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Abstract. In this work an optimization problem on a classical elementary stochastic system system, modeled

as an Erlang-B (M/M/x) loss system, is formulated by using a bicriteria approach. The problem is focused on

the allocation of a given total of κ servers to a number of groups of servers capable of carrying certain offered

traffic processes assumed as Poissonian in nature. Two main objectives are present in this formulation. Firstly

a criterion of equity in the grade of service, measured by the call blocking probabilities, entails that the absolute

difference between the blocking probabilities experienced by the calls in the different service groups must be

as small as possible. Secondly a criterion of system economic performance optimization requires the total

traffic carried by the system, to be maximized. Relevant mathematical results characterizing the two objective

functions and the set N of the non-dominated solutions, are presented. An algorithm for traveling on N based

on the resolution of single criterion convex problems, using a Newton-Raphson method, is also proposed. In

each iteration the two first derivatives of the Erlang-B function in the number of circuits (a difficult numerical

problem) are calculated using a method earlier proposed. Some computational results are also presented.

Key words. Multiobjective Convex Optimization, Communication Networks, Stochastic Models, Erlang

Loss System.
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1 Introduction and Motivation

There are numerous problems involving stochastic systems where there is the contention of a

number of S random demand processes for κ identical resources. This problem has received

much attention in the literature on allocation of transport vehicles and of urban emergency

units, such as police cars, fire engines and ambulances, and may be considered as a server

allocation problem. Other applications of this class of problems have been studied recently.
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çã

o
–

5
d

e
D

ez
em

b
ro

d
e

20
10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/18297307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J. Sá Esteves and José Craveirinha

One example is found on parallel processing in computer systems, where different users classes

generate jobs submitted to a computer system which is composed of S identical computer

processors or peripherals. Other examples are allocation of transmission bandwidth in satellite

communication systems, and dynamic shared memory in computer systems.

Several models with mathematical formulations of this class of problems, are found in the

literature. Most of the models consider non-linear functions describing the behavior of the sys-

tems by using queueing theory. The question of optimizing their performance was considered

on a single criterion basis. The used criterion is a parameter of grade of service or, alterna-

tively, the system throughput which is a measure of the total carried traffic by the system.

The extremely rapid evolution of telecommunication networks in terms of technologies, traffic

growth and provided services has led to the emergence of significant number of new problems

of network planning and design often involving multiple and conflicting factors. Many of these

problems lead to the necessity of formulating mathematical models for decision support, in-

cluding various criteria, often conflicting in nature. Therefore it can be affirmed that in many

situations the mathematical models for decision support become more realistic and “power-

ful” (concerning practical applications) if the more relevant criteria are represented explicitly

rather than aggregated a priori in a single function to be optimized. These factors led to the

increasing interest in the development of multicriteria models and, in particular, multiobjective

optimization models, in this broad area of network planning and design. Note that multicriteria

models enable the relevant aspects of the decision problem to be explicitly represented in the

mathematical formulation and the compromises to be made among the chosen objective to be

treated in a mathematically consistent manner.

Remember that in the context of various conflicting criteria (corresponding to objective

functions) the concept of optimal solution is replaced by the concept of non-dominated solution

set (corresponding to the concept of efficient Pareto solution set in the objective function space).

A non-dominated solution is a solution for which no improvement is possible in one objective

function without worsening at least the value of one of the other objective functions.

An overview of areas of application of multicriteria analysis tools in communication network

planning problems can be seen in [16]. An in-depth analysis of conceptual issues associated

with the use of multicriteria analysis in telecommunication network design, in the framework

of knowledge theory models was presented in [28]. A comprehensive review on multicriteria

models dedicated to communication network planning and design problems can be seen in [5]

and an overview on multicriteria formulations for routing problems in communication networks,

including a case study on multiobjective routing optimization, is presented in [6].

In communication networks with traffic of telephone type, generated by a very large num-

ber of subscribers (as compared to the number of available transmission channels), the offered

traffic is a stochastic point process that may be modeled as an homogeneous Poisson process

with a certain intensity λ and this corresponds to assume that interarrivel times are negative

exponentially distributed with mean λ−1. If we further assume a negative exponential distribu-

tion of the call service times, we are led to the well-known classical Erlang-B stochastic service

http://ria.ua.pt

C
ad

er
n

os
d

e
M

a
te

m
át

ic
a,

U
n

iv
er

si
d

ad
e

d
e

A
ve

ir
o
,

P
or

tu
ga

l
–

S
ér

ie
d

e
In

ve
st

ig
a
çã
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Bicriterion Server Allocation Problem 3

system model, M/M/x (x being the number of channels) originally proposed by A. K. Erlang

in 1917 [8, 9].

The Erlang B and C formulas are true probability classics. Indeed, much of the theory

was developed by A. K. Erlang [8, 9] and his colleagues prior to 1925 [3]. The subject has

been extensively studied and applied by telecommunications engineers and mathematicians

ever since. A nice introductory account, including some of the telecommunication subtleties, is

provided by [7].

The Erlang B (or loss) formula gives the (steady-state) blocking probability in the Erlang loss

model, i.e., in the M/M/x model. This model has x identical servers and no queue. Customers

arriving when all x servers are busy are blocked (lost) without affecting future arrivals. This

model has a Poisson arrival process and IID (independent and identically distributed) service

times, with an exponential distribution having finite mean (the two M’s in M/M/x are for

“Markov,” referring to the “lack-of-memory” property of the exponential distribution).

In this work a basic optimization problem on a teletraffic system, modeled as an Erlang-B

(M/M/x) loss system, is formulated by using a bicriteria approach. The problem is focused on

the allocation of a given total of κ transmission channels to a number of service groups, capable

of carrying certain offered traffic processes assumed as Poissonian in nature and characterized

by their means expressed in Erlang. Such system may be considered as particular generalization

of the classical one-dimensional Erlang-B system. The available capacity of the system κ, could

be partitioned into S = n + 1 separate groups of servers (or channels in a telecommunication

network) with dimensions x1, x2, . . . , xn+1 with
∑
xi = κ, such that each group is dedicated for

exclusive use by the corresponding offered traffic.

Two main objectives are present in this formulation. Firstly a criterion of grade of service

equity (or “fairness”) entails that call blocking probabilities in all groups must be as small

as possible leading to a first objective function (to be minimized) that is the maximal block-

ing probability experienced by source demands (or “calls” in telecommunication networks)

offered to the different groups of servers. On the other hand a criterion (efficiency function) of

global system performance optimization requires the total traffic carried by the system, to be

maximized. The first objective may be considered as a stochastic formulation of a particular

application of the Max-Min fairness assignment principle (MMF) proposed in [2]. A compre-

hensive analysis of the application of the MMF principle to various problems of communication

network design can be seen in [24, Chap. 8]. A lexicographic optimization approach for solving

MMF problems in telecommunication network design, is described in [29].

Some mathematical results characterizing the set N of the non-dominated solutions, are

presented in this paper. An algorithm for traveling on N based on the resolution of single

criterion convex problems, using Newton-Raphson method, is proposed. In each iteration the

first two derivatives of the Erlang-B function in the number of servers (a difficult numerical

problem) are calculated by using a method proposed by the authors [12]. Some numerical and

graphical results are also presented.

The major contribution of the paper is the presentation of a bicriteria formulation for a
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4 J. Sá Esteves and José Craveirinha

basic problem of stochastic optimization in teletraffic systems and the proposal of an exact

method for its resolution. Other contributions are the derivation of important mathematical

properties of the objective functions of the problem, namely the efficiency function and the

equity function (formulated as a Max-Min Fairness Principle) and the presentation of methods

for numerical calculation of the optimal solutions of the two objective functions as well as the

proposal of an algorithm for traveling on the set of Pareto efficient solutions. This algorithm is

based on the resolution of a sequence of single criterion convex programming problems, using

a Newton-Raphson method.

This paper is organized as follows. The next section presents the assumptions of the math-

ematical model and the formulation of the Erlang-B bicriterion server allocation optimization

problem. The mathematical properties of the two objective function of the formulated alloca-

tion problem are derived in Section 3. Also in this section, methods for numerical calculation

of the optimal solutions for the two objective functions, using a Newton-Raphson approach,

are presented. Section 4 analyses, in the form of three Lemmas, the properties of the conflict

between the efficiency and equity objective functions. The resolution approach, including its

mathematical foundations, namely the characterization of the Pareto solutions, the formula-

tion of an auxiliary parametric single criterion constrained optimization problem are shown in

Section 5 together with an algorithm for traveling on the set of non-dominated solutions. Some

computational results for illustrating the effectiveness of the proposed algorithm are shown in

Section 6 and some conclusions are drawn in the final section.

2 Description of the Model

2.1 Assumptions

Let us consider the classical stochastic Erlang-B loss system M/M/x, with Poisson arrival

intensity λ and mean occupation time h = µ−1 in any of the x servers. Then the mean number

of arrivals during h, a, defines the mean of the traffic offered, usually designated in teletraffic

theory as traffic offered expressed in Erlang:

a =
λ

µ
. (1)

Let us now consider Figure 1 representing the Erlang-B system with x servers (usually desig-

nated as circuits or channels in teletraffic theory) with offered traffic a ∈ R+. All free channels

are fully available to incoming calls. There is no waiting room, that is a call which finds all

the servers occupied, abandons the system. The grade of service provided to the customers is

usually measured in terms of the call congestion, that is, the probability that an arriving call

finds all servers busy. If the system is in statistical equilibrium this blocking probability B(a, x)

is given by the very well known Erlang-B formula [9]:

B(a, x) =
ax/x!∑x
j=0 a

j/j!
. (2)

http://ria.ua.pt
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Bicriterion Server Allocation Problem 5

a −→ ©©©· · · ©©︸ ︷︷ ︸
x

Figure 1: The Erlang Loss System

The Erlang-B formula plays an important role in many problems of teletraffic theory and

this is probably the reason why it has been the subject of intensive study, as shown in refer-

ences [17] [18] [19] [20] [26]. In several teletraffic studies the need arose to extend the definition

of Erlang-B function to non-integer values of x by using its analytical extension, ascribed to R.

Fortet [27, pag. 602]:

B(a, x) =

(
a

∫ +∞

0

e−az (1 + z)x dz

)−1

. (3)

This extension enables the number of circuits x to be considered as a nonnegative real value and

is very important for defining approximation techniques and efficient optimization algorithms

for teletraffic network dimensioning. The function defined by (3) (sometimes called continued

Erlang-B function) is an higher transcendental function which may be related to the incomplete

gamma function and to the confluent hypergeometric functions [18].

A brief review of the mathematical properties of the function B(a, x) defined by (3), will

be given here having in mind its importance in the context of the developed analysis.

Initially, note that B(a, x) ∈ [0, 1], B(a, 0) = 1, ∀a ∈ R+, and

lim
x→∞

B(a, x) = 0, ∀ a ∈ R+ .

Various numerical procedures have been proposed for calculating B(a, x) — see for exam-

ple [15] [18] [19] [21] [23]. The first order partial derivatives of B(a, x) with respect to a and x

are given by (see for example [18]):

B′a(a, x) =
∂B

∂a
(a, x) =

[ x
a
− 1 +B(a, x)

]
B(a, x) , (4)

B′x(a, x) =
∂B

∂x
(a, x) = −[B(a, x)]2 a

∫ +∞

0

e−az (1 + z)x ln(1 + z) dz . (5)

From expression (5), B(a, x) is a strictly decreasing function of x for all a ∈ R+. Also, if x > 0

then B′a is always a positive value (see for example [19]).

Differentiation of (5) leads to the second order derivative of B(a, x) with respect to x:

B′′x(a, x) = −2B(a, x)B′x(a, x) a

∫ +∞

0

e−az (1 + z)x ln(1 + z) dz −

− [B(a, x)]2 a

∫ +∞

0

e−az (1 + z)x [ln(1 + z)]2 dz . (6)

The frequently conjectured convexity of Erlang-B function (with respect to the variable x) was

proved by A. A. Jagers e E. A. Van Doorn [20]. In [14, 11, 4] it is shown that B′′x(a, x) is strictly

http://ria.ua.pt
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6 J. Sá Esteves and José Craveirinha

positive if x ≥ 0 for every a > 0. This result implies that B(a, x) is a strictly convex function

of x if x ≥ 0. The numerical calculus of B(a, x), B′x(a, x) and B′′x(a, x) is very important for

some algorithms presented in this paper. The method used for this purpose was proposed by

the authors in a previous work [12, 13].

Since B(a, x) gives the proportion of lost calls, the function:

Ac(a, x) = a [1−B(a, x)] , (7)

is normally designated by carried traffic and gives the average number of calls simultaneously

in progress in the Erlang-B group.

The following function,

At(a, x) = aB(a, x) , (8)

is designated as lost traffic and sometimes is also designated as overflow traffic, whenever it is

offered to another, second-choice system and gives the mean number of blocked calls during

the mean service time. The relations between the functions introduced above are easily

a ♦
At(a,x)

Ac(a,x) x

Figure 2: Flow model of a Erlang-B group in statistical equilibrium.

understood if we define an “analogous” deterministic flow model. Figure 2 shows such model,

where we have a deterministic commodity flow with volume a offered to a transmission system

(capacitated arc) of finite-capacity x through an access node. This node rejects a flow amount

given by At(a, x) and accepts the remaining Ac(a, x) which effectively is transferred through

(carried) by the arc. Note that this model is completely deterministic while an Erlang-B group

is a stochastic system. Nevertheless, if we are interested only in the mean value of the variables

which describe the behavior of the system in statistical equilibrium, this flow model is adequate.

The system represented by Figure 3 will be designated as En+1
B system, and is composed

of a sequence of Erlang-B groups with nonnegative capacities xi, i = 1(1)n + 1. The group i

of the En+1
B system has offered traffic ai ∈ R+. The system is characterized by a parameter κ

representing the total available capacity to be partitioned into n + 1 slices, each of one is the

capacity allocated to a separate Erlang-B group. It is easy to see that we have only n decision

variables corresponding to the position of the separating lines Li in Figure 3.

Two objectives are considered. The first criterion to be optimized is the system performance:

the mean of the total number of calls in progress, that is
∑n+1

j=1 Ac(ai, xi). This is a classical

economic related criterion normally used in this area taking into account that the expectation

http://ria.ua.pt
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çã

o
–

5
d

e
D

ez
em

b
ro

d
e

20
10



Bicriterion Server Allocation Problem 7

a1 ♦
At(a1,x1)

Ac(a1,x1) x1

L1

a2 ♦
At(a2,x2)

Ac(a2,x2) x2

L2

Ln−1

an ♦
At(an,xn)

Ac(an,xn) xn
Ln

an+1 ♦
At(an+1,xn+1)

Ac(an+1,xn+1) xn+1

κ

Figure 3: Resource allocation between n + 1 Erlang-B groups: The available capacity of the

system κ, could be partitioned into n + 1 separate server groups of capacity x1, x2, . . . , xn+1.

The separating lines Li, i = 1(1)n may be vertically moved, changing the capacities xi while

the total capacity allocated
∑n+1

j=1 = κ remains constant.

of the revenue of the telecommunication operator is proportional to the carried traffic. On the

other hand, call blocking probabilities experienced by the calls in all the different service groups,

must be as small as possible, leading to a first objective function (to be minimized) that is the

maximal blocking probability experienced by source demands (or calls in telecommunication

networks) offered to the different groups of servers. It will be seen that this criterion is an

equity criterion too, since its optimal solution seeks to equalize the grade of service (measured

by the blocking probabilities) among all service groups.

In this paper, a bicriterion formulation of the problem of allocating capacity to Erlang-

B server groups, will be presented, together with algorithms for the numerical calculation of

Pareto optimal solutions. Those algorithms may be used as a bicriterion decision aid tool on

projects involving the En+1
B system model.

2.2 The Erlang-B Bicriterion Allocation Problem

Firstly let us introduce the notation. Throughout this paper, Rp
+ and Rp

⊕ will be used for

designating the positive and nonnegative orthant of Rp, respectively. If D is a subset of Rp,

then the interior and the boundary of D are denoted, respectively, by D◦ and ∂D.

In connection with the model of the En+1
B system, described in the previous section, a ∈ Rn+1

+

is designated as offered traffic vector, and x̄ ∈ Rn+1
⊕ is the group capacity vector:

a = [a1, a2, . . . , an, an+1]T ,

x̄ = [x1, x2, . . . , xn, xn+1]T , (9)

where aj is the traffic offered to group j which has capacity xj for j = 1(1)n+ 1. Additionally,

http://ria.ua.pt
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8 J. Sá Esteves and José Craveirinha

let us suppose that the components of vector a are ordered according to

a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1. (10)

We are dealing with a problem with n decision variables such that a decision vector x of Rn
⊕ is

defined by the n first coordinates of the vector x̄, that is xj, j = 1(1)n.

Throughout the paper, bj may replace B(aj, xj) whenever xj (the capacity of group j) may

be implied from the context. In that case, b′j and b′′j may replace, in similar form, B′x(aj, xj)

and B′′x(aj, xj), respectively.

Therefore, the bicriterion resource allocation problem may be stated as follows.

Problem 1 (Erlang-B Bicriterion Resource Allocation)

Given n ∈ N, κ ∈ R+ and an offered traffic vector a ∈ Rn+1
+ , calculate the set of Pareto

optimal solutions of:

min
x

f1(x) =
n∑
j=1

aj B(aj, xj) + an+1B
(
an+1, κ−

∑n
j=1 xj

)
min
x

f2(x) = max
{
B(a1, x1) , B(a2, x2) , . . . , B(an, xn) , B

(
an+1, κ−

∑n
j=1 xj

)}
s.t.

n∑
j=1

xj ≤ κ

xj ≥ 0, j = 1(1)n .

The set of feasible solutions of Problem 1, denoted by S is a simplex of Rn:

S =

{
x ∈ Rn

⊕ :
n∑
j=1

xj ≤ κ

}
.

In addition, note that S is a compact convex set of Rn.

In the following, f1 and f2 designate the objective functions defined in Problem 1. The first

objective of the bicriterion formulation is the minimization of the total lost traffic of the En+1
B

system, which is equivalent to the maximization of the total carried traffic. For this reason

f1 will be designated as efficiency objective function. Accordingly, any global minimizer of f1

in the set of feasible solutions of Problem 1 is designated as maximal efficiency solution. The

second objective of the bicriterion formulation is the minimization of a function defined as the

blocking probability of the group with the worst grade of service. This objective is a criterion

of grade of service fairness according to the MMF principle [2], and it will be seen that it is

exactly an equity criterion since the minimum of f2 is achieved when all groups have equal

blocking probabilities. For this reason, f2 will be designated as equity objective function and

any global minimizer of f2 in the set of feasible solutions of Problem 1 will be designated as

maximal equity solution.

http://ria.ua.pt
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Bicriterion Server Allocation Problem 9

3 Mathematical Properties

3.1 The Blocking Vector Function

A fundamental task in order to solve Problem 1 is the establishment of relevant properties of the

functions f1 and f2, namely smoothness and convexity conditions. Indeed, the difficulties often

encountered in the determination of those properties are well known in nonlinear programming

practice and these properties play an important role in the resolution of the problem. Therefore

due attention will be paid not only to the characterization of the objective functions, but also

to the special structure of this problem in order to establish efficient numerical methods of

resolution.

For j = 1(1)n+1, let us introduce the blocking probability of each group of the En+1
B system

as a real function defined on S:

Bj : S ⊂ Rn −→ R
x 7−→ Bj(x) ,

(11)

where,

Bj(x) = B(aj, xj), j = 1(1)n

Bn+1(x) = B
(
an+1, κ−

∑n
j=1 xj

)
. (12)

Some basic properties of the Bj functions are now established.

Lemma 1

Bj, j = 1(1)n+ 1, are continuous functions on S and twice continuously differentiable convex

functions in S◦.

Proof:

Note that the Erlang-B function is continuous in variable x in the interval [0,+∞[ and a twice con-

tinuously differentiable function of x in R+. The non trivial part of this proof is the convexity of the

functions Bj in S◦, as a consequence of the known strict convexity of the Erlang-B function on variable

x (see [4]). This is done by recognizing that the Hessians matrices ∇2Bj are positive semidefinite.

For j = 1(1)n the gradient vector function ∇Bj has only one non zero component in position j

with value b′j :

∇Bj =
[
0 · · · 0 b′j 0 · · · 0

]T
.

Consequently, the Hessian matrix ∇2Bj has only one non zero entry at position (j, j) with value

b′′j > 0. Therefore is a positive semidefinite matrix.

It remains to show that ∇2Bn+1 is a positive semidefinite matrix too. By differentiation, we have:

∇Bn+1 =
[
−b′n+1 − b′n+1 − b′n+1 · · · − b′n+1

]T
.

It is straightforward to show that ∇2Bn+1 is a matrix having all entries equal to b′′n+1. This matrix has

only one non zero eigenvalue which is equal to nb′′n+1 > 0. Consequently it is a positive semidefinite

matrix. �

http://ria.ua.pt
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10 J. Sá Esteves and José Craveirinha

For each point x ∈ S the situation of statistical equilibrium of the system En+1
B may be charac-

terized through the blocking probabilities Bj, j = 1(1)n+1. Those values may be seen as state

variables of the system and the following definition is used in order to introduce the vector of

such state variables:

B : S⊂ Rn −→ Rn+1

x 7−→ B (x) = [B1(x), B2(x), . . . , Bn(x), Bn+1(x)]T .
(13)

After defining that blocking vector function, we may have a more concise equivalent formulation

of Problem 1:

min
x∈S

[
aT B (x)

‖B (x) ‖∞

]
. (14)

3.2 The Efficiency Objective Function

Lemma 2

The efficiency objective function has the following properties:

a) f1 is a continuous function on S and a twice continuously differentiable function in S◦;

b) f1 is a strictly convex function in S;

c) f1(x) ∈ [αB(α , κ) , α[ , ∀x ∈ S where α = ||a||1 =
∑n+1

i=1 aj (total offered traffic).

Proof:

Lemma 1 suffices to show a), since f1 is a linear combination of Bj functions. It remains to prove

propositions b) and c):

b) The gradient vector of f1 is

∇f1(x) =


a1b
′
1 − an+1b

′
n+1

a2b
′
2 − an+1b

′
n+1

...

anb
′
n − an+1b

′
n+1

 . (15)

The Hessian matrix of f1 is

∇2 f1(x) =


a1b
′′
1 + an+1b

′′
n+1 an+1b

′′
n+1 · · · an+1b

′′
n+1

an+1b
′′
n+1 a2b

′′
2 + an+1b

′′
n+1 · · · an+1b

′′
n+1

...
...

. . .
...

an+1b
′′
n+1 an+1b

′′
n+1 · · · anb

′′
n + an+1b

′′
n+1

 . (16)

The authors have shown in [4] that B′′x(a, x) > 0 if x ≥ 0 for all positive values of a. Therefore,

if x ∈ S we have:

∇2 f1(x) = an+1b
′′
n+1

[
E + diag

[
a1b
′′
1

an+1b′′n+1

,
a2b
′′
2

an+1b′′n+1

, . . . ,
anb
′′
n

an+1b′′n+1

] ]
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Bicriterion Server Allocation Problem 11

where E ∈ Rn×n is a matrix having all its entries equal to 1. The essential observation is that

b′′j > 0, j = 1(1)n + 1 if x ∈ S. A little manipulation is needed for showing that ∇2 f1 is a

positive definite matrix in this case. This may be done by proving that all its principal minors

are positive — a classical result sometimes called Silvester criterion. In fact, it may be shown

by using induction on n and the Laplace theorem, that

det(Hn) > 0

where Hn = E + diag(w) and w ∈ Rn+.

c) Since κ > 0 it follows immediately that f1(x) < α. The property f1 ≥ αB(α, κ) may be

established as a direct consequence of the convexity of the Erlang-B function (see [26]).

�

Since f1 is a continuous function defined on the compact set S, f1 assumes its global minimum

at a point x∗ in S. The following lemma establishes additional results.

Lemma 3

f1 has a unique local minimizer in S which is also the unique global minimizer. Moreover, if

x∗ is that point and x∗ belongs to the interior of S then ∇f1(x∗) = 0.

Proof:

This lemma is a direct consequence of the strict convexity of function f1 established on Lemma 2. �

A solution x ∈ S having some component near zero corresponds to a system En+1
B which has

some group with capacity allocated less than one circuit. In practice, such situations have no

practical interest. Therefore, the interest in applications is restricted to the cases such that the

maximal efficiency solution is attained in the interior of S. Lemma 3 suggests the resolution

of the stationarity system of equations for the numerical calculation of the solution. In the

following, the maximal efficiency solution is denoted by x∗.

3.3 Equity Objective Function

Lemma 4

The equity objective function has the following properties:

a) f2 is a continuous function in S.

b) f2 is a convex function in S◦;

Proof:

a) Note that f2(x) = ‖B (x) ‖∞ and a norm is a continuous mapping. Additionally, the vector

function B is a continuous function in S; f2 is defined as a composition of two continuous

functions.
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12 J. Sá Esteves and José Craveirinha

b) Note that f2 = max{B1, . . . , Bn, Bn+1} and Bj are convex functions on S. Consequently f2 is a

convex function (see for example [22, pag.78]).

�

Since f2 is a continuous function defined on a bounded and closed set S, the Weierstrass theorem

may be used to show that f2 assumes its global minimum at a point x∗∗ in S. Note that f2 is

not a differentiable function in S. Minimization of non differentiable functions is an hard task

even for the case of convex functions. The following lemma establishes an important result,

showing that the (unique) maximal equity solution may be calculated by solving a system of

smooth nonlinear equations.

Lemma 5

f2 takes on its unique global minimum over S, at a point x∗∗, such that:

a) x∗∗ is the unique solution in S of the following system of equations:

B(a1, x
∗∗
1 ) = B(a2, x

∗∗
2 ) = · · · = B(an, x

∗∗
n ) = B

(
an+1, κ−

n∑
j=1

x∗∗j

)
; (17)

b) x∗∗ is an interior point of S, that is:

n∑
j=1

x∗∗j < κ ,

x∗∗j > 0, j = 1(1)n . (18)

Proof:

In order to avoid unwanted formal complications, let us introduce the following single criterion problem:

min
y∈Rn+1

g(y) = max {B(a1, y1) , B(a2, y2) , . . . , B(an, yn) , B(an+1, yn+1)}

s.t.

n+1∑
j=1

yj = κ (19)

yj ≥ 0, j = 1(1)n+ 1 .

The set of feasible solutions of this problem will be designated as Y ⊂ Rn+1
⊕ . Using an obvious change

of variable it is straightforward to verify that we only need to prove that the optimal solution of (19)

(denoted by y∗∗) is unique and

B(a1, y
∗∗
1 ) = B(a2, y

∗∗
2 ) = · · · = B(an, y

∗∗
n ) = B(an+1, y

∗∗
n+1) , (20)

y∗∗j > 0, j = 1(1)n+ 1 . (21)

Introducing the notation I = {1, 2, . . . , n, n+ 1}, let us now define the following sets associated with

a generic point y ∈ Y :

L(y) = { j ∈ I : B(aj , yj) < g(y) } ,

M(y) = { j ∈ I : B(aj , yj) = g(y) } .

http://ria.ua.pt

C
ad

er
n

os
d

e
M

a
te

m
át

ic
a,

U
n

iv
er

si
d

ad
e

d
e

A
ve

ir
o
,

P
or

tu
ga

l
–

S
ér

ie
d

e
In

ve
st

ig
a
çã
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Bicriterion Server Allocation Problem 13

It is easy to see that for all y in Y , M(y) is not an empty set. Furthermore, L(y) ∩M(y) = ∅ and

L(y) ∪M(y) = I. Additionally, note that if j ∈ L(y) then yj > 0, that is:

∀ j ∈ L(y), yj > 0 . (22)

Proposition (22) may be easily proved by redutio ad absurdum. Indeed, if yj = 0 then B(aj , yj) = 1 ≥
g(y).

The proof will be divided in two parts:

(i) Firstly, we establish that any global minimizer of g in Y is a solution of the system of equations

(20). We shall use redutio ad absurdum. Suppose the contrary, that is let ŷ designate a global

minimizer in Y which does not satisfy (20). Then, L(ŷ) is not an empty set. It is then possible

to take an integer value i ∈ L(ŷ) and a real value ε > 0 in order to define a point y̆ ∈ Rn+1,

having the following components:

y̆i = ŷi − ε ,

y̆j = ŷj , ∀j ∈ L(ŷ)\{i} ,

y̆j = ŷj +
ε

|M(ŷ)|
, ∀j ∈ M(ŷ),

where |M(ŷ)| denotes the size of the setM(ŷ). Taking into account (22), if ε < ŷi then y̆ ∈ Y
since we have

∑n+1
j=1 y̆j = κ and y̆j ≥ 0, j = 1(1)n + 1. Furthermore a transition from point

ŷ to point y̆ implies that only group i increases its blocking. Additionally, blocking decreases

in all groups with indices in M(ŷ). By the continuity of the Erlang-B function it is possible to

choose a real value ε (0 < ε < ŷi), sufficiently small so that the blocking in group i remains non

maximal at point y̆. It is then obvious:

g(y̆) < g(ŷ) ,

implying that ŷ is not a global minimizer of the g function on Y , which contradicts the initial

assumption. Therefore, if y∗∗ is a global minimizer then L(y∗∗) must be an empty set. That

fact implies that M(y∗∗) = I which leads to the conclusion that y∗∗ satisfies equations (20).

Note that this system has at least one solution in Y — if we suppose the contrary then g(y)

does not have its minimum on Y which is absurd.

(ii) Finally, we have to show that equations (20) have a unique solution y∗∗ in Y satisfying (21). Once

more, we shall use redutio ad absurdum. Let us suppose that two distinct points y and y′ both in

Y , satisfy equations (20). Let β = Bj(aj , yj), j = 1(1)n+ 1 and β′ = Bj(aj , y
′
j), j = 1(1)n+ 1.

Since the Erlang-B function is a monotone function in x, it is obvious that β 6= β′. Suppose

for example that β < β′. This fact implies that yj > y′j , j = 1(1)n + 1 which is an absurd

proposition. Indeed, since y and y′ are points in Y we have ‖y‖1 = ‖y′‖1 = κ. The conclusion

is that the hypothesis of distinct solutions of equations (20) on Y conducts to a contradiction,

therefore the uniqueness of the solution is proved.

It remains to show that the solution y∗∗ of (20) in Y does satisfy (21). Once again, assuming

the contrary we have a contradiction. Let us admit that vector y∗∗ has some zero component.

It follows that the corresponding blocking is equal to one and due to equations (20) all groups

must have blocking equal to one. This situation is impossible, since κ > 0.
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14 J. Sá Esteves and José Craveirinha

�

As discussed above function f2 gives an adequate measure of the grade of service of the En+1
B

system. Lemma 5 proves that the function f2 is an equity criterion too, since its minimum is

achieved in a situation such that there is a completely uniformity of the grade of service of all

groups of the En+1
B system.

3.4 The Maximal Efficiency Solution

The maximal efficiency solution may be an interior point or a boundary point of S. As discussed

above the cases in which the maximal efficiency solution is attained on S◦, have special interest

in the applications. Lemma 3 establishes uniqueness of the maximal efficiency solution in

this case and suggests the resolution of the stationarity system of equations for the numerical

calculation of the solution. In this section an algorithmic approach is proposed for the typical

case x∗ ∈ S◦. At the end of this section we shall give some indications about the numerical

calculation of the maximal efficiency solutions when x∗ ∈ ∂ S, where ∂ S denotes the boundary

point of S.

3.4.1 Interior Point Maximal Efficiency Solution

Denoting by Φ(x) the gradient vector of f1 defined on the interior points of S, we have:

Φ : S◦⊂ Rn −→ Rn

x 7−→ Φ(x) = [φ1(x), φ2(x), . . . , φn(x)]T ,

where

φi(x) = a1B
′
x(ai, xi)− an+1B

′
x

(
an+1, κ−

∑n
j=1 xj

)
= aib

′
i − an+1b

′
n+1, i = 1(1)n (23)

Our problem reduces to solve Φ(x) = 0 on S using a numerical method. A Newton-Raphson

method is proposed. The application of Newton method is discussed on Appendix A. Given an

iterate x, Newton’s method generates the next iterate x+ = x + y by solving the linear system

Φ′(x) y = −Φ(x), where Φ′(x) is the Jacobian matrix of Φ evaluated at x. Some tedious

manipulations yield Φ′:
a1b
′′
1 + an+1b

′′
n+1 an+1b

′′
n+1 an+1b

′′
n+1 · · · an+1b

′′
n+1

an+1b
′′
n+1 a2b

′′
2 + an+1b

′′
n+1 an+1b

′′
n+1 · · · an+1b

′′
n+1

an+1b
′′
n+1 an+1b

′′
n+1 a3b

′′
3 + an+1b

′′
n+1 · · · an+1b

′′
n+1

...
...

...
. . .

...

an+1b
′′
n+1 an+1b

′′
n+1 an+1b

′′
n+1 · · · anb

′′
n + an+1b

′′
n+1

 .

For solving the linear system, we also need to have the general form of the vector Φ(x). Let us

remember that B′′x(a, x) is positive if x ≥ 0 for all a ∈ R+. Providing that b′′n+1 6= 0 the linear
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Bicriterion Server Allocation Problem 15

system Φ′(x) y = −Φ(x) is equivalent to

[E + diag (wΦ)] y = bΦ , (24)

where:

wΦ =

[
a1b
′′
1

an+1b′′n+1

,
a2b
′′
2

an+1b′′n+1

,
a3b
′′
3

an+1b′′n+1

, . . . ,
anb
′′
n

an+1b′′n+1

]T
, (25)

bΦ =

[
an+1b

′
n+1 − a1b

′
1

an+1b′′n+1

,
an+1b

′
n+1 − a2b

′
2

an+1b′′n+1

, . . . ,
an+1b

′
n+1 − anb′n

an+1b′′n+1

]T
. (26)

Since wΦ ∈ Rn
+, an efficient algorithm presented in Appendix A solves the linear system and

generates a Newton sequence for solving the equation Φ(x) = 0. In order to calculate the

components of the vectors wΦ and bΦ in each iteration of the Newton Method, the first two

derivatives of the Erlang-B function in the variable x are calculated by using an efficient method

proposed by the authors [12, 13].

It remains to define the initial approximation for starting the Newton sequence. The point

which is the geometric center of the simplex S, is considered for this purpose:

x
(0)
j =

κ∑n+1
i=1 ai

aj, j = 1(1)n . (27)

Note that this point is the exact solution if all the offered traffics are equal. This is easily

proved by symmetry arguments.

3.4.2 Boundary Point Maximal Efficiency Solution

If x∗ ∈ S is the maximal efficiency solution of Problem 1 then the associated vector of group

capacities on En+1
B will be denoted by x̄∗, with components:

x∗j for j = 1(1)n ,

x∗n+1 = κ−
n∑
j=1

x∗j .

If x∗ ∈ ∂ S, then

∃ j ∈ {1, 2, . . . , n, n+ 1} : x∗j = 0 ,

which means that the corresponding En+1
B system has some group(s) with zero allocated ca-

pacity. The following lemma is very important for the characterization of maximal efficiency

solutions on boundary points.

Lemma 6

If x∗ ∈ ∂S is a global minimizer of f1 on S, then the associated vector of group capacities

x̄∗ on En+1
B has at least one zero component x∗k for k ∈ {1, 2, . . . , n, n + 1}. Furthermore, if

k < n+ 1, then

x∗k = 0 =⇒ x∗k+1 = 0 .
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çã
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16 J. Sá Esteves and José Craveirinha

Proof:

Assuming k < n + 1 we only have to prove that if x∗k is zero, then x∗k+1 must be zero. If ak = ak+1,

an obvious symmetry argument suffices to show that x∗k = x∗k+1.

Due to assumption (10) it remains to analyze a case such that ak > ak+1. First, note that

f1(x∗) =

n+1∑
j=1

aj B(aj , x
∗
j ) ,

and,

x∗k = 0 =⇒ ak B(ak, x
∗
k) = ak .

Let us assume that x∗k is zero, and x∗k+1 = ε > 0. That is, group k has zero allocated capacity and

group k+ 1 has ε > 0 allocated capacity. Since ak > ak+1, then it is possible to decrease the objective

function by transferring the capacity ε of group k + 1 to group k which is an absurd because x∗ is

the maximal efficiency solution. To prove that f1 decreases in that situation, one only needs to take

into account the following basic property of an Erlang-B group: the carried traffic function Ac(a, x)

defined by (7) is a strictly increasing function in a (see [10, Lemma 3.14, pp.18]). �

Perhaps the most popular approach to solving linear constrained convex programming prob-

lems is to use a so-called active-set strategy , which is based on the following idea. If a feasible

point and the set of active constraints on the optimal solution were known, the solution could

be computed directly as described in the Sub-sub-section 3.4.1. As in linear programming the

hard part is to identify the set of active constraints on the optimal solution. Since these are

unknown, a prediction of the active set — called the working set — is developed which is used

to compute the search direction, and then the working set is changed as the iterations proceed.

Lemma 6 is very important in order to develop a Newton algorithm that is combined with

an active constraints strategy of the classical type used for nonnegativity constraints. The

basis of the proposed algorithm is now described. Start the process as described in Sub-section

3.4.1, that is solve ∇f1(x) = 0 by the Newton method. If x∗ is not an interior point of S,

then the Newton sequence falls out the feasible region. When this situation is detected we

may conclude, by using Lemma 6, that x∗n+1 = 0. We have now a reduced maximal efficiency

problem of allocation of a total of κ circuits to n groups instead of n+1 groups, as initially. The

process may be repeated in the same manner until a Newton sequence for a reduced problem

converges to an interior point of the reduced feasible set.

4 The Maximal Equity Solution

The proposed approach to the numerical calculation of the maximal equity solution is similar

to the one presented in Sub-section 3.4.1 for the calculation of the maximal efficiency solution

in the interior of S.

Let us introduce the vector function:

Ψ : S⊂ Rn −→ Rn

x 7−→ Ψ(x) = [ψ1(x), ψ2(x), . . . , ψn(x)]T ,
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Bicriterion Server Allocation Problem 17

where

ψi(x) = B(ai, xi)−B
(
an+1, κ−

∑n
j=1 xj

)
= bi − bn+1, i = 1(1)n . (28)

Lemma 5 establishes that the maximal equity solution may be computed by solving the vector

equation Ψ(x) = 0. Since Ψ is a twice continuously differential function in the interior of S a

Newton method is proposed. If Ψ′ denotes the Jacobian matrix of Ψ, in each iteration we need

to solve the linear system Ψ′(x) y = −Ψ(x), which is equivalent to:
b′1 + b′n+1 b′n+1 b′n+1 · · · b′n+1

b′n+1 b′2 + b′n+1 b′n+1 · · · b′n+1

b′n+1 b′n+1 b′3 + b′n+1 · · · b′n+1
...

...
...

. . .
...

b′n+1 b′n+1 b′n+1 · · · b′n + b′n+1




y1

y2

y3

...

yn

 =


bn+1 − b1

bn+1 − b2

bn+1 − b3

...

bn+1 − bn


Let us remember that B′x(a, x) < 0 for all a, x ∈ R+. Since b′n+1 6= 0, the linear system is

equivalent to

[E + diag (wΨ)] y = bΨ , (29)

where:

wΨ =

[
b′1
b′n+1

,
b′2
b′n+1

,
b′3
b′n+1

, . . . ,
b′n
b′n+1

]T
, (30)

bΨ =

[
bn+1 − b1

b′n+1

,
bn+1 − b2

b′n+1

,
bn+1 − b3

b′n+1

, . . . ,
bn+1 − bn
b′n+1

]T
. (31)

Since wΨ ∈ Rn
+ the efficient algorithm presented in Appendix A solves the linear system and

generates a Newton sequence for solving the equation Ψ(x) = 0.

As for the case of the computation of the maximal efficiency solution, the initial approxi-

mation proposed is the geometric center of simplex S defined by expression (27). Symmetry

arguments may be used to show that this point is the maximal equity solution if all the offered

traffics are equal.

5 The Conflict between Efficiency and Equity

As discussed before, the maximal efficiency solution and the maximal equity solution are the

same if aj = a, j = 1(1)n + 1. In this case Problem 1 is trivial. In other cases, we have

two conflicting objectives in Problem 1. The proof of this proposition is the main task of this

section.

First, note that there is an obvious conflict if the maximal efficiency solution is a boundary

point of S, since the maximal equity solution is an interior point of S.

It remains to analyze the case for which the maximal efficiency solution is an interior point

of S. In [10, Theorem 6] the resource allocation between only two Erlang-B groups (that is
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18 J. Sá Esteves and José Craveirinha

an E2
B system is analyzed). In this case we have only one decision variable, and Problem 1 is

formulated as

min
x1

f1(x1) = a1B(a1, x1) + a2B(a2, κ− x1) (32)

min
x1

f2(x1) = max {B(a1, x1) , B(a2, κ− x1)}

s.t. x1 ∈ [0, κ]

Denoting the maximal efficiency solution by x∗1 ∈ [0, κ] and the maximum equity solution by

x∗∗1 ∈ ]0, κ[, the statement of Theorem 6 of [10] is the proposition:

a1 > a2 =⇒ df1

dx1

(x∗∗1 ) < 0, ∀κ ∈ R+ . (33)

Proposition (33) has several important implications on the analysis of En+1
B system.

Lemma 7

If a1 > a2, then B(a1, x
∗
1) < B(a2, κ− x∗1), ∀κ ∈ R+ .

Proof:

Since f1 is a smooth convex function in the interval [0, k] the derivative f ′1 does not decrease. By using

proposition (33) we have f ′1(x∗∗1 ) < 0, therefore

f ′1(x1) < 0, ∀x1 ∈ [0, x∗∗1 ] .

Thence, f1 assumes its minimum value on [0, k] in some point in the interval ]x∗∗1 , κ], that is

x∗1 > x∗∗1 .

In view of Lemma 5 the result follows from

B(a1, x
∗∗
1 ) = B(a2, κ− x∗∗1 ) ,

B(a1, x1) < B(a2, κ− x1), ∀x1 > x∗∗1 .

�

Lemma 7 shows the conflict between efficiency and equity for the case of a E2
B system. The

generalization of this result for a system En+1
B , n > 1 needs a preparatory result, which may be

seen as an application of the classical Bellman optimality principle to the En+1
B system.

Lemma 8

Any set of l < n+1 groups of a maximal efficiency system En+1
B is a maximal efficiency system

E lB, providing the total capacity allocated to system E lB is a positive value.

Proof:

If the capacity allocated to the system E lB is a positive value, then the problem of optimal efficiency

resource allocation has a solution. The proof is easily made by using redutio ad absurdum. Indeed,

suppose that the total carried traffic in E lB system is not maximal. This means that it is possible

to reallocate capacity among its l Erlang-B groups, increasing the total carried traffic in E lB system.

Consequently the total carried traffic in En+1
B is increased too, which is an absurd situation. �

We are now in a position to prove that the two objectives of Problem 1 are conflicting in the

general case.
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Bicriterion Server Allocation Problem 19

Lemma 9

If x∗ denotes the maximal efficiency solution of problem 1 and b∗j , j = 1(1)n + 1 the corre-

sponding blocking probabilities on the server groups, then

a) If a1 > a2 > · · · > an > an+1, and x∗ ∈ S◦, then:

b∗1 < b∗2 < · · · < b∗n < b∗n+1 ;

b) For the general case, that is a1 ≥ a2 ≥ · · · ≥ an ≥ an+1, and x∗ ∈ S, then:

b∗j ≤ b∗j+1, j = 1(1)n,

and equality b∗m = b∗m+1 only holds for some m ∈ {1, 2, . . . , n}, if and only if:

(am = am+1) ∨ (x̄∗m = 0) .

Proof:

a) Proposition a) is a direct consequence of Lemmas 7 and 8. Actually, if x∗ ∈ S◦ then all groups

in the system En+1
B have positive allocated capacity. Thence, by using Lemma 8 any subsystem

E2
B consisting of a pair of groups of the original system En+1

B , is characterized by having maximal

efficiency. Applying that conclusion to the first two groups of the system En+1
B and by using

Lemma 8 it is concluded that b∗1 < b∗2. An obvious induction completes the proof.

b) On the other hand, by symmetry arguments, if am = am+1, then b∗m = b∗m+1. Moreover, x∗m = 0

implies x∗m+1 = 0 by using Lemma 6, that is b∗m = b∗m+1 = 1. In all the remaining cases we may

use the argument used in a) to conclude that b∗m < b∗m+1.

�

Lemma 9 characterizes the conflicting nature of the two objectives of problem 1. Furthermore,

we may conclude that the situation of maximal efficiency in system En+1
B leads to a situation

of better grade of service in the groups having greater offered traffic.

6 Resolution Approach

6.1 Characterization of the Pareto Optimal Solutions

Unlike traditional mathematical programming with a single objective function, in typical mul-

tiobjective optimization problems, an optimal solution, in the sense that it minimizes all the

objective functions simultaneously, does not exist. Thence we are dealing with conflicts among

objectives in decision making problems with multiple objectives and we are seeking for Pareto

optimal solutions, that is, solutions such that it is not possible to improve one objective func-

tion without worsening at least one of the other objective functions. It may be shown that
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çã

o
–

5
d

e
D

ez
em

b
ro

d
e

20
10



20 J. Sá Esteves and José Craveirinha

such conflict exists between the value of the two objectives of Problem 1, except for the trivial

case aj = a, j = 1(1)n+ 1 (symmetry of En+1
B system). Applying classical results of bicriterion

convex programming (see for example [1] and [25]), Pareto optimal solutions of Problem 1 are

characterized in this section as solutions of a parametric single criterion convex problem with

linear constraints. Additionally it is shown that the approach proposed in Sub-sub-section 3.4.2

for computing maximal efficiency solutions on boundary points may be applied for computing

Pareto Optimal solutions of Problem 1.

Firstly, note that from the uniqueness of the maximal equity solution x∗∗ it is obvious that

x∗∗ is a Pareto optimal solution of Problem 1. In the same manner, the maximal efficiency

solution x∗ is unique and therefore is Pareto optimal too.

Let us now introduce the notation

β∗ = f2(x∗) ,

β∗∗ = f2(x∗∗) .

Using [25, Theorem 2], x̂ ∈ S is a Pareto Optimal solution of Problem 1 if and only if x̂ ∈ S
solves the following parametric monocriterion convex program.

Problem 2 (First Single Criterion Parametric Formulation of Problem 1)

Given n ∈ N, κ ∈ R+ and a traffic offered vector a ∈ Rn+1
+ , solve the following program for

β ∈ [β∗∗ , β∗]:

min
x

f1(x) =
n∑
j=1

aj B(aj, xj) + an+1B
(
an+1, κ−

∑n
j=1 xj

)
s.t. f2(x) ≤ β

n∑
j=1

xj ≤ κ

xj ≥ 0, j = 1(1)n

Therefore, the set N of Pareto optimal solutions of problem 1 may be defined as

N =

{
x̂ ∈ S : aTB (x̂) = min

x∈Sβ
aTB (x) , β ∈ [β∗∗, β∗]

}
.

Denoting by x∗β the solution of Problem 2 for some value of β ∈ [β∗∗ , β∗], it is easy to see that:

(i) x∗β = x∗∗ if β = β∗∗;

(ii) x∗β = x∗ if β ≥ β∗;

(iii) The set of points x∗β ∈ S for β ∈ [β∗∗ , β∗] is a line in Rn having extreme points x∗∗ and

x∗.
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Bicriterion Server Allocation Problem 21

Let us now examine the constraint f2(x) ≤ β of Problem 2. It may be written:

f2(x) ≤ β ⇐⇒
[
(B(ai, xi) ≤ β, i = 1(1)n)

∧(
B(an+1, κ−

∑n
j=1 xj) ≤ β

)]
.

In view of the monotonicity of the Erlang-B function in x, unique values xβ1 , x
β
2 , . . . , x

β
n+1, exist

such that: (
B(ai, x

β
i ) = β, i = 1(1)n

)∧
B(an+1, x

β
n+1) = β (34)

Computation of such values is a classical numerical problem related to the Erlang-B function.

Several methods are proposed in the literature for this purpose (see for example [19] and [21]).

After calculating such values, it is straightforward:

f2(x) ≤ β ⇐⇒
[(
xi ≥ xβi , i = 1(1)n

)∧(∑n
j=1 xj ≤ κ− xβn+1

)]
⇐⇒ xi ≥ xβi , i = 1(1)n+1

(35)

Since xβj > 0, j = 1(1)n+ 1 the equivalence (35) gives the following formulation of Problem 2.

Problem 3 (Second Parametric Single Criterion Formulation of Problem 1)

Given n ∈ N, κ ∈ R+ and a traffic offered vector a ∈ Rn+1
+ , solve the following program for

β ∈ [β∗∗ , β∗], where the xβj , j = 1(1)n+ 1 are obtained from (34):

min
x

f1(x) =
n∑
j=1

aj B(aj, xj) + an+1B
(
an+1, κ−

∑n
j=1 xj

)
s.t. xj ≥ xβj , j = 1(1)n

n∑
j=1

xj ≤ κ− xβn+1

Problem 3 is a parametric single criterion convex problem with linear constraints. Denoting by

Sβ the feasible region for each value of the parameter β, note that Sβ = {x∗∗} for β = β∗∗. If

β ∈ ]β∗∗, β∗] then Sβ is a simplex of Rn. Furthermore, if β and β′ are values in [β∗∗, β∗] such

that β′ < β, then:

Sβ′ ⊂ Sβ .

6.2 Algorithm for Traveling on N

As shown in [25, Theorem 1], f2(x) ≤ β is an active constraint at the optimal solution of

Problem 2. That is, if x∗β solves Problem 2, then f2(x∗β) = β. By expression (35) it follows

that,

∃ j ∈ {1, 2, . . . , n, n+ 1} : x∗j = xβj . (36)

Let us establish a convention for labeling constraints of Problem 3. Constraint xj ≥ xβj is

labeled with number j for j = 1(1)n. Constraint
∑n

j=1 xj ≤ κ − xβn+1 is labeled with number

n+ 1. A(β) denotes the set of numbers which are labels of the active constraints of Problem 3

at the optimal solution, for a generic value of the parameter β ∈ [β∗∗, β∗].
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22 J. Sá Esteves and José Craveirinha

Lemma 10

If m < n+ 1, and En+1
B is a maximal efficiency system then

m ∈ A(β) =⇒ m+ 1 ∈ A(β).

Proof:

From [25, Theorem 1] this means that the system E2
B composed of groups m and m + 1 is not in

the situation of maximal efficiency (since efficiency improvement might be obtained by transferring

capacity from group m to group m + 1), which is absurd by Lemma 8 since En+1
B is in a situation of

maximal efficiency. �

By using (36), it may be written:

A(β) 6= ∅, ∀ β ∈ [β∗∗, β∗] . (37)

This proposition and Lemma 10 are sufficient to conclude that

n+ 1 ∈ A(β), ∀ β ∈ [β∗∗, β∗] . (38)

Furthermore, it is easy to see that

A(β∗∗) = {1, 2, . . . , n, n+ 1} ,
A(β∗) = {n+ 1} if (an+1 < an) ∧ (x∗n > 0) .

For calculating a Pareto optimal solution corresponding to a certain β ∈]β∗∗, β∗[ the following

calculation procedure can be carried out:

• Fix the value xn+1 equal to xβn+1 and solve the unconstrained maximal efficiency problem

associated with the allocation of the remaining k− xβn+1 servers to the groups 1, 2, . . . , n.

If the obtained solution x is feasible, that is, f2(x) ≤ β then the Pareto solution cor-

responding to β has been obtained. Otherwise fix the values of xn+1 and xn equal to

xβn+1 and xβn respectively and repeat the procedure described above, mutatis mutandis. If

the obtained solution is admissible, the Pareto solution has been found. Otherwise the

described procedure is now applied to xn+1, xn, xn−1 and so on, until the Pareto solution

has been found.

This type of procedure may be not very efficient for high values of n but it is efficient enough

in many practical applications since usually n is not a high number. In any case this type of

procedure is quite efficient for “traveling on N ,” by enabling that a table of Pareto optimal

solutions, with a certain pre-defined number Np solutions, may be easily obtained. To show

the effectiveness of the proposed algorithm for this purpose, we present the following Lemma.

Lemma 11

Let β and β′ be values in the interval [β∗∗, β∗]. Then:

β′ < β =⇒ A(β) ⊆ A(β′) .
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Bicriterion Server Allocation Problem 23

Proof:

We need to prove that if a constraint is active on the optimal solution of Problem 3 for a certain value

of β then this constraint is also active when a parameter β′ < β is used. This is equivalent to prove

that for all m ∈ {1, 2, . . . , n, n+ 1}:

m ∈ A(β) =⇒ m ∈ A(β′) .

If β′ < β, from the monotonicity of the Erlang-B function,

xβm < xβ
′
m . (39)

In the problem corresponding to β the constraint m is xm ≥ xβm and in the problem for β′, the

constraint is xm ≥ xβm. Taking (39) into account and the convexity of function f1 the required result

is obtained. �

From this Lemma it may be concluded that successive resolutions of Problem 3 with decreasing

values of β makes that the fixed variables (corresponding to values xβm) obtained for solving a

certain problem will have to be fixed for obtaining the optimal solution to the following single

criterion problem (with lower value of β), possibly other variables having to be fixed.

Therefore for calculating a table of Pareto optimal solutions to Problem 1, we take suc-

cessively smaller values β in the interval [β∗∗, β∗] and apply the general procedure explained

above. If the step used for decrementing β is executed obviously the number of Pareto solutions

which may be obtained increases and most of such solutions can be calculated by just solving

a problem of maximal efficiency. Also note that the size of the solved problems decreases by

one every time a variable is fixed, thence the numerical resolution becomes less heavy as the

value of β comes nearer β∗∗.

Next the proposed algorithm for traveling on N can be formalized. Following the described

procedure, the algorithm enables the calculation of Np Pareto solutions corresponding to de-

creasing values of β in the interval [β∗∗, β∗] by using a fixed decrement δ = (β∗−β∗∗)/(Np + 1).

The extreme Pareto solutions x∗ and x∗∗ corresponding to β∗ and β∗∗ (maximal efficiency and

maximal equity solutions respectively) are previously computed by using the method described

in Sub-section 3.4 and Section 4.
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24 J. Sá Esteves and José Craveirinha

Algorithm 1 (“Traveling on N”)

description

Input: Number of groups N ≥ 2; parameter κ; offered traffic vector A; bounds β∗ and β∗∗; number of

required Pareto optimal solutions Np ;

begin

1. δ ← (β∗ − β∗∗)/(Np + 1);

2. β ← β∗;

3. Nβ ← 1;

4. for j ← 1 to Np do

begin

5. β ← β − δ;
6. Sβ ← 0;

7. for i ← N to N −Nβ do

begin

8. X[i] ← XERL (A[i], β);

9. Sβ ← Sβ +X[i];

end

repeat

10. N` ← N −Nβ;

11. κβ ← κ− Sβ;

12. ALLOC (A,X, κβ, N`);

13. M ← max {B(A[j], X[j]) : j = 1, . . . , N`};
14. if (M > β) then

begin

15. Nβ ← Nβ + 1;

16. Ig ← N −Nβ + 1;

17. X[Ig] ← XERL (A[Ig], β);

18. Sβ ← Sβ +X[Ig];

end

until (M ≤ β);

19. At ←
∑N

j=1A[i]B (A[i], X[i]);

20. Pareto Point: Write (f1 = At, f2 = β) and the vector X;

end

end;

Output: Table of Pareto optimal solutions;

-2.5exAlg
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Bicriterion Server Allocation Problem 25

In the description of the algorithm, XERL designates the subroutine which calculates the

inverse of the Erlang-B function with respect to x (real number of servers) for given traffic

offered and blocking probability. ALLOC represents the procedure that calculates the first Nl

positions of the decision variable vector X corresponding to the maximal efficiency solution

obtained by allocating a total capacity κβ to the first Nl servers groups.

7 Some Computational Results

Some computational results are presented to illustrate the application of the proposed algorithm

for n+1 = 25 server groups and different values of the total number of servers κ and total offered

traffic α. The figures represent the Pareto efficient frontier in the objective function space.

Examples of Pareto solutions are in table for the cases in Figures 1–3. The implementation of

the algorithm was performed using Turbo C compiler version 2.1. on a PC (Intel Core2 dual

E6400 processor running at 2.13 GHz and 2 GB RAM) using MS Windows XP.

Falta os seguintes valores:

• Valor de β∗∗ e de βast;

• Valor de Np ou o passo δ no intervalo [β∗∗, β∗];

• valores de interesse x∗, x∗∗ e x? (ponto de distância de Tchebyshev pesada normalizada

mı́nima ao ponto ideal);

•

•

a =



49 743

49 426

49 036

47 262

47 204

39 848

39 146

36 541

36 114

35 860

32 707

32 483

32 361

32 091

30 664

23 439

23 311

23 188

20 805

18 125

3 739

3 196

2 912

381

158



, with:


#25 groups

α = 709 740

κ = 691 100

http://ria.ua.pt

C
ad

er
n

os
d

e
M

a
te

m
át

ic
a,

U
n

iv
er

si
d

ad
e

d
e

A
ve

ir
o
,

P
or

tu
ga

l
–

S
ér

ie
d

e
In

ve
st

ig
a
çã
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26 J. Sá Esteves and José Craveirinha

a =



49 743

49 426

49 036

47 262

47 204

39 848

39 146

36 541

36 114

35 860

32 707

32 483

32 361

32 091

30 664

23 439

23 311

23 188

20 805

18 125

3 739

3 196

2 912

381

158



, with:


#25 groups

α = 709 740

κ = 700 000

a =



49 743

49 426

49 036

47 262

47 204

39 848

39 146

36 541

36 114

35 860

32 707

32 483

32 361

32 091

30 664

23 439

23 311

23 188

20 805

18 125

3 739

3 196

2 912

381

158



, with:


#25 groups

α = 709 740

κ = 716 000

The CPU times in these experiments were of the order of . . . ??. . . (seconds). These results il-

lustrate that the proposed algorithm is very effective in generating the Pareto frontier, in the

envisaged type of applications of the bicriteria model.

8 Conclusions

The design of telecommunication networks is a highly complex decision problem involving the

extensive use of decompositions of the associated large-scale optimization problems. Also the

stochastic nature of the offered demand often requires the consideration of stochastic service
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Bicriterion Server Allocation Problem 27

system models in association with optimization problems. Furthermore the mathematical for-

mulations of many design problem become more realistic and powerful if various relevant criteria

are represented explicitly rather than aggregated a priori in a single function to be optimized.

This justifies the increasing interest and potential advantages in using multicriteria in this

area which enable a mathematically consistent treatment of the trade-off between multiple,

conflicting criteria. Following this methodological trend we approached a capacity allocation

optimization problem on a classical stochastic service system, the Erlang-B M/M/x — loss

system, by proposing a bicriteria formulation.

The problem is focused on the allocation of a given total of κ > 0 servers to a number of

groups of servers capable of carrying certain offered traffic processes assumed as Poissonian in

nature. Two main objectives were present in this formulation. Firstly a criterion of equity in

the grade of service, measured by the call blocking probabilities, establishing that the absolute

difference between the blocking probabilities experienced by the calls in the different service

groups must be as small as possible. Secondly a criterion of system economic performance, to

be optimized, was introduced. This criterion implies that the total traffic carried by the system

should be maximized. Relevant mathematical results characterizing the two objective functions

and the set N of the non-dominated solutions, were presented. An algorithm for traveling on

N based on the resolution of monocriteria convex problems, using a Newton-Raphson method,

was also proposed. In each iteration the first two derivatives of the Erlang-B function in

the number of circuits (a difficult numerical problem) were calculated using a method earlier

proposed. Some computational results obtained with the algorithm were also presented which

illustrate the effectiveness of the proposed approach.
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Appendix A Application of the Newton Method

The application of Newton method to the special class of nonlinear systems which appear in

this paper is now discussed. Let us introduce the function Φ ∈ C2 (D):

Φ : D ⊂ Rp −→ Rp

x 7−→ Φ(x) ,

such that Φ(x) = 0 have unique solution on D.
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çã

o
–

5
d

e
D

ez
em

b
ro

d
e

20
10



28 J. Sá Esteves and José Craveirinha

If Φ′(x) denote the Jacobian matrix (evaluated at x) of the function Φ, then, given an

iterate x, Newton’s method generates the next iterate x+ by solving the linear system:

Φ′(x) y = −Φ(x) , (40)

for the correction vector y, and setting x+ = x + y.

The special class of nonlinear systems Φ(x) = 0 which appear in this paper is caracterized

by the following conditions:

Φ′(x) = g(x) [E + diag (w) ] ,

w ∈ Rn
+ ,

g(x) 6= 0 ,

where E is a matrix having all entries equal to 1. In this special case, the linear system (40) is

equivalent to:

[E + diag (w) ] y = b, where b = − 1

g(x)
Φ(x) .

Note that this linear system is completely specified by the vectors w and b. Next lemma shows

that such class of Cramer linear systems are very easy to solve. Clearly the number of aritmetic

operations involved in the process is proportional to the order of the system, as for diagonal

systems.

Lemma 12

Denoting by E ∈ Rp×p the matrix having all its entries equal to 1, if w ∈ Rp
+ and b ∈ Rp,

the solution of the linear system:

[E + diag (w) ] y = b (41)

is given by

yj =
bj − σ
wj

, j = 1(1)p, where σ =

∑p
i=1 (bi/wi)

1 +
∑p

i=1 (1/wi)
=

p∑
i=1

yj .

Proof:

The system may be written as M y = b, where M = E + diag (w). Introduting the notation,

e = [1 1 1 · · · 1]T ∈ Rp ,

D = diag (w) ,

we have,

M y = b ⇐⇒ E y +D y = b ⇐⇒ D y +

(
p∑
i=1

yi

)
e = b .

Defining the variable yp+1 =
∑p

i=1 yi, system M y = b is equivalent to{
D y + yp+1 e = b

−eT y + yp+1 = 0
⇐⇒

[
D e

−eT 1

] [
y

yn+1

]
=

[
b

0

]
.
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Using Gaussian elimination, we obtain:[
D e

0T 1 +
∑n

i=1 (1/wi)

] [
y

yn+1

]
=

[
b∑n

i=1 (bi/wi)

]
.

Using inverse substitution, the result follows with σ = yp+1. �
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