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Abstract

The Extended-Row-Equivalence and Shifting (ERES) method is a matrix-
based method developed for the computation of the greatest common divisor
(GCD) of sets of many polynomials. In this paper we present the formula-
tion of the shifting operation as a matrix product which allows us to study the
fundamental theoretical and numerical properties of the ERES method by in-
troducing its complete algebraic representation. Then, we analyse in depth its
overall numerical stability in finite precision arithmetic. Numerical examples
and comparison with other methods are also presented.

Keywords: Univariate real polynomials, Greatest common divisor, Shifting
operation, Numerical stability.

1. Introduction

The computation of the greatest common divisor (GCD) of polynomials is
an algebraic problem which has been studied intesively for many years. The
algorithm associated with Euclid’s division method [1] is the oldest known so-
lution to this problem. The computational methods for computing the GCD of
real univariate polynomials can be separated in two main categories:

a) The Euclidean type methods which rely on Euclid’s division algorithm and
its variations.

b) The matrix-based methods which are based on the processing of a matrix
formed directly from the coefficients of the given polynomials.

The matrix-based methods may be further classified to those that:

i) form a matrix for two polynomials and work on pairwise computa-
tions iteratively,
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ii) form a matrix that corresponds to the whole set of polynomials and
process it either directly or iteratively.

Early GCD algorithms were developed using Euclidean-based methods, applied
to two polynomials [2, 3, 4]. The Euclidean algorithm is efficient when the poly-
nomials have integer coefficients, but it becomes inefficient when the polynomials
have coefficients from the field of real numbers due to the use of finite preci-
sion arithmetic, which introduces numerical errors into the solution. In 1985,
Schönhage introduced the notion of Quasi-GCD [5], and in 1989, Noda and
Sasaki described a special version of Euclid’s algorithm for computing the GCD
of a pair of coprime polynomials with inexact coefficients [6]. This approach
is amongst the first attempts to define and compute an approximate GCD of
polynomials by means of symbolic-numeric computations. The development of
numerical stable GCD algorithms which can deal with polynomials of inexact
data has attracted a lot of attention the past thirty years and several methods
have been proposed [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The various techniques,
which have been developed for the computation of approximate solutions, are
based on methodologies where exact properties of these notions are relaxed and
appropriate solutions are sought by using a variety of numerical tests.

The use of finite precision arithmetic in computer algebra makes the exten-
sion of the Euclidean algorithm to sets of many polynomials a rather difficult
task. The iterative application of the Euclidean algorithm to two polynomi-
als at a time often results in a total numerical error which might exceed the
machine’s fixed numerical tolerance. Conversely, the developed matrix-based
methods tend to be more effective in handling sets of several polynomials and
producing solutions of better numerical quality. The use of matrices in the
problem of computing the GCD of many polynomials appears early in Bar-
nett’s work [17, 18, 19], who developed a technique for computing the degree
and the coefficients of the GCD by using companion and Sylvester matrices.

In [20], Karcanias (1987) has shown that the GCD is an invariant of the row
space of the basis matrix of the set of polynomials, as well as that it is also
an invariant under the shifting operation. This has led to the development of
the current approach that avoids the use of Euclidean divisions. The Extended-
Row-Equivalence and Shifting (ERES) method [21] is an iterative matrix-based
method developed for the computation of the greatest common divisor (GCD)
of sets of real polynomials in one variable. The method exploits the invariance
of the greatest common divisor of a set of many polynomials under elementary
row transformations and partial column shifting by transforming a basis matrix,
which is formed directly from the coefficients of the polynomials of a given
set, into a simpler matrix containing the vector of coefficients of the GCD.
The previous study of its theoretical and numerical properties in [20, 21, 22]
revealed the advantage of the ERES method to handle large sets polynomials
and to invoke an efficient termination criterion that allows the computation of
approximate solutions when the initial data have numerical inaccuracies [23].
The development of the ERES method as it has been described in [21] is an
inherently robust algebraic method which defines a special matrix equivalence.
However, the complete algebraic representation of the method remained an open
issue due to its iterative nature and the luck of an algebraic expression for the
partial column shifting transformation, referred to as the shifting operation. The
aim is to establish an algebraic relationship between the initial basis matrix of
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a given set of several polynomials and the last matrix which occurs after the
iterative application of the ERES operations and provides the GCD. Apart from
its theoretical value, this algebraic representation is significant for the complete
analysis of the overall numerical stability of the ERES method which could not
be studied before. The main objectives of this paper are: a) to present the
general algebraic representation of the ERES method and discuss its theoretical
and practical use, and b) to analyse the overall numerical stability of the method
in finite-precision arithmetic.

The paper is structured as follows:
In Section 2, the definition and the most important properties of the ERES

operations are presented and we give a brief description of how the ERES
method is formulated. In Section 3 the major issue of having a matrix rep-
resentation for the shifting operation is analysed and discussed. The results
from the study of the shifting operation are used in Section 4 in order to intro-
duce the general algebraic representation of the ERES method which eventually
establishes the ERES representation of the GCD of a set of many polynomials.
This representation forms the basis for the analysis of the overall numerical
stability of the method in Section 5. Numerical examples and comparison with
other methods are also presented.

Notation. In the following, N and R denote the sets (fields) of natural and real
numbers, respectively. R[s] denotes the ring of polynomials in one variable over
R. Capital letters denote matrices and small underlined letters denote vectors.
By p(s) we denote a polynomial in s with real coefficients. The greatest common
divisor of a set P will be denoted by gcd{P}. The following list includes the
basic notations that are used in the document.

A ∈ R
m×n Matrix A with elements from R arranged in m rows and n

columns (m,n ∈ N and m,n ≥ 2).
v ∈ R

m Column vector with m ≥ 2 elements from R.
At Transpose matrix of A.
vt Transpose vector of v.
ρ(A) The rank of a matrix A.
deg{p(s)} The degree of a polynomial p(s).

‖v‖2 The Euclidean norm of v : ‖v‖2 =
√∑µ

i=1 |vi|2
‖A‖2 The Euclidean norm of A : ‖A‖2 =

√
max eigenvalue of AtA

‖A‖∞ The infinity norm of A : ‖A‖∞ = max1≤i≤µ

∑ν

j=1 |aij |
, Mathematical operator which denotes equality by definition.
:= Mathematical operator which denotes equality by input.
≈ Mathematical operator which denotes approximate equality.

2. Definition of the ERES operations and background results

2.1. Background theory

Consider the set of real polynomials in one variable (univariate polynomials):

Pm,n =
{
pi(s) ∈ R[s], i = 1, 2, . . . ,m with n = max

i
(deg{pi(s)} ≥ 1)

}
(1)
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We represent the polynomials pi(s) with respect to the highest degree n as

pi(s) = ai,ns
n + ai,n−1s

i,n−1 + . . .+ ai,1s+ ai,0 , ai,n 6= 0, i = 1, 2, . . . ,m (2)

Definition 1. For any Pm,n set, we define a vector representative (vr), p
m
(s)

and a basis matrix Pm represented as

p
m
(s) = [ p1(s), . . . , pm(s) ]t = [ p

1
, . . . , p

m−1
, p

m
] · en(s) = Pm · en(s),

where Pm ∈ R
m×(n+1), en(s) = [1, s, . . . , sn−1, sn]t and p

i
∈ R

n+1 for all
i = 1, . . . ,m.

The matrix Pm is formed directly from the coefficients of the polynomials of
the set Pm,n and it has the least possible dimensions.

Definition 2. If c is the integer for which p
1
= . . . = p

c−1
= 0 and p

c
6= 0,

then c = w(Pm,n) is called the order of Pm,n and sc is an elementary divisor
of the GCD. The set Pm,n is considered to be a c-order set and will be called
proper if c = 0, and nonproper if c ≥ 1.

For a nonproper set Pm,n with w(Pm,n) = c, we can always consider the
corresponding proper one Pm,n−c by dismissing the c leading zero columns.
Then gcd{Pm,n} = sc ·gcd{Pm,n−c}. In the following without loss of generality
we assume that Pm,n is proper.

Definition 3 (ERES operations). Given a set Pm,n of many polynomials
with a basis matrix Pm the following operations are defined [20] :

a) Elementary row operations with scalars from R on Pm.
b) Addition or elimination of zero rows on Pm.
c) If at = [0, . . . , 0, al, . . . , an+1] ∈ R

n+1, al 6= 0 is a row of Pm then we
define as the shifting operation

shf : shf(at) = [al, . . . , an+1, 0, . . . , 0] ∈ R
n+1

By shf(Pm,n), we shall denote the set obtained from Pm,n by applying
shifting on every row of Pm (matrix shifting).

Type (a), (b) and (c) operations are referred to as Extended-Row-Equivalence
and Shifting (ERES) operations. The ERES operations without applying the
shifting operation are referred to as ERE operations.

The following theorem describes the properties characterising the GCD of
any given Pm,n.

Theorem 1 ([20]). For any set Pm,n, with a basis matrix Pm, ρ(Pm) = r and
gcd{Pm,n} = φ(s) we have the following properties:

i) If RP is the row space of Pm, then φ(s) is an invariant of RP (e.g. φ(s)
remains invariant after the execution of elementary row operations on
Pm). Furthermore if r = dim(RP ) = n+ 1, then φ(s) = 1.

ii) If w(Pm,n) = c ≥ 1 and P∗
m,n = shf(Pm,n), then

φ(s) = gcd{Pm,n} = sc · gcd
{
P∗
m,n

}

iii) If Pm,n is proper, then φ(s) is invariant under the combined ERES set of
operations.
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2.2. The formulation of the ERES method and the computation of the GCD of
a set of polynomials

ERES operations preserve the GCD of any Pm,n and thus can be easily
applied iteratively in order to obtain a modified basis matrix with much simpler
structure [20]. The ERES method in its simplest form consists of three basic
procedures:

1. Construction of the proper basis matrix Pm for the set Pm,n.

2. Application of elementary row operations to the processed matrix, which
practically involves row reordering, triangularization, and elimination of
zero rows (ERE operations).

3. Application of the shifting operation to the nonzero rows of the processed
matrix.

After successive applications of the ERES operations to the initial basis
matrix, the maximal degree of the given set of polynomials is reduced, and after
a finite number of steps the resulting matrix has rank 1. At this point, the
process is terminated and, considering that all the arithmetic operations are
performed accurately (e.g. by using symbolic-rational operations), any row of
the last matrix specifies the coefficients of the GCD of the set. The iterative
application of the processes of triangularization and shifting forms the core of
the ERES method and we shall refer to it as the main procedure of the method.

The main problem in the formulation of an algebraic expression, which will
establish the connection between the initial basis matrix Pm and the final matrix
that contains the coefficients of the GCD, requires appropriate matrix represen-
tations of the ERE operations and the shifting operation, respectively. The ERE
row operations, i.e. triangularization, deletion of zero rows and reordering of
rows, can be represented [24, 25] by a matrix R ∈ R

r×m, r < m, which converts
the initial rectangular matrix Pm into an upper trapezoidal form. Conversely,
the matrix representation of the shifting operation is not straightforward. The
problem of the matrix representation of the shifting operation for real matrices
has remained open until now. Solving this problem is crucial for establishing a
general matrix representation of the ERES method for all the performed iter-
ations. Therefore, in the following section we aim to find the simplest possible
algebraic relation between a matrix and its shifted form.

3. The shifting operation for real matrices

The shifting operation is a special matrix transformation which is not very
common in the literature of algebra. In Definition 3 the shifting operation is de-
fined for real vectors as a permutation of consecutive zero elements. Specifically,
having a real vector

a = [ 0, . . . , 0︸ ︷︷ ︸
k elements

, ak+1, . . . , an] ∈ R
n, ak+1 6= 0

the shifting operation is defined as

shf : shf(a) = [ak+1, . . . , an, 0, . . . , 0] ∈ R
n

This definition can be extended to the case of real matrices.
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Definition 4. Given a matrix A = [a1, a2, . . . , am]t ∈ R
m×n, where ai ∈ R

n

for i = 1, 2, . . . ,m are the row-vectors of A, the shifting operation for matrices
is defined as the application of vector-shifting to every row of A. This transfor-
mation will be referred to as matrix-shifting and the shifted form of A will be
denoted by

shf(A) , A∗ = [shf(a1), shf(a2), . . . , shf(am)]t ∈ R
m×n

It is important to notice that the shifting operation, as defined here, per-
mutes the elements of a vector without changing their values, and this is a basic
requirement for the shifting operation in the study of the numerical properties of
the ERES method. The vector-shifting can be represented by the multiplication:

shf(a) = a · Jk,n

where Jk,n is an appropriate n×n permutation matrix which is a square binary
matrix that has exactly one entry 1 in each row and each column, and zeros
elsewhere. Each such matrix represents a specific permutation of k elements
and for the vector-shifting it has the form:

Jk,n =

[
On−k Ik
In−k Ok

]
∈ R

n×n (3)

where Ii denotes the i× i identity matrix and Oi denotes the i× i zero matrix
for i = k, n− k.

Although it is rather simple to represent the vector-shifting transformation
with a simple vector-matrix multiplication, it is not obvious how to represent
the matrix-shifting transformation, because in general the application of vector-
shifting to the rows of a matrix alters the structure of the columns in a non-
uniform way. The problem of representing the matrix-shifting by using an ap-
propriate matrix-matrix multiplication is challenging for the study of the the-
oretical and numerical properties of the ERES method. We are particularly
interested in finding an algebraic relationship between a real matrix and its
shifted form in the class of upper trapezoidal matrices. This type of matrices
occurs after applying Gaussian elimination, or other triangularization method,
and they have the following generic form:

A =




a11 a12 . . . a1m . . . a1n
0 a22 . . . a2m . . . a2n
...

. . .
. . .

...
...

...
0 . . . 0 amm . . . amn


 ∈ R

m×n, m < n (4)

Then, the shifted form of A, which is obtained by the matrix-shifting transfor-
mation as defined in Definition 4, is

A∗ =




a11 a12 . . . a1m . . . a1n
a22 . . . a2m . . . a2n 0

...
...

... . .
.

. .
. ...

amm . . . amn 0 . . . 0


 ∈ R

m×n, m < n (5)
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Definition 5. a) If A = [a1, a2, . . . , am]t ∈ R
m×n, then we can define the

matrices Ai = [0, . . . , ai, . . . 0]
t ∈ R

m×n, for every i = 1, 2, . . . ,m, such
that

A =

m∑

i=1

Ai (6)

where a i is the ith row of A and 0 ∈ R
n is a n-dimensional zero vector.

b) We define the permutation matrices Ji ∈ R
n×n for i = 1, 2, . . . ,m, so that

every Ji gives the appropriate shifting to each Ai respectively. Therefore,

shf(A) =

m∑

i=1

Ai Ji (7)

Since a11 6= 0, we note that J1 = In, where In is the n×n identity matrix.

Remark 1. If A has full rank, then, since it is defined as an upper trapezoidal
matrix with aii 6= 0 for all i = 1, . . . ,m, it is right-invertible. Let us denote its
right inverse by A−1

r ∈ R
n×m. Hence, AA−1

r = Im.

The following theorem establishes the connection between a nonsingular up-
per trapezoidal matrix and its shifted form.

Theorem 2. If A ∈ R
m×n, 2 ≤ m < n, is a non-singular upper trapezoidal

matrix with rank ρ(A) = m and shf(A) ∈ R
m×n is the matrix obtained from

A by applying shifting to its rows, then there exists a square matrix S ∈ R
n×n

such that:
shf(A) = A · S (8)

The matrix S will be referred to as the shifting matrix of A.

Proof. Let A∗ = shf(A). We shall use the notation described in Definition 5
and we will follow the next method to determine the shifting matrix S ∈ R

n×n.

1. Apply to the original matrix A the n× n(m+ 1) block matrix:

S(1) =
[
J1 . . . Jm A−1

r

]
(9)

such that:
A(1) = A · S(1)

2. Multiply the matrix A(1) by the n(m+ 1)×mn block matrix:

S
(2) =















In On . . . On

On In . . . On

...
...

. . .
...

On On . . . In

(A1 − A)J1 (A2 − A)J2 . . . (Am − A) Jm















(10)

where On denotes the n×n zero matrix and In the n×n identity matrix.
Hence,

A(2) = A(1) · S(2)
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3. Multiply the matrix A(2) by the mn× n block matrix:

S(3) =




In
...
In


 (11)

and hence,
A(3) , A∗ = A(2) · S(3)

The final matrix S = S(1) · S(2) · S(3) has the form:

S =
m∑

i=1

(
In −A−1

r A+A−1
r Ai

)
Ji (12)

and satisfies the equation: A∗ = A · S �

In the proof of Theorem 2 the right inverse matrix A−1
r of A is not unique

when m < n. Conversely, the pseudo-inverse matrix A† ∈ R
n×m of A can be

uniquely determined by calculating the singular value decomposition of A [25],
such that

AA† = Im

Therefore, an alternative expression of the representation (12) of the shifting
matrix S can be given, if we use the pseudo-inverse matrix of A. This is

S =

m∑

i=1

(
In −A†A+A†Ai

)
Ji (13)

and it is more appropriate for the numerical computation of the shifting matrix.

Example 1. Consider the following randomly selected matrix A and its shifted
form A∗:

A =




1 2 3 4 5
0 1 2 3 0
0 0 2 4 6



 , A∗ =




1 2 3 4 5
1 2 3 0 0
2 4 6 0 0





According to (13), the corresponding shifting matrix is:

S =




0 − 36
43 − 36

43
80
43

67
43

− 2
3 − 25

43 − 161
129

319
258

487
258

1
3

9
86

113
258 − 17

258
25
258

1
3

34
43

145
129 − 95

258 − 179
258

0 9
86

9
86

23
86

37
86




and it can be easily verified that A∗ = A · S. �

Obviously, the shifting operation alters the structure of a matrix. Therefore,
even if the original matrix has full rank, the corresponding shifted matrix may
not have full rank. For instance, in the previous Example 1 we have ρ(A) = 3
and ρ(A∗) = 2. However, in the case where both A and A∗ have full rank we
obtain the following result.
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Corollary 1. If A ∈ R
m×n, m < n, is a nonsingular upper trapezoidal matrix

with rank ρ(A) = m and A∗ ∈ R
m×n is the shifted matrix of A with rank

ρ(A∗) = m, then there exists an invertible matrix S ∈ R
n×n with rank ρ(S) = n,

such that
A∗ = A · S ⇔ A = A∗ · S−1 (14)

where S−1 denotes the inverse of S.

The previous corollary can be proven by following the same steps as in the
proof of Theorem 2. We only have to change appropriately the set of permuta-
tion matrices Ji, i = 1, 2, . . . ,m to achieve the proper shifting, and compute the
inverse or pseudo-inverse of A∗. Therefore, we conclude that the shifting of a
nonsingular upper trapezoidal matrix is a reversible process, unless the shifted
matrix is rank deficient.

Remark 2. The results from Theorem 2 and Corollary 1 can also be applied
to a square upper triangular matrix provided that this matrix is invertible.

The relations (8) and (14) have a key role in the general algebraic representa-
tion of the ERES method, since a) in every iteration of the main procedure there
is always a nonsingular upper trapezoidal matrix which is formed after the ap-
plication of the ERE operations, and b) the process stops when a rank-deficient
matrix occurs and shifting cannot be applied.

4. The general algebraic representation of the ERES method

ERES is an iterative matrix-based method where, until now, only the ERE
operations (i.e. triangularization and reordering of rows) could be represented
by a matrix R ∈ R

m×m. With the introduction of the representation of the
shifting operation as a matrix product in Theorem 2 it is now possible to form
an algebraic expression representing all the required transformations until a
rank-1 matrix is reached. This representation provides a link between the initial
basis matrix and the last matrix which gives the coefficients of the GCD. This
algebraic relationship is described by the following theorem.

Theorem 3. Given a set Pm,n of m real univariate polynomials of maximum
degree n ∈ N and its basis matrix Pm ∈ R

m×(n+1), the application of the ERES
operations to Pm results in a matrix G ∈ R

m×(n+1) with rank ρ(G) = 1, which
satisfies the equation:

G = R · Pm · S (15)

where R ∈ R
m×m and S ∈ R

(n+1)×(n+1) represent the applied row transforma-
tions (ERE operations) and the application of the shifting operation, respectively.
The GCD of Pm,n is then represented by

gcd{Pm,n} = e1 ·G · en(s) (16)

where e1 = [1, 0, . . . , 0] ∈ R
m and en(s) = [1, s, s2, . . . , sn]t.

Proof. Given a set Pm,n of m > 2 polynomials and its basis matrix Pm,
let P (1) := Pm be the initial matrix and P (k) is the processed matrix at the
beginning of the kth iteration, k ∈ N . The superscript “(k)”, k = 1, 2, 3, . . .,
will be used in all matrices to indicate the number of iteration of the main
procedure.

The ERES operations are performed in the following order:
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1. Construct the permutation matrix J (1) ∈ R
m×m which reorders the rows

of the initial matrix such that the first row corresponds to the polynomial
with the lowest degree in the set.

2. Apply the elementary row transformations (ERE operations) by using an
appropriate lower triangular matrix L(1) ∈ R

m×m.
3. Delete (or reorder) the zero rows by using an appropriate permutation

matrix Z(1) ∈ R
r1×m, r1 ≤ m.

4. Apply the shifting operation by using an appropriate square matrix S(1) ∈
R

(n+1)×(n+1).

Therefore, after performing the above transformations, the resulting matrix is

P (2) = Z(1) · L(1) · J (1) · P (1) · S(1) (17)

If we set R(1) = Z(1) · L(1) · J (1), then it follows

P (2) = R(1) · P (1) · S(1) (18)

The equation (18) represents the first complete iteration of the main procedure
of the ERES method. The whole process terminates when a matrix with rank
equal to 1 appears. This can be practically achieved in less than n+1 iterations.
Therefore, after the kth iteration we have

P (k+1) = R(k) · P (k) · S(k), k = 1, 2, . . . (19)

and, if the final number of iterations is ℓ ∈ N, then

P (ℓ+1) = R(ℓ) · · ·R(1) · Pm · S(1) · · ·S(ℓ) ⇔
P (ℓ+1) = R̃ · Pm · S (20)

where we denote by

R̃ =

ℓ∏

k=1

R(k) and S =

ℓ∏

k=1

S(k) (21)

Obviously, the matrices P (k) do not necessarily have the same dimensions
as the initial matrix Pm due to the frequent deletion of the produced zero rows
during the iterative main procedure of the method. However, for theoretical
purposes we may preserve the original dimensions of the basis matrix. This
can be easily achieved if we change the permutation matrix Z(k) so as to move
the zero rows of P (k) to the bottom of the matrix instead of deleting them.
Therefore, in this case P (k) can have the same dimensions as Pm, but we actually
continue to work with a rk × (n + 1) submatrix of P (k) with a decreasing row
dimension rk < m. Since the last matrix P (ℓ+1) has rank equal to 1, every
row gives the coefficients of the GCD. But if we triangularize P (ℓ+1) once more
by using an appropriate matrix L(ℓ+1), then the final matrix G ∈ R

m×(n+1)

contains the coefficients of the GCD in its first row and it has zeros elsewhere.
Hence,

G = L(ℓ+1) · P (ℓ+1) and R = L(ℓ+1) · R̃ (22)

and the main result in (15) derives from the combination of (20), (21), and (22).
Then, if e1 = [1, 0, . . . , 0] ∈ R

m and en(s) = [1, s, s2, . . . , sn]t, the GCD is given
by

gcd{Pm,n} = e1 · R · Pm · S · en(s) = e1 ·G · en(s) (23)

�
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The next example demonstrates the application of the ERES method to a
set of three polynomials.

Example 2. Consider the set of polynomials:

Pm,n =





p1(s) = s3 − 2s2 − 11s+ 12
p2(s) = 2s3 − 11s2 + 13s− 4
p3(s) = s2 − s− 12



 , m = 3, n = 3

with gcd{Pm,n} = s− 4. The initial basis matrix is:

Pm =




12 −11 −2 1

−4 13 −11 2

−12 −1 1 0


 ∈ R

3×4, en(s) =




1
s

s2

s3


 (24)

The iterative main procedure of the ERES method will start with the matrix
Pm. After two iterations of the main procedure, the final matrix will have rank
equal to 1 and its first row gives the vector of coefficients of the GCD. The matrix
R, which represents all the necessary row transformations, and the matrix S,
which represents all the shifting transformations, have the form:

R =




5
14

9
28

1
4

− 10
7 − 9

7 0

1 0 0


 and S =




529687
397579 − 120713

397579
551

23387
69

4369

528432
397579 − 85273

397579
2204
23387

276
4369

523412
397579

56487
397579

8816
23387

1104
4369

503332
397579

623527
397579

35264
23387

4416
4369




(25)

The computation of the shifting matrices during the iterations corresponds to
(13). The final matrix is

G =




−4 1 0 0
0 0 0 0
0 0 0 0


 ∈ R

3×4 (26)

and it can be verified that:
G = R · Pm · S

If en(s) = [1, s, s2, s3]t and e1 = [1, 0, 0, 0], then the GCD of the set Pm,n can
be expressed as:

gcd{Pm,n} = e1 · R · Pm · S · en(s) = s− 4 (27)

�

5. Analysis of the numerical stability of the ERES method

Based on the relation (15) we can now develop a detailed analysis of the
numerical stability of the method for all the performed iterations of its main
procedure.

11



Figure 1: The ERES algorithm

5.1. The basics of the ERES algorithm

The development of an effective numerical algorithm for the ERES method,
requires [21]:

a) to find a robust numerical procedure for the application of the ERE op-
erations,

b) to develop a proper termination criterion for the algorithm, and finally

c) to find a reliable way to extract the coefficients of the GCD from the last
rank-1 matrix.

These requirements are the most essential parts of the ERES algorithm
(Fig.1) and in the following we will consider them in the context of a numerical
implementation in a floating-point computational environment. Having a basis
matrix of a set of polynomials, the ERES algorithm involves row addition or
row multiplication, row reordering, elimination of zero rows and shifting. We
refer to this process as the main procedure of the ERES algorithm. The most
reliable and stable numerical method for applying elementary row operations is
the Gaussian elimination with partial pivoting (GEPP) [24, 25]. Hence, an up-
per triangular or trapezoidal form of the basis matrix is computed. The shifting
operation is merely a permutation of the leading consecutive zero elements in a
row.

The algorithm’s termination criterion relies on the proper detection of the
final unity rank matrix which is based on the numerical computation of the
singular values of an associated normalized matrix obtained at the end of each
iteration of the main procedure. We shall refer to it as the Rank-1 procedure
of the ERES algorithm. This property is detected numerically according to the
inequality [21]:

|σ1 −
√
µ| ≤ εt and σi ≤ εt, i = 2, 3, . . . , µ (28)

where σi are the singular values of a normalized matrix with µ < m rows, which
is formed at the end of the main procedure, and σ1 corresponds to the maximum
singular value. The tolerance εt is referred to as the termination accuracy of
the ERES algorithm in finite precision computations.

When a matrix P with εt-rank=1 is achieved, the vector of the coefficients
of the GCD is given by the first row of the matrix:

G1 = σ1 · u · wt (29)

where u and w are the first columns of the orthogonal matrices U and W of the
singular value decomposition P = U · Σ ·W t, respectively [21].

12



5.2. Estimation of the total numerical error of the ERES method

Let us denote by P (k) = [p
(k)
ij ] ∈ R

rk×(n+1) the matrix to be processed at the

kth iteration of the main procedure of the ERES algorithm with rk ≤ m and
k ∈ N. The superscript “(k)” will be used in all matrices to indicate the number
of iteration of the main procedure, and P (1) := Pm. If we denote by d > 0 the
degree of the GCD, the constant application of the shifting operation gradually
zeros the last n − d columns of Pm, and therefore we will denote by nk the
number of the first consecutive nonzero columns of P (k). Clearly, nk ≤ n + 1,
and hence we may consider P (k) as an rk×nk matrix. In the following, we shall
consider the numerical error for each individual step of the main procedure of
the ERES algorithm and we will conclude with the total numerical error of the
method. We measure this error by using the infinity matrix norm ‖ · ‖∞ which
is invariable under the row-reordering and shifting transformations.

Starting the main procedure, we must reorder the rows of P (k) such that
the first row corresponds to the least degree polynomial. This is a basic step
of the ERES method, but, in order to prevent a further change during the
process of GEPP, it is required to scale the elements of the matrix, such that

the first element p
(k)
11 of the first column can be larger in magnitude than the

other elements of the first column. This normalization can be achieved if we
multiply P (k) by an appropriate diagonal matrix N1 ∈ R

rk×rk with ‖N1‖∞ = 1,
[22], such that

P̃ (k) = N1 P
(k) + E1 (30)

where E1 is the error matrix and

‖E1‖∞ ≤ nk u ‖P (k)‖∞ (31)

where u is the machine precision (u = 1
2b

−t = 2−53 in binary 64 bits arithmetic,
known as “double precision”). However, this normalization is not always nec-
essary to be performed and in practise this error is negligible compared to the
error produced from the GEPP process.

A further normalization of P (k) can be added so that every element of P (k)

is bounded by unity. This normalization can be written as [24]:

P̃ (k) = N (k) P (k) + E
(k)
N (32)

where N (k) is a diagonal rk × rk matrix of the form:

N (k) = diag
{
‖p(k)1j ‖−1

2 , ‖p(k)2j ‖−1
2 , . . . , ‖p(k)rj ‖−1

2

}
for j = 1, 2, . . . nk

and E
(k)
N is the error matrix with

‖E(k)
N ‖∞ ≤ nk u ‖P (k)‖∞ (33)

Consequently, ‖P̃ (k)‖∞ ≤ nk.

The backward error analysis of the Gaussian elimination with partial pivot-
ing [26] shows that the computed upper and lower triangular matrices L(k) and
U (k) satisfy:

L(k) · U (k) = P̃ (k) + E
(k)
G (34)

13



‖E(k)
G ‖∞ ≤ n2

k ρk u ‖P̃ (k)‖∞ (35)

where E
(k)
G is the error matrix and generally, ‖P̃ (k)‖∞ ≤ ‖P (k)‖∞. The term

ρk denotes the growth factor [24], which is ρk ≤ 2nk−1 for GEPP, but in prac-
tice this bound is not attainable [26]. The upper triangular matrix U (k) will
eventually give the next matrix P (k+1) after the deletion of its zero rows and
shifting:

U (k) = L(k)−1
(
P̃ (k) + E

(k)
G

)
(36)

and
P (k+1) = Z(k) · U (k) · S(k) (37)

Therefore, at the end of the kth iteration of the main procedure we have:

P (k+1) = Z(k) · L(k)−1
((

N (k)
(
N1 · J (k) · P (k)

)
+ E

(k)
N

)
+ E

(k)
G

)
S(k) (38)

Then, we may set

R(k) = Z(k) · L(k)−1 ·N (k) ·N1 · J (k) (39)

and the error matrix for the kth iteration is

E(k) = Z(k) · L(k)−1
(
E

(k)
N + E

(k)
G

)
S(k) (40)

The reordering of rows, the deletion of zero rows, and the shifting are error-
free transformations, since they do not alter the values of the data. Especially
for the shifting operation, there is no need to compute the shifting matrices S(k).
We only use them in order to connect the matrices P (k) which are generated in
every iteration of the main procedure. Thus, for practical reasons we may set
‖S(k)‖∞ = 1. According to the form of the matrices in (40) it is ‖Z(k)‖∞ = 1,

and for normalized matrices we have ‖L(k)−1‖∞ ≤ nk [26]. Hence, if we combine
the relations (33), (35), and (40) we conclude with the result in the next lemma,
which describes the numerical error E(k) produced in every iteration of the main
procedure of the ERES algorithm.

Lemma 1. The matrix P (k+1), k ∈ N, which is produced after the numerical
processing of the matrix P (k) ∈ R

rk×nk during the main procedure of the ERES
algorithm, satisfies the equation:

P (k+1) = R(k) · P (k) · S(k) + E(k) (41)

with
‖E(k)‖∞ ≤

(
n3
k ρk + n2

k

)
u ‖P (k)‖∞ (42)

where R(k) denotes the matrix for the combined ERE operations and S(k) denotes
the matrix for the shifting transformation during the kth iteration of the main
procedure.

If we denote by ℓ the total number of iterations of the main procedure of
the ERES algorithm, then the total numerical error E for all the performed
iterations is

E =
ℓ∑

k=1

E(k) (43)
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with

‖E‖∞ ≤
(

ℓ∑

k=1

(
n3
k ρk + n2

k

)
)
u ‖Pm‖∞ (44)

However, the error in (44) depends on the column dimension nk of P (k) which
decreases in a non-uniform way. But, since nk ≤ n + 1 for all k = 1, 2, . . . , ℓ,
we can establish a higher (theoretical) bound which characterizes the overall
numerical stability of the ERES algorithm in finite precision arithmetic.

Theorem 4 (Numerical stability of the ERES method). Given a set of
m real univariate polynomials of maximum degree n ∈ N, Pm ∈ R

m×(n+1) the
basis matrix, and εt > 0 a small tolerance, the iterative application of the ERES
operations to P (1) := Pm using numerical finite precision computations results
in a matrix P (ℓ+1) ∈ R

rℓ+1×(n+1) with numerical ε-rank=1 which satisfies the
equation:

P (ℓ+1) = R · Pm · S + E (45)

where R ∈ R
rℓ+1×m and S ∈ R

(n+1)×(n+1) represent the combined row transfor-
mations (ERE operations) and the application of the shifting operation, respec-
tively. The matrix E provides the total numerical error, such that

‖E‖∞ ≤
(
ℓ (n+ 1)3 ρ+O(n2)

)
u ‖Pm‖∞ (46)

where ℓ denotes the total number of applications of the ERES operations to the
basis matrix Pm.

In (45) the matrix R is defined as the matrix product of all R(k) as given
in (39), and S is defined as the matrix product of all S(k) for k = 1, 2, . . . , ℓ.
In (46) the term ρ denotes the growth factor which corresponds to the first
Gaussian elimination for the basis matrix Pm, and O(n2) denotes a polynomial
function of n with maximum degree 2. The proof of the above theorem follows
from Lemma 1 and the preceding results.

The singular value decomposition (SVD) during the Rank-1 procedure is
applied to a copy of the matrix P (k) only when it is required [21]. Thus, the
processing of P (k) in the Rank-1 procedure does not numerically affect the data
during the iterations the main procedure [23]. The preliminary stage in the SVD
algorithm is the bidiagonal reduction of P (k) and in most bidiagonal reduction
methods the error is expressed in the following form [24, 25]:

P (k) + δP (k) = U B V t (47)

‖δP (k)‖2 ≤ f(rk, nk)u ‖P (k)‖2 (48)

where B is bidiagonal, U and V are orthogonal, and f(rk, nk) is a modestly
growing function of the dimensions of P (k) [24, 25], where rk ≤ m and nk ≤ n+1.
The error (48) is not accumulated during the iterations of the main procedure
of the ERES algorithm, but a small error of the form (48) for rk = rℓ+1 and
nk = d + 1 must be taken into account for the final solution. Therefore, the
total numerical error mainly comes from the application of the processes of
normalization and Gaussian elimination during the iterative main procedure
which is given in (46).
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Method Rel. Error Time (msec)
MPGCD 1.4367948 10−11 78
QuasiGCD 9.1428733 10−13 62
SubGCD 1.0736840 10−14 15
QRGCD 1.0123822 10−15 93
ERES 8.7271766 10−16 31

Table 1: Comparison of GCD methods (Example 3)

5.3. Remarks on the numerical performance of the ERES algorithm

The main advantages of the ERES algorithm are:

a) the processing of all the polynomials of a given set simultaneously by
creating an initial basis matrix of the least possible dimensions, and

b) its ability to constantly reduce the dimensions of the initial matrix and
hence reduce the amount of data during the processing, which results in
fast data processing and lower usage of computer memory.

Tests on sets of more than two polynomials have showed that the numerical
ERES algorithm behaves well producing sufficiently accurate results [22, 27, 28].

Example 3. Consider the set of polynomials:

Pm,n =






p1(s) = 0.87 s4 − 31.14 s3 + 108.21 s2 − 55.38 s− 32.01
p2(s) = −0.65 s4 + 22.76 s3 − 63.74 s2 + 12.87 s− 32.98
p3(s) = −0.16 s3 + 6.49 s2 − 46.67 s+ 86.33
p4(s) = 0.30 s3 − 9.96 s2 + 10.20 s+ 52.38






with m = 4, n = 4 and exact GCD g(s) = s2 − 35 s+ 97.
In this example, the ERES method, the Matrix Pencil method (MPGCD)

[29], the subspace method (SubGCD) [30], the quasi-GCD method (QuasiGCD)
[5], and the QRGCD method [9] are used in order to compute the GCD of
the given set in a typical 16-digits arithmetic system (machine precision u ≈
2.2 10−16). We evaluate the results by measuring the relative error between the

exact and the computed solution, which is given by Rel =
‖v−g‖2

‖g‖2
, where v, g

are the coefficient vectors of the provided solution v(s) and the exact GCD g(s)
respectively. The required time of processing in milliseconds is also provided
and these results are presented in Table 1. The solution given by ERES has the
smallest relative error found and it was obtained in relative short time. �

Considering the previous Example 3, it is important to stress that QuasiGCD
and QRGCD algorithms1 are designed to work with two polynomials. In the case
of many polynomials they work iteratively with two polynomials at a time, but
they tend to fail, especially in the case of large sets of polynomials. Conversely,
ERES, MPGCD, and SubGCD are matrix-based algorithms which are designed
to work with all the polynomials simultaneously, either in a direct or iterative
way, and produce better results.

1QuasiGCD and QRGCD are parts of the SNAP package in MAPLE 16 (Maplesoft, Wa-
terloo Maple Inc.).
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Set Method Tolerance Rel. Error Time(msec)
(A) ERES 10−16 5.0398803 10−16 125

m=10 SubGCD 10−16 4.3369269 10−15 94
n=10 MPGCD 10−8 4.0010207 10−10 202
d=3 QRGCD 10−15 1.3419339 10−15 109

QuasiGCD 10−15 4.0030939 10−6 94
(B) ERES 10−16 4.5948046 10−16 8549

m=20 SubGCD 10−16 1.2802986 10−13 4181
n=40 MPGCD FAIL FAIL FAIL
d=10 QRGCD 10−10 2.1016595 10−10 4024

QuasiGCD FAIL FAIL FAIL
(C) ERES 10−16 2.4916347 10−16 343

m=50 SubGCD 10−16 2.2638888 10−14 484
n=20 MPGCD 10−5 9.9727246 10−1 827
d=5 QRGCD 10−12 7.3988778 10−13 750

QuasiGCD FAIL FAIL FAIL
m = number of polynomials in the set, n = maximum degree of polynomials,

d = degree of the exact GCD

Table 2: Comparison of GCD methods for random sets of polynomials

In Table 2 we present a sample of the results given by the above algorithms
for the computation of the GCD of randomly selected sets of many polynomials.
Generally, the ERES and SubGCD algorithms succeeded in producing a solution
with very small relative error close enough to machine precision (u ≈ 2.2 10−16).
QRGCD algorithm also succeeded in producing solutions with the same degree
as the exact GCD, but for higher values of its tolerance (eps > 10−16) and conse-
quently larger relative error. The other two methods, MPGCD and QuasiGCD,
failed or produced a solution with smaller degree than the exact GCD in the
most cases of large sets of polynomials. More tests and comparison with other
methods can be found in [28].

Regarding the total numerical error of the ERES method, it is obvious from
(46) that it depends on how many iterations ℓ of the main procedure of the
algorithm are performed. Practically, ℓ is much less than the maximum polyno-
mial degree n and it strongly depends on the linear dependence of the coefficient
vectors of the polynomials, i.e. the rank of the initial basis matrix. For instance,
for large sets of polynomials of high degree if ρ(Pm) << n, then we expect a
number of iterations close to n. Conversely, if ρ(Pm) = n + 1 − d, where d

denotes the degree of the GCD, then the GCD can be computed in just two
iterations. The following example demonstrates this case in a general form.

Example 4. Consider an arbitrary set of polynomials Pm,n, m = 8, n = 4
and d = 1. Let Pm ∈ R

m×(n+1) be the initial basis matrix in arbitrary form,
where its non-zero elements are symbolized with “∗” and assume that ρ(Pm) =
n+ 1− d = 4. Then, by using the ERES method we get:

Iteration 1:
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∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗























Gaussian

elimination

−→























∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0























Zero row deletion

and shifting

−→









∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 0

∗ ∗ ∗ 0 0

∗ ∗ 0 0 0









Iteration 2:








∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗









Gaussian

elimination

−→









∗ ∗ 0 0 0

0 ∗ ∗ 0 0

0 0 ∗ ∗ 0

0 0 0 ∗ ∗









Shifting

−→









∗ ∗ 0 0 0

∗ ∗ 0 0 0

∗ ∗ 0 0 0

∗ ∗ 0 0 0









The last matrix has column dimension equal to d+ 1 and, provided that it has
rank 1, every row gives the coefficients of the GCD with degree d = 1. �

However, there are cases where the iterative nature of the ERES method
acts as disadvantage, especially when the number of iterations is high and inex-
act data are present. GEPP is a quite stable numerical process, but although
pivoting keeps the multipliers bounded by unity, the elements in the reduced
matrices still can grow arbitrarily [24, 26] during the iterations. Therefore, in
fixed-precision arithmetic the error in (44) may become prohibitively large. This
problem motivated the search for a new kind of implementation for the ERES
method which improves its performance and reliability and made it suitable for
computing an approximate GCD for sets of polynomials with inaccurate data.
A major step towards this direction is the usage of different types of arithmetic,
such as rational and numeric (variable floating-point) arithmetic. The benefits
from the mixture of rational and numeric computations, known as hybrid compu-
tations, are significant and thus hybrid computations are widespread nowadays.
The development of the hybrid implementation of the ERES algorithm opti-
mized for the approximate GCD problem has been described in [23], and it is
referred to as the Hybrid ERES algorithm (H-ERES). More information about
the hybridization of the ERES method and comparison with other methods can
be found in [23, 28].

6. Conclusions

In this paper, the fundamental theoretical and numerical properties of the
ERES method for computing the greatest common divisor of sets of many poly-
nomials were presented and analysed. The general algebraic representation of
the method is presented in Theorem 3 and requires the shifting operation to be
written as a matrix product just like the elementary row operations. In Theo-
rem 2 it is now proven that the shifting operation applied to upper trapezoidal
matrices with full rank can be represented as a simple matrix product. The
main problem in this study was to analyse the overall numerical stability of the
ERES method. In Theorem 4, a total numerical error bound is now established
for all the iterations of the ERES algorithm which indicates that, under cer-
tain conditions, the method is numerically stable for large sets of polynomials.
These results are demonstrated through numerical examples. The accuracy of
the solutions given by the ERES algorithm reveals that ERES is an efficient
method for the computation of the greatest common divisor of sets of many
polynomials compared to other GCD methods.
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   provide state-of-art methods to compare advantages and disadvantages 

 

Authors’ answer: 

New paragraphs have been added in the introduction with the classification of GCD methods and 

additional citation to other GCD methods. Advantages and disadvantages are also discussed. 

 

2. "ERES method to handle large sets polynomials and to invoke an efficient termination 

criterion", there is no numerical example to show the efficiency of the method 

 

Authors’ answer: 

We provide in Table 2 the results from examples with large sets of polynomials and compare them 

with other four GCD algorithms which are available by their developers or included in commercial 

software packages, such as Maple. ERES produces solutions with less numerical error than the other 

methods due to its algorithm structure and the SVD-based termination criterion which is described in 

section 5.  

 

3. The paper is too long, they should present in a concise manner 

 

Authors’ answer: 

The paper is 6 pages shorter than its previous version. The entire Section 5 in the previous version has 

now been removed and we focus only on the basic numerical properties of the method. We intend to 

include the removed section in future publications considering the LCM problem. The other sections 

were reorganized and presented concisely. 

 

*Revision Notes



 

4. No numerical comparisons with the other methods in terms efficiency and stability  

 

Authors’ answer: 

We provide examples where the ERES method is compared with four other methods and the results are 

given in Tables 1 and 2. Advantages and disadvantages are also discussed. The comparison refers to 

the relative error between the exact and the computed GCD, which characterizes the stability of the 

method. The required time of processing is also provided. These tests are implemented in Maple and 

the spreadsheets are available by the corresponding author. Additional references to papers where the 

ERES method has been tested and compared with other GCD methods is also given. 

 

5. There are some JCAM papers in this topic, they should cite them. 

 

Authors’ answer: 

Three JCAM papers have been cited [6], [16] and [27]. 

 


