C, applied on day 15 of ripening, it was reported that the results were analogous 

to control cheese [107]. Firmness in ewe’s cheese treated at moderate pressures, 200 

to 300 MPa, was improved. However, cheese processed at high pressure, 500 MPa, 

revealed high deformability and low fracturability and rigidity. Juan et al. [92, 107] 

attributed these results to higher water retention capacity, higher pH value, cheese 

matrix modifications as weakening of intermolecular structure, and a more 

homogeneous microstructure in HPP-treated cheese (reduce the area of fracture), 

which contributed to higher disposition to deformation.  
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Hispánico cheese treated at 300 [90], 400 and 500 MPa [85] showed lower 

fracturability, hardness and elasticity after 60 days of storage.  

In general, HPP promote the decrease of the fracturability, the crumbly, the 

hardness and the increase of the elasticity and the disposition to deformation, due to 

more homogeneous microstructure, more water retention and weakening of 

intermolecular structure. 

 

4.1.3.3 Effect on sensorial properties 

One problem of the traditional methods for food processing is the heating, 

which promotes changes that affect the sensorial characteristics. HPP retains the 

sensory quality characteristics of fresh food products, if the treatment conditions are 

not intense and not applied in an early ripening stage. When early applied, causes a 

great reduction in microorganism charge, which result in a decreased amount of most 

volatile compounds, thus affecting aroma [110]. 

Volatile compounds, odour and aroma were evaluated in La Serena cheese 

treated at 300 and 400 MPa (10 min at 10 °C) on day 50 after manufacture. After 10 

days, HPP was showed not to influence the volatile compounds profile and sensorial 

characteristics of the cheese [111]. 

Ewe’s milk was processed at 200 MPa (10 min at 12 °C) on day 15 of ripening, 

and the volatile profile was similar to control cheese [91]. In another study, Ewe’s 

milk cheese was pressured at 300 MPa on day 1 and 15 being analysed by panellists 

at 30 and 90 days of ripening. The treated cheese on day 1 received the lowest taste, 

aroma and odour quality scores than control cheese [92], they preferred the treated 

cheese at 15 ripening days [92, 107]. 

Hispánico cheese with 15-days-old was studied by Alonso et al. [85] and did 

not show significant differences in flavour intensity and quality for 45 days of storage, 

after it be pressured at 400 and 500 MPa (10 min at 10 °C). 



III. Objectives 

University of Aveiro – Chemistry Department   33 

III. OBJECTIVES 

 
The aim of this work was to study the effect of HPP on Serra Cheese after the 

processing and during storage on: 

 Indigenous microflora: total microflora, lactic acid bacteria, yeasts and 

moulds and Enterobacteriaceae; 

 Inoculated Listeria innocua as surrogate for Listeria monocytogenes; 

 Physicochemical changes: water content, water activity, pH-values, 

titratable acidity, proteolysis and lipid oxidation. 

The rationale behind this work is to see the possibility to render Serra cheese 

free of potential pathogen by HPP, with no changes on quality. 
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IV. MATERIAL AND METHODS 

1 Cheese manufacture and sampling 

One batch of Serra da Estrela cheese was manufactured according to traditional 

procedures [14] (Appendix A) in December in a dairy of the DOP region, Oliveira do 

Hospital, Portugal.  

The sampling was performed by choosing four cheeses at 45 days of ripening. 

Fractions from each cheese were obtained after removal of the rind. The innermost 

and the intermediate layers of the three cheeses were handed and homogenized 

aseptically and divided in two groups. The first group was divided into several 

samples for microbiological and physicochemical analysis after treatment and during 

storage. The second group was inoculated with Listeria innocua NCTC 10528 and 

divided in samples. All samples were placed into polyamide-polyethylene (PA-PE) 

bags, previously irradiated with UV light for 15 min, and vacuum-sealed at 85%. 

2 Culture and inoculum preparation  

Listeria innocua (10528, National Collection of Type Cultures, UK; NCTC) was used 

to inoculate the second group of cheese samples. The strain was obtained 

cryopreserved from the Escola Superior de Biotecnologia da Universidade Católica 

Portuguesa, Porto and was revived in Trypticase Soy Broth (TSB; Liofilchem, Italy) 

and incubated overnight at 37 ± 1 °C, 170 rpm in VWR Incubating Orbital Shaker. The 

broth culture was checked by plating into Trypticase Soy Agar (TSA; Liofilchem). L. 

inoccua was stored on TSA petri dishes at 4 °C. One colony isolated from TSA plate 

was picked and inoculated in 50 mL of TSB, incubated at 37 ± 1 °C, 170 rpm, 

overnight.  

Two hundred microliters of the previous broth were transferred to 200 mL of 

fresh TSB in 250 mL Erlenmeyer flask, and left 10 to 12 h at 37 ± 1 °C, 170 rpm in 

order to obtain cells in stationary phase of growth. The growth of bacteria was 

followed hourly by optical density (at 600 nm). At the same time, decimal dilutions 

were prepared in Ringer’s solution (Merck, Germany) and were plated in TSA. After 

48 ± 2 h at 37 ± 1 °C the colonies formed were counted. 
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3 Inoculation procedures in cheese 

Under aseptic conditions, the cellular suspension was centrifuged at 2500 xg for 

20 min at room temperature. The harvested cells were washed twice with 1400 L of 

Ringer’s solution after removal of the same volume of supernatant. It was used 5.7 mL 

of cell suspension to inoculate 100 g of the second group of cheese samples. 

4 High Pressure Processing 

The high pressure processing (HPP) was carried out using a hydrostatic press 

(High pressure system, Model U33, Unipress Equipment, Poland). This equipment has 

a pressure vessel of 35 mm diameter and 100 mm height surrounded by an external 

jacket, connected to a thermostatic bath to control the temperature and a mixture of 

propylene glycol and water (60:40) was used as pressurizing fluid.  

Cheese samples were treated at three pressure levels with different duration, at 

400, 500 and 600 MPa for 10, 5 and 3 min, respectively. The initial temperature of the 

pressure vessel was set to 4 °C. For each pressure treatment, cheese samples 

previously divided in bags were inserted into a small flexible plastic bag that was also 

vacuum-sealed, this procedure was repeated for all samples. Samples with inoculated 

L. innocua were treated with the same procedure.  

 

Table 9. Nomenclature attributed to non-processed samples and pressurized samples for Group I and 
Group II of sampling; and the aim of study. 

  HPP Conditions     

  

Pressure 
(MPa) 

Duration 
(min) 

Nomenclature 
To study the effect of HPP after 

process and during the storage on: 

Samples 
Group I 

- - NP 

General microbiology and 
physicochemical parameters 

400 10 P400/10 

500 5 P500/5 

600 3 P600/3 

Samples 
Group II 

- - L+NP 

Inoculated Listeria innocua 
400 10 L+P400/10 

500 5 L+P500/5 

600 3 L+P600/3 
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After HPP, cheese samples were stored at 5 °C until 14, 42, 70 and 100 days, then 

at −80 °C until further use for physicochemical analysis. The unpressurized cheese 

samples were used as a control and were called non-processed cheese (NP). The 

nomenclature used to distinguish the samples is shown in Table 9. 

5 Microbiological analysis 

The first group of samples was analysed for counts of aerobic mesophilic 

microorganisms, mesophilic acid lactic bacteria, Enterobacteriaceae and yeasts and 

moulds. From the second group of samples were analysed the viable counts of 

Listeria. 

 

5.1 Sample preparation and dilution 

One gram of each cheese sample was homogenized with 9 mL of Ringer’s solution 

for 4 min in a Stomacher 80 Biomaster. Decimal dilutions were prepared in Ringer’s 

solution. Duplicates of each sample were plated twice on appropriated media.  

 

5.2 Count of total aerobic mesophilic microorganisms 

Total aerobic mesophilic counts were determined in plate count agar (PCA; 

Merck), following the standard method NP 4405 [112] / ISO 4833: 2003 [113], being 

the pour-plated method used with 1.0 mL of diluted solution sample. The plates were 

incubated aerobically at 30 ± 1 °C for 72 ± 3 h and the yellow colonies formed were 

counted.   

 

5.3 Count of total anaerobic mesophilic lactic acid bacteria (LAB) 

Mesophilic LAB were grown anaerobically using Man, Rogosa and Sharpe (MRS; 

Merck) medium, which allow cultivation of Lactobacillus spp. The diluted solution 

sample was plated in double layer, using 1.0 mL to pour-plated in the first layer. The 

anaerobic conditions were created through anaerobic jars (Merck) with Merck 

Anaerocult A (Merck), these conditions were confirmed by Microbiologie 
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Anaerotest (Merck). The plates were incubated at 30  ± 1 °C for 5 days and the 

yellowish-white colonies formed were counted, according to ISO 15214:1998 [114].  

 

5.4 Count of Enterobacteriaceae 

Enterobacteriaceae counts were done in violet red bile dextrose agar (VRBDA; 

Merck), by pour-plated method, being incubated for 24 h at 37 ± 1 °C aerobically and 

counted the red-pink colonies formed, according to the described in standard method 

NP 4137:1991/ ISO 21528: 2004 [115].  

 

5.5 Count of yeasts and moulds 

Yeasts and moulds were enumerated on rose-bengal chloramphenicol agar 

(RBCA; Merck) medium, according to the standard method NP 3277-1 [116]. The 

spread-plate method with 200 μL per sample using five plates (having duplicate of 

sample) with serial dilutions. RBCA plates were incubated at 25 ± 1 °C for 5 days, 

being counted pink colonies of yeasts and moulds as filamentous colonies, with 

various shades of pink on the reverse. 

 

5.6 Count of Listeria innocua 

The viable counts of L. innocua were determined as the number of characteristic 

colonies on plates of PALCAM agar selective agar base (Liofilchem), with selective 

supplement for PALCAM (Liofilchem). One hundred microliters were spread on the 

surface of the medium (by pour-plated method). The plates were incubated at 37 ± 1 

°C for 48 ± 1 h, being the grey-green colonies surrounded by a black zone counted. 

This methodology is according ISO 11290-1:1998 [117]. 

 

5.7 Microbial counts 

Petri dishes containing 30-300 colony forming units (CFU) were selected for 

counting, according to ISO 4833:2003 [113]. In RBCA and PALCAM media were 
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considered counting realized in plates containing 15 – 150 colonies. The microbial 

counts were calculated following the equation (1): 

 

  
                        

                
        (Equation 1) 

being: 

                                          (CFU/g) 

                     

                                       

                                       

               

 

The results were converted into logarithmic decimals of the number of CFU per g 

of sample, and values below the limit of quantification were considered < 2.0 log 

CFU/g. 

 

6 Physicochemical analysis 

6.1 Determination of moisture content – oven method 

In silver paper was weighed 1 g of cheese in triplicate per sample and dried to a 

constant weight (ca 72 h) at 105 °C using a drying equipment.  

 

6.2 Determination of water activity (aw) 

The sample was placed in the cuvette of the Novasina – LabSwift-aw analyser 

(Switzerland). Direct reading was performed in the equipment after the value had 

stabilized (± 45 minutes) at 20 °C. Each sample was read twice. 

 

6.3 Determination of pH value and titratable acidity (TA) 

Solution preparation: Five grams of cheese were added to 52.5 mL of water at 40 

°C and homogenized in a Stomacher at high-speed during 120 s. The solution was 
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filtered through Whatman grade No. 41 and cooled to room temperature, according 

to AOAC 920.124. 

 

Determination of pH value: Using the previous solution, the pH value was 

measured with a pH meter (Crison – Titromatic 1S), which was calibrated with pH 4.0 

and 7.0 buffer. 

 

Determination of titratable acidity (TA): Ten mL, representing 1.0 g sample, were 

titrated with standard NaOH 0.1 M, using automatic titration (Crison – Titromatic 1S) 

with set point 8.9. The acidity was expressed as lactic acid, being 1 ml of 0.1M NaOH = 

0.0090 g lactic acid. The TA was quantified in duplicate per sample and in triplicate 

per analysis, according to AOAC 920.124. 

 

 

6.4 Proteolysis analysis 

6.4.1 Determination of water soluble nitrogen (WSN) 

Bradford reagent: 100 mg of Coomassie Blue G250 were dissolved in 50 mL of 

95% ethanol. This solution was then mixed with 100 mL of 85% phosphoric acid and 

made up until 1 L with distilled water. The reagent was filtered through Whatman no. 

1 filter paper and then stored in an amber bottle at room temperature. The reagent 

was filtered every time before used to remove the precipitated formed during storage 

[118]. 

 

Protein standards: Bovine serum albumin (BSA) at a concentration of 2 mg/mL 

was prepared in distilled water and used as stock solution. From this, protein 

standards ranging from 0.01–1.6 mg/ml were prepared in distilled water. The protein 

standards were stored at –20 °C and calibration curve was performed every time that 

samples were quantified. The standard curve obtained was fitted by the equation (2), 

as shown in Figure 22 in Appendix C. 
 

                                                 (Equation 2) 
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Extraction of cheese: The water soluble nitrogen extracts of cheese were prepared 

following [24]. Five grams of cheese sample were homogenized in 10.0 mL of distilled 

water at room temperature for 10 min using a Stomacher at high-speed. The resulting 

slurry was then held at 40 °C for 1 h with stirring. The insoluble material was then 

separated by centrifugation at 3000 xg for 30 min at 4 °C in a refrigerated centrifuge. 

The supernatant was filtered through glass wool in a Pasteur pipette to remove 

residual suspended fat. This method for extraction was performed in duplicate per 

sample. The nitrogen content was determined by Bradford method. 

 

WSN quantification: The WSN was determined by Bradford method, using a 

microplate spectrophotometer Thermo Scientific – Multiskan Go with Brand plate of 

96 wells. To each well 250 μL of Bradford reagent previously filtered and 5 μL of 

extract of water soluble nitrogen of cheese were added. The plate was shaken for 30 

s. Then the absorbance at 595 nm of the samples was measured between 5 min and 1 

h after mixing. The blank was prepared by adding 5 μL of distilled water. The 

standards were measured following the same procedure. WSN value resulted from six 

quantifications in the microplate (duplicate of sample and triplicate of analysis) and 

was expressed in g per 100 g of cheese. 

 

 

6.4.2 Determination of nitrogen soluble in 12% trichloroacetic acid 

(TCA) 

Extraction of cheese: The 12% trichloroacetic acid extracts of cheese were 

prepared following [24]. Two mL of a 48% (w/v) aqueous solution of TCA were 

added to 6 mL of the water-soluble nitrogen fraction. The mixture was allowed to 

stand for 30 min at room temperature and then filtered through Whatman no. 42 

filter paper. The nitrogen content was determined but due to the low content of 

protein the sample was then concentrated. 

 

Nitrogen concentration the TCA fractions: Four mL of 12% trichloroacetic acid 

extracts of cheese were evaporated in speed vacuum for 4 hours, and the remained 
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volume was determined. The nitrogen content was determined by the Bradford 

method. The analysis were run in duplicate of samples and in triplicate of analysis. 

 

 

6.5 Lipid oxidation analysis 

6.5.1 Determination of malondialdehyde (MDA) 

MDA standard: 1,1,3,3-tetrametoxipropano (TMP) at a concentration of 10 μM in 

7.5% TCA was prepared and used as stock solution. From this, MDA standards 

ranging from 0.1–10 μM were prepared in 7.5% TCA. The standard curve obtained 

has the equation (3), as shown in Figure 23 in Appendix C. 

 

                                                  (Equation 3) 

 

MDA extraction: Five grams of cheese sample were homogenized in 10.0 mL of 

7.5% TCA at room temperature for 240 s using a Stomacher at high-speed. The 

resulting slurry was then centrifuged at 3600 xg for 20 min at 4 °C. The supernatant 

was filtered using Whatman no.1. The clear filtrate was used for the TBA reaction 

[119]. The MDA extraction was followed twice per sample. 

  

MDA determination: One milliliter of cheese MDA extract and 1 mL of TBA reagent 

(46mM in 99% glacial acetic acid) were mixed in a test tube and heated in boiling 

water for 40 min. The reaction mixture was cooled, 300 μL were pipetted in triplicate 

for each well of a microplate and the absorbance was measured at 532 nm. The blank 

was prepared by adding 1 mL of extracting solution to 1 mL of TBA reagent. The 

standards were measured following the same protocols [51]. MDA value resulted 

from six quantifications in microplate (duplicate of sample and triplicate of analysis) 

and was expressed in μg per g of cheese. 
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7 Statistical analysis 

Differences in microbial counts and in each physicochemical parameter caused 

by HPP and between samples stored at different times, were assessed at a 0.05 level 

of significance by analysis of variance (ANOVA), followed by a multiple comparisons 

test (Tuckey’s HSD). The data are expressed as “mean ± standard deviation”, and the 

standard deviation was always < 10 %. 

 

8 Kinetic analysis 

Decreases of CFU counting per gram by storage time and lipid oxidation were 

subjected to reaction kinetic analysis, and for NP, P400/10, P500/5 and P600/3 

microbial counts and MDA concentration variation along time. 

 For microbiology, the rate constant was determined from a first-order kinetic 

(Equation 4), were Ln N represents the counts during the storage and Ln N0 the initial 

value. 
 

                        (Equation 4) 

 
For lipid oxidation, the rate constant was determined from a zero-order 

kinetic (Equation 5), were CMDA represents the concentration of MDA during the 

storage and CMDA0 the initial value. 
 

                   (Equation 5) 
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V. RESULTS AND DISCUSSION 

Part I: Microbiological analysis 

1.1 Listeria innocua growth 

 
Prior to the experiment with inoculated L. inoccua, it was necessary to grow L. 

inoccua. To do this, a growth curve for this microorganism was performed with cell 

growth being measured, using two complementary ways: (1) by optical density (OD) 

readings at 600 nm and (2) by CFU counting. The results are shown in Figure 7. 

 

 

Figure 7. Growth curve of L. innocua by optical density (OD600nm) and CFU counting (expressed in log10 
CFU/mL). 

 

As it was expected, L. innocua showed 3 phases of growth during 12 hour of 

incubation at 37 ± 1 °C. Analysing the Figure 7, it is clear that in the first 2 h, cells 

remained in lag phase. The OD did not change during this phase and the colonies 

counted were 0.0110 ± 0.010, 0.0095 ± 0.006 and 0.0110 ± 0.001 OD (0, 1 and 2 h, 

respectively).  
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The exponential phase was verified between 3 and 8 h. Plate counting results 

were 7.26 ± 0.014 and 9.22 ± 0.054 log CFU/mL at 3 and 8h, respectively, which 

directly correspond to 0.027 ± 0.003 and 1.39 ± 0.010 OD measurements. From OD 

0.700, samples were appropriately diluted using TSB medium.  

Between 9 and 12 h, bacterial cells reached the stationary phase. During this 

period, the counted colonies remained unchanged, among 9.31 and 9.22 log CFU/mL, 

which corresponded to 1.510-1.618 of OD. Concerning all, to inoculate L. innocua in 

cheese, it was necessary to grow this microorganism during 10 to 12 h, until it 

reaches the stationary phase. Between 3 and 12h, it is possible to directly relate the 

log of CFU counts with the log OD measured, as shown in Figure 8, with the following 

equation (6): 
 

                                             (Equation 6) 

 

 
 
Figure 8. Direct relation between log10 CFU/ml and log optical density at 600nm to L. innocua growth 
among 3 and 12h. 

 
 

1.2 Microbial quantification in Serra Cheese 

There are several microorganisms in Serra Cheese that can be endogenous 
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flora, the mesophilic LAB, the Enterobacteriaceae, yeasts and moulds, and L. innocua 

after HPP and during the storage for 100 days. 

 

1.2.1 Total aerobic mesophilic microflora 

The counts of total aerobic mesophilic microorganisms were performed at 0, 

14, 42, 70 and 100 days of storage at 5 °C, as shown in Figure 9. 

The total microflora in NP cheese remained unchanged during 42 days of 

storage at 9.04 ± 0.122 log CFU/g, with an increase to 10.0 at 70 days (which was 

significantly different compared to the all NP samples, p<0.001) and decreased to 

8.74 ± 0.067 log CFU/g at 100 days. Macedo et al. (1996) [15] counted the total viable 

microorganisms at 35 days of ripening of Serra cheese produced in October-

November and reported 9 log CFU/g [15], which comprises the 9.04 log CFU/g 

quantified in this study at 45 ripening days, equivalent to 0 days of storage. 

HPP induced low cycle reductions, causing 0.47, 1.06 and 1.20 log cycle 

reductions on cheese P400/10, P500/5 and P600/3, respectively, on day 0, being 

counted 8.57, 7.98 and 7.85 log CFU/g, respectively. The results obtained were 

similar to those of Juan et al. (2008) [92], having HPP caused 1.82 log cycle reductions 

in the total microflora (being the initial counts of 9.14 log CFU/g). However, these 

authors treated a semihard ewe milk cheese, manufactured from pasteurized milk, at 

300 MPa at 15 days of ripening [92]. 

Analysing Figure 9, for each time of storage, it was possible to verify one 

profile: the total aerobic mesophilic counts in HPP samples were below the counts in 

NP samples. However, no significant differences were verified between NP and 

P500/5 at 14 days (9.04 ± 0.122 and 8.65 ± 0.072 log CFU/g) and between NP and 

P400/10 at 42 days (9.03 ± 0.065 and 8.94 ± 0.090 log CFU/g) (p>0.05), which seem 

to indicate a recovery of the total mesophilic bacterial counts. Similar results were 

shown by Juan et al. (2008) [92], in spite of reductions caused through HPP, treated 

cheese also reached similar counts to untreated cheese (7.95 and 7.9 log CFU/g, 

respectively), at 90 days of ripening (at 12 °C and 85% relative humidity). 

Between processed samples, it was verified one pattern: the total microflora 

counts decreased with the increase of the pressure applied. However no significant 
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differences were verified between all treated samples at 14 and 70 days of storage 

(p>0.05). 

In general, cheese treated at 600 MPa (P600/3) showed more differences in 

counts relatively to NP cheese, and it was considered the most severe treatment for 

total microflora; on the other hand, the total microflora counting numbers in treated 

cheese at 400 MPa (P400/10) were the least affected. The same conclusion was found 

by Voigt et al. (2010) [95], which verified that cheese treated at 600 MPa appeared 

significantly different to the control and the cheese pressurized at 400 MPa, (4.26; 

6.04 and 5.39 log CFU/g, respectively), after 28 days of storage. They treated mature 

blue-viened cheese (6-12 weeks) at 400 and 600 MPa at 20 °C for 10 min, and then 

cheese samples were stored at 4 °C [95]. 

The counts of total aerobic mesophilic microorganisms decreased in all 

conditions at 100 days, showing no significant differences (p>0.05) among the same 

samples counted at 0 days of storage.  

 

 

Figure 9. Counting of total aerobic mesophilic microorganism after 0, 14, 42, 70 and 100 days of storage in 
NP cheese and in HPP cheese.  Different letters denote significant differences (p < 0.05) between samples 
at the same conditions (non-capital letters) or between samples at the same time of storage (capital 
letters). 
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1.2.2 Mesophilic LAB 

The lactic acid bacteria in cheese are an important population due to its 

metabolic activity during the ripening. In other to understand its role in the cheese 

characteristics this microbial group was studied in Serra Cheese after HPP and during 

storage. 

At 0 days of storage (equivalent to 45 days of ripening), it was counted 8.84 ± 

0.291 log CFU/g of mesophilic LAB, which increased to 9.02 ± 0.165 at 14 days of 

storage, then decreased slightly, reaching 8.36 ± 0.077 log CFU/g at 100 days of 

storage, having no significantly differences during this period in NP samples (p>0.05), 

as shown in Figure 10. These counting results were closer from those that had been 

quantified in Serra cheese: 9 log  CFU/g at 35 days of ripening by Macedo et al. (1996) 

[15]; 8.30 log CFU/g at 60, 90 and 120 ripening days by Tavaria et al. (2006) [21]; 

8.18 log CFU/g at 60, 8.38 at 90 and 8.02 log CFU/g  at 180 days in Serra cheese by 

Dahl et al. (2000) [28].  

HPP caused low cycle reductions in LAB counts, being quantified 0.42 in 

P400/10, 0.26 in P500/5 and 0.82 in P600/3 samples, which resulted in 8.43, 8.53 

and 8.02 log CFU/g, respectively at 0 days of storage. Low cycle reductions in LAB 

microflora had been reported by Juan et al. (2008) [92], having HPP caused 0.95 log 

reductions (being the initial counts of 7.58 log CFU/g). They treated at 300 MPa for 

10 min at 15 days of ripening, a semihard ewe milk cheese (manufactured from 

pasteurized milk) [92].  

For each time of storage, analysing Figure 10, it was possible to verify one 

profile: the LAB counts in HPP samples were below the counts in NP samples. There 

were significant differences between NP and all treated samples at 14 (p<0.01) and 

70 days of storage (p<0.001), which showed 9.02 ± 0.165 and 8.44 ± 0.019 log CFU/g 

in NP samples and 8.31 ± 0.001, 8.21 ± 0.092 and 7.80 ± 0.029 log CFU/g (at 14 days); 

and 7.50 ± 0.025, 7.43 ± 0.031 and 7.14 ± 0.016 log CFU/g (at 70 storage days) for 

P400/10, P500/5 and P600/3, respectively. However, no significant differences 

occurred between NP and P400/10 samples at 0, 42, and 100 days of storage 

(p>0.05). 
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Figure 10. Counting of mesophilic lactic acid bacteria during 0, 14, 42, 70 and 100 days of storage.  
Different letters denote significant differences (p < 0.05) between samples at the same conditions (non-
capital letters) or between samples at the same time of storage (capital letters). 

 
Between processed samples, it was verified one pattern: the LAB counts 

revealed higher decrease in samples treated with higher pressure. This effect is more 

evident by analysing the decrease during the storage, which followed a first order 

kinetics, with rate constant (k) that was determined using least squares linear 

regression from a semilogarithmic plot (Figure 11).  

 

 

Figure 11. Linear decrease the Ln LAB counts in non-processed cheese and in pressurized cheese, which 
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0,00 

2,00 

4,00 

6,00 

8,00 

10,00 

12,00 

0 14 42 70 100 

L
o

g
1

0
 (

C
F

U
/

g
) 

Storage time (d) 

Mesophilic LAB 

NP P400/10 P500/5 P600/3 

y = -1.43E-02x + 2.06E+01 
R² = 0.851 

y = -1.77E-02x + 1.94E+01 
R² = 0.653 

y = -3.95E-02x + 1.97E+01 
R² = 0.988 

y = -3.86E-02x + 1.86E+01 
R² = 0.953 

13,00 

14,00 

15,00 

16,00 

17,00 

18,00 

19,00 

20,00 

21,00 

22,00 

0 50 100 

L
n

 N
 (

C
F

U
/g

) 
 

Storage time (d) 

Mesophilic LAB 

NP 

P400/10 

P500/5 

P600/3 



 V. Results and Discussion 

University of Aveiro – Chemistry Department   51 

The determined rates were 1.43x10-2 for NP, 1.77x10-2 for P400/10, 3.95x10-2 

for P500/5 and 3.86x10-2 d-1 for P600/3 samples, being the higher rate constant 

quantified in samples treated at higher pressure. At 100 days, it was verified that 

treatment at 600 MPa was the most severe for LAB counting, having significant 

differences (p<0.001) compared to NP samples, 6.23 ± 0.132 and 8.36 ± 0.077 log 

CFU/g, respectively. On the other hand, the treatment at 400 MPa caused less effect in 

LAB counts, being counted 7.84 ± 0.055 log CFU/g, having no significant differences 

with NP samples at 100 days (p>0.05). These results were according with the 

publication of Juan et al. (2008) [92], where no significant differences were shown 

between control and treated cheese (8.02 and 7.95 log CFU/g) at 300 MPa (10 min), 

after 90 days of ripening. These authors pressurized a semihard ewe milk cheese 

(manufactured from pasteurized milk), at 15 days of ripening [92]. Other authors, 

Voigt et al. (2010) [95], verified that cheese treated at 600 MPa revealed significant 

differences in LAB counts to the control and the cheese pressurized at 400 MPa, 

(2.10; 5.40 and 5.41 log CFU/g, respectively), after 28 days of storage at 4 °C. They 

treated mature blue-viened cheese (6-12 weeks) at 400 and 600 MPa at 20 °C for 10 

min [95]. Concerning all, the results obtained in this work were according with those 

of the literature. 

 

1.2.3 Enterobacteriaceae 

The counting of Enterobacteriaceae includes all members of the coliform 

group (including E. coli), comprising foodborne pathogens Salmonella, Shigella, and 

Yersinia. It was shown to be an alternative to coliform counts because it is more 

inclusive considering pathogenic bacteria. The Enterobacteriaceae counts may be 

superior to coliforms because they have collectively greater resistance to the 

environment conditions than the coliforms, and, this way, they can be used as 

indicators of sanitation good manufacturing practice (GMPs) [120]. 

Enterobacteriaceae counts were analysed after HPP and during storage period. 

In NP cheese with 45 day of ripening (0 days of storage), it was counted 5.46 ± 

0.054 log CFU/g. This quantification is in accordance with Tavaria et al. (2000) [27], 

which quantified ≈ 6 log CFU/g of Enterobacteriaceae in Serra cheese made in Oliveira 
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do Hospital at 35 ripening days and ≈ 5 log CFU/g at 60 ripening days. Previously, 

Macedo et al. (1995) [16] enumerated ≈ 6.7 log CFU/g  of coliforms in Serra cheese 

with 35 days of ripening, manufactured from ewe’s lactation of autumn. The same 

authors obtained ≈ 6 log CFU/g of coliforms in cheese with the same ripening period 

but produced in October-November in 1994 [15].   

Analysing Figure 12, it is possible to verify a great decrease of 

Enterobacteriaceae counts in control cheese during storage. After 14 days, it was 

registered 4.56 ± 0.001 log CFU/g, at 42 days 2.51 ± 0.023 and at 70 and 100 days 

below the detection limit (considered < 2.0 log CFU/g). This behaviour describes a 

first order kinetics, as shown in the inner graph in Figure 12, with the following 

equation (7): 
 

 

                                                        (Equation 7) 

The decrease of Enterobacteriaceae counts during the ripening period had 

already been reported by Tavaria et al. (2000) [27], which refer 4.56 log CFU/g at 60 

days of ripening. Dahl et al. (2000) [28] have extended the studies during a longer 

ripening time and counted 5.70 log CFU/g at 60 ripening days, 6.10 at 90 days, 4.19 at 

120 days, 3.02 at 150 days and zero at 180 days. 

This microbial group is usually associated with poor sanitary conditions, but it 

was observed a decrease in the cellular counts in [27, 28] during the ripening period 

and as shown in this study, in Figure 12, during the storage, which suggests that 

Enterobacteriaceae are somewhat controlled by competing species that will 

eventually prevail by the end of ripening  and during the storage [27]. 

HPP caused a great impact in the counting of this microbial group, which was 

shown by the counting numbers that were below the limit of quantification, being 

registered more than 3.46 log reductions for P400/10, P500/5 and P600/3 samples 

after treatment and during 100 days of storage. A similar effect was obtained in La 

Serena cheese (manufactured with ewe’s raw milk), by Arqués et al. (2006) [83]. 

They verified 4.85 and > 5 log reductions in coliforms counts on day 60, being treated 

at 50 days of ripening at 400 and 500 MPa (for 10min at 10 °C) respectively [83]. 
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Figure 12. Enterobacteriaceae counts in NP samples and treated samples (P400/10, P500/5 and P600/3); 
treated samples were below the limit of quantification (bars not shown). Different letters denote 
significant differences (p < 0.05) between samples at the same conditions (non-capital letters). The inner 
graph shows the linear decrease of Ln Enterobacteriaceae counts in NP cheese at 5 °C during 42 days. 

 

1.2.4 Yeasts and moulds 

The number of yeasts and moulds are affected by the ripening period and 

lactation period [15]. Rind samples had shown more counting of yeast than interior 

samples, possibly because the rind is easily contaminated from the environment [15]. 

However, in this study, it was studied the yeasts and moulds counts of the interior 

mass of Serra cheese. 

At 0 days of storage (45 days of ripening) in NP cheese, it was counted 5.58 ± 

0.371 log CFU/g of yeasts and moulds. During the storage, this microbial group 

slightly increased until 6.59 ± 0.006 log CFU/g at 70 days of storage, and then tended 

to stabilize, at 100 days of storage (6.52 ± 0.028 log CFU/g), as shown in Figure 13.  

The literature referred different average values of the yeasts counts. At 35 

days of ripening it was registered ≈ 3 log CFU/g (in the center of Serra cheese 

produced in Autumn) by Macedo et al. (1995) [16], but 5 log CFU/g (in the interior of 

Serra cheese manufactured in October-November) by Macedo et al. (1996) [15]. 

Other study realized by Tavaria et al. (2000) [27], revealed ≈ 4 log CFU/g at 35 days 

and ≈ 6 log CFU/g at 60 days of ripening (they studied the cheese interior 

manufactured in 1997). More recently, the inner Serra cheese was studied by Dahl et 

al. (2000) [28], which quantified 4.91 log CFU/g at 60 days of ripening however 
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increasing the counting for 6.53 log CFU/g at 150 days of ripening. Identical 

behaviour was reported by Tavaria et al. (2006) [21]. They quantified ≈ 4.3 log CFU/g 

at 60 days and ≈ 6.4 at 120 ripening days. 

Through the analysis of the Figure 13, it was possible to verify that HPP caused 

a high cycle reductions in all treated samples, being registered more than 3.58 

reductions at 0 days of storage. Moreover, during the 100 days of storage, the counts 

in all treated samples were below the limit of quantification (< 2.0 log CFU/g). Yeasts 

and moulds are the microorganisms most sensitive to HP treatments [67]. Daryaei et 

al. (2008) [84] reported that pressure treatments ≥ 300 MPa applied for 5 min to 

fresh lactic curd cheese (manufactured from pasteurized bovine milk) controlled the 

outgrowth of yeasts, below the limit of quantification, during 4 weeks of storage at 4 

°C. However, Voigt et al. (2000) [95], described only 0.15 and 3.07 log cycle 

reductions in yeast counts (having 6.37 log CFU/g in control cheese) on mature blue-

veined cheese treated at 400 and 500 MPa (at 20 °C for 10 min), respectively, after 28 

days of storage at 4 °C. 

 
 

 
Figure 13. Yeasts and moulds counts in NP samples and treated samples (P400/10, P500/5 and P600/3) 
during 100 days storage; treated samples were below the limit of quantification (bars not shown). 
Different letters denote significant differences (p < 0.05) between samples at the same conditions (non-
capital letters).  
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1.2.5 Listeria innocua 

Listeria innocua was inoculated in Serra cheese as a surrogate of Listeria 

monocytogenes. This pathogen has caused several outbreaks associated with cheese 

contamination [60, 61]. Moreover, the USA Food and Drug Administration (FDA), at 6 

of May 2013, prohibited the interstate sale or distribution of unpasteurized milk 

products for human consumption [121]. FDA alerted the consumers that raw milk 

products are never guaranteed to be “pathogen-free”. Thus, HPP can be a useful 

technology for improvement of the safety of Serra cheese.  

In this study, L. innocua was inoculated in the cheese, to see if HPP can 

significantly reduce the counts of Listeria, if Serra cheese was accidently 

contaminated by L. monocytogenes (using L. innocua as surrogate). This purpose may 

open the possibility to export Serra cheese to other countries, like USA, with the label 

“Pathogen-free” or “Listeria-free” or “Cold-pasteurized Product”. 

L. innocua was inoculated in the second group of cheese samples at 8.58 ± 

0.056 log CFU/g. Then, some samples were pressurized (L+P400/10, L+P500/5 and 

L+P600/3) and one was not processed (L+NP), and all were stored at 5 °C.  

In L+NP samples, the L. innocua counts decreased during the storage, showing 

a first order kinetic with a rate constant of 1.02x10-1 d-1 (Figure 14), being counted 

7.03 ± 0.023 at 14 days and 3.62 ± 0.152 CFU/g after 100 days of storage, showing 

significant differences in Listeria counting during these period (p<0.001). 

HPP samples showed no significant differences between them, once the 

treatment caused 4.79 in L+P400/10, 4.85 in L+P500/5 and 4.84 log cycles 

reductions in L+P600/3 samples, at 0 days of storage, which correspond to 3.80 ± 

0.015 in L+P400/10, 3.73 ± 0.083 in L+P500/5 and 3.74 ± 0.039 log CFU/g in 

L+P600/3 samples. The same treatments had been applied in fresh cheese inoculated 

with L. innocua  (ATCC 51742, ATCC 33090, and SEA 15C10) at 7.20 log CFU/mL by 

Hnosko et al. (2012) [75]. These authors reported 1.96 (on HPP at 400 MPa for 10 

min), 3.04 (on HPP at 500 MPa for 5 min) and 5.72 log reductions (on HPP at 600 

MPa for 3 min). 

Analysing Figure 14, it is possible to verify that the L. innocua inoculated was 

below the limit of quantification (< 2 log CFU/g) from 14 days of storage onwards for 

all treated samples, and it remained like this during 100 days of storage. Thus, at 14 
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days of storage, > 5.03 log cycle reductions were verified in pressurized samples. 

These results can be due to the effect of the storage in L. innocua counts or possibly 

due to some cell injuried by damage caused by HHP that did not allow recovery until 

14 days.  

A similar behaviour was reported by Arqués et al. (2005) [86], with complete 

inactivation (being the initial count of 5.66 log CFU/g) of L. monocytogenes Scott A 

after 10 days of storage. They inoculated this pathogen at 50 ripening days in cheese 

made from raw milk and it was treated at 500 MPa (5 min at 10 °C). In other study, by 

López-Pedemonte et al. (2007) [68], a model washed-curd cheese was inoculated L. 

monocytogenes (strains NCTC 11994 and Scott A) at 7.5 log CFU/g, then treated at 

400 and 500 MPa (10min at 5 °C). Both strains showed > 5 log reductions storage at 8 

°C for 30 days [68]. 

Concerning all, HPP treatments showed to reduce > 5 log cycles reductions in 

Serra Cheese, as it was already reported in the literature. 

 

 

 

Figure 14. L. innocua counts in L+NP samples and treated samples (L+P400/10, L+P500/5 and L+P600/3); 
from 14 days of storage treated samples were below the limit of quantification (bars not shown). Straight-
line equation was calculated on linear X-axis, which is not the case of this Figure, and so, the straight-line 
segment is only intended to give the reader the visual information of linear trend. Different letters denote 
significant differences (p < 0.05) between samples at the same conditions (non-capital letters) or between 
samples at the same time of storage (capital letters). 
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Part II: Physicochemical analysis 

2.1 Effect of HPP in moisture content 

The moisture or water content in Serra cheese is variable with the time 

(ripening and storage), and the zone of the gathered sample in analysis [15].  

The moisture content in Serra cheese was significantly different (p<0.001) 

between 0 days of storage and all other storage time, in all conditions, as shown in 

Figure 15. The water content quantified at 0 days (45 days of ripening) was between 

54.71 ± 1.38 and 58.45 ± 2.80 %, showing no significant differences between the four 

samples at different conditions (NP and three HP treatments) (p>0.05); however 

higher moisture content values were quantified in P400/10 and P500/5 HP treated 

samples. The determinations at zero time were repeated after 100 days of samples 

storage at -80 °C and the moisture contents obtained were among 54.84 and 59.72%, 

being registered higher values for treated samples. 

The typical behaviour is the decrease of moisture content during ripening. 

Macedo et al. (1996) [15] quantified ≈ 59% at 0 days of ripening,  decreasing until 

42.5% at 35 days, in the center of the cheese produced in October-November [15]. 

The same behaviour was reported by Sousa et al. (1997) [23], being recorded ≈ 47% 

(w/w) at 45 and 60 ripening days. Other studies revealed 47.35 at 45 days of ripening 

[20]; 49.79% at 60 ripening days [19]. More recently, Macedo et al. (2004) [22] 

verified a mean of 49.0, 48.3 and 48.0 at 28, 42 and 63 ripening days, respectively. 

Concerning all, the water content at 45 ripening days, equivalent to zero days of 

storage, should be among 47 and 50%. Nevertheless, it this study, the cheese showed 

to have more moisture content at 0 days of storage. 

Analysing Figure 15, it is possible to observe that from 14 days of storage, for 

certain conditions (NP, P400/10, P500/5 and P600/3), there were no significant 

differences between samples, considering different storage time (p<0.05), except for 

P600/3 at 42, 70 and 100 days of storage (p<0.05) (showing, however, no significant 

differences between those 3 quantifications). 

 In general, in each period of storage, no significant differences were annotated 

between four samples (p>0.05), with the exception of P600/3 at 70 days and 
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P400/10 at 100 days of storage (p<0.05). From 14 days of storage, the water content 

ranged between 41.23 ± 2.93 and 44.90 ± 0.554 % in NP samples, between 42.81 ± 

0.222 and 46.25 ± 1.40 in P400/10, between 42.12  ± 0.484 and 45.06 ± 0.205 % in 

P500/5 and between 40.83 ± 1.73 and 44.96 ± 0.575 % in P600/3 samples.  

Publications reported that the moisture content decreased after HPP, but 

increased during the ripening when comparing to control cheese [71, 92, 122]. This 

way, HPP revealed that treated cheeses had better water retention properties than 

control cheese during the ripening [92, 107], which could be explained by the fact 

that HP treatments causes changes in the cheese protein network, forming new 

structures that better retain the water in cheese [122]. HPP treated cheeses showed 

no more than 1% [71, 92, 122] of water content in relation to control samples. 

Nonetheless, in this study, some treated samples showed more than 1% of moisture 

content when compared with non-processed samples, such as P400/10 at 100 days, 

P500/5 at 0, 14 days and P600/3 at 14 days of storage. 

 

 
Figure 15. Moisture content in Serra cheese: non-processed and treated samples at 0, 14, 42, 70 and 100 
days storage at 5 °C. Different letters denote significant differences (p < 0.05) between samples at the 
same conditions (non-capital letters) or between samples at the same time of storage (capital letters). 
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2.2 Effect of HPP on water activity – aw 

The water activity is an important parameter in food preservation, because it 

can inhibit microbial growth, being the aw equal to 0.90 the lower limit for bacterial 

growth (in general) and some yeasts are inhibited to growth [123]. 

Analysing Table 10, it is possible to observe one pattern in water activity in 

Serra cheese: in all conditions the aw measured at 0 days of storage was a little higher 

than the aw measured during the storage. However, no significant differences were 

verified in the aw between all samples at 0 days (p>0.05), which changed between 

0.949 and 0.953. These values were above the 0.94, which was determinate by 

Macedo et al. (1997) [20], at 45 days of ripening of Serra cheese.  

In general, starting from 14 days, no significant differences were verified in aw 

measured during 100 days (p>0.05), between the four samples in each time of 

storage (with exception for P500/5 at 14 days); and between samples at the same 

condition, at different storage time (exception to NP and P500/5 at 42 days and 

P500/5 at 14 days). During this period the aw ranged between 0.940 and 0.948. 

These results showed that HPP caused no changes in aw in Serra cheese. 

 

Table 10. Water activity measured in non-processed samples and treated samples at 0, 14, 42, 70 and 100 
days of storage at 5 °C. Different letters denote significant differences (p < 0.05) between samples at the 
same conditions (non-capital letters) or between samples at the same time of storage (capital letters). 

 
 
 

 

2.3 Effect of HPP on pH-values and on titratable acidity 

The pH variations in Serra cheese are mainly due to the formation of lactic 

acid, mainly due to the metabolism of LAB [16]. This study was completed by 

determination of titratable acidity, which was expressed in grams of lactic acid per 

100 grams of cheese. Both chemical parameters were measured in samples of the 
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interior of Serra cheese with 45 days of storage, which were stored during 100 days 

at 5 °C. 

The pH of Serra cheese at 45 days of ripening (0 days of storage) was 5.24 ± 

0.06, which slightly increased during 70 days of storage to 5.41 ± 0.03, then 

decreased to 5.33 ± 0.06 at 100 days. The typical behaviour is the decrease of the pH 

during the first 28-42 ripening days [15, 22, 23], that can be associated with the 

degradation of residual lactose in lactic acid [107], lactic fermentation [15], by LAB 

leading to pH-values between 4.75 and 5.40 at 35 days in the center of the cheese [15, 

23], depending on the lactation season. Macedo et al. (2004) [22] reported the 

decrease of the pH in Serra cheese (manufactured in November) during the ripening, 

reaching 5.24 at 42 days (being 6.37 at 0 days of ripening), and increasing to 5.50 at 

63 days of ripening. Macedo et al. (1997) [24], revealed the same behaviour, shown in 

average 5.23 at 35 days of ripening in Serra cheese. Thus, the pH-values measured in 

NP samples in this study were according with the literature. However, other studies 

reported higher pH values; for example Macedo et al. (1997) [19] revealed 5.55 at 60 

days of ripening. 

Analysing Figure 16, it is possibly to verify one profile, the pH-values of NP 

samples were below the pressurized samples during 70 days of storage and increased 

slightly during this period in all samples. Only at 100 days the pH-values were 

practically equal in all samples, ranging between 5.30 ± 0.05 and 5.33 ± 0.06, having 

no significant differences between them (p>0.05). The highest differences between 

NP and treated samples were registered at 42 days of ripening, with 5.38 ± 0.06 and 

among 5.44 ± 0.05 and 5.49 ± 0.08, respectively (p<0.05). 

The effect of HPP in pH-values of cheese have been reported in several 

publications (in different kinds of cheese) [71, 91, 92, 99-101, 104, 106, 108], which 

showed higher values for treated samples. Ewe milk cheese treated at 15 days of 

storage at 300 MPa (for 10 min) reported 4.91 of pH in HPP samples and 4.80 in 

control cheese at 60 days of ripening [122]. However, Garde et al. [71] treated at 300 

and 400 for 10 min at 50 days of ripening La Serena cheese (manufactured from raw 

ewe’s milk) and revealed no significant differences in pH value after 10 days of 

treatment.  
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Figure 16. Mean of pH-values measured in cheese samples non-processed (NP) and HPP samples 
(P400/10, P500/5 and P600/3) at 0, 14, 42, 70 and 100 days of storage. Different letters denote significant 
differences (p < 0.05) between samples at the same conditions (non-capital letters) or between samples at 
the same time of storage (capital letters). 

 

The titratable acidity measured, showed in Table 11, shows one pattern: in 

each time of storage, NP samples revealed generally higher titratable acidity than 

treated samples.  

These behaviours can be correlated with LAB counts, which were in NP 

samples higher than HPP. In HPP samples, the LAB counts were below than those of 

NP samples, and decreased during the storage, which might explain the increasing of 

the pH-values, maybe due to inactivation of LAB and their enzymes [71], leading to 

the decrease of lactic acid formation (cheese acidification), which was according with 

the lower titratable acidities measured in treated cheese samples. 

 
 

Table 11. Mean of titratable acidity expressed in grams of lactic acid per 100 grams of cheese in NP and 
treated samples storage during 100 days. Different letters denote significant differences (p < 0.05) 
between samples at the same conditions (non-capital letters) or between samples at the same time of 
storage (capital letters). 
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In general, the titratable acidity increased during the storage, being more 

evident in NP samples which showed 0.133 at 0 days and 0.184 g lactic acid/100g at 100 

days of storage.  

Between treated samples, in general, P400/10 samples showed higher pH-

values and P600/3 showed lower pH-values. However, at 0 and 100 days of storage, it 

was measured the same pH value, 5.31 ± 0.05 and 5.30 ± 0.05, respectively in 

P400/10 and P600/3. Juan et al. (2007) [107] reported similar behaviour to that 

showed in Figure 16, in which the pH increased more in samples treated with higher 

pressure. These authors described 5.21 to samples treated at 300 MPa, 5.14 at 400 

MPa and 5.16 for 500 MPa, being the control 5.09 at 60 ripening days. This study was 

also realized in ewe milk cheese, treated for 10 min at 12 °C at 15 days of ripening. 

The HPP samples behaviour showed in this study were according to the literature. 

 

2.4 Proteolysis analysis 

Several authors [22, 24, 71, 92, 122, 124] reported that proteolysis is the most 

important set of biochemical events taking place during the ripening of cheese, due to 

its major impact on texture and flavour development. During proteolysis, proteins are 

degraded to polypeptides (primary products) and subsequently to secondary 

products such as small and medium-size peptides and eventually free amino acids. 

Primary proteolysis is believed to cause softening of the cheese texture early during 

ripening, via disruption of its three-dimensional protein matrix. The secondary 

proteolysis generates peptides that are small enough to be detected by the human 

taste receptors [124]. 

The proteolytic activity is proportional to the ratio between nitrogen soluble 

in water (WSN) per total nitrogen (TN), which indicates the ripening extension index. 

The ripening depth index can be obtained by the ratio between nitrogen soluble in 

12% (w/v) in trichloroacetic acid (TCA) and TN. It was attempted to determinate TCA 

by Bradford method; however the samples showed to be below the limit of 

quantification. These samples were concentrate by evaporation to increase the 

concentration, but they become viscous and dense, leading to deposition on 

spectrophotometry plate, which did not allow a correct quantification. 
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2.4.1 Effect of HPP in Water soluble nitrogen content (WSN) 

The WSN content allowed to determinate the water soluble polypeptides at 0, 

14, 42, 70 and 100 days of storage, and the results are shown in Figure 17. 

Non-processed cheese showed 0.207 ± 0.021 g/100g at 0 time of storage, but 

it increased for 0.338 ± 0.023 at 42 days; then it slightly increased for 0.385 ± 0.003 

g/100g at 100 days. It was not possibly to compare with the literature, because into 

publications WSN is expressed in g per g of TN [22-24, 124]. 

HPP samples at zero days showed 0.212 ± 0.013, 0.221 ± 0.010 and 0.221 ± 

0.023 g/100g, for P400/3, P500/5 and P600/3, respectively. At 14 days, least 

differences between the four conditions were registered, showing no significant 

differences between them (p > 0.05).  

Analysing Figure 17, it can be observed that: i) the WSN increase in all 

conditions during the storage; and ii) in each period of storage, NP and treated 

samples showed identical WSN content, having no significant differences between 

them (p>0.05).  In treated samples, the WSN content ranged between 0.323 ± 0.015 

and 0.351 ± 0.021 g/100g (being higher in P400/10) at 42 days, and from 0.381 ± 

0.003 to 0.384 ± 0.019 g/100g at 100 days of storage. 

 

 
Figure 17. Water soluble nitrogen content in g per 100g of cheese at 0, 14, 42, 70 and 100 days of storage 
at 5 °C in non-processed and treated samples. Different letters denote significant differences (p < 0.05) 
between samples at the same conditions (non-capital letters) or between samples at the same time of 
storage (capital letters). 
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found in WSN/TN between control and treated cheese (with 15 d at 300 MPa for 10 

min) at 60 and 90 ripening days [92]. However, lower proteolysis values were 

reported in La Serena cheese treated at 300 MPa (10 min on day 50) at 60 days, 

whereas, the same cheese, treated at 600 MPa exhibited similar proteolysis level on 

day 60 than control cheese [71]. 

 

2.5 Lipid oxidation analysis 

Serra cheese has between 45 and 60% of lipid content [14], which can oxidize, 

causing deterioration of the fat content. Polyunsaturated fatty acids (PUFA) are 

susceptible to oxidation during food manipulation, processing and storage [125]. In 

Serra cheese, it was recorded 51.2 mg/kg at 21 days of ripening and 40.3 mg/kg at 44 

days in total of linolenic acid [45]. 

The unsaturated fatty acids can be oxidized to form odourless, tasteless and 

colourless hydroperoxides [50]. These are further decomposed to flavourful 

secondary oxidation products, which are mainly aldehydes, such as malondialdehyde 

(MDA) [49].  It is used in assessment of lipid oxidation. 

 

2.5.1 Effect of HPP in malondialdehyde content (MDA) 

The lipid oxidation in Serra cheese, non-processed and HP treated, were 

determined through quantification the MDA content, as shown in Figure 18. 

By analysing Figure 18, it is clear that the general behaviour was the increase 

of the MDA content in all conditions until 70 days of storage, and then the decreased 

at 100 days. The determinations of MDA content in cheese at 100 days of storage 

were repeated after 3 days of samples storage at -80 °C and similar values were 

obtained. 

It is possible to verify that non-processed samples showed higher MDA 

content than treated samples, with exception of 0 days. The quantification 

immediately after the treatment revealed higher MDA values on treated samples, 

between 0.0177 ± 0.004 and 0.0213 ± 0.001 μg/g but 0.0174 ± 0.001 μg/g in NP 

cheese; thus, HP caused the increase of MDA after the treatment. 
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Figure 18. Malondialdehyde content in Serra cheese non-processed and HP treated at 0, 14, 42, 70 and 100 
days of storage at 5 °C. Different letters denote significant differences (p < 0.05) between samples at the 
same conditions (non-capital letters) or between samples at the same time of storage (capital letters). 

 

Until 70 days, between treated samples, higher MDA concentrations were 

found in samples P600/3, but no significant differences (p>0.05) were recorded in 

each storage period between samples treated at 3 HP conditions. During this period, 

lipid oxidation followed a zero order kinetics, with a rate constant between 3.22x10-4 

and 3.29x10-4 d-1 for treated samples, being the lower rate found for cheese treated at 

400 MPa; and 5.72x10-4 d-1 for non-processed samples, as shown in Figure 19. 

Nevertheless, significant differences (p<0.001) were registered between non-

processed and treated samples in each storage time. These results show that the HPP 

have positive effect in reducing lipid oxidation, since the rate constants determined 

were about half of those obtained for NP cheese. 
 

 

 

Figure 19. Lipid oxidation of NP and treated samples during 70 days of storage, following the zero order 
kinetics with the respective equations. 
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Lipid oxidation was not studied in Serra cheese, but it was already determined 

in raw goat milk cheese with higher content of linoleic acid, 257.2 μg/g. In this case, 

the lipid oxidation also increased, with 0.04, 0.05 and 0.08 μg/g at 1, 60 and 90 

ripening days [126]. In Gouda cheese (with 30.26% of total lipids) were recorded 

0.25 μg/g, much higher than in Serra cheese, which can be due to the cheese storage 

at 4 °C for an unknown, but probably prolonged, period of time [51]. 
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VI. CONCLUSIONS  

 This study showed good results for Serra cheese preservation: HPP inactivated 

deteriorative and a pathogenic surrogate microorganism and low effects were 

verified in microorganisms beneficial to cheese maturation. Lactic acid bacteria were 

the least affected by HPP, being reduced at maximum by ~ 0.5 Log CFU/g. This 

microbial group decreased during the storage, following a first order kinetics, with a 

rate constant of 1.43x10-2 d-1 for non-processed samples and between 1.77x10-2 and 

3.86x10-2 d-1 for treated samples (the higher rate was found for cheese treated at 600 

MPa). Total aerobic mesophilic microorganisms were reduced by ~ 1.0 Log CFU/g 

(samples treated at 400 MPa were the least affected). In general, in each period of 

storage, the counts of total mesophilic in HPP samples were below the counts in non-

processed samples. Enterobacteriaceae counts showed ≥ 3.5 log cycle reductions in 

HPP samples, which was below the detection limits, remaining unchanged during the 

storage, while non-processed cheese showed a first order decrease throughout 

storage, with a rate constant of 7.06x10-2 d-1. Yeasts and moulds counts exhibited ≥ 

3.6 log cycle reductions after HPP. In NP samples remained constant at ≈ 6 log CFU/g. 

Samples inoculated with L. innocua at 8.58 log CFU/g presented ≥ 4.8 log cycle 

reductions after HPP, and levels below the detection limits after 14 days. Non-

processed samples showed a first order kinetics decrease of L. innocua with a rate 

constant of 1.02x10-1 d-1.  

 Physicochemical parameters revealed small changes, in general, having no 

significant differences between non-processed and treated cheese during the storage. 

Concerning the water content and the water activity, no significant differences were 

verified between treated and NP samples during the storage. The pH-values and 

titratable acidity were different in non-processed and processed samples. Treated 

samples showed high pH-values and low titratable acidity, possibly due to less LAB 

counts. The water soluble nitrogen increased during the storage but no significant 

differences were verified between treated and non-processed samples. The lipid 

oxidation increased faster in non-processed cheese with a zero order kinetic constant 

of 5.72x10-4 d-1, and revealed to be less intense in treated samples P400/10 and 

P500/5 with rate constant of 3.29x10-4 d-1.  
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The obtained results allowed to conclude that HPP has a good potential to 

render Serra Cheese free of microbial pathogens, with no significant changes in LAB 

and in cheese characteristics.  
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VII. FUTURE WORK 

 
Considering all the results obtained in the present work, it is clear that some 

aspects would benefit from further investigation in order to clarify other interesting 

parameters of the effect of HPP in Serra cheese. At the microbial level, it could be 

studied the effect of HPP in Staphylococci counts and in inoculated Yarrowia lipolytica, 

which causes browning of the rind and can lead to the loss of many cheeses. 

The proteolysis can be explored throughout the determination of total 

nitrogen content (TN), nitrogen soluble in 12% (w/v) trichloroacetic acid (TCA), 

nitrogen soluble in 5% (w/v) phosphotungstic acid (PTA). The free amino acids could 

also be studied after HPP. 

The lipolysis study can be completed by determination of free fatty acids. The 

identification and quantification of all fatty acids, by gas chromatography can be an 

interesting study.   

It is important to know if the volatile compounds release is affected by HPP, 

which can be studied by Solid Phase Micro Extration  (SPME). 

The effect of HPP in cheese rheology should be studied, revealing the 

fracturability, firmness, cohesiveness, adhesiveness, springiness, gumminess, and 

chewiness of the cheese. 

It can be interesting to realize microscopic analysis in processed cheese 

samples to know if HP causes alterations in microbial distribution and cheese 

structure.  

 To complete the present research, it would be of major interest to perform 

sensorial analysis but this would require higher amounts of cheese.  
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APPENDICES 

Appendix  A – Serra Cheese Manufacture 
 
Serra Cheese manufacture  

The Serra Cheese manufacture can be divided in milk handling, milk 

coagulation, working the curd and draining the whey, pressing, external salting, 

ripening, packing and preservation. 

 
Milk handling 

The shepherds bring the raw pure milk in larger containers to the cheese-

making area and kept it warm for 30-60 minutes [14]. The milk is filtered through a 

cloth (clean, fine and white) to remove impurities (like hair and dust). The milk is 

poured in the cloth fixed in the edge of the coagulation vat. The milk is heated up to 

28 – 32 ° C. 

The most dairies add the salt in the total milk. Some dairies add the salt to the 

cheese surface during the draining of whey. 

 

Milk coagulation 

Milk reaches the desired temperature for coagulation at 28 °C (some cheese 

makers evaluate this via fingertips). Milk coagulation is promoted by adding of thistle 

flower (Cynara cardunculus, L.) [8]. This can be added by three methods. In the first, 

the dry cardoon flower is added to the warm milk, mixed for a few minutes and 

filtrated through a fine and clean cloth. In the second, the dry cardoon flowers are 

macerated with a little amount of water and salt; these results in a paste that is 

diluted in water to extract the enzymes, that are filtrated through a fine and clean 

cloth; the extract is added directly in the milk. In the third, the dry cardoon flowers 

are macerated with salt and water; this paste is placed into a cloth with closed ends; it 

is submersed in the milk, agitated and squeezed. The last method is the most 

commonly used [14]. 

After 45 to 60 minutes coagulation ends, which can be confirmed by analyzing 

the consistency of the gel or curd, though of the delicate agitation of the pan [8]. 
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The best Serra Cheese is made with 0.3 g of thistle flower per litre of milk, with 

a coagulation temperature of 28 °C [19]. Higher temperatures lead to losses in the 

softness of the final cheese [14]. However, lower temperature coagulation leads to 

vulnerable three-dimensional casein networks that retain less water, which causes to 

the loss of proteins and enzymes during curd cutting [30]. 

However, the average coagulation temperature (in 14 farmhouses) and the 

coagulation time changes throughout three distinct periods: January to February, 

March to April, and May to June, as shown in Table 12. These different periods are 

related to different weather, pasture, and handling conditions [127].  

 

Table 12. Mean coagulation temperature and coagulation time throughout three periods. 

  
January to 
February 

March to 
April 

May to 
June 

Reference 

Coagulation temperature  
(average in °C) 

28.2 30.0 30.9 [128] 

Coagulation time (min) 28 to 57 25 to 63 25 to 54 [127] 

 

The coagulation time varies possibly due to the different amounts of cardoon 

used and the native acidity of the milk, which is caused by the fact that raw milk is not 

always used after milking, allowing microbial growth which decreases the pH [14]. 

Some authors [129, 130] defend that rennet concentration influences the 

rheological properties of the coagulum. Coagulation with lower and higher contents 

of rennet leads to slower coagulation, or faster, respectively. In 1997, Serra Cheese 

was made with 0.3 and 0.5g/L of cardoon, this study demonstrated no significant 

differences in the chemical, biochemical, textural and sensorial characteristics in 

Serra Cheese [20]. 

 

Cynara cardunculus L. characteristics 

In Portugal, the manufacture of traditional cheeses from raw ovine milk is 

obtained from Cynara cardunculus L or thistle flowers or simply cardoon. This flower 

grows wild and abundantly in the dry, rocky, and uncultivated areas of the southern 

and north-eastern parts of Portugal during all summer. This thistle variety is prickly 

and produces large heads and purple flowers, Figure 20 (A) [131]. 
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The mature plants are collected, then the flowers are dried in the shade and in 

the open air [14]. When dry, they are stored in a cloth or plastic bag in a dry place and 

sold at local markets, shown in Figure 20 (B) [22, 131]. Thought ion-exchange 

chromatography, Faro et al. [131] concluded that the drying process increase the 

enzyme heterogeneity, because, it were found four different peaks from the protease 

isolated from dry flowers, in contrast he obtained only one peak for the fresh flower.  

Thistle flower is known to be highly proteolytic [20]. Numerous studies have 

shown that the maximum proteolytic activity is associated with the stylet proteases 

[14, 131]. The enzymes extracted from the thistle flower have the maximum activity 

at pH 5.1 [24]. 

 

 

 

Figure 20. (A) The Cynara cardunculus L.  flower. (B) Dry thistle flower. 

 
Working the curd and draining the whey 

In this step, the curd is worked. It is manually cut with bare hand (obtaining 

very small pieces) or with the help of a knife, cup, or kitchen spoon. The curd pieces 

obtained are irregular in size and shape [132]. They are poured in white cloths (like a 

cloth bag with both ends together in the hand), afterwards they are tighten to drain 

the whey and put in cinchos, Figure 21 (A).  

 

 

 

Figure 21. A) Typical cincho. B) Typical francela. 

(A)       (B) 
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Cinchos are perforated cheese metal moulds with adjustable diameter, which allow to 

obtain cheeses with 13 to 20 cm of diameter and 8 to 10 cm of height. There are 

plastic moulds with defined diameter. Though the manual pressing and successive 

tightening, the whey is softly drain form the curd by the francela, Figure 21 (B). 

Francela is like a round-sloped table with a straight extension and a gap to draining 

the whey onto an open vessel. Afterwards, the collected whey is heated to precipitate 

the soluble proteins that origin the cottage cheese [8, 14]. 

During the draining, the curd cannot cool down because it will make the 

operation harder. The hands are the main workers. Cold hand are better for make 

cheese, which is contrary to popular belief [133].  

In order to the final cheese to have a plane, compacted and uniform surface, 

the cheese marker pricks the top of the cheese with the fingers, between 3 to 4 cm 

thick to desiccate more, and them squeezes it very well with their palms [8]. 

Working the curd and draining the whey can last of 1 hour per cheese.  

The cutting method used can influence the microbial level. The 

microorganisms tend to grow and develop in colonies along curd junctions [26]. 

 

Pressing 

Afterwards, the curd is pressed with a weight of 4 to 5 kg on top of each unit, 

for about 6 hours. In modern dairy producers, cheeses are kept 4 hours under 

pressure in industrial machines [8]. 

Pressing the curd is an important step because it avoids the development of 

extensive cracks in the Serra Cheese [134]. 

 

External Salting  

Salting is made with kitchen salt. In the major cheese makers, the salting 

process is made before the cardoon flower is added, during the milk handing in 

proportion of 30g per litre of milk [14]. 

Other cheese producers prefer to rubs the top and bottom surfaces of the curd 

with salt after taking them cinchos. This salting process contributes to the formation 

of the rind. By diffusion the salt enters the cheese matrix. The salt gradient, decreases 
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from surface to the centre, the moisture gradient increase in the opposite direction, 

which leads to a thicker rind when high salting levels are used [30].  

There are normally 6 [132] to 24 hours [127] intervals between consecutive 

rubbings. In average 0.5 to 0.9 g/cm2 of salt is used on the top surface of cheese and 

0.5 to 0.6 g/cm2 on the bottom surface [132].  

Rubbing the cheese surface is practiced in fewer producers or in producers 

that respect more the tradition. The dairywomen do not weigh the salt, they put it 

instinctively, which reveals the knowledge of generations [8]. 

The best cheese is made with salt added to fresh cheese surface in quantity of 

the 0.05 g/cm2 [19]. 

This step has impact in the cheese. The salt has effects in: the control of 

microbial growth and activity, the control of extracellular enzymatic activities, the 

control the curd syneresis and the control of moisture (particularly on the surface) 

[135, 136]. 

 

Ripening 

In this step, the sides of cheeses are involved in a white, clean and dry cloth 

(linen or cotton). This band cloth is necessary to avoid the loss of the cylindrical 

shape of cheese [14]. Cheese is now ready to ripe. 

In artisanal cheese producers (more family production or the small scale 

production), the ripening process occurs in two rooms, the first is the dry room 

(enxugo) and the other is the ripening room itself. 

The cheese is made in the following day and placed in shelves in the dry room. 

In old houses, there were wooden cabinets previously covered with cloth, for this 

specific purpose. Nowadays nobody uses them, due to the difficulty of cleaning [8]. 

Usually, in the dry room there is not controlled temperature and humidity. The 

humidity is also near saturation (95%). 

The lactic fermentation starts and simultaneously the reima occurs. In this 

phase, cheese loses its humidity, which concentrates in cheese surface and allows 

microbial growth favourable to maturation. Reima is a white-reddish viscous smear, 

important to obtain a good cheese. [128, 132] Between the 3rd and 4th day in the dry 

room, the dairy producers pass their hands in still malformed and fresh ring, to 
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homogenize the cheese exterior.  In the 9th and 10th day, when cheese is fairly dry, it is 

washed with warm water, whey, or plain raw milk for the first time. 

Cheeses are kept in the dry room for only 10 to 15 days. After this they go to 

the maturation room [8]. 

Due to tradition and generation knowledge, women cheese makers, control the 

opening of doors and windows in the ripening rooms, to create temperature and 

aeration necessary conditions, for the successful maturation of cheese. The typical 

cheese makers’ house is made in granite with a proper (characteristic/peculiar) 

microclimate that influences the final characteristics of Serra Cheese.  

In the maturation room, cheeses are kept in shelves. They are turn over and 

washed daily, but less frequently throughout of the ripening process [8], for example 

once a week, depending on the quantity of viscous smears [14]. The band cloth is 

adjusted if necessary. In this room, the humidity is about 85% [8]. 

In farmhouses, the temperature in the ripening rooms ranges between 4 and 

30 °C [128, 132] and the relative humidity ranges from 42 and 98% [132] and are 

directly dependent on the exterior weather conditions [14]. The best cheese ripening 

conditions are 10°C and 90 to 95% of relative humidity [137]. It is also possible with 

80 to 90% relative humidity, to obtain good yields of high quality cheese. If 

temperature and relative humidity is maintained during ripening a better cheese is 

obtained, contrary to what happens when this parameters fluctuate [127, 128].  

During the winter, the natural ripening conditions are 8 to 11°C and 96% of 

relative humidity [127]. Cheeses made during March to April in farmhouses, are less 

buttery than cheeses made with winter conditions [127]. Thus, the best cheeses are 

produced between December and March [138]. 

Innovation was important in semi artisanal dairies or large-scale cheese 

producers with the introduction of the ripening with controlled environmental 

chambers. The conditions of ripening process in controlled environmental chambers 

are expressed in Table 13. 
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Table 13. Environment conditions of curding chambers in the first 15 to 20 days and between 20 to 45 
days of maturation.  

  Phase 
Temperature 

(°C) 
Relative humidity 

(%) 

First 15 to 20 days 
Fermentation or 

reima 
6 to 12 85 to 95 

20 to 45 days Maturation 6 to 14 90 to 95 
 

In the fermentation phase, cheeses are washed and turned daily. During the 

maturation, the wash and turn frequency depends on the rind exterior appearance, 

maintaining its clean and smooth appearance [8]. 

The conditions for Old Serra da Estrela cheese are identical to shown in Table 

13.   

The producers face a problem, the formation of cracks on the rind, which leads 

to the product’s loss of value, selling them at a lower price. In 1997, this occurrence 

was studied and it concluded that this problem could be reduced by increasing the 

ripening temperature or by increasing the ripening relative humidity (with less 

impact) [20]. The forced ventilation damages the rind by causing the formation of 

cracks [137]. 

The ripening period depends on the type of cheese intended. Butter Serra 

Cheese ranges from 30 to 45 days [127, 132], old Serra Cheese needs a minimal of 

120 days. 

 

Packing 

The material used to pack the cheese must be innocuous and inert. This 

operation must occur under good hygienic practices (GHP) and good manufacturing 

practices (GMP). The packing has to ensure the conservation and the products 

characteristics during the normal period of storage and selling. Packing Serra Cheese 

can only occur in the delimited geographic zone [8]. 

 

Preservation 

The final product is stored to avoid contamination. The producer determines 

the conservation temperature, witch can not go over 22 °C. Prolonged conservation of 

Serra Cheese can occur at temperatures below -1 ºC, but producers establish how 
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long (it depends on the temperature used and the ripening phase). Afterwards, when 

cheese is taken from the prolonged conservation chamber it is submitted to a 

progressive increase of the conservation temperature.  

This operation can only occur in a delimited geographic area and in producers 

with a Estrelacoop authorization [8]. 

 

Cheese Yield 

The cheese yield, the amount of cheese obtained from amount of milk, in Serra 

Cheese is higher than others cheeses made with ewe or cow’s milk. 

For production of Serra Cheese with 1kg is necessary between 5.0 to 6.0 L of 

Serra ewe’s milk, with final yield of 17-20%. In general, for 1 kg of ovine cheese was 

necessary between 6 to 7 liters of other ewe’s milk (others different the Serra ewe) 

[14].  

However, 7 to 8% of total curd in whey during the curd working is lost due to 

small size [128]. Seasons also influence the yield, being higher in January and lower in 

June due to weather conditions [127]. 
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Appendix  B – Sum up of effect of HPP in literature 
 
Table 14. Effect of HPP treatments in pathogenic spoilage and beneficial microorganisms in some ewe milk cheese by several authors.  

   
Treatment conditions 

 Microorganism 
Cheese variety 

Moment of P t T Log 
Obs. Ref. 

evaluated 
applications 

(d) 
(MPa) (min) (°C) reductions 

Effect in pathogenic and spoilage microorganisms 

S. aureus CECT 976 Raw milk cheese 50 500 2 10 CI2 (>5.3) 60 d [74] 
Staphylococci La Serena (raw milk cheese) 2 300/400 10 10 0.49 / 1.45 3 d [83] 
Staphylococci Raw ovine milk cheese 1 400/500 10 10 0. 7/ 3.2 63 d [85] 
Listeria monocytogenes Scott A Raw cow’s milk cheese 2 or 50 500 5 10 5.02 / CI (>6.34)  [86] 
Listeria monocytogenes ATTC 19115 Turkish white raw ewe cheese  600 10 25 4.9  [87] 
E. coli K-12 Cheddar (raw milk cheese) 1 350 3 50 CI (>6.5)  [88] 
E. coli O157:H7 Raw milk cheese 2 or 50 500 3 10 CI (>5) 60 d [82] 
Enterococci La Serena (raw milk cheese) 2 300/400 10 10 2.05 / 2.68 3 d [83] 
Enterococci La Serena (raw milk cheese) 50 300/400 10 10 1.37 / 1.98 60 d [83] 
Coliforms La Serena (raw milk cheese) 2 300/400 10 10 4.13 / 5.50 3 d [83] 
Coliforms La Serena (raw milk cheese) 50 300/400 10 10 4.85 / >5 60 d [83] 
Spoilage yeasts Fresh lactic curd cheese 3 300 - 600 5 22 > 4 6 wk [84] 
Yeasts and moulds Baby Swiss cheese 1 345 - 550 10 or 30 25 CI (>3)  [139] 

Effect in beneficial microorganisms 

Thermophilic LAB Raw ovine milk 1 400/500 10 10 1.9 / 2.7 62 d [85] 
Thermophilic LAB Ewe raw milk cheese 1 300 10 10 0.46 60 d [90] 
Mesophilic LAB Raw ovine milk 1 400/500 10 10 2.1 / 4.2 61 d [85] 
Mesophilic LAB Ewe raw milk cheese 1 300 10 10 0.68 60 d [90] 

 

 

                                                        
2 Complete inactivation 
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Table 15. Sum up of HPP effects on proteolysis and lipolysis during the storage in different types of cheese by several authors. 

 
Treatment conditions 

  

Cheese variety 
Moment of P 

t 
T 

Effects Ref. 
application (MPa) (°C) 

Proteolysis 

La Serena (raw ewe milk 
cheese) 

50 d 300-400 10 min 10 Similar proteolysis level than control cheese on 60-days-old. [71] 

Irish blue-veined (raw ewe 
milk cheese) 

42 d 400-600 20 min 20 
Breakdown of β- and αs2-casein was accelerated; PTA/TN index 
increased on 28 days of storage. 

[95] 

Hispánico (raw cow and ewe 
milk cheese) 

15 d 300-500 5 min 10 
Casein hydrolysis accelerated and total FAA content increased on 45 
days of ripening. 

[94] 

Ewe's milk (pasteurized ewe 
milk cheese) 

15 d 500 10 min 18 Lower FAA contents after 75 days of ripening.  [91-93] 

Cheedar (pasteurized cow 
milk cheese) 

1 or 4 mo2 200-800 5 h 25 
Deceleration of ripening at treatments ≥400 MPa; low levels of FAA 
at 500-800 MPa after 4 months of ripening. 

[98] 

Camember (pasteurized cow 
milk cheese) 

5 or 10 d 0.1-500 4 h 5 Most intense proteolysis at 50 MPa on 10 d. [99] 

Gouda (pasteurized cow milk 
cheese) 

5 or 10 d 50-100 
20-100 

min 
14 No improving of the proteolysis rate. [100] 

Edam (pasteurized cow or 
goat milk cheese) 

4,6 or 8 wk3 400 30 min 25 No changes in proteolysis indexes. [101] 

Garrotxa (pasteurized goat 
milk cheese) 

1 d 400/50 5 min/72 h 14 High FAA levels at 28 days of ripening. [102] 

Lipolysis 

Ewe's milk (pasteurized ewe 
milk cheese) 

15 d 400-500 10 min 12 Low concentration of FFA at 400-500MPa after 45 days of ripening. 
[93, 
103] 

Hispánico (raw cow and ewe 
milk cheese) 

15 300 - 400 10 min 10 
At 300 lower FFA concentration than control cheese, but at 400 MPa 
was quantified high FFA levels after 45 days of storage. 

[85, 90, 
94, 122] 

Garrotxa (pasteurized goat 
milk cheese) 

1d 400 5 min 14 Lipolysis decelerated; lower content of FFA. [140] 

Full-fat Cheddar (pasteurized 
cow milk cheese) 

1 d 400 10 min 25 
Lipolysis was higher at 42 days but low at 180 days in treated 
cheese. 

[104] 
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Table 16. Effect of HPP treatments on physical proprieties, on rheological properties and on sensorial properties in different kinds of cheese by several authors. 

 
Treatment conditions 

  

Cheese variety 
Moment of P 

t 
(min) 

T 
Effects Ref. Application 

(d) 
(MPa) (°C) 

Effect on physicochemical proprieties 

Ewe's milk (pasteurized 
ewe milk cheese) 

1 or 15 200-500 10 12 
Cheese treated showed low moisture content on d 1, but identical to 
control cheese on d 15, being increased the water retention capacity. 

[107] 

Ewe's milk (pasteurized 
ewe milk cheese) 

1 or 15 200-500 10 12 High level of salt content in medium and interior cheese matrix. [92] 

Ewe's milk (pasteurized 
ewe milk cheese) 

1 300 10 18 
Lower L-values (visual lightness) and higher b-values (yellowness to 
blueness) at 15 days. 

[92] 

Effect on rheological properties 

La Serena (raw ewe milk 
cheese) 2 or 50 300-400 10 10 

High fracturability, hardness, and elasticity in treated on d 2 but 
analyzed on d 60. 

[71] 

Ewe's milk (pasteurized 
ewe milk cheese) 

1 or 15 200-500 10 12 
200-300MPa on d 1 firmness improved; 500 MPa revealed high 
deformability and low fracturability and rigidity; texture was less 
crumbly and more elastic on d 30. 

[103] 

Hispánico (raw cow and 
ewe milk cheese) 1 300-500 10 10 Low fracturability, hardness and elasticity. [85, 90] 

Effect on sensorial properties 

La Serena (raw ewe milk 
cheese) 50 300-400 10 10 

No influence in volatile compounds profile and sensorial 
characteristics. 

[111] 

Ewe's milk (pasteurized 
ewe milk cheese) 

1 or 15 200-300 10 12 
No effects at 15 d. and 1 d at 200 MPa 
Cheese treated at 300 MPa on 1d showed low taste, aroma and odour 
quality scores on d 30 and 60. 

[92, 107] 

Hispánico (raw cow and 
ewe milk cheese) 15 400-500 10 10 

Not shown significantly differences in flavour intensity and quality at 
45 days of ripening. 

[94] 
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Appendix  C – Standard curves 
 

 
Figure 22. Standard curve of water soluble nitrogen content by Bradford method with error bars. 

 
 

 
Figure 23. Standard curve of malondialdehyde content by TBARS method with error bars.
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Appendix  D – Sum of results with statistic analyse 

 

Microbiology 
 

Table 17. Effect of HPP treatments on counts of total microflora, mesophilic LAB, Enterobacteriaceae, yeasts and moulds and L. innocua during storage with statistical 
analysis. Different letters denote significant differences (p < 0.05) between samples at the same conditions (non-capital letters) or between samples at the same time 
of storage (capital letters). 

 

 
NP 

 
P400/10 

 
P500/5 

 
P600/3 

Total Microflora         
 

        
 

        
 

        

Day 0 9.04 ± 0.071 b,A   8.57 ± 0.033 b,c,B   7.98 ± 0.000 c,C   7.85 ± 0.000 c,C 

Day 14 9.04 ± 0.122 b,A   8.59 ± 0.138 b,c,B   8.65 ± 0.072 b,A,B   8.42 ± 0.009 b,B 

Day 42 9.03 ± 0.065 b,A   8.94 ± 0.090 b,A,B   8.50 ± 0.275 b,B,C   8.15 ± 0.035 b,C 

Day 70 10.01 ± 0.000 a,A   9.41 ± 0.038 a,B   9.22 ± 0.043 a,B,C   9.28 ± 0.109 a,B,C 

Day 100 8.74 ± 0.067 b,A   8.26 ± 0.059 c,B   7.74 ± 0.272 c,C   7.76 ± 0.081 c,C 

 
        

 
        

 
        

 
        

Mesophilic LAB         
 

        
 

        
 

        

Day 0 8.84 ± 0.291 a,b,A   8.43 ± 0.000 a,b,A,B   8.58 ± 0.000 a,A,B   8.02 ± 0.000 a,B 

Day 14 9.02 ± 0.165 a,A   8.31 ± 0.001 b,B   8.21 ± 0.092 a,b,B   7.80 ± 0.029 a,B 

Day 42 8.66 ± 0.007 a,b,A   8.26 ± 0.071 b,A,B   7.85 ± 0.022 b,c,B,C   7.44 ± 0.335 a,b,C 

Day 70 8.44 ± 0.019 a,b,A   7.50 ± 0.025 c,B   7.43 ± 0.031 c,B   7.14 ± 0.016 b,B 

Day 100 8.36 ± 0.077 b,A   7.84 ± 0.055 b,A   6.77 ± 0.444 d,B   6.23 ± 0.132 c,B 
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Enterobacteriaceae 

Day 0 5.46 ± 0.054 a   < 2.0         < 2.0         < 2.0       

Day 14 4.56 ± 0.000 b   < 2.0         < 2.0         < 2.0       

Day 42 2.51 ± 0.023 c   < 2.0         < 2.0         < 2.0       

Day 70 < 2.0         < 2.0         < 2.0         < 2.0       

Day 100 < 2.0         < 2.0         < 2.0         < 2.0       

 
        

 
        

 
        

 
        

Yeasts and moulds         
 

        
 

        
 

        

Day 0 5.58 ± 0.371 b   < 2.0         < 2.0         < 2.0       

Day 14 6.06 ± 0.117 a,b   < 2.0         < 2.0         < 2.0       

Day 42 6.16 ± 0.045 a,b   < 2.0         < 2.0         < 2.0       

Day 70 6.59 ± 0.006 a   < 2.0         < 2.0         < 2.0       

Day 100 6.52 ± 0.028 a   < 2.0         < 2.0         < 2.0       

 
        

 
        

 
        

 
        

L. Innocua         
 

        
 

        
 

        

Day 0 8.58 ± 0.056 a,A   3.80 ± 0.015 B   3.73 ± 0.083 B   3.74 ± 0.039 B 

Day 14 7.03 ± 0.023 b   < 2.0         < 2.0         < 2.0       

Day 42 5.88 ± 0.009 c   < 2.0         < 2.0         < 2.0       

Day 70 5.39 ± 0.087 d   < 2.0         < 2.0         < 2.0       

Day 100 3.62 ± 0.153 e   < 2.0         < 2.0         < 2.0       
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Physicochemical Parameters  
 
Table 18. Effect of HPP treatments on counts water content, water activity, pH-values, titratable acidity, water soluble nitrogen and lipid oxidation during storage with 
statistical analyze. Different letters denote significant differences (p < 0.05) between samples at the same conditions (non-capital letters) or between samples at the 
same time of storage (capital letters). 

  
NP   P400/10   P500/5   P600/3 

Water 
Content 

  
% (w/w) STD   

  
% (w/w) STD   

  
% (w/w) STD   

  
% (w/w) STD   

        

0   56.02 ± 1.21E+00 a,A   57.68 ± 9.69E-01 a,A   58.45 ± 2.81E+00 a,A   54.71 ± 1.38E+00 a,A 

14   41.23 ± 2.93E+00 b,A   42.81 ± 2.22E-01 b,A   45.06 ± 2.04E-01 b,A   44.95 ± 5.75E-01 b,A 

42   44.10 ± 8.78E-01 b,A   43.21 ± 5.19E-01 b,A   42.13 ± 4.84E-01 b,A   40.95 ± 8.27E-01 c,A 

70   44.90 ± 5.54E-01 b,A   45.80 ± 2.29E+00 b,A   43.63 ± 1.26E+00 b,A,B   40.83 ± 1.73E+00 c,B 

100   42.58 ± 5.41E-01 b,B   46.25 ± 1.41E+00 b,A   43.91 ± 6.82E-01 b,A,B   42.29 ± 4.67E-01 b,c,B 

  
                                      

Water 
Activity 

  
aw STD   

  
aw STD   

  
aw STD   

  
aw STD   

        

0   0.950 ± 7.07E-04 a,A   0.953 ± 7.07E-04 a,A   0.949 ± 7.07E-04 a,A   0.949 ± 7.07E-04 a,A 

14   0.942 ± 2.12E-03 b,B   0.944 ± 0.00E+00 b,B   0.941 ± 1.41E-03 a,A   0.947 ± 7.07E-04 a,A,B 

42   0.948 ± 2.12E-03 a,A   0.945 ± 0.00E+00 b,A   0.948 ± 7.07E-04 a,b,A   0.946 ± 1.41E-03 a,A 

70   0.943 ± 2.83E-03 a,b,A   0.941 ± 7.07E-04 b,A   0.944 ± 7.07E-04 b,A   0.944 ± 0.00E+00 a,A 

100   0.945 ± 2.12E-03 a,b,A   0.940 ± 2.12E-03 b,A   0.942 ± 1.41E-03 b,A   0.945 ± 5.66E-03 a,A 

  
                                      

pH values 
  

pH STD   
  

pH STD   
  

pH STD   
  

pH STD   
        

0   5.24 ± 0.06 c,A   5.31 ± 0.05 b,c,A   5.27 ± 0.07 d,A   5.32 ± 0.01 c,A 

14   5.31 ± 0.01 b,c,A   5.40 ± 0.10 b,A   5.37 ± 0.10 b,cA   5.34 ± 0.10 b,A 

42   5.38 ± 0.06 a,b,B   5.49 ± 0.08 a,A   5.47 ± 0.09 a,A   5.44 ± 0.05 b,A,B 

70   5.41 ± 0.03 a,B   5.51 ± 0.02 a,A   5.45 ± 0.03 a,b,A,B   5.40 ± 0.02 a,b,B 

100   5.33 ± 0.06 a,b,A   5.30 ± 0.05 c,A   5.33 ± 0.07 c,d,A   5.30 ± 0.05 c,A 
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Titratable 
Acidity 

  glactic 

acid/100 g 
STD   

  glactic 

acid/100 g 
STD   

  glactic 

acid/100 g 
STD   

  glactic 

acid/100 g 
STD   

        

0   0.133 ± 7.98E-03 c,A   0.119 ± 3.90E-03 c,A   0.128 ± 4.39E-03 b,A   0.131 ± 5.63E-03 a,b,A 

14   0.146 ± 1.87E-02 b,c,A   0.135 ± 7.07E-03 b,c,A,B   0.134 ± 1.29E-02 a,b,A,B   0.128 ± 9.57E-03 b.B 

42   0.145 ± 7.37E-03 b,c,A   0.140 ± 7.72E-04 a,b,A   0.140 ± 5.55E-03 a,A   0.149 ± 8.77E-03 a,A 

70   0.150 ± 6.24E-03 b,A   0.143 ± 3.17E-03 a,b,A,B   0.140 ± 6.13E-03 a,A,B   0.129 ± 3.34E-03 b,B 

100   0.184 ± 8.09E-03 a,A   0.154 ± 1.02E-02 a,B   0.145 ± 1.07E-02 a,B   0.142 ± 1.02E-02 a,b,B 

  
                                      

WSN 
  N 

(g/100g) 
STD   

  N 
(g/100g) 

STD   
  N 

(g/100g) 
STD   

  N 
(g/100g) 

STD   
        

0   0.207 ± 2.09E-02 c,A   0.212 ± 1.25E-02 b,A   0.221 ± 1.01E-02 c,A   0.221 ± 2.25E-02 c,A 

14   0.228 ± 3.21E-02 c,A   0.231 ± 2.91E-02 b,A   0.223 ± 9.31E-03 c,A   0.219 ± 1.18E-02 c,A 

42   0.338 ± 2.34E-02 b,A   0.351 ± 2.04E-02 a,A   0.322 ± 1.49E-02 b,A   0.323 ± 1.24E-02 b,A 

70   0.393 ± 4.42E-03 a,A   0.376 ± 8.87E-03 a,A   0.368 ± 1.92E-02 a,A   0.378 ± 2.28E-02 a,A 

100   0.385 ± 2.56E-03 a,A   0.381 ± 3.33E-03 a,A   0.384 ± 1.86E-02 a,A   0.382 ± 5.94E-03 a,A 

  
                                      

Lipid 
oxidation 

  MDA 
(μg/g) 

STD   
  MDA 

(μg/g) 
STD   

  MDA 
(μg/g) 

STD   
  MDA 

(μg/g) 
STD   

        

0   0.017 ± 1.39E-03 d,A   0.018 ± 4.13E-03 b,A   0.019 ± 3.13E-03 c,A   0.021 ± 7.97E-04 d,A 

14   0.034 ± 3.32E-04 c,A   0.020 ± 9.38E-04 b,B   0.020 ± 6.67E-04 c,B   0.023 ± 2.39E-03 c,d,B 

42   0.049 ± 5.58E-03 b,A   0.035 ± 4.67E-03 a,B   0.028 ± 1.44E-03 b,B   0.035 ± 1.41E-03 b,B 

70   0.059 ± 6.77E-03 a,A   0.038 ± 9.00E-03 a,B   0.042 ± 2.48E-03 a,B   0.043 ± 5.04E-03 a,B 

100   0.047 ± 2.54E-03 b,A   0.034 ± 2.08E-03 a,B   0.024 ± 9.96E-04 b,C   0.030 ± 5.83E-04 b,c,B,C 

  
NP   P400/10   P500/5   P600/3 
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