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Palavras-chave Comunicações óticas, redes óticas de acesso de próxima geração, rede ótica
passiva, multiplexagem por divisão de comprimento de onda, comunicação
com detecção coerente, formato de modulação avançado, processamento
digital do sinal, efeitos não lineares, séries de Volterra.





Resumo Este trabalho investiga novas metodologias para as redes óticas de acesso de
próxima geração (NG-OAN). O trabalho está dividido em quatro tópicos de
investigação: projeto da rede, modelos numéricos para efeitos não lineares
da fibra ótica, impacto dos efeitos não lineares da fibra ótica e otimização
da rede.
A rede ótica de acesso investigada nesse trabalho está projetado para suprir
os requisitos de densidade de utilizadores e cobertura, isto é, suportar
muitos utilizadores (∼1000) com altas velocidades de conexão dedicada (∼1
Gb/s) ocupando uma faixa estreita do espectro (∼25 nm) e comprimentos
de fibra ótica até 100 km. Os cenários são baseados em redes óticas
passivas com multiplexagem por divisão no comprimento de onda de alta
densidade (UDWDM-PON) utilizando transmissores/receptores coerentes
nos terminais da rede. A rede é avaliada para vários ritmos de transmissão
usando formatos de modulação avançados, requisitos de largura de banda
por utilizador e partilha de banda com tecnologias tradicionais de redes óticas
passivas (PON).
Modelos numéricos baseados em funções de transferência das séries de
Volterra (VSTF) são demonstrados tanto para a análise dos efeitos não
lineares da fibra ótica quanto para avaliação do desempenho total da rede.
São apresentadas as faixas de potência e distância de transmissão nas quais
as séries de Volterra apresentam resultados semelhantes ao modelo referência
Split-Step Fourier (SSF) (validado experimentalmente) para o desempenho
total da rede. Além disso, um algoritmo, que evita componentes espectrais
com intensidade nulo, é proposto para realizar cálculos rápidos das séries. O
modelo VSTF é estendido para identificar unicamente os efeitos não lineares
da fibra ótica mais relevantes no cenário investigado: Self-Phase Modulation
(SPM), Cross-Phase Modulation (XPM) e Four-Wave Mixing (FWM).
Simulações numéricas são apresentadas para identificar o impacto isolado de
cada efeito não linear da fibra ótica, SPM, XPM e FWM, no desempenho
da rede com detecção coerente UDWDM-PON, transportando canais com
modulação digital em fase (M-ária PSK) ou modulação digital em amplitude
(M-ária QAM). A análise numérica é estendida para diferentes comprimentos
de fibra ótica mono modo (SSMF), potência por canal e ritmo de transmissão
por canal. Por conseguinte, expressões analíticas são extrapoladas para
determinar a evolução do SPM, XPM e FWM em função da potência e
distância de transmissão em cenários NG-OAN.
O desempenho da rede é otimizada através da minimização parcial da
interferência FWM (via espaçamento desigual dos canais), que nesse caso,
é o efeito não linear da fibra ótica mais relevante. Direções para melhorias
adicionas no desempenho da rede são apresentados para cenários em que o
XPM é relevante, isto é, redes transportando formatos de modulação QAM.
A solução, nesse caso, é baseada na utilização de técnicas de processamento
digital do sinal.





Keywords Optical communications, next generation optical access networks, passive
optical networks, wavelength-division multiplexing, coherent communication,
advanced modulation formats, digital signal processing, fiber nonlinearities,
Volterra series.





Abstract This work investigates novel methodologies and models for Next-Generation
Optical Access Networks (NG-OAN). The work is divided into four main
topics of research: network design, numerical models for fiber nonlinear
effects, impact of fiber nonlinear effects and network optimization.
The used case optical access network is designed to cope with high
user density over extended reach, i.e. support large number of
users (∼1000) with high speed dedicated connections (∼1 Gb/s) in a
narrow bandwidth (∼25 nm) distributed up to 100 km. The scenarios
rely on Ultra-Dense Wavelength-Division Multiplexing Passive Optical
Networks (UDWDM-PON) employing coherent transceivers in the network
terminals. The network is evaluated for various transmission rates using
advanced modulation formats, transmitters and receivers specifications,
user bandwidth requirements and coexistence with legacy Passive Optical
Network (PON) technologies.
Numerical models based on Volterra Series Transfer Function (VSTF) are
demonstrated for both the analysis of fiber nonlinear effects and evaluation of
the overall network performance. It is presented the power and transmission
ranges that Volterra series provides accurate results, compared to the
reference model Split-Step Fourier (SSF) (experimentally validated), for the
overall network performance. Moreover, an algorithm is proposed to provide
fast numerical calculations of the series by avoiding zero intensity signal
frequency components. The VSTF model is extended to identify the sole
effect of the most relevant fiber nonlinearities in UDWDM-PON network
scenarios: Self-Phase Modulation (SPM), Cross-Phase Modulation (XPM)
and Four-Wave Mixing (FWM).
Numerical simulations are performed to identify the impact of each nonlinear
effect, SPM, XPM and FWM, on the performance of coherent UDWDM-
PON transporting either M-ary PSK (Phase-Shift Keying) or M-ary QAM
(Quadrature Amplitude Modulation) modulated channels. The analysis is
extended to different lengths of Standard Single-Mode Fibers (SSMF), power
per channel and bit rate per channel. From that, analytic expressions are
extrapolated to find the evolution of SPM, XPM and FWM with power and
transmission distance for NG-AON scenarios.
The performance of the network is optimized by mitigating some of the FWM
crosstalk (unequally spaced channels), which in this case is the most relevant
fiber nonlinear effect. The directions for further performance improvements
are pointed out for scenarios in which XPM is enhanced, i.e. networks
transporting QAM signaling. The solution in this case is based on digital
signal processing techniques.





“Don’t get set into one form, adapt it and build your own, and let
it grow, be like water. Empty your mind, be formless, shapeless
— like water. Now you put water in a cup, it becomes the cup;

You put water into a bottle it becomes the bottle; You put it in a
teapot it becomes the teapot. Now water can flow or it can crash.

Be water, my friend.”
— Bruce Lee: A Warrior’s Journey (2000)





To my parents,
To Darlene.
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Chapter 1

Introduction

Why do people need Telecommunications nowadays?

Video streaming, online gaming, cloud computing and Internet Protocol Television (IPTV)

in full high definition (1080i/p) and ultra high definition (4k / 8k) are just a few examples

of high-demanding bandwidth applications that access networks have to cope with. Solid

foundations in Fiber-to-the-Home (FTTH) projects have to be built for even faster Internet

connections. How much data information can be transported by the current optical fiber

infrastructure is one of questions that this Ph.D. work tries to answer it.

1.1 Passive Optical Networks

The needs for broadband connections have been driving several research groups and the

telecom industry to put a lot of effort towards the development of new technologies. Greater

attention has been given to the deployments and development of cost-effective, reliable and

easy to upgrade architectures for access networks based on point-to-multipoint Passive Optical

Network (PON) [1, 2]. Gigabit-capable Passive Optical Networks (GPON) [3] standardized

by the International Telecommunication Union - Telecommunication Standardization Sector

(ITU-T) and Ethernet Passive Optical Networks (EPON) [4] standardized by the Institute of

Electrical and Electronics Engineers (IEEE) have been deployed around the world. By 2006,

80 % of the worldwide FTTH deployments were based on EPON whereas the remaining 20 %

were represented by GPON. The majority of the EPON subscribers has been concentrated in

Asia (mostly China, South Korea and Japan) whereas GPON technology has been adopted

in North America (e.g. USA) and in some countries in Europe (e.g. France) [5]. It is

1
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expected however that the number of GPON subscribers worldwide increases due to the fact

that BRIC (Brazil, Russia, India and China) and some European countries have been investing

mostly on GPON deployments to enhance their broadband capabilities (according to Infonetics

Research1).

In both technologies, several users share the same fiber infrastructure via Time-Division

Multiplexing (TDM) techniques. GPON delivers asymmetric 1.25 Gb/s for upstream and

2.5 Gb/s for downstream directions whereas EPON provides symmetric 1 Gb/s for upstream

and downstream. In addition, upgraded versions of these technologies, one referred as 10-

Gigabit-capable Passive Optical Network (XG-PON) [6], will be deployed in the following

years in order to extend reach and capacity. 10 Gb/s Ethernet Passive Optical Networks

(10G-EPON) [7] has already been deployed since 2009.

Although GPON and EPON are cost effective technologies in terms of deployment and

maintenance, they both lack on exploiting the full potential of the fiber capacity since the

users share the same channel wavelength. One way to efficiently use the populated wavelength

spectrum is by usingWavelength-Division Multiplexing (WDM), as shown in Fig. 1.1, to enable

point-to-point physical connections between Optical Network Unit (ONU)s and Optical Line

Termination (OLT) in the Central Office (CO). As a result, Wavelength-Division Multiplexing

Passive Optical Network (WDM-PON) can support higher number of users and higher bit

rates per user compared to exclusively TDM based PONs if the interference among WDM

channels is addressed by any optical or electrical multiplexing. Therefore, several wavelengths

can be closely packed to provide dedicated physical connections. Both capacity and reach can

be further improved by the use of mixed architectures based on Dense Wavelength-Division

Multiplexing (DWDM) rings and TDM trees. For instance, the authors in [8] presented a

double-fiber WDM ring architecture with 32 channels reaching up to 100 km with 1:32 TDM

trees. Remotely pumped nodes, which may increase the cost of the network, in the WDM

ring are used to provide broadband connections up to 1000 users.

Some WDM-PON trends require replacing the existing power splitter with an Arrayed

Waveguide Grating (AWG) router (see the filtered scenario in Fig. 1.1). On the other hand,

this upgrade is not particularly desirable, as it requires work on the outside plant and disrupts

existing customers. A centralized split PON (star topology as in the fully transparent scenario

1Infonetics Research: GPON Equipment in Brazil, Russia, India and China (BRIC) Market Share and
Forecast http: // www.infonetics.com /cgp / lp.asp?id=552 (last access, October 2012.)

http://www.infonetics.com/cgp/lp.asp?id=552
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Figure 1.1: Different architectures for PONs. (Top) Fully transparent; (Middle) Hybrid;
(Bottom) Filtered

in Fig. 1.1) can relatively easily be upgraded to such a kind of WDM-PON. For distributed

split PONs (tree and branch), it is impractical to take this upgrade path. This limitation

can be overcome if each ONU selects any of the wavelengths without optical filtering in the

Optical Distribution Network (ODN), i.e. “tunable” ONUs.

In order to overcome the aforementioned limitations, coherent communications may play

an important role for Next-Generation Optical Access Network (NG-OAN) [9]. For instance,

using the ONUs as digital coherent receivers, the local oscillator selects each wavelength and

the information is recovered digitally [10].

1.2 Coherent Communications

The first important aspect of coherent WDM-PON is that the information conveyed in both

directions among ONUs and OLT is modulation transparent in the optical counter-part of the

transceivers if the electrical signals are encoded and decoded digitally. Since Digital Signal

Processing (DSP) at ONU/OLT is easily adapted, any advanced modulation format, such

as Phase-Shift Keying (PSK) [11], quadrature amplitude modulation Quadrature Amplitude



4 1. Introduction

Modulation (QAM) [12] or even Orthogonal Frequency-Division Multiplexing (OFDM) [13],

can be employed throughout the network keeping almost the same optical components in

the transmitters (laser and IQ modulators) and receivers (local oscillator, optical hybrid,

balanced detectors etc). In addition, the ONU requires only one tunable local oscillator used

for both upstream and downstream transmissions since heterodyne detection can be used

in the downstream direction whereas the original wavelength is reserved for the upstream

direction [10]. Secondly, the spectral efficiency is enhanced by the combination of low channel

spacing (or wavelength separation below 25 GHz), high-order modulation formats (M-ary

Phase-Shift Keying (MPSK) or M-ary Quadrature Amplitude Modulation (MQAM)) and

high channel count (higher than 32). This architecture, sometimes referred as Ultra-Dense

Wavelength-Division Multiplexing (UDWDM) based PON, has the potential to theoretically

exploit nearly the ultimate capacity of the optical fiber, i.e. 9 bit/s/Hz per polarization

over 500 km of fiber [14]. As an example, transporting 1000 channels / wavelengths / users

spaced by only 3.125 GHz, employing 256-ary Quadrature Amplitude Modulation (256QAM)

at 3 Gbaud (quasi Nyquist-WDM), the aggregate data rate reaches 24 Tb/s over 3.125 THz

(∼ 24 nm) resulting nearly 8 bit/s/Hz per polarization over 100 km of fiber assuming a split

ratio of 1:1000. If dense multiplex/demultiplex [C2] or blocking filter [15] exist in the network

(as shown in Fig. 1.1), it is possible to reuse devices by multiplexing ultra-dense channels over

DWDM filters, which alleviates the required split ratio. Current research works demonstrated

DWDM using Orthogonal Frequency-Division Multiple Access (OFDMA) based PON with

1.92 Tb/s aggregate over 100 km with split ratio of 1:64 [16]. Another example is found in

[17] where self-coherent reflective PON has been demonstrated to provide up to 42 dB power

budget in the ODN.

1.3 Design Aspects

UDWDM technology relies on employing high-order modulation formats along with coher-

ent detection to provide key network functionalities such as (1) high wavelength selectivity to

alleviate the need for costly and technology challenging ultra-dense filter technology; (2) bet-

ter receiver sensitivity to enable a system with higher split ratios and extended reach (power

budget); (3) bit rate upgradeability by electrically increasing the modulation order keeping

the optical counter part unchanged; (4) digital signal processing to implement equalizers for
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transceiver imperfections and transmission impairments.

Excluding the performance limitations imposed by the transmission over the optical fiber,

the network performance is limited by the optical and electrical components used both in the

OLT and ONUs. Regarding electronics, most of the research works carried out for optical

transport networks have been addressing sampling rates, required bandwidth and bit resolu-

tions of Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC) in the

transmitters and receivers to operate at target users’ data rate [18, 19, 20]. In the optical

counterpart, the goal is how to compensate for the phase and/or amplitude optical noise in-

duced by Erbium-Doped Fiber Amplifier (EDFA), lasers’ phase noise, modulators, filters, IQ

imbalance etc [21, 22].

1.4 Transmission Aspects

As far as transmission impairment is concerned, fiber nonlinearities have become a great

concern as the channel density and power launched into the fiber increases pushing the system

towards nonlinear Shannon’s limit of the optical fiber [23, 14]. Interference among ultra-dense

channels [J1] and with already deployed legacy technologies such as G/EPON [C8] and video

overlay [24] may impair the system’s performance. For that reason, prior knowledge about

transmission aspects such as intra-channel and inter-channel nonlinearities and their depen-

dence on link length, power and modulation is mandatory for the system to convey information

in a reliable way. This can be addressed by recurring to mathematical models capable of ana-

lyzing and simulating accurately the system’s performance and different contributions of the

most relevant physical impairments. On that regard, by using a Volterra series approach, one

is able to estimate the Signal-to-Noise Ratio (SNR) of the received constellation with respect

to different nonlinearities effect and further equalize those unwanted effects.

Volterra series have gained a lot of attention from the optical communication community

over the past years on research topics such as: modeling the nonlinear propagation over the

optical fiber [25]; post-processing nonlinear equalizer on coherent optical transmission systems

[26], [J8]; analysis of fiber nonlinearities on direct detection systems [27] and coherent optical

systems [J3, J1].
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1.5 Motivation and Outline

This Ph.D. thesis aims at investigating coherent optical solutions for Next-Generation

Optical Access Networks. As such, the work was carried out targeting the following objectives:

1. Identify physical and technical challenges on future high aggregate data rate Passive

Optical Networks;

2. Test different receiver and transmitter designs as to fulfill bandwidth upgradability and

user density requirements on Terabit aggregate PONs;

3. Develop strategies for assessing the overall system’s performance of different Next-

Generation Optical Access Network architectures;

4. Evaluate the most relevant sources of transmission impairments such as cross effect

among different technologies in the same PON structure and the dependence of fiber

nonlinearities on feeder power, transmission distance and advanced modulation formats;

5. Propose transmission impairment compensation schemes, either via all-optical process-

ing or digital signal processing techniques to boost transmission capabilities as to comply

with network coverage and capacity.

In order to fulfill the aforementioned objectives, the thesis is divided into 6 Chapters briefly

described as follows:

Chapter 1 reviews the state of the art on coherent optical solutions for NG-OAN and

discusses the organization of the thesis structures as well as its main scientific contributions;

Chapter 2 addresses the network subsystems in the OLT, ODN and ONUs in terms of

architecture, user density, bandwidth, coexistence with legacy technologies and transceivers

performance;

Chapter 3 describes the mathematical model based on Volterra series for the evaluation

of the overall system’s performance and different contributions of fiber nonlinearities. It is

also presented the numerical validation against Split-Step Fourier simulations for different

modulation formats and transmission distances;

Chapter 4 presents the impact of fiber nonlinearities such as self-phase modulation, cross-

phase modulation and four-wave mixing on the system’s performance. The impact on the
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performance versus launch power is evaluated numerically, based on the Volterra model pre-

sented in Chapter 3, when network transports different modulation formats and transmission

distances;

Chapter 5 discusses performance optimization schemes to mitigate some of the fiber nonlin-

earities. The main contribution arises from the well-known unequally channel spacing scheme

to partially eliminate four-wave mixing crosstalk without imposing a bandwidth penalty. The

proposed algorithm is experimentally and numerically investigated.

Chapter 6 concludes the work and give some directions for future projects exploiting the

concepts addressed by the this thesis.

As detailed in the following section, most of the concepts discussed in this thesis were either

published or submitted to prestigious scientific journals of the present research areas [J1]–[J9],

and also presented in international conferences [C1]–[C20]. This thesis was therefore written as

a comprehensive complement to the published papers, which contain most of the information.

Consequently, Chapters 2 to 5 begin with an introduction followed by the description of the

methods, scenarios, results and discussions.

It is important to point out that all the numerical simulations were carried out in a

simulation platform implemented by the author in Matlabr programming language. This

simulation platform, which includes all network elements such as transmitter, receivers and

optical channel, has been experimentally validated for an heterogeneous network scenario

comprised by a coherent UDWDM comb (16×1.25 Gb/s coherent Quadrature Phase-Shift

Keying (QPSK)) in the presence of 10 Gb/s–NRZ signaling with variable guard bands and

optical powers. The transmission over the optical channel was numerically modeled using

both Split-Step Fourier (SSF) and Volterra Series Transfer Function (VSTF). SSF simulations

were accelerated (up to 10× faster than Central Processing Unit (CPU) based simulations)

by using Graphics Processing Unit (GPU) parallel computing so that the simulation time was

fairly reduced for UDWDM network scenarios.VSTF was numerically implemented for both

transmission propagation as well as for the analysis of nonlinearities in UDWDM network

scenarios.



8 1. Introduction

1.6 Main Contributions

This Ph.D. work has contributed beyond the state of the art on several research topics

including the design and optimization schemes to extend the transmission capabilities of Next-

Generation Passive Optical Networks. Most part of the work is published in top international

conferences (20 papers) and prestigious journals (9 papers) on optical communications and

related topics with accumulated impact factor of 21 (Journal Citation Reports 2011).

• The first part of the work, covering objectives 1, 2 and 3, contributed to the design and

performance aspects for high data rate aggregate PONs. The work was described in 1

journal paper [J2] and 7 conference papers [C7], [C2], [C8], [C10], [C4], [C16], [C6]. We

determined how the user density (channel spacing and number of channels) and guard

band to legacy technologies in the wavelength spectrum impact on the performance.

In addition, bandwidth, reach and capacity were considered in the transmitters and

receivers designs to fulfill the requirements of network performance;

• Secondly, objective 4, a special attention was given to the identification of the most rel-

evant transmission impairments on such a network. The work contributed to 3 journals

[J1], [J3], [J4] and 5 conference papers [C1], [C9], [C11], [C14], [C15]. We described how

Volterra series efficiently solves the signals’ linear and nonlinear interaction over the op-

tical fiber. Therefore, it allows to estimate independently the performance contributions

of self-phase modulation, cross-phase modulation and four-wave mixing in a coherent

ultra-dense WDM-PON which is limited mostly by inter-channel nonlinearities. The va-

lidity ranges, in terms of power and transmission distance, were established based on

caparison to Split-Step Fourier simulations for different modulation formats.

• The later part of the work, objective 5, addressed the optimization of the network perfor-

mance with respect to users’ bandwidth upgradability. The contributions were reported

in 5 journal papers [J5], [J1], [J6], [J7], [J8] and 6 conference papers [C5], [C3], [C13],

[C12], [C17], [C18] and one patent [P1]. Channel frequency allocation schemes, based on

Genetic Algorithm or randomly optimized coefficients, were proposed to compensate in

part for the inter-channel four-wave mixing without penalize the total bandwidth. The

optimized frequency coefficients updates the frequency of transmitters and receivers
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lasers for coherent systems. The proposed algorithms were experimentally and numeri-

cally demonstrated. In addition, digital signal processing techniques, based on Volterra

back propagation to eliminate some deterministic nonlinearities, have been developed

to further improve the system’s performance when impaired by self-phase and possibly

cross-phase modulation.

It is important to point out that the experimental validation of the optimization algorithm

[C3, C5] was partially carried out at the National Institute of Information and Communications

Technology (NiCT, Photonic Network Research Institute) in Tokyo, Japan (2009). In addition,

this Ph.D. work has collaborated with other works on all-optical wavelength conversion during

the 3-month stay at NiCT [J9, C20, C19].The experimental investigation presented in [C17, J6]

were obtained in cooperation with Politecnico di Torino (POLITO) in Turin, Italy, during a

two-week stay in the summer of 2011.





Chapter 2

Architectural and Design
Optimization

The increased demand for broadband in optical access networks has pushed engineers and

scientists around the world to develop new solutions to better exploit the capabilities of Passive

Optical Network (PON). The problem to be solved is

how to maximize the number of users, the users’ data rate and reach at minimal

cost, complexity and bandwidth?

On that sense, coherent communication either based on Orthogonal Frequency-Division

Multiplexing (OFDM) [13] or Wavelength-Division Multiplexing (WDM) [28] is a notori-

ous technological advance for enabling Next-Generation Optical Access Network (NG-OAN).

As discussed in Chapter 1, employing coherent transceivers in both Optical Line Termina-

tion (OLT) and Optical Network Unit (ONU) provides key network functionalities such as

wide-range tunable ONUs, improved receiver sensitivity, data rate upgradeability and phys-

ical impairment compensation. The first two functionalities are related to the presence of a

light source in the ONU that is used for both channel selection and detection without the need

for optical amplification and filtering. Digital Signal Processing (DSP) techniques can be ap-

plied to any digital modulation formats for the equalization of both transmission impairments

and transceivers imperfections. Particularly, the spectral efficiency is enhanced by the combi-

nation of reduced channel spacing, higher order modulation formats such as M-ary Phase-Shift

Keying (MPSK) and M-ary Quadrature Amplitude Modulation (MQAM) and high number

of wavelength channels. These characteristics are the foundations of coherent Ultra-Dense

Wavelength-Division Multiplexing Passive Optical Network (UDWDM-PON) [29], which has

the potential to explore more efficiently the available optical fiber capacity, predicted as 9

11
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bits/s/Hz per polarization over 500 km [14].

This Chapter, based on Journal [J2] and Conference papers [C4],[C6], [C7], [C8] and

[C10], investigates key parameters to better exploit the transmission capabilities of optical

access networks employing coherent transceivers. Firstly, WDM based PONs architectures

and their dependence on spectral efficiency and link budged are outlined in Section 2.1. The

experimental validation of the simulation platform is presented in Section 2.2 considering an

heterogeneous network. The transmitter design in the OLT is addressed in Section 2.3. Some

transmission aspects in the Optical Distribution Network (ODN) such as the cross effect with

other PON technologies are discussed in Section 2.4. Finally, Section 2.3 describes some

parameters of the receiver in the ONU to cope with the upgradeability of users’ data rate.

2.1 PON Architectures

Some designs of Wavelength-Division Multiplexing Passive Optical Network (WDM-PON)

may require replacing the existing power splitter with an Arrayed Waveguide Grating (AWG)

router if the ONUs do not have the ability to receiver information in other wavelengths. On the

other hand, this limitation can be solved if each ONU selects any of the wavelengths (“tunable”

ONU) without the need of optical filtering. As a result, it is relevant that future network

architectures employ tunable ONUs so that some already deployed devices, i.e. splitters

and/or AWGs can be reused.

In order to overcome the aforementioned limitations, coherent communications may play

an important role for NG-OAN. For instance, using the ONUs as digital coherent receivers,

the local oscillator selects any of the transmitted wavelengths to down-convert to the electrical

and the information is recovered digitally [10].

The coherent UDWDM-PON scenario investigated in this work has a total of Nch=64

Quadrature Phase-Shift Keying (QPSK) modulated channels at 1 Gb/s. This scenario, de-

picted in Fig. 2.3, may be implemented in 3 different architectures:

(i) fully transparent : all coherent channels spaced by 3.125 GHz are transmitted through

25 km of fiber to the ONUs only recurring to a 1:64 splitter. The optical spectrum before

fiber is shown in Fig. 2.1(b);

(ii) hybrid : K sub-groups of N channels (spaced at 3.125 GHz) multiplexed via K ×BW

AWG (e.g. 4 × 100 GHz), are transmitted over 20 km of fiber. Then, the information is
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routed to ONUs via K × BW AWG, followed by 5 km and 1:N passive splitter. The optical

spectrum for K=2 is depicted in Fig. 2.1(c). We considered that the AWGs have 4 dB of

intrinsic loss and minimal bandwidth of 6.25 GHz due to the limited band in the simulation

setup (400 GHz divided for 64 channels).

(iii) filtered : Nch=64 channels multiplexed via 64 × 6.25 GHz AWG, are transmitted

through 20 km of fiber followed by 64 × 6.25 GHz AWG. The information reaches the ONUs

5 km away without a power splitter. The related optical spectrum is shown in Fig. 2.1(d).

Fig. 2.2 shows the spectral efficiency and total link loss as a function of the number of AWG

ports (K) for all architectures. On top of the figure, it is shown the related splitting factor for

each value of K. Here, we define the spectral efficiency as the aggregated bit rate divided by

the total occupied bandwidth and the total link loss as the overall attenuation accounting for
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Figure 2.1: (a) Different architectures for UDWDM based PONs. Optical spectra before fiber
for (b) Fully transparent, (c) Hybrid and (d) Filtered.
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Figure 2.2: Spectral efficiency (blue line + squares) and point-to-point link loss (red line +
circles) as a function of number of AWG ports. Related splitting ratios shown on top.

AWGs, fibers and splitter. The fully transparent (reference) architecture positioned at K=1

(1:64) has the highest spectral efficiency among all the compared. The spectral efficiency

is reduced by 50 % for K>4 (1:16) hybrid and filtered architectures. The fully transparent

system has 23 dB (1:64 splitter plus 5 dB for fiber) of link loss and the filtered architecture

(K=64) has the lowest link loss (13 dB) accounted for the intrinsic loss of 2 AWGs plus fiber.

Scenarios with higher splitting factors, in which several ultra-dense channels are closely

packed, provide higher spectral efficiency and flexibility since coherent channels can be traded

by higher speed technologies (e.g. 100GbE) in broader AWG ports. Furthermore, these archi-

tectures may reuse the already installed PON infrastructures such as 1:16 splitters. Scenarios

with lower splitting factors (<1:16) provide extended reach thanks to the lower link loss. Since

the number of channels per AWG band is reduced, the transmission is not strongly impaired

by nonlinear crosstalk as it is discussed in Chapter 4. On the other hand, these architec-

tures lack on spectral efficiency and flexibility since narrower AWG band limits the use of

alternative broadband technologies. For instance, it is technological challenging to allocate

40G–Intensity Modulation Direct Detection (IMDD) channels on 50 GHz or 25 GHz–AWG.

Another possibility for the fully transparent architecture is when the UDWDM-PON co-
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Figure 2.3: System scenarios for the Fully Transparent architecture: (a) Homogeneous net-
work. (b) Heterogeneous network.

exists with legacy technologies as the Gigabit-capable Passive Optical Networks (GPON) or

with upcoming deployments as the 10-Gigabit-capable Passive Optical Network (XG-PON).

Since both GPON and XG-PON are based on IMDD systems, the fully transparent archi-

tecture is further subdivided into Homogeneous scenario, transporting only coherent channels

and Heterogeneous scenario, transporting coherent and IMDD channels as depicted in Fig. 2.3.

These scenarios will be detailed in section 2.4 to study the cross effect on different technologies

sharing the same fiber plant.

2.1.1 Simulation Parameters and Methodologies

The following results address some relevant parameters to test the capabilities of coherent

UDWDM-PON, both in its homogeneous (coherent channels only) or in its heterogeneous

(coherent channels coexisting with IMDD channels) versions. Therefore, it is described below

some parameters and methodologies used in the simulated results.

In the transmitter side, each wavelength channel shown in Fig. 2.3 is comprised by a laser

light source followed by an optical modulator which is fed by radio frequency electrical signals.

The laser light source has zero phase and intensity noise. The effect of laser phase noise is
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addressed in sub-section 2.5.2 when digital modulation formats are studied for different laser

linewidths. For coherent channels, the modulator is an optical IQ modulator fed by in-phase

and quadrature Non-Return to Zero (NRZ) electrical signals. The transfer function of the

modulator is implemented according to equation (2.16) in [30]. The NRZ electrical signals are

independent and shaped by a 5th order Bessel filter with bandwidth approximately twice the

bit rate. The intensity modulated channels have similar structure, but the IQ modulator is

replaced by a Mach-Zehnder Modulator (MZM) fed by only one NRZ electrical signal. The

MZM transfer function is defined in equation (2.13) in [30].

Following the transmitter, there is an optical filter to simulate the presence of AWGs

multiplexers in the case of WDM scenarios. The filter transfer function follows a 2nd order

super-Gaussian curve in which the bandwidth is tuned to 80 % of the channel spacing. As an

example, the bandwidth is about 2.5 GHz for 3.125 GHz of channel spacing. This rule does

not apply to the intensity modulated channels where the filter bandwidth is tuned to about 4

times the bit rate.

After multiplexing all the channels, the resulting optical signal is transmitted over the fiber,

Standard Single-Mode Fiber (SSMF): reference frequency 193.4 THz (∼ 1550 nm), fiber at-

tenuation α = 0.20 dB/km, chromatic dispersion D = 16.5 ps/(nm.km), chromatic dispersion

slope S = 0.07 ps2/nm.km and nonlinear parameter γ = 1.35 (W ·km)−1. The optical propa-

gation is simulated by the Split-Step Fourier (SSF) method implemented according to [31, 32].

Volterra Series Transfer Function (VSTF) method, detailed in Chapter 3, is also used for sim-

ulating the optical propagation and modeling fiber nonlinearities. In both cases, linear effects

(attenuation and Chromatic Dispersion (CD)) and fiber nonlinearities (Self-Phase Modula-

tion (SPM), Cross-Phase Modulation (XPM) and Four-Wave Mixing (FWM)) are taken into

account. Higher order nonlinearities such as Self-Steepening (SS), Stimulated Raman Scatter-

ing (SRS) and Stimulated Brillouin Scattering (SBS) are not considered in the simulations.

After propagation, the optical signal reaches the receiver side via splitters, AWG + splitters

or AWG, as illustrated in Fig. 2.1(a).

In the receiver side, the coherent channels are detected by a conventional coherent receiver

shown in the inset of Fig. 2.3(a). The received optical signal is mixed along with the 0 dBm

local oscillator (linewidth = 0 Hz) through 2× 4− 90o optical hybrid. The local oscillator is

tuned to the channel under test. Both in-phase and quadrature components of the resulting
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optical signal is optical-to-electrical down-converted using two pairs of balanced photo detec-

tors (responsivity R ≈ 1). Thermal noise of the receiver circuitry (front-end impedance of

50 Ω) and photocurrent shot noises are considered in the coherent receiver. The electrical sig-

nal is then filtered using a 5th order low-pass Bessel filter with 3 dB bandwidth around 0.7 ×

symbol rate. The analog signal is further down sampled at symbol rate (one sample per sym-

bol) and converted to the digital domain using an Analog to Digital Converter (ADC) with 8

bits resolution to minimize any quantization errors as discussed in sub-section 2.5.1. Thus, the

recovered symbols are normalized to 1 (average constellation energy) and the phase synchro-

nization is performed as detailed in section 3.4. The last step is to estimate the performance

of the recovered complex symbols as the root mean squared Error Vector Magnitude (EVM)

for N symbols, defined as

EVMrms =

√∑N
i=1 |si − s

′
i|2∑N

i=1 |si|2
(2.1)

where s′i = a
′
i+j∗b

′
i and si = ai+j∗bi are the received symbols and ideal transmitted symbols,

respectively. EVM can be expressed in either in percentage, EVM(%) = EVMrms · 100, or

in dB, EVM(dB) = 10 · log10(EVM2
rms). Throughout this work, it is included in the figure

results a dash line around EVM=32.4 % (∼-9.8 dB), which theoretically corresponds to a

system Bit Error Ratio (BER)=10−3 using QPSK [33]. This BER value is the reference

threshold for a typical limit of 7 % overhead Forward Error Correction (FEC). For more

information on the relations of EVM, BER and Signal-to-Noise Ratio (SNR) for both MPSK

and MQAM formats, refer to Appendix A.

The intensity modulated channel is firstly filtered by a pass-band optical filter, with the

same characteristics as the one in the transmitter side. Then, the resulting signal is directly

detected (| · |2) via a photo receiver (responsivity R ≈ 1) followed by a low-pass filter (5th

order Bessel) with bandwidth around 0.7 × bit rate. After the decision logic, the performance

is estimated using the Q factor defined as:

Q2
dB = 20 · log10

(
µ1 − µ0

σ1 + σ0

)
(2.2)

where µi and σi are the mean and standard deviation values for mark (i = 1) and space

(i = 0), respectively.
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2.2 Experimental Validation of the Simulation Model

This section addresses the experimental demonstration of the fully transparent heteroge-

neous network comprised by 16×1.25 Gb/s–coherent QPSK channels plus 10 Gb/s–IMDD

channel transmitted over 20 km of SSMF. The main goal of this section is to experimentally

validate the simulation model employed throughout this work using the lab infrastructure

shown in Fig. 2.4.

Figure 2.4: Picture of the instrumentation used in the experiments.

The experimental setup is depicted in Fig. 2.5. An External Cavity Laser (ECL) source

with∼100 kHz–linewidth is modulated using IQ Modulator (IQM) fed with two 625 Mb/s NRZ

electrical signals. Each electrical signal carries 29 Pseudo Random Binary Sequence (PRBS).

The resulting optical 1.25 Gb/s–QPSK is injected to a MZM¸ driven by two 3.125 GHz radio

frequency signals with phase relation between them around 3π/2. The QPSK channels, equally

spaced by 3.125 GHz, are filtered by a Wave Shaper (WS) (Finisar 4000S) tuned to 50 GHz of

bandwidth. The optical power is set to around -3 dBm per channel using an Erbium-Doped

Fiber Amplifier (EDFA).

The Ultra-Dense Wavelength-Division Multiplexing (UDWDM) comb is multiplexed with

a 10 Gb/s–NRZ channel via a 100 GHz–WDM filter. The 10G–NRZ, whose extinction ratio is

limited to 10 dB and optical power adjusted using an EDFA, is based on an Electro-absorption

Modulator integrated Laser (EML) fed with 223 PRBS. This channel has different guard bands

to the center QPSK channel (channel under test) as depicted in the measured optical spectra

using a Optical Spectrum Analyzer (OSA) (Apex) shown in Fig. 2.5(b): 100 GHz (0.8 nm),

150 GHz (1.2 nm) and 200 GHz (1.6 nm).

The total optical signal (UDWDM comb plus 10G–NRZ) is transmitted over 20 km of

SSMF.
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Figure 2.5: (a) Experimental setup: 16×1.25 Gb/s–QPSK + 10 Gb/s–NRZ. (b) Measured
Optical Spectra for different guard bands between coherent QPSK and 10G–NRZ.

After transmission, the total signal is demultiplexed using a similar WDM filter as in the

transmitter side. The 10G–NRZ reaches a direct detection receiver whereas the UDWDM

comb transporting all the QPSK channels reach the coherent receiver depicted in Fig. 2.5(a).
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Although the 10G–NRZ channel performance is not reported in this work, the simulations

carried out in sub-section 2.4.1 indicate that the effect of UDWDM comb on 10G–NRZ is

minimal for guard bands higher than 100 GHz. Thus, the experimental validation is focused

on the performance of the QPSK channels. The received QPSK signals are mixed with the local

oscillator tuned to the center channel under test using a 2×4−90o optical hybrid. The optical

signal is then converted to the electrical domain using a pair of Balanced Detectors (BD). The

resulting analog electrical signal is converted to the digital domain using a 100 GSample/s

real-time oscilloscope with analog bandwidth around 20 GHz (Tektronix MS072004C).

To recover the data information, DSP techniques are applied as follows: Firstly, the digital

signal is normalized (unitary average constellation energy) and synchronized to the transmitted

symbols. Then, a low-pass filter with bandwidth around 0.8× the symbol rate (∼500 MHz) is

applied to remove the information from the neighboring channels. We point out that digital

CD compensation is not applied since the temporal effects in such a transmission system is

negligible, as discussed in sub-section 2.4.4. The signal is down-sampled to 1 sample per

symbol. To recover both phase and frequency, Viterbi and Viterbi algorithm is applied to the

QPSK constellation with averaging filter using 4 samples to estimate the phase error. The

performance of the network is measured as the root mean squared EVM (EVMrms). The

EVM is estimated between a block of 512 recovered symbols at the receiver with respect to

the ideal transmitted symbols. Finally, EVM is averaged over 16 independent measurements

(totaling nearly 8200 measured symbols) to establish a 95 % confidence interval.

For validation purpose, a set of simulations with the methodologies described in sub-section

2.1.1 has been carried out under similar conditions as the experiments. The propagation model

used for simulating the optical fiber is the symmetric SSF with very high spatial and temporal

resolutions and 3rd order VSTF. The EVM results obtained from simulations are calculated

considering 32 independent simulations.

Fig. 2.6, Fig. 2.7 and Fig. 2.8 show the EVM (center channel) obtained from both mea-

surements and simulations versus input power of 10G–NRZ channel (average optical power)

for guard bands equal to 100 GHz (0.8 nm), 150 GHz (1.2 nm) and 200 GHz (1.6 nm), respec-

tively. The measurement results are identified with filled circles (“•”) whereas the simulation

results are represented by open squares (SSF) and open diamonds (VSTF). It is also shown in

the figures the cubic interpolation for the simulated data represented by a solid line. Vertical
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bars identify the confidence interval for the two methodologies.
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Figure 2.6: EVM versus input power of 10G–NRZ channel for guard bands of 100 GHz (0.8
nm). Filled markers: measurements. Open markers: simulations. Solid lines: interpolation
for the simulated results. Vertical bars: confidence interval.

For all tested guard bands shown in Fig. 2.6, Fig. 2.7 and Fig. 2.8 the simulation model

(based on SSF simulations), used throughout this work, provides very similar EVM results as

the ones obtained from the experiments for input powers of the 10G–NRZ channel up to 16.5

dBm. It is important to highlight that results for 100 GHz and power higher than 15 dBm

present a slightly divergence from the average EVM obtained from simulations. In addition,

VSTF method is able to estimate accurately EVM results for powers up to 13 dBm, 14 dBm

and 15 dBm for 100 GHz, 150 GHz and 200 GHz, respectively.

As expected, the inter-channel nonlinearities play an important role on the system’s perfor-

mance: as the input power increases and the guard band reduces, inter-channel nonlinearities

increase. Therefore, as the input power increases higher than 14 dBm, due to inter-channel

nonlinearies, the measured EVM results obtained higher uncertainty (represented by the ver-

tical bars) for guard bands of 100 GHz and 150 GHz. For guard band equal to 200 GHz, the

uncertainty in the EVM estimation is decreased compared to lower guard bands.

For powers higher than 10 dBm, the EVM increases roughly with the squared input power,



22 2. Architectural and Design Optimization

0 3 6 9 10 11 12 13 14 15 16 17
10

15

20

25

30

35

40

45

50

55

BER=10
−3

Input power of 10G−NRZ channel [dBm]

E
V

M
rm

s [
%

]

 

 

Measurements

SSF Simulations

VSTF Simulations

Figure 2.7: EVM versus input power of 10G–NRZ channel for guard bands of 150 GHz (1.2
nm). Filled markers: measurements. Open markers: simulations. Solid lines: interpolation
for the simulated results. Vertical bars: confidence interval.

i.e. EVM increases by 2 dB every 1 dB increase in the input power. This power dependence

is also confirmed by the results presented in Chapter 4. The EVM dependence on guard band

is only noticeable for input powers higher than 15 dBm. Such a high power is particularly

relevant since some PON technologies, as some XG-PON transmitter classes for instance, may

operate at power as high as 16.5 dBm. See sub-section 2.4.2.

As far as the network performance is concerned, EVM of 32.4 % (SNR≈9.8 dB), which

corresponds theoretically to BER=10−3, is achieved for input powers around 15 dBm, 15.6

dBm and 16 dBm at 100 GHz (Fig. 2.6), 150 GHz (Fig. 2.7) and 200 GHz (Fig. 2.8),

respectively. Using simple DSP in the ONU provides EVM performance below 20 % (SNR≈14

dB) when the 10G–NRZ input power is limited to 12 dBm even for such narrow guard bands.

These results show that coherent UDWDM-PONs can share the same fiber plant with other

PON technologies such as 10 Gb/s Ethernet Passive Optical Networks (10G-EPON) and

XG-PON that can require optical power nearly to 17 dBm.
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Figure 2.8: EVM versus input power of 10G–NRZ channel for guard bands of 200 GHz (1.6
nm). Filled markers: measurements. Open markers: simulations. Solid lines: interpolation
for the simulated results. Vertical bars: confidence interval.

2.3 Optical Line Termination

User density depends on two crucial variables: channel spacing and number of channels

(or wavelengths). In order to maximize the number of users, the channel spacing has to be

reduced in order to save the already populated wavelength spectrum. This section discusses

the implications of using reduced channel spacing in the OLT, thereby willing to answer the

following question.

What should be a compromise minimum bandwidth on coherent UDWDM-PON

technologies?

2.3.1 User Density

The results in Fig. 2.9(a) outline the performance of the homogeneous coherent scenario in

terms of the worst EVM (center channel) among all channels under test as a function of the

channel spacing for input powers per channel (average optical power) -6 dBm and -3 dBm in

blue solid line and red dash line, respectively. We evaluated the performance of 32 channels

at 1.25 Gb/s–QPSK after transmission over 25 km (circles), 60 km (squares) and 100 km
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(diamonds) of SSMF fiber. Fig. 2.9(b) highlights the EVM distribution among all tested

channels at 3.125 GHz frequency grid. We point out that all fiber spans considered in the

simulations (25 km, 60 km and 100 km) have very similar performance for channel spacing

higher than 2 GHz indicating that coherent UDWDM-PON can have extended reach as high

as 100 km with splitting ratios as high as 1:32.

The system spectral efficiency, as described before, is defined in terms of the aggregated

bit rate (32 × 1.25 Gb/s = 40 Gb/s) divided by the total occupied bandwidth (number of

channels Nch × channel spacing) decreases as the channel spacing increases. Therefore, lower

channel spacing gives better spectral efficiency, e.g. at 1.5625 GHz channel spacing gives

spectral efficiency of 0.8 bit/s/Hz. On the other hand, operating at 1.5625 GHz the system

is severally impaired by inter-channel nonlinear crosstalk resulting EVM around 15 % even

for the -6 dBm per channel case. The solution is to operate at channel spacing higher than

3.125 GHz resulting in spectral efficiency equal to 0.40 bit/s/Hz that assures EVM below the

10 % limit [34]. This limit corresponds to a system error free if the signal is corrupted by

Gaussian amplitude and phase noises. Also indicated in the figure is the dash line around

EVM=32.4 %, refer to Appendix A.

2.4 Optical Distribution Network

After defining the transmitter specifications that maximize spectral efficiency, this section

describes the requirements in the ODN, which includes fiber plus a passive power splitter

router. Shared ODN by different technologies, accumulated chromatic dispersion and splitting

ratios are investigated in order to maximize the system’s spectral efficiency. Therefore, the

focus of this section is to address the following questions.

How close can coherent channels coexist with other PON technologies?

How many channels or splitting ratio can we aggregate per band in existing

AWG?

Is chromatic dispersion a problem for coherent optical access networks?
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Figure 2.9: (a) EVM for various channel densities at 32 channels. (b) EVM distribution
among tested channels at 3.125 GHz grid. Blue solid lines: -6 dBm per channel; red dash
lines: -3 dBm per channel.
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2.4.1 Guard Band to GPON

The International Telecommunication Union - Telecommunication Standardization Sec-

tor (ITU-T) recommendation G.984.2 [35] specifies the physical layer requirements and char-

acteristics for the physical media dependent layer of GPON deployments. This PON tech-

nology offers the integration of voice, Time-Division Multiplexing (TDM), Ethernet (10/100

BaseT), leased lines, wireless extension etc. The main characteristics may include: physical

reach of 20 km (60 km logical reach supported by protocol); line rates of 1244.16 Mb/s and

2488.32 Mb/s in the downstream directions and 155.52 Mb/s, 622.08 Mb/s, 1244.16 Mb/s

and 2488.32 Mb/s in the upstream direction; operating wavelength for upstream is 1310 nm

±50 nm whereas 1490 nm ±10 nm is reserved for downstream direction for single-fiber sys-

tems. Depending on the line rates, there are 3 classes for the operating optical power in the

transceiver. Below, it is listed in Table 2.1 [35] the transmitter power classes defined for the

downstream at 2488.32 Mb/s and upstream at 1244.16 Mb/s operations:

Table 2.1: Mean launched power for GPON transceivers.

1244.16 Mb/s upstream A B C
Min -3 dBm -2 dBm +2 dBm
Max +2 dBm +3 dBm +7 dBm

2488.32 Mb/s downstream A B C
Min 0 dBm +5 dBm +3 dBm
Max +4 dBm +9 dBm +7 dBm

Table 2.1 is the reference for the power levels and bit rates used in this section to address

the performance of the fully transparent heterogeneous network in Fig. 2.3(b). This scenario

consists of 31 coherent QPSK channels coexisting with one NRZ–IMDD channel followed by

transmission over 25 km of SSMF. The performance is evaluated in terms of the EVM in % of

the 31st QPSK channel as a function of the guard band to the IMDD channel. The coherent

-3 dBm–QPSK channels operated in 1.25 Gb/s whereas the IMDD channel operated either at

1.25 Gb/s or 2.5 Gb/s.

Fig. 2.10(a) shows the performance after transmission versus the guard band to the IMDD

channel operated at 1.25 Gb/s. The inset in Fig. 2.10 depicts the EVM distribution among all

tested channels at 3.125 GHz guard band. The EVM curve in the green dash-dot line represents
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Figure 2.10: EVM of the received 31st QPSK versus guard band to the IMDD channel with
different GPON transmitter powers at (a) 1.25 Gb/s and (b) 2.5 Gb/s. Insets show the EVM
distribution among tested channels at 3.125 GHz guard band. Green dash-dot line: reference
curve without the IMDD channel.

the performance of the homogeneous network without the IMDD channel. The IMDD channel

has different laser powers compatible with the specifications for GPON equipment (Table 2.1)
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in the ONU transmitters for upstream direction, i.e. from ONU to OLT [35]. The EVM

curves point out that guard bands higher than 12.5 GHz is sufficient to minimize the cross

effect impact on the system’s performance. This results from the fact that the IMDD channel

contribution to FWM components starts to be negligible since the phase matching condition

stop being satisfied for higher guard bands. Additionally, for guard bands higher than 12.5 GHz

the extra penalty on the system’s performance is contributed mostly by XPM induced by the

IMDD channel up to 200 GHz.

The XPM effect is enhanced for higher power categories of GPON transmitters, i.e. class

C with max laser power of 7 dBm. For other classes where the power is below 3 dBm XPM

effect is negligible since the EVM converges to the reference system without the IMDD channel,

identified by the green line at EVM=10.3 %. It is worth pointing out that crosstalk between

the IMDD and 31st QPSK channels is very strong when the guard band is only 1.5625 GHz.

In this case, the EVM accounts for both linear and nonlinear crosstalk.

Fig. 2.10(b) shows the performance of the heterogeneous scenario when the IMDD channel

operates at 2.5 Gb/s. The inset highlights the distribution of the EVM among all tested

channels when the guard band is 3.125 GHz. The IMDD power in this case is compatible

with GPON classes in the OLT transmitters for downstream direction, i.e. OLT to ONU

[35]. As discussed before, 12.5 GHz is sufficient to reduce the FWM impact on the system

although these classes require much higher power than the 1.25 Gb/s–IMDD specifications.

The overlapping in power occurs for the maximum power of class C at 1.25 Gb/s and 2.5 Gb/s.

As such, this overlapping allows analyzing the dependence of XPM on the IMDD bit rate.

In the regime where XPM is dominant (guard band > 12.5 GHz) the black dash-lines in

Fig. 2.10(a) and 2.10(b) show that its impact is slightly reduced when the IMDD channel

operates at 2.5 Gb/s, e.g. EVM1.25 Gb/s@200 GHz = 12.3 % and EVM2.5 Gb/s@200 GHz =

11.3 %.

To identify the performance of the IMDD channel impaired by linear and nonlinear crosstalk

induced by coherent QPSK channels in the heterogeneous scenario, Fig. 2.11 analyzes the Q

factor of the IMDD channel as a function of guard band. Classes with lower transmitter pow-

ers are more affected by crosstalk (lower Q) since the signal–to–interference ratio is reduced.

Guard bands higher than 6.5 GHz assure error free operation (Q>15.5∼dB) without recur-

ring to FEC for both 1.25 Gb/s (Fig. 2.11(a)) and 2.5 Gb/s (Fig. 2.11(b)) systems. On the
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Figure 2.11: Q factor of the IMDD channel as a function of guard band at (a) 1.25 Gb/s and
(b) 2.5 Gb/s with different GPON transmitter powers. The orange dash-dot line theoretically
corresponds to a system BER=10−3 (FEC limit).

other hand, the system may operate at 3.125 GHz guard band if FEC is employed. The Q

factor is limited to around 20 dB when the IMDD channel operates at 2.5 Gb/s. This comes



30 2. Architectural and Design Optimization

from that fact that there is a 5 GHz–filter at transmitter and receiver sides, thereby imposing

stronger Inter-Symbol Interference (ISI) in 2.5 Gb/s–signal than in 1.25 Gb/s–signal. These

filtering effects are highlighted in the received electrical eye diagrams of Fig. 2.12.
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Figure 2.12: Received electrical eye diagrams. (a) 1.25 Gb/s with -3 dBm at 3.125 GHz; (b)
1.25 Gb/s with -3 dBm at 200 GHz; (c) 2.5 Gb/s with 0 dBm at 3.125 GHz; (d) 2.5 Gb/s
with 0 dBm at 200 GHz.

2.4.2 Guard Band to XG-PON

ITU-T recently defined an upgraded version of GPON, the so called XG-PON G.987.1 [36],

which supports asymmetric 9.95328 Gb/s downstream and 2.48832 Gb/s upstream (XG-PON1).

Another version, XG-PON2 is designed to support symmetric 9.95328 Gb/s. This broadband

access technology is defined to have full compatibility with GPON and video distribution ser-

vice thanks to a wavelength plan, blocking filters and loss budget that allow coexistence on

a common PON infrastructure. Besides higher bit rates, reach and splitter ratio is extended

up to 60 km and 1:128 respectively. The operating wavelength for downstream is 1578 nm ±3
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nm whereas the upstream transmission is performed at 1270 nm ±10 nm. The power levels

in the XG-PON transceivers are specified in the G.987.2 recommendation [37]. These power

levels for both Nominal (N) and Extended (E) classes are listed below in Table 2.2.

Table 2.2: Mean launched power for XG-PON transceivers.

10 Gb/s downstream N1 N2a N2b E1 E2a E2b
Min 2 dBm 4 dBm 10.5 dBm 6 dBm 8 dBm 14.5 dBm
Max 6 dBm 8 dBm 12.5 dBm 10 dBm 12 dBm 16.5 dBm

2.5 Gb/s upstream N1 N2 E1 E2
Min 2 dBm 2 dBm 2 dBm 2 dBm
Max 7 dBm 7 dBm 7 dBm 7 dBm

In terms of cross effect with next-generation technologies, it is relevant to analyze heteroge-

neous scenarios in which the XG-PON transceiver operates at classes with higher transmitting

power, e.g. classes E in downstream direction. This section, therefore, addresses the depen-

dence of the heterogeneous network scenario on the coexistence with XG-PON equipment.

Although both PON standards are based on IMDD systems, XG-PON equipment requires

much more power than GPON, thereby inducing more nonlinear crosstalk on coherent chan-

nels. In Fig. 2.13 is shown the optical spectra after the fiber with the coherent channel

under test and the IMDD channel that simulates XG-PON channel at guard band 12.5 GHz

(Fig 2.13(a)) and 200 GHz (Fig. 2.13(b)). In this case, the optical filters at transmitter and

receiver sides for the IMDD channel were increased to 40 GHz.

Fig. 2.13(c) shows the performance of the heterogeneous scenario, consisting of thirty one

2.5 Gb/s–QPSK channels coexisting with one 10 Gb/s–IMDD channel, after transmission

over 25 km of SSMF. This performance is evaluated in terms of the EVM in % of the 31st

QPSK channel as a function of the guard band to the 10 Gb/s–IMDD channel as illustrated

in Fig. 2.13(a) and 2.13(b). Fig. 2.13(d) depicts the EVM distribution among all tested

channels at 100 GHz guard band. The IMDD channel has different powers compatible with

the specifications for XG-PON equipments (third row of Table 2.2) in the OLT for downstream,

i.e. from OLT to ONU [37]. The results depicted by green dash-dot lines represent the system

without the presence of the XG-PON equipment. In this case, the performance is essentially

limited by FWM among -6 dBm–QPSK channels.

The EVM curves point out that guard bands higher than 100 GHz are sufficient to min-
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Figure 2.13: 31x2.5 Gb/s–QPSK + XG-PON with variable guard band: (a) 12.5 GHz guard
band; (b) 200 GHz guard band. (c) EVM of the received 31st QPSK versus guard band to the
10 Gb/s–IMDD channel with different XG-PON transmitter powers. (d) EVM distribution
among all tested channels at 100 GHz guard band. Green dash-dot line: reference curve
without the 10 Gb/s–IMDD channel

imize the cross effects due to FWM and XPM in the coherent channel, thus maintaining its

performance below the theoretical BER of 10−3. Additionally, for lower XG-PON powers, the

performance of the heterogeneous system tends to the reference green line representing the

system without the IMDD channel.

For transmitter powers higher than 16 dBm, as in the E2b specification not shown in

Fig. 2.13, the guard band to the XG-PON has to be higher than 200 GHz so that the coherent

receiver is able to recover the information. Using guard bands not multiple of log2(∆f/3.125),

e.g. 250 GHz, makes the system unequally spaced, thereby mitigating some of the FWM

crosstalk as discussed in Chapter 5. The remaining EVM penalty, due to the cross effect with
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the XG-PON channel, in the 200 GHz guard band is as follows: 2.1 dB for N1, 4.1 dB for N2a,

11.6 dB for N2b, 7.0 dB for E1, 10.6 dB for E2a and 24.8 dB for E2b.

2.4.3 Splitting Ratio versus AWG Band

Since UDWDM-PON uses several channels, it is important to estimate if there is a limit in

which the performance for the different architectures discussed in Section 2.1 saturates, thus

allowing to increase the number of ultra-dense QPSK channels up to 1000. The methodology

is described as follows: the AWG bandwidths vary from 6.25 GHz until 200 GHz for the

homogeneous network; broader bandwidths allow higher ultra-dense channels aggregated per

AWG port; the number of ultra-dense channels per AWG port defines the splitting ratio at

ODN. For instance, a 50 GHz–AWG allows multiplex/demultiplex 8 ultra-dense channels (8

× 3.125 GHz = 25 GHz) and distributed via 1:8 power splitter.

Fig. 2.14 shows the overall performance (center channel) of the filtered (diamonds), hybrid

(circles) and fully transparent (squares) architectures as a function of average input optical

power per channel for different splitting ratios (or ultra-dense channels) and AWG bandwidths.

From Fig. 2.14 we can conclude that:
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Figure 2.14: EVM in percentage of the center QPSK channel as a function of input power per
channel for different AWG ports versus ultra-dense channels (splitting ratio) per AWG bands.
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1. for splitting factors up to 8 (8 ultra-dense channels shown by green line plus circles), the

system has better overall performance (lower EVM) since nonlinear crosstalk is reduced;

2. for splitting factors higher than 16, the system’s performance is severely limited by

nonlinear crosstalk as shown by blue, red and yellow curves representing respectively

the hybrid architecture with 16 channels via 100 GHz–AWG, 32 channels via 200 GHz–

AWG and the fully transparent with 64 channels equally spaced by 3.125 GHz;

3. upgrading the system from 32 to 64 channels will result in similar performance indicating

that we can increase even further the number of channels or users to 128, 256, 512 up

to a 1024 × 1 Gb/s with similar performance to the 32–channel case.

The latter can be justified by the fact that the impact of FWM saturates for channel count

around 32 channels when transporting only phase-modulated channels. Better performance

can be achieved when using unequally channel spacing [C2] to minimize some of the FWM

crosstalk, as discussed in Chapter 5.

As discussed in Section 2.1, coherent UDWDM-PON with higher splitting ratios (≥ 16) or

broader AWG bandwidths (≥ 100 GHz) provides increased spectral efficiency and flexibility /

upgradeability since ultra-dense channels can be trade by channels transporting higher speed

technologies such as 10G/40G and 100GbE.

2.4.4 Chromatic Dispersion

One of the advantages of coherent WDM-PON is the DSP in the ONUs to compensate

transceivers and some of the transmission impairments. Among the transmission impairments,

state of the art DSP effectively compensates for linear effects as the CD and Polarization-

Mode Dispersion (PMD). As far as CD is concern, it is important to analyze the effect on the

efficiency of fiber nonlinearities as well as the induced ISI on the received signal. Therefore, we

simulate the homogeneous network without CD compensation transporting 32 ultra-channels

modulated either at 1.25 Gb/s–QPSK or 2.5 Gb/s–16-ary Quadrature Amplitude Modulation

(16QAM) after transmission over 20 km of SSMF.

The results in Fig. 2.15 show the performance in terms of the EVM of the center channels

versus the CD for various input powers per channel. By analyzing these results we can

conclude that CD plays an important role on the efficiency of fiber nonlinearities rather than
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Figure 2.15: EVM in percentage of the center channel after 20 km as a function of Chromatic
Dispersion for: (a) 1.25 Gb/s–QPSK; (b) 2.5 Gb/s–16QAM.
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by inducing ISI in the received signal at 625 Mbaud over one span of SSMF. For instance, in

the high power regime (higher than -6 dBm per channel), decreasing dispersion increases the

efficiency of FWM; thus the system’s performance is strongly limited by nonlinear crosstalk.

For lower power regime, the system’s performance does not depend on Chromatic Dispersion

although neither electrical nor optical compensation was performed in the receiver side.

2.5 Optical Network Unit

This section addresses the network limitations imposed by the coherent receiver in the

ONUs when the upgrade of the user’s data rate is considered. On that matter, two questions

have to be asked:

What if 1 Gb/s per subscriber per polarization is not enough?

How to compensate for the phase noise induced by the local oscillator in the

ONUs?

2.5.1 ADC Resolution

Current works have been describing UDWDM-PON systems targeting 1.25 Gb/s per sub-

scriber [28, 29, 10]. On the other hand, one may argue that some future applications can re-

quire even higher data rates per channel. Therefore, it is quite challenging to deliver 10 Gb/s

per wavelength/subscriber (single polarization) in a 3 GHz frequency grid using QPSK only.

One solution is to (i) increase the baud rate to 1.25 Gbaud and (ii) use higher order modula-

tion formats such that the net data rates increase to 3.75 Gb/s, 5 Gb/s, 7.5 Gb/s and 10 Gb/s

employing 8-ary Phase-Shift Keying (8PSK), 16QAM, 64-ary Quadrature Amplitude Modu-

lation (64QAM) and 256-ary Quadrature Amplitude Modulation (256QAM), respectively.

If we assume the electronics required at both transmitter and receiver for 625 Mbaud

is about the same as for 1.25 Gbaud, the optical counterpart does not change significantly

from the model depicted in Fig. 2.3(a). Since the signals are generated electrically at the

transmitter side and processed digitally at the receiver side, the coding/decoding process for

recovering the digital information is very easily adapted allowing different signal constellations.

One of the limiting factors is related to the ADC characteristics.

In access networks applications where the accumulated dispersion is not an issue for signals
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Figure 2.16: SNR Penalty at BER=10−3 versus ADC resolution in bits for different modulation
formats: 625 Mbaud – solid lines + circles; 1.25 Gbaud – dash lines + squares.

at 625 Mbaud / 1250 Mbaud (see 2.4.4), sampling the signal at twice the baud rate may be

sufficient, in most cases, for performing phase/carrier recovery and channel equalization (linear

and nonlinear eventually). Thus ADC sampling rate is perfectly transparent to modulation

formats at 625 Mbaud (1.25 GSample/s) or 1250 Mbaud (2.5 GSample/s) assuming electrical

bandwidth broad enough to avoid distortion. On the other hand, different signal constellations

require different ADC resolution (in bits) since higher order constellations are more sensitive to

quantization errors. In this work we focus on the amplitude resolution of the ADC, remaining

the time resolution subject for further studies.

We evaluate the SNR penalty for a system BER=10−3 as a function of ADC resolution

for various modulation formats. In this case, the fully transparent homogeneous network

scenario was evaluated in back–to–back for 4 ultra-dense channels at 625 Mbaud (256 steps

of 2048 symbols = 524288 simulated symbols) and 1250 Mbaud (128 steps of 4096 symbols

524288 simulated symbols) in which the coherent receivers have similar algorithms for phase

sync/re-timing as well as amplitude normalization (6 % of pilot symbols) for a fair comparison.

The SNR was estimated from the actual root mean squared EVM, between received symbols

s
′
i = a

′
i + j ∗ b′i and ideal transmitted symbols si = ai + j ∗ bi as defined in equation (2.1). We



38 2. Architectural and Design Optimization

used the closed expressions to relate EVM or SNR to BER for M-ary Quadrature Amplitude

Modulation (QAM) [33] and M-ary Phase-Shift Keying (PSK) [38] signals as discussed in

Appendix A.

From Fig. 2.16, we can draw the following conclusions:

• considering the 1 dB margin as the tolerable SNR penalty we found that QPSK at 1.25–

2.5 Gb/s, 8PSK at 1.875–3.75 Gb/s, 16QAM at 2.5–5 Gb/s, 64QAM at 3.75–7.5 Gb/s

and 256QAM at 5–10 Gb/s signals require ADC resolutions of 5, 6, 6, 7, and 8 bits,

respectively;

• operating at 1.25 Gbaud imposes minimal penalty when compared to the system at

625 Mbaud assuming sufficient electrical bandwidths.

Those results are in agreement with the work in [39], i.e. the ADC resolution increases in 1

bit every time the levels in each signal’s components (in-phase or quadrature) are doubled up.

Furthermore, it is also included in Fig. 2.16 the results for 8PSK constellation (6 bits ADC

resolution). This modulation format may be relevant when considering the upgradeability of

the users’ data rate from 1.25 Gb/s (QPSK) to 1.875 Gb/s (8PSK) keeping almost the same

nonlinear transmission characteristics. The transmission impairment affecting the system’s

performance is mostly FWM as it will be detailed in Chapter 4.

2.5.2 Laser Linewidth

The advantage of using ONU as a coherent receiver is that the phase noise is mitigated

digitally using well-known Carrier Phase Estimation/Recovery techniques. In this section we

evaluate the phase noise in terms of the required linewidth to provide minimal SNR penalty

with respect to BER=10−3.

We used the same fully transparent homogeneous network described before operating at

625 Mbaud and 1.25 Gbaud per channel after 25 km of SSMF with the following input power

per channel: -2 dBm/channel for QPSK, -4 dBm/channel for 8PSK and -6 dBm/channel for

16QAM. As a result, the system is entirely limited by inter-channel nonlinearities. In our

simulations, 32 runs of 512 (625 Mbaud) and 1024 (1.25 Gbaud) symbols per channel were

used for SNR estimation. After coherent detection at the ONU, we applied the Feed Forward

M -th power block scheme described in [30] (field averaging) for phase estimation considering a
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block size of 8 symbols for phase estimation. Fig. 2.17 depicts the SNR penalty at BER=10−3

of the received center channel as a function of linewidths per laser sources, i.e. the transmitter

and local oscillator lasers have the same linewidths. Solid curves plus circles describe the

system’s performance operating at 625 Mbaud per channel whereas dash curves plus squares

describe the system operation at 1.25 Gbaud per channel.
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Figure 2.17: SNR Penalty at BER=10−3 versus linewidth per laser for different modulation
formats: 625 Mbaud – solid lines + circles; 1.25 Gbaud – dash lines + squares. ∆f × Ts =
8× 10−4 (QPSK); 1.6× 10−4 (8PSK); 8× 10−5 (16QAM).

The results for phase-modulated signals in red for QPSK (M=4) and black for 8PSK

(M=8) show similar performance for the system operating either at 625 Mbaud or 1.25 Gbaud

for lower linewidths. Allowing 1 dB penalty, QPSK is able to operate with linewidth per

channel around 500 kHz whereas 8PSK should be around 100 kHz. On the other hand,

625 Mbaud–16QAM and 1.25 Gbaud–16QAM systems operate with 1.1 dB and 1.4 dB penalty

at 100 kHz, respectively. In terms of the effective linewidth, defined as the linewidth per laser

∆f times symbol duration Ts, we obtained the following values within the 1 dB margin:

∆f × Ts = 8× 10−4 for QPSK, ∆f × Ts = 1.6× 10−4 for 8PSK and ∆f × Ts = 8× 10−5 for

16QAM. Note that the 16QAM transmission, on average only half of the 8 symbols is used for

phase estimation, i.e. the inner and outer rings symbols used as for QPSK phase estimation.
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The challenge on the UDWDM-PON system is the increased symbol duration (decreased

symbol rate), which effectively reduces significantly the maximum tolerable linewidth. With

symbol duration around 800 ∼ 1600 ps (symbol rates 1250 ∼ 625 Mbaud), the tested network

should require linewidths ranging from only 500 kHz (625 Mbaud) to 1 MHz (1.25 Gbaud) if

transporting QPSK (∆f × Ts ≈ 8 × 10−4) for instance. On the other hand, higher symbol

rates alleviate the needs for narrower linewidths as in [39] where the authors found ∆f ×Ts ≈

4.1 × 10−4, which gives maximum linewidth of 4.1 MHz for the system at 10 Gbaud–QPSK.

Although we used fixed block-symbol (8 symbols) for different symbol rates we obtained

slightly lower penalty for the system at 1.25 Gbaud compared to 625 Mbaud, as would be

expected. This can be seen on the red curves (QPSK) in Fig. 2.17 for linewidths higher than

100 kHz. For the other modulation formats, the penalty was prohibitively high to see the

benefit of increased symbol rate. We point out that those results present the effects of the

laser linewidth as well as its interaction with Chromatic Dispersion and Kerr nonlinearities.

Furthermore, this tolerance can be improved by optimizing the block length [40, 21]; by

improving the field averaging filter for phase estimation in each block of symbols [41]; or by

using more sophisticated schemes that take into account all symbols inside a block for phase

estimation on QAM signals such as in [42, 21].
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2.6 Conclusions

In this chapter we addressed some of the most relevant technical aspects and network

sub-systems related to high data rate aggregate PONs at both simulation and experimental

levels. In addition, an experimental validation of the simulation model is presented for a

fully transparent heterogeneous network. Besides architectural aspects, several parameters

in the OLT, ODN and ONUs were addressed to fulfill user requirements and cross effect

among different PON technologies sharing the same fiber infrastructure. Coherent UDWDM

based PON is a promising solution for Next-Generation all-Optical Access Networks capable

of delivering over a 1000 users broadband connections at minimal occupied bandwidth. We

concluded that coherent transceivers employing high-order modulation formats and digital

signal processing gather the required conditions for tackling the needs for broadband in Optical

Access Networks. The main advantages of this solution include wide wavelength tuning range

ONUs, extended reach, high splitting ratios and simple data rate upgradeability.

One of the challenges related to this technology is the need for higher-order modulations

to increase the net data rate. As demonstrated in this work, higher-order modulations are

more sensitive to transceiver imperfections such as quantization errors, induced phase noise

and filtering effects. Nevertheless, by employing advanced digital signal processing techniques

may alleviate the needs for more expensive transceiver components. As far as the fiber channel

is concerned, chromatic dispersion plays an important role on the nonlinear performance rather

than inducing inter-symbol interference. Furthermore, the launched input power per channel

and guard band to legacy PON technologies have to be optimized to avoid inter-channel

fiber nonlinearities (cross-phase modulation and four-wave mixing) in both heterogeneous and

homogeneous network scenarios. Modeling fiber nonlinearities is the subject of the following

chapters.





Chapter 3

Volterra Series Transfer Function

As discussed in previous chapters, it is expected that strong fiber nonlinearities limit the

system’s performance when the channel spaced is reduced to only a few Gigahertz and the

channel count is increased to 32, for instance. The launched power into the fiber and trans-

mission distance are key variables to describe the nonlinear fiber’s performance. Therefore,

it is crucial to develop mathematical tools capable of analyzing and simulating the nonlinear

propagation over the optical fiber.

SSF is the worldwide reference for emulating the light propagation over the optical fiber. It

is a relatively fast numerical method for solving the Nonlinear Schrödinger Equation (NLSE)

when the total field propagation is considered. It might be challenging, however, to model all

different contributions of fiber nonlinearities for a multi-channel transmission system with very

high channel count. Specifically, SSF has to be applied to every combination of a nonlinear

term represented by a coupled NLSE. The number of nonlinear terms (each represented by

a coupled equation) is proportional to the third power of channel count, thus over 32000

equations for a 32 channel system have to be solved using SSF to identify all the contributions

of nonlinear effects.

One interesting methodology to model the nonlinear performance is based on perturbation

approaches. They have been used for describing the performance for different fiber optic trans-

mission systems, either with direct detection [43, 44] or coherent detection [45, 46, 47, 48].

Among them, Volterra theory has gained a lot of attention from the optical communication

community due to its versatility in modeling the total field propagation, separate fiber non-

linearities or as a nonlinear filter in the digital domain. Volterra series has been proposed for

modeling the nonlinear propagation over the optical fiber [25], modeling the nonlinear behav-

43
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ior of laser diodes [49], post-processing fiber nonlinearities on coherent optical transmission

systems [26], [J8]; analysis of fiber nonlinearities on direct detection systems [27] and coherent

optical systems [J3, J1].

This chapter, based on Journals [J1], [J3] and [J4] and Conference papers [C9], [C11], [C14]

and [C15], firstly discusses in Section 3.1 Volterra theory for the analysis of the overall system’s

performance. Section 3.2 shows how Volterra series calculate fiber nonlinearities in WDM

transmission system. Section 3.3 presents an effective algorithm for solving numerically the

integral in the nonlinear Volterra solution. Section 3.4 outlines the coherent UDWDM-PON

scenario in which the overall system’s performance is investigated. Section 3.5 validates the

Volterra series method against Split-Step Fourier simulations in a UDWDM-PON scenario.

Section 3.6 concludes the topics discussed in this chapter.

3.1 Volterra Theory

The goal of this chapter is to apply Volterra theory firstly to estimate the overall system’s

performance and secondly to identify the most relevant fiber nonlinear effects. The identifica-

tion of fiber nonlinear effects requires a versatile model capable of analyzing the most relevant

effects even for UDWDM transmission systems with the number of channel as high as 32. In

addition, it should be able to analyze the nonlinear effects in phase-modulated and/or ampli-

tude modulated channels. A deeper discussion on nonlinearities is given in sub-section 3.2.

The overall system’s performance is simply estimated after the total signal is propagated over

the fiber followed by detection and down-sampling to recover constellation information. The

total signal propagation over the optical fiber is governed by the Nonlinear Schrödinger (NLS)

equation defined in (3.1) as [31]

∂A

∂z
+ β1

∂A

∂t
− j β2

2

∂2A

∂t2
− β3

6

∂3A

∂t3
+
α

2
A =

−jγ

[
|A|2A+

j
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∂
(
|A|2A

)
∂t

− TRA
∂
(
|A|2

)
∂t

]
, (3.1)

where z is the propagation distance, A = A(t, z) is the scalar version of the optical field, α

is the attenuation coefficient, β1 is the pulse group velocity, β2 is the second order dispersion
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coefficient, β3 is the third order dispersion coefficient, γ is the nonlinear coefficient (Kerr),

γ/ωc accounts for the strength of SS (ωc is the reference optical frequency in rad/s) and TR is

the SRS coefficient. Alternatively, (3.1) can be simplified if the effects of SS and SRS are not

relevant for the transmission system at hand. In addition, the term with β1 can be omitted

If the reference frame is moving at the group velocity of the pulse (i.e. retarded frame). As a

result, equation (3.1) is rewritten as

∂A

∂z
− j β2

2

∂2A

∂t2
− β3

6

∂3A

∂t3
+
α

2
A = −jγ|A|2A. (3.2)

Equation (3.2) defined in the time domain may also be represented in the frequency domain.

Taking the Fourier Transform (FT) in both sides and using the following relations given by

equations (3.3)-(3.6), one can easily obtain equation (3.7).

FT

[
∂A (t, z)

∂t

]
= jωA (ω, z) . (3.3)

FT

[
∂2A (t, z)

∂t2

]
= −ω2A (ω, z) . (3.4)

FT

[
∂3A (t, z)

∂t3

]
= −jω3A (ω, z) . (3.5)

FT
[
|A (t, z) |2A (t, z)

]
=

1

4π2

∫ ∫
A (ω1, z)A

∗ (ω2, z)A (ω − ω1 + ω2, z) dω1dω2. (3.6)

∂A (ω, z)

∂z
= −α

2
A (ω, z)− j β2

2
ω2A (ω, z)− j β3

6
ω3A (ω, z)−

1

4π2

∫ ∫
jγA (ω1, z)A

∗ (ω2, z)A (ω − ω1 + ω2, z) dω1dω2. (3.7)

Where A(ω, z) is the FT of the optical signal A = A(t, z), ω is the angular frequency, ωi

are auxiliary angular frequencies that scan the optical signal A(ω) in the double integral of

(3.7) and (.)∗ is the complex conjugate operator. From (3.7), the quantities G1 and G3 are

defined as follow

G1 (ω) = −α
2
− j β2ω

2

2
− j β3ω

3

6
, (3.8)
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G3 (ω1, ω2, ω3) = −jγ. (3.9)

G1(ω) accounts for the linear effects whereas G3(ω1, ω2, ω3) accounts for the nonlinear

effects. It is important to mention that G1 and G3 should be represented in their complete

versions as G1(ω) = −α
2 − jβ1ω − j β2ω

2

2 − j β3ω
3

6 and G3(ω1, ω2, ω3) = −j[γ + γ
ωc

(ω1 − ω2 +

ω3)]− γTR(ω1−ω2) if the NLSE in equation (3.1) is employed [50]. By doing the appropriate

substitutions of G1 and G3 in equation (3.7), the NLSE in the frequency domain is expressed

as

∂A (ω, z)

∂z
= A (ω, z)G1 (ω) +

1

4π2

∫ ∫
G3 (ω1, ω2, ω − ω1 + ω2)×

A (ω1, z)A
∗ (ω2, z)A (ω − ω1 + ω2, z) dω1dω2. (3.10)

Volterra series expansion is used to model any nonlinear systems by relating the input

signal X(.) with the output signal Y (.). In optical communications, it has been used mostly

in the frequency domain as defined below in equation (3.11).

Y (ω) =
∞∑
n=1

∫
· · ·
∫
Hn (ω1, · · · , ωn−1, ω − ω1 − · · · − ωn−1)×

X (ω1) · · ·X (ωn−1)×X (ω − ω1 − · · · − ωn−1) dω1 · · · dωn−1, (3.11)

where Hn(ω − ω1 − · · · − ωn−1) is the nth order frequency domain Volterra kernels that have

to be identified for the system at hand. It is well known that in silica optical fibers, 2nd order

nonlinearities are not present [31]. Therefore, from the definition of the Volterra series given

in equation (3.11), one can replace X(ω) and Y (ω) by the corresponding A in the frequency

domain to find the 3rd VSTF method as follows [25]

A (ω, z) = A (ω)H1 (ω, z) +
1

4π2

∫ ∫
H3 (ω1, ω2, ω − ω1 + ω2, z)×

A (ω1)A∗ (ω2)A (ω − ω1 + ω2) dω1dω2, (3.12)
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where A(ω) = A(ω, z = 0) is the FT of the input optical signal A(t, z = 0), H1(ω, z) is the

linear transfer function (1st order Volterra kernel) whereas H3(ω1, ω2, ω − ω1 + ω2, z) is the

nonlinear transfer function (3rd order Volterra kernel). In WDM system where A(ω) is of the

form A(ω) =
∑

iAi(ω), the numerical evaluation of the double integral in (3.12) accounts for

SPM (intra-channel), XPM and FWM (inter-channel) effects. The VSTF solution includes

the signal distortion due to linear and nonlinear effects as well as the signal interaction with

Amplified Spontaneous Emission (ASE) in case the system employ optical amplification.

The definition of VSTF given in (3.12) needs the analytic expressions for the linear and

nonlinear transfer functions. One possible solution to find H1 and H3 is to firstly substitute

A(ω, z) given by equation (3.12) in equation (3.10), as the authors in [25] presented. This

procedure results in expression (3.13) defined below.

∂ [A (ω)H1 (ω, z)]

∂z
+

1

4π2

∫ ∫
∂

∂z
[H3 (ω1, ω2, ω − ω1 + ω2, z)]×

A (ω1)A∗ (ω2)A (ω − ω1 + ω2) dω1dω2 = G1 (ω)H1 (ω, z)A (ω) +
G1 (ω)

4π2∫ ∫
H3 (ω1, ω2, ω − ω1 + ω2, z)×A (ω1)A∗ (ω2)A (ω − ω1 + ω2) dω1dω2 +

1

4π2

∫ ∫
G3 (ω1, ω2, ω − ω1 + ω2)×

{[
A (ω1)H1 (ω1, z) +

1

4π2∫ ∫
H3(ω

′
1, ω

′
2, ω1 − ω

′
1 + ω

′
2, z)×A(ω

′
1)A∗(ω

′
2)A(ω1 − ω

′
1 + ω

′
2)dω

′
1dω

′
2

]
[
A (ω2)H1 (ω2, z) +

1

4π2∫ ∫
H3(ω

′
1, ω

′
2, ω2 − ω

′
1 + ω

′
2, z)×A(ω

′
1)A∗(ω

′
2)A(ω2 − ω

′
1 + ω

′
2)dω

′
1dω

′
2

]∗
[
A (ω − ω1 + ω2)H1 (ω − ω1 + ω2, z) +

1

4π2∫ ∫
H3(ω − ω1 + ω2 − ω

′
1 + ω

′
2)×A(ω

′
1)A∗(ω

′
2)A(ω − ω1 + ω2 − ω

′
1 + ω

′
2)

dω
′
1dω

′
2

]}
dω1dω2.

(3.13)

By comparing the two terms in the left-hand and right-hand sides of the equation (3.13)

and replacing ω3 = ω − ω1 + ω2 and ω = ω3 + ω1 − ω2, one can obtain the following pair of
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differential equations.

∂H1 (ω, z)

∂z
= G1 (ω)H1 (ω, z) . (3.14)

∂H3 (ω1, ω2, ω3, z)

∂z
= G1 (ω1 − ω2 + ω3)H3 (ω1, ω2, ω3, z) +

G3 (ω1, ω2, ω3)H1 (ω1, z)H
∗
1 (ω2, z)H1 (ω3, z) . (3.15)

The solution of (3.14) is of the form dy
dz = ay → y = eaz, thus H1(ω, z) is given by

H1 (ω, z) = eG1(ω)z. (3.16)

Replacing (3.16) in (3.15), one can have

∂H3 (ω1, ω2, ω3, z)

∂z
= G1 (ω1 − ω2 + ω3)H3 (ω1, ω2, ω3, z) +

G3 (ω1, ω2, ω3) eH1(ω1)zeH
∗
1 (ω2)zeH1(ω3)z. (3.17)

The solution of (3.17) is of the form dy
dz = ay + becz → y = b e

cz−eaz
c−a . Therefore,

H3(ω1, ω2, ω3, z) is given by

H3 (ω1, ω2, ω3, z) = G3 (ω1, ω2, ω3)×

e[G1(ω1)+G∗1(ω2)+G1(ω3)]z − eG1(ω1−ω2+ω3)z

G1 (ω1) +G∗1 (ω2) +G1 (ω3)−G1 (ω1 − ω2 + ω3)
. (3.18)

Equations (3.16) and (3.18) may also be defined as a function of the physical parameters

of the fiber (α, βi and γ) and the angular frequencies ωi. This can be performed by firstly

substituting equations (3.8) in (3.16) to obtain H1 rewritten in equation (3.19). Secondly, by

using ω3 = ω − ω1 + ω2 and including equations (3.8) and (3.9) in (3.18) result in two terms

of the form exp{z[G1(ω1) + G∗1(ω2) + G1(ω − ω1 + ω2)]} − exp{z[G1(ω)]} = exp{z[−3α
2 −

j β22 (ω2
1−ω2

2 +(ω−ω1 +ω2)2)− j β36 (ω3
1−ω3

2 +(ω−ω1 +ω2)3)]}−exp{z[−α
2 − j

β2
2 ω

2− j β36 ω
3]}

and G1(ω1) + G∗1(ω2) + G1(ω − ω1 + ω2) − G1(ω) = −α
2 − j

β2
2 [ω2

1 + ω2
2 − (ω − ω1 + ω2)2 −
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ω2]− j β36 [ω3
1 −ω3

2 + (ω−ω1 +ω2)3−ω3]. After manipulating these two terms and evaluating

[ω2
1 − ω2

2 + (ω − ω1 + ω2)2 − ω2] and [ω3
1 − ω3

2 + (ω − ω1 + ω2)3 − ω3] associated with β2 and

β3, respectively, one may easily arrive at equation (3.20).

H1 (ω, z) = e

(
−α

2
−j β2ω

2

2
−j β3ω

3

6

)
z
. (3.19)

H3 (ω1, ω2, ω, z) = −jγ exp

(
(−α

2
− j β2ω

2

2
− j β3ω

3

6
)z

)
×

1− exp(−αz − jβ2(ω1 − ω)(ω1 − ω2)z − j β32 (ω + ω2)(ω1 − ω)(ω1 − ω2)z)

α+ jβ2(ω1 − ω)(ω1 − ω2) + j β32 (ω + ω2)(ω1 − ω)(ω1 − ω2)
. (3.20)

If the dispersion slope is neglected, i.e. β3 = 0, equation (3.20) ends up exactly as equation

(4) of [27] defined here for convenience.

H3 (ω1, ω2, ω, z) = −jγ exp

(
(−α

2
− j β2ω

2

2
)z

)
×1− exp(−αz − jβ2(ω1 − ω)(ω1 − ω2)z)

α+ jβ2(ω1 − ω)(ω1 − ω2)
(3.21)

The VSTF solution is truncated by the 3rd kernel, thereby it is expected that an error

on the estimation of A(ω, z) occurs. This error is proportional to P (n+2)/2, where P is the

peak power of the optical field and n is the highest order kernel in the series, i.e. P 5/2 for the

3rd order solution [25]. If P is not properly chosen, the solution of A(ω, z) diverges from the

actual value, thus requiring higher-order kernels to mitigate the error. Without recurring to

higher-order kernels, which impose a huge computational effort, the Modified Version of the

3rd order VSTF was proposed by the authors in [51] to improve the accuracy of the method.

This method is based on a phase correction included to the solution of A(t, z) after calculating

both the linear and nonlinear solutions of A(ω, z). This method is defined below.

A (t, z) =

 ALI · e
(
ANL
ALI

)
, if |ANL| < |ALI |

ANL +ALI , otherwise,
(3.22)

where ALI and ANL is the time domain linear (first right-hand term) and nonlinear solution
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(second right-hand term) of A(ω, z) in (3.12), respectively. In section 3.5, the 3rd order VSTF

solution is compared to SSF for various powers, distances and modulation formats in coherent

UDWDM-PON network scenarios.

3.2 Calculating Nonlinearities

VSTF can be used either as a propagation model or an analytic mathematical tool in

order to quantify independently the contributions of nonlinear effects. For instance, if one

considers the interactions inside the double integral in (3.12) of the input modulated signals

as Ai(ω1)A∗j (ω2)Ak(ω − ω1 + ω2), where i, j, k = 1, 2, · · · , Nch, with Nch being the number of

channels, correspond to the indexes of any WDM channel, then we have the following relations:

• if [i = j = k], then (3.12) accounts for SPM at ith channel as

H3(ω1, ω2, ω − ω1 + ω2, z)Ai(ω1)A∗i (ω2)Ai(ω − ω1 + ω2) (3.23)

• if [i = j 6= k], then (3.12) accounts for XPM at kth channel as

H3(ω1, ω2, ω − ω1 + ω2, z)× {Ak(ω − ω1 + ω2)×

∑
i 6=k

Ai(ω1)A∗i (ω2)

+

Ak(ω1)×

∑
i 6=k

Ai(ω2)A∗i (ω − ω1 + ω2)

} (3.24)

• if [i 6= j = k], then (3.12) accounts for XPM at ith channel as

H3(ω1, ω2, ω − ω1 + ω2, z)× {Ai(ω1)×

∑
k 6=i

A∗k(ω2)Ak(ω − ω1 + ω2)

+

Ai(ω − ω1 + ω2)×

∑
k 6=i

Ak(ω1)A∗k(ω2)

} (3.25)
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• if [i 6= k or k 6= j], then (3.12) accounts for FWM at [i+ j − k]th channel as

∑
i,j,k

H3(ω1, ω2, ω − ω1 + ω2, z)Ai(ω1)A∗k(ω2)Aj(ω − ω1 + ω2) (3.26)

Note that the calculation of the nonlinear effects does not consider the pump–probe analysis

in which the channel under test is approximated by a Continuous Wave signal. Instead, the

VSTF enables the calculation of these effects for any type of input signal such as intensity–

modulated, phase–modulated or both. Additionally, estimating the system’s performance,

either in terms of SNR or EVM associated with SPM, XPM and FWM effects only requires

to apply the matrix of WDM channels (being the columns representing the channels and the

rows representing the samples) prior multiplexing to the VSTF method described before.

Calculating FWM effect, as expressed in (3.2), requires a huge computation effort as the

number of mixing products estimated by (N3
ch − N2

ch)/2 for a 32–channel system exceeds

15000. To avoid extra calculations, we evaluate the phase mismatch condition and efficiency

of each new FWM frequency component considering the Continuous Wave (CW) approach

presented by the authors in [52]. As such, any FWM component whose efficiency is below

20% of its maximum is not considered for calculation in the double integral of equation (3.12).

As a result, we evaluated 61 instead of 360 FWM products falling on the center channel

under test. Our calculations indicated a penalty on the total FWM power below 1.2 dB after

removing products whose efficiency is below the 20%–threshold. A graphical representation

of such approach is given in Fig. 3.1 for 32 CW signals (spaced by 3.125 GHz) after 25 km

of SSMF. Fig. 3.1(a) depicts the calculation of the FWM efficiency where all FWM products

(15872 products) are represented by diamonds whereas the ones whose efficiency is higher

than 20% (3212 products) are represented by squares. Fig. 3.1(b) shows the calculation

of FWM crosstalk in each signal bandwidth considering the two aforementioned approaches:

the results depicted by diamond markers consider all FWM products falling on the signal

bandwidth whereas square markers neglect FWM components with efficiency below 20%.

Therefore, faster and attainable calculations can be obtained with minimal impact on the

crosstalk estimation.
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Figure 3.1: (a) FWM efficiency. (b) FWM crosstalk calculated in each signal bandwidth.
Diamonds: FWM products. Squares: FWM products with Efficiency > 20%.
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3.3 Numerical Solution of the VSTF Double Integral

The complexity of the 3rd VSTF method can be minimized depending on the approach

to numerically solve the double integral in (3.12). One strategy can be based on a direct

sum or more accurately using trapezoidal rule to perform the integration. Since it is usual to

work with discrete signals, the right term (nonlinear part) of this equation can be rewritten

as follows in (3.27)

ANL[n]z =
∑
l

∑
m

H3 [ωl, ωm, ωn − ωl + ωm, z]z A [l]A∗ [m]A [n− l +m] (3.27)

where the integer indexes (n, l,m) represent the signal sample points at the discrete angular

frequencies (ωn, ωl, ωm). Assuming the input discrete signal in the time domain has N symbols

and SP samples per symbol spaced by the sampling period Ts (sampling frequency Fs = 1/Ts

) gives a total of NFFT = SP ×N points in the time/frequency window.

In the frequency domain, these samples are spread on the interval [−Fs/2, Fs/2[ centered

at NFFT/2. We will consider that each channel has the same bandwidth roughly similar to

the channel spacing, ∆f . Thus, the WDM total signal bandwidth is defined as Nch ×∆f .

The next step is to translate the channel bandwidth ∆f in the integer number of frequency

points per channel denoted as SPc. This quantity is approximately given by ∆f divided

by the frequency resolution, which is Fs/NFFT = (Ts × NFFT )−1. As a result, SPc =

d∆f × Ts ×NFFT e where the operator d·e stands for the largest integer greater or equal to.

The total frequency points in the WDM total signal, NF , is the sample points per channel

SPc times the number of channels Nch, or:

NF = SPc ×Nch (3.28)

Therefore, we define the vector of integer indexes (l,m), to control both A[l,m] and ωl,m,

as

l, m = [−NF/2 : NF/2− 1] +NFFT/2 (3.29)
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or

l, m = [−Nch × SPc/2 : Nch × SPc/2− 1] +NFFT/2 (3.30)

Let k = 1, 2, ..., Nch represents each channel index, then

n = l (1 + SPc × (k − 1) : k × SPc) , solves (3.27) only for channel k;

n = [−NF/2 : NF/2− 1] +NFFT/2, solves (3.27) for all channels k = Nch.
(3.31)

To avoid implementation errors when calling A[n − l + m], we need to guarantee that

1 ≤ n − l + m ≤ NFFT . Equivalently, max [l,m] + NF = SPc × Nch/2 − 1 + NFFT/2 +

SPc ×Nch ≤ NFFT arrives at (3.32),

Nch ≤ b
NFFT + 2

3×∆f × Ts ×NFFT
c (3.32)

where the operator b·c denotes the largest integer less than or equal to. This expression shows

the maximum allowable number of channels that we can simulate using VSTF based on the

size of the Fast Fourier Transform (FFT) to represent the input signal in the frequency domain

and the sampling period. One pseudo code for solving (3.27) is as follows:

1. If the condition in (3.32) stands, then

• Create the square matrices l and m with dimension NF by NF where each column

is the vector l and m, respectively

• Evaluate matrices A[·] and Ωl,m in indexes given by matrices l and m

2. Define the desirable range of n, given by either the first or the second equation in (3.31)

3. For each n, evaluate

• Al,m =
∑

l

∑
mH3 [Ωl,Ωm,Ωn − Ωl + Ωm, z]z A [l] A∗ [m] A [n− l + m]

• ANL [n]z =
∑

l

∑
mAl,m

4. Calculate the VSTF complete solution: A [n]z = ALI [n]z +ANL [n]z
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Figure 3.2: Received constellation of the center channel after 100 km–NZDSF for (a) 16 ×
50 Gb/s–QPSK, (b) 16 × 75 Gb/s–8PSK and (c) 16 × 100 Gb/s–16QAM. Blue squares: SSF;
Red squares: VSTF.

As an example, we performed a simple comparison between SSF and VSTF to confirm

that VSTF can be used as a transmission model for optical fiber communication systems.

We used a system with 16 channels, spaced by 50 GHz with fixed symbol rate at 25 Gbaud,

transmitted over a single Non Zero Dispersion Shifted Fiber (NZDSF) span with 100 km.

The digital information is recovered after a conventional coherent detection used in optical

communication systems. The simulated symbols, after propagation using these two models, are

depicted in figures 3.2. Clearly, the symbols are coincident for both in phase and quadrature

components for QPSK, 8PSK and 16QAM modulation formats. In section 3.5, it is presented
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a more detailed comparative analysis between VSTF and SSF in UDWDM-PON scenario.

3.4 System Scenario

The numerical validation of the proposed Volterra series approach is carried out in this sec-

tion for the fully transparent homogeneous network. The UDWDM-PON scenario used in this

work for simulations is comprised by 32 channel wavelengths (or users) and the transmission

system is evaluated in the downstream direction, i.e. from OLT to ONU. The transmission

model, depicted in Fig 3.3 is outlined as follows: 32 CW laser sources (without any intensity

and phase noises), spaced by 3.125 GHz (0.025 nm), are each independently modulated us-

ing an optical IQ modulator driven by electrical signals. Each IQ modulator has two MZM

in push-pull configuration with one of the arms having an additional Phase Modulator (PM)

to set a phase shift of π/2. The electrical signals are 625 Mb/s–NRZ shaped by a 5th order

Bessel filter with electrical bandwidth of 1.25 GHz. Each electrical signal is a 29–long PRBS

in which the resulting modulated optical signal, with fixed symbol rate at 625 Mbaud and

time window equivalent to 512 symbols per channel (sampled at 512 samples per symbol),

has the following properties: 1024 bits at 1.25 Gb/s–QPSK via 2 encoded bits per symbol;

1536 bits at 1.875 Gb/s–8PSK via 3 bits encoded per symbol; 2048 bits at 2.5 Gb/s–16QAM

via 4 bits encoded per symbol; 3072 bits at 3.75 Gb/s–64QAM via 6 bits encoded; 4096 bits

at 5 Gb/s–256QAM via 8 bits encoded per symbol. The transmitter structures [30] for each

modulation format along with the constellation in back-to-back corresponding to a system

BER=10−3 are depicted in the insets of Fig. 3.3. We point out that all optical subsystems

such as Electrical to Optical (E/O) or Optical to Electrical (O/E) devices are assumed to be

ideal if not otherwise stated.

The resulting independently-encoded modulated channels are then multiplexed via an

ideal lossless AWG modeled as a 2nd order super-Gaussian filter with 3 dB bandwidth around

2.5 GHz. The total optical signal is transmitted over 25 km, 60 km and 100 km of SSMF with

the following physical parameters:

• The reference optical frequency between center channels 16th and 17th is 193.4 THz

(∼1550 nm);

• Fiber attenuation α = 0.20 dB/km;
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Figure 3.3: UDWDM-PON scenario employing coherent detection and complex modulation
formats. LO: local oscillator; LPF: low-pass filter; ADC: analog to digital converter; DSP:
digital signal processing; CW: continuous wave; PM: phase modulator.

• Chromatic dispersion D = 16.5 ps/(nm.km);

• Dispersion slope S = 0.07 ps2/nm.km;

• Nonlinear parameter γ = 1.35 (W · km)−1.

The total optical signal propagation (complex envelope) through the fiber is modeled using

the symmetric version of the Split-Step Fourier method with very high temporal and spatial

resolution. To guarantee very accurate results symmetric step-size has been dynamically set

to prevent a phase change higher than 1×10−6 rad. In Fig. 3.4 is shown the optical spectrum
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Figure 3.4: Optical spectra for the UDWDM-PON with 32×625 Mbaud spaced by 3.125 GHz
(0.025 nm) (a) before and (b) after the fiber.
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before (Fig. 3.4(a)) and after (Fig. 3.4(b)) transmission over 25 km of SSMF. At the coherent

receiver depicted in the inset of Fig. 3.3 intradyne detection [53] is performed in which the

optical phase is recovered digitally and the local oscillators are tuned to the corresponding

UDWDM channel under test as follows in Table 3.1.

Table 3.1: Channel under test and corresponding optical frequencies.

1st 193.3515 THz
4th 193.3609 THz
8th 193.3734 THz
12th 193.3859 THz
16th 193.3984 THz
17th 193.4015 THz
20th 193.4109 THz
24th 193.4234 THz
28th 193.4359 THz
32nd 193.4484 THz

Firstly, the optical signal from the 1:32 splitter is mixed along with the 0 dBm local os-

cillator through 2 × 4 − 90o optical hybrid. Since the local oscillator laser does not have

phase noise, phase/carrier techniques such as in [21] is not employed at the ONU. Secondly,

both in-phase and quadrature components of the resulting optical signal is optical-to-electrical

down-converted using two pairs of balanced photo detectors shown in the inset of Fig. 3.3,

i.e. one for in-phase and the other for quadrature signals components. Note that both ther-

mal noise of the receiver circuitry (front-end impedance of 50 Ω) and photocurrent shot noises

are considered in the coherent receiver at ONU. The electrical signal is then filtered using a

5th order low-pass Bessel filter with 3 dB bandwidth around 0.7 × symbol rate (∼450 MHz).

The analog signal is further down sampled at symbol rate (625 MSample/s or one sample per

symbol) and converted to the digital domain using an ADC (analog to digital converter) with

8 bits resolution to minimize any quantization errors as discussed in Section 2.5.1. Thus, the

recovered symbols are normalized to 1 (average constellation energy) and the phase synchro-

nization is performed as follows:

• 6.25 % of transmitted symbols (32/512) are assigned as pilot symbols with phases φi;

• The pilot symbols with φi are known at receiver;
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• The phase difference of the received symbols with φ′i and pilot symbols with φi at each

time instant is calculated as ∆φi = φi − φ
′
i;

• The expected value of the phase difference is estimated over the 32 pilot symbols: ∆φ =

E{∆φi};

• The average phase difference ∆φ is then feed back to the actual symbol as expj(φ
′
i−∆φ)

being j =
√
−1.

It is worth emphasizing that digital chromatic dispersion compensation was not performed

since the temporal effect of the total accumulated dispersion has negligible effect in 625 Mbaud

signals in typical access network links with fiber lengths up to 100 km. See the discussion in

Section 2.4.4.

To measure the system’s performance it is calculated the root mean squared EVM between

received symbols s′i = a
′
i + j ∗ b′i and ideal transmitted symbols si = ai + j ∗ bi as

EVMdB = 20 · log10

[√∑512
i=1 |si − s

′
i|2∑512

i=1 |si|2

]
(3.33)

over 512 transmitted symbols per channel. The resulting EVM is averaged over 32 inde-

pendently transmissions with a total of 16384 simulated symbols or 32768 bits for QPSK;

49152 bits for 8PSK; 65536 bits for 16QAM; 98304 bits for 64QAM; 131072 bits for 256QAM.

Throughout this work we used the closed expressions that relate EVM or SNR to BER for

M-ary QAM [33] and M-ary PSK [38] signals. Therefore, the EVM corresponding to a system

BER around 10−3 is calculated. For more detail, see Appendix A.

3.5 Volterra Series Transfer Function versus Split-Step Fourier

The first part of the simulated results comprises the comparative analysis of the modi-

fied version of VSTF and SSF for UDWDM systems transporting either phase-modulated or

amplitude-modulated signals.

The results in Fig. 3.5 and 3.6 show the overall system’s performance calculated in terms of

EVM in dB, which is mathematically equal to the inverse square root of SNR, of the received

center channel (16th channel) of the transmitted comb as a function of input power per channel

(average optical power). We refer to the overall system’s performance, using either SSF or
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VSTF, as the total field formulation that jointly takes into account all the linear (dispersion

and attenuation) and nonlinear (SPM, XPM and FWM) fiber effects. Furthermore, we refer

to the nonlinear regime as the values of power from which the EVM of a specific effect (SPM,

XPM, FWM, or the overall system’s performance) is increased.
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Figure 3.5: EVM of the received center channel versus input power per channel for 32 ×
1.25 Gb/s–QPSK. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.

By analyzing the results both in Fig. 3.5 and Fig. 3.5, the EVM grows by 6 dB every time

the power increases by 3 dB meaning that the performance is degraded with the square power

in the nonlinear regime, i.e. EVMdB = 10 · log10(P 2) + c where c is a constant. In addition,

theses curves show that the performance is about the same for all transmission distances, i.e.

EVM does not change significantly when transmitting 1.25 Gb/s–QPSK or 1.875–8PSK over

25 km, 60 km or 100 km in a UDWDM-PON scenario.

As far as the accuracy of the VSTF method is concerned, for both modulation formats,

QPSK in Fig. 3.5 and 8PSK in Fig. 3.6, the method shows similar EVM results (markers)

as the SSF (lines) for different transmission distances up to 100 km with power limited to

-3 dBm per channel. The power can scale to -2 dBm per channel if the the distance is kept at

25 km as depicted by the blue circles. For higher power regimes, VSTF suffers from energy

convergence problems that should be solved by including higher order kernels (5th order for
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Figure 3.6: EVM of the received center channel versus input power per channel for 32 ×
1.875 Gb/s–8PSK. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.
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Figure 3.7: EVM of the received center channel versus input power per channel for 32 ×
2.5 Gb/s –16QAM. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.
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Figure 3.8: EVM of the received center channel versus input power per channel for 32 ×
3.75 Gb/s–64QAM. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.
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Figure 3.9: EVM of the received center channel versus input power per channel for 32 ×
5 Gb/s–256QAM. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.
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instance) in the solution in equation (3.12). On the other hand, this may not be practical

in terms of numerical complexity since the system studied in this thesis requires input power

below -2 dBm per channel and -4 dBm per channel for QPSK (EVM ≈ -9.8 dB) and 8PSK

(EVM ≈ -15.4 dB) so that EVM represents BER<10−3. Therefore, these results validate the

VSTF application to model accurately the fiber propagation even for such a high density of

WDM channels in the nonlinear regime operation.

Fig. 3.7, 3.8 and 3.9 show the EVM in dB of the center channel under test for the UDWDM

system carrying M-ary QAM signals. As in the previous system with phase-modulated signals,

VSTF (colored markers) matched the SSF (style lines) simulations for transmission distances

up 100 km when limited to -3 dBm per channel. -2 dBm per channel is also accurate if the

transmission distance is limited to 25 km of fiber.

The EVM obtained from the overall system’s performance via SSF simulations indicated

that BER < 10−3 is achievable with input powers per channel below -6 dBm, -9 dBm and

-12 dBm after 100 km for 16QAM (EVM ≈ -16.53 dB), 64QAM (EVM ≈ -22.54 dB) and

256QAM (EVM ≈ -28.4 dB), respectively. In addition, the EVM variation with power per

channel follows the same quadratic rule, i.e. EVM increases with square power.

Regarding the fiber length L, there is slightly variation of EVM with distance. Specifi-

cally, the system’s performance when transporting amplitude–modulated channels decreases

as the distance increases with L0.053, L0.091 and L0.101 for 16QAM, 64QAM and 256QAM, re-

spectively. This quantity can be found by simply performing log10[EVM100 km/EVM25 km]/6

for a target power. Therefore, the overall system’s performance can be summarized by the

expression below as follows:

EVMdB = 10 · log10

(
anlP

2 · Lε
)

(3.34)

where anl is a parameter in W−2 · m−ε that depends on system configuration, modulation

formats and fiber parameters and ε is 0.053 for 16QAM, 0.091 for 64QAM and 1.01 for

256QAM.
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3.6 Conclusion

This chapter addressed Volterra theory for modeling the total field propagation into the

optical fiber on coherent ultra-dense WDM based passive optical networks.

By using transfer functions to represent linear and nonlinear fiber effects, VSTF is a

powerful mathematical tool which provides both phase and amplitude of fiber channel. We

presented a very efficient method for evaluating the double integral in the frequency domain of

the 3rd order VSTF. This algorithm essentially avoids zero amplitude frequency components

outside the bandwidth of the optical signal.

As far as the overall system’s performance is concerned, the modified version of the 3rd

order VSTF matched SSF results for UDWDM systems. In that case for 32 channel spaced by

3.125 GHz, accurate EVM results were found to input powers limited to -3 dBm/channel over

a single SSMF link with 100 km. Furthermore, estimates for the maximum input power per

channel, when the bit rate scales using high–order modulation formats, were found to be -2

dBm (1.25 Gb/s–QPSK), -4 dBm (1.875 Gb/s–8PSK), -6 dBm (2.5 Gb/s–16QAM), -9 dBm

(3.75 Gb/s–64QAM) and -12 dBm (5 Gb/s–256QAM) so that the performance was within the

limit of current 7 % overhead FEC employed in coherent optical communication systems.

Next chapter investigates the main contributions of nonlinearities that limit the feeder

optical power for coherent UDWDM-PON.





Chapter 4

Impact of Fiber Nonlinearities

Data transmission over the optical fiber channel has been continuously increasing in a very

fast pace [54, 55]. Furthermore, the transmission distance between source and destination

never reaches a limit [56]. As a result, the performance of the optical communication system

has been strongly limited by fiber nonlinearities as the channel density and power increases,

thereby pushing the system towards nonlinear Shannon’s limit of the optical fiber. Fiber

nonlinearities have been widely investigated in two contexts. Firstly, great effort has been

put in developing analytic models to estimate the system’s performance in both linear and

nonlinear regimes. Secondly, tacking advantage of both in-phase and quadrature components

of the received signal being detected in current coherent optical systems, DSP is applied in

the receiver so that the performance is optimized. For that reason, it is of great significance

to gather prior knowledge about transmission aspects such as intra-channel and inter-channel

nonlinearities and their dependence on link length, launch power and modulation formats to

identify compensation schemes so that the network conveys information in a reliable way.

Most of the work in literature, concerning analysis and compensation of fiber nonlinear

effects, applies to long-haul transmission systems where the symbol rate is as high as 30 Gbaud

and the transmission distance goes beyond thousands of kilometers of fiber. In that case, intra-

channel nonlinearities are dominant or in some cases of WDM transmission, inter-channel XPM

is dominant. If the symbol rate is further increased to higher than 60 Gbaud, the dominant

physical impairment is intra-channel SPM, even when WDM is used as demonstrated in [57].

FWM is not relevant in such scenarios with channel spacing of 50 GHz or 100 GHz (Dense

Wavelength-Division Multiplexing (DWDM)) when SSMF is employed. Some research works

have used reduced channel spacing as low as 33 GHz as in [48] using Nyquist WDM (symbol

67
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rate divided by channel spacing around 0.9) or 9 GHz as in [58] (channel spacing is scaled as

1.79 of symbol rate). However, inter-channel FWM still with minimal impact on the system’s

performance in the aforementioned works. On the other hand, the fiber nonlinear behavior

is uncertain in the context of NG-OAN where the network may operate at reduced symbol

rate (e.g. 625 Mbaud), reduced channel spacing (e.g. 3 GHz), reduced transmission distance

(e.g. 100 km) and increased channel count (e.g. higher than 32). As such, it is expected

that nonlinear crosstalk induced by both FWM and XPM are the dominant transmission

impairments. For this specific application, there is not a closed solution as the analysis of

the system’s performance is mostly carried out through brute force simulations. Thereby,

from simulated or experimental results numerical expressions relating performance, power and

distance for instance, can be extrapolated to determine the system’s nonlinear performance.

Usually, polynomial interpolation applied to the data results is used for this purpose.

This chapter, based on Journals [J1], [J3] and [J4] and Conference papers [C1], [C11], [C14]

and [C15], firstly discusses in Section 3.2 the impact of fiber nonlinearities such as SPM, XPM

and FWM in a ultra-dense WDM based PON employing both digital phase modulated (sub-

section 4.1.1) and quadrature amplitude modulated (sub-section 4.1.2) channels. Secondly,

the dependence of the number of channels on the network performance for various modulation

formats is investigated in Section 4.2.

4.1 Impact of Nonlinearities on the System’s Performance

This section discusses the impact of nonlinearities on the performance of fully transparent

homogeneous network described in Section 3.4. In this case, the Volterra models described

in Chapter 3 are applied for various network capacity (bit rate per user times channel count)

and coverage (distance) to identify the range of dominance of SPM, XPM and FWM. The

network has 32 coherent channels spaced by 3.125 GHz, each operated at 625 Mbaud. Via

1:32 transparent splitter, the information reaches the coherent optical receiver in the ONU.

The performance is estimated in terms of the EVM of the received symbols for 32 independent

transmission. The transmission is performed over a single span of SSMF with 25 km, 60 km

and 100 km.
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4.1.1 M-ary phase-modulated signals

The first part of the results covers UDWDM-PON employing digital phase-modulated

channels. The blue style curves in Fig. 4.1 and 4.2, i.e. solid lines for 25 km (filled markers),

dash lines for 60 km (partially filled markers) and dash-dot lines for 100 km (open markers),

show the overall performance, estimated in terms of EVM of the center channel, as a function

of input power per channel (average optical power). As discussed in Section 3.5, the net-

work has similar performance for all the transmission distance and the modified version of the

3rd–VSTF (diamonds markers) matches the SSF (circles markers) up to -3 dBm per channel.

Furthermore, the style lines represent the polynomial interpolation following the fiber nonlin-

earities dependence of power and distance for single-span propagation discussed in Chapter 3.

For QPSK and 8PSK, the EVM curves can be represented by the following expressions:
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Figure 4.1: EVM of the received center channel versus input power per channel for 32 ×
1.25 Gb/s–QPSK. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.

EVMQPSK
total = 10 · log10

(
anlP

2 · L−0.0014
)

(4.1)

EVM8PSK
total = 10 · log10

(
anlP

2 · L0.0013
)

(4.2)
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Figure 4.2: EVM of the received center channel versus input power per channel for 32 × 1.875
Gb/s–8PSK. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.

where P is the input power per channel, L is the length of the fiber and anl is a constant

which depends on the system’s characteristics. As can be seen from the equations, the EVM

basically depends on power as the distance has negligible impact on the performance.

Fig. 4.1 and 4.2 also depicts the contributions of SPM (green upward-pointing triangles),

XPM (black downward-pointing triangles) and FWM (red squares) in the coherent network.

One important conclusion from these figures is that XPM degradation increases for longer

transmission distances whereas FWM is slightly reduced for shorter links. For instance, the

EVM difference in dB from the black solid line (XPM effect at 25 km) to the black dash line

(XPM effect at 60 km) in Fig. 4.1 (QPSK transmission) indicates that XPM effect is increased

by 0.7 dB in the nonlinear regime (power ≥ -4 dBm), i.e. QPSK : XPM25 km→60 km =

+0.7 dB. We point out that the effect of thermal and shot noise is only noticeable for input

powers below -7 dBm per channel over 100 km and for the single channel case, i.e. when

only intra-channel SPM effect is considered. The same criteria may be applied to the red

lines representing FWM effect in way that we find its variation with transmission distance;

for instance, increasing the distance from 25 km (red solid lines) to 60 km (red dash lines)

decreases FWM by -0.7 dB using QPSK signals, i.e. QPSK : FWM25 km→60 km = −0.7 dB.



4.1 Impact of Nonlinearities on the System’s Performance 71

By extending this concept to all combinations of fiber lengths (from 25 km to 100 km, 60 km

to 100 km), nonlinear effects and modulation formats, we arrive at the values summarized in

the second and third columns of Table 4.1.

Besides the variation with power and distance of XPM and FWM, the EVM results also

indicate how much FWM dominates XPM. This relation can be characterized by the FWM

to XPM ratio (F/X), which ranges from 25 dB to 30 dB for phase-modulated channels, as

depicted in Fig. 4.3 for various distances. The analysis is similar to the previous cases where

the EVM differences in dB are calculated from the red lines to the black lines for a given fiber

length instead; e.g. at 25 km of fiber (solid line) the F/X for QPSK signaling is around 30 dB

in the nonlinear regime, i.e. QPSK : F/X25 km = 30 dB. The fourth column of Table 4.1

outlines F/X values for 60 km and 100 km links as well. By comparing the two modulation

formats, XPM effect on 8PSK signals is slightly higher than the XPM noise induced by QPSK

signals as shown in Fig. 4.1 and 4.2. This is also justified from the F/X results in which

for QPSK this value ranged from 30 dB to 26.6 dB whereas for 8PSK the F/X ranged from

28.6 dB to 25 dB.

Table 4.1: Inter-channel nonlinearities on M-ary PSK.

QPSK XPM FWM F/X
25 km→ 60 km +0.7 dB -0.7 dB 25 km: 30 dB
25 km→ 100 km +1.76 dB -0.9 dB 60 km: 28 dB
60 km→ 100 km +1.3 dB -0.2 dB 100 km: 26.6 dB

8PSK XPM FWM F/X
25 km→ 60 km +0.5 dB -1 dB 25 km: 28.6 dB
25 km→ 100 km +1.6 dB -1.1 dB 60 km: 26 dB
60 km→ 100 km +1 dB -0.1 dB 100 km: 25 dB

The style curves that interpolate the EVM results for FWM and XPM are obtained from

the distance variation from 25 km to 100 km listed in Table 4.1. This factor of 4 (or 6 dB) for

the distance variation is used to characterize the EVM as a function of the length of the fiber L,

or the accumulated dispersion for single span propagation as discussed in [59]. As an example

considering the QPSK transmission, the XPM grows by +1.76 dB when the distance grows

from 25 km to 100 km (+6 dB), thus the resulting slope is 1.76/6=0.29 dB/dB. Extending
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Figure 4.3: FWM to XPM ratio (F/X) for phase-modulated channels and transmission dis-
tances. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.

for FWM and 8PSK, one finds the EVM predictions in the nonlinear regimes as

EVMQPSK
XPM = 10 · log10

(
axpmP

2 · L1.76/6
)

(4.3)

EVMQPSK
FWM = 10 · log10

(
afwmP

2 · L−0.9/6
)

(4.4)

EVM8PSK
XPM = 10 · log10

(
axpmP

2 · L1.6/6
)

(4.5)

EVM8PSK
FWM = 10 · log10

(
afwmP

2 · L−1.1/6
)

(4.6)

The summary from Fig. 4.1 and 4.2 is that coherent UDWDM-PON employing phase-

modulated signals are mainly limited by FWM (red lines plus squares) since XPM (black lines

plus diamonds) and SPM (green lines plus triangles) impose negligible impact on the system’s

performance for transmission distances up to 100 km. This is justified by the fact that the

nearly constant intensity nature of phase-modulated signals (power profile) does not impose

effectively modulation of the fiber refractive index via Kerr effect. In addition, those types of

signals along with close channel spacing enhance the phase matching condition for improving
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the efficiency of FWM generation. Therefore, the occurrence of very strong FWM crosstalk

limits the system’s performance to operate below -1 dBm and -4 dBm per channel ensuring

BER below 10−3 for QPSK (EVM ≈ −9.8 dB) and 8PSK (EVM ≈ −15.3 dB), respectively.

4.1.2 M-ary amplitude-modulated signals

This section analyzes the performance of the network when bit rate is scaled to 2.5 Gb/s,

3.75 Gb/s and 5 Gb/s using high-order QAM constellations. Fig. 4.4, 4.5 and 4.6 show

the EVM in dB of the center channel under test versus power per channel for the coherent

UDWDM-PON system carrying M-ary QAM signals.

As in the previous system with phase-modulated signals, VSTF (blue circles) matched the

SSF (blue diamonds) simulations for transmission distances up 100 km limited to -3 dBm

per channel. The EVM obtained from the overall system’s performance via SSF simulations

indicated that BER < 10−3 is achievable with input powers per channel below -6 dBm, -9 dBm

and -12 dBm at 100 km for 16QAM (EVM ≈ −16.53 dB), 64QAM (EVM ≈ −22.54 dB)

and 256QAM (EVM ≈ −28.4 dB), respectively. The blue style lines that best interpolate
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Figure 4.4: EVM of the received center channel versus input power per channel for 32 ×
2.5 Gb/s–16QAM. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.
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Figure 4.5: EVM of the received center channel versus input power per channel for 32 ×
3.75 Gb/s–64QAM. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.
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Figure 4.6: EVM of the received center channel versus input power per channel for 32 ×
5 Gb/s–256QAM. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.
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the overall performance is given by

EVM16QAM
total = 10 · log10

(
anlP

2 · L0.053
)

(4.7)

EVM64QAM
total = 10 · log10

(
anlP

2 · L0.0906
)

(4.8)

EVM256QAM
total = 10 · log10

(
anlP

2 · L0.1005
)

(4.9)

Regarding the fiber nonlinearities, the intensity modulation nature of M-ary QAM signals

boosts the nonlinear phase noise through both SPM (green lines) and XPM (black lines).

This nonlinear behavior is highlighted in the received constellations after 100 km transmission

shown in Fig. 4.8(a) and 4.8(b) for M-ary PSK and 4.8(c), 4.8(d) and 4.8(e) for M-ary QAM.

In addition, the variation with distance is much stronger than the observed when the network

transported purely phase-modulated channels. For the system at hand, the SPM effect on

M-ary QAM is solely higher than the XPM effect on phase-modulated signals. As a result,

the SPM effect outperforms the receiver noise where the EVM is increased for higher values

of power. This increasing of EVM when considering SPM only is not evident in the previous

results for phase-modulated channels.

By carrying out the same analysis as in Section 4.1.1 about nonlinearities and their depen-

dence on transmission distances and modulation formats, we ended up in the values in Table

4.2 in the nonlinear regime (power ≥ -12 dBm for both FWM and XPM). Table 4.2 also

shows the F/X quantities from which Fig. 4.7 is generated for QAM signaling over several

distances.

The coefficients for the expressions that best interpolates the EVM predictions are obtained

from Table 4.2. We emphasize that the expressions below account only for the noise induced

by fiber nonlinearities. Furthermore, the SPM predictions for 16QAM (4.12), 64QAM (4.15)

and 256QAM (4.18) are also included below.

EVM16QAM
XPM = 10 · log10

(
axpmP

2 · L3.3/6
)

(4.10)
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Table 4.2: Inter-channel nonlinearities on M-ary QAM.

16QAM XPM FWM F/X
25 km→ 60 km +2.9 dB -0.9 dB 25 km: 7.4 dB
25 km→ 100 km +3.3 dB -1.1 dB 60 km: 3.6 dB
60 km→ 100 km +0.4 dB -0.1 dB 100 km: 3 dB

64QAM XPM FWM F/X
25 km→ 60 km +2.6 dB -0.9 dB 25 km: 6.8 dB
25 km→ 100 km +3.1 dB -1.1 dB 60 km: 3.2 dB
60 km→ 100 km +0.5 dB -0.1 dB 100 km: 2.4 dB

256QAM XPM FWM F/X
25 km→ 60 km +2.6 dB -0.9 dB 25 km: 6.8 dB
25 km→ 100 km +3.1 dB -1.1 dB 60 km: 3.2 dB
60 km→ 100 km +0.5 dB -0.1 dB 100 km: 2.4 dB
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Figure 4.7: FWM to XPM ratio (F/X) for amplitude-modulated channels and transmission
distances. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km.

EVM16QAM
FWM = 10 · log10

(
afwmP

2 · L−1.1/6
)

(4.11)

EVM16QAM
SPM = 10 · log10

(
aspmP

2 · L2.1/6
)

(4.12)
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EVM64QAM
XPM = 10 · log10

(
axpmP

2 · L3.1/6
)

(4.13)

EVM64QAM
FWM = 10 · log10

(
afwmP

2 · L−1.1/6
)

(4.14)

EVM64QAM
SPM = 10 · log10

(
aspmP

2 · L2.09/6
)

(4.15)

EVM256QAM
XPM = 10 · log10

(
axpmP

2 · L3.1/6
)

(4.16)

EVM256QAM
FWM = 10 · log10

(
afwmP

2 · L−1.1/6
)

(4.17)

EVM256QAM
SPM = 10 · log10

(
aspmP

2 · L2.06/6
)

(4.18)

The summary of the results presented in Fig. 4.4–4.6 is that FWM is slightly reduced for

longer links whereas XPM is increased, which keeps the overall system’s performance almost

the same for 25 km, 60 km and 100 km spans. For instance, increasing the transmission

distance by a factor of 1.7, 2.4 and 4 effectively increases the XPM effect on average by 0.5,

2.6 and 3 dB, respectively; whereas FWM is slightly reduced by 0.1, 1 and 1.1 dB. Essentially,

the phase noise through both SPM and XPM accumulates for longer links whereas FWM

crosstalk has maximum efficiency around the effective fiber length, i.e. 21 km of SSMF. For

links longer than the effective length, the optical fiber works as a dispersive media only. As

a result, the F/X ranged from 7.4 dB (longer links) down to only 2.6 dB (shorter links) as

shown in Fig. 4.7. The constellation diagrams, depicted in Fig. 4.8 with blue symbols from

SSF simulations and red ones from the Volterra XPM model described in Chapter 3, show

that the phase noise is more accumulated in the outermost symbols. This increased phase

noise results in a increased overall EVM, thereby indicating that coherent UDWDM-PON

transporting high-order QAM is not only limited by FWM but also by XPM.
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Figure 4.8: Received constellations of the center channel after 100 km of SSMF: 32 ×
1.25 Gb/s–QPSK (a); 32× 1.875 Gb/s–8PSK (b); 32× 2.5 Gb/s–16QAM (c); 32× 3.75 Gb/s–
64QAM (d); 32 × 5 Gb/s–256QAM (e). Blue squares: SSF; Red squares: XPM.
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4.2 Impact of The Number of Channels on the System’s Per-

formance

The previous results analyzed coherent UDWDM-PON when the network transported 32

channels (or user). On the other hand, it is relevant to identify the overall performance when

higher number of channels are transmitted in the same fiber.

The fully transparent homogeneous scenario is similar to the previous case where, we sim-

ulate in this case 2, 4, 8, 16, 32, 64, 128, 200, 256 coherent channels. The split ratio was

simply updated to 1 : Nch where Nch is the number of transmitted channels. The symbol rate

was increased to 1.25 Gbaud to obtain 2.5 Gb/s, 5 Gb/s and 10 Gb/s per channel/wavelength

using QPSK, 16QAM and 256QAM, respectively. In addition, both transmitter lasers and

local oscillators were set to 100 kHz–linewidth for QPSK and 16QAM simulations. Thus, car-

rier/phase estimation was performed based on the Viterbi and Viterbi algorithm. We point

out that for 256QAM transmission, the lasers linewidths were set to 0 kHz. We optimized the

input power per channel so that at 32 channels after 25 km of fiber the performance is close to

the theoretical BER=10−3. Specifically, we used ∼-1 dBm per channel for QPSK, ∼-5 dBm

per channel for 16QAM and ∼-11 dBm per channel for 256QAM as shown in Fig. 4.1, Fig.

4.4 and Fig. 4.6, respectively.

The performance was calculated in terms of the EVM in dB, shown in Fig. 4.9 and SNR

penalty at BER=10−3, depicted in Fig. 4.10 of the center channel. Fig. 4.9(a), Fig. 4.9(b)

and Fig. 4.9(c) show how the performance dependence with number of channels for various

distances and bit rates. From these results, it is possible to validate the dependence with

distance at 32 channels expressed in equations 4.1, 4.7 and 4.9 as: ∼ L0, ∼ L0.05 and ∼ L0.1

for QPSK, 16QAM and 256QAM respectively.

At the maximum aggregate data rate in the same ODN extending up to 100 km, the

SNR penalty in Fig. 4.10 compared to the 32 channel case is always below 1 dB, 2 dB and

4 dB for 640 Gb/s (256×2.5 Gb/s–QPSK), 1.28 Tb/s (256×5 Gb/s–16QAM) and 2.56 Tb/s

(256×10 Gb/s–256QAM), respectively.

When the network transports only QPSK channels (squares), the performance worsens

when the number of channels scales up to 32. Higher than 32 channels, the performance

remains unchanged due to the fact that the sole effect of FWM is limited within a ∼100 GHz
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Figure 4.9: EVM of the received center channel versus number of channels (log2 scale) for:
(a) 2.5 Gb/s–QPSK; (b) 5 Gb/s–16QAM; (c) 10 Gb/s–256QAM.

bandwidth (∼32×3.125 GHz). This indicates that in terms of nonlinearities, transmitting

1024 QPSK channels gives the same nonlinear performance as transmitting nearly 32 QPSK

channels. Since XPM does not affect QPSK over a single SSMF span as FWM overpowers

XPM by 25 dB, the performance does not change significantly with transmission distance. As

discussed in Section 4.1.1, the SNR due to nonlinearities slightly decreases with distance as

L−0.0014 for QPSK transmission.

If the network employs 16QAM (circles) or 256QAM (diamonds) modulated channels, the

intensity nature of QAM signaling enhances the impact of XPM and the variation with dis-

tance is highlighted, i.e. due to nonlinearities the SNR decreases as the transmission distance

increases. The performance worsens by 0.5 dB and 1.5 dB when the link length increases from

25 km to 100 km for 16QAM and 256QAM, respectively. This variation with distance (L0.05
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Figure 4.10: SNR penalty at BER=10−3 versus number of channels for 2.5 Gb/s–QPSK
(squares), 5 Gb/s–16QAM (circles) and 10 Gb/s–256QAM (diamonds). Dash dot lines: 25 km.
Dash lines: 60 km; Solid lines: 100 km.

and L0.1) is much more evident as a result of FWM overcoming XPM by only 3 dB according

to the previous discussions in Section 4.1.2. Besides the FWM saturation at 32 channels, due

to XPM the SNR penalty continues to increase up to 128 channels for 16QAM, whereas the

performance does not stop worsening before 256 channels for the 256QAM. This is justified

by the broader bandwidth of XPM compared to the 100 GHz of FWM.
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4.3 Conclusion

This chapter addressed the impact of nonlinearities in the fully transparent homogeneous

network for various bit rates, obtained with high-order constellations with fixed symbol rate.

For the 32 channel-UDWDM-PON, the network is mostly limited by FWM (25<F/X<30

dB) when transmitting only M-ary PSK channels. On the other hand, the network is impaired

by both FWM and XPM (2.5<F/X<7.5 dB) when transmitting M-ary QAM channels. The

main advantage of transmitting M-ary PSK is the flexibility to scale the number of users in

the same optical distribution network as high as 1024 keeping similar nonlinear performance

as the 32 users case. In terms of user’s data rate upgradeability, the modulation format is

limited to provide 8 Gb/s per channel if the 3 GHz frequency grid is employed.

Since M-ary QAM transmission system enhances induced-XPM nonlinear phase noise, the

performance degradation keeps increasing as the number of QAM channels increases. Thereby,

it is preferable to maintain lower number of channels, e.g. 64 users (or wavelength channels).

However, these signaling offers great possibilities to upgrade the user’s data rate up to 24 Gb/s

per user, i.e. 8 bits/symbol × 3 Gsymbols/s in the 3 GHz optical bandwidth. In summary, if

the ODN in coherent UDWDM-PON is deigned to provide the highest number of users (e.g.

1000) at 1 Gb/s, QPSK signaling provides the best robustness against fiber impairments. If

the ODN is designed to provide data rate per users as high as 10 Gb/s, QAM is the best

format if the number of users does not exceed 64.



Chapter 5

System’s Performance Optimization

The amount of data information over all-optical networks has been continuously increasing

as never before [54, 55]. As a result, more and more WDM channels are physically multiplexed

and transmitted in the same optical fiber plant to reduce the overall cost of the network

deployment. As the number of channels (or users in the case of purely WDM networks)

conveying data information increases in a narrower optical bandwidth, the power launched

into the fiber increases pushing the system’s performance towards the nonlinear Shannon’s

limit. As such, the network upgradeability in terms of user data rate and number of users is

compromised if no optimization scheme to minimize the fiber nonlinear impact on the system’s

performance is employed.

From the studies carried out in Chapter 4, it is clear that fiber nonlinear effects play an

important role on the performance of coherent ultra-dense WDM based PON. Inter-channel

nonlinearities, i.e. due to the nonlinear interaction among the several channels co-propagating

in the fiber, are the dominant transmission impairments in the network. Specifically, inter-

channel FWM accounts for the majority of the nonlinear noise accumulated in the received

signal. This effect is particularly enhanced for coherent UDWDM-PON, which uses very nar-

row channel spacing when transporting QPSK modulated channels. Although the transmission

distance might be limited to 100 km of fiber, inter-channel XPM is also an important source

of noise that has to be analyzed when M-ary QAM modulated channels are transported. In ei-

ther cases, the impact of FWM overpowers at least by 2.5 dB the impact of XPM in coherent

UDWDM-PON limited to 32 channels.

How to mitigate FWM has been a topic of research in previous versions of WDM optical

transport networks in which the system operates really close to the zero dispersion wavelengths,

83
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i.e. by using Dispersion Shifted Fiber (DSF) or NZDSF [60]. Besides the fact that the

channel spacing values used in previous versions were in the range of hundreds of Gigahertz,

e.g. 400/200/100 GHz, the operation near the zero dispersion wavelengths boosted the FWM

generation [61, 52].

One very interesting solution proposed to mitigate FWM crosstalk considered to use un-

equally spaced channels that showed to be more effective compared to equally spaced channel

[62]. The main idea of this technique is divide the available bandwidth into frequency slots

and then finding the vector which best represents these slots in order to minimize the num-

ber of FWM products falling into the WDM channels. This technique was firstly reported in

[63, 62] for up to twelve WDM channels based on exhaustive computer search whereby the

channel spacing must be greater than or equal to the pulse separation slot. The main ad-

vantage is that no FWM is allowed to fall in the signal bandwidth, thus the resulting FWM

crosstalk is almost zero. On the other hand, the operating bandwidth has to be expanded to

accommodate all WDM channels for this allocation strategy to be successful. Another solution

relies on obtaining unequally spaced channels that permits a few FWM products in the signal

bandwidth where the operating bandwidth is not penalized. In that case, unequally spaced

channels is achievable by performing small frequency tuning in the WDM channels. For in-

stance, the maximum frequency tuning (±10 GHz) lesser than 10 % of the channel separation

(100 GHz) was used in [J5] for 6 CW channels.

As far as inter-channel XPM is concerned, this effect is particularly relevant in the context

of NG-OAN limited to 100 km of fiber when high-order QAM signaling is employed. For QPSK

signaling, XPM (multi-channel) and SPM (single channel) are relevant when the transmission

goes beyond hundreds of kilometers of fiber. In current coherent optical systems, SPM/XPM

has been tackled by using DSP techniques [64, 65], [J8, J7].

This chapter, based on Journals [J1], [J5], [J6], [J7] and [J8], Conference papers [C3], [C5],

[C12], [C13], [C17] and [C18] and Patent [P1], focuses on how to minimize inter-channel FWM

in a coherent UDWDM-PON by employing unequally channel spacing. We studied different

strategies to obtain unequally spaced channels keeping the overall bandwidth unchanged com-

pared to equally spaced channels. The frequency tuning strategy is based either on Genetic

Algorithm (GA) optimized frequency coefficients or by randomly set frequency coefficients.

The chapter is organized as follows. Section 5.1 discusses how to obtain unequally spaced
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channels by using GA (sub-section 5.1.1) and random frequency tuning (sub-section 5.1.2).

Section 5.2 gives the directions toward the minimization of SPM and XPM.

5.1 Minimization of FWM

This section discusses two strategies to obtain unequally spaced channels for the mini-

mization of FWM in coherent UDWDM-PON. The main focus is to mitigate some of the

FWM crosstalk (± 3 dB) without penalize the overall bandwidth. The approach considered

in this work is based on performing small frequency tuning among all the WDM channels so

that they are unequally spaced keeping the overall bandwidth unchanged. This is a realistic

approach since most of the laser sources in the transmitters/receivers are tunable by a few

nanometers. In coherent UDWDM-PON, a tunability of only a few Gigahertz are required

since the channel spacing is below 25 GHz for instance. Fig. 5.1 illustrates the principal of

the frequency tuning strategy to obtain unequally spaced channels. In WDM networks, the

available optical bandwidth per channel (BW ) is limited by an optical filter in the AWGs.

This bandwidth BW has to be broad enough for allocating the optical signal which occupies

2 × Rs with Rs being the symbol rate. Therefore, the remaining bandwidth Γ given by the

difference BW − 2×Rs can be used to perform small frequency tuning (Γ = BW − 2×Rs).
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Figure 5.1: Frequency tuning scheme to obtain unequally spaced channels in UDWDM-PONs.

In the coherent UDWDM-PON analyzed in this work, which uses channel spacing of only

3.125 GHz, BW usually is around 2.5 GHz and the symbol rate is either 500 Mbaud or

625 Mbaud. In the case of 1.25 Gbaud signaling is used, Γ ≈ 1.25 GHz or Γ/2 ≈ 625 MHz.

It is important to emphasize that the minimization of FWM improves as the available Γ

increases, i.e. for the same BW the reduction of FWM improves as the Rs is decreased. The

main advantage of this technique is that the bandwidth expansion is limited to maximum
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2× Γ/2 = Γ. In the 32 channels case, the overall bandwidth is expanded by only 100× (2×

Γ/2)/(32× 3.125 GHz) = 0.6 %.

In the following sections, two schemes for obtaining unequally spaced channels are dis-

cussed. Firstly, frequency and power coefficients optimized by a GA are found in a traditional

WDM network. Secondly, a randomly set frequency coefficients are applied for the coherent

UDWDM-PON.

5.1.1 Genetic Algorithm Approach

One strategy to obtain unequally spaced channels consists in optimizing the frequency

coefficients Gammai of all the available WDM channels. These optimized coefficients can be

obtained by using GA for instance. In addition, power coefficients can also be found so that

the generated FWM products that interfere with the WDM channels have lesser intensity.

This power variation among the WDM channels is relevant in hybrid WDM rings / TDM

trees network scenarios where some earlier dropped channels may need lesser energy than

others [8], [C5, C4].

Power allocation is obtained by multiplying the initial channel power (Pi) by a coefficient

(Θ) ranging from 0 to 1 (“1” means maximum power and “0” means channel turned off), i.e.

P
′
i = Pi×Θi. In order to avoid the channel deactivation one can simply bound those coefficients

between 0.5 and 1.0 (3 dB variation). The frequency allocation (Γ) consists in adding values

to the initial channel frequencies (fi), i.e. f
′
i = fi + Γi. Therefore, GA finds the best set

of parameters that minimizes the in–band FWM crosstalk vector given by ‖PFWM (P
′
i , f

′
i )‖,

where ‖.‖ stands for the norm. The calculation of PFWM is found in [J5]. This approach

considers the constraint that the final allocated power should be greater or equal to half of the

total available power (PT ); i.e. the power summation of all WDM channels should be greater

than half of the initial total power. The optimization problem can be defined as follows:
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min ‖PFWM

(
P
′
i , f

′
i

)
‖

P
′
i = Pi ×ΘGA

i ; f
′
i = fi + ΓGAi ; i = 1 · · ·Nch;

S.T. : |ΓGAi | ≤ 10 GHz

0 < ΘGA
i ≤ 1∑

i

Pi ≥ PT /2 (5.1)

where, Pi and fi (c/λi) are the initial WDM power and frequency for ith channel, respectively.

The GA optimization scheme is demonstrated experimentally for a DWDM system con-

sisting of 6 CW Distributed Feedback (DFB) lasers in C spectral band (0.8 nm or 100 GHz

spacing). The transmitter lasers are multiplexed by an AWG with typical loss of ≈ 8 dB and

transmitted into 9 km of DSF fiber in order to emphasize the impact of FWM and better

demonstrate the effectiveness of the proposed algorithm. The fiber was previously character-

ized by an Optical Network Analyzer (ONA) in order to evaluate the attenuation, chromatic

dispersion and dispersion slope values. In addition, 3 optical bands at 1553.33 nm, 1554.13 nm

and 1554.94 nm were considered for monitoring the FWM power. Each transmitter laser al-

lows a frequency variation of ±120 GHz achieved by thermal tuning and a power variation

between 3 dBm and 13 dBm. For a channel spacing of 100 GHz and considering the AWG

filter of 40 GHz, the maximum allowable frequency tuning is ± 10 GHz. The output optical

power spectrum was obtained by a high resolution OSA. The nonlinear refractive index and

effective area were also computed indirectly using a single–objective Genetic Algorithm.

Firstly, a non-optimized power spectrum (Pi=7 dBm) was obtained in order to assess the

FWM crosstalk and to compare it to the expected theoretical results. The simulation and

experimental results showed a good agreement. Those values are depicted in Fig. 5.2(a). Fig.

5.2(b) displays a zoomed version of the power spectrum of the first 3 channels. By looking at

the spectrum, we verify the existence of FWM interference in all the 6 channels ranging from

-40 dBm to -37 dBm. The FWM crosstalk in the monitoring bands varies from -61 dBm to

-43 dBm.

For the best optimization case (Pi=10 dBm), the obtained parameters were ΓGAi =

[9.5,−4.6,−8.2, 10.0, 7.4,−8.3] GHz; ΘGA
i = [0.914, 0.400, 0.400, 0.400, 0.400, 0.486]. In that
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situation none of the channels was deactivated. Fig. 5.2(c) depicts a zoom of the optimized

power spectrum of the first 3 channels. We pointed out that the interfering FWM products

were shifted away the vicinity of the channels which obviously reduces the effect of crosstalk.

For instance, using a 25 GHz electrical filter (typical for IMDD–10 Gb/s transmission) those

products would be fully removed. Fig. 5.2(d) shows the total FWM power crosstalk in the

9 channels obtained experimentally for the non-optimized (squares) and optimized (circles)

situations. Clearly, the FWM crosstalk reduction obtained by the GA optimization scheme

ranged from 3 dB to 10 dB for all the propagating channels.
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Figure 5.2: (a) Optical power spectrum for the non-optimized situation. Solid lines: experi-
mental; “∗”: simulation. (b) Zoom of the first 3 non-optimized channels (equally spaced). (c)
Zoom of the first 3 optimized channels (unequally spaced). (d) Measured FWM power in each
channel. Squares: without optimization; circles: with optimization.
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5.1.2 Randomly Set Frequency Coefficients

Optimizing all WDM channel coefficients may require a huge computation effort if the ob-

jective function has to be calculated for a very high number of channels, e.g. 1000 channels.

Another strategy is simply set random frequency coefficients for all the WDM channels in-

stead of running a multi-objective GA. This strategy is particularly interesting for coherent

UDWDM-PON that can transport over 32 channels in a single fiber plant.

The Randomly Set Frequency Coefficient scheme is defined as follows for the coherent

UDWDM-PON carrying 64 × 1 Gb/s–QPSK channels:

1. each QPSK channel occupies around 1.5 GHz optical bandwidth (sufficient for either

500 Mbaud or 625 Gbaud operations) out of the 2.5 GHz available optical bandwidth

limited by the ideal AWG filter;

2. we considered that each optical carrier can be tuned at maximum Γ ≤ |500|MHz. This

approach ensures the signal will be inside the optical filter bandwidth without interfering

with neighboring channels;

3. For each transmission, the optical carriers at the transmitters are updated as follows:

f
′
i = fi + Γi such that Γi assumes randomly any value in the vector [−500,−250, 0 +

250,+500] MHz. As a result, unequally channel spacing is obtained in a way that the

majority of the FWM frequency components will fall outside the signal bandwidths;

then those components are removed by electrical filtering (low-pass filter or digital filter

in the coherent receiver) improving the SNR of the received constellation.

Fig. 5.3 shows the overall system performance in terms of maximum EVM among tested

channels as a function of the input optical power per channel with (solid + circles) and without

(dash + squares) the optimized channel frequency coefficients. In terms of nonlinear perfor-

mance, the impact of FWM is relevant for network scenarios transporting number of channels

higher than 16, i.e. splitting ratios higher than 16 (or hybrid for K ≤ 4 and fully transparent).

The network scenarios with lower splitting ratios (hybrid K > 4 and filtered) obtained the best

overall performances since the reduced density of channels decreases the effectiveness of inter–

channel FWM crosstalk. The fully transparent scenario (64 channels spaced by 3.125 GHz)

and hybrid 2 × 200 GHz × 32–AWG (K = 2) obtained similar performance indicating that
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Figure 5.3: Overall system’s performance (maximum EVM among tested channels) after trans-
mission without (solid lines + circles) and with (dash lines + squares) randomly set frequency
coefficients.

upgrading the network from 32 to 64 channels at 3.125 GHz has similar inter-channel FWM

impact. This conclusion is in agreement with the discussion in Chapter 4, Section 4.2.

As far as the minimization of FWM is concerned, the optimization gain in terms of the

EVM reduction is on average 4.4 dB with a lower endpoint of 3.2 dB and upper endpoint of

5.5 dB within the 95 % confidence interval. It is worth pointing out that the tested network

scenarios with optimized parameters through the frequency tuning algorithm achieved on

average an improvement of 3 dB in the optimal input power with EVM below the 10 % limit.

Both methods, Genetic Algorithm and Randomly Set Frequency Coefficients for optimizing

the WDM channels are very effective frequency tuning schemes to obtain unequally channel

spacing, which minimizes the FWM impact and improves the SNR up to 4.5 dB. The later is

highly suitable for network scenarios with high channel count. Therefore, it is relevant to study

the effectiveness of the Randomly Set Frequency Coefficients for the coherent UDWDM-PON

transporting high-order QAM signaling. Here, we apply this technique, considering a max-

imum tuning of ± 500 MHz in the fully transparent homogeneous network to validate the

analysis of nonlinearities dependence on power, link length and modulation formats discussed
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in Chapter 4. Besides the fact that this technique is tested in systems (amplitude-modulated

signals) where SPM/XPM is enhanced, it is worth pointing out that lower SNR improvements

are expected in the following results since the symbol rate (Rs) is slightly higher, i.e. currently

625 Mbaud against previously 500 Mbaud per channel. This increased signal bandwidth basi-

cally decreases the out of band available for allocating FWM components thus worsening the

ability of the coherent receiver in filtering these crosstalk components out.

Fig. 5.4 (32 × 1.25 Gb/s–QPSK), 5.5 (32 × 1.875 Gb/s–8PSK), 5.6 (32 × 2.5 Gb/s–

16QAM), 5.7 (32 × 3.75 Gb/s–64QAM) and 5.8 (32 × 5 Gb/s–256QAM) show the EVM in

dB of the center channel as a function of input power per channel measured with (solid lines

plus circles) and without (dash line plus squares) optimized channel frequencies using the

Randomly Set Frequency Coefficients. Note that both transmitter and local oscillator lasers

in the OLT/ONU have the same random coefficient which does not exceed ± 500 MHz, i.e.

intradyne detection in the receiver is performed.
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Figure 5.4: EVM of the received center channel versus input power/channel for 32 ×
1.25 Gb/s–QPSK. Solid lines plus circles: non-optimized; Dash lines plus squares: optimized.

For all the transmitted modulation formats, the frequency tuning scheme reduced the

overall EVM at least by 2.3 dB. Table 5.1 shows the EVM difference in dB, which gives an

estimation of the SNR improvements, obtained from the solid lines and the dash lines in
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Figure 5.5: EVM of the received channel versus input power/channel for 32 × 1.875 Gb/s–
8PSK. Solid lines plus circles: non-optimized; Dash lines plus squares: optimized.

Fig. 5.4, 5.5, 5.6, 5.7 and 5.8. Since the system with phase-modulated (QPSK and 8PSK)

channels has negligible SPM/XPM impact, the frequency tuning scheme manages to reduce

FWM by 3.5 dB. This SNR improvement hardly changed for different transmission distances.

Nevertheless when the UDWDM-PON system transported amplitude-modulated signals

(16QAM, 64QAM and 256QAM) the reductions were decreased to 3.2 dB and 2.4 dB for

shorter and longer links, respectively. Furthermore, the SNR improvement slightly decreases

as the order of the QAM constellation increases, e.g. the SNR improvement at 25 km of fiber

is reduced by 0.4 dB when the QAM order increases from 16 to 256 (+SNR16QAM@25 km =

3.19 dB and +SNR256QAM@25 km = 2.83 dB). This comes from the fact that performing small

frequency tuning in the transmitter lasers effectively minimizes solely FWM with minimal

effect on the XPM.

Recalling the values of F/X (FWM to XPM ratio) in Tables 4.1 and 4.2 in Section 4.1,

one can recalculate these values by taking into account the reductions of FWM in Table 5.1.

This is particularly interesting to evaluate the relevance of both FWM and XPM for a given

transmission distance and user’s data rate. As an example, consider a UDWDM-PON with

100 km–links carrying M-ary QAM and employing Randomly Set Frequency Coefficients, the
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Table 5.1: SNR improvements after optimizing the channel frequencies.

Modulation 25 km 60 km 100 km
QPSK 3.53 dB 3.41 dB 3.39 dB
8PSK 3.59 dB 3.39 dB 3.40 dB

16QAM 3.19 dB 2.81 dB 2.52 dB
64QAM 2.95 dB 2.51 dB 2.35 dB
256QAM 2.83 dB 2.44 dB 2.37 dB
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Figure 5.6: EVM of the received center channel versus input power/channel for 32 × 2.5 Gb/s–
16QAM. Solid lines plus circles: non-optimized; Dash lines plus squares: optimized.

system’s performance is limited equally by XPM and FWM since the F/X is reduced to only

0.2 dB (256QAM at 100 km). The chart in Fig. 5.9 gives all the F/X values versus modula-

tion formats before (top figure) and after (bottom figure) minimizing FWM in the coherent

UDWDM-PON. This chart confirms the conclusions in Chapter 4 that phase-modulated chan-

nels are mostly limited by FWM whereas amplitude-modulated channels are impaired by both

FWM and XPM. In addition, unequally spaced channels mitigate most of the FWM crosstalk

among WDM channels.
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Figure 5.7: EVM of the received center channel versus input power/channel for 32 ×
3.75 Gb/s–64QAM. Solid lines plus circles: non-optimized; Dash lines plus squares: opti-
mized.

−15 −12 −9 −7 −6 −5 −3
−35

−30

−25

−20

−15

−10

Average Input Power per Channel [dBm]

E
V

M
rm

s [
d

B
]

256QAM: Maximum EVM per Input Power

 

 

25 km

60 km

100 km

BER = 10
−3

Figure 5.8: EVM of the received center channel versus input power/channel for 32 × 5 Gb/s–
256QAM. Solid lines plus circles: non-optimized; Dash lines plus squares: optimized.
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Figure 5.9: Comparison of FWM and XPM for different modulation formats before (a) and
after (b) minimizing FWM.

5.2 Minimization of SPM/XPM

The discussion in previous sections indicated the directions toward nonlinear compensation

for coherent UDWDM-PON. Most of the results pointed out solutions for the minimization

of the most relevant transmission impairment in such a network scenario, i.e. FWM. On the

other hand, XPM effect can not be neglected specially for high-order QAMmodulation formats

over extended reach (100 km links). Since XPM manifests in the same manner as SPM via

accumulated nonlinear phase noise during transmission, the compensation strategy may follow

similar directions. SPM is mostly mitigated in the digital domain via nonlinear backward-

propagation (or simply back-propagation) in current coherent optical systems. XPM induced

in WDM transport networks can also be mitigated using such a digital signal processing

technique. On the other hand, data information from neighboring co-propagated channels

have to be known (or detected) at receiver side. In order to mitigate XPM, data information

from neighboring channels have to be fed to all coherent receivers in a cooperative way or all

receivers should have a very broad bandwidth to detected signal from other channels.

SPM compensation are mainly based on the digital solution of NLS equation of the re-
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ceived signal in the backward direction. The most used solution is based on the Split-Step

Fourier (SSF) back-propagation [66, 64]. Recently, great attention has been given to Volterra

series nonlinear equalizers [26], [J8]. In [J8], both linear (1st order Volterra kernel) and non-

linear (3rd order Volterra kernel) transfer functions (see Chapter 3, section 3.1) are evaluated

digitally after coherent detection. The main advantage of Volterra Series Nonlinear Equal-

izer (VSNE) relies on its superior performance compared to SSF back-propagation when the

coherent receiver operates at 2 samples per symbol, i.e. the received signal is sampled at

twice the symbol rate [J8]. As for the SSF back-propagation, VSNE can also be applied for

Polarization-Division Multiplexing (PDM) systems. One example is shown in Fig. 5.10 where

BER results versus input power are measured for a single channel 120 Gb/s–Polarization Mul-

tiplexing Quadrature Phase-Shift Keying (PM-QPSK) (Rs=30 Gbaud) transmitted over 16

spans of 100 km–NZDSF.

Multi-span propagation is achieved using a recirculating loop composed of a single fiber

span. Analog-to-digital conversion is performed at 50 GSa/s using a Tektronix DPO71604

oscilloscope, whose measured -3 dB analog bandwidth is ∼ 13 GHz. The most relevant ex-

perimental parameters are: Rs = 30 Gbaud, α = 0.22 dB/km, β2 = -3.29 ps2/km, γ =

2.01 (W·km)−1, Lspan = 100 km, SP = 1.6 where SP denotes the number of samples per

symbol at the receiver. Further details about the experimental setup employing NZDSF can

be found in [67].

In this case, we compare digital compensation of chromatic dispersion (CD represented

by “×”) in the frequency domain and SPM using back-propagation SSF (squares) and VSNE

(circles). The best SSF back-propagation was obtained with only one step per span using its

single-polarization or scalar back-propagation and dual-polarization using Manakov equations.

VSNE was applied in a span-by-span basis. Note that both scalar versions of SSF and VSNE

equalizers do not take into account nonlinear cross effect between different polarization states.

The cross effect on dual-polarization systems are compensated by using the Manakov equations

(see [66]) which improves the overall performance at a price of doubled complexity added to

the DSP in the coherent receiver. Refer to [C17] for detailed description of the Manakov

equations in the VSNE equalizer and all the DSP blocks in the coherent receiver.

The best performance of SSF back-propagation at 1 step per span shown in Fig. 5.10 comes

from the fact that low temporal resolution (1.6 physical samples per symbol) associated with
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narrow electrical filtering at the oscilloscope, impose severe limitations on the performance

of nonlinear equalization. The same limitation is setting the performance of VSNE. On the

other hand, the dual-polarization versions of SSF and VSNE (solid lines) enable to increase

the optimum input power by about 0.7 dB with respect to their scalar versions (dash lines).

Compared to CD compensation only (dash-dot line), dual-polarization versions improve the

optimum input power by 1.7 dB. As far as BER is concerned, dual-polarization back propaga-

tion equalizers reduce BER for the 16 spans of NZDSF transmission by a factor of 2.5× and

5× with respect to their scalar versions and CD compensation, respectively.

Although the previous results pointed out digital equalization of SPM in a single-channel

transmission systems, Volterra series nonlinear equalizer can also be very suitable for XPM

compensation in coherent UDWDM-PON. The minimization of FWM with randomly set

frequency coefficients improves the overall performance by 3 dB. Extra SNR improvement can

be achieved by using digital equalization of XPM in the ONU. In UDWDM-PON, the ONU

only requires 625 MHz of electrical bandwidth to operate at 1 Gb/s (500 Mbaud–QPSK) or

more depending on the modulation format at hand. On the other hand, it is reasonable to

assume that the broader bandwidth and faster ADC sampling rate allow “hearing” some data
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Figure 5.10: Measured BER of 30 Gbaud–PM-QPSK after transmission over 16 × 100 km–
NZDSF. Dash-dot line: CD compensation; Dash lines: Scalar; Solid lines: Manakov.
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information from other channels. Regardless of security issues, this extra information is useful

for XPM compensation using digital back-propagation. This topic of research is not covered

in this work and shall be investigated in future studies.
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5.3 Conclusions

This chapter addressed solutions suitable for the minimization of inter-channel fiber non-

linearities on coherent UDWDM-PON for various bit rates (different high-order constellations)

and transmission distances.

As discussed in previous chapters, FWM is relevant for Standard Single-Mode Fibers when

several channels are closely multiplexed by only 3 GHz apart. FWM frequency components

cause strong crosstalk when WDM channels are equally spaced. When WDM channels are

unequally spaced, FWM frequency components are spread over the entire bandwidth where

some of them can be easily filtered in the receiver.

We showed that performing small frequency tuning (with respect to the channel spacing)

schemes are very effective to obtain unequally spaced channels. Multi-objective Genetic Al-

gorithm is efficient for for reduced number of channels due to the several computations of the

objective function. Randomly set frequency coefficients can be applied for for very high chan-

nel count systems, e.g. 1000 channels. The main advantage of the aforementioned methods is

that good FWM reduction is achieved without penalizing the overall bandwidth.

The overall system’s performance can be improved even further for systems transporting

QAM signaling if XPM compensation is employed in the coherent receiver. SPM is easily

mitigated using advanced digital signal processing (digital back-propagation). The concept

can be extended to XPM compensation in broadband receivers or in cooperative receivers.





Chapter 6

Conclusion

6.1 Summary and Concluding Remarks

It is challenging to minimize the optical network costs when ONU transceivers require a

laser light source as in coherent systems. At the same time, it is more challenging to provide

dedicated 10 Gb/s connections for several users in the same PON using IMDD technologies.

Coherent optical communication systems have demonstrated what is the real potential of the

optical fiber to convey data information. In order to better exploit the full potential of already

deployed PONs infrastructure, the paradigm of intensity modulation direct detection commu-

nication has to be changed. Wide wavelength-tuning range, simple bandwidth upgrade and

receiver sensitivity are just a few examples of how coherent Wavelength-Division Multiplexing

Passive Optical Networks (WDM-PON) improve the network performance and management.

This Ph.D. thesis investigated coherent optical solutions for NG-OAN. The general scien-

tific contributions within the thesis framework are listed below:

• design of network elements and subsystems required for high aggregate data rates Passive

Optical Networks;

• numerical modeling of the most relevant sources of transmission impairments such as

fiber nonlinearities and their dependence on feeder power, transmission distance, mod-

ulation formats and network scenarios;

• novel schemes for transmission impairment compensation based on all-optical solutions

and digital signal processing techniques to boost network capabilities.

Regarding the first objective, this work addressed some of the most relevant technical as-

101
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pects of the OLT, ODN and ONU for Next-Generation all-Optical Access Networks. Coherent

transceivers employing high-order modulation formats and digital signal processing are key

network elements for solving the needs for broadband in Optical Access Networks (OAN). The

network design relied on UDWDM technologies in the OLT, which routes data information to

tunable ONUs (without optical filter) via transparent power splitter. This solution has the

advantage of providing wide-range tunable ONUs (tunable local oscillator), extended reach

and/or high splitting ratios (receiver sensitivity) and data rate upgradeability (high-order con-

stellations). In addition, digital signal processing techniques can be employed to alleviate the

transceivers’ requirements as well as transmission related impairments.

One of the challenges related to the network scenarios investigated in this work encom-

passes the impact of fiber related transmission impairments. The combination of high channel

count and reduced channel spacing may invalidate the network operation if transmitter and

receiver parameters are not properly optimized. As such, the second objective of this work

addressed methodologies to estimate the overall performance and the most relevant sources of

transmission impairments.

These studies relied on Volterra theory for modeling the total field propagation (or overall

performance) over the optical fiber in coherent ultra-dense WDM based passive optical net-

works. By using transfer functions to represent linear and nonlinear fiber effects, VSTF is

a powerful mathematical tool that provides both phase and amplitude of optical fiber chan-

nel. We presented a very efficient method for evaluating the double integral in the frequency

domain of the 3rd order VSTF. This algorithm avoids zero amplitude frequency components

outside the bandwidth of the optical signal to improve the numerical complexity of the method.

As far as the overall system’s performance is concerned, the modified version of the 3rd

order VSTF was validated against SSF simulation in UDWDM-PON. In that case for 32

channels spaced by 3.125 GHz, accurate EVM results were found for input powers limited

to -3 dBm per channel over a single SSMF link with 100 km. Furthermore, estimates for

the maximum input power per channel, when the bit rate scales using high-order modulation

formats (MPSK and MQAM), were determined so that the performance was within the limit

of current 7 % overhead FEC employed in current optical communication systems. It is

important to emphasize that the simulation model (transmitters, receivers and optical fiber

channel based on SSF and VSTF) developed in this Ph.D. work has been experimentally
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validated in heterogeneous UDWDM network scenarios.

Most importantly, the range of dominance of the most relevant fiber nonlinearities (SPM,

XPM and FWM) was determined for various network reach and capacities (obtained with high-

order constellations with fixed symbol rate). For the specific case of 32 channels, UDWDM-PON

network is mostly limited by FWM (25<F/X<30 dB, F/X) when transmitting only M-ary PSK

channels. On the other hand, the network is impaired by both FWM and XPM (2.5<F/X<7.5

dB) when transmitting M-ary QAM channels. The main advantage of transmitting PSK is

the flexibility to scale the number of users in the same optical distribution network as high

as 1024 keeping similar nonlinear performance as the 32 users case. In terms of user’s data

rate upgradeability, the modulation format is limited to provide 8 Gb/s per channel if the

3 GHz frequency grid is employed. On the contrary, QAM signaling offers great possibilities

to upgrade the user’s data rate up to 24 Gb/s per user, i.e. 3 Gbaud–256QAM using the

3.125 GHz optical bandwidth. Nevertheless, the performance degradation keeps increasing as

the number of QAM channels increases since QAM signaling enhances induced–XPM nonlin-

ear phase noise. In summary, if the ODN in coherent UDWDM-PON is deigned to provide

the highest number of users (e.g. 1000) at 1 Gb/s, QPSK signaling provides the best robust-

ness against fiber impairments. If the ODN is designed to provide data rate per users as high

as 10 Gb/s, QAM is the best format if the number of users does not exceed 64.

The last topic of this work discussed novel solutions suitable for the minimization of inter-

channel and intra-channel fiber nonlinearities on coherent UDWDM-PON for various bit rates

and distances. The main target of this research topic was the minimization of FWM since it

is most relevant nonlinear effect in UDWDM-PON scenarios using channel spacing as lows as

3 GHz.

We showed that performing small frequency tuning (with respect to the channel spacing)

schemes are very effective to obtain unequally spaced channels. Multi-objective Genetic Al-

gorithm is efficient for reduced number of channels due to the several computations of the

objective function. Randomly set frequency coefficients can be applied for very high channel

count systems, e.g. 1000 channels. The main advantage of the aforementioned methods is that

about 3 dB FWM reduction is attained without penalizing the overall bandwidth. The overall

system’s performance can be improved even further for systems transporting QAM signaling

if XPM compensation is employed in the coherent receiver. SPM is easily mitigated using ad-
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vanced digital signal processing (digital back-propagation). The concept can be extended to

XPM compensation in broadband receivers or in cooperative receivers.

6.2 Directions for Future Works

This Ph.D. work has addressed several research topics on next-generation information and

communication technologies. Around the world, several companies and universities have been

collaborating towards improving network performance and flexibility at minimal cost. Related

to this work, below is listed some topics to be considered in future studies.

• High-order nonlinearities such as SRS and SBS induced by high-power PON technologies

in heterogeneous NG-OAN. Future PON technologies should cope with the existence of

analog Video broadcasting and XG-PON for instance, whose powers can be as high as

21 dBm.

• Digital compensation of inter-channel XPM in Terabit aggregate PONs transporting

high-order QAM constellations. As pointed out throughout this work, coherent ONUs

can take advantage of the extra information available at receiver due to the closely packed

channels. This extra information can be fed to the nonlinear compensation algorithm.

• Analysis of the network energy consumption and its relation to both economical and

environmental aspects. The main challenge of this study is to investigate new algorithms

and protocols to reduce the consumption of energy in the transceivers within the OLT

and ONUs.

• Demonstration of high-capacity PON using special pulse shaping for improving spectral

efficiency at 3 GHz frequency grid. In this work, we focused on using about one third

of the available optical bandwidth per channel, i.e. 625 Mbaud at 3.125 GHz channel

spacing. Therefore, there is margin to go up to higher bit rates per channel using Nyquist

filtering (pulse shape), e.g. 20 Gb/s per channel.

• Experimental demonstration of Terabit PON network scenarios and Volterra nonlinear

models. In this work we showed via numerical simulations that coherent WDM-PON

network scenarios are promising solutions for NG-OAN. One interesting topic of research
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is to demonstrate experimentally all the network transmission capabilities. The main

challenge is how to generate several multiplexed optical carriers at 3.125 GHz for in-

stance. One possible solution relies on the use of frequency recirculating loops to avoid

costly ultra-dense filter technologies. The same experimental setup would be useful for

the validation of the nonlinear models based on Volterra series developed in this work.
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Appendix A

Error Vector Magnitude, Signal to
Noise Ratio and Bit Error Ratio

The most used performance metric is BER, which is the probability of error given by the

erroneous bit divided by the transmitted bit. Usually, is calculated as a function of SNR.

In coherent communication systems with perfect phase and carrier recovered and assuming

Gaussian noise, BER is expressed for MQAM formats as [33]

BERMQAM =
2
(
1− 1

L

)
log2L

Q

(√[
3log2L

L2 − 1

] [
2Es

N0log2L

])
(A.1)

where Q(·) is the Q function, M is the order of the constellation, L =
√
M is the number of

encoded bits per symbol, Es/N0 is the SNR, Es is the energy of the complex symbol, N0/2 is

the noise power spectral density. Since Q(x) = 1/2 ·erfc(x/
√

2) and replacing SNR = Es/N0

and L =
√
M , equation A.1 can be rewritten as [38, 30, 68],

BERMQAM =
2

log2M
·
(

1− 1√
M

)
erfc

(√
3 · SNR

2 · (M − 1)

)
(A.2)

where erfc is the complementary error function. For MPSK, and assuming M ≥ 8, the BER

can be given by [38, 68]

BERMPSK =
2

log2M
· erfc

(√
SNR · sin π

M

)
(A.3)

113



114 A. Error Vector Magnitude, Signal to Noise Ratio and Bit Error Ratio

A.1 Signal to Noise Ratio and Error Vector Magnitude

The root mean squared EVM is a performance metric which can be measured as the error

vector of the received symbol information s′i = a
′
i+j∗b

′
i with respect to the ideal or transmitted

symbol information si = ai + j ∗ bi, where ai and bi are the real and imaginary component of

the signal respectively. Mathematically, EVM can be defined as [69, 70]

EVMrms =

√∑N
i=1 |si − s

′
i|2∑N

i=1 |si|2
(A.4)

EVM can be expressed in either in percentage as EVM(%) = EVMrms · 100 or in dB as

EVM(dB) = 10 · log10(EVM2
rms). For synchronous (perfect phase and frequency recovery)

coherent systems limited by Gaussian noise, EVM can be related to the SNR as [33]

EVMrms ≈
√

1

SNR
(A.5)

A.2 Error Vector Magnitude and Bit Error Ratio

From equations A.2 and A.5, BER can be expressed as a function of EVM for square QAM

formats as follows

BERMQAM ≈
2

log2M
·
(

1− 1√
M

)
erfc

(√
3

2 · (M − 1)EVM2
rms

)
(A.6)

In the same manner, equation A.3 can extrapolated to equation A.7 for PSK as

BERMPSK ≈
2

log2M
· erfc

(
1

EVMrms
· sin π

M

)
(A.7)

Using equations A.6 and A.7, one can calculate EVM values, shown in Tables A.1, A.2,

A.3 and A.4 for typical BER values in current optical communication systems.
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Table A.1: EVM results for BER = 10−3.

Modulation EVMrms in (%) EVMrms in (dB)
QPSK 32.40 % -9.79 dB
8PSK 17.05 % -15.37 dB
16QAM 14.90 % -16.53 dB
64QAM 7.46 % -22.54 dB
256QAM 3.80 % -28.40 dB

Table A.2: EVM results for BER = 10−6.

Modulation EVMrms in (%) EVMrms in (dB)
QPSK 21.05 % -13.53 dB
8PSK 11.25 % -18.98 dB
16QAM 9.53 % -20.42 dB
64QAM 4.70 % -26.56 dB
256QAM 2.36 % -32.54 dB

Table A.3: EVM results for BER = 10−9.

Modulation EVMrms in (%) EVMrms in (dB)
QPSK 16.68 % -15.56 dB
8PSK 8.96 % -20.95 dB
16QAM 7.52 % -22.48 dB
64QAM 3.69 % -28.66 dB
256QAM 1.85 % -34.66 dB

Table A.4: EVM results for BER = 10−12.

Modulation EVMrms in (%) EVMrms in (dB)
QPSK 14.22 % -16.94 dB
8PSK 7.65 % -22.33 dB
16QAM 6.40 % -23.88 dB
64QAM 3.14 % -30.06 dB
256QAM 1.56 % -36.14 dB





Appendix B

Matlab Codes

B.1 Implementation of the VSTF method in Matlab

It is presented below an implementation in Matlabr of the 3rd order VSTF to emulate the

total field propagation over single-mode fibers. The name of the function is VSTF–Method. In

addition, functions VSTF–Method–SPM, VSTF–Method–XPM and VSTF–Method–FWM are also pre-

sented for calculating independently the contributions of SPM, XPM and FWM, respectively.
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% This function emulates the 3rd order Volterra Series Transfer Function 
% Method for fiber propagation considering, SPM, XPM, FWM, Self-Steepening 
% and Raman Scattering. 
% INPUT: A_F_In--> input WDM signal in frequency domain, K index of the 
% channel to be solved; 
% OUTPUT: A_To_F, A_To_T--> output signals in the frequency and time 
% domains; A_NL_F, A_NL_T: output nonlinear signals only in the frequency 
% and time domains. 
% Last Update: 13/01/2011 
% Author: Jacklyn D. Reis, Antonio L. Teixeira. 
  
function [A_To_F,A_To_T,A_NL_F,A_NL_T] = VSTF_Method(A_F_In,K) 
  
global Fiber Frequency WDM 
  
MVSTF = 'yes'; 
% Sampling Paramaters 
Omega = 2*pi*Frequency; 
NFFT = length(Frequency); 
Wc = 2*pi*WDM.Fin; 
Ts = 1/(2*max(Frequency)); 
% Fiber Parameters 
Gama = Fiber.Gama; 
Alfa = Fiber.Alfa; 
L = Fiber.L; 
Beta2 = Fiber.Beta2; % Last modification 
Beta3 = Fiber.Beta3; 
% Number of Frequency Samples per Channel 
SPc = ceil(WDM.Spacing*(Ts*NFFT)); 
  
if WDM.Nch > floor((NFFT+2)/(3*SPc)), 
    fprintf('VSTF Solution not Valid.\nIncreace the sampling frequency (Fs): 
%d\nOr decrease the number of channel (Nch): %d\n',[1/Ts WDM.Nch]); 
    return; 
end 
% Create Index Grid 
i = (-round(WDM.Nch*SPc/2):round(WDM.Nch*SPc/2)-1)+NFFT/2; 
j = (-round(WDM.Nch*SPc/2):round(WDM.Nch*SPc/2)-1)+NFFT/2; 
if nargin < 2, 
    NF = length(i); 
    k = (-round(NF/2):round(NF/2)-1)+NFFT/2; 
else 
    k = i(1+SPc*(K-1):(K+0)*SPc); % simulated channels 
end 
[ii,jj] = meshgrid(i,j); 
Indx = -ii+jj; 
% Create Frequency Grid 
w1 = Omega(i); 
w2 = Omega(j); 
[w11,w22] = meshgrid(w1,w2); 
w1w2 = w11-w22; 
% Evaluate the Signal in the Grid 
A_w1w2 = A_F_In(ii).*conj(A_F_In(jj)); 
%-------------------------------------------------------------------------- 
% VSTF Complete Solution: SPM, XPM, FWM, SRS and Self-Steepening 
%-------------------------------------------------------------------------- 
A_NL_F = zeros(NFFT,1); 
A_Li_F = zeros(NFFT,1); 
A_To_T = zeros(NFFT,1); 
  
% G1_w1 = -Alfa/2-1i*Beta2.*w11.^2/2-1i*Beta3.*w11.^3/6; 
% G1_w2 = -Alfa/2-1i*Beta2.*w22.^2/2-1i*Beta3.*w22.^3/6; 
TR = 5e-15;                                     % Raman coefficient 
R = Gama*TR*(w11-w22);                          % Self-Steepening coefficient 
% Nonlinear Part 



for n=k(1):k(end), 
% Implemented as in J.D. Reis et al, JLT 30(2),234-241(2012) 
    w = Omega(n); 
    H = (-1i*Gama).*exp(-Alfa*L/2-1i*L*Beta2*w.^2/2-1i*L*Beta3*w.^3/6)*... 
       (1-exp(-Alfa*L-1i*L*Beta2*(w11-w).*(w1w2)-1i*L*Beta3/2*(w+w22).*(w11-
w).*(w1w2)))./... 
       (Alfa+1i*Beta2*(w11-w).*(w1w2)+1i*Beta3/2*(w+w22).*(w11-w).*(w1w2)); 
% Original Implementation: includes Self-Steeping and Raman 
%     w33 = Omega(n)+w1w2; 
%     G1_w3 = -Alfa/2-1i*Beta2.*w33.^2/2-1i*Beta3.*w33.^3/6; 
%     G1_w = -Alfa/2-1i*Beta2.*Omega(n).^2/2-1i*Beta3.*Omega(n).^3/6;   
%     H = (-1i*Gama-1i*Gama*Omega(n)/Wc-R).* ... 
%    (exp(L*(G1_w1+conj(G1_w2)+G1_w3))-exp(L*G1_w))./... 
%       (G1_w1+conj(G1_w2)+G1_w3-G1_w); 
    Aux = H.*A_w1w2.*A_F_In(n+Indx); 
    A_NL_F(n) = sum(sum(Aux)); 
end 
% Linear Part 
A_Li_F(k,1) = exp(-Alfa*L/2-1i*L*Beta2.*Omega(k).^2/2-
1i*L*Beta3.*Omega(k).^3/6).*A_F_In(k); 
  
if strcmpi(MVSTF,'yes'); 
    A_NL_T = ifft(ifftshift(A_NL_F),NFFT)*NFFT; 
    A_Li_T = ifft(ifftshift(A_Li_F),NFFT)*NFFT; 
%-------------------------------------------------------------------------- 
% Modified VSTF 
%-------------------------------------------------------------------------- 
    for n=1:NFFT, 
        if abs(A_NL_T(n))<=abs(A_Li_T(n)), 
           A_To_T(n) = A_Li_T(n)*exp(A_NL_T(n)/A_Li_T(n)); 
        elseif abs(A_NL_T(n))>abs(A_Li_T(n)), 
           A_To_T(n) = A_Li_T(n)+A_NL_T(n); 
        end 
    end 
    A_To_F = fftshift(fft(A_To_T,NFFT))/NFFT; 
elseif strcmpi(MVSTF,'no'); 
%-------------------------------------------------------------------------- 
% Conventional VSTF 
%-------------------------------------------------------------------------- 
    A_To_F = A_Li_F + A_NL_F; 
    A_To_T = ifft(ifftshift(A_To_F),NFFT)*NFFT; 
end 
	  



% This function emulates the 3rd order Volterra Series Transfer Function 
% Method for fiber propagation considering, SPM only. 
% INPUT: A_F_In--> input WDM signal in frequency domain, K index of the 
% channel to be solved; 
% OUTPUT: A_To_F, A_To_T--> output signals in the frequency and time 
% domains; A_NL_F, A_NL_T: output nonlinear signals only in the frequency 
% and time domains. 
% Last Update: 17/12/2010. 
% Author: Jacklyn D. Reis, Antonio L.J. Teixeira. 
  
function [A_NL_F,A_To_F,A_NL_T,A_To_T] = VSTF_Method_SPM(A_F_In,K) 
  
global Fiber Frequency WDM 
  
MVSTF = 'yes'; 
% Sampling Paramaters 
Omega = 2*pi*Frequency; 
NFFT = length(Frequency); 
Ts = 1/(2*max(Frequency)); 
% Fiber Parameters 
Gama = Fiber.Gama; 
Alfa = Fiber.Alfa; 
L = Fiber.L; 
Beta2 = Fiber.Beta2; 
Beta3 = Fiber.Beta3; 
% Number of Frequency Samples per Channel 
SPc = ceil(WDM.Spacing*(Ts*NFFT)); 
  
if WDM.Nch > floor((NFFT+2)/(3*SPc)), 
    fprintf('VSTF Solution not Valid.\nIncreace the sampling frequency (Fs): 
%d\nOr decrease the number of channel (Nch): %d\n',[1/Ts WDM.Nch]); 
    return 
end 
% Create Index Grid 
  
i = (-round(WDM.Nch*SPc/2):round(WDM.Nch*SPc/2)-1)+NFFT/2; 
j = (-round(WDM.Nch*SPc/2):round(WDM.Nch*SPc/2)-1)+NFFT/2; 
i = i(1+SPc*(K-1):K*SPc); 
j = j(1+SPc*(K-1):K*SPc); 
% i = (-SPc/2:SPc/2-1)+(NFFT*(K-1)/2);%(-SPc/2:SPc/2-1)+NFFT/2; 
% j = (1+SPc*(K-1):K*SPc)+NFFT/2;%(-SPc/2:SPc/2-1)+NFFT/2; 
  
[ii,jj] = meshgrid(i,j); 
Indx = -ii+jj; 
% Create Frequency Grid 
w1 = Omega(i); 
w2 = Omega(j); 
[w11,w22] = meshgrid(w1,w2); 
w1w2 = w11-w22; 
% Evaluate the Signal in the Grid 
A_w1w2 = A_F_In(ii).*conj(A_F_In(jj)); 
%-------------------------------------------------------------------------- 
% VSTF SPM Solution 
%-------------------------------------------------------------------------- 
A_NL_F = zeros(NFFT,1); 
A_Li_F = zeros(NFFT,1); 
A_To_T = zeros(NFFT,1); 
  
% G1_w1 = -Alfa/2-1i*Beta2.*w11.^2/2-1i*Beta3.*w11.^3/6; 
% G1_w2 = -Alfa/2-1i*Beta2.*w22.^2/2-1i*Beta3.*w22.^3/6; 
% Nonlinear Part 
for n=i(1):i(end), 
    w = Omega(n); 
    H = -1i*Gama*exp(-Alfa*L/2-1i*L*Beta2*w.^2/2-1i*L*Beta3*w.^3/6).*... 
       (1-exp(-Alfa*L-1i*L*Beta2*(w11-w).*(w1w2)-1i*L*Beta3/2*(w+w22).*(w11-



w).*(w1w2)))./... 
       (Alfa+1i*Beta2*(w11-w).*(w1w2)+1i*Beta3/2*(w+w22).*(w11-w).*(w1w2)); 
%     w33 = Omega(n)+w1w2; 
%     G1_w3 = -Alfa/2-1i*Beta2.*w33.^2/2-1i*Beta3.*w33.^3/6; 
%     G1_w = -Alfa/2-1i*Beta2.*Omega(n).^2/2-1i*Beta3.*Omega(n).^3/6; 
%     H = -1i*Gama.*(exp(L*(G1_w1+conj(G1_w2)+G1_w3))-exp(L*G1_w))./... 
%         (G1_w1+conj(G1_w2)+G1_w3-G1_w); 
    Aux = H.*A_w1w2.*A_F_In(n+Indx); 
    A_NL_F(n) = sum(sum(Aux)); 
end 
% Linear Part 
A_Li_F(i,1) = exp(-Alfa*L/2-1i*L*Beta2.*Omega(i).^2/2-
1i*L*Beta3.*Omega(i).^3/6).*A_F_In(i,1); 
  
if strcmpi(MVSTF,'yes'); 
    A_NL_T = ifft(ifftshift(A_NL_F),NFFT)*NFFT; 
    A_Li_T = ifft(ifftshift(A_Li_F),NFFT)*NFFT; 
%-------------------------------------------------------------------------- 
% Modified VSTF 
%-------------------------------------------------------------------------- 
    for n=1:NFFT, 
        if abs(A_NL_T(n))<=abs(A_Li_T(n)), 
           A_To_T(n) = A_Li_T(n)*exp(A_NL_T(n)/A_Li_T(n)); 
        elseif abs(A_NL_T(n))>abs(A_Li_T(n)), 
           A_To_T(n) = A_Li_T(n)+A_NL_T(n); 
        end 
    end 
    A_To_F = fftshift(fft(A_To_T,NFFT))/NFFT; 
elseif strcmpi(MVSTF,'no'); 
%-------------------------------------------------------------------------- 
% Conventional VSTF 
%-------------------------------------------------------------------------- 
    A_To_F = A_Li_F + A_NL_F; 
    A_To_T = ifft(ifftshift(A_To_F),NFFT)*NFFT; 
end 
	  

% This function emulates the 3rd order Volterra Series Transfer Function 
% Method for fiber propagation considering, SPM and XPM only. 
% INPUT: A_F_In--> input signal in frequency domain representing the test  
% signal; WDM_F_In--> is the remaining channels; K is the index of the test 
% signal. 
% OUTPUT: A_To_F, A_To_T--> output signals in the frequency and time 
% domains; A_NL_F, A_NL_T: output nonlinear signals only in the frequency 
% and time domains. 
% Last Update: 17/12/2010 
% Author: Jacklyn D. Reis, Antonio L.J. Teixeira. 
  
function [A_NL_F,A_To_F,A_NL_T,A_To_T] = VSTF_Method_XPM(A_F_In,WDM_F_In,K) 
  
global Fiber Frequency WDM 
  
MVSTF = 'yes'; 
% Sampling Paramaters 
Omega = 2*pi*Frequency; 
NFFT = length(Frequency); 
Ts = 1/(2*max(Frequency)); 
% Fiber Parameters 
Gama = Fiber.Gama; 
Alfa = Fiber.Alfa; 
L = Fiber.L; 
Beta2 = Fiber.Beta2; 
Beta3 = Fiber.Beta3; 
% Number of Frequency Samples per Channel 
SPc = ceil(WDM.Spacing*(Ts*NFFT)); 



  
if WDM.Nch > floor((NFFT+2)/(3*SPc)), 
    fprintf('VSTF Solution not Valid.\nIncreace the sampling frequency (Fs): 
%d\nOr decrease the number of channel (Nch): %d\n',[1/Ts WDM.Nch]); 
    return 
end 
% Create Index Grid 
i = (-round(WDM.Nch*SPc/2):round(WDM.Nch*SPc/2)-1)+NFFT/2; 
j = (-round(WDM.Nch*SPc/2):round(WDM.Nch*SPc/2)-1)+NFFT/2; 
k = i(1+SPc*(K-1):K*SPc); 
  
[ii,jj] = meshgrid(i,j); 
Indx = -ii+jj; 
% Create Frequency Grid 
w1 = Omega(i); 
w2 = Omega(j); 
[w11,w22] = meshgrid(w1,w2); 
w1w2 = w11-w22; 
% Evaluate the Signal in the Grid 
A_oj = A_F_In; 
A_om = WDM_F_In; 
A_m1 = A_oj(ii).*conj(A_om(jj)); 
A_m2 = A_om(ii).*conj(A_om(jj)); 
%-------------------------------------------------------------------------- 
% VSTF XPM Solution 
%-------------------------------------------------------------------------- 
A_NL_F = zeros(NFFT,1); 
A_Li_F = zeros(NFFT,1); 
A_To_T = zeros(NFFT,1); 
  
% G1_w1 = -Alfa/2-1i*Beta2.*w11.^2/2-1i*Beta3.*w11.^3/6; 
% G1_w2 = -Alfa/2-1i*Beta2.*w22.^2/2-1i*Beta3.*w22.^3/6; 
% Nonlinear Part 
for n=k(1):k(end), 
    w = Omega(n); 
    H = -1i*Gama*exp(-Alfa*L/2-1i*L*Beta2*w.^2/2-1i*L*Beta3*w.^3/6)*... 
       (1-exp(-Alfa*L-1i*L*Beta2*(w11-w).*(w1w2)-1i*L*Beta3/2*(w+w22).*(w11-
w).*(w1w2)))./... 
       (Alfa+1i*Beta2*(w11-w).*(w1w2)+1i*Beta3/2*(w+w22).*(w11-w).*(w1w2)); 
%     w33 = Omega(n)+w1w2; 
%     G1_w3 = -Alfa/2-1i*Beta2.*w33.^2/2-1i*Beta3.*w33.^3/6; 
%     G1_w = -Alfa/2-1i*Beta2.*Omega(n).^2/2-1i*Beta3.*Omega(n).^3/6; 
%      
%     H = -1i*Gama.*(exp(L*(G1_w1+conj(G1_w2)+G1_w3))-exp(L*G1_w))./... 
%         (G1_w1+conj(G1_w2)+G1_w3-G1_w);     
    Aux = H.*(A_m1.*A_om(n+Indx)+A_m2.*A_oj(n+Indx)); 
    A_NL_F(n,1) = sum(sum(Aux,1)); 
end 
% Linear Part 
A_Li_F(k,1) = exp(-Alfa*L/2-1i*L*Beta2.*Omega(k).^2/2-
1i*L*Beta3.*Omega(k).^3/6).*A_F_In(k,1); 
  
if strcmpi(MVSTF,'yes'); 
    A_NL_T = ifft(ifftshift(A_NL_F),NFFT)*NFFT; 
    A_Li_T = ifft(ifftshift(A_Li_F),NFFT)*NFFT; 
%-------------------------------------------------------------------------- 
% Modified VSTF 
%-------------------------------------------------------------------------- 
    for n=1:NFFT, 
        if abs(A_NL_T(n))<=abs(A_Li_T(n)), 
           A_To_T(n) = A_Li_T(n)*exp(A_NL_T(n)/A_Li_T(n)); 
        elseif abs(A_NL_T(n))>abs(A_Li_T(n)), 
           A_To_T(n) = A_Li_T(n)+A_NL_T(n); 
        end 
    end 



    A_To_F = fftshift(fft(A_To_T,NFFT))/NFFT; 
elseif strcmpi(MVSTF,'no'); 
%-------------------------------------------------------------------------- 
% Conventional VSTF 
%-------------------------------------------------------------------------- 
    A_To_F = A_Li_F + A_NL_F; 
    A_To_T = ifft(ifftshift(A_To_F),NFFT)*NFFT; 
end 
	  

% This function emulates the 3rd order Volterra Series Transfer Function 
% Method for fiber propagation considering, FWM only. 
% INPUT: A_F_In--> input signal in frequency domain representing the test  
% signal; WDM_F_In--> is the remaining channels; K is the index of the test 
% signal. 
% OUTPUT: A_To_F, A_To_T--> output signals in the frequency and time 
% domains; A_NL_F, A_NL_T: output nonlinear signals only in the frequency 
% and time domains. 
% Last Update: 17/12/2010 
% Author: Jacklyn D. Reis, Antonio L.J. Teixeira. 
  
function [A_NL_F,A_To_F,A_NL_T,A_To_T] = VSTF_Method_FWM(WDM_F_In,K) 
  
global Fiber Frequency WDM FWM 
  
MVSTF = 'yes'; 
% Sampling Paramaters 
Omega = 2*pi*Frequency; 
NFFT = length(Frequency); 
Ts = 1/(2*max(Frequency)); 
% Fiber Parameters 
Gama = Fiber.Gama; 
Alfa = Fiber.Alfa; 
L = Fiber.L; 
Beta2 = Fiber.Beta2; 
Beta3 = Fiber.Beta3; 
% Number of Frequency Samples per Channel 
SPc = ceil(WDM.Spacing*(Ts*NFFT)); 
  
if WDM.Nch > floor((NFFT+2)/(3*SPc)), 
    fprintf('VSTF Solution not Valid.\nIncreace the sampling frequency (Fs): 
%d\nOr decrease the number of channel (Nch): %d\n',[1/Ts WDM.Nch]); 
    return 
end 
% Create Index Grid 
i = (-round(WDM.Nch*SPc/2):round(WDM.Nch*SPc/2)-1)+NFFT/2; 
j = (-round(WDM.Nch*SPc/2):round(WDM.Nch*SPc/2)-1)+NFFT/2; 
k = i(1+SPc*(K-1):K*SPc); 
  
[ii,jj] = meshgrid(i,j); 
Indx = -ii+jj; 
% Create Frequency Grid 
w1 = Omega(i); 
w2 = Omega(j); 
[w11,w22] = meshgrid(w1,w2); 
w1w2 = w11-w22; 
  
FWM_Prod_CW = FWM.Prod(FWM.Prod(:,1) + FWM.Prod(:,2) - FWM.Prod(:,3) == K,:); 
  
%-------------------------------------------------------------------------- 
% VSTF FWM Solution 
%-------------------------------------------------------------------------- 
A_Flmn_f  = zeros(NFFT,size(FWM_Prod_CW,1)); 
  
A_NL_F = zeros(NFFT,1); 



A_Li_F = zeros(NFFT,1); 
A_To_T = zeros(NFFT,1); 
  
% G1_w1 = -Alfa/2-1i*Beta2.*w11.^2/2-1i*Beta3.*w11.^3/6; 
% G1_w2 = -Alfa/2-1i*Beta2.*w22.^2/2-1i*Beta3.*w22.^3/6; 
for n=k(1):k(end), 
    w = Omega(n); 
    H = -1i*Gama*exp(-Alfa*L/2-1i*L*Beta2*w.^2/2-1i*L*Beta3*w.^3/6)*... 
       (1-exp(-Alfa*L-1i*L*Beta2*(w11-w).*(w1w2)-1i*L*Beta3/2*(w+w22).*(w11-
w).*(w1w2)))./... 
       (Alfa+1i*Beta2*(w11-w).*(w1w2)+1i*Beta3/2*(w+w22).*(w11-w).*(w1w2)); 
%     w33 = Omega(n)+w1w2; 
%     G1_w3 = -Alfa/2-1i*Beta2.*w33.^2/2-1i*Beta3.*w33.^3/6; 
%     G1_w = -Alfa/2-1i*Beta2.*Omega(n).^2/2-1i*Beta3.*Omega(n).^3/6; 
%     H = (-1i*Gama).*(exp(L*(G1_w1+conj(G1_w2)+G1_w3))-exp(L*G1_w))./... 
%         (G1_w1+conj(G1_w2)+G1_w3-G1_w); 
    for nn=1:size(FWM_Prod_CW,1), 
        A1 = WDM_F_In(:,FWM_Prod_CW(nn,1)); 
        A2 = WDM_F_In(:,FWM_Prod_CW(nn,3)); 
        A3 = WDM_F_In(:,FWM_Prod_CW(nn,2)); 
        Aux = H.*A1(ii).*conj(A2(jj)).*A3(n+Indx); 
        if FWM_Prod_CW(nn,1)~=FWM_Prod_CW(nn,2), 
            Aux = 2*Aux; 
        end 
        A_Flmn_f(n,nn) = sum(sum(Aux)); 
    end 
    A_NL_F(n) = sum(A_Flmn_f(n,:)); 
end 
  
% Linear Part 
A_Li_F(k,1) = exp(-Alfa*L/2-1i*L*Beta2.*Omega(k).^2/2-
1i*L*Beta3.*Omega(k).^3/6).*WDM_F_In(k,K); 
  
if strcmpi(MVSTF,'yes'); 
    A_NL_T = ifft(ifftshift(A_NL_F),NFFT)*NFFT; 
    A_Li_T = ifft(ifftshift(A_Li_F),NFFT)*NFFT; 
%-------------------------------------------------------------------------- 
% Modified VSTF 
%-------------------------------------------------------------------------- 
    for n=1:NFFT, 
        if abs(A_NL_T(n))<=abs(A_Li_T(n)), 
           A_To_T(n) = A_Li_T(n)*exp(A_NL_T(n)/A_Li_T(n)); 
        elseif abs(A_NL_T(n))>abs(A_Li_T(n)), 
           A_To_T(n) = A_Li_T(n)+A_NL_T(n); 
        end 
    end 
    A_To_F = fftshift(fft(A_To_T,NFFT))/NFFT; 
elseif strcmpi(MVSTF,'no'); 
%-------------------------------------------------------------------------- 
% Conventional VSTF 
%-------------------------------------------------------------------------- 
    A_To_F = A_Li_F + A_NL_F; 
    A_To_T = ifft(ifftshift(A_To_F),NFFT)*NFFT; 
end 
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B.2 GPU acceleration of the SSF method

It is presented below an implementation in Matlabr of the SSF method for emulating

the total field propagation over single-mode fibers. We point out that this implementation is

based on a previous implementation presented by the authors in [32].

This implementation calls the function gpuArray withing the Parallel Computing ToolboxTM,

which makes use of NVIDIAr CUDATM architecture to enable the communication between

Graphics Processing Unit (GPU) cards and Central Processing Unit (CPU). As such, CUDATM

drivers and Matlabr R2010b or later versions including the Parallel Computing ToolboxTM

are required. More information about the system requirements and documentation can be

found in http: // www.mathworks.com / discovery / matlab-gpu.html. The required CUDATM

drivers for supported NVIDIAr GPU can be found in http: // developer.nvidia.com / cuda /

cuda-downloads.

http://www.mathworks.com/discovery/matlab-gpu.html
http://developer.nvidia.com/cuda/cuda-downloads
http://developer.nvidia.com/cuda/cuda-downloads


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%---------------%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Subject: GPU-accelerated Split-Step Method for Fiber Propagation 
% Target: ultra-dense WDM with very short step sizes 
% Version: v3.0 
% Date: 30/06/2011 
% Last Update: 30/06/2011 
% PS: Include second and third order dispersion coefficients and kerr 
% effect in the fiber propagation model 
%%%%%%%%%%%%%%%%%%%%%%----------Main Function------------%%%%%%%%%%%%%%%%%% 
  
function [A_Lf,A_Lt] = Split_Step_Fourier_Method_GPU(Signal_Input_F) 
  
global Fiber Frequency WDM 
  
% Fiber Parameters 
L = Fiber.L; 
Alfa = Fiber.Alfa; 
Gama = Fiber.Gama; 
Beta2 = Fiber.Beta2; 
Beta3 = Fiber.Beta3; 
% Sampling Parameters 
Omega = 2*pi*Frequency; 
NFFT = length(Frequency); 
% Spatial Resolution Parameters 
h = fix(0.0000500/(Gama*WDM.P(WDM.Probe)));     % Step Size 
M = round(L/h);                                 % Number of Fiber Sections 
Dh = exp((h/2)*(-Alfa/2 - 1i*Beta2.*Omega.^2/2 - 1i*Beta3.*Omega.^3/6));   % 
Linear Operator in the Frequency Domain 
uf0 = Signal_Input_F*NFFT;             % Initial Field in the Frequency Domain 
  
% Create GPU Arrays to be processed 
uf0 = gpuArray(uf0); 
Dh = gpuArray(Dh); 
Gama = gpuArray(Gama); 
h = gpuArray(h); 
  
% Main Loop 
for i = 1:M, 
%========================================================================== 
% Propagation in the first half dispersion region, z to z+h/2 
%========================================================================== 
    Hf = uf0.*Dh; 
    ht = ifft((Hf)); 
    pq = ht.*conj(ht); 
    u2e = ht.*exp(-1i*Gama*pq*h); 
%========================================================================== 
% Propagation in the second Dispersion Region, z+(h/2) to z+h 
%========================================================================== 
    u2ef = (fft(u2e)); 
    u3ef = u2ef.*Dh; 
    u3e = ifft((u3ef)); 
    u3ei = u3e.*conj(u3e); 
%========================================================================== 
% Iteration for the nonlinear phase shift(two iterations) 
%========================================================================== 
    u2 = ht.*exp(-(h/2)*1i*Gama*(pq+u3ei)); 
    u2f = (fft(u2)); 
    u3f = u2f.*Dh; 
    u4 = ifft((u3f)); 
    u4i = u4.*conj(u4); 
    u5 = ht.*exp(-(h/2)*1i*Gama*(pq+u4i)); 
    u5f = (fft(u5)); 
    uf0 = u5f.*Dh; 
end 
  



A_Lf = gather(uf0)/NFFT; % Collect the processed data from the GPU 
A_Lt = ifft(ifftshift(A_Lf))*NFFT; % Time domain representation 
  
%%%%%%%%%%%%%%%%%%%%%%%=========END OF CODE=========%%%%%%%%%%%%%%%%%%%%%%% 
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