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ABSTRACT

In this paper, a method for multiple-instrument automatic

music transcription is proposed that models the temporal

evolution and duration of tones. The proposed model sup-

ports the use of spectral templates per pitch and instrument

which correspond to sound states such as attack, sustain,

and decay. Pitch-wise explicit duration hidden Markov

models (EDHMMs) are integrated into a convolutive prob-

abilistic framework for modelling the temporal evolution

and duration of the sound states. A two-stage transcrip-

tion procedure integrating note tracking information is per-

formed in order to provide more robust pitch estimates.

The proposed system is evaluated on multi-pitch detection

and instrument assignment using various publicly available

datasets. Results show that the proposed system outper-

forms a hidden Markov model-based transcription system

using the same framework, as well as several state-of-the-

art automatic music transcription systems.

1. INTRODUCTION

Automatic music transcription (AMT) is the process of

converting an acoustic musical signal into some form of

music notation [13]. In the music information retrieval

literature, AMT typically involves the detection of mul-

tiple concurrent pitches (multi-pitch detection), the esti-

mation of note onsets and offsets (note tracking) and the

estimation of instrument identities (instrument identifica-

tion/assignment). It is generally considered to be an open

problem, especially for highly polyphonic music signals

and multiple instruments. For a recent review of AMT sys-

tems, the reader is referred to [12].

A large part of AMT systems employ spectrogram fac-

torization methods for multi-pitch detection. These sys-

tems attempt to decompose an input time-frequency repre-

sentation as a series of spectral components and pitch acti-

vations, using a variety of constraints (regarding polyphony
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level, instrument identities, spectral envelopes, and tempo-

ral continuity among others); systems related to the pro-

posed work will be presented below.

In [6], Dessein et al. propose an AMT system for pi-

ano music which uses non-negative matrix factorization

(NMF) with beta-divergence and pre-extracted note tem-

plates, which is able to transcribe pieces in real-time. Vin-

cent et al. [16] propose a harmonic variant of NMF for

decomposing a spectrogram into a series of narrowband

harmonic spectra, which are also smooth across frequency

(also called the spectral smoothness assumption [13]). In

[4], Carabias-Orti et al. propose a system for multi-pitch

detection and instrument identification using NMF with

source-filter model constraints. Grindlay and Ellis [11] uti-

lize a probabilistic variant of NMF called probabilistic la-

tent component analysis (PLCA) for decomposing a spec-

trogram into a series of eigeninstrument templates, pitch

activations, and source contributions, and evaluate their

method for multi-pitch detection and instrument assign-

ment. Yoshii and Goto [17] proposed a non-parametric

model for music signal analysis which decomposes an in-

put spectrogram as a series of source-filter templates de-

rived from an autoregressive model. Finally, in [2] Bene-

tos and Dixon proposed a variant of convolutive PLCA for

modelling the evolution of notes using sound state tem-

plates (such as attack, sustain, decay) with hidden Markov

model-based constraints.

In this paper, we integrate explicit duration hidden Mar-

kov models (EDHMMs) [7,18] within the spectrogram fac-

torization framework of [2], in order to model the duration

of sound states within a note. Contrary to hidden Markov

models (HMMs), where the state duration is (implicitly)

geometrically distributed, EDHMMs form a specific case

of hidden semi-Markov models [18], where each state has

a variable duration. Alternatively, it can be viewed that

an EDHMM can emit a sequence of observations instead

of a single one. The additional information in EDHMMs

is modelled through the use of a duration probability per

state. EDHMMs have been shown to overcome the limita-

tions posed by HMMs regarding state durations and have

been successfully used in a variety of applications (see [18]

for a review).

The proposed model uses pitch-wise EDHMMs for con-

straining the order of the sound states, while also support-

ing the use of multiple templates per pitch and instrument,

and also shift-invariance across log-frequency for support-

ing tuning changes and frequency modulations. In addi-
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Figure 1. Proposed system diagram.

tion, we propose a two-stage transcription procedure in or-

der to eliminate spurious pitch detections. The proposed

model is trained on note samples from the RWC database

[10] and is tested using recordings from theMAPS database

[8], the TRIOS dataset [9], and theMIREXMultiF0 record-

ing [1]. Multi-pitch detection and instrument assignment

results show that the proposed EDHMM-based system is

able to model the durations of sound states and the overall

evolution of notes, and its temporal constraints lead to im-

proved performance compared to hidden Markov models

(HMMs) used in the same framework. Finally, the pro-

posed system outperforms several AMT methods in the lit-

erature for the same experiments.

The outline of this paper is as follows. Section 2 presents

the proposed EDHMM-based transcription model, along

with the postprocessing steps. The datasets used for train-

ing and testing, as well as the evaluation metrics and exper-

imental results, are presented in Section 3. Finally, con-

clusions are drawn and future directions are indicated in

Section 4.

2. PROPOSED METHOD

In this section, the proposed EDHMM-constrained auto-

matic transcription model is described, along with the up-

date rules for estimating the various model parameters and

the steps used for post-processing; the proposed system di-

agram can be seen in Fig. 1.

2.1 Model

The proposed model aims to express the evolution of notes

in multiple-instrument polyphonic music as a succession of

sound state templates, further constrained by the ordering

and the expected duration of each sound state. These tem-

poral constraints are incorporated into a model which sup-

ports multiple templates per pitch and instrument, and also

supports shift-invariance across log-frequency in order to

model tuning changes and frequency modulations. In or-

der to achieve this, we integrate independent pitch-wise

explicit duration hidden Markov models (EDHMMs) [18]

into the HMM-constrained automatic transcription model

of [2]. Thus, the proposed model can be called EDHMM-

constrained shift-invariant PLCA.

More formally, the normalized magnitude log-frequency

spectrogram Vω,t (ω denotes log-frequency and t denotes

time) which is used as input, is decomposed into a series

of sound state spectral templates per instrument and pitch,

a time-varying pitch shifting parameter, a time-varying in-

strument contribution per pitch, a pitch activation, and fi-

nally a sound state activation per pitch, which is controlled

by its respective EDHMM. If we denote the collection of

observations for all time frames as ω̄, the proposed model

in terms of the observations is given by:

P (ω̄) =
∑

q̄(1),··· ,q̄(P)

∑
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where p = 1, · · · ,P denotes pitch, q(p) denotes the sound

state for the p-th pitch, d(p) denotes the duration distribu-

tion for the p-th pitch, P (q
(p)
1 ) is the sound state prior for

the p-th pitch, P (d
(p)
1 ) is the duration prior for the p-th

pitch, q̄ is the sequence of draws of q, d̄ is the sequence of

draws of d, and finally P (ω̄t|q
(1)
t , . . . , q

(P)
t ) is the obser-

vation probability for a given observation ω̄t.

An EDHMM has state transitions only at the end of a

segment, and its duration distributions generate segment

lengths only at every state switch [7]:
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where P (q
(p)
t+1|q

(p)
t ) is the pitch-wise sound state transition

matrix, and P (d
(p)
t |q

(p)
t ) is the pitch-wise sound state du-

ration distribution. Also, δ(x, y) = 1 if x = y and 0 other-

wise.

Since in the PLCA-based models Vω,t represents the

number of times ω has been drawn at the t-th time frame,

the observation probability is calculated as:

P (ω̄t|q
(1)
t , . . . , q

(P)
t ) =

∏

ωt

Pt(ωt|q
(1)
t , . . . , q

(P)
t )Vω,t
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In the proposed model, Pt(ωt|q
(1)
t , . . . , q

(P)
t ) is decom-

posed as:

Pt(ωt|q
(1)
t , . . . , q

(P)
t ) =

∑

st,pt,ft

Pt(pt)Pt(st|pt)P (ωt − ft|st, pt, q
(pt)
t )Pt(ft|pt)

(3)

where s denotes the instrument source, f is the pitch shift-

ing parameter, Pt(pt) is the pitch activation, Pt(st|pt) is
the time-varying instrument contribution for each pitch,

P (ω|s, p, q(p)) are the sound state spectral templates per



source s, pitch p, and sound state q(p), and Pt(ft|pt) is

the log-frequency shifting distribution per pitch over time.

The subscript t in ft, ωt, st, pt denotes the values of vari-

ables f, ω, s, p taken at time t. The shifting parameter f is

constrained to a semitone range around the ideal tuning po-

sition of each pitch. Since in the proposed system the time-

frequency representation used is the constant-Q transform

(CQT) with a log-frequency resolution of 60 bins/octave

and a 40ms step [15], this implies that f ∈ [1, 5]. We also

set a maximum duration for each sound state: d ∈ [1, 20],
which means that the maximum duration of each sound

state is 800ms.

2.2 Parameter Estimation

The unknown model parameters of Section 2.1 can be es-

timated using the Expectation-Maximization (EM) algo-

rithm [5]. For the E-step, the posterior for all hidden vari-

ables is:
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We assume that the pitch-wise EDHMMs are indepen-

dent, thus the joint probability of all sound states is decom-

posed as:
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where α∗
τ (qτ+1), ατ (qτ ) are the EDHMM forward vari-

ables and β∗
τ (qτ+1), βτ (qτ ) are the EDHMM backward

variables; all aforementioned forward-backward variables

can be computed using recursive formulae [18].

The second term of (4) can be computed using Bayes’

theorem and the notion thatP (ωt|ft, st, pt, q
(pt)
t ) = P (ωt−

ft|st, pt, q
(pt)
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For the M-step, the update equations for the unknown

parameters are as follows:
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where τ = t+ 1, · · · , t+ d.

It should be noted that we consider the sound state tem-

plates to be fixed, so no update rule for P (ω|s, p, q(p)) ex-
isits. Using fixed templates, 10-15 iterations using the up-

date rules presented in the present section are sufficient for

convergence. The output of the system is a pitch activation

which is scaled by the energy of the log-spectrogram:

Pt(p)
∑

ω

Vω,t (14)

In order to further constrain the model so that it reaches

more meaningful solutions, sparsity is enforced in Pt(p)
and Pt(s|p), by modifying the update rules in (8) and (9),

where a power greater than 1 is applied to the numerators

and denominators, which leads to sharpened distributions,

thus encouraging sparsity [2]. Even though convergence is

not guaranteed, it is observed in practice. This procedure

implies that only few pitches need to be active at each time

frame, and also that for a note at a given time frame, only

few instruments are responsible for producing it.

As an example of the learned EDHMM parameters us-

ing the proposed system, Fig. 2 shows the learned duration

distributions and sound state transitions for a D4 note, us-

ing a piano recording as input to the system. It can be seen

that the duration distribution for the 1st sound state (which

corresponds to an attack state) favors short durations, while

the duration distribution for the 2nd state (which corre-

sponds to the steady state) favors much longer durations.

Also, the resulting transition matrix also shows the linear

succession between the sound states.
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Figure 2. EDHMM parameters learned for note D4 using the ‘MAPS MUS-alb se2 ENSTDkCl’ piece from the MAPS

database. (a) The duration distribution matrix P (d|q). (b) Pre-computed piano sound state templates for note D4. (c) The

sound state transition matrix P (qt+1|qt).

2.3 Post-processing

Since the resulting pitch activation from (14) is non-binary,

a postprocessing procedure needs to take place in order to

convert it to a binary piano-roll or a MIDI-like representa-

tion (this procedure is also called note tracking). As in the

vast majority of spectrogram factorization-based automatic

transcription systems (e.g. [6, 11]), we perform threshold-

ing on the pitch activation, followed by a process for re-

moving note events with a duration less than 80ms. We

should note that the HMM-based postprocessing method

of [2] was found not to perform well on pieces with fast

tempo and rapid note changes. An example of the output

of the post-processing step compared with a ground-truth

transcription is given in Fig. 3, using a segment from a

piano sonata.

A system variant is also proposed, where after detecting

all active pitches in the final piano-roll, the update rules of

subsection 2.2, are run again, but instead of setting p as to

cover the entire pitch range, we only use the list of active

pitches estimated in the first run. This two-stage process

also helps in further constraining the solution by removing

any pitches that might appear in Pt(p) but are nevertheless
removed in the postprocessing step.

3. EVALUATION

3.1 Training Data

Sound state templates are extracted for several orchestral

instruments, using isolated note samples from the RWC

database [10]. Specifically, we extract templates for bas-

soon, cello, clarinet, flute, guitar, harpsichord, oboe, or-

gan, piano, tenor sax, and violin, using the CQT as a time-

frequency representation [15]. The complete note range of

the instruments is used, given the available training data.

The sound state templates are computed in an unsupervised

manner, using a single-pitch and single-instrument variant

of the model of (3), where the number of sound states is

set to Q(p) = 3.
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Figure 3. (a) The ground-truth piano-roll of the first 30sec

of W.A. Mozart’s Piano Sonata K.333, 2nd movement

(from the MAPS database). (b) The piano-roll computed

from the proposed transcription system.

3.2 Test Data

For testing, we use recordings from three publicly available

transcription datasets. Firstly, we used thirty 30sec piano

segments from the MAPS database [8], specifically from

the ‘ENSTDkCl’ subset that has been used in the past for

multi-pitch evaluation in [4, 17].

We also utilized the woodwind quintet recording used

as a development set in theMIREXmultiF0 and note track-

ing task [1]. Instruments present include bassoon, clarinet,

flute, horn, and oboe, while manually-aligned ground truth

for each instrument track is available online [1].

Finally, we used the TRIOS dataset [9], which includes

five multitrack recordings of trio pieces of classical and

jazz music. For the current experiments, we used the ex-

isting mixes of the multitracks. Instruments included in

the dataset are: bassoon, cello, clarinet, horn, piano, sax-

ophone, trumpet, viola, and violin. The dataset includes

manually-aligned ground truth with instrument informa-

tion per pitch. To the authors’ knowledge, no transcription

results have been reported for the TRIOS dataset.



3.3 Metrics

For evaluating the performance of the proposed system

for multi-pitch detection, we employ two sets of metrics:

frame-based and note-based ones. For note-based evalu-

ation, we use the onset-based transcription metrics which

are used in the MIREX note tracking task [1]. A detected

note is considered correct if its pitch matches a ground

truth pitch and its onset is within a 50ms tolerance of a

ground-truth onset. The resulting note-based precision, re-

call, and F-measure are defined as:

Pren =
Ntp

Nsys

Recn =
Ntp

Nref

Fn =
2RecnPren
Recn + Pren

(15)

whereNtp is the number of correctly detected pitches,Nsys

is the number of pitches detected by the system, and Nref

is the number of reference pitches.

For the frame-based metrics, evaluations are performed

in a 10ms step as in the MIREX multiF0 evaluations [1],

and we use the frame-based precision, recall, and F-measure,

which are defined in a similar way to (15) and are denoted

as Pref , Recf , and Ff , respectively.

3.4 Results

Experiments are performed using the proposed system of

Section 2 using two variants; a one-stage version (using

the update rules and the note tracking step) and the two-

stage version presented in subsection 2.3. The proposed

EDHMM-based system is compared with the HMM-based

system of [2] using the same time-frequency representation

and note tracking steps. In all cases, the Markov models

were initialized as ergodic, with uniform priors and state

transition probabilities.

In Table 1, multi-pitch detection results using theMAPS

recordings are shown. It can be seen that using both sets of

metrics, the EDHMM-based systems outperform the HMM-

based one. It can also be seen that the two-stage version of

the system makes a significant improvement in terms of

performance. The differences in performance are not as

clear using the frame-based metrics, but they are still evi-

dent. In all cases, the precision is higher compared to recall

(e.g. for the two-stage EDHMM case, Pren = 74.73%
and Recn = 64.46%), which signifies that there is a larger

number of missed detections compared to the number of

false alarms. When comparing the reported results with

other methods using the same dataset, it can be seen that

the proposed system outperforms both the infinite compos-

ite autoregressive system of [17] (which reported Ff =
48.4%) and the source-filter NMF model of [4], which

reported Ff = 52.4% (where the best reported perfor-

mance in [4] was reported using the using the SONIC algo-

rithm [14], reaching Ff = 58.0%). Finally, the note-based

accuracy measure for the MAPS recordings is 53.42%; the

accuracy reported in [3] for the MAPS-Disklavier dataset

was 68.7%, although it should be stressed that in [3] the

dataset was also used for training the system.

Results using the MIREX woodwind quintet recording

are shown in Table 1; again it can be seen that the EDHMM-

Method/Instrument HMM-based EDHMM-based

Bassoon 47.72% 41.42%

Clarinet 64.33% 67.68%

Flute 51.18% 57.53%

Horn 39.86% 44.59%

Oboe 23.84% 22.17%

Mean 45.39% 46.68%

Table 2. Instrument assignment results (Ff ) using the first

30sec of the MIREX MultiF0 recording.

based system outperforms the HMM-based one. In the lit-

erature, an experiment using the first 30sec of the MIREX

recording was made in [16], where Ff = 62.5%. Using

the first 30sec in the 2-stage EDHMM system, the frame-

based F-measure reaches 66.95%.

Also, using the TRIOS dataset, similar results are re-

ported, as can be seen in Table 1. It should be noted though

that there is a large difference between the note-based met-

rics and the frame-based metrics, which can be attributed

to the fact that the TRIOS dataset contains notes with long

durations, which get oversegmented in the proposed sys-

tem (where small gaps do not significantly affect the frame-

based metrics).

Finally, we perform experiments on instrument identi-

fication using information from matrix Pt(s|p). In the in-

strument assignment task [11], a detected pitch is consid-

ered to be correct if, in addition to pitch and timing con-

straints, it is assigned to a correct instrument source. We

performed experiments using the MIREX woodwind quin-

tet, using a system variant which utilizes templates found

in the recording (bassoon, clarinet, flute, horn, oboe). The

output (for instrument s) is given byPt(p)Pt(s|p)
∑

ω Vω,t.

For comparative purposes, we evaluated the first 30sec of

the MIREX recording, as in [4], using the frame-based F-

measure. Instrument assignment results are shown in Table

2, where it can be seen that the proposed EDHMM-based

method performs better compared to the HMM-based one.

It can be seen that the best performance is reported for clar-

inet, which has a relatively different spectral shape com-

pared to the other instruments. It should be noted though

that the HMM-based method performs better for bassoon

and oboe, while the EDHMM-based method performs bet-

ter for clarinet, flute, and horn. The reported Ff for the

method in [4] is 37.0%, which indicates that the proposed

method (which uses pre-extracted spectral templates in-

stead of source-filter models within a spectrogram factor-

ization framework) is more appropriate for the task.

4. CONCLUSIONS

In this paper, we proposed a model for automatic music

transcription which models the temporal evolution of notes

using pitch-wise explicit duration hidden Markov models,

within a spectrogram factorization framework supporting

multiple pitch and instrument templates, as well as shift-

invariance across log-frequency. It was shown that the tem-



Dataset MAPS ‘ENSTDkCl’ MIREX TRIOS

Method / Metric Fn Ff Fn Ff Fn Ff

HMM-based 65.93% 66.41% 63.64% 66.01% 55.94% 67.76%

EDHMM-based 67.12% 66.82% 65.14% 66.42% 56.95% 69.54%

EDHMM-based (2-stage) 68.61% 67.99% 66.60% 66.98% 57.66% 71.17%

Table 1. Multi-pitch detection results (in Fn and Ff ) using the three employed datasets.

poral constraints posed by the EDHMMs resulted in im-

proved multi-pitch detection and instrument identification

performance when compared to HMM-based constraints.

Evaluation results outperformed state-of-the-art multi-pitch

detection methods using the MAPS and MIREX datasets.

Finally, a proposed two-stage transcription procedure helps

in further eliminating transcription errors.

One of the main drawbacks of the proposed method

is its computational complexity. Even with independent

EDHMMs, the proposed method performs about 60×real-

time, which is prohibitive for large-scale experiments or

real-time applications. In the future, we will attempt to cre-

ate computationally-efficient versions of the proposed sys-

tem using more compact time-frequency representations

and by replacing the expensive expectation-maximization

algorithm with variational Bayesian methods. Finally, we

will expand the existing spectrogram factorization frame-

work in order to introduce additional constraints via musi-

cological models, for example integrating information from

chord and key detection for improving multi-pitch detec-

tion performance.
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