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Abstract. This paper describes a multi-agent learning approach to
adaptation to users’ preferences realized by an interface agency. Using a
contract-net-based negotiation technique, agents as contractors as well as
managers negotiate with each other to pursue the overall goal of dynamic
user adaptation. By learning from indirect user feedback, the adjustment
of internal credit vectors and the assignment of contractors that gained
maximal credit with respect to the user’s current preferences, the pre-
ceding session, and current situational circumstances can be realized. In
this way, user adaptation is achieved without accumulating explicit user
models but by the use of implicit, distributed user models.

1 Introduction

Interface agents are computer programs that enhance the human-computer inter-
action by mediating a relationship between technical systems and users [Lau90].
On the one hand, they provide assistance to users by acting on his/her behalf
and automating his/her actions [Nor94]. On the other hand, they allow more
human-like communication forms by translating qualitative input of the human
user to precise commands which can be interpreted by the application system
[WC95].

To assist the user in performing tasks, interface agents need to have knowl-
edge about the user and the application. A prominent approach is to build
learning interface agents that automatically acquire knowledge about tasks and
preferences of the user by applying machine learning techniques [Mae94]. In
such approaches, a single personal interface agent is used which customizes to
an individual user by acquiring explicit user data.

Since acquiring user-specific data and building explicit user models has found
critique with respect to privacy of personal information [Nor94], we pursue a dif-
ferent approach where an interface agency — consisting of multiple sub-agencies
— customizes to users’ preferences by building an implicit, distributed model of
the user. We use learning from indirect user feedback that allows to determine
which agents of different sub-agencies are preferred by the individual user and
in the actual situation. Internally, the dynamic activation of single agents is re-
alized by a contract-net learning process where multiple agents in the role of
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contractors as well as agents in the role of managers negotiate with each other
to pursue the common goal of dynamic user adaptation.

The paper is structured as follows: We start by distinguishing our approach
from related work in the field of user adaptation and learning interface agents.
We proceed by characterizing our learning technique in terms of the learning
category and the form of learning. Having described the basic ideas and require-
ments, we focus on the realization of agents in the role of contractors as well as
agents in the role of managers. The learning technique which has been integrated
in the interactive 3D-graphics system VIENA is then illustrated by an example
of adaptation to users’ preferences for different spatial reference frames.

2 Related Work

To realize an automatic adaptation to the varying preferences different users
could have for the possible solutions produced by an application system, a com-
puter system must have knowledge about its users and the application domain.
Conventional approaches in the fields of Artificial Intelligence (AT) and Human-
Computer Interaction (HCI) are commonly based on the modelling of users
where information about the users is gathered, represented, and used to adapt
to users’ requirements [McT93]. When acquired explicitly, a user model demands
a large amount of work from the application designer (or the user in the case
of end-user programming), and it is relatively static. In the case of automatic
aquisition, such disadvantages do not occur. Nevertheless, both methods have
the draw-back that knowledge about the user is kept in a explicit knowledge
base; this fact has found critique with respect to privacy of personal information
[Nor94].

Interface agents are considered as metaphor of indirect management [Kay90]
instead of interacting via commands or direct manipulation. For example, [Chi90]
realized a learning interface agent that helps a user solve problems in using
the UNIX operating system. Such approaches to user adaptation are based on
endowing the interface agent with a huge amount of background knowledge about
the user and the application [MK93]. Similiar to the methods described above,
they have the disadvantage that a huge amount of fixed knowledge has to be
acquired.

More elaborated approaches to learning interface agents rely on the auto-
matic aquisition of knowledge about tasks and preferences of the user by apply-
ing machine learning techniques. For example, [Mae94] uses the techniques of
as learning from observations, learning from feedback, learning from examples,
or learning from other agents to build learning interface agents for electronic
mail handling and information filtering. [MCFMZ94] use decision trees to re-
alize a learning personal assistant for meeting scheduling. [Sel94] has built a
user-adaptive teaching agent that supports users in writing Lisp programs by
watching the users actions and using a production system and a blackboard
mechanism. The main difference to our approach, presented in this paper, is
that a single personal interface agent is used which customizes to an individual



user by acquiring user data. Thus, the problem of keeping personal information
of users still consists.

Although a number of multi-agent learning techniques exists, relatively few
ones focus on the aspect of user adaptation. In [LMM94], agents collaborate with
each other to steepen the agents’ learning curves and to handle unencountered
situations. With respect to contract-net negotiation, the integration of learning
facilities has been studied by some researchers. In [Dow95], for example, agents
of a multi-agent system learn about other agents’ abilities and task load to switch
from broadcasting task announcements to direct task assignment. [OHA96] has
realized the multi-robot learning system LEMMING that learns to determine the
most suitable robot for task execution by using case-based reasoning within the
contract-net negotiation. Similiar to our approach, useful information of previous
negotiation messages is extracted. In contrast to our approach, their work is
limited to the aspect of optimizing communication overhead. In summary, using
contract-net-based learning to achieve user adaptation without building explicit
user models seems to be an innovative approach.

3 Characterizing the Learning Method

Before describing the contract-net-based learning method in detail, we will char-
acterize our approach in terms of the learning category and the form of learning
with emphasis on the learning strategy and the learning feedback as proposed

in [Wei96].

3.1 Learning Category

Allowing adaptation to users’ preferences without building explicit user models
relies on the design of a multi-agent system that consists of numerous sub-
agencies realizing different functionality types. Each sub-agency joins agents of
the same type but with slightly different internal functionalities together and
corresponds to a class of users’ preferences with respect to a functionality type.
Each agent of a sub-agency realizes a specialized preference of its sub-agency’s
preference class.

By exchanging information via a contract-net negotiation mechanism, the
agency, as a unit, learns by organizing itself in the way that those agents of each
sub-agency can be activated which correspond best to the actual preferences of
the current user in the given situation. This means that learning is aimed at a
dynamic adaptation with respect to

1. preferences of different users, as well as
2. time-varying preferences of an individual user during a session.

In this way, the approach can be categoriezed as multi-agent learning insofar as
it requires the presence of multiple agents which negotiate with each other to
pursue the common goal of dynamic user adaptation.



3.2 Form of Learning

The agency learns the goal of user adaptation by offering solutions to the user
and observing the user’s feedback, i.e., implicit positive and explicit negative
feedback. Implicit positive feedback is given when a user’s instruction is followed
by any instruction which does not decline the previous one. Explicit negative
feedback 1s given when the user corrects the solution offered by the interface
agency.

The feedback provided by the user acts as a critic which is interpreted and
encoded by the interface agency in the form of credit values. Credits are stored
locally by each agent and correspond to agents’ strengths at discrete interaction
steps. Until the user’s instructions are evaluated entirely with respect to his/her
preferences, a number of sub-tasks have to be solved by the interface agency.
Therefore, a number of communication and cooperation processes are carried out
between different agents within and across sub-agencies. The overall adaptation
which emerges from consecutive feedback by the user is then achieved by the
cooperation of agents.

The learning strategy decribed here can be classified as a form of learning
by discovery since agents capture knowledge about the interaction process and
about other agents by making obeservations and generating solutions on the
basis of the observational results. From the perspective of the feedback that is
available to the agency the method can be regarded as reinforcement learning
since the agency has to learn the right actions by not precisely specified feedback.

4 Contract-Net-Based Learning

Considering contract-net negotiation within a multi-agent system, the execution
of tasks and sub-tasks i1s the result of a bidding scheme between agents in the
role as a contractor and agents in the role as a manager [DS83]. Once a task has
to be executed, a manager agent sends a task announcement to its contractor
agents. With respect to the task description, idle contractors generate bids and
send them to the manager. The manager evaluates all incoming bids and selects
one or more contractors for task execution.

4.1 Extending Standard Contract-Net Negotiation

On the basis of the standard contract-net mechanism, we have integrated the
following two steps into the contract-net negotiation to achieve user adaptation:

1. Adjustment of credits in correspondence to the user feedback and the actual
situation parameters

2. Assignment of those agents that are eligible for the task and have maximal
credits in correspondence to the interaction process

These steps are realized by different agent instances of the interface agency. The
first step is realized by agents currently in the contractor role which extract and



store relevant information from incoming negotiation messages, consider actual
situation parameters, use the results to adjust credits, and include current credits
in their bids. The second step is realized by agents as managers which compare all
incoming bids by evaluating credits and the negotiation history, allocate the task
to the most promising contractor, and reject the bids of all other contractors.
Figure 1 illustrates the negotiation process for the case of two contractors and
one manager’.

Interface Agenc
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Fig. 1. A detail of the negotiation process: Contractor 2 generates the better bid and
gets the task whereas the bid of the potential contractor 1 is rejected.

In this way, the overall adaptation to users’ preferences is achieved by a set
of negotiation functions that are executed locally between managers and con-
tractors and results are distributed in the agent system. Each of these functions
realizes the two steps mentioned above by the concatenation of the functionality
of a manager and of a number of contractors. For the case of a manager k& and
m contractors, the negotiation function at an interaction step ¢ is defined by:

freg(X (1)) = managery (contractor: (X1 (t)), ..., contractory, (X, (1))

Each contractor function contractor; realizes the adjustment of credits based on
the data X;(¢) extracted from the current and preceding negotiation messages.
On the basis of these computations, the manager function managery realizes the
assignment of the most successful contractor. A schematic view of the negotiation
function is shown in Figure 2.

Taking a more abstract point of view, the activation of preferred agents of
different sub-agencies gives rise to an implicit, distributed user model where the
acquisition of explicit user models is avoided. Besides using the contract-net

! We have adjusted terminology used in earlier publications to be consistent with

[DS83].



Fig. 2. Functional scheme of the contract-net-based learning approach

mechanism as tool to achieve a user-adaptive multi-agent system, extensions of
the standard negotiation process as described at the beginning of this section
concern:

— contractors and managers store knowledge about the preceding negotiation
processes

— this knowledge is used, by contractors, to adjust credits and, by managers,
to assign contractors

— bids include user feedback and credits corresponding to the actual situation

4.2 Requirements of the learning strategy

A prototype version of the adaptation method, where simple heuristics is used
concerning the modification of credits and the assignment of contractors, 1s de-
scribed in [LW96]. With this version, our system was already able to adapt to
changing preferences of users. A disadvantage of this first prototype system is
that credits are simply represented by scalar values that loose information about
the history about potentially successful contractors and, thus, allow only very
short-term adaptation. Moreover, the method 1s not appropriate for handling
any given number of contractors and managers. Finally, no current situation
parameters are taken into account when adjusting credits.

To allow a more flexible adaptation, our first version has been further elabo-
rated with respect to the manager and contractor functions. The basic require-
ment is that the interface agency as a whole should be able to organize itself in
the way users’ preferences and actual situation parameters call for. To achieve



an ongoing adaptation by a negotiation technique, a simple representation of
credits or a simple selection process of contractors is not suitable. To this end,
general heuristics has to be defined which concerns the adjustment of credits
and the assignment of agents. More concrete, the following requirements should
be satisfied:

1. Credits represent the strengths of contractors to allow an intelligent assign-
ment of the best contractor.

2. Current situation parameters constrain the adjustment of credits to model
the influence of situational circumstances on users’ preferences.

3. Contractors store different credits for different contractor-manager relation-
ships to distinguish between managers.

4. On negative feedback, the direct activation of a contractor that has not
caused the undesired solution is possible.

5. Time-varying preferences can be handled.

6. Assignment of dominant contractors from any number of contractors and by
any number of managers can be realized.

7. To reduce communication overhead, tasks are allocated to a contractor di-
rectly if the contractor was successful in the preceding session.

8. Conflicts caused by the fact that one contractor is equally successful as other
contractors can be resolved.

The first three aspects concern the contractor function; the last three aspects
concern the manager function; aspects four and five pertain to both functions.
Since agents of the entire multi-agent system can take on the role of a contractor
as well as the role of a manager in different situations and at different time steps,
each agent has to perform both functions. The execution of these functions is part
of a communication and cooperation framework, so that internal functionalities
can be realized independently, and no supervision by any kind of a globally
informed agent 1s needed. In the following two sections, we describe in detail the
heuristics to define both functions, the contractor and the manager function.

5 Agents as Contractors

To adapt to users’ preferences, the contractor learning functions realize the ad-
justment of credits based on data extracted from negotiation messages and the
manager learning functions realize the assignment of most promising contractors.
In detail, each contractor function performs the following steps: extract and store
relevant information from incoming negotiation messages, compute actual situa-
tion parameters, and use the results to adjust credits which are included in their

bids.

5.1 Representation of Credits

The basic idea to decide which information is relevant for the adaptation task
and, thus, has to be captured is motivated by the way tasks would normally



be assigned in a company. Applied to our context, a contractor i1s considered
successful when (1) a high number of tasks was sent to the contractor’s sub-
agency, (2) a high number of tasks was performed by that contractor, and (3) a
high number of tasks was successfully performed by that contractor.

Realizing this idea demands that each contractor acquires knowledge at any
negotiation step and represents the knowledge in some kind of a time-dependent
vector of which it keeps track during the ongoing session. In fact, two kinds of
vectors have to be defined. First, a data vector is used which represents acquired
message data to determine the three above numbers. At any negotiation process
t each contractor stores the following data vector?:

data(t) = (message_id(t), sender(t), recipient(t), type(t), content(t))

where type refers to the negotiation technique used (task announcement or direct
task allocation) and content represents the kind of feedback the user has given,
1.e. positive or negative.

Second, a vector of credit values, in short, credit vector, 1s used which re-
presents the agents’ strengths at discrete negotiation steps including the three
numbers mentioned above. At any interaction step t the credit vector of a con-
tractor is defined as follows:

credit(t) = (conf(t), sit(t), suctask(t), perftask(t), task(t))

where task is the number of tasks sent to the contractor’s sub-agency, perftask is
the number of tasks performed by that contractor, and suc_task is the number of
tasks successfully performed by that contractor. sif represents the conformity of
the current situation with the preference embodied by the contractor. confresults
from combining the other vector components in a special way and represents the
overall confidence the contractor has doing the task successfully.

In general, contractors cooperate with several managers. Since it is possible
that a contractor has successfully performed tasks allocated by one manager but
was unsuccessful performing tasks allocated by another manager, each contractor
stores a credit vector for each manager and manipulates each vector depending
on the current manager.

5.2 Computation of Situation Parameters

Naturally given users’ preferences may depend on situational circumstances what
can result in a variation on their preferences. For example, in our application
scenario (cf. Section 7) the orientation of reference objects to the user’s view is a
relevant situation parameter. To handle this situational aspect, current situations
have to be taken into consideration to realize user adaptation. In our approach,
this is achieved by integrating the computation of situation parameters in the

2 Precisely, a data vector data$,(t) is computed for each contractor ¢ in any sub-agency
sa involved. For the ease of reading, we have dropped indices ¢ and sa in the formula.
The same holds true for credit(t), sit(t), task(t), etc.



adjustment of credits. That means that the current situation has to influence the
adjustment of credits positively whenever this situation seems to be in conformity
with the user’s preference that the contractor is realizing.

To analyze the situations and integrate the results in the adaptation process,
a set of independent features

flafZa"'afn

is used. Each feature has a value ffpt that is given when a situation confirms
this feature optimally with respect to the preference the agent realizes and a
current value f;(t) that determines the value of that feature at the negotiation
step . The kind of features and the number of features i1s defined locally by
each agent and can be considered as part of its local knowledge. Features vary
over sub-agencies but are equal within one sub-agency since each sub-agency
models the same functionality type. Optimal feature values also vary within a
sub-agency since each member of this sub-agency realizes another preference
with other basic requirements of the modelled preference class.

On this basis, the current situation is then measured by computing the
weighted sum of feature deviations:

Yowilfi(t) =Y wil i — fit))]
i=1 i=1

where the weight w; determines the importance of the feature f; as measurement
for a situation. The result of this equation is a measurement for the deviation
between the current situation and a situation where the preference is confirmed
optimally. Since the component sit of the credit vector is a measurement for the
conformity of the current situation with the preference embodied by a contractor,
at any negotiation step ¢ sit 1s computed as:

sit(t) = 1—ZwZAfi(t)

The value of sit will be calculated whenever a contractor wants to generate a
bid in response to a task announcement. Especially at the beginning of a session
(when no or few information is available), the consideration of how well the
current situation confirms a given preference is useful to make more promising
predictions. with respect to adaptation efficiency. In the following section, we
describe how sit 1s further used and integrated in the adjustment of credits.

5.3 Adjustment of Credits

So far, we described what kind of information is represented and how the sit-
uational influence on users’ preferences is measured. For a given credit vec-
tor eredit(t) = (conf(t), sit(t), suctask(t), perftask(t),task(t)), we now explain
how the last three credit components and the confidence value are computed.
The values of the last three vector components are computed on the basis of the



information stored in the data vector and acquired at each interaction step t.
Using this information, task, perftask, and suc_task are updated by the follow-
ing rules where ¢ could be any contractor of a sub-agency sa. The value of task
is incremented by 1 whenever a task is posted to a sub-agency sa or a task is
directly allocated to a contractor ¢; otherwise it remains the same.

0,if t=0
task(t — 1)+ 1,if  (type(t) = task announcement A
recipient(t) = sa) V
(type(t) = task allocation A
recipient(t) = ¢)
task(t — 1), else

task(t) =

The value of perftask is determined in a similar but a bit more restricted way
such that it will be incremented whenever a contractor ¢ has actually performed
the corresponding task; otherwise it remains the same.

0,if +=0
perftask(t — 1)+ 1,if  (type(t) = task allocation A
recipient(t) = ¢)
perfitask(t — 1), else

perfitask(t) =

The number of tasks successfully performed is incremented by 1 whenever a
task was successfully performed by a contractor ¢, that is, the user feedback is
positive; otherwise it remains the same.

0,if +=0
suctask(t — 1)+ 1,if  (type(t — 1) = task allocation A
suctask(t) := recipient(t — 1) = ¢ A

content(t — 1) = positive)
suctask(t — 1), else

Confidence. Confidence refers to the trust a contractor has doing the task
successfully. Having computed the last three components and the sit component
of the credit vector as described above, the value of conf can be updated by
using these results in a combined way. The confidence a contractor has that it
will execute the posted task successfully is influenced by three factors:

P: Performance with respect to the previous task announced to the contractor’s
sub-agency

D: Degree of the contractor’s dominance in the preceding session

St Degree of situational conformity

Speaking metaphorically, these three factors describe factors that influence and
constrain the selection of users’ preferences in the way that they reflect the user’s
satisfaction with the offered solution, the interaction history, and the situational
dependency.



The performance of a contractor is the result of the user feedback and the
contractor’s involvement in the previous task. In more detail, the performance
P at any negotiation step ¢ 1s computed as:

0,if (task(t) =0 V perfitask(t) =0) V
(perfiask(t) — perfitask(t — 1) = 0)
Pl — 1,if (perftask(t) — perfitask(t — 1) = 1) A
() = (suctask(t) — suctask(t —1) =1)
—1,if (perftask(t) — perftask(t — 1) =1) A
(suctask(t) — suctask(t —1) = 0)

This means that the performance is high when a contractor has performed the
previous task successfully; the performance is low when the solution which the
contractor has offered was corrected by the user; the performance is neither high
nor low when the contractor has either never performed before or when the
previous task has not been performed by this contractor.

To determine the degree of the contractor’s dominance, a test dominant(t)
is carried out which checks (1) if the number of successfully performed task in
relation to the number of performed tasks (dy) is greater than a threshold a(%)
and (2) if the number of performed tasks in relation to the number of announced
tasks (ds) is greater than a threshold 3(¢). The dominance degree D is based on
the result of the dominant predicate at any negotiation step ¢:

0,if (task(t) =0 V perftask(t) = 0)
D) = (dy + d2)/2, if dominant(t)
(dy + da)/2 — 1, if ~dominant(t)

The last influence factor S is based on the credit component s#t in the way that
a test sit_conform is performed which checks again if the value of sit is greater
than a threshold «(¢). The result of this test is used to compute the value of S
at any negotiation step ¢ in the following way:

o stt(t), if sit_conform(t)
5@) = {sit(t) — 1, if =sit_conform(t)

The thresholds «, 3, v are updated in correspondence to the contractors’ perfor-
mance P. When the performance is positive the thresholds are decreased; in the
other case, the thresholds are increased. For example, the value of « is computed
at any negotiation step ¢ by the following rule:

Qmin, if 1 =0

aft) = {a(t — 1) —1/n Aa(t)P(t), else

where Aa(t) determines the intervall remaining for manipulation. Thus, contrac-
tors need a lower dominance and a lower situational conformity to be considered
as successful in future interactions when they have performed task positively in
comparison to executing tasks negatively.



Resulting from the above computations, the confidence value at any negoti-
ation step f is determined by:

. P(t),if P(t)=-1
conf(t) = { (wp P(t) 4+ waD(t) + wyS(t), else

The rationale behind the definition above is as follows. A contractor which has
a low performance as result of having received negative feedback gets the least
minimal confidence value possible. In the other case, its confidence is given by
computing the weighted sum of the three influence factors P, D, and S°.

Combining these three factors allows to efficiently assess contractors just by
considering one value. In a similiar way, [LMM94] use a trust value to select
appropriate agents for collaboration. Nevertheless, the credit vector contains
additional components that allow a more detailed discrimination between con-
tractors in conflicting cases without solely relying on contractors’ evaluations.

Defining credits in this way, the requirements described in Section 4 can be
satisfied as far as they concern agents as contractors. (1) The credit vector, espe-
cially the conf value, represents a kind of strength and captures information that
can be used for a more stable adaptation; (2) the current situation is integrated
in the adjustment of credits; (3) different contractor-manager relationships are
modelled; (4) the direct activation of another contractor on negative feedback
as well as (5) the adaptation to time-varying preferences is prepared by the
definition of conf.

6 Agents as Managers

Based on the contractor function, the manager function of each agent has to per-
form the following steps to achieve the overall adaptation to users’ preferences:
decompose and announce tasks, pool incoming bids corresponding to the task
announcement, and assign the most promising contractor based on the results
of the comparison of bids.

6.1 Announcement of Tasks

Each user’s instruction requires the solution of a number of sub-tasks by the
agent system as a unit. Therefore, a number of negotiation processes are car-
ried out between agents within and across sub-agencies. To solve a sub-task, a
manager usually gets other agents or sub-agencies involved which supply the
manager with sub-results. Thus, the manager decomposes a sub-task in further
sub-tasks and generates a task announcement for each task to be executed.
Besides general information including the sender, the send time, and the task
description, a task announcement contains the user feedback of the current in-
struction. Negative user feedback 1s included explicitly whereas positive feedback

® In our current implementation, the weights each have the fixed value of 1/3.



is included implicitly. More precisely, negative feedback is indicated by append-
ing a negative instruction in front of the task description which 1is left out in the
case of positive feedback.

The question remaining is to which agents credit has to be assigned (com-
monly known as credit-assignment problem). In multi-agent learning, this prob-
lem decomposes into the problems of inter-agent and intra-agent credit-assign-
ment [Wei96]. Concerning the inter-agent problem, the agent system has to de-
cide what actions by what agent contributed to the performance change. In
our approach, this decision can easily be made since users’ preferences are con-
sidered as independent. This means that each user’s instruction concerns one
preference, i.e.; a special sub-agency. Thus, the involved sub-agency can easily
be determined and credited. Nevertheless, our approach can also handle prefer-
ences which depend on each other by assigning credit or blame to any sub-agency
that contributed to the offered solution.

With regard to the intra-agent problem, an agent has to decide which facts
led to the contributing action. In our case, the activation of a special agent of the
contributing sub-agency relies on the credits included in bids. This means that
this kind of problem is solved by adjusting internal credit values in correspon-
dence to the preceding negotiation processes and the current feedback included in
the task announcement. More generally, the inter-agent credit-assignment prob-
lem is solved by agents as managers whereas the intra-agent problem 1is solved
by agents as contractors.

The execution of tasks by the way of announcing tasks requires a number of
communication and cooperation processes. To reduce this interaction overhead,
managers allocate tasks directly if contractors have executed tasks successfully
over a period of contracts. Therefore, each manager acquires knowledge about
contractors it is collaborating with and about their success or failure in the pre-
ceding session. This information is captured in a time-dependent history vector
for each sub-agency*:

history(t) = (task(t), success(t), recipient(t), (1))

where task represents the number of tasks allocated to a sub-agency, success
stores whether the last task was performed positively or negatively, recipient
refers to a specific contractor of the considered sub-agency, and J corresponds
to a time-varying threshold which is used for bid evaluation tests.

Using this knowledge, a manager can decide if a contractor has performed
tasks successfully over a period of contracts and in the positive case allocate the
next task to this contractor directly. A similiar idea was presented by [Dow95]
where a learning contract-net algorithm is used to reduce communication over-

head.

* For the ease of reading, the index sa indicating a special sub-agency is dropped in
the formula; cf. footnote 1.



6.2 Pooling Bids

After having sent the task announcement, a manager waits for corresponding
bids of the contractors of the collaborating sub-agency. Each incoming bid is
preprocessed by

1. extracting credits included in the bid,
2. pre-computing factors which are relevant for comparison of bids, and
3. pooling the results in an internal credit data structure.

The factors mentioned by step two are results of tests concerning how successful
the contractor that has sent the bid has been in the preceding session. Similiar
to the way agents as contractors perform tests for computing their confidence,
a manager performs tests that are used to determine the contractors’ strength.
For instance, it checks if the number of successfully performed tasks in relation
to the number of performed tasks is greater than a threshold. To perform these
computations, the threshold of the history vector is used. Before performing the
tests, § is updated by searching for the appropriate entry of the history vector
and using the entry values in the following way:

Omin, it =0
i) = Jt—=1)=1/n (6(t = 1) — dpsn ), if success(t)
dt—=1)+1/n (dmae — 06(t — 1)), if ~success(t)

The pooling of bids is constrained by two disjunctive conditions that terminate
the waiting process. The manager is waiting for incoming bids until a maximal
time interval is reached or all members of the contracting sub-agency have sent
their bids. Therefore, the manager determines how many contractors are active
before sending the task announcement. As soon as one of these conditions are
satisfied, the manager starts to compare bids or, if no bid was sent, stops the
current negotiation process.

6.3 Comparison of Bids

To determine the contractor that has worked most successfully in the preceding
session, a manager compares each bid with each other bid on the basis of the
credit information extracted and pooled in the previous step. For efficiency, this
procedure is not executed if just one bid was pooled. In more detail, the manager
starts the comparison by considering the entire set of bids and, then, reduces the
search space step by step using special criteria, described below, until precisely
one contractor is left or all citeria have been matched. In the latter case, one
contractor of the remaining set of contractors is chosen.

The criteria for assigning a contractor decompose in four main classes of
rules. The first class of rules concerns the consideration and comparison of the
confidence values, and includes the following three rules:



Rule 1:
Remove the bids where conf has the minimal value;
If the resulting set of bids is empty
do stop;
else

do Rule 2,

Rule 2:
Determine the maximal conf value;
If this value is greater than 0
do Rule 3,
else do Rule 4;

Rule 3:
Choose the bid where confis maximal,
Stop;

Evaluating the confidence value conf first allows that another contractor can be
activated when negative feedback occurs because bids with minimal confidence
value will be removed first. If the maximal confidence value is not positive, the
manager does not rely on the contractors’ self-evaluation and, thus, proceeds
with further evaluations.

The second criterion considers the evaluation of the situational conformity
by performing rule four:

Rule 4:

Choose the bids where sif is greater than J;

If the resulting set contains exactly one bid
do stop;

else

do Rule b,

Satisfying that the sit value is greater than a threshold, a manager allocates a
task to a contractor even if its other credit values, especially its confidence value,
are low. By this, time-varying preferences based on situational circumstances can
be modelled.

The third class of rules similiarly aims at modelling time-varying preferences
but concentrates on the degree of dominance which contractors have reached.

Rule 5:
Choose the bids where the relation between suc_task and perftask (q1) and
the relation between perfitask and task (¢2) is greater than d;
If the resulting set contains exactly one bid
do stop;
else if the resulting set contains more than one bid
do Rule 6; else
do Rule 7,



The rationale behind Rule 5 is that contractors should be preferred if they have
worked better than average in the preceding session. A manager discriminates
between the situations where none of the contractors or more than one contractor
satisfies this condition (and/or the condition of Rule4) since it makes a difference
whether to choose between poor contractors or between better ones.

The last criterion, finally, contains rules to distinguish between contractors
in order to determine most promising ones. Thus, these rules can be regarded as
conflict resolution rules.

Rule 6:
Determine the bids where 3 (conf +sit + q1 + ¢2) is maximal;
If the maximal value is ambiguous within an e-intervall
do choose the bids where sit is maximal,
else
do stop;

Rule 7:

Choose the bids where the difference between perftask and suc_task is min-
imal;

If the resulting set contains more than one bid

do Rule 6;

The first of these rules distinguishes between more promising contractors by
taking almost all credit values into account and, in conflicting cases, preferring
the one where the situational conformity is maximal. By the latter rule, the
manager first chooses that contractor which has caused a minimal number of
negative feedbacks during the preceding session (to determine the best one of
the poor ones). Subsequently, the manager performs Rule 6, described above, to
handle conflicting cases.

Defining rules in this way, the direct activation of another contractor on
negative feedback, the handling of time-varying preferences, the assignment of
successful contractors from any number of contractors, and the discrimination of
contrators in conflicting cases can be realized. Moreover, tasks are allocated to
contractors directly to reduce communication overhead. Thus, the requirements
stated in Section 4 are satisfied completely.

7 Example Application

The adaptation method described in this paper was implemented in a multiagent
interface system for interaction with a 3D-virtual environment, carried out in
the VIENA project [WC95]. The user can instruct the system by way of verbal
and gestural input. These qualitative instructions are translated by the interface
agency to internal commands which can be interpreted by the graphical system.
As an example application, a virtual office room can be manipulated by the user.
To enhance interaction comfort, we have realized an anthropomorphic agent,
named Hamilton, that is visualized in the scene (Figure 3) and can respond to
and carry out users’ instructions [WLJJLF].
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Fig. 3. Snapshot of a VIENA example scene

7.1 VIENA Interface Agency

To reconstruct the overall user’s instruction, a number of different tasks have
to be solved which are distributed within the multiagent interface system. The
entire interface agency consists of a set of communicating and cooperating sub-
agencies, each of them realizing a different functionality (cf. Figure 4). For
instance, a space agency determines spatial transformations, a color agency
changes the appearance of scene objects, a hamilton agency determines actions
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Fig. 4. Architecture of the VIENA multiagent interface system



of the anthropomorphic figure. Agents communicate and cooperate by using a
variation of the contract-net negotiation protocol in which each agent can take
on the role of a contractor as well as a manager [LWC95].

Since the user interacts with the system by way of qualitative verbal and
gestural instructions (which are often situated), their precise meanings can usu-
ally not be resolved unambiguously. Rather different solutions are possible. The
practical experience with the VIENA system has shown that significant vari-
ations of users’ preferences exist with respect to possible solutions. Thus, the
VIENA agency proves to be a reasonable testbed for integrating adaptation fa-
cilities. We have built agents of the same type but with slightly different internal
functionalities — corresponding to different users’ preferences — and joined them
together in a sub-agency. To this end, the requirements for using the contract-net
learning approach (cp. Section 3) are satisfied.

7.2 Contract-net Learning in VIENA

The adaptation method described in this paper has been implemented and tested
for a variety of examples, primarily for the case of users’ preferences for differ-
ent spatial reference frames. The semantics of spatial instructions may depend
on different perspectives [Ret88], e.g., they may be interpreted from the user’s
point of view (deictic perspective) or, alternatively, from the point of view of
an object which has a prominent front (intrinsic perspective). Experiments with
the VIENA system have shown that, due to individual differences among users,

Fig. 5. Possible solutions of the instruction “Hamilton, go left.”: Hamilton can move
to the left from the hamilton-intrinsic (H) or the user-deictic (U) perspective.



one spatial reference frame may be preferred over the other one [JW96].

As an example, consider the situation in Figure 5. Two possible solutions can
be offered by the system when the user has instructed Hamilton to go left. In
addition, users’ preferences for spatial reference frames may depend on the orien-
tation of the object given in the actual situation. On the basis of the hamilton-
intrinsic reference frame, Hamilton would move in the direction indicated by
"H’; on the basis of the user-deictic reference frame, Hamilton would move in
the direction indicated by 'U’. Which reference frame is preferred depends on
the preference of the current user in the given situation. Therefore, we have im-
plemented two instances of the Hamilton sub-agency and equipped them with
the contract-net learning framework. Whenever the user gives an instruction
concerning the anthropomorphic figure, both contractors compute situation pa-
rameters, adjust their credits, and generate a bid including credits. Situation
features concern the orientation of Hamilton and the distance between Hamil-
ton and the user (camera). Any other agent of the interface agency, e.g. the
coordinator agent, can act as a manager.

Similarly, we have implemented two space contractors which compute spatial
transformations on the basis of the user-deictic reference frame, or on the basis of
the object-intrinsic reference frame, respectively. In addition to the two situation
features mentioned above, the space agency uses three further features to analyze
the situations: intrinsic character of the reference object and of the possibly
underlying object as well as the orientation of the underlying object.

Finally, we have tested the adaptation method for the case of users’ prefer-
ences for different color sensation by implementing two color agents that offer
more drastic or smoother color transformations. Situation features could pertain
to the lightings of the scene but are, so far, not integrated in the system.

First experiments have shown that the approach described above can realize
adaptation to users’ preferences effectively and satisfactorily with respect to the
requirements stated in Section 4. A fuller evaluation, to be carried out on the
basis of artificial users, is one of our very next goals.

8 Discussion

This paper presented an multi-agent learning approach to user adaptation real-
ized by an interface agency. The interface agency consists of several sub-agencies
which represent different pre-established preference classes. Each sub-agency
consists of several agents corresponding to the possible preferences. Agents use
a contract-net based negotiation process where each agent can take on the role
of a contractor as well of a manager. As contractors, agents acquire knowledge
about the user, the preceding session, and situation parameters, which is cap-
tured in internal credit vectors. As managers, agents acquire knowledge about
collaborating contractors and about their success or failure in the preceding ses-
sion. By learning from indirect user feedback in the ongoing session, contractors
and managers compete with each other to meet the users’ preferences.



Besides extending and using the contract-net negotiation as an intuitive
mechanism to achieve user adaptation, one of our main results is a general
framework for adaptation to users’ preferences which can easily be integrated in
a contract-net based multi-agent system. By this, internal functionalities can be
realized independently, and no supervision by any kind of a globally informed
agent is needed. Furthermore, the system’s knowledge of the user is expressed in
the activation of certain agents of the entire interface agency. In this way, user
adaptation is achieved by the use of implicit, distributed user models, without
accumulating explicit user models.

In the future, our main working topics will concentrate on the evaluation of
the learning strategy. In order to carry out replicable experiments, we will define
artificial users and compare the results offered by the interface agency with
predefined expectations of the artificial users. This evaluation will include the
detailed evaluation of the contractor and manager function and its optimization.
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