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Bioremediation efforts often rely on the application of

surfactants to enhance hydrocarbon bioavailability. However,

synthetic surfactants can sometimes be toxic to degrading

microorganisms, thus reducing the clearance rate of the

pollutant. Therefore, surfactant-resistant bacteria can be

an important tool for bioremediation efforts of hydrophobic

pollutants, circumventing the toxicity of synthetic

surfactants that often delay microbial bioremediation of

these contaminants. In this study, we screened a natural

surfactant-rich compartment, the estuarine surface

microlayer (SML), for cultivable surfactant-resistant

bacteria using selective cultures of sodium dodecyl sulfate

(SDS) and cetyl trimethylammonium bromide (CTAB).

Resistance to surfactants was evaluated by colony counts

in solid media amended with critical micelle concentrations

(CMC) of either surfactants, in comparison with non-amended

controls. Selective cultures for surfactant-resistant bacteria

were prepared in mineral medium also containing CMC

concentrations of either CTAB or SDS. The surfactant-

resistant isolates obtained were tested by PCR for the

Pseudomonas genus marker gacA gene and for the

naphthalene-dioxygenase-encoding gene ndo. Isolates were

also screened for biosurfactant production by the atomized

oil assay. A high proportion of culturable bacterioneuston

was tolerant to CMC concentrations of SDS or CTAB.

The gacA-targeted PCR revealed that 64% of the isolates

were Pseudomonads. Biosurfactant production in solid

medium was detected in 9.4% of tested isolates, all

affiliated with genus Pseudomonas. This study shows that

the SML is a potential source of surfactant-resistant and

biosurfactant-producing bacteria in which Pseudomonads

emerge as a relevant group.
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Bioremediation is considered an efficient, cost-effective,

and versatile alternative to physical and chemical treatments

of hydrocarbon contamination [65], and bacteria are suitable

for biodegradation because they adapt to a wide variety of

carbon sources and electron acceptors [71]. However,

because of the hydrophobic nature of hydrocarbons, the

microbial degradation is limited by their reduced solubility

and consequent low bioavailability [54]. A possible process

of enhancing the availability of oil hydrocarbons is the use

of surfactants. Surfactants reduce surface and interfacial

tension and lead to the formation of microemulsions in

which hydrocarbons can solubilize in the water, increasing

their bioavailability [4]. However, the addition of chemical

surfactants often fails to enhance the rate of biodegradation

of hydrophobic compounds [8, 50, 59, 69, 82] because of

surfactant toxicity to bacteria [65], and also because the

surfactant may be used as a carbon source outcompeting

hydrocarbons as sustrates for bacterial growth [69].

An effective bioremediation strategy is the use of bacteria

capable of thriving in the presence of surfactants [54].

Alternatively, consortia of efficient biosurfactant-producing

bacteria and hydrocarbonoclastic microbes can be employed,

improving bioremediation efforts [58, 71]. This aim has

triggered the intense search for biosurfactant-resistant bacteria

in surfactant-rich environments, and some studies have

demonstrated a high frequency of biosurfactants producers

among surfactant-resistant isolates [54]. Biosurfactant

production is a mechanism by which microorganisms adapt

to interfacial challenges [70]. Biosurfactants are often

produced by hydrocarbon-degrading bacteria as an adaptation

to the low bioavailability of hydrophobic pollutants [58] or by

biofilm-forming microorganisms, such as Pseudomonads

(i.e., P. aeruginosa) [15]. Because of their environmental

and technical advantages relative to their synthetic counterparts

[56], biosurfactants have gained biotechnological and

economical interest. Therefore, the prospection for new

biosurfactants-producing strains has more recently been
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directed to hydrocarbon-contaminated sites [63, 72], marine

environments [54, 63], and uncommon or extreme microbial

habitats [36, 40, 71]. Pseudomonads include oil-degrading

and biosurfactant (rhamnolipids)-producing strains and are

frequently found in oil-impacted marine sites [27].

The surface microlayer (SML) is the uppermost millimeter

of the water column, and bacteria living in this compartment

(bacterioneuston) face a challenging environment in terms

of exposure to solar irradiation, accumulation of pollutants,

and surface tension [2]. However, bacterioneuston is often

reported to reach higher cell abundance than the underlying

bacterioplankton, suggesting an effective adaptation to this

extreme environment [2, 19]. The SML is simultaneously

enriched in biosurfactants [79] and hydrophobic contaminants

[73], representing an environment where surfactant-resistant

and biosurfactant-producing bacteria with the desired

biodegradative capabilities are likely to be found.

The primary aim of this work was to screen a natural

surfactant-rich environment, the SML, for surfactant-resistant

culturable bacteria and to detect eventual biosurfactant

producers and hydrocarbon degraders among bacterial

isolates, envisaging biotechnological applications. A particular

focus was set on Pseudomonads, considering that hydrocarbon

degradation [4, 39] and biossurfactant production are well

documented among members of this group [78].

MATERIALS AND METHODS

Surface Microlayer Sampling 

Estuarine surface microlayer (SML) samples were obtained next to
a shipping dock in Ria de Aveiro (northwest Portugal), a shallow
(mean depth 1 m) branched estuarine ecosystem, also described as a
coastal lagoon [17]. SML water was collected using alternately a
0.25 m wide × 0.35 m Plexiglass and glass plates [28], which removed
the upper 60-100 µm water layer. Before sampling, the plates were
rinsed with ethanol, distilled water, and several times with water
from the sampling site. The plates were immersed and carefully
removed from the water column in an upright position. After
allowing the plates to drip for 5 s, the water adhering to both
surfaces was removed by forcing the plate between two Teflon
wiper blades and collecting the water in sterilized glass bottles.

Surfactant Resistance in Bacterioneuston

For the quantification of culturable surfactant-resistant bacteria in
the initial bacterioneuston community, cetyl trimethylammonium
bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as
experimental models for cationic and anionic chemical surfactants,
respectively. Serial dilutions of samples of SML water were spread-
plated on triplicate plates of PY (0.1% peptone and 0.01% yeast
extract diluted in 17 PSU brackish water) amended with critical
micelle concentrations (CMC) of either CTAB (1 mM; Sigma) or
SDS (8 mM; Bio-Rad). Non-amended PY medium was used as the
control. Cultures were incubated at room temperature (approximately
22oC) in the dark, for approximately 72 h, and colonies were counted
in the most suitable dilution.

The concentration of CFU in controls, and SDS- and CTAB-
containing media were tested for normality (Kolmogorov-Smirnov
test), and the significance of the differences was assessed by
parametric analysis of variance (ANOVA) of normally distributed
data with the SPSS software package.

Selection and Isolation of Surfactant-Resistant Bacteria

In parallel, two selective cultures were prepared using 200 ml of
SML sample and 800 ml of basal saline medium (BSM) containing
0.5 g/l NaCl; 3.5 g/l KH2PO4; 0.5 g/l NH4Cl; 0.14 g/l NaSO4; 1.5 g/l
K2HPO4; and 0.15 g/l MgCl2·6H2O in 17 PSU brackish water, pH
7.1 [3]. The anionic surfactant SDS or the cationic surfactant CTAB
(1 mM) were added to each of the microcosms at CMC concentrations
(approximately 8 mM for SDS and 1 mM for CTAB at 25oC and
atmospheric pressure). The cultures were incubated aerobically at
room temperature (aprox. 22oC, which does not significantly affect
the CMC), for 8 weeks on a rotary shaker operating at 120 rpm.
Microcosms were incubated at the dark in order to select for
heterotrophic bacteria. After 14 and 28 days of incubation, the
culture medium was renewed by adding 800 ml of BSM to 200 ml
of preexisting culture. Aliquots were collected weekly (except in
week 7) and spread-plated in triplicate on PY plates containing
either SDS (8 mM) or CTAB (1 mM) for monitoring of the
development of the surfactant-resistant community. After 3 days of
incubation at 22oC in the dark, morphologically distinct colonies
were selected and purified by successive streaking on surfactant-
amended PY plates (minimum 3 streaks).

Detection of Biosurfactant Production in Isolated Strains

Biosurfactant production was assessed in a set of 53 isolates by the
culture-dependent atomized-oil assay [9]. Isolates were inoculated
with a sterile toothpick on solid medium PY. After colony development,
n-paraffin (Merck) was pulverized over the colonies at 1.02-1.36 atm
using an airbursh (Fengda, model BD-128P). The formation of a halo
surrounding the colonies was considered as indicative of biosurfactant
production. Synthetic surfactants Tween 80 (Merck), CTAB (Sigma),
and SDS (BioRad), and the biosurfactant surfactin (Sigma) were
used as positive controls at concentration of 8.0 µM, 0.2 mM,
10.0 mM, and 15.4 nM, respectively. A culture of Escherichia coli

DH5α was used as the negative control.

Detection of Naphthalene-Dioxygenase-Encoding Genes in Isolated

Strains

DNA was extracted from pure cultures of a set of 53 isolates as
described by Henriques et al. [29]. The gene ndo encodes the α
subunit of the multicomponent enzyme system naphthalene dioxygenase,
involved in aerobic degradation of low molecular weight PAH [23].
All isolates were tested for the presence of the ndo gene by PCR
(Multigene TC 9600-G thermocycler; Labnet International) using
primers PAH-RHDα GNF (5'-GAGATGCATACCACGTKGGTTGGA-
3') and PAH-RHDα GNF (5'-AGCTGTTGTTCGGGAAGAYWG
TGCMGTT-3') [11] (IBA GmbH, Germany). A 25 µl reaction mixture
was prepared using 1 µl of template, 1 U Taq polymerase, 1× PCR
buffer, 0.2 mM dNTPs, 3.75 mM MgCl2, 0.1 µM of each primer, and
deionized water. After 5 min of denaturation at 95oC, 35 thermal
cycles of 45 s at 95oC, 45 s at 57oC, and 45 s at 72oC were carried
out. A final extension step at 72oC for 7 min was performed to
finish the reaction. The amplification of a 306 bp PCR product was
assessed by electrophoresis (BioRad) in ethidium-bromide-stained
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1.5% agarose gels at 100 V for 15 min and visual inspection in a
benchtop transilluminator (UVP-LLC).

Detection and Characterization of Pseudomonads Among Isolated

Strains

Gene gacA, a genetic marker of genus Pseudomonas, was analyzed
by PCR with the primers GACA-1F (5'-TGATTAGGGTGYTAG
TDGTCGA-3') and GACA-2 (5'-MGYCARYTCVACRTCRCTGST
GAT-3') (IBA GmbH, Germany) according to De Souza et al. [16].
Molecular typing of the subset of gacA-positive isolates was
conducted by repetitive sequence PCR using the BOX A1R primer
(5'-CTACGGCAAGGCGACGCTGACG-3') (IBA GmbH, Germany)
[55]. Amplification products were analyzed by electrophoresis
(BioRad) in 1.5% agarose gel (Fluka), with ethidium bromide, at
100 V for 180 min in 1× TAE buffer (0.04 M Tris-Acetate, Sigma;
0.001 M EDTA, Sigma; pH 8.0). Gels were photographed in a
benchtop transilluminator (UVP-LLC) using the Canon Powershot
G10 with UV adapter. Gel photographs were then optimized using
image treatment software GIMP 2 (GNU Image Manipulation Program,
Free Software Foundation, Boston, USA). Similarity matrices of
densitometric curves of the gel tracks were calculated using the
Jaccard Correlation Coefficient, followed by tree construction using
UPGMA algorithm.

For representative isolates of distinct BOXA1R profiles, the 16S
rRNA gene was amplified by PCR (Multigene TC 9600-G thermocycler,
Labnet International) using the universal bacterial primers 27F (5'-
AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-GGTTACCTT
GTTACGACTT-3') (IBA GmbH, Germany) [75]. Amplification was
confirmed by electrophoresis as described above. The products of
amplification were sequenced at external facilities (StabVida, Portugal).
Sequences were compared with sequences available in the GenBank
database by using the BLAST (Basic Local Alignment Search Tool)
service to determine their closest relative.

RESULTS

Surfactant-Resistant Bacterioneuston

A high relative abundance of culturable surfactant-resistant

bacteria was found in estuarine bacterioneuston. CFU

counts in SDS- or CTAB-amended media at T0 were 96.6%

and 89.7% of the counts obtained in nonselective medium,

respectively (Fig. 1). The weekly assessment of the abundance

of culturable surfactant-resistant bacteria in the selective

(SDS- or CTAB-amended) liquid cultures increased by 5-6

log during the duration of the experiment (Fig. 2).

A total of 77 isolates were obtained from the 8-week

selective cultures. The collection of isolates was preserved

at -20oC in 30% glycerol for molecular analysis. For

operational reasons, only a selection of the fastest growing

53 isolates was tested for biosurfactant production and for

PCR detection of ndo and gacA gene sequences.

Screening for Biosurfactant Production and for ndo

Genes

Upon screening by the atomized-oil assay of the set of 53

isolates, biosurfactant production was detected in 5 of

them (9.4% of the isolate set). Examples of colonies

displaying the characteristic halos (positive results) and of

the halos produced by chemical surfactants (positive controls)

are presented in Fig. 3. The presence of the ndo gene could

not be detected in any of the isolates tested by PCR with

the primers PAH-RHDα GNF and PAH-RHDα GNF.

Detection and Characterization of Pseudomonads

Positive amplification with primers GACA-1F and GACA-

2 specific for genus Pseudomonas was obtained in 34

isolates, representing 64% of the tested set. The results of

BOX-PCR analysis of the gacA positive isolates is presented

in Fig. 4. The dendrogram obtained from similarity matrices

of densitometric curves using UPGMA algorithm reveals

the clustering of the isolates in 16 different genotypes.

Representatives of each of the 16 genotypes were

sequenced. Sequencing was successful for 13 isolates. The

analysis of the sequences in BLAST (Table 1) led to the

identification of 4 isolates as P. putida, 2 as P. fluorescens,

1 as P. aeruginosa, 1 as P. gingeri, and 5 isolates were only

Fig. 1. Mean proportion (%) of surfactant-resistant bacteria in
selective media (PY medium + 8 mM of SDS or 1 mM of CTAB)
in relation to the counts in nonselective (PY medium) medium, in
the initial SML sample. 
The absolute values (CFU/ml) are presented inside the bars.

Fig. 2. Variation of the mean CFU counts in selective cultures of
bacterioneuston amended with either 1 mM CTAB (■ ) or 8 mM
SDS (■ ) during the period of incubation (n.d., not determined).
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identified as Pseudomonas sp. All P. putida were obtained

from the CTAB selective culture and none of them produced

biosurfactant. P. fluorescens isolates were obtained in the

SDS selective culture and one of them (S-5-19a) produced

biosurfactant. A biosurfactant-producing P. aeruginosa and

a nonsurfactant-producing P. gingeri were also obtained

from the CTAB selective culture. Pseudomonas sp. were

isolated from CTAB and SDS selective cultures and included

biosurfactant-producing and non-producing strains.

DISCUSSION

The surface microlayer is considered a challenging environment

for microorganisms, where hydrophobic compounds and

surface-active substances accumulate [80]. Bacterioneuston

develops at the air-water interface, and cell-surface

hydrophobicity is a major determinant in the interactions

of bacterial cells with this interface. The excretion of

biosurfactants is considered an adaptation to interfacial

life, increasing cell hydrophobicity and improving floatation

and dispersion [26, 79]. Attempts to isolate surfactant-

resistant bacteria from surfactant-rich environments [7, 48,

72], and biosurfactant-producing strains from environments

enriched in hydrophobic substrates [54], are documented

in the literature. However, the SML remains a rather

unexplored compartment in both the perspectives. Considering

that the chemical environment at the estuarine SML would

naturally select for surfactant-resistant bacteria, this particular

biotope was used as a seed bank for the prospection and

isolation of surfactant-resistant and, eventually, biosurfactant-

producing strains.

Bacterioneuston Resistance to Surfactants

A high relative abundance of culturable surfactant-resistant

bacteria was found in estuarine bacterioneuston. CFU

counts in SDS- and CTAB-amended media in the original

sample were approximately 90% of the counts obtained in

nonselective medium. These values are higher than found

in other surfactant-rich marine environments, determined

with culture media containing 100 µM and 2 mM of CTAB

[54]. Bacterioneuston tolerated concentrations of the

anionic surfactant SDS and cationic surfactant CTAB at

concentrations approximate to the CMC. The biofilm-like

organization of bacterioneuston assemblages contributes to

the resistance to surfactants because of the protection

provided by the glycocalix [30]. Concentrations much

lower than those tested in this work have demonstrated to

strongly inhibit free-living bacteria. Values of LC50 for

SDS were estimated to be 9.02×10-3 mM for Vibrio fischeri

[47] and 5.00×10-3 mM for Acinetobacter junii [31]. The

sewage sludge isolates Acinetobacter johnsonii and Oligotropha

Fig. 3. Example of characteristic results of the atomized-oil assay.
(A) Colonies displaying positive results for the production of biosurfactants

(indicated with arrows); (B) Expanded image of a positive result; (C)

Positive controls: Tween 80 (8 µM), CTAB (0.2 mM), SDS (10 mM),

surfactin (15.4 µM); (D) Negative control (Escherichia coli DH5α).

Fig. 4. Results of the molecular typing of gacA-positive isolates conducted by repetitive sequence PCR using BOX A1R primer. 
According to the obtained genotypes, the isolates were assigned to 16 genotypes.
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carboxidovorans showed complete loss of viability during

the treatment with 0.193 mM and 1.92 mM of CTAB, and

near 50% and 20% reductions of viability with 0.70 mM

and 6.94 mM of SDS, respectively [45]. These concentrations

are 3-log lower than the concentrations used in this work.

The high proportion of surfactant-resistant bacterioneuston

documented in this study can also reflect an adaptation to

high levels of surfactants from natural and anthropogenic

origins that accumulate at the air-water interface [38, 61].

The samples of SML were collected near a commercial port

located in Ria de Aveiro lagoon/estuary, a shipyard and a

densely populated urban area. Semi-closed aquatic systems

such as estuaries and lagoons tend to accumulate pollutants,

namely surfactants and hydrophobic compounds [79].

Cationic surfactants are considered to be the most toxic

to bacteria, especially Gram-negative bacteria, whereas anionic

surfactants are less toxic, and non-ionic are considered as

essentially non-toxic [59]. In this work, the difference

between the relative abundances of the CTAB-resistant

and SDS-resistant fractions of bacterioneuston culturable

communities was not significant (ANOVA > 0.05).

Isolation of Surfactant-Resistant Bacteria

Isolation of surfactant-resistant bacterioneuston from

surfactant-enriched medium resulted in a total of 77

isolates resistant to SDS or CTAB at CMC concentration,

53 of which were tested for biosurfactant production. The

morphological characteristics of the colonies were used for

the initial selection of the isolates, with the objective of

having a good representation of culturable surfactant-

resistant bacterioneuston phenotypes.

The atomized-oil assay was used to easily screen the set

of isolates for biosurfactant production. This method is

simple to perform and the results are easy to interpret.

However, it is not a quantitative approach and the sensitivity

of the method is still unknown. The possibility that other

isolates may also produce biosurfactants, although in lower

amounts, cannot be ruled out.

We hypothesized that biosurfactant-producing bacteria

would be positively selected in a surfactant-enriched

microcosms. Although biosurfactant-producing strains are

most often retrieved from hydrocarbon enrichment cultures

[74], this capacity has been frequently found among

surfactant-resistant isolates [20, 54]. A higher fraction of

biosurfactant-producing strains could probably be achieved

with different culture conditions that, in the present case,

were more directed to select for surfactant resistance.

Surfactant degradation and utilization is a proposed

mechanism for surfactant resistance in microorganisms

[76]. Biosurfactant production is often associated with the

presence of hydrophobic substrates, because it plays a natural

role in enhancing their bioavailability [58]. However,

hydrophobic substrates are not a prerequisite for biosurfactant

production [74], and biosurfactant-producing microorganisms

have been isolated with other carbon sources, namely,

Zobell medium [21], nutrient agar [1], minimal medium

with glucose [13, 25], and PY medium amended with

synthetic surfactants [54]. Some of the attempts to use

hydrophobic carbon sources in selective or enrichment

media have also achieved modest percentages of positive

results, despite intense screening efforts: less than 10% of

the isolates from oil-contaminated soils [48, 72, 77], 4%

Table 1. Results of the sequencing classification using BLAST with indication of the surfactant used in the selective culture and of the
production of biosurfactant as assessed by the atomized-oil assay.

Isolate
code

Sequence Accession 
No.

a

Selective 
culture

Biosurfactant 
production

Closest phylogenetic relative

BLAST-N Identityb Accession No.c %

C-2-4a JN033358 CTAB Yes Pseudomonas sp. [49] GQ891862 99%

C-6-13 JN033351 CTAB Yes P. aeruginosa [41] HM067869 99%

S-5-12 JN033353 SDS Yes Pseudomonas sp. [53] GU368377 99%

S-5-19a JN033354 SDS Yes P. fluorescens [18] EF528260 99%

C-0-1a JN033360 CTAB No P. putida [12] FJ472859 99%

C-0-12b JN033359 CTAB No P. putida [12] FJ472859 99%

C-0-4b JN033352 CTAB No P. putida [12] FJ472859 99%

C-1-5 JN033350 CTAB No Pseudomonas sp. [67] GQ153646 99%

S-1-16b JN033356 SDS No Pseudomonas sp. [67] GQ153646 99%

S-5-1a JN033357 SDS No P. segetis [67] GQ153646 99%

C-3-5c JN033361 CTAB No P. gingeri [22] AF320991 95%

C-5-2 JN033355 CTAB No P. putida [43] FJ611926 99%

S-2-6 JN033362 SDS No P. fluorescens [42] FJ950603 96%

a
GenBank sequence accession numbers of the respective isolate.
b
Blast-N max identity classification.
c
GenBank sequence accession number of most closely related bacterial sequence(s).
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from oil-spilled seawater [46], and 9.2% from terrestrial

and marine samples [7]. A high percentage of surfactant-

producing isolates (73.8%) was retrieved from the guts of

sea polychaetes [54], but the concentrations produced were

very low, and since the method used for the detection was the

oil-spreading assay [81], the results can hardly be compared.

Screening for genes encoding naphthalene dioxygenase

(ndo), the enzyme involved in the first step of the aerobic

degradation pathway of naphthalene, was unsuccessful for

all isolates. However, the presence of ndo genes or the

capacity for naphthalene degradation should not be

excluded, because the primers employed do not cover the

high diversity of known ndo genes [23] and especially not

all the pathways involved in hydrocarbon degradation [44].

Moreover, catabolic genes, like ndo, are frequently found

in mobile genetic elements, namely plasmids [62]. The

lack of a selective pressure that favors the maintenance of

these catabolic genes may have led to their loss during the

experiment.

Pseudomonads Among Surfactant-Resistant Bacterioneuston

Isolates 

Pseudomonas is a genus of high biotechnological interest

and the capacity of this group for the degradation of

xenobiotics is widely documented in the literature [5, 6,

24, 32, 35, 37, 43]. A previous study conducted in Ria de

Aveiro showed that Pseudomonads represent 34.5% of the

culturable fraction of naphthalene-degrading bacterioneuston

of the SML of the Ria de Aveiro [14]. This group is also

reported as tolerant to high concentrations of anionic [35]

and cationic surfactants [66] and as an efficient biosurfactant

producer [9]. The present study demonstrates a high

representation (64%) of this genus in the culturable fraction

of the surfactant-resistant bacterioneuston and confirms the

relevance of Pseudomonads in the particular environment

of the estuarine SML.

The five isolates that tested positive for biosurfactant

production by the atomized oil assay [9] were identified as

Pseudomonas by 16S rDNA sequencing. The Pseudomonas

genus is a known producer of biosurfactants, particularly

rhamnolipids [10, 41, 64]. Biosurfactant-producing Pseudomonas

strains have been isolated from diverse environments: oil-

contaminated soils [41, 57], marine water [68], uncontaminated

freshwater [34], and even air [60]. 

Similarity analysis between the sequenced isolates and

NCBI Database revealed a high similarity with microorganisms

capable of degrading hydrocarbon pollutants. Isolates C-0-

12a, C-0-12b, and C-0-4b, belonging to different genotypes,

had a 99 % similarity with Pseudomonas putida JM7 from

a phenanthrene enrichment culture [12]. Isolates C-1-5 and

S-1-16b revealed >99% similarity with Pseudomonas sp.

ANT-2400 isolated from a hydrocarbon enrichment culture

using deep-sea (2,400 m) sediments from the Mediterranean

Sea [67]. Isolate S-5-19a showed >99% similarity with

Pseudomonas fluorescens AE1, a strain isolated from

PAH-contaminated soil from the Baltic Sea [18]. Isolate C-

5-2 revealed >99% similarity with a quinoline-degrading

strain of Pseudomonas putida KT-ql-116 isolated from

wastewater [43]. Isolate C-2-4a revealed high similarity

with Pseudomonas sp. DIC1RS, an efficient PAH mineralizer

[49]. Isolate S-5-1a showed >99% with Pseudomonas

segetis strain FR1439, a novel species described by Park

et al. [52].

Isolate C-6-13 was isolated from CTAB-enrichment

culture and tested positive for biosurfactant production.

Although the chemical characterization of the biosurfactant

detected by the atomized-oil assay was not attempted, this

strain showed a >99% similarity with Pseudomonas

aeruginosa GIM 32, an efficient rhamnolipid producer

[41]. Isolate S-5-1 also tested positive for biosurfactant

production and showed >99% similarity with Pseudomonas

sp. JPPB B25 isolated from biofilms in copper pipes [53].

Isolates C-3-5c and S-2-6 revealed low similarity (95%

and 96%, respectively) with sequences from the NCBI

database. Isolate S-2-6 was more closely related to an

antibiotic-resistant strain of Pseudomonas fluorescens c6

[42]. It is known that bacteria resistant to surfactants are

frequently also resistant to antibiotics [33] and vice-versa

[51]; that is, because resistance mechanisms, such as changes

in membrane composition and efflux pumps, are similar.

The prospection of the estuarine surface microlayer such

as for surfactant-resistant bacteria demonstrated the high

resistance of estuarine bacterioneuston to anionic and

cationic surfactants. The analysis of a set of 77 isolates

retrieved from SDS- and CTAB-selective cultures revealed

a high representation of Pseudomonads. The screening for

biosurfactant production in a subset of 53 surfactant-

resistant isolates revealed this capacity in 5 isolates, all

belonging to the Pseudomonads. Although ndo genes

could not be detected with the PCR primers used, the

similarity between the 16S rDNA sequences of the isolates

obtained in this work and in the NCBI database indicates

high similarity with hydrocarbonoclastic and biosurfactant-

producing Pseudomonas strains. This study reveals the

potential of the SML as a seed bank for surfactant-resistant

and biosurfactant-producing bacteria.
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