
Lekeas, G., Kloukinas, C. & Stathis, K. (2011). Producing Enactable Protocols in Artificial Agent

Societies. Lecture Notes in Computer Science: Agents in Principle, Agents in Practice, 7047, 311-

322 . doi: 10.1007/978-3-642-25044-6_25

City Research Online

Original citation: Lekeas, G., Kloukinas, C. & Stathis, K. (2011). Producing Enactable Protocols in

Artificial Agent Societies. Lecture Notes in Computer Science: Agents in Principle, Agents in

Practice, 7047, 311-322 . doi: 10.1007/978-3-642-25044-6_25

Permanent City Research Online URL: http://openaccess.city.ac.uk/2887/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/18295026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Producing enactable protocols in artificial agent societies

George K. Lekeas1, Christos Kloukinas1, and Kostas Stathis2

1 City University London, Northampton Square, London EC1V 0HB,

{g.k.lekeas,c.kloukinas}-at-soi.city.ac.uk
2 Royal Holloway, University of London, Egham Surrey TW20 0EX,

kostas.stathis-at-cs.rhul.ac.uk

Abstract. This paper draws upon our previous work [7, 16] in which we pro-

posed the organisation of services around the concept of artificial agent societies

and presented a framework for representing roles and protocols using LTSs. The

agent would apply for a role in the society, which would result in its participation

in a number of protocols. We advocated the use of the games-based metaphor for

describing the protocols and presented a framework for assessing the admission

of the agent to the society on the basis of its competence. In this work we look at

the subsequent question: what information should the agent receive upon entry?.

We can not provide it with the full protocol because of security and overload is-

sues. Therefore, we choose to only provide the actions pertinent to the protocols

that the role the agent applied for participates in the society. We employ branch-

ing bisimulation for producing a protocol equivalent to the original one with all

actions not involving the role translated into silent (τ) actions. However, this ap-

proach sometimes results in non-enactable protocols. In this case, we need to re-

pair the protocol by adding the role in question as a recipient to certain protocol

messages that were causing the problems. We present three different approaches

for repairing protocols, depending on the number of messages from the original

protocol they modify. The modified protocol is adopted as the final one and the

agent is given the role automaton that is derived from the branching bisimulation

process.

1 Introduction

Ubiquitous computing envisages objects with information processing and communi-

cation capabilities that will assist users in their daily tasks [18]. An example of such

an setting could be a “user’s personal assistant” (UPA) running on a Personal Digital

Assistant (PDA). It will have knowledge of the user’s timetable and assist him on the

task(s) he has to carry out. The UPA could, for example, determine the location of the

user and if he has to be at the airport in a short period of time order him a taxi.

In this example, the context and/or location in which the UPA is deployed play a

significant role, as it will have to use a local taxi service or identify the products that are

of interest to the user it represents. Furthermore, such an application will need to have

a number of properties such as autonomy and pro-activity. This is the case as some of

the taxi services the UPA is using might temporarily be down or not accepting a certain

method of payment. On the other hand, it will need to be pro-active and be able to make

decisions on what services to contact and what resources to use.

2 George K. Lekeas, Christos Kloukinas, and Kostas Stathis

A paradigm that fits these requirements is this of a single agent or Multi-Agent

System [12]. Such systems exhibit autonomy, reactivity and pro-activeness within the

social context they operate (social ability). Moreover, in a Multi-Agent System no agent

has complete ability to solve the problem, data is spread across the system, no agent

can control the whole system and the computation is asynchronous; UPA will need the

collaboration of other agents providing the required services.

In [16] we proposed the organisation of services around artificial agent societies.

These would be semi-open in the sense of [3] (i.e. new members are accepted only on

completion of a successful application). We should note here that openness is consid-

ered from a membership viewpoint and not, for example, from an agent communication

language or agent architecture perspective.

The agent will choose the society to apply for membership on the basis of its service

needs and apply for a role R in it. It will have to submit its communication abilities

(i.e. the set of messages that it can utter/understand). These will be judged against the

requirements of the protocols that R is participating in. The requirement is that the

agent should be able to understand the messages that it can receive, as well as be able

to utter the messages that R can send.

The representation of protocols is done using the games-based metaphor [15], which

we extended to include different representations for the state of the game. This metaphor

is not related to game theory; we are simply using the notion of game to represent the

evolution of a protocol and not to quantify the agent strategies (which are, in general,

unknown). The representation of the game as a protocol should allow for the represen-

tation of protocol states. These are described by the values of a number of properties we

are interested in; e.g. who was the last player, who is the next one and what is the last

move made in the game. In [15] destructive assignment has been used for this purpose,

i.e., every time there is a change in the value of a property the old value is deleted and

the new one is inserted. However, this is not the only option. Situation Calculus [9]

can be used to represent the state as a sequence of actions forming a situation. On the

other hand, if we are interested in a game that has concurrent moves, Event Calculus

[8] could be used to describe the game state as events happening at specific time points.

Finally, commitments [17] could be used.

Assuming that the agent in question is accepted into the society, there is a new issue

of what part of the protocol it should receive. It could, of course, be provided by the

full protocol but that might not always be easy e.g. for security or information overload

problems. A procedure is, thus, needed for providing the agent only with the protocol

information needed. This procedure should discard (hide from the agent) any parts of

the protocol there is no need to know about as it is not involved in those. It should, also,

ensure that there are no structural problems with the protocol that the agent receives,

i.e., it is enactable. This means that any time the agent needs to take a decision as to

what action to perform next, all information needed for making the decision is available

to it.

The rest of the paper is structured as follows: Section 2 provides a quick overview

of bisimulation, whereas Section 3 describes NetBill, our working example. We present

our approach for creating the role automata in Section 4. In Section 4.1 we present three

Producing enactable protocols in artificial agent societies 3

approaches for repairing non-enactable protocols . Finally, Section 5 discusses related

work and we conclude the paper in Section 6.

2 Bisimulation

Bisimulation [10] is a way of minimising LTS on abstract (silent) actions while preserv-

ing the properties of the original model. It can be computed automatically without any

human involvement.

Formally, it can be defined as [13]: A binary relation R on the states of a Labelled

Transition System is bisimulation if whenever s1 R s2:

for all s′
1
with s1

µ
−→ s′

1
, there is s′

2
such that s2

µ
−→ s′

2
and s′

1
Rs′

2

(∀s′
1
.s1

µ
−→ s′

1
⇒ ∃s′

2
: s2

µ
−→ s′

2
, s′

1
Rs′

2
);

the converse, on the transitions emanating from s2

(∀s′
2
.s2

µ
−→ s′

2
⇒ ∃s′

1
: s1

µ
−→ s′

1
, s′

2
Rs′

1
).

(1)

As the state of the protocol can be determined at any stage by the actions that have

been already executed and the choice of what action to execute next, two equivalent

(bisimilar) systems should represent the same evolution. This means that for any evo-

lution of the first system (the original protocol), the second system (bisimulated model)

should be able to evolve in the same way and any choice of actions in the first system

should exist in the second system as well.

Any action the role in question is not involved in, either as a sender or amongst

the recipients, is replaced by a silent (τ) action. Depending on how silent actions are

treated, we distinguish between different types of bisimulation. The first option is to

merge all silent actions with the first non-silent one, i.e. τ⋆α ≡ α. This is a quick and

easy way of dealing with τ actions, but it does not respect the structure of the protocol.

Branching bisimulation rectifies this by considering the structure of the LTS as well.

Two LTS P and Q are branching bisimilar via a relationship R if: (i) their initial states

are related via R and (ii) if r and s are related by R and r
α
−→ r′, then either α = τ or

there exists a path s ⇒ s1
α
−→ s2 ⇒ s′ such that r and s1, r′ and s2 as well as r′ and s′

are related by R.

The difference between the two types of bisimulation can be seen in Fig. 1.

Fig. 1a shows the original protocol with three roles, A, B and C. The protocol starts

with role A sending message α to role B and afterwards role C has the option of sending

B either b or c. Finally, role A can send role B either d or e but this choice is not indepen-

dent of the previous steps. It depends on what message role B received. Fig. 1b shows

the role automaton for role A by replacing any non-observable actions (i.e. actions that

the role is not involved in as sender or recipient) with τ . The result of τ⋆α bisimulation

is shown in Fig. 1c. According to this, role A sends message α to role B and then it can

send B either d or e.

However, this is not accurate. The choice of the second message is not with A, but

depends on the choice that C made on the previous step. This is knowledge that role A

4 George K. Lekeas, Christos Kloukinas, and Kostas Stathis

A −> B: e

4

3

20 1
A −> B: a

C −> B: b

C −> B: c

A −> B: d

(a) Full Protocol

A −> B: e

4

3

20 1
A −> B: a

A −> B: dτ

τ

(b) Protocol with τ

A−>B: e

20 1
A−>B: a

A−>B: d

(c) Result of τ⋆

α Bisimulation

4

3

20 1
A−>B: a

A−>B: d

A−>B: e
τ

τ

(d) Result of Branching Bisimulation

Fig. 1: Non-implementable protocol due to incomplete knowledge

does not have (in effect, it does not know neither whether role C acted nor what message

it chose to send). Branching bisimulation in Fig. 1d takes this into consideration by

keeping the two branches with τ actions and not discarding them, even if they do not

represent role A’s knowledge. This means that for role A the protocol that it should

receive should be the same as the original one with the τ actions, even if they do not

represent role’s knowledge.

3 The Netbill Protocol

In this section, we introduce a variation of the e-commerce protocol NetBill [6]. This

can be used by a society that aims at allowing merchants to sell goods to customers

and make use of payment gateways in order to collect payment. An agent wishing to

enter a society where Netbill is available will have to apply for the role of customer,

merchant or gateway depending on the goal it wishes to achieve when entering the

society. In the original protocol, there are three roles - customer (c), merchant (m) and

gateway (g)- and eight overall steps for a customer to purchase goods from a merchant

and the merchant to process payment for the order through NetBill’s gateway. These

are depicted in Fig. 2 and are as follows:

Producing enactable protocols in artificial agent societies 5

c rq m

s0 s7s6

c oa m m pq c

c oa m

m pq c

s8s1 s2 s3 s4 s5

c sepo m

m dgb c

m dg c

m dga c m seepo g m dgk cg sr m

Fig. 2: A variant of the NetBill protocol

– The customer requests a quote for some digital goods from a merchant - see the

transition (s0, (c, rq, {m}), s8), i.e., from state 0 to state 8, labelled as (c, rq, {m}).
– The merchant provides a quote to the customer - (s8, (m, pq, {c}), s7).
– The customer accepts the quote made by the merchant - (s7, (c, oa, {m}), s6).
– The merchant proceeds to deliver the ordered goods encrypted with a key K -

(s6,(m, dg, {c}), s1).
– The customer signs an Electronic Purchase Order (EPO) with the merchant - (s1,

(c, sepo, {m}), s2).
– The merchant signs in its turn the EPO and sends it to the NetBill gateway - (s2,

(m, ssepo, {g}), s3).
– The NetBill gateway internally checks the information on the EPO, transfers the

money and ends by sending the merchant a receipt - (s3,(g, sr, {m}),s4).
– Finally, the merchant sends the customer the key needed to decrypt the goods it

purchased - (s4, (m, dgk, {c}), s5).

We made the following additions to the original NetBill protocol to create one with

branching structure so that we can illustrate problems when the agent has to make a

decision but does not have all the information required:

– The merchant can now make a price quote directly - (s0, (m, pq, {c}), s7); e.g., in

the case of a promotional offer.
– The merchant could select to deliver the goods as its first move - (s0, (m, dga, {c}),
s1); e.g., when the customer has good credit and solid reputation with that mer-

chant. In this case, the encryption method used in the delivery can be more relaxed

than the normal one as the process involves a trusted customer.
– The customer might accept the merchant’s quote directly - (s0,(c, oa,
{m}), s6); e.g., when the merchant is trusted or this is a recurring order.

– On reception of a quote request, the merchant can make the quote and ship the

goods directly without waiting for a formal acceptance of the quote - (s8, (m, dgb, {c}),
s1); e.g. when dealing with a trusted customer or a recurring order. The delivery and

encryption method will have to be different again, as if it is a recurring order it will

mean that the customer is low on stock for this particular item.

6 George K. Lekeas, Christos Kloukinas, and Kostas Stathis

4 Producing the final enactable protocol

In order to derive the role automata for each individual role involved in the protocol,

the followed process is applied:

1. prepare the initial role automaton, i.e. the automaton we get from the original pro-

tocol automaton by replacing actions for which the role is neither the sender nor

amongst the recipients by τ ;

2. run branching bisimulation on the resulting automaton;

3. examine the resulting automaton for the presence of τ actions;

(a) if τ actions exist but not make the protocol non-enactable, this is the protocol

that the role receives;

(b) if τ actions exist and they make the protocol non-enactable, then the protocol

is repaired using one of the approaches in Section 4.1 and we start over with

the updated protocol automaton.

By following this process, the protocol for the gateway role of the NetBill protocol

is reduced to two transitions and three states, as shown in Fig. 3.

s2

BG
m ssepo g g sr m

s0 s1

Fig. 3: The gateway role of NetBill after running branching bisimulation

The resulting protocol for the merchant agent would be the whole protocol, as the

merchant is involved in all communications, while for the customer agent it would be

the whole protocol except for the messages involving the gateway agent. The customer

needs have no knowledge of these.

4.1 Protocol Repair

The NetBill protocol has been decomposed into role automata with no silent actions in

them, as it is a well designed protocol. However, the breakdown of a protocol into its

constituent roles need not always produce enactable specifications. If the resulting role

automaton contains silent (τ) actions, then repair might be required. The repair process

takes place at step 3b of Section 4 and consists of adding the role in question to the

recipients of certain moves from the original protocol. The choice of the moves will

depend on the algorithm we choose for the repair; the following sections describe three

such algorithms starting with the one that will make most repairs to the protocol and

finishing with the one making the least.

Producing enactable protocols in artificial agent societies 7

Updating all τ actions One approach is to find the equivalent states in the original

protocol of the problematic states in the bisimulated one and add the role as a recipient

to any messages originating from these states in the protocol. The algorithm is described

in Listing 1.1.

1 // Game Protocol ⇒ GP, Role Protocol ⇒ RP

2 repair(GP, RP_badState, GP_role) {

3 GP_class= equivalence_class(RP_badstate, GP);

4 // Add role to the recipients of the moves of these states

5 foreach (GP_state in GP_class)

6 foreach (GP_tran from GP_state.transitions)

7 GP_tran.move.receivers = GP_tran_move.receivers ∪ GP_role;

8 }

Listing 1.1: Updating all silent transitions

This algorithm repairs the protocol by adding the extra information that was missing

and was causing the occurrence of the τ move, i.e., adds the role in question to the

recipients of the communication act. At the beginning, we calculate all states from

the original protocol that are in the equivalence class of the originating state of the

transition with the silent move in the bisimulated protocol. Once these are found, for

every transition that starts from these states in the original protocol, the set of receivers

is updated with the inclusion of the role whose automaton we are calculating.

Updating frontier τ actions Another approach would be to repair a few transitions of

the original protocol, those that start from any state in the original protocol that belongs

to the same equivalence class as the original state of the silent action in the bisimulated

protocol and finish in any of the states belonging to the same equivalence class as the

end state of the same transition. The intuition here is that τ transitions within states

of the same equivalent class will not be present in the resulting role automaton, so no

repair is needed.

C1 C2

τ

s6

s8

s1 s2

s4
s7

s5

s3

τ

τ

τ

τ

τ

τ

Fig. 4: Branching Bisimulation Equivalence Classes

8 George K. Lekeas, Christos Kloukinas, and Kostas Stathis

In Fig. 4 after running branching bisimulation we have states s1 and s2 linked with

a τ transition. However, as branching bisimulation is an equivalence relation placing

states into equivalence classes, each of these two states would belong to an equivalence

class of states from the original automaton. In this case, we have two equivalence classes

C1 = {s3, s4, s5} (represented by s1) and C2 = {s6, s7, s8} (represented by s2). By

looking at the transitions, we can see that the transitions from states belonging to class

C1 to states belonging to class C2 are all τ transitions that need to be repaired. The

benefit, however, in comparison with the approach described in Section 4.1 is that we

do not repair any silent transitions internal to the class , i.e., the transitions from s3 to

s4, s4 to s5 and s5 to s3.

The algorithm that performs the repair is described in Listing 1.2:

1 // Game Protocol ⇒ GP, Role Protocol ⇒ RP

2 repair(GP, RP_Transition, GP_role) {

3 RP_initial_state = RP_Transition.initial_state;

4 RP_end_state = RP_Transition.final_state;

5 GP_equiv_initial_states = equivalence_class(initial_state,

6 GP);

7 GP_equiv_end_states = equivalence_class(RP_end_state,GP);

8 //Add role in the recipients of the moves

9 //of those transitions that start in

10 //GP_equiv_initial_states, end in GP_equiv_end_states

11 //and is a silent transition in the original protocol

12 foreach (GP_tran from GP_state.transitions) {

13 GP_initial_state = GP_tran.initial_state;

14 GP_final_state = GP_tran.final_state;

15 GP_m = GP_tran.move;

16 GP_recipients = GP_tran.recipients;

17 if (GP_initial_state ∈ GP_equiv_initial_states ∧
18 GP_final_state ∈ GP_equiv_end_states ∧
19 GP_role /∈ GP_recipients)

20 GP_tran.move.recipients = GP_tran.move.recipients ∪
21 GP_role;

22 }

23 }

Listing 1.2: Updating silent actions by looking at equivalence groups

Updating selected τ actions Our approaches to protocol repair so far, have considered

silent actions as something that needs to be removed from the role’s final automaton -

their presence would imply lack of knowledge and failure in implementation.

However, this is not always true. A role will need to have a silent action repaired

only if it is causing problems in the role’s action selection process. Assuming a branch

where the first move in both leaves is τ , the following combinations exist for the follow-

ups:

– the two actions following the silent ones are both receive actions for the role - in

that case, we do not need to repair the transition as the role has no decision to make

and just waits to receive a message;

– the two actions following the silent ones are both send actions for the role and they

are different in terms of either the move or the recipients of the move (or both);

in this case repair is needed so that the role will have the required information to

decide on which move to pursue;

Producing enactable protocols in artificial agent societies 9

– one of the following moves is a send, while the second one is a receive; we need

to repair the protocol in this case too, as the role in question will need the extra

information to decide whether it will wait to receive the prescribed message or go

ahead and send a message.

If such moves are found in a role’s LTS, then they need to be repaired. This presents

the overhead of having to examine a much larger section of the protocol every time we

come across a silent move, but gives smaller final protocol sizes.

The algorithm for repairing a protocol in this way is shown in Listing 1.3 (this time

we have to include the role LTS as well).

1 // Game Protocol ⇒ GP, Role Protocol ⇒ RP

2 repair(GP, RP_Transition, GP_role, RP) {

3 RP_initial_state = RP_Transition.initial_state;

4 RP_end_state = RP_Transition.final_state;

5 // check if the transition needs to be repaired

6 RP_outgoing_transitions = find_outgoing(RP_initial_state);

7 forall (t ∈ RP_outgoing_transitions,k ∈ RP_outgoing_transitions, k 6= t){
8 if (t.Move == "tau" ∧ k.Move == "tau"){

9 final_state_t = t.FinalState;

10 final_state_k = k.FinalState;

11 outgoing_transitions_newt = find_outgoing(final_state_t);

12 outgoing_transitions_newk = find_outgoing(final_state_k);

13 forall (r ∈ outgoing_transitions_newt ∧ s ∈
outgoing_transitions_newk){

14 Move1 = r.Move; Move2 = s.Move;

15 sender1 = r.Sender; sender2 = s.Sender;

16 Recipients
1
= r.Recipients; Recipients

2
= s.Recipients;

17 if ((sender1 == sender2 == GP_Role) ∧ ((Move1 6= Move2) ∨ (

Recipient
1
6= Recipient

2
)) ∨

18 (Sender1 == GP_Role ∧Sender2 6= GP Role ∧ GP Role ∈ Recipient
2
)){

19 // repair process

20 initial_equiv =equivalence_class(RP_initial_state,GP);

21 end_equiv = equivalence_class(RP_end_state,GP);

22 forall (v ∈ GP.Transitions) {

23 initial_state = v.InitialState;

24 final_state = v.FinalState;

25 if (initial_state ∈ initialequiv ∧
26 final_state ∈ endequiv)

27 v.Recipients = v.Recipients ∪ GP_Role;

28 }

29 }

30 }

31 }

32 }

Listing 1.3: Updating selected silent transitions for role R

Example of Protocol Repair As an example of protocols requiring repair, we can look

at the example in Fig. 1d. According to τ⋆α bisimulation there is no need for repair as no

silent actions are present in the resulting automaton. However, when running branching

bisimulation two silent actions remain. The issue here is that role A arrives at a point

where it has to make a decision as to which message to send to role B, but this decision

will depend on the previous decision of role C for which A has no information about.

In this case, because of the size and the structure of the protocol, all repair algo-

rithms will require the addition of role A to the recipients of messages starting from

state one and emanating to states three and four. Thus, role A should receive all mes-

sages of the protocol and receives the protocol in Fig. 5.

10 George K. Lekeas, Christos Kloukinas, and Kostas Stathis

C−>{B,A}:c

4

3

20 1

A−>B: d

A−>B: e

A−>B: a

C−>{B,A}:b

Fig. 5: Final Protocol for role A

5 Related Work

The concept of breaking down (& repairing) a protocol into constituent roles has been

studied using a variety of approaches and protocol representations. In [4], Desai et al.

identify the dangers of moving from the global view of a choreography (or protocol)

to a local view of a single role (or agent) in either web service or multi-agent systems

applications. This is important as the shift of viewpoint and the respective limitations

on what the web service (or agent) can observe might mean that in the isolated agent

view, there might be not enough information to implement their role specification in the

choreography (or protocol).

Their description of the protocol is in a form of rules of the type α ⇒ β. They

demand that the description of the protocol always allows any proposition that is part

of a rule’s consequent to be part of another rule’s antecedent and reachable from the

beginning of the protocol. As a result of these rules, all protocols are enactable.

Furthermore, since they look at protocols as distributed entities and as a composition

of roles, they provide an algorithm for deriving a role skeleton, i.e., the local view of the

interaction that a role will have of the protocol including its own message exchanges.

The role will need to know the messages it can send and receive, as well as any facts

that enable them and lead to the creation (or discharge) of commitments (obligations of

the role to bring about certain properties). The main idea in the algorithm for working

out the role skeleton for a certain role is that if the role does not have knowledge of

the immediate proposition needed to make a decision as to how to proceed, it should

be possible to backtrack and find another one that leads with certainty to the one been

examined. If the role needs to know α but it does not, then the role should go back in

history and find β so that the role knows it and β → α. This algorithm works on the

assumption that protocols are enactable. However, if they are not, there is no proposed

action to rectify the problem.

Bouaziz [2] uses XML and XSD schema to describe a protocol ontology and views

role as a component that can be fully specified by the Role Profile and Role Behaviour

elements, as specified in [1]. In order to provide a full description of a role in the form

of an XML document, all actions involving role R are been identified. Then, for every

action a found a new node is added to the role XML document and all protocol actions

Producing enactable protocols in artificial agent societies 11

succeeding a are added to it. As a result, the role schema will contain actions that the

role in question is not directly involved in as we are just selecting everything succeeding

action a from the protocol ontology, rather than the set of actions that the role is involved

in. In our approach, only if the protocol is not enactable, additional knowledge will have

to be inserted.

Blanc and Haumerlain [14] raise the issue of the agent been overloaded with big

protocols if all the information is provided, and suggest the separation of knowledge

in two different aspects. These would be the strategic aspect which is generated by the

agent itself and consists of generating a strategy for the protocol (e.g. in an auction

how should the agent bid) and the participation aspect that is about the agent actually

participating in the protocol. The participation aspect will, effectively, realise the strat-

egy plotted by the agent’s strategic aspect. The protocol rules are defined as a Petri

Net [11]. In order to retrieve the rules pertinent to the role, we replace any actions in

which the role is not involved with ǫ. The idea is that every state in the Petri net will

be characterised by a marking, i.e., the number of tokens on each place of the Petri net.

The initial markings will make up the initial state and the transition relation is an empty

set (∅); afterwards, the Graphe [14] algorithm is applied. Their definition of a protocol

can easily be accommodated by the games-based representation in [16]. Moreover, as

we are interested in assessing the agent’s competence and return to the agent the part

of the protocol that it will be assuming in the society, we need the actual content of the

messages rather than the Petri-net markings.

Giordano et al. [5] consider the representation of a local view (or role skeleton), as

they look at the alphabet of each agent (Σi) separately. They are specifically interested

in the actions that agent i can understand (send or receive). Any other action taken in

the protocol will have a local equivalent that will be the empty action (ǫ) if the agent

in question is not involved in it, either as a sender or a receiver. Also, the way that the

local view of the agent is constructed is essentially by the use of τ⋆α bisimulation, as

any actions not relevant to the agent are discarded. This leads to problems, especially

for protocols with a branching structure as it is not taken at all into consideration.

6 Conclusion

In this work, we looked at how a protocol specified as an LTS can be broken down into

individual role automata with the use of branching bisimulation. However, no assump-

tion can be made about the enactability of the resulting protocol. In some cases repair

will be needed. We presented three approaches for repairing the protocol differentiating

on the actions that need to get repaired.

This work can be expanded along with the work on the representation of the pro-

tocols in [16]. We are aiming for a representation with a higher level of abstraction,

including the notion of compound games (i.e., describe the initial game as a compo-

sition of smaller games). If the resulting role automata can be composed in the same

way that the original protocol was, it will allow for a much higher level of granularity.

Furthermore, we aim to look closer into the effectiveness of the repair algorithms. We

plan to perform all different repair algorithms on a number of protocols and assess the

number of repairs that they will be making.

12 George K. Lekeas, Christos Kloukinas, and Kostas Stathis

References

1. Bouaziz, W.: Une Ontologie de Protocoles pour la Coordination de Systèmes Distribués. In:

Journées Francophones sur les Ontologies (JFO), Sousse, Tunisie, 18/10/07-20/10/07. pp.

231–246. Centre de Publication Universitaire (Octobre 2007)

2. Bouaziz, W., Andonoff, E.: Dynamic execution of coordination protocols in open and dis-

tributed multi-agent systems. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J.,

Jain, L.C. (eds.) Agent and Multi-Agent Systems: Technologies and Applications, Third KES

International Symposium, KES-AMSTA 2009, Uppsala, Sweden, June 3-5, 2009. Proceed-

ings. Lecture Notes in Computer Science, vol. 5559, pp. 609–618. Springer (2009)

3. Davidsson, P., Johansson, S.: On the potential of norm-governed behavior in different

categories of artificial societies. Comput. Math. Organ. Theory 12(2-3), 169–180 (2006),

http://dx.doi.org/10.1007/s10588-006-9542-x

4. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design abstrac-

tions for business processes. IEEE Transactions on Software Engineering 31(12), 1015–1027

(2005)

5. Giordano, L., Martelli, A.: Verifying agents’ conformance with multiparty protocols. In:

Fisher, M., Sadri, F., Thielscher, M. (eds.) CLIMA IX. Lecture Notes in Computer Science,

vol. 5405, pp. 17–36. Springer (2008)

6. Goradia, V., Mowry, B., Kang, P., Panjwani, M., Lowe, D., Somogyi, A., Magruder, P., Wag-

ner, T., McNeil, D., Yang, C., Arms, W., Sirbu, M., Tygar, D.: Netbill 1994 prototype. TR

1994-11, Information Networking Institute, Carnegie Mellon University (1994)

7. Kloukinas, C., Lekeas, G., Stathis, K.: From agent game protocols to implementable roles.

In: EUMAS 08, Sixth European Workshop on Multi-Agent Systems, Bath, UK. pp. 1–15

(2008)

8. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4(1),

67–95 (1986)

9. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial

intelligence pp. 26–45 (1987)

10. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secau-

cus, NJ, USA (1982)

11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4),

541–580 (April 1989)

12. Nwana, H.S.: Software agents: An overview. Knowledge Engineering Review 11(3), 205–

244 (1996)

13. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Program. Lang.

Syst. 31, 15:1–15:41 (May 2009), http://doi.acm.org/10.1145/1516507.1516510

14. Sibertin-Blanc, C., Hameurlain, N.: Participation components for holding roles in multiagent

systems protocols. In: Gleizes, M.P., Omicini, A., Zambonelli, F. (eds.) ESAW. Lecture Notes

in Computer Science, vol. 3451, pp. 60–73. Springer (2004)

15. Stathis, K.: Game–based development of interactive systems. Ph.D. thesis, Department of

Computing, Imperial College London (November 1996)

16. Stathis, K., Lekeas, G., Kloukinas, C.: Competence checking for the global E-service soci-

ety using games. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW.

Lecture Notes in Computer Science, vol. 4457, pp. 384–400. Springer (2006)

17. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols. Au-

tonomous Agents and Multi-Agent Systems 2(3), 217–236 (1999)

18. Weiser, M.: The world is not a desktop. ACM Interactions 1(1), 7–8 (November 1994),

http://doi.acm.org/10.1145/174800.174801

