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Abstra
t

We determine the three-loop e�e
tive parameters of the dimensionally redu
ed theory of EQCD

as mat
hing 
oe�
ients to full QCD. The mass parameter m
E

is interpreted as the high tem-

perature, perturbative 
ontribution to the Debye s
reening mass of 
hromo-ele
tri
 �elds and

enters the pressure of QCD at the order of g7. The e�e
tive 
oupling g
E


an be used to 
om-

pute the spatial string tension of QCD. However, we suspe
t that the e�e
tive 
oupling g
E

obtains through renormalization 
ontributions from higher order operators that have not yet

been taken into a

ount. Therefore our result re�e
ts the (still divergent) 
ontribution from the

super-renormalizable EQCD Lagrangian. In addition, we present a new method for 
omput-

ing tensor sum-integrals and provide a generalization to the known 
omputation te
hniques of

spe
ta
les-type sum-integrals.
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Chapter 1

Motivation

The theory of strong intera
tions is well established for roughly �fty years and its validity has

been tested many times [1℄. It is known that the underlying theory is Quantum Chromodynami
s

(QCD), a quantum �eld theory whose degrees of freedom are massive fermions and massless

gluons, both subje
t to the non-abelian SU(3) symmetry group.

Closely related to the the Yang-Mills theory, whi
h is the underlying theory of the gluoni


integrations, is the asymptoti
 freedom of quarks and gluons [2, 3℄ in the UV and the 
on�nement

of quarks at low energies [4℄.

Te
hni
ally, QCD 
an be handled at high energies with the standard quantum �eld theory

approa
h of a perturbative weak 
oupling expansion in terms of the QCD 
oupling, sin
e it is

very small in the energy region mentioned, a dire
t 
onsequen
e of asymptoti
 freedom. This

method leads to the famous Feynman-diagram ma
hinery of 
omputing physi
al observables.

However, at low energies, whi
h are the energies of interest, perturbative expansion breaks

down, as the strong 
oupling indeed be
omes strong. Physi
ally, the a

essible degrees of freedom

are not quarks and gluons anymore, but rather mesons and baryons, whose masses are mostly

generated by intera
tions and merely (≈ 1%) by the 
onstituent quark masses [5℄.

The question of how the transition from low energy hadroni
 matter to a state of an almost

non-intera
ting gas of quarks and gluons, a quark-gluon plasma (QGP)[6, 7, 8℄ o

urs, is ad-

dressed within the framework of statisti
al me
hani
s of quantum �elds. On the experimental

side it was the heavy ion 
ollision programs performed at LBNL (Berkley) and later on at BNL

(RHIC), GSI and nowadays also at LHC, that have boosted the resear
h in the �eld of ther-

mal QCD. On the theoreti
al side it was the numeri
al approa
h within the framework of �eld

theories dis
retized on a latti
e that have provided �rst results on QGP and on the QCD phase

diagram (for a theoreti
al review on the matter, see [9℄). Even though less advan
ed as in the

zero temperature 
ase, analyti
al 
omputations within thermal �eld theory have found a wide

use not only in parti
le physi
s but also on 
osmology related problems [10, 11, 12℄. Also, they

turn out to be very fruitful as they 
an approa
h regions in the phase diagram of QCD that are

di�
ult to a

ess with latti
e simulations, su
h as regions with �nite 
hemi
al potential [13, 14℄

or even with a magneti
 ba
kground [15, 16, 17℄.

There have been many 
hallenges on both the numeri
al (via latti
e simulations) and the

analyti
al (weak-
oupling expansion) side so that even after de
ades of resear
h we are still in

the situation in whi
h only limited temperature and density s
ales 
an be addressed with any of

the approa
hes and they hardly overlap. Therefore a permanent 
he
k with the 
omplementary

method has be
ome a widely a

epted pro
edure.
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In quantum �eld theory the 
omplexity of typi
al 
al
ulations shows a rapid grow with

every loop order, su
h that nowadays, when state of the art 
omputations rea
h even the �ve-

loop order at zero temperature [18℄, it has be
ome a standard to rely on 
omputer-algebrai


tools. The 
omputational pro
edure has also standardized: the Feynman diagram generation

is followed by group-theoreti
al algebras and s
alarization of the integrals. The typi
ally large

number of integrals is redu
ed to a small set of master integrals that are 
omputed analyti
ally

or numeri
ally. The last step represents the te
hni
ally most demanding task and has boosted

the development of integral solving te
hniques.

Multi-loop 
al
ulation te
hniques in zero-temperature �eld theory are mu
h more advan
ed

as in the 
ase of thermal �eld theory as their appli
ability, hen
e their demand spans over all

parti
le 
ollision related subje
ts. Some of the most fruitful integral solving methods and math-

emati
al advan
es in the �eld in
lude keywords like: Integration by Parts (IBP) [19℄, di�eren
e

equations [20℄, se
tor de
omposition [21℄, Mellin Barnes transformations [22℄, di�erential equa-

tions [23℄, Harmoni
 Polylogarithms [24℄. An introdu
tion to Feynman integral 
al
ulus 
an be

found in [25℄. Some of the methods are implemented in software pa
kages like Reduze [26℄ and

FIESTA [27℄.

Due to the �nite temperature, quantum �eld theories exhibit a di�erent analyti
al stru
ture;

we are 
onfronted not with integrals but rather with so-
alled sum-integrals. This makes a one-

to-one transfer of zero-temperature te
hniques di�
ult and even makes their feasibility à priori

un
ertain.

Keeping all these ideas in mind, the present thesis intends to provide yet another building

blo
k towards multi-loop 
omputations in high temperature QCD. Pre
isely, we 
ompute two

mat
hing 
oe�
ients, m
E

and g
E

, of the low temperature e�e
tive theory of thermal QCD,

namely Ele
trostati
 QCD (EQCD). Besides having the aim of a proof-of-prin
iple of the per-

turbative expansion that in the zero-temperature 
ase works so well, we also have two dire
t

appli
ations of our result. The e�e
tive mass m
E

enters the QCD pressure at O(g7) in the


oupling. This is the 
ontribution to the �rst order beyond the famous non-perturbative term

∝ g6. The most dire
t veri�
ation of the 
onvergent nature of the perturbative expansion is

-pre
isely in the spirit of testing analyti
al results against latti
e results- the 
omputation of the

spatial string tension σs, a non-perturbative quantity de�ned in the framework of latti
e QCD

and being the subje
t of investigation ever sin
e.

In addition, this thesis aims to o�er a 
ontribution to multi-loop 
al
ulation te
hniques

in thermal �eld theory; on
e more, borrowing a method from zero-temperature �eld theory, we

provide an adapted method of 
omputing tensor sum-integrals and we generalize the 
omputation

pro
edure �rst developed by Arnold and Zhai [28℄ to a broad 
lass of so-
alled spe
ta
les-type

sum-integrals of mass dimension two and zero.

The thesis is stru
tured as follows: The �rst 
hapter gives a short introdu
tion on the basi



on
epts of thermal �eld theory and of the theory of QCD in the �nite temperature pi
ture as the

theory of our investigation. From there, the renormalization program for eliminating ultraviolet

(UV) divergen
es and the resummation program for eliminating infrared (IR) divergen
es for

bosoni
 degrees of freedom are sket
hed. Finally, we make some general 
onsiderations on multi-

s
ale theories and e�e
tive theories as a preparation of the se
ond 
hapter.

In 
hapter two we provide a possible way out of the IR-divergen
e problem within the

framework of e�e
tive �eld theories by making use of the s
ale separation in thermal QCD. We

then set the mat
hing 
oe�
ients to be determined in the physi
al 
ontext of Debye s
reening

and of the spatial string tension. The a
tual 
al
ulations are performed in the ba
kground
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�eld gauge, sin
e it 
onsiderably simpli�es the mat
hing 
omputation. Finally we present the

te
hni
alities of Feynman diagram generation and their redu
tion to a small set of master sum-

integrals.

The third 
hapter represents the main part of the thesis. Here we apply Tarasov's method

[29℄ for tensor redu
tion to the 
on
rete 
ase of a master sum-integral. Afterwards, the gen-

eral properties of spe
ta
les-type sum-integrals are presented and demonstrated on a 
on
rete

example. With the experien
e gained we generalize the pro
edure to a set of arbitrary param-

eters in the 
onstrain of two and zero mass dimensions. Finally, we provide two more 
on
rete


omputations of sum-integrals that do not 
ompletely obey our previously determined generi


rules.

In the last 
hapter, we give the result on the renormalized e�e
tive mass to three-loop order

and present the results on the e�e
tive 
oupling. As it turns out, in order to 
omplete the


omputation, renormalization 
onstants from higher order operators are required. Finally we

dis
uss the future 
omputation on the renormalization 
onstants and present an outlook for the

present work.
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Chapter 2

Introdu
tion

In the following, we give a short introdu
tion on the theory, in whi
h our work is embedded.

While making use of the simple model of a s
alar �eld theory, we point out the te
hni
al problems

that arise in this 
ontext and set the stage for a possible solutions presented in 
hapter 3.

2.1 Thermodynami
s of quantum �elds

Quantum �eld theory at �nite temperatures is an extension of statisti
al quantum me
hani
s to

in
lude spe
ial relativity. As it des
ribes the thermodynami
al properties of relativisti
 parti
les,

it �nds dire
t use in problems related to the early Universe where thermal aspe
ts of the Standard

Model (SM) [30, 31℄ be
ome important. Throughout this thesis, natural units are employed,

~ = c = kB = 1.
As in the non-relativisti
 
ase, the 
entral quantity is the partition fun
tion, the sum over

all possible states of the system symboli
ally written as [32℄:

Z = Tre−βĤ , β ≡ 1/T . (2.1)

Te
hni
ally, in the 
ase of quantum me
hani
s it is possible to �nd a 
on
rete representation

of the partition fun
tion in terms of a path integral by making use of the position spa
e |x〉
and the momentum spa
e representation |p〉. The extension to �elds 
an be performed, if one


onsiders quantum statisti
al me
hani
s as a 0+1 dimensional quantum �eld theory and extends

the theory to d+ 1 dimensions. In that sense, the operator x̂(t) 
an be regarded as a �eld at a

�xed spa
e point, φ̂(0, t). Thus, the partition fun
tion in thermal �eld theory is:

Z = C

∫

φ(β,x)=±φ(0,x)
Dφ exp

[

−
∫ 1/T

0
dτ

∫

ddxLE(φ, ∂µφ)

]

, (2.2)

where the 
onstant C is in�nite but will never play a role in a
tual 
omputations, as seen later

on. As a short hand notation, we employ:

Z = C

∫

Dφe−SE , SE =

∫

x
LE ,

∫

x
≡
∫ 1/T

0
dτ

∫

ddx . (2.3)

The τ -dire
tion is bounded and the temperature T enters the partition fun
tion via the

upper integration limit. Due to the fa
t that the �elds obey (anti-)periodi
 boundary 
onditions
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if they are (fermioni
) bosoni
, the time 
omponent of the momentum in Fourier spa
e is dis
reet:

P ≡ (p0,p) , p0 =

{

2πnT , n ∈ Z for bosons

π(2n + 1)T , n ∈ Z for fermions

. (2.4)

At this point, the formal equivalen
e between thermal �eld theory and the path-integral

formulation of quantum �eld theory at zero temperature be
omes 
lear. By starting from the

usual generating fun
tional, it is possible to obtain Eq. (2.2) by simply performing a Wi
k

rotation, t → τ ≡ −it. This leads to a 
hange of the weight inside the path integral, i → (−1)
and of the metri
, from Minkovskian to Eu
lidean, gµν = diag(1, 1, 1, 1).

In the following, we keep the Lagrangian as general as possible. It 
an be split into a kineti


term quadrati
 in the �elds and an intera
tion term with higher powers in the �elds.

LE = L0 + LI

=
1

2
(∂µφ)(∂

µφ) +
1

2
m2φ2 + V (φ) , V (φ) ∝ λφn≥2 .

(2.5)

In order to introdu
e the mathemati
al quantities needed later su
h as propagators, n-point
Green's fun
tions or vertex fun
tions, some de�nitions are needed. The free expe
tation value

of an observable is denoted with:

〈O〉0 =
C
∫
Dφ O e−S0

C
∫
Dφ e−S0

, (2.6)

sin
e only the free Lagrangian is used as a weighting fa
tor and loop 
orre
tions are exa
tly zero.

The expe
tation value of two time-ordered �elds is the free propagator of the �eld (
f. Eq. 4.6

later):

D0(x1, x2) ≡ 〈0|T{φ(x1)φ(x2)}|0〉0 =
C
∫
Dφ φ(x1)φ(x2) e−S0

C
∫
Dφ e−S0

=
∑
∫

P

eiP (x−y)

P 2 +m2
, (2.7)

where the integration measure is de�ned in Eq. (4.5). In momentum-spa
e the propagator is

simply

1

D0(P ) =
1

P 2 +m2
. (2.8)

Next, we de�ne the full n-point Green's fun
tion as:

G(x1, ..., xn) ≡ 〈φ1...φn〉 =
1

ZC
∫

Dφφ1...φne−SE , φi ≡ φ(xi) . (2.9)

In order to 
ompute the Green's fun
tion, a Taylor expansion of e−SI
in terms of λ has to

be performed, by using the splitting in Eq. (2.5):

G(x1, ..., xn) =

∫
Dφφ1...φne−S0

∑∞
j=0

(−SI )
j

j!
∫
Dφ e−SE

∑∞
j=0

(−SI )j

j!

. (2.10)

1

For simpli
ity, we use the same notation in momentum spa
e as it is always 
lear from the 
ontext whi
h

representation is used.
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By using Wi
k's theorem, ea
h new term of the sum generates diagrams a

ording to all

the possibilities of 
ontra
ting the n external �elds to the 4 × j internal �elds. Due to the

numerator, all dis
onne
ted diagrams vanish. This is illustrated for the one-loop 2-point fun
tion

by expanding the denominator as:

1
1+x ≈ 1− x.

G(x1, x2) =
s s 3 × s s × ✍✌✎☞✍✌✎☞s 12 × ss s✍✌✎☞

1 − 3 × ✍✌✎☞✍✌✎☞s +...

= s s 12 × ss s✍✌✎☞
+ O(λ2) .

If we modify the partition fun
tion, by introdu
ing a sour
e term J(x) as

Z[J ] = C

∫

Dφ exp
[

−SE −
∫

x
J(x)Q(x)

]

, (2.11)

we 
an de�ne the full n-point Green's fun
tion in terms of a sour
e derivative:

G(x1, ..., xn) =
−δ
δJ1

...
−δ
δJn

W [J = 0] , J1 ≡ J(x1) , (2.12)

with

W [J ] ≡ lnZ[J ] . (2.13)

By taking the logarithm of Z, the dis
onne
ted pie
es exa
tly 
an
el and only the 
onne
ted

ones remain. Thus, W [J ] 
an be regarded as the generating fun
tional of 
onne
ted Green's

fun
tions.

In the following we perform a Legendre transformation of the form:

Γ[φ̄] =W [J ]−
∫

x
J(x)φ̄(x) . (2.14)

The new variable φ̄ is the �eld 
on�guration that minimizes Γ[φ̄] in the limit J(x) = 0:

φ̄ = −δW [J ]

δJ(x)
(2.15)

as seen from:

δΓ[φ̄]

δφ̄(x)
=
δW [J ]

δJ(x)

δJ(x)

δφ̄(x)
− δJ(x)

δφ̄(x)
φ̄(x)− J(x) = −J(x) . (2.16)

By taking the se
ond derivative of Eq. (2.14), we obtain:

δ2Γ

δφ̄2
= −δJ

δφ̄
=

[

− δφ̄
δJ

]−1

= −
[
δ2W

δJ2

]−1

= −D−1 , (2.17)

where D denotes the full propagator:

D(x1, x2) ≡ G(x1, x2) . (2.18)
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C C C1PI

Figure 2.1: Relation between 
onne
ted and one-parti
le irredu
ible two-point fun
tions.

We rewrite Eq. (2.17) as:

D ×
(

−δ
2Γ

δφ̄2

)

×D = D , (2.19)

or diagrammati
ally as in Fig. (2.1).

In 
on
lusion, the vertex fun
tional de�ned in Eq. (2.14) is the generating fun
tional of

one-parti
le irredu
ible diagrams. Further, if we de�ne the self-energy Π as:

D =
1

P 2 +m2 +Π(P )
=

1

D−1
0 +Π(P )

, (2.20)

where D0 is the free propagator, we 
an relate the self-energy to the two-point vertex fun
tion

as:

Π(P ) = −P 2 −m2 − δ2Γ

δφ̄2

= −P 2 −m2 +
δ2 lnZ[J = 0]

δJ2

∣
∣
∣
∣
1PI

(2.21)

Con
luding, the self-energy of a �eld is simply the one-parti
le irredu
ible two-point fun
tion

from whi
h the free propagator has been subtra
ted. Later on, this will be the starting point of

the 
omputation.

Finally, we relate the earlier de�ned fun
tions to thermodynami
al observables by using

their de�nitions from statisti
al me
hani
s. In this way, observables su
h as the free energy, the

pressure or the entropy 
an be obtained:

f = −p = T

V
lnZ[J ]

∣
∣
∣
∣
J(x)=0

s = − ∂f

∂T
.

(2.22)

2.2 Path-integral formulation of QCD

So far, we have formulated statisti
al me
hani
s in terms of a path-integral of a simple s
alar �eld.

In the following, the theory of QCD will be introdu
ed, as a starting point of our 
al
ulation.

The most important property that the theory of QCD and that of s
alars share, is their bosoni


nature and therefore the same low energy behavior, whi
h is very di�erent from that of fermioni


�elds.

Histori
ally, the theory of Quantum Chromodynami
s was pre
eded by Gell-Mann's so-
alled

Eightfold Way, whi
h was an attempt to order the in
reasing number of newly dis
overed parti-


les, similar to the previously established SU(2) isospin symmetry of neutrons and protons, in

a systemati
 way.
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The proposal to 
onstru
t the �elementary� parti
les out of so-
alled quarks (spin 1/2 and

fra
tional ele
tri
 
harge: ±1/3, ±2/3) demanded a new property/
harge of the quarks that

should take up 3 values in order for the mesons and the baryons to be in 
on
ordan
e with

Pauli's ex
lusion prin
iple

2

.

Their mathemati
al des
ription is grounded on the prin
iple of lo
al gauge invarian
e of

�
olored� matter parti
les that naturally introdu
es gauge bosons as an intermediating 
olor

�eld.

Consider an n-tuple �eld in 
olor-spa
e (
f. [33℄):

Φ =






φ1
...

φNc




 . (2.23)

where φ may be either a s
alar or a spinor �eld, and Nc is the number of 
olors.

Next, we 
onstru
t a generi
 theory 
ontaining these �elds, whi
h is Lorentz invariant and

invariant under lo
al phase transformations of the �elds, that is gauge invariant:

Φ → Φ
′ ≡ V (x)Φ ⇒ L(Φ, ∂µΦ) = L′

(Φ
′
, ∂µΦ

′
) , V (x) ≡ eiT

aαa(x) . (2.24)

The N2
c − 1 matri
es Ta ≡ T a

are the generators of the SU(Nc) group under whi
h the

Lagrange density is invariant.

In the fundamental representation (T a
is Nc ×Nc) we have (together with the ve
tor spa
e

spanned by the T a
's) the Lie Algebra:

[T a, T b] = ifabcT c , (2.25)

with the normalization relation

Tr(T aT b) =
δab

2
. (2.26)

�Tr� is the tra
e of the matrix and fabc are 
alled stru
ture 
onstants and are totally antisym-

metri
: fabc = −2iTr([T a, T b]T c). Another useful representation is the adjoint representation

in whi
h the generators T a
are of dimension (N2

c − 1)× (N2
c − 1) and:

(T b
A)ac = ifabc , ([T b

A, T
c
A])ae = if bcd(T d

A)ae . (2.27)

In this representation, the Casimir quadrati
 operator is simply the number of 
olors: CA = Nc.

When allowing independent phase variations of the �elds at any spa
e-time point, the deriva-

tive term (whi
h is simply the subtra
tion of the �elds at neighboring points) needs to be mod-

i�ed with a s
alar quantity that transforms as U(x, y) → V (x)U(x, y)V †(y), in order for the

derivative to behave properly under phase transformations:

nµ∂µΦ = lim
ǫ→0

Φ(x+ ǫn)− Φ(x)

ǫ
→ nµDµΦ = lim

ǫ→0

Φ(x+ ǫn)− U(x+ ǫn, x)Φ(x)

ǫ
, (2.28)

where nµ is a unit ve
tor and U(x, y) 
an be expanded in the separation of the two points:

U(x+ ǫn, x) ≈ 1− igǫnµAa
µT

a , Dµ ≡ ∂µ − igAa
µT

a , (2.29)

2

That is, to allow for the ground state of baryons to exhibit spin 3/2 (e.g. The ∆++
baryon).
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with g being the 
oupling 
onstant.

Thus, this new quantity naturally introdu
es N2
c −1 ve
tor gauge �elds that need to transform

as:

Aa
µT

a → V (x)

(

Aa
µT

a +
i

g
∂µ

)

V †(x)

=

[

Aa
µ +

1

g
∂µα

a − fabcαbAc
µ

]

T a +O(g2) .

(2.30)

so that the Lagrange density 
ontaining the 
ovariant derivative remains gauge invariant.

For the theory to be 
omplete, a kineti
 term for the newly introdu
ed ve
tor �elds is

needed. The kineti
 term 
an be obtained 
onstru
ting a term bilinear in the gauge �elds out

of the 
ovariant derivative, or using so-
alled Wilson loops (
f. Chapter 15 of [33℄).

Finally, the Lagrangian for the gauge �elds, whi
h throughout the thesis will be 
onsidered

to be the gluoni
 part of the full QCD Lagrangian, looks like:

L
g

= −1

2
TrFµνFµν = −1

4
F a
µνF

a
µν , (2.31)

where the tra
e is performed in 
olor spa
e and the �eld strength tensor Fµν ≡ F a
µνT

a
is de�ned

as:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + igfabcAb

µA
c
ν . (2.32)

The fermioni
 part of the thermal QCD Lagrangian 
ontains spinors that solve the Dira


equation in Eu
lidean metri
:

(γ̃µ∂̃µ +m)ψ = 0 , (2.33)

where ∂̃0 ≡ ∂τ , ∂̃i = ∂i and γ̃
µ
are the four 4 × 4 Eu
lidean gamma matri
es. They are four-

dimensional obje
ts in Dira
 spa
e and anti-
ommute like Grassmann numbers, ab = −ba. The
fermioni
 part of the QCD Lagrangian, 
onstru
ted to be gauge invariant by substituting the

derivative ∂µ with the 
ovariant derivative Dµ, is:

L
f

=

Nf∑

f=1

ψ̄f (γ̃
µD̃µ +m)ψf . (2.34)

The sum in Eq. (2.35) is over the fermion �avors Nf and ψ̄ ≡ ψ†γ0.
The QCD Lagrangian adds up to:

L
QCD

= L
f

+ L
g

=

Nf∑

f

ψ̄f (iγ
µDµ −m)ψf − 1

2
TrFµνF

µν .
(2.35)

However, when plugging the Lagrangian (2.35) into the partition fun
tion from Eq. (2.2)

3

,

the quantity is in�nite be
ause the integration over the gauge �elds runs over all physi
ally

equivalent gage 
on�gurations. To over
ome this problem, the Faddeev-Popov pro
edure is

employed. Integration is restri
ted only to a gauge-
on�guration orbit, set by a gauge �xing


ondition G(A) = 0 whi
h is 
hosen to be the generalized Lorentz gauge:

G(A) = ∂µA
a
µ(x)− ωa(x) , (2.36)

3

The integration measure reads now DADψ̄Dψ.
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From here the gauge-�xing term in the Lagrangian emerges:

L
g−f = −1

ξ
Tr

[

(∂µAµ)
2
]

. (2.37)

However, this pro
edure generates a gauge-�xing determinant in the path-integral that ex-

pli
itly depends on the gauge �elds and therefore is expressed as a fun
tional integral over

Grassmann �elds:

det

[
∂µDµ

g

]

=

∫

DcDc̄ exp
[

−
∫

x
c̄(∂µDµ)c

]

. (2.38)

This leads to a term in the Lagrangian 
ontaining ghost �elds:

L
ghost

= ∂µc̄
a∂µc

a + gfabc∂µc̄
aAb

µc
c . (2.39)

Finally, the full QCD partition fun
tion reads:

Z = C

∫

periodi


DA
∫

periodi


Dc̄Dc
∫

anti-periodi


Dψ̄Dψ exp
[
−S

QCD

[A, ψ̄, ψ, c̄, c]
]
,

S
QCD

=
1

4
F a
µνF

a
µν +

1

2ξ

[
∂Aa

µ

]2
+ ∂µc̄

a∂µc
a + gfabc∂µc̄

aAb
µc

c +
∑

f

ψ̄f (γ̃µD̃µ +m)ψf .
(2.40)

Extension to the partition fun
tion with a sour
e term J(x) is straightforward.

2.3 Renormalization of ultraviolet divergen
es

When a
tually 
omputing physi
al observables by using stru
tures similar to those in Eq. (2.10),

the results are in general in�nite due to the large momentum behavior of the integrals (hen
e

ultraviolet divergen
e). Their divergen
e is tra
ed ba
k to the fa
t that the Lagrangian does

not 
ontain physi
al quantities su
h as physi
al �elds, ele
tri
 
harge or mass, but rather some

theoreti
al (bare) ones (
.f. Ref. [34℄).

To over
ome this problem, one has to follow three steps. The �rst step is to regularize

the integrals, sin
e te
hni
ally they are the sour
e of the UV divergen
es. The se
ond step is to


hoose some renormalization 
onditions that set a �xed �nite value for the renormalized/physi
al

quantities at a 
ertain energy s
ale. In the last step, by relating the bare quantities to the

renormalized ones, it is possible to absorb all divergen
es into the renormalization 
onstants of

the spe
i�
 renormalized quantities. On
e the renormalization 
onstants are known, all physi
al

quantities are assured to be �nite.

In pra
ti
e, divergen
es 
ome from stru
tures like:

∫ ∞

−∞
d4p

1

[p2 +m2]2
. (2.41)

This integral diverges for high enough momentum, as the integrand runs like 1/p. A straight-

forward so-
alled regularization s
hemes for parameterizing the divergen
es is the momentum


ut-o�, in whi
h an upper limit on p2 is imposed:

∫ ∞

−∞
d4p

1

[p2 +m2]2
= 2π2

∫ Λ

0
dp

p3

[p2 +m2]2
= π2

[

ln
Λ2

m2
+

m2

Λ2 +m2
+ ln

(

1 +
m2

Λ2

)

− 1

]

.

(2.42)
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In the �nal result the momentum 
ut-o� has to be removed, Λ → ∞.

A mathemati
ally mu
h more 
onvenient regularization s
heme that will be used throughout

the thesis, is the so-
alled dimensional-regularization s
heme, in whi
h the dimension of the

theory and thus the dimension of the resulting integrals is analyti
ally 
ontinued to d→ d− 2ǫ,
with ǫ > 0 being a small parameter that is taken to be zero at the and of the 
al
ulation. Details

on the s
heme are to be found for instan
e in [35℄. Sin
e Eq. (2.41) 
hanges its dimensionality

to 2 − 2ǫ, an arbitrary s
ale has to be introdu
ed to render its dimension un
hanged, thus

∫
→ µ2ǫ

∫
. The divergent integral from Eq. (2.41) be
omes:

µ2ǫ
∫ ∞

−∞
d4−2ǫp

1

[p2 +m2]2
= π2−ǫ

(
µ2

m2

)ǫ

Γ(ǫ) = π2
[
1

ǫ
+ ln

µ2

m2
− γE − lnπ

]

. (2.43)

Even though in both equations, (2.42) and (2.43), we en
ounter the new mass s
ale within

the logarithm, only Λ has the dire
t physi
al interpretation of an upper energy s
ale to whi
h

the 
omputation is reliable. As in Eq. (2.43) the divergen
e 
omes from 1/ǫ rather than from

µ4, its physi
al meaning is not obvious from the beginning. However, as it enters in logarithms,

∝ lnµ2/m2
, their relative 
ontribution to the �nal result for a �xed energy s
ale is an indi
ation

of the reliability of the result at the given s
ale

5

.

There is a 
ertain freedom in 
hoosing the renormalization 
onstants. Taking for simpli
ity

the s
alar �eld theory, they usually are de�ned as:

φB =
√

ZφφR

λB = ZλλR

m2
B = Zm2 m2

R .

(2.44)

Closely related to the regularization s
heme is the renormalization s
heme. A very useful

and the most used s
heme is the so-
alled Minimal Subtra
tion s
heme (MS) [36℄ and variations

thereof, su
h as the MS -s
heme [37℄ with

µ2 = µ̄2eγE/4π . (2.45)

Sin
e for any modi�
ation of the mass s
ale µ2ǫ → µ2ǫf(ǫ) the 
ounter-terms remain un-


hanged, we 
an write them as:

Z = 1 +

L∑

n=1

[
λRµ

−2ǫ

(4π)2

]n n∑

k=1

cn,k
ǫk

, (2.46)

with L being the number of loops and cn,k are 
omplex numbers.

The MS pro
edure is the following. By inserting Eq. (2.44) into the φ4 Lagrangian for

instan
e, it is possible to split it into the part in whi
h all quantities have been repla
ed by the

renormalized ones and a 
ounter-term pie
e:

L
ren

=
1

2
(∂µφR)

2 +
1

2
m2

Rφ
2
R +

λRµ
2ǫ

4
φ4R

+
1

2
(Zφ − 1)(∂µφR)

2 +
1

2
(ZφZm2 − 1)m2

Rφ
2
R + (ZλZ

2
φ − 1)

λRµ
2ǫ

4
φ4R .

(2.47)

4

The s
ale µ is kept arbitrary but �nite.

5

For a 
on
rete example on this matter, see 
hapter 5.
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The 
ounter terms are all at least of O(λR) (
f. Eq. 2.46) and do not enter tree-level 
omputa-

tions, as should be the 
ase.

The 
oe�
ients cn,k from Eq. (2.46) are determined by 
al
ulating the renormalization


onditions with the renormalized Lagrangian, Eq. (2.47), and by absorbing order by order the

divergen
es into the renormalization 
onstants.

If the renormalization 
onstants are known to a given order in λR, then any other physi
al

quantity 
an be 
omputed in this way. However, new intera
tions with new Feynman rules

emerge from the 
ounter-terms. Therefore, this pro
edure is tedious due to the large number of

diagrams that arise.

The se
ond method that will also be used in this thesis is simply to 
ompute quantities with

the original Lagrangian 
ontaining only bare quantities L(φB ,mB). In the divergent result these

quantities are then repla
ed by the renormalized ones with Eq. (2.44). In this way a �nite result

is assured.

In prin
iple, all physi
al quantities are renormalization pres
ription independent. However,

sin
e in pra
ti
e the perturbative expansion is trun
ated at a �nite order, the renormalization

pres
ription enters the physi
al (renormalized) quantities through an arbitrary mass s
ale (su
h

as µ̄ for MS ). The equation that des
ribes the 
hange of the renormalized parameters with

respe
t to the 
hange of the mass s
ale, is 
alled renormalization group equation (RGE). For a

single-mass theory and for a mass-independent s
heme (su
h as MS ) it looks like:

[

µ
∂

∂µ
+ β(λR)

∂

∂λR
+ γm(λR)mR

∂

∂mR
− nγ(λR)

]

Γn
R(p, λR,mR, µ) = 0 . (2.48)

A very important quantity of the previous equation is the so-
alled beta fun
tion β(λR) that
des
ribes the 
hange of the 
oupling with the 
hange of the s
ale:

µ
d

dµ
λR = β(λR) . (2.49)

In general the beta fun
tion is expressed as a perturbative expansion in the renormalized


oupling:

β(λR) = β0
λ2R
16π2

+ β1

(
λ2R
16π2

)2

+ ... . (2.50)

The sign of the beta 
oe�
ients βi determine the strength of the 
oupling at high energies;

positive 
oe�
ients su
h as those of quantum ele
trodynami
s make sure that at high energies

the 
oupling strength grows. QCD has negative 
oe�
ients and this leads to its famous property

of being asymptoti
ally free.

By plugging in the �rst term on the right hand side (rhs.) of Eq. (2.50) into Eq. (2.49) we

obtain

λR(µ) = −16π2

β0

1

ln µ
µ0

(2.51)

as a leading order approximation for the running of the 
oupling with the energy s
ale. From

here, the QCD renormalization is straightforward.
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2.4 Resummation of infrared divergen
es

In the following, we present the infrared problem, whi
h is typi
al to any Yang-Mills theory.

Given its bosoni
 nature, we 
ompute the free energy density of a s
alar �eld and take the limit

m→ 0 in the end, in order to illustrate the pro
edure.

Considering a massive s
alar �eld theory with a φ4 intera
tion: V (φ) = λ
4φ

4
, the naive free

energy density is [32℄:

f = −T
V

lnZ

= f0(m,T ) +
T

V
〈SI〉0 −

T

2V
〈S2

I 〉0,
onne
ted + ...

(2.52)

The de�nition in Eq. (2.6) for the expe
tation value and the Taylor expansion of ln(1−x) ≈
−x− x2

2 ... have been used in order to generate only 
onne
ted diagrams.

The term f0 is the (s
alar �eld version of the) Stefan-Boltzmann law,

f0(m,T ) = −π
2T 4

90
+O(m2T 2) , (2.53)

and it 
ontains also a divergent fa
tor that 
an be removed by renormalization. However, this

is beyond the purpose of this example.

The �rst 
orre
tion to f0 is:

f1(m,T ) = lim
V→∞

T

V

∫
Dφ
∫

x
λ
4φ(x)

4 e−S0

∫
Dφ e−S0

=
λ

4

∫

x
︸︷︷︸

=βV

lim
V→∞

∫
Dφφ(x)φ(x)φ(x)φ(x) e−S0

∫
Dφ e−S0

︸ ︷︷ ︸

3[〈φ(0)φ(0)〉0 ]2

=
3λ

4
[D0(0)]

2 =
3λ

4

[
∑
∫

P

1

P 2 +m2

]2

(2.54)

Sin
e the the propagator D0(x, y) depends only on x − y, terms of the form D0(x, x) are

due to translational invarian
e D0(0, 0). The fa
tor 3 
omes from applying Wi
k's theorem

that states that the free expe
tation value of an n-point fun
tion 
an be expressed in terms of

produ
ts of two-point fun
tions:

〈φ(x1)φ(x2)...φ(xn−1)φ(xn)〉0 =
∑

all 
omb.

〈φ(x1)φ(x2)〉0...〈φ(xn−1)φ(xn)〉0 . (2.55)

The last term reads:

f2(m,T ) = − lim
V→∞

T

2V

λ2

16

[∫

x,y
〈φ(x)4φ(y)4〉0 −

(∫

x
〈φ(x)4〉0

)]

= −λ
2

16




12× ✫✪

✬✩
+ 36 ✫✪

✬✩
✫✪
✬✩t✫✪

✬✩



(2.56)

The dot on the loop denotes an extra power on the propagator, thus 1/[P 2 +m2]2.
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The �rst diagram in Eq. (2.56) does not 
ause divergen
es in the limit m → 0, therefore it
will not enter the dis
ussion. IR divergen
es in the limit m → 0 are 
aused only by the se
ond

diagram as will be shown shortly.

For that 
onsider the most general one-loop sum-integral:

JA(m,T ) ≡
∑
∫

P

1

[P 2 +m2]A

= T

∫

p

1

[p2 +m2]A
+
∑
∫

P

′ 1

[P 2 +m2]A
,

(2.57)

where the sum was split into the Matsubara zero mode, p0 = 0, and the non-zero modes. For

the zero-mode the integral has a simple expression (
f. Appendix B for details on solving su
h

integrals):

J0
A(m,T ) = T

∫

p

1

[p2 +m2]A
=

T

(4π)
d
2

Γ(d2 −A)

Γ(A)

1

[m2]A− d
2

. (2.58)

For the non-zero mode part, a Taylor expansion for small m is performed and we obtain a

solution in terms of an in�nite series as:

J
′

A(m,T ) =
∑
∫

P

′ 1

[P 2 +m2]A

=
2T

(4π)
d
2 (2πT )2A−d

∞∑

i=1

[ −m2

(2πT )2

]i Γ(A+ i− d
2)

Γ(i+ 1)Γ(A)
ζ(2A+ 2i− d) .

(2.59)

Thus, the zero-mode part generates only terms with an odd power in m (as we 
onsider

d = 3), whereas the non-zero mode part generates only terms with even power in m. Moreover,

the non-zero modes part also generates divergen
es that are removed by renormalization.

So, with the de�nitions at hand, we 
an 
ompute the �rst two 
orre
tions to the free energy.

The following result ex
ludes the divergent part:

f1(m,T ) =
3λ

4

[
T 2

12
− mT

4π
+O(m2)

]2

=
3λ

4

[
T 4

144
− mT 3

24π
+O(m2T 2)

]

f2(m,T ) = −9λ2

4

T 4

144

T

8πm
+O(m) .

(2.60)

It be
omes 
lear that the �rst divergen
e in the limitm → 0 is 
oming from f2, more pre
isely

from the following pie
e of the diagram:

[
∑
∫

P

′ 1

P 2 +m2

]2

× T

∫

p

1

[p2 +m2]2
. (2.61)

It turns out that su
h 
ombinations of odd powers of m 
oming from the zero-mode pie
es

of the sum-integrals generate IR divergen
es. So, to the n-th order the diagram that generates

the divergen
e is the produ
t of n+ 1 one-loop diagrams of whi
h n pie
es are non-zero modes

and one pie
e is a zero-mode integral with the propagator to the n-th power:

(−1)n+1

n!
〈Sn

I 〉0,IR → (−1)n+1

n!

(
λ

4

)n

6n2n−1(n− 1)!

[
T 2

12

]n

T

∫

p

1

[p2 +m2]n
. (2.62)
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The term 6n2n−1(n− 1)! is the symmetry fa
tor 
oming from the 4n �eld 
ontra
tions:

〈φ1 φ1φ1
6

2(n−1)

φ1φ2 φ2φ2
6

2(n−2)

φ2φ3 φ3...〉0 , (2.63)

and T/12 is the leading term from the non-zero modes.

Further, by writing the zero-mode term as a derivative with respe
t to the mass, we obtain:

J0
1 (m,T ) =

∫

p

1

p2 +m2
=

−m
4π

=
d

dm2

(−m3

6π

)

. (2.64)

The integral in Eq. (2.62) 
an be re-expressed as:

∫

p

1

[p2 +m2]n
=

(−1)n

(n− 1)!

(
d

dm2

)n(m3

6π

)

. (2.65)

To this point, we have the generi
 n-loop term that gives rise to a divergen
e in the limit

m→ 0. By summing up all the pie
es (
f. Fig. (2.2)), we obtain:

∞∑

n=1

1

n!

(
λT 2

4

)n(
d

dm2

)n(m3T

6π

)

= − T

12π

(

m2 +
λT 2

4

) 3
2

. (2.66)

The lhs. of Eq. (2.66) is simply the Taylor expansion of the rhs. around λT 2/4. It be
omes


lear that, by summing up the leading IR divergent 
ontributions to all orders in λ, we generate
a term that permits taking the limit m → 0. It also 
hanges the weak 
oupling expansion

qualitatively, by introdu
ing a term of the form λ3/2.

+ t + · · · + tt
. .
.

. .
.

Figure 2.2: Diagrammati
 resummation of the infrared divergen
e. The dotted loops denote

zero-mode 
ontribution whereas a bla
k dot means an additional power on the propagator. The

dashed lines denote non-zero mode loops.

Thus, the free energy density of a massless s
alar �eld to the resumed one-loop order is:

f(T ) = −π
2T 4

90

[

1− 15λ

32π2
+

15λ3/2

16π3
+O(λ2)

]

(2.67)

Higher orders for the free energy density are known up to O(λ5/2 lnλ). (
.f. [38℄).
Physi
ally, the massless �elds a
quire an e�e
tive thermal mass (similar to the Debye mass

in a QED plasma), hen
e the zero-modes 
annot propagate beyond a length proportional to

m−1
e�

. An alternative approa
h is by starting with a Lagrange density in whi
h a mass term for
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the Matsubara zero-modes is added to the free part and the same amount is subtra
ted from the

intera
tion part. A 
al
ulation using this te
hnique to four-loop order 
an be found in [39, 40℄.

Of 
ourse non-zero modes are s
reened as well, but in the weak 
oupling expansion their e�e
tive

mass 
ontribution plays a sub-dominant role (λT ≪ 2πT ).

Fermioni
 �elds do not generate IR divergen
es sin
e their zero-mode 
ontribution is of the

form: ∫

p

1

(πT )2 +m2 + p2
∝
√

(πT )2 +m2 , (2.68)

and hen
e �nite in the limit m→ 0.

2.5 E�e
tive �eld theories

As seen previously, even though the original massless s
alar �eld theory 
ontains only one s
ale


oming from the Temperature T , a se
ond s
ale of the order of

√
λT emerges through the

resummation of the soft modes. This phenomenon is spe
i�
 to bosoni
 �elds, whi
h are the

only �elds to exhibit a zero Matsubara mode. Sin
e the fermioni
 �elds are IR safe, their a
quired

thermal mass is negligible 
lose to the original s
ale T .

From here, the question arises of how to handle in a systemati
 way the soft s
ale and any

other s
ale that might arise at higher loops. At one-loop order, the pres
ription states to add

up only produ
ts of one-loop integrals in whi
h the momentum �ow fa
torizes. However, at

higher loop orders the situation aggravates, sin
e also diagrams with no fa
torable momentum

�ow may 
ontribute and keeping tra
k of all possible 
ontributions be
omes 
umbersome.

An alternative approa
h in 
omputing IR safe observables is the e�e
tive �eld theory method.

The reasoning is that only at the level of physi
al observables the dynami
al s
reening of soft

modes sets in, but not at the level of the theory itself. Therefore, it is not important whi
h

theory works as input in the partition fun
tion, as long as the physi
al out
ome is the same.

In order to adopt the e�e
tive �eld theory approa
h here, the de
oupling theorem [41℄ has to

hold. That is, all the e�e
ts depending on the higher s
ale 
an be absorbed into the rede�nition

of the renormalized parameters of the e�e
tive theory

6

. In addition, the requirement that the

energy s
ales are well separated,

√
λT ≪ 2πT , should be ful�lled.

Thus, from the starting point of a generi
 two mass s
ale theory, m ≪ M , an e�e
tive

low-energy �eld theory 
an be generated in the spirit of [42℄. By aiming at the reorganization

of the e�e
tive theory operators in terms of 1/M2
, the e�e
tive theory will generate new point

intera
tions by integrating out the heavy s
ale (
f. Fig. (2.3)).

Moreover, higher order operators 
ontaining only light �elds and ful�lling the symmetries

of the original theory need to be added to the e�e
tive Lagrangian. The operators 
an be


lassi�ed a

ording to their UV and IR importan
e. There are marginal operators that are

equally important to any s
ale of the e�e
tive �eld theory, su
h as the kineti
 part of the

Lagrangian. Relevant operators are those that 
ontribute only at low energies and have a

negligible e�e
t in the UV regime. Su
h an operator is the e�e
tive mass operator (∝ φ2
light

).

Finally, irrelevant operators are those that have a vanishing 
ontribution in the low energy regime

and are of the order O(m2/M2). Higher loop 
ontributions to the 
oe�
ients are to be 
omputed

by a perturbative mat
hing of n - point vertex fun
tions with the requirement that they 
oin
ide

6

In fa
t, this requirement is mandatory for any e�e
tive theory and it lies in the very nature of the Standard

Model (SM) that the physi
s at higher s
ales, su
h as the Plan
k s
ale, is en
oded via renormalization.
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Figure 2.3: Generation of e�e
tive verti
es by integrating out heavy loops. The original 
oupling

is taken to be ∝ gφ2
heavy

φ
light

.

up to a given order in the 
oupling in the low energy regime. Therefore, renormalization is equally

important in de�ning an e�e
tive �eld theory as well as the Lagrangian itself.

The momentum 
uto� regularization introdu
es a mass-dependent subtra
tion s
heme. There-

fore, the 
ounter-terms and with them the β-
oe�
ients of the 
oupling depend expli
itly on

the heavy mass of the original theory. In this situation the UV 
uto� Λ is 
onsistent with the

physi
al interpretation of the e�e
tive theory. It indeed is the upper energy bound at whi
h

the e�e
tive theory is reliable. Nevertheless, Lorentz and gauge invarian
e are broken in this


ase. A more important disadvantage is that beyond tree-level, loop 
orre
tions may 
ome with

a relative 
ontribution of O(1), indi
ating a breakdown of the perturbative expansion.

The more 
onvenient renormalization program is the mass-independent s
heme introdu
ed

by dimensional regularization of the integrals. The arbitrary s
ale µ o

urs only in logarithms,

ln(M/µ), and does not introdu
e expli
it powers su
h as M2/µ2. Therefore, trun
ation of the

e�e
tive Lagrangian to a given order still renders a loop expansion 
onvergent. Higher order

operators 
an be added gradually a

ording to the aimed a

ura
y of the mat
hing.
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Chapter 3

Setup

In this 
hapter we �rst implement the e�e
tive theory approa
h for thermal QCD as a possible

solution to its multi-s
ale nature. Before starting the mat
hing 
omputation for the parameters

of the e�e
tive theory of QCD, we embed them in the pi
ture of physi
al quantities of a QCD

gas via the Debye mass, the QCD pressure and the spatial string tension. In the remaining part

of the 
hapter we introdu
e the 
omputational framework, more spe
i�
ally the ba
kground �eld

method, the mat
hing 
omputation, the diagram generation and the redu
tion of the mat
hing

parameters in terms of a few master sum-integrals.

3.1 Ele
trostati
 and Magnetostati
 QCD

The parti
ular example of the resummation of the free energy density of a s
alar �eld presented

in se
tion 2.4 
an be extended to a generi
 pres
ription of whether a Yang-Mills theory is IR

safe or not. Linde and Gross et al. (Ref. [43, 44℄) have argued that for a massless bosoni
 �eld

theory at n-loop order the most IR sensitive part of the free energy density f(T ) is the zero

Matsubara mode. If one takes into a

ount the thermal mass generation, so that the bosoni


propagator looks like 1/[(2πnT )2 + p2 +m2(T )], the IR sensitive part of f(T ) is (with g being

the strong 
oupling and qi some linear 
ombination of pi):

f(T ) ∝ (2πT )n+1(g2)n
∫

d3p1...d
3pn+1

2n∏

i=1

1

q2
i +m2(T )

≈ g6T 4

[
g2T

m(T )

]n−3

. (3.1)

In the 
ase of gluons it turns out that the temporal 
omponent Aa
0 behaves di�erently from

the spatial 
omponents Aa
i . The former one exhibits a thermal mass starting from the �rst

loop order. This 
omes from the fa
t that the Π00(p
2) 
omponent of the self-energy tensor Πµν

does not vanish, whereas the spatial 
omponents do. Therefore, in the spirit of a QED plasma,

the s
reening of the 
olor-ele
tri
 �eld was 
alled Debye s
reening, with the QCD Debye mass


omputed �rst by Shuryak [45℄:

m2
D(T ) =

g2T 2

3

(

Nc +
Nf

2

)

. (3.2)

By plugging this result into Eq. (3.1), we see that the perturbative expansion still is 
onver-

gent but the thermal mass generates a qualitative 
hange in the perturbative series of thermo-

dynami
 quantities in terms of a 
ontribution of the form (g2)half-integer.
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Unlikely to QED, where magneti
 �elds are not s
reened due to the nonexisten
e of magneti


monopoles (∂iBi = 0), in QCD a �eld 
on�guration 
an be found in whi
h the divergen
e of

the 
hromo-magneti
 �eld is not zero, sin
e the 
orresponding equation involves the 
ovariant

derivative: DiBi = 0.
There is strong eviden
e that the �rst 
ontribution to a s
reening mass of the spatial 
om-

ponents of the �elds is of order g2T (
f. se
tion 3.2). By using the argument stated by Linde

and Eq. (3.1), it be
omes 
lear that, when trying to go beyond �rst order all other 
ontributions

be
ome equally important as they are of O(1). In 
on
lusion, thermal e�e
ts indu
e a third

s
ale related to magneti
 s
reening, whi
h is purely non-perturbative.

Being 
onfronted with three s
ales, a hard s
ale ∝ 2πT , a soft s
ale ∝ gT and an ultra-

soft s
ale ∝ g2T , a straightforward approa
h in QCD 
omputations is to isolate ea
h s
ale

and perform the 
omputations independently. Obviously, the non-perturbative s
ale 
alls for

alternative methods su
h as latti
e QCD. In the end the 
ontributions have to be summed up.

A di�erent and su

essful s
heme of integrating out the hard s
ale is the hard thermal loop

framework pioneered in [46, 47℄ and pushed towards three-loop a

ura
y [48, 49, 50℄.

The s
ale separation has been �rst done in [51, 52, 53℄ and extended later to higher order

operators in [54℄. In these works, the hard s
ale was dire
tly integrated out generating an

e�e
tive Lagrangian in whi
h the spatial and the temporal ve
tor �eld 
omponents de
ouple.

Nevertheless, determining the new parameters of the theory beyond leading order is in general

di�
ult as it is ne
essary to keep tra
k of diagrams with mixed propagators of zero and non-zero

modes, very similar to the dis
ussion in se
tion 2.5.

Another method was employed later on in [31, 55, 56℄ that will be used also here and later for

the 
al
ulation. The pro
edure is to 
onstru
t a general Lagrangian 
onsidering the symmetries

and properties of the original theory and to perform a mat
hing between them in order to

determine the parameters of the new theory.

Sin
e we are interested in generating an e�e
tive theory des
ribing the soft modes that do

not depend on the temporal 
oordinate τ , the pro
edure is 
alled dimensional redu
tion and the

emerging e�e
tive �eld theory is 
alled Ele
torstati
 QCD (EQCD). The symmetries involved

are spatial rotations and translations (as Lorentz invarian
e is broken by the heat bath), the

gauge symmetry of the original Lagrangian and the symmetry under A0 → −A0. Moreover, the

�elds do not depend on τ , so its integration will generate a simple T−1
-fa
tor in the a
tion.

The gauge transformations of the �elds di�ers for Ai and A0:

Ãi →V ÃiV
−1 +

i

g
V ∂iV

−1 ,

Ã0 →V Ã0V
−1 .

(3.3)

The spatial 
omponents transform like gauge �elds, whereas the temporal 
omponent trans-

forms like a s
alar �eld in the adjoint representation. The �elds 
hange as well. At tree-level

we have Aµ =
√
T
−1
Ãµ + O(g2) and at higher loop order they obtain even gauge-dependent


ontributions [30, 57℄. However, in the following we drop the tilde on the �elds to simplify the

notation.

As the time derivative is also zero ∂0 → 0, the gluoni
 part of the QCD Lagrangian in Eq.

(2.31) be
omes:

L0
EQCD

=
1

2
Tr{FijFij}+ Tr{[Di, A0][Di, A0]} ,

Di = ∂i + ig
E

Ai ,
(3.4)
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where [A,B] = AB−BA is the 
ommutator of A and B. Besides the part 
oming dire
tly from

the original QCD Lagrangian, there are in prin
iple in�nitely many other operators that are

allowed by symmetries and thus 
an be in
luded. The e�e
tive theory is non-renormalizable.

Nevertheless, for the purpose of this work, we restri
t ourselves to the operators up to dimension

4. The a
tion of the EQCD theory reads:

S
EQCD

=
1

T

∫

ddx
{

L0
EQCD

+m2
E

Tr[A2
0] + λ(1)(Tr[A2

0])
2 + λ(2)Tr[A4

0]
}

. (3.5)

The low energy regime of the QCD Lagrangian is des
ribed by a pure gauge theory 
oupled to

a massive s
alar �eld in the adjoint representation and lives in a three-dimensional (3d) volume

(hen
e dimensional redu
tion). Without referring spe
i�
ally to the �nite temperature aspe
ts

of the problem, the UV properties of this theory 
an be drawn.

Trun
ated up to the operators shown in Eq. (3.5), this theory is super-renormalizable [58℄,

so there is only a �nite number of ultraviolet divergent diagrams, spe
i�
ally with the topology

shown in Fig. (3.1):

✫✪
✬✩

d=3−2ǫ→ 1

ǫ
+ �nite terms .

Figure 3.1: The topology of the integrals that exhibit UV divergen
es and hen
e 
ontribute to

the mass 
ounter-term.

They enter the mass term of the A0-�led to two-loop order, thus it is the only parameter

that requires renormalization [30, 59℄:

m2
B

= m2
R

(µ̄3) + δm2 ,

δm2 = 2(N2
c + 1)

1

(4π)2
µ−4ǫ
3

4ǫ
(−g2

E

λCA + λ2) .
(3.6)

Here, the parameter λ(2) was set to 0 and λ(1) ≡ λ be
ause the quarti
 terms in A0 in the

Lagrangian are independent only for Nc ≥ 4.

The mass parameter µ3 is the arbitrary s
ale introdu
ed through the MS renormalization

s
heme in the e�e
tive theory and it is independent of the mass s
ale µ of full QCD, whi
h

enters the expression in Eq. (3.6) after mat
hing (
f. 
hapter 5). Sin
e the �elds and the

e�e
tive 
oupling do not require renormalization, they are renormalization group invariant (e.g.

µ3∂µ3g
2
E

= 0). On dimensional grounds the relation between the e�e
tive 
oupling in 3d and

the 
oupling in 4d is:

g2
E

= T [g2(µ̄)− β0 ln(µ̄/cg2T )] . (3.7)

Hen
e, the e�e
tive 
oupling depends on the arbitrary MS -s
ale µ of full QCD only and

the 
oe�
ients in front of the logarithm are to any loop-order entirely determined by the beta

fun
tion (
f. Eq. (2.50)) of the QCD 
oupling. The 
oe�
ient cg2 
an be determined by a

mat
hing as seen later.

In order to des
ribe the thermal e�e
ts of the theory, the mat
hing to the full QCD theory

of the so far undetermined parameters has to be performed. For EQCD, the hard s
ale ≈ 2πT
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is entirely en
oded in the parameters g
E

, m
E

and λ. This 
an be seen through their dependen
e

solely on (g2)integer. The most re
ent results on m
E

and g
E

are to be found in [60℄.

It is possible to go a step further and to integrate out also the soft s
ale gT , hen
e to eliminate

A0. The pro
edure is similar to the QCD-EQCD redu
tion; the most general Lagrangian that

satis�es the properties of the underlying theories is simply a SU(Nc) gauge theory living in three

dimensions. It is 
alled Magnetostati
 QCD (MQCD):

L
MQCD

=
1

2
TrFijFij + ... , Di = ∂i + ig

M

Ai . (3.8)

The equality between the EQCD and the MQCD gauge �elds is only at tree-level: Ãi =
˜̃Ai +O(g). Nevertheless, we drop the double tilde for simpli
ity.

The magneti
 
oupling 
an be 
omputed by mat
hing to the theory of EQCD and is expressed

as a fun
tion of the EQCD parameters g
M

(g
E

,m
E

, λ(1), λ(2)..). To tree level the relation is trivial:

g
M

= g
E

. The 
oupling has been 
omputed to two-loop order in [61℄.

As the expansion of g
M

is rather in g and not in g2 (
f. se
tion 3.3), it be
omes 
lear that

both, the hard s
ale and the soft s
ale, enter the MQCD theory via its parameters.

In 
on
lusion, one isolates the non-perturbative ultra-soft s
ale, whi
h is related to the

magneti
 s
reening, in a simple three-dimensional gauge theory, whereas the hard and the soft

s
ales are treated analyti
ally through the mat
hing to full QCD.

At this point, it is possible to use this theory in numeri
al latti
e 
omputation in order

to extra
t physi
al observables [9, 62, 63, 64℄. This 
an be done, if the parameters of the 4d


ontinuous theory of QCD are properly mapped onto the parameters of the equivalent 3d theory

dis
retized on the latti
e. This non-trivial task has been extensively addressed in [65, 66, 67,

68, 69℄.

3.2 Debye s
reening

The Debye mass is a fundamental property of a plasma. It quanti�es to whi
h extent �elds

are s
reened due to thermal e�e
ts. It is well known that in usual QED plasmas only ele
tri


�elds are s
reened (∇B = 0), whereas magneti
 �elds are not. In the non-abelian 
ase magneti


s
reening is present due to the self-intera
tion of gluons.

In the 
ase of a non-abelian plasma the situation is mu
h more 
ompli
ated, as for a long

time it was not even 
lear what the mathemati
ally 
orre
t de�nition of the s
reening mass

is. Taking the straightforward de�nition of QED, as to what 
onstitutes a s
reening mass of

ele
tri
 �elds, namely to the �rst loop order this is simply the longitudinal part of the gluon

self-energy (polarization tensor) in the stati
 regime (p0 = 0) and in the limit of vanishing spatial

momentum [45℄, we obtain:

m2
D = lim

k→0
Π00(p0 = 0,k2) . (3.9)

The transverse part of the polarization tensor Πij is zero to this loop-order.

On the other hand, �rst estimates on the possible magnitude of the magneti
 s
reening mass


ame from [70, 71℄. However, soon it be
ame 
lear that the s
reening of 
hromo-magneti
 �elds

is a purely non-perturbative e�e
t that s
ales like m
magn

∝ g2T . Moreover, de�nition (3.9) does

not hold at next-to-leading order for the 
hromo-ele
tri
 s
reening due to the expli
it gauge

dependen
e of the ele
tri
 s
reening mass [72℄.
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After further investigations on this matter a more sensible de�nition was proposed, so that

the Debye mass is both, gauge independent and infrared safe [73, 74, 75, 76, 77, 78℄. The Debye

mass is de�ned in terms of the pole of the stati
 gluon propagator:

p2 +Π(p0 = 0,p2)
∣
∣
p2=−m2

D

= 0. (3.10)

A more subtle de�nition is found in [79℄.

At next-to-leading order the 
omputation of the Debye mass requires regularization by ex-

pli
itly introdu
ing the magneti
 s
reening mass. Therefore, it a
quires a non-perturbative 
on-

tribution from the ultra-soft se
tor that 
an be determined only via non-perturbative methods

[80, 79℄. Some numeri
al studies even suggest that the image, in whi
h the magneti
 s
reening

mass is mu
h smaller than the ele
tri
 s
reening holds only at very high temperatures [81℄.

Thus, to the �rst non-perturbative terms, the Debye mass is up [75, 81, 82℄

mD = mLO

D +
Ng2T

4π
ln
mLO

D

g2T
+ cNg

2T + dN,Nf
g3T +O(g4T ) , (3.11)

where the g2T term in the logarithm 
omes pre
isely from the magneti
 s
reening mass: m
magn

=
c
non-pert

× g2T . The term mLO

D is the leading-order term of the Debye mass, Eq. (3.2). The


oe�
ients cN and dN,Nf
are non-perturbative and are to be determined via latti
e QCD [81℄

or even analyti
ally [79℄.

Given the de�nition in Eq. (3.11), the Debye mass 
an be related to the mass parameter of

EQCD m
E

. First of all, m
E

is a bare parameter that requires renormalization (
f. Eq. (3.6)).

The renormalized parameter m
E,ren

is the high-temperature perturbative 
ontribution to Eq.

(3.11), as it 
ontains only the hard s
ale. Thus, when referring to m
E

as being the Debye mass,

the perturbative 
ontribution thereof should be understood.

Further, the mass parameter m
E

enters the pressure of QCD at O(g7). The investigation of

the pressure of a hot gas of quarks and gluons tra
es ba
k to the seventies. It represents the

equation of state of thermal QCD and is therefore essential in understanding the phase diagram

of QCD (in parti
ular the high temperature and the �nite density [11℄ region).

Closely related to the previous se
tion, the pressure a
quires 
ontributions from all three

s
ales 2πT , gT and g2T . Starting from the leading order, resummation needs to be done in

order to remove infrared divergen
es. However, the famous Linde problem sets in at three-

loop order ∝ O(g6) rendering a breakdown of the perturbative expansion. Thus, resummation


hanges the analyti
 behavior of the pressure:

p(T ) = T 4
(
c0 + c2g

2 + c3g
3 + c4

′g4 ln(1/g) + c4g
4 + c5g

5 + c6
′g6 ln(1/g) + c6g

6
)
. (3.12)

The �rst three 
oe�
ients c0 [45, 83℄, c3 [84℄ and c4
′
[85℄ were 
omputed in the 
lassi
al

pi
ture by tedious diagram resummation. Merely the following two 
oe�
ients c4 [28℄ and c5
[86℄ where 
omputed by using a modi�ed Lagrangian that expli
itly in
ludes the EQCD mass

parameter m
E

, as pioneered in [39℄. Braaten �nally introdu
ed the method of e�e
tive �eld

theories in the 
omputation of the pressure by individually 
al
ulating its 
ontributions 
oming

from the three di�erent s
ales by using their a

ording e�e
tive theories (QCD, EQCD, MQCD).

After having determined the parameters of the theories by mat
hing (
f. se
tion 3.5 later) to

the desired order, all the 
ontributions 
an be summed up [55, 56℄. Finally, the last perturbative


oe�
ient c6
′
was 
omputed in [59, 87, 88℄, whereas the 
oe�
ient c6, whi
h 
ontains both

perturbative and non-perturbative 
ontributions was determined only partly up to now [89, 90℄.
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Despite the fa
t that, in the end infrared divergen
es 
an be handled systemati
ally up to the

non-perturbative s
ale, the 
onvergen
e of the perturbative expansion down to temperatures of

interest still remains an open issue [88, 91℄.

In this spirit, the pressure reads:

p
QCD

(T ) ≡ lim
V→∞

T

V
ln

∫

DAa
µDψDψ̄ exp [−S

QCD

]

= pE(T ) + lim
V→∞

T

V
ln

∫

DAa
iDA

a
0 exp [−S

EQCD

]

= pE(T ) + pM (T ) + lim
V→∞

T

V
ln

∫

DAa
i exp [−S

MQCD

]

= pE(T ) + pM (T ) + pG(T ) .

(3.13)

Eq. (3.13) summarizes the e�e
tive theory pro
edure in 
omputing thermodynami
al quan-

tities. This pro
edure ensures that the �nal quantity does not require infrared resummation,

sin
e this is a

ounted for through the parameters of the low energy e�e
tive theories.

In parti
ular, the soft-s
ale 
ontribution of the pressure pM is expressed as an expansion in

the EQCD parameters as:

pM(T ) = Tm3
E

[

b1 +
g2
E

m
E

(

b2 ln
µ

m
E

+ b′2

)

+ b3

(
g2
E

m
E

)2

+O(λ(1), λ(2), g6
E

/m3
E

)

]

. (3.14)

The next perturbative 
ontribution beyond the last result known in literature is of order

O(g7). As it has an odd power in g, it is a 
ontribution from the soft s
ale, thus from the pM (T )
term

1

. Investigating Eq. (3.14) more 
losely by expli
itly plugging in the e�e
tive parameters

m
E

(g) and g
E

(g), the g7 
ontribution to the pressure 
omes only from the b1 
oe�
ient ∝ m3
E

.

Taking the notation from Eqs. (4.1) and (5.2) from [88℄ and Eq. (5.7), we obtain:

pM (T )

Tµ−2ǫ
∋ dAm

3
E

12π
+O(ǫ) =

dAT
3

8(4π)5

(
α2
E6√
α
E4

+ 4
√
α
E4αE8

)

g7 +O(ǫ) . (3.15)

In Eq. (5.13) the 
oe�
ient is 
omputed expli
itly.

3.3 Spatial string tension

The most important phenomenologi
al appli
ation of the e�e
tive 
oupling of EQCD g
E

is related

to the so-
alled spatial string tension, σs(T ) of QCD. Sin
e it is a non-perturbative quantity, it

has been determined with latti
e simulations for quite some time [62, 92, 93℄ and re
ently even

using novel theoreti
al approa
hes su
h as the AdS/CFT duality [94℄.

It is obtained from a re
tangular Wilson loopWs(R1, R2) in the (x1, x2)-plane of size R1×R2.

Given the Wilson loop, the potential Vs is de�ned as:

Vs(R1) = − lim
R2→∞

1

R2
lnWs(R1, R2) . (3.16)

1

Sin
e g
M


ontains through its mat
hing to EQCD both hard (2πT ) and soft (gT ) s
ales, a 
ontribution to

the pressure at O(g7) 
omes also from pG(T ) and it is multiplied by the non-perturbative 
onstant 
oming from

O(g6).
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The spatial string tension σs is de�ned as the asymptoti
 behavior of the potential:

σs = lim
R1→∞

Vs(R1)

R1
. (3.17)

It has the dimensionality of [GeV]2 and thus expressed in latti
e 
al
ulations in terms of a

dimensionless fun
tion of the normalized temperature [62℄:

√
σs
T

= φ

(
T

Tc

)

, (3.18)

where Tc is the QCD transition temperature (Tc ≈ 150− 160MeV [95, 96℄).

The spatial string tension 
an also be determined in a three-dimensional pure Yang-Mills

theory su
h as MQCD as repeatedly 
on�rmed [97, 98, 99℄. As in this theory the magneti



oupling g
M

is the only s
ale and it has energy dimension one, it is possible to relate the spatial

string tension to the 
oupling by a non-perturbative 
onstant σs = c × g4
M

. The 
onstant was


omputed in [100℄ for Nc = 3 √
σs

g2
M

= 0.553(1) . (3.19)

This value is remarkably 
lose to the theoreti
al predi
tion

√
σs/g

2
M

= 1/
√
π.

On the other hand, the magneti
 
oupling g
M

has an analyti
 expression in terms of both,

the QCD 
oupling g (via g
E

) and the QCD s
ale in the MS s
heme Λ
MS

. A

ording to Eq.

(3.18), the relation between Tc and Λ
MS

is needed for a 
omparison to latti
e results.

On the analyti
al side, the relation between g
M

and g
E

is known up to the se
ond loop-order

[61℄:

g2
M

= g2
E

[

1− 1

48

g2
E

CA

πm
E

− 17

4608

(
g2
E

CA

πm
E

)2
]

, (3.20)

where the 
ontributions 
oming from λ(1,2) are omitted [60℄:

δg2
M

g2
E

= −g2
E

CA
2(CACF + 1)λ(1) + (6CF − 1)λ(2)

384(πm
E

)2
(3.21)

sin
e they 
ontribute, in terms of the 4d 
oupling only to order O(g6) and are numeri
ally

insigni�
ant.

However, as latti
e 
omputations 
onstantly in
rease their a

ura
y and their predi
tive

potential, it is worth looking at higher order 
orre
tions on g
E

, 
oming from the mat
hing to

QCD. For instan
e at T ≈ 10Tc and using the µ
opt

-s
ale as de�ned in [58℄, the last term in (3.20)

gives a 
orre
tion of ≈ 20% relative to the se
ond term and even at T = 1000Tc the 
orre
tion
is still of 14%.

This suggests that both higher order 
orre
tions in m
E

and g
E

may give a noti
eable 
on-

tribution to g
M

but also higher order terms in the (g2
E

/m
E

)-expansion 
ertainly 
ontribute. A

rough estimate on the third expansion term in g
M

(g
E

,m
E

), namely g6
E

/m3
E

shows that at the

order g5 in g
M

(g) the 
ontributions 
oming from the 
oe�
ients of m
E

(g) and g
E

(g) are ≈ 60%
of the 
oe�
ient standing in front of g6

E

/m3
E

. This suggests that at higher orders both, the

expansion of g
M

as well as the higher orders in g
E

and m
E

are important.

The task to relate the theoreti
al predi
tion from EQCD and MQCD to the latti
e 
omputa-

tions translates into the determination of Tc/Λ
MS

. This has been rigorously done in [60℄ in two
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manners: via the zero temperature string tension

√
σs and via the so-
alled Sommer parameter

r0 [101℄.

For the �rst method, results for the ratio Tc/
√
σs are taken from [102℄ and 
ombined with

the ratio Λ
MS

/
√
σs from [103℄, to obtain the needed relation Tc/Λ

MS

.

The se
ond method makes use of the result of r0Tc from [104℄ to 
ombine it with r0Λ
MS

[105℄ to again obtain the desired ratio. A dis
repan
y with the range Tc/Λ
MS

= 1.15 ... 1.25 was

found.

Meanwhile, it is expe
ted that further studies in latti
e simulations lead to more reliable

results, for instan
e for the Sommer parameter and the QCD s
ale [106, 107℄. This would

de�nitely narrow the un
ertainty of Tc/Λ
MS

on the numeri
al side and thus justify the need for

higher order 
orre
tions on the theoreti
al side.

The remarkable good agreement between the numeri
al and the theoreti
al studies given in

[60℄ support this idea:

1.0 2.0 3.0 4.0 5.0
T / T

c

0.6

0.8

1.0

1.2

T
/σ

s1/
2

4d lattice, Nτ
 1
 = 8 

T
c
 / Λ

MS
 = 1.10...1.35_

2-loop

1-loop

Figure 3.2: The latti
e data 
omes from [62℄, whereas the theoreti
al 
urves represent the one-

and two-loop results with a variation of Tc/Λ
MS

= 1.10 to Tc/Λ
MS

= 1.35.

3.4 Ba
kground �eld method

In general terms, for performing a mat
hing 
omputation (very similar to the 
omputation of

renormalization 
onstants), n-point vertex fun
tions need to be 
omputed in both theories, hav-

ing as external legs the same �elds that the 
oupling multiplies in the Lagrangian. For instan
e

in determining the e�e
tive mass parameter m
E

, the A0 self-energy needs to be 
omputed. Sim-

ilarly, in 
omputing the e�e
tive 
oupling it is in prin
iple possible to 
hoose between 
omputing

3-point or 4-point vertex fun
tions with the gauge �elds as external lines.

However, by making use of the so-
alled ba
kground �eld method, �rst developed in [108℄,

it is possible to a
hieve quite a simpli�
ation: only self-energies need to be 
omputed. In the

following, the line of argument from [108℄ is used to shortly present the properties and bene�ts

of the ba
kground �eld method.
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Starting with the e�e
tive a
tion from Eq. (2.40)

2

, we de�ne a new quantity by shifting the

gauge �elds only in the gauge a
tion with a so-
alled ba
kground �eld, Aa
µ → Aa

µ +Ba
µ:

Z̃[J,B] =

∫

DAdet

[

δG̃a

δαa

]

exp

[

−S[A+B]−
∫

x

1

2ξ
G̃aG̃a +

∫

x
JA

]

=

∫

D(A+B) det

[

δG̃a

δαa

]

exp

[

−S[A+B]−
∫

x

1

2ξ
G̃aG̃a +

∫

x
J(A+B)

]

e−JB

= Z[J ]e−JB

(3.22)

with JA ≡ Ja
µA

a
µ.

The term δG̃a/δαa
is the derivative of the gauge �xing term with respe
t to the gauge

transformation:

Aa
µ → Aa

µ
′ = Aa

µ − fabcαb(Ac
µ +Bc

µ) +
1

g
∂µα

a . (3.23)

With this de�nition, we have a new generating fun
tional for 
onne
ted Green's fun
tions:

W̃ [J,B] = ln Z̃ [J,B] =W [J ]−
∫

x
JB , (3.24)

and by de�ning

Ãa
µ =

δW̃ [J,B]

δJa
µ

=
δ(W [J ]− JB)

δJa
µ

=
δW [j]

δJa
µ

−Ba
µ = Āa

µ −Ba
µ , (3.25)

we perform a Legendre transformation in order to obtain a modi�ed e�e
tive a
tion (the gener-

ator of 1PI fun
tions):

Γ̃[Ã, B] = W̃ [J,B]−
∫

x
JÃ

= W̃ [J,B]−
∫

x
JÃ =W [J ]−

∫

x
JB −

∫

x
J(Ā−B)

=W [J ]−
∫

x
JĀ = Γ[Ā] = Γ[Ã+B] .

(3.26)

In the end we set Ã = 0 and obtain:

Γ̃[0, B] = Γ[B] . (3.27)

The last equation shows that Γ̃[0, B] 
ontains all 1PI fun
tions generated by Γ[B]. Sin
e

the 1PI fun
tions are generated by 
omputing derivatives with respe
t to Ã, whi
h here is 0, it

means that Γ[B] is the sum of all va
uum 1PI graphs in the presen
e of B.

There are two methods of 
omputing Γ̃[0, B]. The �rst one treats B exa
tly in su
h a way

that it dire
tly enters the propagators and the verti
es in the Feynman rules. This is di�
ult to

perform in pra
ti
e.

2

Note that here, the ghost �elds do not enter yet as the gauge-�xing determinant is still in the path- integral.
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The most 
onvenient method is to treat B perturbatively, that is to split the a
tion in the

following way:

S[A+B] = S0[A] + S
int

[A,B] . (3.28)

The part 
ontaining the original A-�elds is taken to be the free Lagrangian, thus propagators

are as usual, whereas the remaining part 
ontaining the B-�elds represents the intera
tions.

Furthermore, as Γ̃ generates only va
uum diagrams, the original A-�elds enter the diagrams

only as internal lines.

The e�e
tive a
tion Γ is in general not gauge-invariant due to the sour
e term Ja
µ . Only

for observables 
omputed on the mass shell, δΓ/δĀ = 0, the independen
e on the gauge �xing

term is re
overed. The advantage of the ba
kground �eld method is that it retains expli
it

gauge invarian
e for the ba
kground �eld. A spe
i�
 gauge �xing term G̃a
exists that ensures

gauge invarian
e of Γ̃[0, B] with respe
t to B. In other words, instead of 
omputing 1PI n-
point fun
tions in a theory with expli
it gauge invarian
e breaking Γ[B], we rather 
ompute 1PI

va
uum diagrams in a modi�ed theory Γ̃[0, B] that is still gauge invariant with respe
t to B. In
pra
ti
e, the B-�elds will enter only as external lines in the diagrams, whereas the A-�elds will
enter only as internal lines.

The gauge �xing term that ensures gauge invarian
e under a B-�eld variation is simply the

ba
kground �eld 
ovariant derivative of A in the adjoint representation:

G̃a = ∂µA
a
µ + gfabcAb

µB
c
µ = Da

µ(B)Aa
µ . (3.29)

By performing an adjoint group rotation on the sour
e term and on the original gauge �eld

Aa
µ → Aa

µ − fabcαbAc
µ , Ja

µ → Ja
µ − fabcαbJc

µ , (3.30)

the gauge invarian
e of Γ̃[0, B] under

Ba
µ → Ba

µ − fabcαbBc
µ +

1

g
∂µα

a
(3.31)


an be 
on�rmed.

The expli
it gauge invarian
e of the a
tion Γ[B] 
onne
ts the renormalization 
onstant of

the 
oupling and that of the �elds due to the following reasoning. The gauge invariant a
tion

needs to take the form of divergent 
onstant×(Fµν )
2
. A

ording to Eq (2.44) this would be:

(Fµν)ren = Z
1/2
A [∂µB

a
ν − ∂νB

a
µ + ZgZ

1/2
A igfabcBb

µB
c
ν ] , (3.32)

thus imposing:

Zg = Z
−1/2
A . (3.33)

Sin
e the Lagrangian has been 
hanged through the addition of the B-�eld, also the Feynman

rules will 
hange. They 
an be found in [108, 109℄.

3.5 Parameter mat
hing

After establishing the framework for performing the 
omputation, the mat
hing pro
edure is

initiated. For that, some preparations are needed. First of all, the 
omputation is performed in

the stati
 regime so that external momenta are taken purely spatial, p0 = 0. In fa
t, the limit
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for vanishing spatial external momenta p → 0 is 
onsidered as well, as will be motivated later

on.

Even though the ba
kground �eld B has no gauge parameter, it is introdu
ed by hand as

a 
ross-
he
k of the validity of the �nal result: ξ
here

= 1 − ξ
standard

. The gluon propagator

be
omes:

〈Ba
µ(p)B

b
ν(−p)〉 = δab

[
δµν
P 2

− ξ
PµPν

(P 2)2

]

. (3.34)

In the following the gluon self-energy is split into temporal and spatial 
omponents sin
e

we already know that the e�e
tive mass is related only to the A0 �elds, hen
e to Π00. The

tensor stru
ture is separated from the self-energy by making use of all symmetri
 
ombinations

of ve
tors and rank-two tensors that 
an generate the same tensor stru
ture as in Πµν . These

are: gµν , pµpν , Pµuν + Pνuµ, where uµ = (1,0) is the rest frame of the heat bath whi
h is

orthogonal to the stati
 external momentum, uµPµ = 0. The 
omponents Π0i and Πi0 vanish

identi
ally and only three independent 
omponent remain:

Π00(p) = Π
E

(p2) ,

Πij(p) =

(

δij −
pipj
p2

)

Π
T

(p2) +
pipj
p2

Π
L

(p2) .
(3.35)

It turns out that the longitudinal part Π
L

vanishes order by order in the loop-expansion.

For the mat
hing 
omputation of the mass parameter m
E

we use the de�nition of the Debye

mass in Eq. (3.10), disregarding the fa
t that the a
tual Debye mass 
ontains non-perturbative

terms. We are merely interested in its magnitude ∝ gT .
On the full QCD, side the Eq. (3.10) looks like:

p2 +Π
E

(p2)
∣
∣
p2=−m2

D

= 0 . (3.36)

On the EQCD side, we have:

p2 +m2
E

+ΠA0
EQCD

(p2)
∣
∣
∣
p2=−m2

D

= 0 . (3.37)

In the following we perform a twofold expansion in terms of the external momentum p2
and

in terms of the 
oupling, sin
e the self-energies 
ontain at this point the 
ontributions from all

orders in g. The expansion in the external momentum is justi�ed by the fa
t that it is evaluated

at the s
ale of O(gT ), whi
h by de�nition is a soft s
ale:

Π(p2) =
∞∑

n=1

Πn(0)(g
2)n + p2

∞∑

n=1

Πn
′(0)(g2)n + ... + (p2)j

∞∑

n=1

Π(j)
n (0)(g2)n . (3.38)

On the EQCD side, as all va
uum diagrams are s
aleless, they vanish identi
ally in the

dimensional regularization s
heme that we employ, Π
EQCD

(0) = 0. Thus, from equation (3.37)

we are left with the identity:

m2
E

= m2
D . (3.39)

Eq. (3.36) however needs to be solved iteratively for every loop order. Re
all that any p2

a

ounts for a g2T 2
term. Thus, at one-loop we break the Taylor expansion in p2

at the �rst

term (
f. Eq. (3.38)):

m2
E1−loop

= Π
E1−loop

(0) = Π
E1(0)g

2 . (3.40)
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At two-loop we go to order p2
in the expansion and substitute the external momentum with Eq.

(3.40):

m2
E2−loop

= Π
E2−loop

(0)−m2
E1−loop

Π′
E1−loop

(0)

= Π
E1(0)g

2 +
[
Π
E2(0)−Π

E1(0)Π
′
E1(0)

]
g4 .

(3.41)

And �nally to three-loop, we have:

m2
E

≡ m2
E3−loop

= Π
E3−loop

(0)−m2
E2−loop

Π′
E1−loop

(0) + (−m2
E1−loop

)2Π′′
E1−loop

(0)

= Π
E1(0)g

2 +
[
Π
E2(0)−Π

E1(0)Π
′
E1(0)

]
g4 +

[
Π
E3(0)−Π

E1(0)Π
′
E2(0)

−Π′
E1(0)ΠE2(0) + Π

E1(0)(Π
′
E1(0))

2 + (Π
E1(0))

2Π′′
E1(0)

]
g6 .

(3.42)

In order to 
ompute the e�e
tive 
oupling, merely the self-energy of the gauge �eld is needed.

Consider the general stru
ture of the gauge part of the EQCD Lagrangian:

L
EQCD

≈ c2B
2
i + c3gB

3
i + c4g

2B4
i . (3.43)

The 
oe�
ient c2 is the �eld normalization in the e�e
tive theory and 
an be simply absorbed

by a rede�nition of the �eld: Bi →
√
c2Bi, thus having:

L
EQCD

≈ B2
i + c3c

−3/2
2 gB3

i + c4c
−2
2 g2B4

i . (3.44)

From here we 
an read o� the e�e
tive 
oupling: g
E

= c3c
−3/2
2 g = c

1/2
4 c−1

2 g. However, due to the
ba
kground �eld arguments of gauge symmetry, it is required that the 
oe�
ients are identi
al

c2 = c3 = c4. Finally, transforming the 3d notation via s
aling B →
√
TB and 
omparing it to

the full QCD Lagrangian, we obtain:

g
E

= T 1/2c
−1/2
2 g . (3.45)

In 
on
lusion, in order to obtain the e�e
tive 
oupling within the framework of the ba
k-

ground �eld theory, it is ne
essary to 
ompute the �eld normalization c2.
This 
an be done through the e�e
tive potential:

V (B̄) =

∞∑

n=2

1

n!

∫

p1

...

∫

pn

B̄a1
µ1
(p1)...B̄

an
µn
(pn)Γ

a1...an
µ1...µn

[
B̄(p1), ..., B̄(pn)

]
. (3.46)

As it is 
onne
ted to the e�e
tive a
tion, the 
omputation 
an as well be translated into mat
hing

the terms of the potential whi
h are quadrati
 in the �elds. Note that to the lowest order the

term proportional to the quadrati
 �eld is the inverse gluon propagator. It 
ontains two terms,

∝ δij and ∝ pipj . They both will lead to the same result as it should be, but for simpli
ity we

take only the δij term:

[
p2 +Π

T

(p2)
]
B2
QCD

= [p2 +ΠBi

EQCD

(p2)]B2
EQCD

= [p2 +ΠBi

EQCD

(p2)]c2B
2
QCD

.
(3.47)

Again, after expanding the self-energies, the EQCD self-energy vanishes identi
ally and we

are left with:

p2 +Π
T

(0) + p2Π′
T

(0) + ... = c2p
2

⇒ c2 = 1 + Π′
T

(0) ,
(3.48)
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Note that the equation in the last line is exa
t. We have pi
ked out only the terms proportional

to p2
, therefore a further expansion in p2

is not needed. The 
onstant term and the higher terms

in p2
are expe
ted to 
ontribute to an e�e
tive mass in the EQCD theory, whi
h theoreti
ally

would be the thermal mass of the 
hromo-magneti
 �elds. But we already know that it is of

non-perturbative nature and in parti
ular that it vanishes at order O(gT ). This is indeed the


ase, sin
e the 
al
ulations later will show that Π
T

(0) = 0 at least to three-loop order.

Finally, expanding the self-energy in terms of g2,

Π′
T

(0) = g2Π′
T1(0) + g4Π′

T2(0) + g6Π′
T3(0) , (3.49)

we obtain for the e�e
tive 
oupling:

g2
E

= Tg2
{

1− g2Π′
T1 + g4

[(
Π′

T1(0)
)2 −Π′

T2(0)
]

−g6
[(
Π′

T1(0)
)3 − 2Π′

T1(0)Π
′
T2(0) + Π′

T3(0)
]}

.
(3.50)

3.6 Automatized sum-integral redu
tion

The remaining task is to 
ompute the QCD gluon self-energy to three-loop order. The fermion

masses are negle
ted throughout the 
al
ulation, as their 
ontribution is sub-leading.

At this order in the 
oupling approximately 500 Feynman diagrams should be generated. As

the en
ountered task is tremendous, a 
omputer-algebrai
 approa
h is needed. The following

proje
t builds upon a two-loop 
al
ulation [60℄ and its extension is des
ribed in detail in [109,

110℄. Here, merely a summary is given.

The diagrams are generated with QGRAF [111℄ and further manipulated with FORM [112℄

and FERMAT [113℄. The preparation of the generated diagrams 
onsists of de
oupling the

tensor stru
tures (s
alarization), de
oupling the external momentum (Taylor expansion), the


olor sums of the SU(N)-algebra and performing the tra
es over gamma matri
es. The O(107)
generated sum-integrals 
an be parametrized as:

M̄ s7s8s9
s1s2s3s4s5s6;c1c2c3 =

∑
∫

PQR

ps70 q
s8
0 r

s9
0

[P 2]s1 [Q2]s2 [R2]s3 [(P +Q)2]s4 [(P +R)2]s5 [(Q−R)2]s6
, (3.51)

where the fermion signature is en
oded as: P 2 = [(2n + ci)πT ]
2 + p2

, with ci = 0(1) for

bosons(fermions). As later on only pure bosoni
 sum-integrals are used, we adopt the simpli�-


ation

M̄ s7s8s9
s1s2s3s4s5s6;000

≡M s7s8s9
s1s2s3s4s5s6 (3.52)

The non-trivial topologies are shown in Fig. (3.3):

; ; ; ;

Figure 3.3: Non-trivial topologies at one-, two-, and three-loop order. The two-loop sum-integral

is 
alled sunset-type. The three-loop ones are of basketball-, spe
ta
les-, and mer
edes-type.
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Figure 3.4: Fermion signatures of the one- and and three-loop order master sum-integrals. There

arrow de�nes a fermion propagator and the simple lines de�ne a bosoni
 one.

The essential task is to redu
e the resulting sum-integrals to a small number of master

integrals [114℄. This has been done by implementing Laporta's algorithm [20℄ of Integration by

Parts (IBP) [19℄.

The IBP pro
edure generates algebrai
 relations between master sum-integrals of di�erent

topologies and di�erent exponent parameters by using the d-dimensional divergen
e theorem

[115, 116℄ (Gauss' law):

∑
∫

PQR
∂s

[

t
ps70 q

s8
0 r

s9
0

[P 2]s1 [Q2]s2 [R2]s3 [(P +Q)2]s4 [(P +R)2]s5 [(Q−R)2]s6

]

= 0 , (3.53)

where s and t are linear 
ombinations of p, q and r.

Additional relations among the sum-integrals are generated by performing momentum shifts.

These shifts redu
e also the fermion signatures to a total number of three (
f. Fig. (3.4)). The

so generated under-determined system of equations is solved by using a so-
alled lexi
ographi


ordering in order to express the most �di�
ult� sum-integrals in terms of the most �simple� ones.

The �simpli
ity� of a sum-integral depends in general terms on the power of its propagators.

The essential di�eren
e to integrals en
ountered in zero-temperature physi
s is the fa
t that

here the momentum derivatives spe
i�
 to the IBP algorithm a
t only on spatial 
omponents,

leaving the Matsubara modes untou
hed [116℄ (
f. appendix D).

The IBP redu
tion generates one- and three-loop master sum-integrals. The general stru
ture

of the self-energy is therefore:

Π3 =
∑

j

ajAj +
∑

j

bjBj , (3.54)

where Al = (one-loop)3 are produ
ts of sum-integrals of the �rst two types in Fig. (3.4) and Bj

are sum-integrals of the last three types in Fig. (3.4). The 
oe�
ients aj and bj are ratios of

polynomial in d = 3− 2ǫ.

As will be extensively presented in the following 
hapter, state of the art te
hniques for sum-

integral 
al
ulations o�er exa
t analyti
 solutions only for the one-loop and (via IBP redu
tion)

for the two-loop 
ases. Methods for solving basketball- and spe
ta
les-type sum-integrals are

based on an extensive pro
edure of subtra
tion of divergent parts and a numeri
al 
al
ulation

of the �nite remainder. It is rather a 
ase-by-
ase analysis that permits 
omputation only up to

the 
onstant term. Unfortunately, the IBP redu
tion generated terms that diverge in the limit

ǫ→ 0 as 1/ǫ in the 
ase of Π
E3 and as 1/ǫ2 for Π

T3. Therefore, a 
hange of basis is required in

order to pro
eed with the sum-integral evaluation.
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3.7 Basis transformation

The basis transformation is performed only for the gluoni
 part of the self-energy, thus permitting

us to solve only for the pure gluoni
 
ase.

The task of �nding a suitable basis of master sum-integrals that do not have divergent pre-

fa
tors 
onsists in reverse engineering the IBP redu
tion pro
ess. This task is demanding in

two ways. First of all, there is no pres
ription to tra
e the algorithm ba
k and this translates

into a manual sear
h for a suitable basis. From here the se
ond di�
ulty arises, namely to �nd

the balan
e between �nite pre-fa
tors and yet simple enough master sum-integrals that 
an be


omputed with today's te
hniques.

There is no doubt that the possible 
hoi
es are numerous, however, we have orientated our

sear
h to �nd sum-integrals that have already been 
omputed, or at least that are parametri
ally


lose to the known sum-integrals.

Starting with Eqs. (C.14) and (C.15) from [110℄, whi
h represent the Π
E3(0) and the Π′

T3(0)

ontributions and by using the IBP relations from appendix F provided by Jan Möller [117℄, we

obtain the following expressions:

C−3
A Π

E3 = −(d− 7)(d − 3)(d− 1)2

2
M000

31111−2 −
(d− 3)(d − 1)2(7d − 13)

4
V 000
111110

− 8(d− 4)(d − 3)(d − 1)2V 020
211110 +

720 − 13912d + 35443d2 − 34716d3

30(d − 7)d
[I01 ]

2I03

+
15515d4 − 3440d5 + 417d6 − 28d7 + d8

30(d − 7)d
[I01 ]

2I03

+
3024 − 48076d + 168800d2 − 261896d3 + 214359d4 − 99892d5

36(d − 7)(d − 5)(d − 2)d
I01 [I

0
2 ]

2

+
28027d6 − 4824d7 + 509d8 − 32d9 + d10

36(d− 7)(d − 5)(d − 2)d
I01 [I

0
2 ]

2
(3.55)

and

C−3
A Π′

T3 =r1(d)M
000
121110 + r2(d)M

000
211110 + r3(d)M

002
221110 + r4(d)M

020
311110 + r5(d)M

022
411110

+ r6(d)M
000
310011 + r7(d)M

000
114000 + r8(d)M

000
123000 + r9(d)M

000
222000 ,

(3.56)

with

r1(d) =
107662 − 196843d + 138960d2 − 48945d3 + 9198d4 − 837d5 + 20d6 + d7

8d(d − 5)(d− 2)(d − 1)
,

r2(d) =
94896 − 215472d + 201560d2 − 101965d3 + 30585d4 − 5566d5 + 606d6 − 37d7 + d8

8d(d− 5)(d − 2)(d− 1)
,

r3(d) =
−62− 717d + 876d2 − 330d3 + 42d4 − d5

d(d− 2)
,

r4(d) =
1440 − 7876d + 7801d2 − 3004d3 + 526d4 − 40d5 + d6

3d(d− 2)
,

r5(d) =
4(−186 + 65d + 37d2 − 13d3 + d4)(d− 6)

d(d− 2)
,
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r6(d) =
(d− 31)(d − 1)2

4d
,

r7(d) =
−25568 + 22382d − 3253d2 − 1932d3 + 806d4 − 122d5 + 7d6

2d(d− 9)(d − 2)
,

r8(d) =
110760 − 151302d + 74899d2 − 11395d3 − 1654d4 + 632d5 − 53d6 + d7

3d(d − 9)(d − 7)(d − 2)
,

r9(d) =
964718 − 2366265d + 2451867d2 − 1335353d3

24d(d − 7)(d − 5)2(d− 2)2(d− 1)
,

+
397943d4 − 61043d5 + 3225d6 + 229d7 − 25d8

24d(d − 7)(d − 5)2(d− 2)2(d− 1)
. (3.57)

Note that the sum-integrals of the formM000
abc000 are produ
ts of one-loop tadpoles and there-

fore known analyti
ally (
f. Eq. (B.3)). The sum-integrals M000
111110 and M000

310011 have already

been 
al
ulated in [40℄ and [118℄, respe
tively.

Finally, we present the two mat
hing 
oe�
ients to three-loop order in d dimensions. Note

the gauge independent result.

m2
E

=
g2T 2I01CA

(d− 1)2

[

1 + g2CA
(d2 − 11d+ 46)I02

6
+ g4C2

A

(

rm,1(d)I
0
1I

0
3 + rm,2(d)I

0
1 [I

0
2 ]

2

−(d− 3)(d − 7)M000
31111−2

2I01
− (d− 3)(7d − 13)M000

111110

4I01
− 8(d− 3)(d − 4)M020

211110

I01

)] (3.58)

with

rm,1(d) =
720 − 12472d + 9779d2 − 2686d3 + 364d4 − 26d5 + d6

30d(d − 7)
,

rm,2(d) =
3024 − 42028d + 81720d2 − 56428d3 + 19783d4 − 3898d5 + 448d6 − 30d7 + d8

36d(d − 2)(d− 5)(d − 7)
(3.59)

and

g2
E

= g2T

[

1− g2CA
d− 25

6
I02 − g4C2

A

(
(d− 1)2(d2 − 31d+ 144)I01 I

0
3

3d(d − 7)

)

+
(d− 25)2[I02 ]

2

36
+

72(d− 3)(d − 4)(4d2 − 21d − 7)[I02 ]
2

36d(d − 2)(d − 5)(d − 7)

)

+ g3C3
A

(

− r1(d)M
000
121110

− r2(d)M
000
211110 − r3(d)M

002
221110 − r4(d)M

020
311110 − r5(d)M

022
411110 − r6(d)M

000
310011

− r7(d)[I
0
1 ]

2I04 − (d− 1)2(d− 25)(d2 − 31d+ 144) + 9d(d− 7)r8(d)

9d(d − 7)
I01I

0
2I

0
3

+

(
144(d − 3)(d− 4)(d − 25)(4d2 − 21d− 7)

216d(d − 2)(d − 5)(d − 7)
− (d− 25)3

216
− r9(d)

)

[I02 ]
3

)]

.

(3.60)

The non-trivial sum-integrals in Eq. (3.55) are multiplied by a fa
tor (d− 3), meaning that

only the divergent pie
es of the sum-integrals have to be determined. The remaining task is

to 
ompute the 7 yet unknown non-trivial master sum-integrals, M000
31111−2, V

020
211110, M

000
121110,

M000
211110, M

002
221110, M

020
311110 and M022

411110.
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Chapter 4

Master sum-integrals

This is the main part of the work and it deals with te
hniques of solving 3-loop sum-integrals for

so-
alled spe
ta
les type (
f. Fig (4.42)). The main ideas are based on the paper by Arnold and

Zhai, [28℄ and they have been extended to the spe
ta
les type topology. In addition, we adopt

a te
hnique for manipulating tensor sum-integrals, originally developed for zero temperature

integrals, in Ref. [29℄. This method turns out to be very fruitful sin
e the standard te
hnique

for tensor stru
ture manipulation was shown to lead outside the usual 
lasses of sum-integrals.

The main feature that sets sum-integrals apart from integrals en
ountered in zero tempera-

ture �eld theory is the sum over Matsubara modes. There are several 
ompli
ations that 
ome

along with this new analyti
 stru
ture. First of all, the summation over the temporal 
ompo-

nent of the ve
tors breaks the rotational invarian
e of the integrand. Moreover, these temporal


omponents a
t like masses for the spa
e-like ones in the propagators, su
h that, for a l-loop sum-

integral this fa
t translates into an l-s
ale problem. Assuming that by any given te
hnique it is

possible to give a (numeri
al) result (ǫ-expansion) in terms of these l s
ales, still the summation

over these �masses� has to be performed. Sin
e the mass dimension of sum-integrals is usually

0 (for 
oupling mat
hing), 2 (for mass mat
hing) or 4 (for pressure/free energy 
omputations),

the summations over the Matsubara modes typi
ally ne
essitate regularization

1

.

The above mentioned parti
ularities of sum-integrals make it di�
ult to automatize their

evaluation. Up to this point, the methods presented in this 
hapter, are state of the art and are

based in prin
iple on a 
ase by 
ase analysis of the sum-integrals involved.

This 
hapter is stru
tured as follows: First, Tarasov's method for dealing with tensor integrals

is presented and applied to our parti
ular 
ase of the master sum-integral M000
31111−2. Afterwards,

we present the general properties of spe
ta
les type sum-integrals and their splitting in order

to make them a

essible for the su

eeding 
omputation. We then demonstrate the solving

te
hniques on the simple example of M020
211110. A detailed presentation of this 
omputational

method is also to be found in Refs. [38, 40, 118, 119℄. With the experien
e gained from this

parti
ular 
ase, we pro
eed to the generalization of the method and pave the way for the semi-

automatized 
omputation of (almost all) remaining master sum-integrals. All the results on the

sum-integrals 
an be found in se
tion 4.3, in subse
tions 4.5.1 and 4.5.2 and in appendix A.

1

Similar to the zeta fun
tion regularization:

∑∞
n=1 n = ζ(−1) = −1/12.
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Notations and 
onventions

In the following we slightly modify the notation 
onvention the generi
 sum-integral in Eq. (3.51)

like:

M0s6s7
s1s2s3s4s50

≡ V (d; s1s2s3s4s5; s6s7) , (4.1)

and in parti
ular:

M000
31111−2 ≡M3,−2 (4.2)

d parameters Vi parameters Zi

3 21111;20 2 12111;02 1

31111;22 3 12111;20 2

12211;22 3

12121;22 4

5 31122;11 4

7 32222;00 5 23222;00 5

52211;00 6 23231;00 6

42221;00 7 23321;00 7

43211;00 8

33221;00 9

33212;00 10

33311;00 11

3 12111;00 12 12111;00 8

21111;00 13 12121;02 9

22111;02 14 12121;20 10

31111;20 15 12211;02 11

41111;22 16 12221;22 12

13111;02 13

02221;02 14

03121;02 15

Figure 4.1: Convention for denoting the sum-integrals and their �nite parts

In order to ensure a smooth reading, we number the sum-integrals, as well as the zero-mode

sum-integrals as shown in Fig. (4.1). The same 
onvention will be used to denote the numeri
al,

�nite pie
es of ea
h sum-integral, as in:

V (d; s1s2s3s4s5; s6s7) = Vi

V f,#(d; s1s2s3s4s5; s6s7) =
T 3d+3−2s12345+s67

(4π)2s12345−s67− 3
2
(d+1)

Vi,# ,
(4.3)

with the 
onvention:

s123... ≡ s1 + s2 + s3 + ... . (4.4)

The sum-integral measure is de�ned as:

∑
∫

P
≡ T

∞∑

p0=−∞

∫

p
with

∫

p
≡ µ2ǫ

∫ ∞

−∞

ddp

(2π)d
. (4.5)
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This measure is split into:

∑
∫

P
=
∑
∫

P

′
+
∑
∫

P
δp0

≡
∑

p0 6=0

∫

p
+T

∫

p
,

(4.6)

the parts denoting the omission of the p0 = 0Matsubara mode and the 
orresponding remainder.

In addition, we have the integral measure:

∫

P
≡ µ2ǫ

∫ ∞

−∞

dd+1P

(2π)d+1
, (4.7)

whi
h is the integral measure de�ned in Eq. (4.5), with the additional shift d→ d+ 1.

4.1 Taming tensor stru
tures

This se
tion follows the presentation given in Ref. [120℄.

4.1.1 Redu
tion of 3-loop massive tensor integrals in Eu
lidean metri


In the following, the te
hnique based on Ref. [29℄ is used to redu
e tensor sum-integrals typi
ally

en
ountered in thermal �eld theory. We treat only a parti
ular 
ase of spe
ta
les type integrals,

needed in the 
al
ulation for M3,−2. A more generalized approa
h 
an be found in [120℄.

First, the 3-loop massive spe
ta
les-type integral with Eu
lidean metri
 is de�ned as (
.f.

Fig. (4.2)):

Sd
ν1ν2ν3ν4ν5 ≡

∫

pqr

1

(p2 +m2
1)

ν1(q2 +m2
2)

ν2(r2 +m2
3)

ν3((p+ q)2 +m2
4)

ν4((p + r)2 +m2
5)

ν5
.

(4.8)

1

4

2

5

3

Figure 4.2: The generalized massive spe
ta
les-type integral.

Using the parametri
 representation via a Lapla
e transformation

1

(p2 +m2)ν
=

1

Γ(ν)

∫ ∞

0
dααν−1e−α(p2+m2) , (4.9)

we obtain

Sd
ν1ν2ν3ν4ν5 = C

∫

pqr

∫ ∞

0

5∏

i=1

(

dαiα
νi−1
i

)

e−α1(p2+m2
1) · ... · e−α5((p+r)2+m2

5) , (4.10)
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with C =
∏5

i=1 Γ(νi)
−1

.

The rearrangement of the exponents in order to obtain Gaussian integrands in the momenta

and their subsequent integration lead to:

Sd =
C

[

(4π)
d
2

]3

∫ ∞

0

5∏

i=1

dαiα
νi−1
i

1

[D(α)]
d
2

e−
∑5

i=1 αim
2
i , (4.11)

where

D(α) = α1(α2 + α4)(α3 + α5) + (α3 + α5)α2α4 + (α2 + α4)α3α5 , (4.12)

is the so-
alled Symanzik polynomial and 
an be obtained from graph theory (
.f. [121℄).

This parti
ular representation of loop integrals is useful sin
e the dimension is en
oded only

as the exponent of the D(α) polynomial, besides some unimportant pre-fa
tors.

Two types of tensor integrals needed in further 
al
ulations are de�ned as:

T d
1 µν(ν1, ν2, ν3, ν4, ν5) =

d2

da1µda2ν

(

S̃d
ν1ν2ν3ν4ν5

)

a1=0
a2=0

, (4.13)

T d
2 µνρσ(ν1, ν2, ν3, ν4, ν5) =

d4

da1µda1νda2ρda2σ

(

S̃d
ν1ν2ν3ν4ν5

)

a1=0
a2=0

, (4.14)

with

S̃d
ν1ν2ν3ν4ν5 ≡

∫

pqr

ea1·qea2·r

(p2 +m2
1)

ν1(q2 +m2
2)

ν2(r2 +m2
3)

ν3((p+ q)2 +m2
4)

ν4((p + r)2 +m2
5)

ν5
.

(4.15)

Using the α-parameterization, Eq.(4.15) be
omes:

S̃d =
C

[

(4π)
d
2

]3

∫ ∞

0

5∏

i=1

dαiα
νi−1
i

1

[D(α)]
d
2

e
1

4D(α)(β1a21+β2a22+2β3a1·a2)e−
∑5

i=1 αim
2
i . (4.16)

On the one hand, using the representation of Eq. (4.15) we get for Eq. (4.13):

T d
1 µν =

∫

pqr

qµrν
(p2 +m2

1)
ν1(q2 +m2

2)
ν2(r2 +m2

3)
ν3((p + q)2 +m2

4)
ν4((p + r)2 +m2

5)
ν5
. (4.17)

On the other hand, using the representation of Eq. (4.16), we have:

T d
1 µν =

δµνC
[

(4π)
d
2

]3

∫ ∞

0

5∏

i=1

dαiα
νi−1
i

α4α5

2[D(α)]
d+2
2

e
1

4D(α)(β1a21+β2a22+2β3a1·a2)e−
∑5

i=1 αim
2
i , (4.18)

with

β1 = α1(α3 + α5) + α3(α4 + α5) + α4α5 ,

β2 = α1(α2 + α4) + α2(α4 + α5) + α4α5 ,

β3 = α4α5 .

(4.19)

Ex
ept for some pre-fa
tors, this integral seems to be a s
alar integral in d + 2 dimensions

and of the same topology as the one in Eq. (4.8) 
ontaining two propagators raised to a higher
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power. Therefore, by simply adjusting the pre-fa
tors and reading o� the dimension and the

di�erent powers of the propagators, we obtain:

T d
1 µν(ν1, ν2, ν3, ν4, ν5) = δµν

(4π)3

2
ν4ν5S

d+2
ν1ν2ν3ν4+1ν5+1 . (4.20)

In 
on
lusion, using the α-parameterization of the loop-integral it is possible to rewrite a

tensor integral as a s
alar integral of higher dimension but with the same topology and with the

tensor stru
ture appearing as a pre-fa
tor.

In order to determine a similar relation for Eq. (4.14), we perform the following 
al
ulation,

with ∂iµ ≡ ∂
∂aiµ

:

∂1µ∂1ν∂2ρ∂2σe
1

4D(α)
(β1a21+β2a22+2β3a1·a2)

∣
∣
∣a1=0
a2=0

=
1

[D(α)]2
[
β1β2δµνδρσ + β23(δµσδνρ + δµρδνσ)

]
.

(4.21)

This result shows that the tensor integral in Eq. (4.14) is expressed as a linear 
ombination

of 26 s
alar integrals of dimension d + 4. Instead of showing the result, we will exploit some

symmetries of a parti
ular integral, in whi
h m2 = m3 = m4 = m5. This parti
ular 
hoi
e of

the masses ensures that the massive integral (4.8) will have the same symmetries as the massless

sum-integrals we are interested in to 
ompute.

The pro
edure is to group all terms of β1β2 that lead to identi
al massive s
alar integrals

after several 
hanges of the integration variables. For instan
e, the term α2
1α3α4 will generate

an integral of the form Sd
ν1+2ν2ν3+1ν4+1ν5 whi
h, after a momentum translations q → −q − p

be
omes Sd
ν1+2ν2+1ν3+1ν4ν5 . In this way it is possible to group all 25 terms of β1β2 into 7 terms

of whi
h everyone generates one s
alar integral.

After some 
al
ulations, we obtain for the se
ond tensor integral (4.14):

T d
2 µνρσ = (4π)6

{[

b1S
d+4
ν1+2ν2+1ν3+1ν4ν5

+ b2S
d+4
ν1+1ν2+1ν3+1ν4+1ν5

+ b3S
d+4
ν1ν2+1ν3+1ν4+1ν5+1

+b4S
d+4
ν1+1ν2+2ν3+1ν4ν5

+ b5S
d+4
ν1ν2+2ν3+1ν4+1ν5

+ b6S
d+4
ν1ν2+2ν3+1ν4ν5

]

δµνδρσ

+b7S
d+4
ν1ν2+2ν3+2ν4ν5

(δµνδρσ + δµσδνρ + δµρδνσ)
}

,

(4.22)

with

b1 = ν1(ν1 + 1)(ν2 + ν4)(ν3 + ν5) ,

b2 = 2ν1[ν2ν4(ν3 + ν5) + ν3ν5(ν2 + ν4)] ,

b3 = 2ν2ν3ν4ν5 ,

b4 = ν1[ν5(ν5 + 1)(ν2 + ν4) + ν4(ν4 + 1)(ν3 + ν5)] ,

b5 = ν4(ν4 + 1)ν2(ν3 + ν5) + ν5(ν5 + 1)ν3(ν2 + ν4) ,

b6 = ν4ν5[ν3(ν4 + 1) + ν2(ν5 + 1)] ,

b7 = ν4(ν4 + 1)ν5(ν5 + 1) .

(4.23)

In prin
iple ea
h new tensor index will raise the dimension of the s
alar integral with 2 and

the tensor stru
ture will appear as a pre-fa
tor of all possible 
ombinations of Krone
ker deltas.
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4.1.2 Lowering dimension of s
alar integrals

By proje
ting out the tensor stru
ture of massive integrals in Eu
lidean metri
, higher dimen-

sional s
alar integrals are obtained, as was shown above. It is also possible to �nd a relation for

lowering the dimension of s
alar integrals, as will be shown in the following.

To this end, we de�ne the operator:

D(∂) ≡ D

(

αi →
∂

∂m2
i

)

=
∂

∂m2
1

∂

∂m2
2

∂

∂m2
3

+ ... (4.24)

Applying this operator to Eq. (4.11), we obtain:

D(∂)Sd
ν1ν2ν3ν4ν5 =

C
[

(4π)
d
2

]3

∫ ∞

0

5∏

i=1

dαiα
νi−1
i

1

[D(α)]
d
2

D

(
∂

∂m2
i

)

e−
∑5

i=1 αim2
i

= − 1

(4π)3
Sd−2
ν1ν2ν3ν4ν5 ,

(4.25)

where we have used that D(α) (
.f. Eq. (4.12)) is a homogeneous polynomial of degree three.

On the other hand, applying D(∂) on Eq. (4.8) we get terms of the form:

∂

∂m2
i

Sd
...νi... = −νiSd

...νi+1... . (4.26)

For our parti
ular 
hoi
e of D(∂) we will obtain a linear 
ombination of eight s
alar integrals.

We 
hoose the masses to be m2 = m3 = m4 = m5 in order to relate this integral to our needed

sum-integrals later on. After some momentum translation, it is possible to rewrite all integrals

in terms of only two.

D(∂)Sd
ν1ν2ν3ν4ν5 =− ν1(ν2 + ν4)(ν3 + ν5)S

d
ν1+1ν2+1ν3+1ν4ν5

− [(ν2ν4(ν3 + ν5) + (ν2 + ν4)ν3ν5]S
d
ν1ν2+1ν3+1ν4+1ν5 .

(4.27)

Combining Eq. (4.25) and Eq. (4.27), we get an expression that relates s
alar integrals of

di�erent dimension:

Sd
ν1ν2ν3ν4ν5 =

(4π)−3

b8
Sd−2
ν1ν2−1ν3−1ν4−1ν5

− b9
b8
Sd
ν1+1ν2ν3ν4−1ν5 . (4.28)

where

b8 = (ν2 − 1)(ν4 − 1)(ν3 + ν5 − 1) + (ν3 − 1)(ν2 + ν4 − 2)ν5 ,

b9 = ν1(ν2 + ν4 − 2)(ν3 + ν5 − 1) .
(4.29)

These relations 
an be used to obtain the result in Ref. [120℄ as an alternative to Eq. (4.30).

In fa
t, we have used the di�erent results as a 
ross 
he
k of Tarasov's method for sum-integrals.

4.1.3 Rearrangement of M3,−2

In the following Tarasov's method (Ref. [29℄) is applied to the master sum-integral M3,−2. For

that, M3,−2 is rearranged by exploiting its R↔ Q symmetry and by expanding the numerator:
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M3,−2 =
∑
∫

PQR

[
(Q−R)2

]2

P 6Q2R2(P +Q)2(P +R)2

= 2
∑
∫

PQR

Q2

P 6R2(P +Q)2(P +R)2
+ 4
∑
∫

PQR

(Q ·R)2
P 6Q2R2(P +Q)2(P +R)2

− 8
∑
∫

PQR

Q ·R
P 6R2(P +Q)2(P +R)2

+ 2
∑
∫

PQR

1

P 6(P +Q)2(P +R)2

≡ 2Ma + 4Mb − 8Mc + 2Md .

(4.30)

Mb and Mc are tensor sum-integrals. Nevertheless, Mc has a simple enough stru
ture to be


omputed via usual proje
tion te
hniques as will be shortly presented. For Mb it is ne
essary to

apply Tarasov's method.

Ma, Mc and Md

In order to 
al
ulate these sum integrals, we �rst exploit their symmetries with respe
t to the

integration variables, the property of dimensionless integrals to be 0 in dimensional regularization

and the fa
t that integrals of the type

∑∫

QQµ/[(Q
2)n] are 0 due to oddness of the integrand.

After momentum translation, we get:

Ma
Q→Q−P

= I01
∑
∫

PQ

1

P 4Q2(P +Q)2
= I01L

d(211; 00) , (4.31)

where I and L are de�ned in appendix B, Eqs. (B.3, B.6) and for these parti
ular values, L is

given in Eq. (B.9).

Similarly, Md is merely a produ
t of tadpole integrals (
f. Eq. B.3):

Md = [I01 ]
2I03 . (4.32)

The sum-integral Mc is written in terms of its tensor 
omponents:

Mc = gµν
∑
∫

P

1

P 6
Vµ(P )Ṽν(P ) , (4.33)

with

Ṽµ(P ) =
∑
∫

Q

Qµ

(P +Q)2
Q→Q−P

= −I01Pµ . (4.34)

and

Vµ(P ) =
∑
∫

Q

Qµ

Q2(P +Q)2
=
∑
∫

Q

−Qµ − Pµ

(P +Q)2Q2

⇒ 2
∑
∫

Q

Qµ

Q2(P +Q)2
= −Pµ

∑
∫

Q

1

Q2(P +Q)2
⇒ Vµ(P ) = −1

2
PµΠ110(P ) ,

(4.35)

with Π110 de�ned in Eq. (4.43).

Eq. (4.33) yields:

Mc =
1

2
I01
∑
∫

P

1

P 4
Π110 =

1

2
I01L

d(211; 00) . (4.36)
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4.1.4 Redu
tion of tensor sum-integral Mb

In order to redu
eMb, we split the numerator of the se
ond term in Eq. (4.30) into the temporal

and the spatial 
omponents:

(R ·Q)2 = (r0q0 + riqi)(r0q0 + rjqj) = r20q
2
0 + 2r0q0(r · q) + (r · q)2 (4.37)

so that we obtain:

Mb =
∑
∫

PQR

r20q
2
0

P 6Q2R2(P +Q)2(P +R)2
︸ ︷︷ ︸

≡V (3;31111;22)

+2
∑
∫

PQR

r0q0(r · q)
P 6Q2R2(P +Q)2(P +R)2

+
∑
∫

PQR

(r · q)2
P 6Q2R2(P +Q)2(P +R)2

,

(4.38)

The �rst term in Eq. (4.38) is a regular s
alar sum-integral whereas the last two terms


ontain a tensor stru
ture that will be treated with the methods shown previously.

The se
ond term 
an be identi�ed with (
f. Eq. 4.20):

∑
∫

PQR

r0q0(r · q)
P 6Q2R2(P +Q)2(P +R)2

= T 3
∑

p0q0r0

r0q0T1
d
ii(3, 1, 1, 1, 1)

∣
∣
∣
∣
∣ m1=p0

...
m5=p0+r0

=
(4π)3

2
δiiT

3
∑

p0q0r0

r0q0S
d+2
31122

∣
∣
∣
∣
∣ m1=p0

...
m5=p0+r0

= d
(4π)3

2

∑
∫ {d+2}

PQR

r0q0
P 6Q2R2(P +Q)4(P +R)4

≡ d
(4π)3

2
V (5; 31122; 11) .

(4.39)

This manipulation is possible due to the fa
t that we have identi�ed the masses of the integral

of Eq. (4.20) with the Matsubara modes whi
h we sum over. By using the 
onstraint on the

masses (
.f. m2 = ... = m5), we ensure that both the sum-integrals and the massive integrals

exhibit the same symmetries.

Finally the third term of Eq. (4.38) is written as (
f. Eq. (4.22)):

∑
∫

PQR

(r · q)2
P 6Q2R2(P +Q)2(P +R)2

= T 3
∑

p0q0r0

T d
2 ijij(3, 1, 1, 1, 1)

∣
∣
∣
∣
∣ m1=p0

...
m5=p0+r0

=
(4π)6

4
T 3

∑

p0q0r0

[

δijδij

(

2Sd+4
32222 + 48Sd+4

52211 + 24Sd+4
42221 + 24Sd+4

43211

+ 8Sd+4
33221 + 4Sd+4

33212 + 3Sd+4
33311

)

+ (δijδij + δiiδjj)4S
d+4
33311

]
∣
∣
∣
∣
∣ m1=p0

...
m5=p0+r0

=
(4π)6

4
d

[

2
∑
∫ {d+4}

PQR

1

P 6Q4R4(P +Q)4(P +R)4
+ 48

∑
∫ {d+4}

PQR

1

P 10Q4R4(P +Q)2(P +R)2
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+ 24
∑
∫ {d+4}

PQR

1

P 8Q4R4(P +Q)4(P +R)2
+ 24

∑
∫ {d+4}

PQR

1

P 8Q6R4(P +Q)2(P +R)2

+ 8
∑
∫ {d+4}

PQR

1

P 6Q6R4(P +Q)4(P +R)2
+ 4
∑
∫ {d+4}

PQR

1

P 6Q6R4(P +Q)2(P +R)4

+4(2 + d)
∑
∫ {d+4}

PQR

1

P 6Q6R6(P +Q)2(P +R)2

]

. (4.40)

We have managed to express Eq. (4.38) as a sum of nine 3-loop s
alar sum-integrals of

di�erent dimensions

2

. A di�erent basis set for M3,−2 
an be found in [120℄:

M3,−2 = 2[I01 ]
2I03 − 2I01L

d(211; 00) + 4V (3; 31111; 22) + 4d(4π)3V (5; 31122; 11)

+ d(4π)6 [2V (7, 32222; 00) + 48V (7, 52211; 00) + 24V (7; 42221; 00)

+ 24V (7; 43211; 00) + 8V (7; 33221; 00) + 4V (7; 33212; 00) + 4(d+ 2)V (7; 33311; 00)] .
(4.41)

4.2 Properties of spe
ta
les-types. Splitting

The goal is to express the sum-integrals as a Laurent expansion in ǫ up to O(ǫ0). Experien
e

shows that every loop 
an exhibit at most a pole of order 1, 1/ǫ, so that the highest degree of

divergen
e en
ountered is 1/ǫ3. The basi
 idea in 
omputing three-loop sum-integrals originates

from the paper of Arnold and Zhai [28℄. It is based on two essential properties of the sum-

integrals.

The �rst property is related to the topology. For three-loop sum-integrals of basketball and

spe
ta
les type it is possible to perform a de
omposition into one-loop stru
tures, by 
utting the

diagram as demonstrated in Fig (4.3). In this way, the one-loop stru
tures are treated separately

and plugged in the overall integration.

P

P+Q

R

P+R

Q =
∑
∫

P

P

R

P+RP+Q

Q

Figure 4.3: One-loop substru
tures of V-type sum-integrals.

The se
ond property originates in the fa
t that the propagator (and therefore the one-

loop generalized 2-point fun
tion) has a simpler stru
ture in 
on�guration spa
e rather then

in momentum spa
e, if the stru
ture itself is �nite when setting ǫ = 0. Therefore, the idea is to

subtra
t from the one-loop substru
tures terms whi
h generate divergen
es and then to express

the �nite remainder via a Fourier transformation in 
on�guration spa
e.

In order to perform a proper splitting of the sum-integral, the origin of divergen
es should

be investigated. We 
all ultraviolet (UV) divergen
es those that arise from the limit of high

momenta, p → ∞ and p0 → ∞. The infrared (IR) divergen
es refer here to those arising

whenever some Matsubara-mode is set to zero, p0 = 0. There is no need to distinguish between

2

Noti
e that d = 3 − 2ǫ is still valid, and that deviating values are expli
itly denoted in the notation of the

integral as: V (d+ 2ǫ, ...)
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these divergen
es in the �nal result (that is, to expli
itly use ǫ
IR

and ǫ
UV

) sin
e the mat
hing

pro
edure in the e�e
tive theory setup presented in se
tion 3.5 is taking 
are of separating them.

Thus, the most general form of a spe
ta
les-type sum-integral is rewritten as:

V (d; s1, ..., s5; s6s7) ≡

1

4

2

5

3
=
∑
∫

P

Πs2s4s6Πs3s5s7

[P 2]s1
, (4.42)

with the generalized one-loop 2-point fun
tion:

Πabc =
∑
∫

Q

qc0
[Q2]a[(P +Q)2]b

. (4.43)

In the following, we investigate the analyti
 behavior of the substru
tures and separate the


ontributions that give rise to (IR and UV) divergen
es. This splitting is kept as general as

possible. As it turns out, it 
an be applied to almost all sum-integrals en
ountered in our


omputation.

4.2.1 UV divergen
es

First, we 
on
entrate on the UV divergen
es of the substru
tures and the UV divergen
es they

may generate in the overall integration. It is possible to isolate them into three terms.

For that, noti
e that the sum in the 2-point fun
tion in
reases its 
omplexity 
onsiderably

and therefore it is repla
ed by an shifted integral into the 
omplex plane as in the thermal sum

formula [122, 123℄:

S ≡ T
∑

p0

f(p0) =

∫ ∞

−∞

dp0
2π

f(p0) +

∫ ∞−i0+

−∞−i0+

dp0
2π

[f(p0) + f(−p0)]nB(ip0)

= S0 + ST ,

(4.44)

with

nB(ip0) =
1

eip0/T − 1
. (4.45)

The fun
tion f needs to be analyti
 in the 
omplex plane and regular on the real axis. In

addition it should grow slower then eβ|p| at large |p|, so that the 
ontour of integration 
an be


losed in the 
omplex plane, as shown later.

The �rst part of the expression is the zero temperature limit of the sum (obvious by the

expli
it la
k of the T-parameter and denoted by ΠB
, 
.f. Eq. (4.46) below), whereas the se
ond

term is the thermal remainder of the sum.

ΠB
abc =

∫

Q

qc0
[Q2]a[(P +Q)2]b

. (4.46)
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The latter part of the sum is UV �nite. However, it might happen that by plugging this

remainder in the overall P -integration, it will generate some further divergen
es. Therefore,

the re
ipe is to subtra
t from the remainder Π0−B
as many leading terms as ne
essary in its

asymptoti
 expansion of P (
.f. subse
tion 4.2.3). These leading UV terms are denoted with

ΠC
and their 
on
rete de�nition is given in Eq. (4.110).

There is one additional term needed for a proper expansion, denoted as ΠD
. It is related to

the zero-temperature term, ΠB
. Sin
e the zero temperature term exhibits an ǫ divergen
e (
.f.

Eq. (4.108, B.2) below), the term is 
onstru
ted just to 
an
el this divergen
e by introdu
ing

an arbitrary parameter αi whi
h will 
an
el in the end:

ΠD
abc =

(P 2)ǫ

(αiT 2)ǫ
ΠB

abc . (4.47)

In this way, the 
ombination ΠB−D
abc 
an always be 
onstru
ted to be �nite, (of O(ǫ0)).

With these ideas in mind, we 
an now perform a preliminary splitting of the produ
t of two

su
h one-loop stru
tures

3

, denoting for brevity Πi ≡ Πabc , i = 1, 2:

Π1Π2 =
1

2
Π0−B

1 Π0−B
2 +ΠB−D

1 Π0−B
2 +ΠD

1 Π
0−B
2 +

1

2
ΠB

1 Π
B
2 + (1 ↔ 2) . (4.48)

The �rst two terms, as well as the �rst two terms from (1 ↔ 2) are (in prin
iple) �nite when

plugged in into Eq. (4.42) and 
an be 
omputed in 
on�guration spa
e, whereas all the other

terms are expressed in momentum spa
e via zeta and gamma fun
tions.

This splitting is to be understood as a guideline. In general there are some 
onditions for

how many terms should be subtra
ted from the Π's. They are related to the super�
ial degree

of divergen
e of the sum-integral (
.f. subse
tion 4.2.3).

4.2.2 IR divergen
es

There are two sour
es of divergen
es that may o

ur. The �rst one is related to the zero

Matsubara-mode of the overall integration variable p0 = 0 and the other may o

ur within the

one-loop 2-point fun
tion Πs1s2s3 .

In the latter 
ase, the IR divergen
e is 
oming from the zero Matsubara mode, thus we de�ne

that parti
ular 
ontribution as

4

:

ΠE
ab0 =

∫

q

1

[q2]s1 [(p + q)2 + p20]
s2
. (4.49)

Note that only s3 = 0 gives a �nite 
ontribution to the IR part. This integral 
an now be

simply regarded as a massive one-loop tadpole in d dimensions. Thus, it 
an be manipulated

with standard zero temperature te
hniques su
h as Integration by Parts (IBP) relations (
.f.

appendix D).

There are two situations in whi
h the IR-sensitive part has to be subtra
ted. The �rst

s
enario o

urs whenever the following 
ondition is true:

max(2s1 − s3, 2s2) > d . (4.50)

3

The fa
tor 1/2 avoids over 
ounting in (1 ↔ 2).
4

There is a se
ond IR divergen
e arising when s2 is su�
iently high. In that situation, the mode q0 = −p0
will generate an IR divergen
e, that will o

ur even for non-vanishing s3. Nevertheless, this 
ase does not arise

here.
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In this 
ase Πs1s2s3 is IR divergent and the following splitting should be performed: Π =
Π0−E +ΠE

, otherwise the �nite pie
e of the 2-point fun
tion yields a 
ontribution of the form:

1
q0=0 . In both 
ases, Πabc(p0 = 0) and Πabc(p0 6= 0), this behavior has to be a

ounted for. In

addition, a ΠE(p0 = 0) may have to be subtra
ted even if the 
ondition is not ful�lled in order

to render the overall integration over p IR safe. In this situation one may think of ΠE
as the IR


ounterpart of ΠC
.

4.2.3 Splitting

Considering the most general spe
ta
les type sum-integral from Eq. (4.42), after subtra
ting

the divergent zero temperature parts from the sub-loops the integrand runs as (
.f. leading UV

behavior of the sub-loops, Eq. 4.110):

Π0−B
s2s4s6Π

0−B
s3s5s7

[P 2]s1
= [P 2]−s1−min(s2−s6/2,s4)−min(s3−s7/2,s5) . (4.51)

Therefore, the 
ondition for the �rst term of Eq. (4.48) to be UV �nite, reads:

− 2s1 −min(2s2 − s6, 2s4)−min(2s3 − s7, 2s5) ≤ −d− 2 , (4.52)

or

c0 = θ(d− 2(s1 − 1)−min(2s2 − s6, 2s4)−min(2s3 − s7, 2s5)) . (4.53)

Should this 
ondition not be ful�lled, leading UV terms (ΠC
) have to be subtra
ted, as

seen through the Heaviside theta fun
tion. However, it turns out that for sum-integrals of mass

dimension 2 only basketball type sum-integrals may exhibit a non-vanishing c0, whereas for the
spe
ta
le-types en
ountered here, it varies between -4 and 0.

Further, sin
e ΠB−D
abc goes as lnP 2/[P 2]a+b− c

2
− d+1

2
, the 
ondition for the se
ond term in Eq.

(4.48) to be UV �nite, reads:

− 2s124 + (d+ 1) + s6 −min(2s3 − s7, 2s5) ≤ −2− d , (4.54)

or

c2 = θ(2d+ 3− 2s124 + s6 −min(2s3 − s7, 2s5)) . (4.55)

In this way, a better splitting is:

Π1Π2 =
1

2

[

Π0−B
1 − c0Π

C
1

] [

Π0−B
2 − c0Π

C
2

]

+ΠB−D
1

[

Π0−B
2 − c2Π

C
2

]

+ c0Π
C
1 Π

0−B
2

+ΠD
1

[

Π0−B
2 − c2Π

C
2

]

+ c2Π
B
1 Π

C
2 +

c0
2
ΠC

1 Π
C
2 +

1

2
ΠB

1 Π
B
2 + (1 ↔ 2) .

(4.56)

In the 
ase where the Matsubara mode of the overall integration variable is zero, p0 = 0, the
only potentially divergent terms are the zero temperature and the zero-mode parts, Π{B,E}

. We

have determined an empiri
al rule for de
iding whi
h part should be subtra
ted and whi
h not

and it is related to the super�
ial degree of divergen
e of the substru
tures. The following rule

works for all Πs1s2s3(p0 = 0) ex
ept for Π110, for whi
h both terms need to be subtra
ted.

ΠA
abc = θ(d+ 2− 2a− 2b+ c)ΠB

abc + θ(2a+ 2b− c− 2− 2d)ΠE
abc . (4.57)
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Thus, for the p0 = 0 part, the separation of the substru
tures looks like:

Π1(p0 = 0)Π2(p0 = 0) =
1

2
Π0−A

1 (p0 = 0)Π0−A
2 (p0 = 0) + ΠA

1 (p0 = 0)Π0
2(p0 = 0) + (1 ↔ 2) .

(4.58)

Finally, summarizing all divergen
es, the generi
 splitting be
omes:

V (d; s1, ..., s5; s6s7) =
∑
∫

P

Πs2s4s6Πs3s5s7

[P 2]s1

=
∑
∫

P
δp0

1
2Π

0−A
s2s4s6Π

0−A
s3s5s7 +ΠA

s2s4s6Πs3s5s7 + (246 ↔ 357)

[P 2]s1

∣
∣
∣
∣
∣
IBP

+
∑
∫

P

′
1
2Π

0−B−c0C
s2s4s6 Π0−B−c0C

s3s5s7 +ΠB−D
s2s4s6Π

0−B−c2C
s3s5s7 + (246 ↔ 357)

[P 2]s1

+

{

∑
∫

P

′ c0Π
C
s2s4s6Π

0−B
s3s5s7 +ΠD

s2s4s6Π
0−B−c2C
s3s5s7 + c2Π

B
s2s4s6Π

C
s3s5s7 + (246 ↔ 357)

[P 2]s1

+
∑
∫

P

′
c0
2 Π

C
s2s4s6Π

C
s3s5s7 +

1
2Π

B
s2s4s6Π

B
s3s5s7 + (246 ↔ 357)

[P 2]s1

}

≡ V z(ero−mode) + V f(inite) +
{

V d(ivergent)
}

.

(4.59)

Again, V f

ontains all ne
essary subtra
tions to make the integrals �nite, and V d

all sub-

tra
ted terms. More expli
itly, we have:

∑
∫

P

′
1
2Π

0−B−c0C
s2s4s6 Π0−B−c0C

s3s5s7 + (246 ↔ 357)

[P 2]s1
≡ V f,1

i

∑
∫

P

′ ΠB−D
s2s4s6Π

0−B−c2C
s3s5s7 + (246 ↔ 357)

[P 2]s1
≡ V f,2a

i + V f,2b

i
if a = b
= V f,2

i .

(4.60)

The zero-mode 
ontribution V z
is a spe
ial 
ase for itself, sin
e in general it is not possible to

eliminate all divergen
es by only subtra
ting 
ontributions Π{B,E}
from the one-loop stru
tures.

In that sense, the divergen
es are mu
h too �high�. To �lower� them, IBP relations are used

(only for V z
!):

∂

∂pi
pi ◦

∑
∫

P
δp0

Πs2s4s6Πs3s5s7

[P 2]s1
→ #1

∑
∫

P
δp0

Πs2s4s6Πs3s5s7

[P 2]s1−1

+#2
∑
∫

P
δp0

Πs2−1s4s6Πs3s5s7

[P 2]s1
+#3

∑
∫

P
δp0

Πs2s4s6Πs3−1s5s7

[P 2]s1
+ ...

(4.61)

Therefore, only after IBP redu
tion, the splitting program of the sub-loops 
an be used. The

zero mode divergent and respe
tively �nite parts are denoted with Zd

and Z f

. Details on IBP

zero-mode redu
tion are to be found in appendix D.

Finally, in Fig. (4.4) we provide the splitting 
oe�
ients from Eqs. (4.53) and (4.55), for all

the sum-integrals that obey this generi
 separation pro
edure.
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d V(s1,...,s8) c0 c1 c2

3 21111;020 0 1 1

31111;022 0 1 1

21111;000 0 0 0

31111;020 0 0 0

41111;022 0 0 0

5 31122;011 0 1 1

7 32222;000 0 0 0

52211;000 0 0 0

42221;000 0 0 0

43211;000 0 1 0

33221;000 0 1 0

32212;000 0 1 0

33311;000 0 1 1

Figure 4.4: Splitting 
oe�
ients of the sum-integrals.

4.3 A �rst example, V (3; 21111; 20)

In the following, we demonstrate both the splitting pro
edure and the a
tual 
omputation of

ea
h term in part on one of the two non-trivial master sum-integrals that enters the three-loop

term of the mass parameter (3.58), V (3, 21111; 20) [124℄ (
.f. Fig. (4.5)). Based on this example

it is possible to generalize the 
omputation to a generi
 set of parameters. Thus, the remaining

sum-integrals are to be treated in a similar way, by using the formulas from se
tion 4.4. The


orresponding result 
an be found in Appendix A.

Figure 4.5: Sum-integral V (3, 21111; 20). The dot denotes an extra power on the propagator

and the �×� denotes a quadrati
 Matsubara-mode in the numerator.

The sum-integral is split as:

V (3; 21111; 20) =
∑
∫

P

′ Π0−B
112 Π0−B

110 +ΠB−D
112 Π0−B−C

110 +ΠB−D
110 Π0−B−C

112

[P 2]2

+
∑
∫

P

′ ΠD
112Π

0−B−C
110 +ΠB

112Π
C
110 +ΠD

110Π
0−B−C
112 +ΠB

110Π
C
112 +ΠB

112Π
B
110

[P 2]2

+
∑
∫

P
δp0

Π112Π110

[P 2]2
.

(4.62)

The pres
ription is to 
ompute the �nite parts �rst and the divergent terms in the end. The

zero-mode 
ontribution generates two additional sum-integrals via IBP transformations.
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4.3.1 Building blo
ks of the sum-integral

Before starting the a
tual 
omputation, we de�ne all ne
essary pie
es in both momentum spa
e

and in 
on�gurations spa
e. For a detailed presentation of their 
omputation, see se
tion 4.4.

The zero temperature pie
e of Π110 is a

ording to Eq. (4.46):

ΠB
110 =

∫

Q

1

Q2(P +Q)2
=
g(1, 1, d + 1)

[P 2]2+
d+1
2

=
µ2ǫΓ(ǫ)Γ2(1− ǫ)

(4π)2−ǫΓ(2− 2ǫ)[P 2]ǫ
, (4.63)

where the integral 
an be solved via Feynman parameters (
.f. Eq. (B.1)) and g is de�ned in

Eq. (B.2).

The zero temperature part of Π0
112 is:

ΠB
110 =

∫

Q

q20
Q2(P +Q)2

= uµuν

∫

Q

QµQν

Q2(P +Q)2
uµ = (1,0) . (4.64)

The tensor integral is solved by using the standard proje
tion te
hnique with the ansatz:

∫

Q

QµQν

Q2(P +Q)2
= AP 2gµν +BPµPν ⇒







∫

Q

=Q2

︷ ︸︸ ︷

gµνQµQν
Q2(P+Q)2

= 0 = P 2((d+ 1)A+B)

∫

Q

=1
4 [(P+Q)2−P2−Q2]2

︷ ︸︸ ︷

PµPνQµQν
Q2(P+Q)2

= P 4

4 ΠB
110 = P 4(A+B)

,

(4.65)

where we have used the property gµνgµν = d+ 1 = 4− 2ǫ. By solving the system of equations,

we obtain:

ΠB
112 =

g(1, 1, d + 1)

4d

(d+ 1)p20 − P 2

[P 2]2+
d+1
2

. (4.66)

As presented in more detail in se
tion (4.4), the leading UV 
ontributions ΠC
are simply

obtained by adding up the 
ontributions of Π with the external momentum �ow (P ) going

through ea
h propagator in the limit P → ∞:

ΠC
110 = lim

P→∞

[
∑
∫

P

1

Q2(P +Q2)
+
∑
∫

Q

1

Q2(P +Q2)

]

=
2

P 2

∑
∫

Q

1

Q2
=

2I01
P 2

ΠC
112 = lim

P→∞

[
∑
∫

P

1

Q2(P +Q2)
+
∑
∫

Q

(−q0 − p0)
2

Q2(P +Q2)

]

=
2

P 2

∑
∫

Q

q20
Q2

+
p20
P 2

∑
∫

Q

1

Q2
=

2I11 + p20I
0
1

P 2
.

(4.67)

For de�ning these quantities in 
on�guration spa
e, we use the inverse Fourier transform of

the propagator (
.f. Eq. (4.112))

1
P 2 = 1

4π

∫
d3r eipr

r e−|p0|r
. In this way, Π110 and Π112 be
ome:

Π110 = T

∫
d3q

(2π)3

∫

d3r

∫

d3s
eiqr+i(q+p)s

16π2rs

∞∑

q0=−∞
e−|q0|r−|p0+q0|s

= T

∫

d3r

∫

d3sδ(3)(r+ s)
ei(p)s

16π2rs

∞∑

q0=−∞
e−|q0|r−|p0+q0|s

=
T 3

4

∫

d3r
eipr

r̄2
e−|p0|rf3,110(r̄, |p̄0|) ,

(4.68)
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and similarly

Π112 = π2T 5

∫

d3r
eipr

r̄2
e−|p0|rf3,112(r̄, |p̄0|) , (4.69)

with

f3,110(x, n) =
∞∑

m=−∞
e−(|m|+|m+n|−|n|)x = coth x+ |n| ; f3,112(x, n) =

∞∑

m=−∞
m2e−(|m|+|m+n|−|n|)x ,

(4.70)

given in Eqs. (E.5 and E.6).

In a similar way, we 
ompute Π
{B,C}
{110,112}. Noti
e that the Γ(ǫ) term from Eq. (4.63), that

exhibits a 1/ǫ pole, 
an
els the Γ(ǫ) term from the denominator of Eq. (4.112), and renders the

quantity �nite:

Π
{B,C}
{110,112} =

T 3

4

∫

d3r
eipr

r̄2
e−|p0|r

{

fB,C
3,110(x, y), (2πT )

2fB,C
3,112(x, y)

}

, (4.71)

with the de�nitions of f to be found in appendix E.

4.3.2 Finite parts

With the previously 
al
ulated building blo
ks, we 
an 
ompute all pie
es in the splitting of Eq.

(4.62).

The �rst �nite pie
e of the sum-integral reads:

V f,1(3; 21111; 20) =
∑
∫

P

′ Π0−B
112 Π0−B

110

P 4

=
π2T 9

4

∑

p0

′
∫

d3r

∫

d3s
e−|p0|(r+s)

r̄2s̄2
f0−B
3,112(r̄, |p̄0|)f0−B

3,110(s̄, |p̄0|)
[
∫

d3p

(2π)3
eip(r+s)

P 4

]

=
T 2

2(4π)4

∑

p0

′

∫ ∞

0
dr̄ds̄ e−|p0|(r+s)f0−B

3,112(r̄, |p̄0|)f0−B
3,110(s̄, |p̄0|)

∫ π

0
dθ sin θ

e−|p0|
√
r2+s2+2rs cos θ

|p̄0|

=
T 2

(4π)4

∫ ∞

0
dxdy

1

xy

∞∑

n=1

e−n(x+y)

n3

[

e−n|x−y|(1 + n|x− y|)− e−n(x+y)(1 + n(x+ y))
]

×
[
1

2
(n+ coth x)csch 2x+

n2

2
coth x+

n

6
− 1

2x3
− n

2x2
− n2

2x

]

×
[

coth y − 1

y

]

=
T 2

(4π)4
× 0.014356026(1) .

(4.72)

In the se
ond line of the previous equation, we have simply plugged in the 2-point fun
tions

and have performed the Fourier transform (Eq. (4.112)). Afterwards we have res
aled the

integrand and have performed the 
on�guration spa
e angular integrations by 
hoosing the

spheri
al 
oordinates su
h that: |r + s| =
√

r2 + s2 + 2rs[polar angle]. The remaining angular

integration be
omes trivial. Finally, the sum 
an be performed analyti
ally. The two dimensional

integration is performed with Mathemati
a [125℄ numeri
ally.
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The se
ond �nite pie
e 
onsists of two terms:

V f,2a(3; 21111; 20) + V f,2b(3, 21111, 20) =
∑
∫

P

′

[

ΠB−D
112 Π0−B−C

110

[P 2]2
+

ΠB−D
110 Π0−B−C

112

[P 2]2

]

. (4.73)

Expanding the terms ΠB−D
in ǫ, we obtain:

ΠB−D
110

1

(4π)2
= ln

α1T
2

P 2
and ΠB−D

112 =
4p20 − P 2

12(4π)2
ln
α2T

2

P 2
. (4.74)

As αi is a dummy variable that 
an
els in the �nal result, it 
an be 
hosen to simplify the


omputation. For αi = 4π2 no term of the form ln(
onst) will appear in the integral and the

�rst term of Eq. (4.74) simply reads:

∑
∫

P

′ ΠB−D
112 Π0−B−C

110

[P 2]2
=

T 4

48(4π)2

∑

p0

′
∫

d3p

(2π)3
(P 2 − 4p20) ln P̄

2

P 4

∫

d3r
eipr

r̄2
e−|p0|rf0−B−C

3,110 (r̄, |p̄0|)

=
T 2

48(2π)5

∑

p0

′
∫ ∞

0
dr̄ e−|p0|rf0−B−C

3,110 (r̄, |p̄0|)
∫ ∞

0
dp̄
p2(4p̄20 − P̄ 2)

P̄ 4
ln P̄ 2 sin pr

pr

= − T 2

6(4π)4

∞∑

n=1

∫ ∞

0
dx

[

coth x− 1

x
− x

3

]
e−2nx

x

×
[

γE(1− 2nx) + 2nx+ e2nx(1 + 2nx)Ei(−2nx)− (1− 2nx) ln
2n

x

]

=
T 2

(4π)4
× (0.001351890(1)) .

(4.75)

In the se
ond line we have res
aled the integral and have performed the angular integration

of r and p (
.f. Eqs (C.4, C.6)). Afterwards, the momentum integration was performed as in

Eq. (C.12).

The se
ond term is 
omputed in a similar way:

∑
∫

P

′ ΠB−D
110 Π0−B−C

112

[P 2]2
= − T 2

(4π)4

∞∑

n=1

∫ ∞

0
dx

[
1

2
(n+ coth x)csch 2x+

n2

2
cothx

+
n

6
− 1

2x3
− n

2x2
− n2

2x
+

x

30
− n2x

6

]
e−2nx

n

[

1− γE + e2nxEi(−2nx) + ln
2n

x

]

=
T 2

(4π)4
× (−0.006354602(1)) .

(4.76)

A good 
onsisten
y 
he
k is not to set α to a parti
ular value and to 
he
k that in the �nial

result of the sum-integral is α-independent. The numeri
al value is obtained by performing the

integral numeri
ally for the �rst 10000 terms of n. In order to get an estimate of the remainder,

we have �tted the the integral between n = 10.001 and n = 100.000 to a power law f(n) = an−b

and have performed the summation n = 10.001...∞ analyti
ally. Thus, by 
hopping the sum at

n = 10.000 we get a relative error of O(10−10).
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4.3.3 Divergent parts

A

ording to the splitting in Eq. (4.56) there are for the non-zero modes p0 6= 0 �ve divergent

terms. Keeping in mind that terms like

∑∫

PΠ
0/[P 2] are two-loop sum-integrals (
.f. Eq. B.6

and for �xed parameters, they are in appendix B) and by using the de�nitions in Eqs. (4.6, B.3,

B.5), we obtain:

∑
∫

P

′ ΠD
112Π

0−B−C
110

P 4
=

g(1, 1, d + 1)

4d(αT 2)2−
d+1
2

∑
∫

P

′ (d+ 1)p20 − P 2

P 4

[

Π0
110 −

g(1, 1, d + 1)

[P 2]2−
d+1
2

− 2I01
P 2

]

=
g(1, 1, d + 1)

4d(αT 2)2−
d+1
2

[

(d+ 1)
(

Ld(211; 20) − g(1, 1, d + 1)I1
4− d+1

2

− 2I01 × I13

)

− Ld(111; 00) + Jd(111; 0) + g(1, 1, d + 1)I0
3− d+1

2

+ 2I01 × I02

]

=
T 2

(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ

(

− 7

72
+ lnG− ln 2π

12

)

+O(ǫ0)

]

,

(4.77)

∑
∫

P

′ ΠB
112Π

C
110

P 4
=
∑
∫

P

′ g(1, 1, d + 1)

4d

(d+ 1)p20 − P 2

[P 2]2−
d+1
2

2I01
[P 2]3

=
g(1, 1, d + 1)I01

2d

[

(d+ 1)I1
5− d+1

2

− I0
4− d+1

2

]

=
T 2

48(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ
+

1

2
+ γE + 24 lnG+O(ǫ)

]

,

(4.78)

∑
∫

P

′ ΠD
110Π

0−B−C
112

P 4
=
g(1, 1, d + 1)

(αT 2)2−
d+1
2

∑
∫

P

′

[

Π0
112

P 4
− (d+ 1)p20 − P 2

4d

g(1, 1, d + 1)

[P 2]2−
d+1
2

1

P 4

−
(

I01
p20
P 2

+
2I11
P 2

)
1

P 4

]

=
g(1, 1, d + 1)

(αT 2)2−
d+1
2

[

Ld(211; 02) − Jd(211; 1) − g(1, 1, d + 1)

4d

×
(

(d+ 1)I1
4− d+1

2

− I0
3− d+1

2

)

− I01 × I13 − 2I11 × I03

]

=
T 2

(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ

(

− 5

48
− γE

24
+

lnG

2
+
ζ(3)

120

)

+O(ǫ0)

]

,

(4.79)

∑
∫

P

′ ΠB
110Π

C
112

P 4
=
∑
∫

P

′ g(1, 1, d + 1)

[P 2]2−
d+1
2

1

P 4

(

I01
p20
P 2

+
2I11
P 2

)

= g(1, 1, d + 1)
[

I01 × I1
5− d+1

2

+ 2I11 × I0
5− d+1

2

]

=
T 2

96(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
9

2
+ γE + 24 lnG− 4ζ(3)

5

)

+O(ǫ0)

]

,

(4.80)
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and

∑
∫

P

′ ΠB
112Π

B
110

P 4
=
g(1, 1, d + 1)2

4d

∑
∫

P

′ (d+ 1)p20 − P 2

[P 2]2−
d+1
2

1

[P 2]2−
d+1
2

1

P 4

=
g(1, 1, d + 1)2

4d

[
(d+ 1)I15−d − I04−d

]

=
−1

48(4π)4

(
µ2e−γE

4πT 2

)3ǫ [
1

ǫ2
+

72 lnG− 1

ǫ
+ 2 +

7π2

4
+ 360 lnG− 216ζ

′′
(−1) +O(ǫ)

]

.

(4.81)

G ≈ 1.2824 is the Glaisher 
onstant. And the γE 
onstant, along with the Stieltjes 
onstants

are de�ned via:

ζ(1 + x) =
1

x
+ γE +

∞∑

i=1

γi
(−x)i
i!

. (4.82)

The generi
 formulas for the divergent parts are listed in Eqs. (4.137, 4.138, 4.139).

4.3.4 Zero-modes

The zero-mode 
omponent of V (3; 21111; 20) exhibits an IR divergen
e that 
annot be 
ured

by simply subtra
ting di�erent terms from the one-loop substru
tures, as in Eq. (4.57). This

behavior stems from the δp0/[P
2]2 fa
tor in the overall integration. Therefore, we use IBP

relations to lower the exponent of P and afterwards to apply proper splitting to the sum-integrals

emerging from the IBP redu
tion:

∂pp ◦
∑
∫

P
δp0

Π112Π110

[P 2]2
= 0 . (4.83)

Using Eq. (D.1), we obtain:

p∂pδp0Π110 =
[
−p2Π210 −Π110 + I02

]
δp0 (4.84)

and

p∂pδp0Π112 =
[
−p2Π212 −Π112 + I12

]
δp0 . (4.85)

With the produ
t rule in Eq. (4.83) and by plugging in the relations for the substru
tures,

we obtain:

∑
∫

P
δp0

Π112Π110

P 4
=

1

d− 6

∑
∫

P
δp0

[
Π210Π112

P 2
+

Π212Π110

P 2
− I02

Π112

P 4
− I12

Π110

P 4

]

=
Z(3; 12111; 02) + Z(3; 12111; 20) − I02 × Jd(211; 1) − I12 × Jd(211; 0)

d− 6
.

(4.86)

The last two terms are of the form 1loop×2loop, and are trivial to 
ompute (
f. Eqs.

(B.3,B.5)). The �rst two terms are zero-mode 3-loop sum-integrals that need further manipula-

tion.
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4.3.5 Zero-mode masters

For V (3; 21111; 20), we en
ountered two non-trivial zero-mode sum-integrals that are 
al
ulated

now in detail. In addition, the de�nitions of two new 2-point fun
tions (and their divergent

pie
es) are needed here, both in momentum spa
e and in 
on�guration spa
e. Sin
e the method

of 
omputing them was presented in subse
tion 4.3.1, we simply refer to their de�nitions in

appendix E.

For Z(3; 12111; 02) we have the splitting:

Z(3; 12111; 02) =
∑
∫

P
δp0

1

P 2

[

Π0−E
210 Π0−B

112 +Π210Π
B
112 +ΠE

210Π112

]

. (4.87)

The �rst term is �nite and a

ording to Eqs.(E.16, E.6, E.24), it looks like:

∑
∫

P
δp0

Π0−E
210 Π0−B

112

P 2
=
T 7

32

∫
d3p

(2π)3
1

p2

∫

d3r

∫

d3s
eip(r+s)

r̄s̄2
f0−E
3,210(r̄, 0)f

0−B
3,112(s̄, 0)

=
T 2

4(2π)5

∫ ∞

0
dr̄ds̄ r̄f0−E

3,210(r̄, 0)f
0−B
3,112(s̄, 0)

[∫ ∞

0
dp̄

sin pr

pr

sin ps

ps

]

= − 4T 2

(4π)4

∫ ∞

0
dxdy

x ln
(
1− e−2x

)

x+ y + |x− y|

(
coth y csch 2y

2
− 1

2y3

)

=
T 2

(4π)4

∫ ∞

0
dy

1− y3 coth y csch 2y

12y4
[
+4y3 − 2π2y + 3(2iπy2 + Li3

(
e2y
)
)− 3ζ(3)

]

=
T 2

(4π)4
×−0.02850143769881264033(1) .

(4.88)

In the se
ond line we have performed all angular integrations (
.f. Eqs. (C.4, C.6)). After-

wards integration over p was done as in Eq. (C.8). In the se
ond last line of Eq. (4.88) the

integration over x was performed by separating the interval into [0, y] and [y,∞] and solving the

parts individually. The generi
 formula for the �nite term 
an be found in 4.131.

At last, the divergent, analyti
 terms read (
f. Eqs (4.49, B.2, B.5)):

∑
∫

P
δp0

1

P 2

[
Π210Π

B
112 +ΠE

210Π112

]

= −g(1, 1, d + 1)

4d
Jd(2− d+ 1

2
, 2, 1; 0) + Tg(2, 1, d)Jd(4− d

2
, 1, 1; 1) .

(4.89)

The se
ond zero-mode sum-integral, Z(3; 12111; 20) is split as:

Z(3; 12111; 20) =
∑
∫

P
δp0

1

P 2

[

Π0−B
212 Π0−B−E

110 +Π212Π
B+E
112 +ΠB

212Π110

]

. (4.90)

The �nite term requires the same steps as Eq. (4.88):

∑
∫

P
δp0

Π0−E
212 Π0−B−E

112

P 2
=

2T 2

(4π)4

∫ ∞

0
dxdy

x

x+ y + |x− y|

(
csch 2x

2
− 1

2x2

)(

coth y − 1

y
− 1

)

=
T 2

(4π)4

∫ ∞

0
dy

(1 + y − y coth y)(y + ln y + ln csch y)

2y2

=
T 2

(4π)4
× 1.197038267(1) .

(4.91)
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The divergent, analyti
 terms read:

∑
∫

P
δp0

1

P 2

[

Π212Π
B+E
112 +ΠB

212Π110

]

= g(1, 1, d + 1)Jd(3− d+ 1

2
, 2, 1; 1)

+ Tg(1, 1, d)Jd(3− d

2
, 2, 1, 1) +

2g(1, 1, d + 1)− g(2, 1, d + 1)

4d
Jd(3− d+ 1

2
, 1, 1; 0) .

(4.92)

Finally, we sum up all terms:

Z(3; 12111; 02) = − T 2

24(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ
+

(
16

3
− 5γE + 2 ln 2 + 5 ln π − 24Z1

)

+O(ǫ0)

]

,

(4.93)

Z(3; 12111; 20) = − T 2

16(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

8− γE + ln
π

4

)

+ (24− 16γE

+ 24 ln 2
(

1− γE + ln
π

4

)

− 27γE
2

2
+

37π2

12
+ 36 ln2 2 + (16− 9γE) ln

π

4

+
9

2
ln2

π

4
− 36γ1 − 16Z2

)

+O(ǫ0)

]

.

(4.94)

4.3.6 Results

In the end, we add up the terms of the previous se
tion and obtain the ǫ-expansion up to O(ǫ)
of the se
ond master sum-integral of the e�e
tive mass parameter.

V (3; 21111; 20) =
1

96

T 2

(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
55

6
+ γE + 24 lnG

)

+ v2 +O(ǫ)

]

. (4.95)

v2 = −673

36
+ ln 2

(

−68

3
− 8γE + 288 lnG+

8ζ(3)

5

)

+ γE

(
79

6
− 72 lnG

)

− 31γE
2

2
+

143π2

36
− 8 ln2 2 + 300 lnG+ 16 ln π + 8 ln2 π − 48γ1

− 2ζ(3)

5
− 8ζ

′
(3)

5
+ 72ζ

′′
(−1) + n2

≈ 93.089439628(1) .

(4.96)

And

n2 = +96V2 − 32(Z1 + Z2) ≈ −36.495260342(1) . (4.97)

By using the de�nition in Eq. (4.30) and the results from appendix A for the 
omponent

spe
ta
les sum-integrals, the last building blo
k of the e�e
tive mass be
omes

5

:

M3,−2 =
−5

36

T 2

(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
11

30
+ γE + 24 lnG

)

+m+O(ǫ)

]

, (4.98)

5

The 
onstant term m shows a deviation from the result in [120℄ of 1%, most probably due to the poor

numeri
s. However, at this point we 
ould not lo
ate the exa
t error sour
e. Fortunately the term m is not

needed in the �nal 
omputation.
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with

m = −491

225
+ ln 2

(

−12 +
16γE
5

+
384 lnG

5
− 2ζ(3)

25

)

+ lnG

(
2506

25
− 168γE

5

)

+
536γE
75

− 99γE
2

10
+

377π2

150
− 24 ln2 2

5
− 48 ln π

5
+

24 ln2 π

5
− 112γ1

5
− 23ζ(3)

150

− 72

5
ζ
′′
(−1) +

ζ
′
(3)

25
+ n1

≈ 42.1672(1)

(4.99)

with

n1 = −144V3

5
− 432V4

5
− 216V5

5
− 5184V6

5
− 2592V7

5
− 2592V8

5
− 864V9

5

− 432V10

5
− 432V11 −

144(Z1 + Z2)

25
− 1188Z3

5
+ 432Z4 −

1512Z5

5
≈ −2.17594(1) .

(4.100)

4.4 Generalizing the sum-integral 
omputation

In subse
tion 4.2.3 we have determined a general separation of the sum-integral su
h that

any pie
e 
an be 
omputed in part with 
ertain methods. Moreover, the 
on
rete example

of V (3; 21111; 20) indi
ates that generalization of the 
omputation pro
edure 
an be a
hieved

to a 
ertain extent.

In order to pro
eed with the 
omputation of the �nite and divergent parts, the di�erent

building blo
ks of the one-loop stru
tures need to be determined in more detail than previously

in subse
tion 4.3.1.

In Eq. (4.46), the de�nition for the zero-temperature part of the 2-point fun
tion in Eq.

(4.43) is given. It is an analyti
 fun
tion in P 2
and p0 but a 
losed formula for generalized

parameters is yet unknown. Therefore, only the needed 
ases s3 = 0, 1, 2 are expli
itly 
al
ulated.
For s3 = 0, we have an integrand with rotational invarian
e and the integral 
an be solved in

d+ 1-dimensional spheri
al 
oordinates (
.f. Eq. B.2).

For the remaining 
ases, s3 = 1, 2, the most general (tensor) zero-temperature part of Eq.

(4.43) is de�ned as:

∫

Q

Qµ1 × ...×Qµn

[Q2]a[(P +Q)2]b
. (4.101)

The 
ommon proje
tion te
hnique expresses the tensor integral as a linear 
ombination of all

possible tensors made out of the metri
 tensor, gµ1µ2 and out of the external momentum Pµ.

They are the basis ve
tors of the tensor spa
e.

∫

Q

Qµ1 × ...×Qµn

[Q2]a[(P +Q)2]B
=
∑

σ(n)

[n/2]
∑

j=0

B̃
σ(n)
n,j+1





[n/2]−j
∏

i=1

gµ2i−1µ2i × P 2



×





n∏

i=2([n/2]−j)+1

Pµi



 , (4.102)

where [n] denotes the integer part of n and in parti
ular, whenever we have a 
ombination

in
luding an ǫ-term, we always 
onsider:

[number ± c× ǫ] ≡ [number] . (4.103)
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The �rst sum

∑

σ(n) denotes the sum over all possible 
ombinations of µ1, ..., µn taking into

a

ount the gµν = gνµ symmetry and the 
ommutativity of gµν and Pµ. The 
oe�
ients are


omputed by 
ontra
ting ea
h side of the equation with every �basis ve
tor� and by solving then

the system of equations (having a unique solution) with respe
t to the 
oe�
ients B̃
σ(n)
n,j+1. Our


on
rete 
ase however simpli�es, sin
e we need only the q0 = UµQµ 
ase with Uµ ≡ (1,0). In this
situation, the sum over all possible 
ombinations of the term gµ1µ2×...×gµ2i+1µ2i×Pµ2i+1×...×Pµn

simply redu
e upon 
ontra
tion with Uµ1 ...Uµn to (symm. fa
t.)×pn−2i+1
0 . We therefore absorb

the symmetry fa
tor into the 
oe�
ient and rede�ne: (symm. fa
t.)× B̃
σ(n)
n,j+1 ≡ Bn,j+1. In the

end we have:

∫

Q

qc0
[P 2]a[(P +Q)2]b

=

[c/2]
∑

j=0

Bc,j+1





c∏

i=2([c/2]−j)+1

p0



 [P 2][c/2]−j

=

[c/2]
∑

j=0

Bc,j+1 × p
{c}+2j
0 × [P 2][c/2]−j ,

(4.104)

where {c} = c− 2 [c/2] ≡ 1
2 [1− (−1)c] =

{

0, c even

1, c odd

.

The 
oe�
ients B are assumed to be known, sin
e they are simply the solution of the system

of [c/2] equations. Their general stru
ture is a linear 
ombination of s
alar integrals of the form

1

[P 2]x

∫

Q

1

[Q2]a+y[(P +Q)2]b−x−y
. (4.105)

Sin
e these s
alar integrals are all proportional to 1/[P 2]a+b− d+1
2
, we rede�ne the general

expression of the zero-temperature part of Π as:

∫

Q

qc0
[P 2]a[(P +Q)2]b

=

[c/2]
∑

j=0

Ac,j+1
p
{c}+2j
0 × [P 2][c/2]−j

[P 2]a+b− d+1
2

, (4.106)

A key ingredient in determining the 
oe�
ients Ac,j is to rewrite s
alar produ
ts as 2(PQ) =
(P +Q)2 −P 2 −Q2

when generating the system of [c/2] equations. In the end we have (a ≡ s1,
b ≡ s2):

A1,1 =
1

2
[g(s1, s2 − 1, d+ 1)− g(s1, s2, d+ 1)− g(s1 − 1, s2, d+ 1)]

A2,1 =
1

4d
[2g(s1 − 1, s2, d+ 1) + 2g(s1, s2 − 1, d+ 1) + 2g(s1 − 1, s2 − 1, d+ 1)

− g(s1, s2 − 2, d+ 1)− g(s1 − 2, s2, d+ 1)− g(s1, s2, d+ 1)]

A2,2 = g(s1 − 1, s2, d+ 1)− (d+ 1)A2,1 ,

(4.107)

with g(a, b, d) de�ned in Eq. (B.2). The dependen
e of A on {s1, s2, d} is implied. In summary:

∫

Q

{1, q0, q20}
[Q2]s1 [(P +Q)2]s2

=
{g(s1, s2, d+ 1), p0A1,1, A2,1P

2 +A2,2p
2
0}

[P 2]s12−
d+1
2

. (4.108)
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For the leading UV part of Π0−B
abc , Eq.(4.44) is used:

Π0−B
abc =

∫

q

∫ ∞−i0+

−∞−i0+

dq0
2π

qc0
[q20 + q2]a

[

1

[(q0 + p0)2 + (q+ p)2]b

+
1

[(q0 − p0)2 + (q+ p)2]b

]

1

eiq0/T − 1
.

(4.109)

The integration over q0 has to be performed using the residue theorem. In order to extra
t the

leading UV pie
e out of the integral, an asymptoti
 expansion in terms of p2
is 
arried out. In

this way the integrand simpli�es and integration over q 
an be performed for ea
h term of the

expansion in part. These terms represent the leading UV pie
es of Π0−B
.

There is a mu
h simpler way to extra
t (at least the �rst two) leading UV 
ontributions

(ΠC
abc) out of the thermal part of Πabc, as will be dis
ussed now [28℄.

P

P

Figure 4.6: Extra
tion of leading UV pie
e out of Π(P ).

By adding up the 
ontributions in whi
h the external momentum �ows through both loop

lines and by taking the limit P → ∞, one obtains the leading momentum behavior multiplied

by some one-loop tadpole.

ΠC
abc = lim

P→∞

∑
∫

Q

qc0
[Q2]a[(P +Q)2]b

+ lim
P→∞

∑
∫

Q

(−q0 − p0)
c

[(P +Q)2]a[Q2]b

=

[
∑
∫

Q

qc0
[Q2]a

]
1

[P 2]b
+ (−1)c

c∑

n=0

(
c

n

)
pc−n
0

[P 2]a

[
∑
∫

Q

qn0
[Q2]b

]

=
ηcI

c/2
a

[P 2]b
+ (−1)c

c∑

n=0

(
c

n

)
ηnp

c−n
0

[P 2]a
I
n/2
b ,

(4.110)

where ηi =
1+(−1)[i]

2 =

{

0, i odd

1, i even
.

The term ηi needs to be in
luded as Iba 
ontains by de�nition only even powers in the

Matsubara mode. Thus, we have to make sure that terms with odd powers in the Matsubara

modes vanish. The se
ond term of the right hand side (rhs) of Eq. (4.110) is obtained by

performing a momentum translation, Q→ −Q− P .
The last term needed for the 
omputation of the sum-integral is ΠE(p0 = 0). It is simply a

generalized one-loop self-energy in d dimensions. This 
ase is largely used for the zero modes:

ΠE
ab0(p0 = 0) =

g(a, b, d)

(p2)a+b−d/2
. (4.111)

With these de�nitions, the �nite and divergent parts 
an �nally be 
omputed.
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4.4.1 Finite parts

This setup follows the one in [120℄, but with a slightly di�erent approa
h on the �nite pie
es.

The 
entral formula for performing the �nite terms in 
on�guration spa
e is the inverse Fourier

transformation of the propagator:

1

[P 2]s
=

21−s

(2π)d/2Γ(s)

∫

d3reipr
(
p20
r2

) d−2s
4

K d
2
−s(|p0|r) , (4.112)

where Kν(x) is the modi�ed Bessel fun
tion of the se
ond kind, Eq. (C.1).

Based on this de�nition the general one-loop fun
tion 
an be 
omputed in 
on�guration

spa
e. By plugging Eq. (4.112) into Eq. (4.43) and by performing the momentum integration,

we get:

Πs1s2s3 =
T22−s12

(2π)dΓ(s1)Γ(s2)

∑

q0

qs30

∫

ddr r2s12−deipr[q20 ]
d−2s1

4 [(q0 + p0)
2]

d−2s2
4

×K d
2
−s1

(|q0|r)K d
2
−s2

(|q0 + p0|r) .
(4.113)

Using the de�nition in Eq. (C.2) that expli
itly determines the Bessel fun
tion of half-integer

argument, we obtain:

Πs1s2s3 =
(2πT )2d+1−2s12+s3

2s12(2π)dΓ(s1)Γ(s2)

∫

ddr r̄s12−d−1eipre−|p0|rfd,s1s2s3(r̄, |p̄0|) , (4.114)

with

fd,s1s2s3(x, n) = e|n|x
∞∑

m=−∞

|| d2−s1|− 1
2 |∑

i=0

|| d2−s2|− 1
2 |∑

j=0

(
i+
∣
∣d
2 − s1

∣
∣− 1

2

)
!

i!
(
−i+

∣
∣d
2 − s1

∣
∣− 1

2

)
!

×
(
j +

∣
∣d
2 − s2

∣
∣− 1

2

)
!

j!
(
−j +

∣
∣d
2 − s2

∣
∣− 1

2

)
!

ms3 |m| d−1
2

−s1−i|n+m| d−1
2

−s2−j

(2x)i+j
e−x(|m|+|n+m|) .

(4.115)

The fun
tion fd,s1s2s3(x, n) is in general some fun
tion f(coth x, |n|) and spe
i�
 values are

expli
itly shown in appendix E:

The zero temperature part ΠB
is in general a produ
t of a simple propagator-like stru
ture

of the form [P 2]−ǫ
and a divergent pre-fa
tor. Therefore, the Γ(ǫ)−1

from Eq. (4.112) 
an
els

the divergen
e of the pre-fa
tor and renders the zero-temperature pie
e in 
on�guration spa
e

�nite

6

.

ΠB
s1s2s3 =

(2πT )2d+1−2s12+s3

2s12(2π)dΓ(s1)Γ(s2)

∫

ddr r̄s12−d−1eipre−|p0|rfBd,s1s2s3(r̄, |p̄0|) , (4.116)

with

fBd,s1s20 =
(4π)

d+1
2 g(s1, s2, d+ 1)Γ(s1)Γ(s2)

Γ
(
s12 − d+1

2

) |n|d−s12

×
|| 12−s12+d|− 1

2 |∑

j=0

(
j +

∣
∣1
2 − s12 + d

∣
∣− 1

2

)
!

j!(−j +
∣
∣1
2 − s12 + d

∣
∣− 1

2)!
(2|n|x)−j .

(4.117)

6

It is not the 
ase for Π210 for whi
h only ΠB+C
210 is �nite in d = 3.

61



The de�nitions for s3 = 1, 2 are straightforward.

For the leading UV part, we simply plug Eq. (4.110) into Eq. (4.112):

ΠC
s1s2s3 =

(2πT )2d+1−2s12+s3

2s12(2π)dΓ(s1)Γ(s2)

∫

ddr r̄s12−d−1eipre−|p0|rfCd,s1s2s3(r̄, |p̄0|) , (4.118)

with

fCd,s1s2s3(x, n) =
ηs3(2π)

d+1
2 2s1Γ(s1)I

s3/2
s1

(2πT )d+1−2s1+s3
x

d+1
2

−s1 |n| d+1
2

−s2κ d
2
−s2

(|n|x)

+ (−1)s3
s3∑

i=0

ηi

(
s3
i

)
(2π)

d+1
2 2s2Γ(s2)I

i/2
s2

(2πT )d+1−2s2+i
x

d+1
2

−s2 |n| d+1
2

−s1ns3−iκ d
2
−s1

(|n|x) .
(4.119)

where κ is de�ned in Eq. (C.2).

After de�ning the building blo
ks of the 
omputation in 
on�guration spa
e, all three generi


types of �nite pie
es 
an be determined.

We start with the term:

V f,1(d; s1s2s3s4s5; s6s7) ≡
∑
∫

P

′ Π0−B
s2s4s6Π

0−B
s3s5s7

[P 2]s1
. (4.120)

There is a spe
i�
 ordering in the 
omputation that guarantees the analyti
 manipulation of this

sum-integral to at most a double integral from 0 to ∞. The pres
ription is the following:

• Plug in the de�nitions from Eq.(4.114, 4.116) by �rst expli
itly 
omputing the sums in

Eq.(4.115, 4.117).

• Perform the momentum integration/Fourier transformation, Eq. (4.114):

∫

p

eip(r+s)

[P 2]a
=

2−a

(2π)
d−1
2 Γ(a)

e−|p0||r+s||p0|
d−1
2

−a|r+ s| d−1
2

−a

×
|| d2−a|− 1

2 |∑

j=0

(
j +

∣
∣d
2 − a

∣
∣− 1

2

)
!

j!
(
−j
∣
∣d
2 − a

∣
∣− 1

2

)
!
(2|p0||r+ s|)−j .

(4.121)

• Perform the angular integrations of the 
on�guration spa
e variables. Noti
e that, by


onveniently 
hoosing the axes in su
h a way that the angle between r and s is the polar

angle, all remaining angular integrations be
ome trivial (
.f. Eq. (C.4)). The angle

integration generates the fun
tion ha,b(r, s, |p0|), Eq. (C.9).

• Perform summation over p0. It is not always worthwhile for a numeri
al integration to

perform it. It turns out that for terms in higher dimensions it is more e�
ient to sum up

the �rst few terms of the numeri
ally integrated double integral.

• res
aling (to avoid a dimension-full integrand) 
an be performed at any stage of the 
om-

putation.
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The generi
 result is:

V f,1(d; s1s2s3s4s5; s6s7) =

T 3(d+1)−2s12345+s67

2
5
2
(d−1)−s12345+s46

[
∏5

i=1 Γ(si)
]

π−1/2Γ(d2 )Γ(
d−1
2 )(4π)2s12345−s67− 3

2
(d+1)

×
∫ ∞

0
dx1dx2 x

s24−2
1 xs35−2

2

∞∑

n=1

e−n(x1+x2)

na−
d−1
2

f0−B
s2s4s6(x1, n)f

0−B
s3s5s7(x2, n)

×
|| d2−s1|− 1

2 |∑

j=0

(
j +

∣
∣d
2 − s1

∣
∣− 1

2

)
!

j!
(
−j +

∣
∣d
2 − s1

∣
∣− 1

2

)
!

h− d+1
2

+s1−j, d−3
2
(x1, x2, n)

(2n)j
.

(4.122)

The se
ond 
lass of �nite terms is of the form:

V f,2(d; s1s2s3s4s5; s6s7) ≡
∑
∫

P

′ ΠB−D
s2s4s6Π

0−B−C
s3s5s7

[P 2]s1
. (4.123)

Due to the B−D term, whose ǫ-expansion generates a term of the type lnP 2+ln α× 
onst,

the integral will 
ontain a trivial part whi
h is merely a two-loop sum-integral (to be 
omputed

analyti
ally) and a 
ompli
ated term that ne
essitates a numeri
al evaluation.

ΠB
abc −ΠD

abc =
(
[P 2]−ǫ − [αT 2]−ǫ

)
∑[c/2]

j Ac,j+1[P
2][c/2]−jp

{c}+2j
0

[P 2][a+b− d+1
2 ]

=

[c/2]
∑

j

(−ǫAc,j+1)
︸ ︷︷ ︸

O(ǫ0)

[P 2][c/2]−jp
{c}+2j
0

[P 2][a+b− d+1
2 ]

[

ln
P 2

4π2
− ln

αT 2

4π2

]

+O(ǫ) .

(4.124)

The trivial part 
ontains the dummy variable α and makes sure that it 
an
els the α-
dependen
e in the divergent pie
e so that in the end the sum-integral is indeed α-independent.

By plugging in the se
ond term in Eq. (4.124) in Eq. (4.123), we obtain:

V f,2

∣
∣
lnα

= ln
αT 2

4π2

[
s6
2
]

∑

j

(ǫAs6,j+1)
∑
∫

P

′ [P 2][s6/2]−jp
{s6}+2j
0

[P 2][s24−
d+1
2 ]+s1

Π0−B−C
s3s5s7 . (4.125)

Terms of the form

∑∫ ′

P
p
s5
0

[P 2]s1
Πs2s3s4 are simply two-loop sum-integrals (with the p0 = 0

mode subtra
ted) that 
an be redu
ed via IBP relations to produ
ts of one-loop tadpoles (
. f.

Eq. (B.6)):

∑
∫

P

′ ps50
[P 2]s1

Πs2s3s4 = Ld(s1s2s3; s4s5)− [1− δ0,s5 ]J
d(s1s2s3; s4) . (4.126)

The delta fun
tion takes 
are that the zero-mode subtra
tion makes sense only for s5 = 0 for

whi
h a zero-mode is existent. All the other terms are simply produ
ts of one-loop tadpoles

de�ned in Eq. (B.3). So by plugging in Eqs. (4.46, 4.110) into Eq. (4.125), we get:
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V f,2

∣
∣
lnα

= ln
αT 2

4π2

[ s62 ]∑

j=0

ǫ→0
︷ ︸︸ ︷

(ǫAs6,j+1)

[

Ld

([

s24 −
d+ 1

2

]

−
[s6
2

]

+ s1 + j, s3, s5; {s6}+ 2j, s7

)

− δ0,{s6}+2j × ηs7 × Jd

([

s24 −
d+ 1

2

]

−
[s6
2

]

+ s1 + j, s3, s5;
s7
2

)

−
[ s72 ]∑

i=0

As7,i+1 × η{s7}+{s6}+2(i+j) × I
{s7}+{s6}

2
+i+j

s135− d+1
2

+[s24− d+1
2 ]−[ s62 ]−[

s7
2 ]+i+j

− ηs7 × η{s6}+2j × I
s7
2

s3 × I
{s6}
2

+j

s15+[s24− d+1
2 ]−[ s62 ]+j

− (−1)s7
s7∑

i=0

(
s7
i

)

× ηi × ηs7+{s6}−i+2j × I
i
2
s5 × I

s7
2
+

{s6}
2

− i
2
+j

s13+[s24− d+1
2 ]−[ s62 ]+j

]

.

(4.127)

The �rst term in Eq. (4.123) is now:

V f,2

∣
∣
lnP 2 =

∑
∫

P

′

[ s62 ]∑

j=0

(−ǫAs6,j+1)
p
{s6}+2j
0

[P 2]s1+[s24−
d+1
2 ]−[ s62 ]+j

ln
P 2

4π2
Π0−B−C

s3s5s7 . (4.128)

The ordering of integration is:

• Perform angular integration of 
on�guration spa
e variable, Eq. (C.5, C.6)

• Angular integration of the momentum spa
e variable be
omes trivial.

• Perform integration of radial 
omponent of momentum variable, whi
h generates the fun
-

tion la,d, Eq. (C.12).

• Res
aling 
an be performed at any stage.

The out
ome is

V f,2

∣
∣
lnP 2 =

√
π

Γ(d2)Γ(s3)Γ(s5)

T 2d−2s135+s67+2−2[s24− d+1
2 ]

2
3d−1

2
−1−s35+s7(4π)2s135−s67+2[s24− d+1

2 ]−d−1

×
∞∑

n=1

∫ ∞

0
dxxs35−2e−nxf0−B−C

d,s3s5s7
(x, n)

[ s62 ]∑

j=0

−ǫAs6,j+1 × ns6−2[ s62 ]+2j

2s6−[
s6
2 ]−s1−[s24− d+1

2 ]+j

×
ls1+[s24− d+1

2 ]−[ s62 ]+j,d(x, n)

Γ
(
s1 +

[
s24 − d+1

2

]
−
[
s6
2

]
+ j
) .

(4.129)

The last 
lass of �nite integrals is part of the zero-mode 
ontribution V z,f
.

The IBP zero-mode redu
tion program pro
eeds this step (
.f. appendix D). It works in su
h

a way, that the new obtained zero-mode sum-integrals 
an be 
al
ulated with a similar splitting

pro
edure as for the non-zero 
ase. That means, that potentially IR divergent pie
es stem only

from the one-loop substru
tures, Π. The proper subtra
tion should render the remainder �nite

(
.f. 48).
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The generi
 �nite part is then:

V z,f(d; s1s2s3s4s5; s6s7) =
∑
∫

P
δp0

1

[P 2]s1
Π0−A

s2s4s6Π
0−A
s3s5s7 . (4.130)

Similarly to the �rst two �nite parts, there is some pres
ription of the ordering in whi
h

the integrals should be performed. During integration, two di�erent 
ases need to be taken into

a

ount: s1 6= 0 and s1 = 0.

• s1 6= 0 
ase:

� Perform the angular integration of the 
on�guration spa
e variables, Eq. (C.5).

� Perform the integration over the radial part of the momentum variable, Eq. (C.8).

It's angular integral is trivial.

• s1 = 0 
ase:

� The momentum integral is the integral representation of the Dira
 delta fun
tion. It

generates a δ(3)(r+s) and eliminates dire
tly one of the 
on�guration spa
e integrals.

� Perform angular integration of the 
on�guration spa
e variable, Eq. (C.4).

• Res
ale the integral.

• For a 
ertain 
ombination of exponent parameters, the integration 
an be redu
ed to 1

dimension. E.g. Z(3; 1212; 20).

The general result for the s1 6= 0 
ase is:

V z,f =
∑
∫

P
δp0

Π0−A
s2s4s6Π

0−A
s3s5s7

[P 2]s1

=

√
πΓ(d2 − s1)

2d−1−s2345+2s1+s67Γ(d2)
2
[
∏5

i=1 Γ(si)
]

T 3(d+1)−2s12345+s67

(4π)−
3
2
(d+1)+2s12345−s67

×
∫ ∞

0
dx1dx2 x

s24−2
1 xs35−2

2 f0−A
d,s2s4s6

(x1, 0)f
0−A
d,s3s5s7

(x2, 0)as1,d(x1, x2) .

(4.131)

Sin
e Eq. (4.57) shows that in any sum-integral of interest, there is (at least) one substru
ture

of the form Π0−E
, that is, for whi
h summation over the Matsubara modes need not to be

performed a priori, we give an alternative expression for this substru
ture (
.f Eq. (E.4)), in

parti
ular for the 
ase s1 = 0:

V z,f =
∑
∫

P
δp0Π

0−E
s2s4s6Π

0−B
s3s5s7

=

√
π

22d−1−s2345+s67Γ(d2)
[
∏5

i=2 Γ(si)
]

T 3(d+1)−2s2345+s67

(4π)−
3
2
(d+1)+2s2345−s67

×
∫ ∞

0
dxxs2345−d−3f0−B

d,s3s5s7
(x, 0)

|| d2−s3|− 1
2 |∑

i=0

(
i+
∣
∣d
2 − s3

∣
∣− 1

2

)
!

i!
(
−i+

∣
∣d
2 − s3

∣
∣− 1

2

)
!

×
|| d2−s5|− 1

2 |∑

j=0

(
j +

∣
∣d
2 − s5

∣
∣− 1

2

)
!

j!
(
−j +

∣
∣d
2 − s5

∣
∣− 1

2

)
!

Lis24−s6−d+1+i+j

(
e−2x

)

(2x)i+j
(4.132)
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with

Lis (x) =

∞∑

n=1

xn

ns
. (4.133)

4.4.2 Divergent parts

With the expressions of the divergent pie
es Π{B,C,E}
in Eqs. (4.108, 4.110, 4.49, 4.111) and

through their simple propagator-type stru
ture, it be
omes 
lear that the divergent parts of the

sum-integral are formed of at most two-loop sum-integrals, but predominantly of some fa
torized

one-loop stru
tures.

There are in prin
iple two types of divergent stru
tures that o

ur. The �rst one is of the

form:

ΠD
1 Π

0
2, or Π

C
1 Π

0
2 . (4.134)

These have the property that all propagators are of the form 1/[P 2]Z and the two-loop sum-

integrals that they form, 
an be systemati
ally redu
ed to a produ
t of one-loop by IBP. By

re
alling the de�nition of a two-loop sum-integral, Eq. (B.6), and also the fa
t that the zero

Matsubara mode is omitted in the outermost integration, we have:

∑
∫

P

′ pa0
[P 2]b

Π0
cfg =

∑
∫

P

pa0
[P 2]b

Π0
cfg −

∑
∫

P
δp0

pa0
[P 2]b

Π0
cfg . (4.135)

The �rst term on the right hand side is a standard two-loop sum-integral, (Ld(bcf ; ag)) and
the se
ond term is -only if a = 0- a spe
ial two-loop sum-integral de�ned in Eq. (B.5), Jd(bcf ; g)
and otherwise 0.

The other 
ase o

urs if we are dealing with any 
ombination of Π{B,C,D,E}
. In that 
ase, it

is not ex
luded to obtain some 
ombinations of propagators of the form 1/[P 2]Z+ǫ
. The result

will be some produ
t of simple one-loop tadpoles or Jd
(in the 
ase of ΠE

). In addition, the

omission of zero Matsubara mode is irrelevant, sin
e it gives rise to a s
aleless integral, with in

dimensional regularization is 0:

∑
∫

P
δp0

1

[P 2]a
= 0 . (4.136)

With these ideas in mind, we have 5 types of divergent stru
tures (omitting those multiplied
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by c0). The �rst divergent part is of the form:

V d,1(d; s1s2s3s4s5; s6s7) =
∑
∫

P

′ ΠD
s2s4s6Π

0−B−c2C
s3s5s7

[P 2]s1
+ (246 ↔ 357)

=
1

(αT 2)ǫ

[s6/2]∑

i=0

As6,i+1

[

Ld

(

s124 −
[d] + 1

2
−
[s6
2

]

+ 1, s3, s5; {s6}+ 2i, s7

)

− δ0,{s6}+2i × ηs7J
d

(

s124 −
[d] + 1

2
−
[s6
2

]

+ 1, s3, s5;
s7
2

)

−
[s7/2]∑

j=0

As7,j+1η{s6}+{s7}+2(i+j) × I
{s6}+{s7}

2
+i+j

s12345−1− d+[d]
2

−[ s62 ]−[
s7
2 ]+i+j

− c2ηs7 × η{s6}+2i × I
s7
2

s3 × I
{s6}
2

+i

s1245− [d]+1
2

−[ s62 ]+i

− c2(−1)s7
s7∑

k=0

(
s7
k

)

ηkη{s6}+2i+s7−k × I
k
2
s5 × I

{s6}+s7−k

2
+i

s1234− [d]+1
2

−[ s62 ]+i

]

+ (246 ↔ 357) .

(4.137)

Re
all that [x] means the integer part of x, parti
ularly [3− 2ǫ] = 3.
The se
ond term is of the form:

V d,2(d; s1s2s3s4s5; s6s7) =
∑
∫

P

′ ΠB
s2s4s6Π

C
s3s5s7

[P 2]s1
+ (246 ↔ 357)

=

[s6/2]∑

i=0

As6,i+1

[

ηs7 × η{s6}+2i × I
s7
2
s3 × I

{s6}
2

+i

s1245− d+1
2

−[ s62 ]+i

+ (−1)s7
s7∑

j=0

(
s7
j

)

ηjη{s6}+2i+s7−j × I
j
2
s5 × I

{s6}+s7−j

2
+i

s1234− d+1
2

−[ s62 ]+i



+ (246 ↔ 357) .

(4.138)

Finally, the last divergent part of the non-zero modes is:

V d,3(d; s1s2s3s4s5; s6s7) =
∑
∫

P

′ ΠB
s2s4s6Π

B
s3s5s7

[P 2]s1

=

[s6/2]∑

i=0

[s7/2]∑

j=0

As6,i+1 ×As7,j+1 × η{s6}+{s7}+2(i+j) × I
{s6}+{s7}

2
+i+j

s12345−d−1−[ s62 ]−[
s7
2 ]+i+j

.

(4.139)

The divergent parts that may o

ur in the zero-mode integrals are:

V d,z,1(d; s1s2s3s4s5; s6s7) =
∑
∫

P
δp0

ΠE
s2s4s6Πs3s5s7

[P 2]s1

= δ0,s6 × ηs7 × Tg(s2, s4, d)× Jd

(

s124 −
d

2
, s3, s5;

s7
2

)

,

(4.140)

and

V d,z,2(d; s1s2s3s4s5; s6s7) =
∑
∫

P
δp0

ΠB
s2s4s6Πs3s5s7

[P 2]s1

= δ0,{s6} × ηs7 ×As6,1 × Jd

(

s124 −
d+ 1

2
−
[s6
2

]

, s3, s5;
s7
2

)

.

(4.141)

Con
rete examples of divergent part 
al
ulations are given in the next two se
tions.

67



4.5 Dimension zero sum-integrals

All the sum-integrals of mass dimension zero enter the three-loop term of the e�e
tive 
oupling

in Eq. (3.60). They are di�erent from the previous 
lass be
ause, �rstly not all of them 
an

be treated the splitting pres
ription given in Eq. (4.56) and they are the �rst known three-loop

sum-integrals that exhibit the full power of divergen
e, namely ǫ−3
.

In this se
tion the 
al
ulation of two sum-integrals for whi
h splitting di�ers from Eq. (4.56)

is presented in more detail. The remaining sum-integrals are to be found in Appendix A.

4.5.1 Example 1: V (3; 12111; 00)

This subse
tion follows the 
omputation in Ref. [126℄. In order to improve legibility, we will

denote for the moment this sum-integral from Fig. (4.7) as: V12 ≡ V (3; 12111; 00), a

ording to

the 
onvention of naming the �nite parts (
.f. Table 4.1).

Figure 4.7: Sum-integral V (3, 12111; 00).

It is due to the expli
it p0 = 0 mode in Π210 expressed in 
on�guration spa
e (and that would

generate a 1/0 term), that one has to subtra
t the IR part rather than the zero temperature

part. In this sense, we have the following splitting:

V12 ≡
∑
∫

P

Π210Π110

P 2

=
∑
∫

P

′ Π0−E
210 Π0−B

110

P 2
+
∑
∫

P

′ ΠE
210Π

0−B
110

P 2
+
∑
∫

P

′ ΠB−D
110 Π0−E−B−C

210

P 2
+
∑
∫

P

′ ΠD
110Π

0−E
210

P 2

+
∑
∫

P

′ ΠB−D
110 ΠB+C

210

P 2
+
∑
∫

P

′ ΠE
210Π

B
110

P 2
+
∑
∫

P
δp0

Π210Π110

P 2

= V f,1
12 + V f,2

12 + V f,3
12 + V d,1

12 + V d,2
12 + V d,3

12 + V z
12 ,

(4.142)

with V f
12 = V f,1

12 + V f,2
12 + V f,3

12 .

Finite parts

Using the de�nitions in Eqs. (4.114, E.5, E.23) we get for the �rst part of V f
1 :

V f,1
12 =

∑
∫

P

′ (Π210 −ΠE
210)(Π110 −ΠB

110)

P 2

= T
∑

p0

′
∫

d3p

(2π)3
1

P 2

T

2(4π)2

∫

d3r
1

r̄
eipr

∑

q0

′ 1

|q̄0|
e−|q0|r−|q0+p0|r T

3

4

·
∫

d3s
1

s̄2
eips

(

coth s̄− 1

s̄

)

e−|p0|s .

(4.143)
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Noti
e, that the sum in Π210 is not performed yet; it turns out that the sum-integral 
an be

redu
ed to a one-dimensional integral if the order of summation and integration are swit
hed

(opposed to the pres
ription from page 62).

After performing �rst the momentum integration and afterwards averaging over the angles

in 
on�guration spa
e, Eq. (C.9), we obtain:

V f,1
12 =

2

(4π)6

∑

n,m

′

∫ ∞

0
dx

∫ ∞

0
dy

1

y

(

coth y − 1

y

)
1

|n||m|e
−|n|y−(|m|+|m+n|)y

·
(

e−|n||x−y| − e−|n|(x+y)
)

.

(4.144)

We now perform the integration over x. The 
ase for whi
h |m| + |m+ n| − |n| = 0 has to

be treated separately. After 
arefully splitting the interval over m a

ordingly, and performing

the x-integration, we get:

V f,1
12 =

2

(4π)6

∑

n

′

∫ ∞

0
dy

(

coth y − 1

y

)
e−2|n|y

|m| H|n|+

+
2

(4π)6

∑

n

′
∑

m∈(−∞,−|n|−1)
∪(1,∞)

∫ ∞

0
dy

1

y

(

coth y − 1

y

)
e−2|n|y

|n||m|
1− e−|m|y−|m+n|y+|n|y

|m|+ |m+ n| − |n|

+
2

(4π)6

∑

n,m

′
∫ ∞

0
dy

1

y

(

coth y
1

y

)
1

|n||m|
e−|m|y−|m+n|y−|n|y − e−2|n|y

|m|+ |m+ n|+ |n| ,

(4.145)

where Hn is the harmoni
 number of n: Hn =
∑n

i=1 1/i.
By expli
itly resolving the summation intervals and using symmetry transformations of the

form m → −m and m→ m+ |n|, we 
an rewrite the term as:

V f,1
12 =

4

(4π)6

∞∑

n=1

∫ ∞

0
dy

(

coth y − 1

y

)
e−2ny

n
Hn

+
2

(4π)6

∞∑

n=1

∫ ∞

0
dy

1

y

(

coth y − 1

y

)
e−2ny

n

∞∑

m=1

(
1− e−2my

)
(

1

m2
− 1

(m+ n)2

)

.

(4.146)

Performing �rst the integration over m:

∞∑

m=1

1

m2
= ζ(2) =

π2

6
,

∞∑

m=1

e−2my

m2
= Li2

(
e−2y

)
,

∞∑

m=1

1

(m+ n)2
= ψ(1)(n+ 1),

∞∑

m=1

e−2my

(m+ n)2
= e−2yΦ(e−2y, 2, 1 + n) ,

(4.147)

Li2(x) being the Dilog fun
tion, ψ(1)
the Polygamma fun
tion and Φ the Hurwitz Ler
hphi

fun
tion, we obtain:

V f,1
12 =

2

(4π)6

∫ ∞

0
dy

1

y

(

coth y − 1

y

)[(
π2

6
− Li2(e

−2y)

) ∞∑

n=1

e−2ny

n
+ 2y

∞∑

n=1

e−2ny

n
Hn

−
∞∑

n=1

e−2ny

n
ψ(1)(n+ 1) + e−2y

∞∑

n=1

e−2ny

n
Φ(e−2y, 2, n + 1)

]

.

(4.148)
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It turns out that the sums over n 
an be performed analyti
ally, by using the integral

representations of the spe
ial fun
tions involved:

∞∑

n=1

e−2ny

n
= Li1

(
e−2y

)
= − ln(1− e−2y) . (4.149)

For the se
ond sum in Eq. (4.148), we use the identity Hn = ψ(n+1) + γE and the integral

representation of ψ:

ψ(z) =

∫ ∞

0
dt

(
e−t

t
− e−zt

1− e−t

)

. (4.150)

By �rst performing the sum, we get:

∞∑

n=1

e−2ny

n
ψ(n + 1) = −

∫ ∞

0
dt e−t

[
ln(1− e−2y)

t
− ln(1− e−2y−t)

1− e−t

]

.
(4.151)

We now turn our attention to the se
ond term in the bra
kets and by using the transformation

1− e−t = u, we obtain:
∫ ∞

0
dt

ln(1 − e−2y−t)

1− e−t
e−t =

∫ 1

0
du

ln(1− e−2y + e−2yu)

u

=

∫ 1

0

du

u
ln(1− e−2y) +

∫ 1

0
du

ln
(

1− e−2y

e−2y−1u
)

u

= ln(1− e−2y)

∫ 1

0

du

u
− Li2

(
e−2y

e−2y − 1

)

.

(4.152)

We rewrite now the following integrals as:

∫ ∞

0
dt
e−t

t

e−t→v
= −

∫ 1

0

dv

ln v
;

∫ 1

0

du

u

u→1−v
=

∫ 1

0

dv

1− v
. (4.153)

Next, we make use of the de�nition of the γE 
onstant, γE =
∫ 1
0 dv

(
1

ln v + 1
1−v

)

and obtain:

∞∑

n=1

e−2ny

n
Hn = −Li2

(
e−2y

e−2y − 1

)

. (4.154)

For the sum involving ψ(1)
and Φ, we use their integral representations and employ the same

approa
h as above.

ψ(1)(z) =

∫ ∞

0
dt

te−zt

1− e−t
; Φ(z, s, a) =

1

Γ(s)

∫ ∞

0
dt
ts−1e−at

1− ze−t
. (4.155)

Finally, we get:

V f,1
12 =

1

(4π)6

∫ ∞

0
dy

1− y coth y

3y2

[

8y(π2 − 3iπy + y2) + ln(e2y − 1)
(
−2π2 + 24iπy + 12y2

+3 ln(e2y − 1)(−2iπ − 4y + ln(e2y − 1))
)
− 3(π + i ln(e2y − 1))2 ln

1 + coth y

2

−6 ln(1− e−2y) Li2
(
e−2y

)
− 12y Li2

(
coth y + 1

2

)

+ 6Li3 (−2ey sinh y)

]

=
1

(4π)6
V12,1 =

1

(4π)6
· 0.6864720593640618954(1) .

(4.156)
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The se
ond �nite part of Eq. (4.142), a

ording to the IBP redu
tion of ΠE
210 in Eq. D.5:

V f,2
12 =

∑
∫

P

′
ΠE

210

Π110 −ΠB
110

P 2

= T
∑

p0

′

∫
d3p

(2π)3

(

− T

4π

|p0|
P 4

)
1

P 2

T 3

4

∫

d3r
1

r̄2
eipr

(

coth r̄ − 1

r̄

)

e−|p0|r .
(4.157)

Momentum integration and res
aling are performed:

V f,2
12 = − 2

(4π)6

∞∑

n=1

∫ ∞

0
dx

(
x

n
+

1

n2

)(

coth x− 1

x

)

e−2nx .
(4.158)

First the integration and afterwards the summation 
an be done analyti
ally:

V f,2
12 =

2

(4π)6

∞∑

n=1

3 + 2n− 4n lnn+ 4nψ(n)− 2n2ψ(1)(n)

4n3

= − 1

(4π)6

(

(2π)2 lnG− π2

3
ln 2π − π2

6
− 3

2
ζ(3)

)

.

(4.159)

For 
omputing:

V f,3
12 =

∑
∫

P

′ ΠB−D
110 Π0−E−B−C

210

P 2
, (4.160)

the generi
 formula in Eq. (4.129) 
an be used, noti
ing that only the 
ombination ΠB+C
210 makes

sense in d = 3 dimension, sin
e every pie
e is divergent individually and only their sum is �nite.

Therefore we have, Eqs. (E.15, E.25):

V f,3
12 = − T

8π2

∑

p0

′

∫
d3p

(2π)3

(
ln P̄ 2

P 2
− ln

α1

4π2
1

P 2

)
T

2(4π)2

∫

d3r
1

r̄
eipr

×
[

f0−E
3,210(r̄, |p̄0|)− fB+C

3,210 (r̄, |p̄0|)
]

,

(4.161)

Finally, we obtain:

V f,3
12 = ln

α1

4π2
2− 2γE

2 − 4γ1 − ζ(3)
6

(4π)6

− 4

(4π)6

∞∑

n=1

∫ ∞

0
dxe−2nx

[

e2nxB(e−2x, n+ 1, 0) +Hn − ln(1− e−2x)

−
(

γE − e2nxEi(−2nx) + ln
n

2x
+

x

6n

)]

·
[(

ln
2n

x
− γE

)

− Ei(−2nx)e2nx
]

=
1

(4π)6

[

ln
α1

4π2

(

2− 2γE
2 − 4γ1 −

ζ(3)

6

)

+ V1,3

]

,

(4.162)

with V12,3 = −3.202(1).
The summation over the se
ond part 
onverges very slowly and the evaluation of the in-

tegrand itself is tedious sin
e it 
ontains spe
ial fun
tions. The summation was done up to

n = 7000 with a relative error ofO(10−3) and beyond that a power-law fun
tion (a·n−b
, b ≈ 1.89)

was used to �t the data in the interval [9000, 19000]. The analyti
 summation n = 9001...∞
gives an error of O(10−4).
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Divergent parts

The divergent parts are:

V d,1
12 =

∑
∫

P

′
ΠD

110

Π210 −ΠE
210

P 2

=
g(1, 1, d + 1)

(
√
α1T )3−d

[

Ld(121; 00) − Jd(121; 0) − Jd(211; 0)
]

=
1

2(4π)6

(

µ2e
γE
3
− ln(4πα1)

3

T 2

)3ǫ [
1

ǫ3
+

3

ǫ2
+

1

ǫ

(

9− 4γE
2 +

π2

12
− 8γ1

)

+

(

23− 12γE
2 +

16γE
3

3
− 5π2

12
+ 16π2 lnG− 4π

3
ln 2π

− 24γ1 + 16γEγ1 + 8γ2 − 7ζ(3)

)

+O(ǫ)

]

,

(4.163)

V d,2
12 =

∑
∫

P

′
(ΠB

110 −ΠD
110)

ΠC
210

P 2

= g(1, 1, d + 1)
∑
∫

P

′

(

1

(P 2)2−
d+1
2

− 1

(α1T 2)2−
d+1
2

)[

g(2, 1, d + 1)

(P 2)3−
d+1
2

+
I02
P 2

+
I01
P 4

]

1

P 2

= g(1, 1, d + 1)

[

g(2, 1, d + 1)I05−d + I02I
0
4− d+1

2

+ I01I
0
5− d+1

2

−
g(2, 1, d + 1)I0

4− d+1
2

+ [I02 ]
2 + I01I

0
3

(α1T 2)2−
d+1
2





= − 1

3(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ3
+

1

ǫ2

(

3− 3 lnα1

2

)

+
1

ǫ

(

7− 9γE
2

2
+
π2

4
+ 3γE ln 4π

− 3

2
[ln 4π]2 − 6γ1 − lnα1

(
9

2
+

3

2
γE +

3

2
ln 4π

)

+
3[lnα1]

2

4

)

+O(ǫ0)

]

,

(4.164)

and

V d,3
12 =

∑
∫

P

′ ΠB
110Π

E
210

P 2
= g(1, 1, d + 1)Jd

(

2, 3 − d+ 1

2
, 1; 0

)

= − 1

96(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ
+

(
7

2
+ 3γE − 72 lnG+ 3 lnπ

)]

+O(ǫ) .

(4.165)

Noti
e that:

V d,1
12 + V d,2

12 =
1

6(4π)6

(
µ2

T 2

)3ǫ
1

ǫ3

[

1 + [...] · ǫ+ [...] · ǫ2+

+
(

...+ ln
α1

4π2
(−12 + 12γE

2 + 24γ1 + ζ(3))
)

· ǫ3
]

.

(4.166)

From here we 
ould read o� the analyti
 expression for Eq. (4.162).
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Zero mode-master

Here we brie�y present the 
al
ulation of one of the zero-mode masters 
oming from V (3; 12111; 00).
As already mentioned on page 48, from Π110 both the zero temperature and the zero-mode 
on-

tribution have to be subtra
ted, su
h that we end with:

Z(3; 12111; 00) =
∑
∫

P
δp0

Π210Π110

P 2

=
∑
∫

P
δp0

Π0−E
210 Π0−B−E

110

P 2
+
∑
∫

P
δp0

ΠE
210Π110

P 2
+
∑
∫

P
δp0

Π210Π
B+E
110

P 2
.

(4.167)

Thus, the �nite part is:

Z f(3; 12111; 00) =
∑
∫

P
δp0

Π0−E
210 Π0−B−E

110

P 2

= − 4

(4π)6

∫ ∞

0
dxdy

x+ y − |x− y|
y

ln(1− e−2x)

(

coth y − 1

y
− 1

)

= − 2

3(4π)6

∫ ∞

0
dy
y coth y − y − 1

y2
(
−2π2y + 6iπy2 + 4y3 + 3Li3

(
e2y
)
− 3ζ(3)

)

=
Zf

(4π)6
=

1

(4π)6
× (−5.16622349123187417171(1)) .

(4.168)

The divergent terms are:

∑
∫

P
δp0

ΠE
210Π110 +Π210Π

B+E
110

P 2
= Tg(2, 1, d)Jd(4− d

2
, 1, 1; 0)

+ g(1, 1, d + 1)Jd(3− d+ 1

2
, 2, 1; 0) + Tg(1, 1, d)Jd(3− d

2
, 2, 1; 0) .

(4.169)

And �nally:

Z(3; 12111; 00) =
1

(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ

(
π2

3
− ζ(3)

2

)

+

(

γE + lnπ +
4

3

)(

π2 +
3ζ(3)

2

+ ζ(3)

(

3 ln 2− 11

3

)

− 24π2 lnG− 3ζ
′
(3) + Z8

)]

.

(4.170)

4.5.2 Example 2: V (3; 22111; 02)

Figure 4.8: Sum-integral V (3, 22111; 02).
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This is the last sum-integral (
f. Fig. (4.8)) for whi
h the splitting of Eq. (4.56) does not

apply:

V14 =
∑
∫

P

Π210Π112

P 4

=
∑
∫

P

′ Π0−E
210 Π0−B

112

P 4
+
∑
∫

P

′ ΠE
210Π

0−B
112

P 4
+
∑
∫

P

′ ΠB−D
112 Π0−E−B−C

210

P 4

+
∑
∫

P

′ ΠD
112Π

0−E
210

P 4
+
∑
∫

P

′ ΠB−D
112 ΠB+C

210

P 4
+
∑
∫

P

′ ΠE
210Π

B
112

P 4
+
∑
∫

P
δp0

Π210Π112

P 4

= V f,1
14 + V f,2

14 + V f,3
14 + V d,1

14 + V d,2
14 + V d,3

14 + V z
14 .

(4.171)

Finite part

The �rst �nite part, we treat in the same way as Eq. (4.143); we �rst perform p integration,

Eq. (C.9) and res
ale the integral.

V f,1
14 =

∑
∫

P

′ Π0−E
210 Π0−B

112

P 4

=
1

(4π)6

∑

m,n

′
∫ ∞

0
dxdy

1

y

e−|m|x−|m+n|x−|n|y

|n|3|m| f0−B
3,112(y, |n|)

×
[

e−|n||x−y|(1− |n||x− y|)− e−|n|(x+y)(1− |n|(x+ y))
]

.

(4.172)

It be
omes 
lear that integration over x and summation over m is mu
h more demanding in

this 
ase. Therefore, we use the generalized formulas in Eqs. (C.19, C.18) and obtain:

V f,1
14 =

1

144(4π)6

∞∑

n=1

∫ ∞

0
dy
e−2ny

n4y4
[
3y3e−2y

(
n2 coth y + (n + coth y)csch 2y

)
− 3

− ny(3 + 3ny − y2)
]
×
{
−6n

[
−3Φ(e−2y, 2, 1 + n) + nΦ(e−2y, 3, 1 + n)

]

+
[
(3− 2n)nπ2 + 6 [γE + ψ0(1 + n)] [1 + 2n (y(3 + ny)− 1)]

+ 12n(y − 1)(ln[1− e−2y] + Φ(e−2y, 1, 1 + n)) + 3n ((−6 + 4ny)ψ1(1 + n)

− nψ2(1 + n) + (4n − 4ny − 6) Li2
(
e−2y

)
− 2nLi3

(
e−2y

)
+ 2nζ(3)

)]}

=
1

(4π)6
× (0.1544(1)) .

(4.173)

The se
ond �nite term, is after momentum integration and s
aling simply:

V f,2
14 =

∑
∫

P

′ ΠE
210Π

0−B
112

P 4

= − 1

3(4π)6

∞∑

n=1

∫ ∞

0
dx
x2

n3

(

1 +
3

nx
+

3

n2x2

)

f0−B
3,112e

−2nx

=
1

(4π)6
× (−0.101108838933043(1)) .

(4.174)

The sum has been done analyti
ally and the integration numeri
ally.
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The third �nite part is a

ording to Eq. (4.129):

V f,3
14 =

∑
∫

P

′ ΠB−D
112 Π0−E−B−C

210

P 4

=
1

3(4π)6

∫ ∞

0
dxx

∞∑

n=1

f0−E−B−C
3,210 (x, n)e−nx

[
l3,1(x, n)− 2n2l3,2(x, n)

]

= − 1

3(4π)6

∞∑

n=1

∫ ∞

0
dxe−2nx

[

e2nxB(e−2x, 1 + n, 0) + e2nxEi(−2nx) +Hn − x

6

− ln(1− e−2x)− ln
neγE

2x

]

×
[

2nx+ e2nx(1 + 2nx)Ei(−2nx) + (2nx− 1) ln
2n

xeγE

]

= −0.162(1) .
(4.175)

These �nite parts are time 
onsuming as they 
ontain spe
ial fun
tions. Moreover their


onvergen
e is very low. For the last �nite part, the integral has to be evaluated up to n =
150.000 in order to obtain an relative error of O(10−9).

Divergent parts

The divergent parts are simply:

V d,1
14 =

∑
∫

P

′ ΠD
112Π

0−E
210

P 4
=
∑
∫

P

′ (d+ 1)p20 − P 2

4d

g(1, 1, d + 1)

(α2T 2)2−
d+1
2

Π0−E
210

P 4

=
g(1, 1, d + 1)

4d(α2T 2)2−
d+1
2

[

(d+ 1)
∑
∫

P

′ p20Π
0
210

P 4
−∑
∫

P

′ Π0
210

P 4

−(d+ 1)
∑
∫

P

′∑
∫

Q
δq0

p20
P 4Q4(P +Q)2

+
∑
∫

P

′∑
∫

Q
δq0

1

P 2Q4(P +Q)2

]

=
g(1, 1, d + 1)

4d(α2T 2)2−
d+1
2

[

(d+ 1)Ld(221; 20) −
(

Ld(121; 00) − Jd(121; 0)
)

−(d+ 1)Jd(221; 1) + Jd(211; 0)
]

,

(4.176)

V d,2
14 =

∑
∫

P

′ ΠB−D
112 ΠB+C

210

P 4

=
g(1, 1, d + 1)

4d

∑
∫

P

′ (d+ 1)p20 − P 2

P 4

[

1

(P 2)2−
d+1
2

− 1

(α2T 2)2−
d+1
2

]

×
[

g(2, 1, d + 1)

(P 2)3−
d+1
2

+
I02
P 2

+
I01
P 4

]

=
g(1, 1, d + 1)

4d

[

(d+ 1)
(

g(2, 1, d + 1)Î1
5− d+1

2

(α2) + I02 Î
1
3 (α2) + I01 Î

1
4 (α2)

)

−
(

g(2, 1, d + 1)Î0
4− d+1

2

(α2) + I02 Î
0
2 (α2) + I01 Î

0
3 (α2)

)]

,

(4.177)

75



V d,3
14 =

∑
∫

P

′ ΠE
210Π

B
112

P 4
=
∑
∫

P

′∑
∫

Q
δq0

1

Q4(P +Q)2
g(1, 1, d + 1)

4dP 4

(d+ 1)p20 − P 2

(P 2)2−
d+1
2

=
g(1, 1, d + 1)

4d

[

(d+ 1)Jd

(

2, 4 − d+ 1

2
, 1; 1

)

− Jd

(

2, 3− d+ 1

2
, 1; 0

)]

.

(4.178)

Zero-mode

The zero-mode 
ontribution simpli�es via IBP redu
tion to (
.f. Eq. (D.30)):

V z
14 =

Z(3; 12211; 02) + Z(3; 12121; 02) − I12 × Jd(221; 0)

d− 5
. (4.179)

The expli
it values for the zero-mode masters are in appendix (A).

Summing up, we noti
e that the generalization of the splitting pro
edure and the generi


formulas of the individual pie
es simplify the work 
onsiderably. Even in the two 
on
rete

example presented at last, we have partially borrowed some of the generi
 results from se
tion

4.4.
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Chapter 5

Results

At this point we have 
omputed all ne
essary pie
es in order to determine m
E

and g
E

. We plug

in the 
omputed sum-integrals into Eqs. (3.58) and (3.60) and provide the �nal, renormalized

results on the mat
hing 
oe�
ients. We �nd out that in the 
ase of the e�e
tive 
oupling we

still need to 
onsider operators of higher dimension in the Lagrangian from Eq. (3.5). Further,

we dis
uss in whi
h way the higher order operators will enter our 
omputation by pointing out

the UV properties of the diagrams that 
ontain the new intera
tions. We end the 
urrent thesis

with an outlook on this work, spe
i�
ally on �nishing the 
omputation of g
E

and on a wider

prospe
tive: on the need of new te
hniques for solving sum-integrals.

5.1 Debye mass

With the master sum-integrals at hand M000
31111−2, M

000
11110 and M020

211110, we are able to express

Eq. (3.58) in d = 3− 2ǫ dimensions. However, the mass parameter is expressed in terms of the

4d bare 
oupling g2 and thus it requires renormalization to render the parameter �nite.

For that, we re
all the relation between the bare and the renormalized 
oupling from Eq.

(2.44), here rewritten as: g2B = Zgg
2(µ̄) and the 
ombination µ−2ǫg2(µ̄) is dimensionless. We

have dropped the subs
ript R for simpli
ity. The renormalization 
onstant Zg has to be known

to three-loop order in terms of the beta 
oe�
ients of QCD.

By starting from the 
ondition that the bare 
oupling g2B should not depend on the mass

s
ale µ, we obtain the RGE equation for the renormalized 
oupling and relate it afterwards to

the renormalization 
onstant

µ
d

dµ
g2B

!
= 0 = µ

d

dµ
Zgg

2(µ̄) , (5.1)

with Zg taking the general form (2.46):

Zg = 1 +
g(µ̄)2µ−2ǫ

(4π)2
c1,1
ǫ

+

[
g(µ̄)2µ−2ǫ

(4π)2

]2 (c2,2
ǫ2

+
c2,1
ǫ

)

+

[
g(µ̄)2µ−2ǫ

(4π)2

]3 (c3,3
ǫ3

+
c3,2
ǫ2

+
c3,1
ǫ

)

+O(g8) .

(5.2)
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As we intend to obtain the RGE equation in terms of the beta 
oe�
ients in the limit

1 ǫ→ 0,

µ
d

dµ
g2(µ̄) =

β0
(4π)2

g4(µ̄) +
β1

(4π)4
g6(µ̄) +

β2
(4π)6

g8(µ̄) +O(g10) , (5.3)

we relate the unknown 
oe�
ients ci,j to βi and obtain:

Zg = 1 +
g(µ̄)2µ−2ǫ

(4π)2
β0
2ǫ

+

[
g(µ̄)2µ−2ǫ

(4π)2

]2(
β1
4ǫ

+
β20
4ǫ2

)

+

[
g(µ̄)2µ−2ǫ

(4π)2

]3(
β2
6ǫ

+
7β0β1
24ǫ2

+
β30
8ǫ3

)

,

(5.4)

were

β0 =
−22CA

3
, β1 =

−68C2
A

3
, β2 =

−2857C3
A

27
, (5.5)

are the �rst three beta 
oe�
ients for the pure gluoni
 QCD [5℄.

In addition, we re
all that EQCD is a super-renormalizable theory with the mass-term as the

only parameter requiring renormalization (
f. Eq. (3.6)). To obtain the 
orre
t 
ounter-term,

we need the tree-level EQCD mat
hing 
oe�
ients λ and gE with respe
t to the renormalized

4d 
oupling, g(µ̄) [127℄:

δm2
E

= 2(N2
c + 1)

1

(4π)2
µ−4ǫ
3

4ǫ
(−g2EλCA + λ2)

= 2(N2
c + 1)

1

(4π)2
µ−4ǫ
3

4ǫ
(−g(µ̄)2T )

(
20

3

C2
A

N2
c + 1

g(µ̄)4µ−2ǫT

(4π)2

)

CA +O(g8)

= −10C3
A

3ǫ

T 2

(4π)4
g(µ̄)6µ−4ǫ

3 µ−2ǫ +O(g8) .

(5.6)

Due to reasons of dimensionality, the mat
hing introdu
es an extra term µ−2ǫ
as only the


ombination g2(µ)µ−2ǫ
is dimensionless. Hen
e m2

E

is of dimension two. By using Eq. (5.6) for

the de�nition of the renormalized mass, the divergen
e in Eq. (3.58) is exa
tly 
an
elled and we

obtain the renormalized e�e
tive mass in EQCD to three-loop order:

m
E

2
,ren = T 2

[

g2(µ̄)(α
E4 + ǫα

E5) +
g4(µ̄)

(4π)2
(α

E6 + ǫβ
E2) +

g6(µ̄)

(4π)4
α
E8

]

+O(g8(µ̄)) . (5.7)

The known 
oe�
ients α
E4, αE5, αE6 and β

E2 from [60℄ (an the referen
es therein) are

re
overed. The 
onstant terms in ǫ are

α
E4 =

CA

3
, α

E6 = −β0CAL+
5C2

A

9
, (5.8)

where

L ≡ ln
µ̄eγE

4πT
. (5.9)

Finally de�ning

L3 ≡ ln
µ23e

z1

4πT 2
; z1 =

ζ ′(−1)

ζ(−1)
, (5.10)

1

Before taking ǫ → 0, note that Eq. (5.3) 
ontains on the rhs. terms like [g2(µ̄)µ−2ǫ]n to mat
h the dimen-

sionality with the lhs.
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we obtain for the last 
oe�
ient the following expression:

α
E8 =

C3
A

27

[

484L2 + 244L − 180L3 +
1091

2
− 56ζ(3)

5

]

. (5.11)

Note that the 
oe�
ients in front of the logarithm L are entirely determined by the beta 
oe�-


ients and the e�e
tive mass 
oe�
ients of lower order: e.g. 484C3
A/27 = −β30 . The three-loop

result depends on two arbitrary s
ales µ̄ and µ3, the �rst one 
oming from the 4d renormalization,

whereas the se
ond s
ale enters through the 3d renormalization.

For plotting the result, the 
on
rete running of the 4d 
oupling with respe
t to the energy

s
ale is needed. For that, Eq. (5.3) is solved iteratively to three-loop order [5, 128℄

g2(µ̄)

(4π)2
= − 1

β0t
− β1 ln t

β30t
2

− 1

β30t
3

(
β21
β20

(ln2 t− ln t− 1) + β2

)

, (5.12)

with t = ln[µ̄/Λ
MS

], and Λ
MS

is the QCD s
ale de�ned in the MS s
heme [37, 128℄.

There is a freedom in 
hoosing the arbitrary mass s
ales µ and µ3. We employ the standard

pro
edure to 
hoose the �optimal� value that minimizes the one-loop e�e
tive 
oupling g
E

[58,

129℄: µ
opt

= 4πe−γE−1/22T . In order to inspe
t the sensitivity of the result with respe
t to the

arbitrary s
ale, we vary it in the range µ
opt

/2 and 2µ
opt

. As we have no information on an

optimal s
ale for µ3, we simply set it equal to µ.

1 5 10 50 100 500 1000

1.0

2.0

3.0

1.5

T�LMS

m
E
²�

T
²

Figure 5.1: The normalized mass parameter m2
E

/T 2
up to one-, two- and three loops (dotted,

dashed and 
ontinuous lines) as a fun
tion of T/Λ
MS

.

The plot in Fig. (5.1) shows the mass parameter up to the one-, two- and three-loop order

and with the �xed µ
opt

. It shows a slight in
rease of the three-loop result with respe
t to the

lower loops. Moreover, the plot indi
ates the 
onvergen
e of the perturbative expansion to a

limiting value, as the 
orre
tion to the two-loop result is mu
h smaller then the 
orre
tion from

one to two loops. Remarkably, the 
onvergen
e shows to hold up to temperatures near the QCD

s
ale.
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1- loop
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Figure 5.2: The normalized mass parameter m2
E

/T 2
up to one-, two- and three loops (
ontinuous

(red), dashed (yellow) and dotted (bla
k) lines) as a fun
tion of T/Λ
MS

. The 
olored bands 
ome

due to the variation of the optimal s
ale µ
opt

.

In Fig. (5.2), we plot the mass parameter to in
reasing loop order and with the variation of

the arbitrary s
ale. Indeed, the 
onvergen
e is 
on�rmed again as the sensitivity on the arbitrary

s
ale is slightly smaller than for the one- and two-loop 
ases.

In the end, we provide the renormalized 
ontribution to the QCD pressure to O(g7), 
oming

from the mass parameter (
f. Eq. (3.15) and [88℄):

pM (T )|m3
E,ren

=
54dAT

4C
7/2
A√

3(4π)5

[

605 ln2
µ̄eγE

4πT
+ 299 ln

µ̄eγE

4πT
− 180 ln

µ23e
z1

4πT 2
+

2207

4
− 56ζ(3)

5

]

g7 .

(5.13)

5.2 E�e
tive 
oupling

For 
omputing the e�e
tive 
oupling, we perform the same steps as for the mass parameter; we

plug in the master sum-integrals 
omputed in the previous 
hapter into Eq. (3.60) and perform

the renormalization of the QCD 
oupling. The out
ome is:

g2
E

= T

[

g2(µ̄) +
g4(µ̄)

(4π)2
(α

E7 + ǫβ
E3) +

g6(µ̄)

(4π)4
(γ

E1 + ǫβ
E5) +

g8(µ̄)

(4π)6
α′
E9 +O(g10)

]

. (5.14)

The 
oe�
ients α
E7, βE3 and γE1 
an be found in [60℄ and 
ontain also the fermioni
 degrees

of freedom. Here, we present merely the gluoni
 pie
es:

α
E7 = −β0L+

CA

3
, γ

E1 = −β1L+

[

β0L− CA

3

]2

+
C2
A

18
(341− 20ζ(3)) . (5.15)
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And �nally:

α′
E9 = −61ζ(3)C3

A

5ǫ

+

{
10648

27
L3 +

1408

3
L2 +

(
14584

27
− 4394ζ(3)

45

)

L+
9187

36
− 1136γE

9
− 68γE

2 − 1064γE
3

9

− 10333π2

1134
− 188γEπ

2

25
+

124π4

2835
− 4216π2z1

189
+

1136 ln 2

9
− 104γE

2 ln 2

3
+

1844π2 ln 2

63

+
4216π2 lnπ

189
− 136γ1 −

1168γEγ1
3

− 208γ1 ln 2

3
− 688γ2

3
+

1503337ζ(3)

9450

+
3214γEζ(3)

45
+

28z1ζ(3)

3
− 410ζ(3) ln 2

27
+

29ζ(5)

81
− 8852ζ ′(3)

135
+ 303.8(1)

}

C3
A .

(5.16)

The most striking property is the presen
e of a divergent term, even after renormalization.

The terms in front of the logarithms L are entirely determined by the beta 
oe�
ients and the


oe�
ients of the lower loop-order of g
E

. The numeri
al term 303.8(1) has a very low a

ura
y

mostly due to the �nite terms in Eqs. (4.162) and (4.175).

In the following we dis
uss the divergent term in Eq. (5.16). Re
all that the Lagrangian used

in this 
omputation (Eq. (3.5)) is super-renormalizable and thus the 3d e�e
tive 
oupling does

not exhibit any divergent 
ounter-terms that 
ould 
an
el the leftover divergen
e. Obviously,

we have overlooked something.

The possibility of a te
hni
al error in evaluating the master sum-integrals or in performing the

IBP redu
tion is very low, sin
e the master sum-integrals were 
ross 
he
ked independently

2

,

and the same IBP redu
tion was used for the mass parameter. Moreover, the expli
it gauge

independent result 
onsolidates our arguments.

Therefore, we inspe
t the idea that higher order operators in the e�e
tive Lagrangian may


ontribute with a divergent fa
tor to the e�e
tive 
oupling g
E

at the order g8.

5.3 Higher order operators

The hint that we may not have 
onsidered operators of high enough dimension 
omes pre
isely

from the ζ(3)-term multiplying the divergent pie
e in Eq. (5.16), as the same term is found for

all the tree-level mat
hing 
oe�
ients of the dimension six operators in [54℄:

∆L
EQCD

= −g
2ζ(3)Nc

32π4T 2
Tr

{
ig

90
FµνFνρFρµ − 19

90
(DµFµν)

2 − 19ig

15
F0µFµνFν0

+
1

30
(DµFµ0)

2 − 6ig

5
A0(DµFµν)F0ν +

11

6
g2A2

0F
2
µν

}

.

(5.17)

Here, we employ the fundamental representation and ∂0 = 0. By adding Eq. (5.17) to

the original Lagrangian, the theory be
omes non-renormalizable. Therefore, we expe
t to �nd

renormalization 
onstants for the �elds and for the e�e
tive 
oupling starting with O(g8). To

�nd diagrams, whi
h are potentially divergent at O(g8) and have the 
orre
t stru
ture in order

2

The most 
ompli
ated sum-integralM000
311111−2 was expressed in terms of a di�erent set of higher dimensional

sum-integrals as in Ref. [120℄ and the results agree.
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to be regarded as renormalization 
ounter-terms, the new verti
es have to be extra
ted from the

Lagrangian.

As a simple exer
ise, we read o� the possible verti
es that emerge from the operators, without

expli
itly performing the Lorentz-index symmetrization or the 
olor algebra. We are merely

interested in the power of the 4d 
oupling g and in the power of the momentum that multiplies

the verti
es. Fig. (5.3) shows all possible verti
es. The general stru
ture of a nL-parti
le vertex
is found to be vL ∝ gnLk6−nL

.

Figure 5.3: The verti
es emerging from the dimension six operators (5.17). The 
urly lines are

the gauge �elds Aa
i and the full lines are the adjoint s
alar �elds Aa

0.

≡ g8G(d,p2)

Figure 5.4: A generi
 2-loop integral with a dimension 6 vertex that may 
ontribute to the

e�e
tive 
oupling renormalization at O(g8).

A dire
t 
onsequen
e of d = 3− 2ǫ is the fa
t that divergent integrals arise only in integrals

with an even number of loops . Hen
e, we look for a simple and divergent integral to 
ontribute to

the e�e
tive 
oupling 
ounter-term. As it turns out, one of the simplest divergent sum-integrals

in whi
h one of the inner lines is the �rst dimension-six vertex from Fig. (5.3) is G(d,p2) (
f.
Fig. (5.4)). A qui
k inspe
tion shows that it behaves due to dimensional reasons like:

G(3 − 2ǫ,p2) =∝ 1

ǫ
+ ln

p2

µ2
+ �nite . (5.18)

This kind of divergen
e would pre
isely a

ount for the 
oupling renormalization 
onstant to

O(g8).

However, there are other possible new diagrams that appear already at O(g6), su
h as shown

in Fig. (5.5). They are of dimension two and naturally would be proportional to m2
. These

potentially a

ount for the mass renormalization already at O(g6), an order that is entirely de-

termined by the super-renormalizable Lagrangian. In fa
t, having a 
loser look on the integral

M(d,m2), it be
omes 
lear that the dimension-six vertex in the diagram has the role of 
ontra
t-

ing the propagator to a point. Thus, we obtain in fa
t no 
ontribution to any renormalization
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onstant, be
ause the two-loop integral fa
torizes into a produ
t of two one-loop integrals:

M(3− 2ǫ,m2) ∝ = �nite . (5.19)

≡ g6M(d,m2)

Figure 5.5: A generi
 two-loop integral with a dimension-six vertex, that may 
ontribute already

at O(g6) to the mass renormalization. As the mass 
ounter-term is already determined pre
isely

within the super-renormalizable theory, all 
ontributions of this form should 
an
el.

In 
on
lusion, we expe
t that, by adding the dimension-six operators to the Lagrangian in

Eq. (3.5), as the theory be
omes non-renormalizable, 
ounter-terms emerge pre
isely to O(g8)
to 
an
el the divergen
e in Eq. (5.16).

Therefore, the remaining task is to determine all the renormalization 
onstants of the �elds

Aa
i and Aa

0, and of the e�e
tive 
oupling gE by a standard pro
edure of 
omputing two- and

four-point fun
tions to two-loop order in d = 3−2ǫ dimensions. As the ba
kground �eld method


an be applied in this situation as well, the pro
edure redu
es merely to a two-point fun
tion


omputation.

In addition, no further diagrams need to be evaluated in EQCD sin
e the mat
hing pro
edure

of se
tion 3.5 employed a Taylor expansion in the external momentum, making all loop integrals

on the EQCD side to vanish identi
ally. Thus, in this 
omputation the only 
ontribution from

the new operators is through the renormalization 
onstants.

5.4 Outlook

In the present thesis, the mass parameter m
E

and the e�e
tive 
oupling g
E

of EQCD have

been 
omputed to three-loop order as mat
hing 
oe�
ients to full QCD. The usual te
hnique of


omputing three- or four-point fun
tions was simpli�ed to 
omputing only two-point fun
tions

by applying the ba
kground �eld method. The task was simpli�ed further by 
omputing the

vertex fun
tions in the limit of vanishing external momenta that led to identi
ally vanishing

integrals on the EQCD side.

The demanding task was handled with 
omputer algebrai
 software. To three-loop order

≈ 500 Feynman diagrams were generated and redu
ed via IBP relations to a set of a few tens

of master sum-integrals. As their pre-fa
tors diverge in d = 3 − 2ǫ dimensions, a 
lever basis

transformation was performed that 
ould eliminate the divergent pre-fa
tors at the pri
e of

introdu
ing sum-integrals of a higher 
omplexity.

Finally, the master sum-integrals have been solved by partly generalizing the known te
h-

niques [28℄ and by borrowing a method from zero-temperature �eld theory of tensor integral

manipulation [29℄.

The mass parameter 
ontributes to the 
omputed order to the QCD pressure starting with

order g7. We did not manage to �nalize the 
omputation on the e�e
tive 
oupling as it turns
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out that 
ontributions from higher order operators enter our result through the renormalization

of the �elds and of the 
oupling, starting with O(g8). After determining these renormalization


onstants, the result on the e�e
tive 
oupling 
an be used in determining the spatial string

tension of QCD, as already done in [60℄.

The remaining task is to 
ompute the renormalization 
onstants to O(g8), whi
h involves

a two-loop 
omputation of two-point fun
tions within the framework of the modi�ed, non-

renormalizable Lagrangian of EQCD. This 
omputation is not expe
ted to be mathemati
ally

demanding but rather demanding on the organizational side, as we have 14 new types of inter-

a
tions.

On
e the e�e
tive 
oupling is 
ompleted to three-loop order, a 
omputation of the magneti



oupling g
M

would be desirable for a more a

urate determination of the spa
ial string tension

(
f. se
tion 3.3).

An extension of the present results to the fermioni
 se
tor is indi
ated due to the reasons

of 
ompleteness. However, we do not expe
t a quantitative 
hange in Fig. (5.1). For that, a

similar basis transformation needs to be performed for the master sum-integrals with a fermioni


signature. There are reason to believe that a suitable basis does exist with both, �nite pre-fa
tors

and simple enough master sum-integrals as to be manageable with the present te
hniques.

On a wider perspe
tive, the present 
omputation has shown that state of the art te
hniques

for solving sum-integrals are pushed to their limit. There is 
ertainly a need for new methods

that permit the 
omputation of sum-integrals in prin
iple to arbitrarily high order in ǫ and for a

wider 
lass of topologies. A future 
omputation of the 
omplete QCD pressure to O(g6) involves
four-loop sum-integrals of whi
h only few topologies 
an be handled with the methods presented

here. Any diagram that 
ontains a mer
edes-type subdiagram is in prin
iple unsolvable yet.

Also, at O(g6) three-loop sum-integrals have to be known up to O(ǫ) due to renormalization.

At last, one 
ould mention the extension from a s
enario of massless fermions to the massive


ase and ideally to the 
ase with �nite 
hemi
al potential. All these additions would 
hange the

analyti
al stru
ture of the sum-integrals. These te
hni
alities have to be over
ome eventually

if we want to push reliable analyti
al results 
loser towards the non-perturbative region in the

QCD phase diagram.
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Appendix A

Integrals

In this appendix, we gather all pie
es for the remaining sum-integrals that are the building

blo
ks of M3,−2 and of ΠT and that were not expli
itly 
omputed in the main text.

A.1 Finite parts

For a large number of these integrals, the last summation over Matsubara-modes was not per-

formed analyti
ally as this usually generated integrands 
ontaining hundreds of terms. Instead,

we have evaluated the integral numeri
ally for every mode individually and have trun
ated

the sum su
h that the remainder would not ex
eed a �xed relative 
ontribution usually taken

O(10−9). The relative 
ontribution of the remainder was determined by interpolating the the

sum with a power-law f(n) = an−b
and by performing the summation from the trun
ated term

to ∞ analyti
ally. As some of the pie
es showed a very low 
onvergen
e, we trun
ated the sums

to a relative error of O(10−5).

A.1.1 First �nite pie
e

These terms are of the form:

∑
∫

P

′ Π0−B
s2s4s6Π

0−B
s3s5s7

[P 2]s1
, (A.1)

and their generi
 result is Eq. (4.122):

V f,1(3; 31111; 22) =
T 2

(4π)4
V3,1 =

T 2

(4π)4
× (0.0046390318(1)) , (A.2)

V f,1(5; 31122; 11) =
T 2

(4π)7
V4,1 =

T 2

(4π)7
× (0.00199480835(1)) , (A.3)

V f,1(7; 32222; 00) =
T 2

(4π)10
V5,1 =

T 2

(4π)10
× (5.495(1) × 10−7) , (A.4)

V f,1(7; 52211; 00) =
T 2

(4π)10
V6,1 =

T 2

(4π)10
× (3.5741(1) × 10−7) , (A.5)

V f,1(7; 42221; 00) =
T 2

(4π)10
V7,1 =

T 2

(4π)10
× (4.2900(1) × 10−7) , (A.6)
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V f,1(7; 43211; 00) =
T 2

(4π)10
V8,1 =

T 2

(4π)10
× (8.8987(1) × 10−7) , (A.7)

V f,1(7; 33221; 00) =
T 2

(4π)10
V9,1 =

T 2

(4π)10
× (8.277(1) × 10−7) , (A.8)

V f,1(7; 33212; 00) =
T 2

(4π)10
V10,1 =

T 2

(4π)10
× (0.0000119229(1)) , (A.9)

V f,1(7; 33311; 00) =
T 2

(4π)10
V11,1 =

T 2

(4π)10
× (0.0003192203(1)) , (A.10)

V f,1(3; 21111; 00) =
1

(4π)6
V13,1 =

1

(4π)6
× (0.09378301925(1)) , (A.11)

V f,1(3; 31111; 20) =
1

(4π)6
V15,1 =

1

(4π)6
× (0.02978074457(1)) , (A.12)

V f,1(3; 41111; 22) =
1

(4π)6
V16,1 =

1

(4π)6
× (0.01099409787(1)) . (A.13)

A.1.2 Se
ond �nite pie
e

The generi
 result of these integrals is Eq. (4.123):

V f,2(3; 31111; 22) =
T 2

(4π)4
V3,2 =

T 2

(4π)4
× (−0.000721758(1)) , (A.14)

V f,2(5; 31122; 11) =
T 2

(4π)7
V4,2 =

T 2

(4π)7
× (−0.000106808(1)) , (A.15)

V f,2(7; 32222; 00) =
T 2

(4π)10
V5,2 =

T 2

(4π)10
× (−0.00028062(1)) , (A.16)

V f,2(7; 52211; 00) =
T 2

(4π)10
V6,2 =

T 2

(4π)10
× (7.8965(1) × 10−5) , (A.17)

V f,2a+2b(7; 42221; 00) =
T 2

(4π)10
(V7,2a + V7,2b)

=
T 2

(4π)10
× [(−7.8964(1) × 10−5) + (7.0158(1) × 10−5)] , (A.18)

V f,2a+2b(7; 43211; 00) =
T 2

(4π)10
(V8,2a + V8,2b)

=
T 2

(4π)10
× [(−7.8964(1) × 10−5) + (−3.5715(1) × 10−5)] , (A.19)

V f,2a+2b(7; 33221; 00) =
T 2

(4π)10
(V9,2a + V9,2b)

=
T 2

(4π)10
× [0 + (−7.606(1) × 10−5)] , (A.20)

V f,2a+2b(7; 33212; 00) =
T 2

(4π)10
(V10,2a + V19,2b)
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=
T 2

(4π)10
× [(−1.4031(1) × 10−4) + (7.1430(1) × 10−5)] , (A.21)

V f,2(7; 33311; 00) =
T 2

(4π)10
V11,2 =

T 2

(4π)10
× (1.4286(1) × 10−4) , (A.22)

V f,2(3; 21111; 00) =
1

(4π)6
V13,2 =

1

(4π)6
× (−0.9507801527(1)) , (A.23)

V f,2a+2b(3; 31111; 20) =
1

(4π)6
(V15,2a + V15,2b)

=
1

(4π)6
× [(−0.0169179735(1)) + (−0.08467859163(1))] , (A.24)

V f,2(3; 41111; 22) =
1

(4π)6
V16,2 =

1

(4π)6
× (−0.015384387080(1)) . (A.25)

A.1.3 Finite parts for the zero-modes

Here, we list the 
on
rete results for Eqs. (4.131, 4.132):

Z f(3; 12211; 22) =
T 2

(4π)4
Z3 =

T 2

(4π)4
× (0.190165350(1)) , (A.26)

Z f(3; 12121; 22) =
T 2

(4π)4
Z4 =

T 2

(4π)4
× (−0.012563934311(1)) , (A.27)

Z f(7; 23222; 00) =
T 2

(4π)10
Z5 =

T 2

(4π)10
× (0.000275985995(1)) , (A.28)

Z f(7; 23231; 00) =
T 2

(4π)10
Z6 =

T 2

(4π)10
× (0.0000305224843(1)) , (A.29)

Z f(7; 23321; 00) =
T 2

(4π)10
Z7 =

T 2

(4π)10
× (0.00208559268(1)) , (A.30)

Z f(3; 12121; 02) =
1

(4π)6
Z9 =

1

(4π)6
× (−0.0417499660(1)) , (A.31)

Z f(3; 12121; 20) =
1

(4π)6
Z10 =

1

(4π)6
× (−2.0660279047(1)) , (A.32)

Z f(3; 12211; 02) =
1

(4π)6
Z11 =

1

(4π)6
× (−0.5170838408(1)) , (A.33)

Z f(3; 12221; 22) =
1

(4π)6
Z12 =

1

(4π)6
× (−0.2399902511(1)) , (A.34)

Z f(3; 13111; 02) =
1

(4π)6
Z13 =

1

(4π)6
× (−0.04487446214(1)) , (A.35)

Z f(3; 02221; 02) =
1

(4π)6
Z14 =

1

(4π)6
× (−0.07420667719(1)) , (A.36)

Z f(3; 03121; 02) =
1

(4π)6
Z15 =

1

(4π)6
× (−0.01111795886(1)) . (A.37)
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A.2 Zero-modes results

Finally, we gather all remaining sum-integrals. Besides the zero-mode sum-integrals en
ountered

in Eqs. (4.93, 4.94, 4.170), also the following ones are required. They are built up from the

�nite pie
es listed above and from divergent pie
es from Eqs. (4.140, 4.141) and by using the

generi
 splitting of Eq. (4.58):

Z(3; 12211; 22) =
−1

8

T 2

(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ
+ 4− 3γE + 3 lnπ − 8Z3 +O(ǫ)

]

, (A.38)

Z(3; 12121; 22) =
1

48

T 2

(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ
+

2

3
− 3γE + 3 ln π + 48Z4 +O(ǫ)

]

, (A.39)

Z(3; 12121; 02) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [

−π
2

36

1

ǫ
+ π2

(

− 1

54
− γE

12
+ 2 lnG− lnπ

12

)

− 3ζ(3)

20
+Z9 +O(ǫ)

]

,
(A.40)

Z(3; 12121; 20) =
1

(4π)6

(
µ2

T 2

)3ǫ [(
π2

12
− ζ(3)

4

)
1

ǫ
+
π2

4
(3 + γE − 24 lnG+ lnπ)

+ ζ(3)

(−5

3
+

3γE
4

+
3 ln 4π

4

)

− 3ζ
′
(3)

2
+ Z10 +O(ǫ)

]

,

(A.41)

Z(3; 12211; 02) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [
π2

12

1

ǫ
+ π2

(
1

3
+
γE
4

− 4 lnG+
ln(π/4)

12

)

− 7ζ(3)

4
+ Z11 +O(ǫ)

]

,
(A.42)

Z(3; 12221; 22) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [
π2

48

1

ǫ
+
π2

16
(3 + γE − 24 lnG+ lnπ) +Z12 +O(ǫ)

]

,
(A.43)

Z(3; 13111; 02) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [
π2

72

1

ǫ
+ π2

(
13

108
+
γE
24

− lnG+
ln(π)

24

)

− ζ(3)

40
+ Z13 +O(ǫ)

]

,
(A.44)

Z(3; 02221; 02) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [
π2

12

1

ǫ
+ π2

(
γE
4

− 6 lnG+
ln(π)

4

)

+
3ζ(3)

4
+ Z14 +O(ǫ)

]

,
(A.45)

Z(3; 03121; 02) =
1

(4π)6

(
µ2

T 2

)3ǫ [

0× 1

ǫ
+
π2

6
− ζ(3)

4
+ Z15 +O(ǫ)

]

, (A.46)
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Z(7; 23222; 00) =
−1

720

T 2

(4π)10

(
µ2

T 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
16

15
− γE + ln

π

4

)

+O(ǫ0)

]

, (A.47)

Z(7; 23231; 00) =
1

960

T 2

(4π)10

(
µ2

T 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
2

5
− γE + ln

π

4

)

+O(ǫ0)

]

, (A.48)

Z(7; 23222; 00) =
−1

720

T 2

(4π)10

(
µ2

T 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
16

15
− γE + ln

π

4

)

+O(ǫ0)

]

. (A.49)

A.3 Remaining sum-integral results

The remaining sum-integrals entering the de�nition of M3,−2 (
.f. Eq. (4.30)) and also the

sum-integrals with mass dimension zero entering ΠT are listed below. The results for the 7-

dimensional sum-integrals are shown only up to the 
onstant term, be
ause they will not enter

the �nal result in the mass parameter.

V (3; 31111; 22) =
1

288

T 2

(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
1

12
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.50)

V (5; 31122; 11) =
−1

162

T 2

(4π)7

(
µ2

4πT 2

)3ǫ [

0× 1

ǫ2
+

1

ǫ
+O(ǫ0)

]

, (A.51)

V (7; 32222; 00) =
−7

4320

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
17

105
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.52)

V (7; 52211; 00) =
−19

17280

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

− 61

285
+ γE + 24 lnG

)

+O(ǫ0)

]

,

(A.53)

V (7; 42221; 00) =
19

2160

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
1747

2280
− 25γE

38
+

78 lnG

19
+

63 ln 2π

19

)

+O(ǫ0)

]

,

(A.54)

V (7; 43211; 00) =
1

640

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

−281

810
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.55)

V (7; 33221; 00) =
7

17280

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

−13

30
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.56)

89



V (7; 33212; 00) =
−1

576

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
1

18
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.57)

V (7; 33311; 00) =
−1

540

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

− 7

20
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.58)

V (3; 12111; 00) =

=
1

6(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ3
+

3

ǫ2
+

1

ǫ

(

13 − 6γE
2 +

3π2

4
− 12γ1 − 3ζ(3)

)

+

(

51− 42γE
2 + 4π2

(
19

16
+ ln 2π − 12 lnG

)

+ 2 ln 2
(
12− 12γE

2 − 24γ1 − ζ(3)
)

+ γE (−24− 24γ1 + 18ζ(3)) − 84γ1 − 36γ2 +
25ζ(3)

2
− 16ζ

′
(3) + 6(V12 + Z8)

)]

+O(ǫ)

=
1

6(4π)6

[
µ2

T 2

)3ǫ (
1

ǫ3
− 2.86143

ǫ2
+

15.2646

ǫ
− 45.2(1) +O(ǫ)

]

,

(A.59)

with

V12,1 + V12,3 + Z8 = −7.68(1) . (A.60)

The largest un
ertainty 
omes from V12,3.

V (3; 21111; 000) =

=
1

3(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ3
+

2

ǫ2
+

1

ǫ

(

8− 6γE
2 +

3π2

4
− 12γ1 + ζ(3)

)

+

(

16 + 24γE
2 ln 2 +

π2

6
(7 + 96 ln G− 8 ln 2π) + 24γ1(γE + 2 ln 2) + 36γ2

−
(
43

3
+ 6γE

)

ζ(3) + 6ζ
′
(3) + (3V13 − 2Z8)

)

+O(ǫ)

]

=
1

3(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ3
− 3.86

ǫ2
+

20.93

ǫ
− 60.38 +O(ǫ)

]

,

(A.61)

with

V13,1 + V13,2 −
2

3
Z8 ≈ 2.5870483449(1) . (A.62)
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V (3; 22111; 002) =

= − 5

48(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ
+

(
209

30
+ π2

(
5

9
+

4γE
5

− 4 ln 2

5

)

+ ζ(3)

(
4 ln 2

15
− 2087

225

)

− 28γE
5

− 24γE
2

5
− π4

225
+

28 ln 2

5
− 48γ1

5
− 4ζ

′
(3)

15

− 48

5
V14 +

24

5
Z9

)

+O(ǫ)

]

= − 5

48(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ
− 5.04 +O(ǫ)

]

(A.63)

with

V14,1 + V14,2 + V14,3 −
1

2
(Z9 + Z11) = 0.17(1) , (A.64)

with the largest error 
oming from V14,3.

V (3; 31111; 020) =

=
1

8(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
13

3
+

2ζ(3)

15

)

+

(
140

9
− 20γE

3
+

20 ln 2

3

− π4

900
+ π2

(
35

36
+

5γE
9

− 7 ln 2

15
− 16 lnG

15
+

4 ln π

45

)

+ ζ(3)

(

−107

50
− 4γE

5
+

2 ln 2

3
+ 8 lnG

)

− 10γE
2 − 20γ1 −

8ζ
′
(3)

15

+8V15 +
4

5
(Z9 + Z10)

)

+O(ǫ)

]

=
1

8(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ2
− 1.36

ǫ
+ 10.80 +O(ǫ)

]

,

(A.65)

with

V15,1 + V15,2 + V15,3 +
1

10
(Z9 + Z10) = −0.2825936076(1) . (A.66)
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V (3; 41111; 022) =

=
1

432(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ3
+

5

ǫ2
+

1

ǫ

(
341

18
− 6γE

2 +
3π2

4
− 12γ1 + 5ζ(3)

)

+

(
985

18
+ 6γE + π2

(
107

84
− γE − 43 ln 2

35
+

936 lnG

35
− 78 ln π

35

)

+ ζ(3)

(
1243

70
− 30γE + 10 ln 2 + 120 lnG

)

+ γ1 (−52 + 24γE + 48 ln 2)

+ 2γE
2(12 ln 2− 13) +

23π4

1050
− 8 ln 2 + 36γ21 + 10ζ

′
(3) + 432V16

+
54

35
(−6Z9 − 44Z12 − 4Z13 + Z14 + 4Z15)

)

+O(ǫ4)

]

=
1

432(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ3
− 0.86

ǫ2
+

19.10

ǫ
+ 18.89 +O(ǫ)

]

,

(A.67)

with

V16,1 + V16,2 +
1

280
(4Z15 + Z14 − 4Z13 − 44Z12 − 6Z9) = 0.0344343(1) . (A.68)
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Appendix B

Analyti
 fun
tions

Here we 
olle
t some analyti
 fun
tions that are the main building blo
ks of the divergent

pie
es of the master integrals. They are obtained by either expressing the integral in spheri
al


oordinates or by using the Feynman parameterization of the form:

1

Aa1
1

. . .
1

Aan
n

=
Γ(a1 + · · ·+ an)

Γ(a1) . . .Γ(an)

∫ ∞

0
dx1 . . .

∫ ∞

0
dxn

δ(1 − x1 − · · · − xn)x
a1−1
1 . . . xan−1

n

[x1A1 + . . . xnAn]a1+...an
.

(B.1)

The massless one-loop generalized propagator at zero temperature is:

µ−2ǫg(s1, s2, d) = µ−2ǫ(p2)s12−
d
2

∫

q

1

(q2)s1 [(p+ q)2]s2
=

Γ(d2 − s1)Γ(
d
2 − s2)Γ(s12 − d

2)

(4π)
d
2Γ(s1)Γ(s2)Γ(d− s12)

. (B.2)

The generalized one-loop tadpole is:

µ−2ǫIab ≡ µ−2ǫ∑
∫

P

(p20)
a

[P 2]b
=

2T (2πT )d+2a−2bΓ(b− d
2)

(4π)
d
2Γ(b)

ζ(−d− 2a+ 2b) , (B.3)

and a variation thereof is:

Îab (α) = Ia
b+2− d+1

2

− Iab

(αT 2)2−
d+1
2

. (B.4)

A spe
ial two-loop tadpole is:

µ−4ǫJd(s1s2s3; s4) = µ−4ǫ∑
∫

PQ
δp0

(p20)
s4

[P 2]s1 [Q2]s2 [(P +Q)2]s3

=
2T 2(2πT )2d−2s123+2s4

(4π)d
Γ(d2 − s1)Γ(s12 − d

2)Γ(s13 − d
2 )Γ(s123 − d)

Γ(d2 )Γ(s2)Γ(s3)Γ(s1123 − d)
ζ(2s123 − 2s4 − 2d) .

(B.5)

The generalized two-loop sum-integral

Ld(s1s2s3; s4s5) =
∑
∫

PQ

ps40 q
s5
0

[P 2]s1 [Q2]s2 [(P +Q)2]s3
(B.6)


an always be redu
ed via IBP relations to a produ
t of one-loop tadpole integrals multiplied

by a ratio over polynomials in d. The expli
it redu
tion of all two-loop sum-integrals that are

needed in the 
al
ulations, are:
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Ld(111; 00) = 0 , (B.7)

Ld(211; 20) = 0 , (B.8)

Ld(211; 00) = − 1

(d− 2)(d − 5)
[I02 ]

2 , (B.9)

Ld(311; 22) =
−d3 + 12d2 − 51d+ 76

4(d− 5)(d − 7)
I01 × I02 , (B.10)

Ld(211; 02) =
d− 3

d− 5
I01 × I02 , (B.11)

Ld(221; 20) = − (d− 1)(d − 4)

2(d− 2)(d− 5)(d − 7)
[I02 ]

2 , (B.12)

Ld(311; 20) =
(d− 4)2

(d− 2)(d − 5)(d − 7)
[I02 ]

2 , (B.13)

Ld(311; 02) =
(d− 3)(d − 4)

2(d− 2)(d − 5)(d − 7)
[I02 ]

2 +
d− 4

d− 7
I01 × I03 , (B.14)

Ld(411; 22) = − (d− 4)2(d− 5)

8(d− 2)(d− 7)(d − 9)
[I02 ]

2 − (d− 5)(d − 6)

6(d− 9)
I01 × I03 , (B.15)

Ld(421; 00) =
−6(d(d − 13) + 28)

(d− 2)(d − 4)(d − 9)(d− 11)
I03 × I04 , (B.16)

Ld(322; 00) =
12(d − 8)(d − 5)

(d− 2)(d − 4)(d − 9)(d− 11)
I03 × I04 , (B.17)

Ld(312; 11) = − (d− 3)(d − 5)(d − 6)

2(d− 2)(d− 7)(d − 9)
I02 × I03 , (B.18)

Ld(331; 00) =
−12(d − 8)(d− 5)

(d− 2)(d − 4)(d − 9)(d− 11)
I03 × I04 , (B.19)

Ld(232; 00) =
12(d − 8)(d − 5)

(d− 2)(d − 4)(d − 9)(d− 11)
I03 × I04 . (B.20)
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Appendix C

Con�guration spa
e de�nitions

Here we give the remaining building blo
ks for the �nite pie
es of the sum-integrals. For writing

the propagators in 
on�guration spa
e, a 
entral ingredient is the modi�ed Bessel fun
tion of

the se
ond kind with half-integer order:

Kν(z) =

√
π

2

e−z

√
z
κν(z) , (C.1)

with

κν(z) =

||ν|− 1
2 |∑

j=0

(
j + |ν| − 1

2

)
!

j!
(
−j + |ν| − 1

2

)
!
(2z)−j

, ν − 1

2
∈ Z . (C.2)

The Bessel fun
tion enters the Fourier transformation of the propagator:

∫

p

e−ipr

[P 2]a
=

21−a

(2π)d/2Γ(a)

(
p20
r2

) d−2a
4

K d
2
−a(
√

p20r
2) . (C.3)

The integrals in 
on�guration spa
e are expressed in terms of spheri
al 
oordinates. The

d-dimensional integration measure is:

∫

dΩd ≡
∫ π

0
· · ·
∫ 2π

0
sind−2 φ1dφ1 sin

d−3 φ2dφ2· · · sin φd−2dφd−2dφd−1

= 2

d−2∏

i=0

√
πΓ(1/2 + i/2)

Γ(1 + i/2)
=

2π
d
2

Γ(d/2)
.

(C.4)

If the integrand 
ontains a s
alar produ
t of the form p · r, it is always possible to 
hoose the

orientation of the 
oordinate system in su
h a way that p · r = pr cosφ1. Therefore, we have:

∫

dΩde
ipr =

2π
d
2

Γ(d/2)
0F1

(
d

2
,−(pr)2

4

)

, (C.5)

with 0F1 being the 
on�uent Hypergeometri
 fun
tion. Con
retely:

∫

dΩ{3,5,7}e
ipr = 4π

{
sin pr

pr
, 2π

sin pr − pr cos pr

(pr)3
, (2π)2

3 sin pr − 3pr cos pr − (pr)2 sin pr

(pr)5

}

.

(C.6)
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These de�nitions are used to 
ompute the generi
 integral:

∫

ddp
1

[p2]n

∫

dΩrdΩse
ip(r+s) =

2π
d
2

Γ(d2)

21−4n(4π)dΓ(d2 − n)

Γ(n)Γ(d2)
× an,d(r, s) , (C.7)

with

an,d =
2F1(1− n, d2 − n, d2 ,

(r+s−|r+s|)2
(r+s+|r−s|)2 )

(r + s+ |r − s|)d−2n
. (C.8)

The integration was performed by going to spheri
al 
oordinates in the p-variable and by 
hoosing
the orientation of the 
oordinates system su
h that: p(r + s) = pr cosφr,1 + ps cosφs,1. In this

way the other two angular integration be
ome trivial. 2F1 is the Gauss Hypergeometri
 fun
tion.

This integral is used for the zero-mode �nite pie
e 
al
ulation (Eqs. 4.131, 4.132).

The next generi
 angular integration needed in the 
omputation of the �rst �nite pie
e, Eq.

(4.122), is of the form:

ha,b(x, y, n) =

∫ π

0
e−n|x+y||x+ y|a sin2b+1 θdθ

=
1

nxy

b∑

i=0

(
b

i

) 2i∑

j=0

(−1)i+j

(
2i

j

)

Γ(4i − 2j + a+ 2)
(x2 + y2)j

(2xy)2i

×
4i−2j+a+1
∑

k=0

e−n|x−y||x− y|4i−2j+a−k+1 − e−n|x+y||x+ y|4i−2j+a−k+1

nkΓ(4i− 2j + a− k + 2)
.

(C.9)

where n > 0, a ≥ −1, b ≥ 0 and x and y are ve
tors with xy = xy cos θ.
In order to 
ompute the se
ond �nite pie
e, Eq. (4.123), we need an integral of the form:

∫ ∞

0
dp

pd−1

[P 2]a
lnP 2

∫

dΩde
ipr

= −∂a
pd−1

[P 2]a
× 2π

d
2

Γ(d2)
0F1(

d

2
,−(pr)2

4
)

= −2π
d
2 ∂a

[

Γ−1(a)

(
2|p0|
r

) d
2
−a

Ka− d
2
(|p0|r)

]

.

(C.10)

After performing the derivative with respe
t to a, we de�ne the integral as:
∫ ∞

0
dp

pd−1

[P 2]a
lnP 2

∫

dΩde
ipr = 2−a(2π)

d+1
2 Γ−1(a)la,d(r, |p0|) , (C.11)

with

la,d(x, n) =

√
π

2

(n

x

) d
2
−a
[(

ψ(a) + ln
2n

x

)

Ka− d
2
(nx)− ∂aKa− d

2
(nx)

]

. (C.12)

Eq. (10.2.34) of Ref. [130℄ gives a relation between the derivative of Kn(x) at n = ±1/2 and

the fun
tion Ei(x). From this relation we derive all other derivatives of higher |n|. So, starting
from Eq. (10.2.34) of Ref.[130℄:

∂

∂ν
Kν(x)

∣
∣
∣
∣
ν=± 1

2

= ∓
√

π

2x
Ei(−2x)ex , (C.13)
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and using the re
ursion formula:

fn−1(z)− fn+1(z) = (2n+ 1)z−1fn(z), fn(z) = (−1)n+1
√

π/(2z)Kn+ 1
2
(z) , (C.14)

we obtain:

∂

∂ν
Kν(x)

∣
∣
∣
∣
ν=± 3

2

= ±
√

π

2x

[

Ei(−2x)ex
(

1− 1

x

)

+
2

x
e−x

]

, (C.15)

∂

∂ν
Kν(x)

∣
∣
∣
∣
ν=± 5

2

= ±
√

π

2x

[

Ei(−2x)ex
(

−1 +
3

x
− 3

x2

)

+
2

x

(

1 +
4

x

)

e−x

]

. (C.16)

The following generi
 formula is used in 
al
ulating the �rst �nite pie
e of V (3; 12111; 00)
and V (3; 22111; 02). It shows how to perform the integration in 
on�guration spa
e before

performing the sum of one of the Π's. There are two 
ases:

s−a,b,c(y, α) =
∑

m,n

′ e−|n|y

|n|a|m|b
∫ ∞

0
dxe−(|m|+|m+n|)xe−|n||x−y|αc|x− y|c.

(C.17)

α is simply a 
ontrol parameter. The prime in the sum denotes omission of the zero-mode. After

splitting the integration interval into [0, y] and [y,∞) and 
arefully splitting the summation

intervals, so that for any interval the integration is �nite, we obtain:

s−a,b,c(y, α) =
∞∑

n=1

∞∑

m=1

{

2αc
c∑

k=0

(
c

k

)

yc−k(−1)k
e−2ny

n2

(
1

mb
+

1

(m+ n)b

)

×
(

Γ(k + 1)

(2m)k+1
− e−2my

2m

k∑

i=0

yk−i

(2m)i
Γ(k + 1)

Γ(k − i+ 1)

)

+ 2αcδm,1
yc+1

1 + c

e−2ny

na

+ 2αc
c∑

k=0

(
c

k

)

(−y)k
c−k∑

i=0

yc−k−i Γ(c− k + 1)

Γ(c− k − i+ 1)

×
[

δm,1
e−2ny

na
Hb,n

(2n)i+1
+
e−(2m+2n)y

na

(
1

mb
+

1

(m+ n)b

)
1

(2m+ 2n)i+1

]}

.

(C.18)

The se
ond 
ase is:

s+a,b,c(x, α) =
∑

m,n

′ e−|n|y

|n|a|m|b
∫ ∞

0
dxe−(|m|+|m+n|)xe−|n|(x+y)αc(x+ y)c

=

∞∑

n=1

∞∑

m=1

{

2αc
c∑

k=0

(
c

k

)

yc−kΓ(k + 1)
e−2ny

na

[

δm,1
Hb,n

(2n)k+1

+

(
1

mb
+

1

(m+ n)b

)
1

(2m+ 2n)k+1

]}

.

(C.19)

Here, Hb,n =
∑n

i=1 n
−b

is the Harmoni
 number of order b, and the fa
tor δm,1 states that the

summation over m should be omitted.
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Appendix D

IBP redu
tion for zero-modes

In this appendix we present the strategy for mapping the zero-mode sum-integrals to others

that 
an be 
omputed by using the separation of Eq. (4.58). For that, the derivative of the

propagator is needed:

p∂p
δp0

[P 2]n
= −2n

δp0
[P 2]n

,

q∂p
δp0

[P 2]n
= −nδp0

(P +Q)2 − P 2 −Q2

[P 2]n+1
,

p∂p
δp0

[(P +Q)2]n
= p∂q

δp0
[(P +Q)2]n

= −nδp0
(P +Q)2 + P 2 −Q2

[(P +Q)2]n+1
,

q∂q
δp0

[(P +Q)2]n
= q∂p

δp0
[(P +Q)2]n

= −nδp0
(P +Q)2 − P 2 +Q2 − 2q20

[(P +Q)2]n+1
.

(D.1)

Before turning the attention to the zero-mode sum-integrals, we shortly present the IBP

redu
tion of ΠE
210, needed in the 
omputation of V (3; 12111; 00). A

ording to Eq. (D.1), we


an write down two relations for ΠE
ab0 as:

∂qq ◦∑
∫

Q
δq0

1

[Q2]a[(P +Q)2]b
= 0 ⇒

[
(d− 2a− b)− b1−2+ + bP 22+

]
ΠE

ab0 = 0 , (D.2)

and

∂qp ◦ ΠE
ab0 = 0 ⇒

[
(a− b)− a1+2− + b1−2+ + aP 21+ − bP 22+ + 2bp202

+
]
ΠE

ab0 = 0 , (D.3)

with I±Z(d; ...si..., s6s7) = Z(d; ...si ± 1..., s6s7). Applying it on the 
on
rete 
ase of ΠE
110, we

obtain:

ΠE
120 =

1

P 2

[
ΠE

020 − (d− 3)ΠE
110

]
; ΠE

210 =
1

P 2

[
(P 2 − 2p20)Π

E
120 −ΠE

020

]
, (D.4)

leading to:

ΠE
210 = (d− 3)

2p20 − P 2

P 4
ΠE

110 −
2p20
P 4

ΠE
020 . (D.5)
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The �rst term vanishes in the limit of d = 3 and the se
ond term is simply:

ΠE
020 = T

∫

q

1

q2 + p20
=

T

8π|p0|
. (D.6)

Now we turn our attention to the general IBP relation for a zero-mode sum-integral:

∂pp◦Z(d; s1s2s3s4s5; s6s7) = 0
[
(d− 2s1 − s4 − s5) + s44

+
(
2− − 1−

)
+ s55

+
(
3− − 1−

)]
Z(d; s1s2s3s4s5; s6s7) = 0 ,

(D.7)

In addition to this equation, also a boundary 
ondition is needed for the �rst parameter s1
of Z. When looking at Eq. (C.8) the obvious 
ondition for that, in order to have a 
onverging

momentum integral, is d−1 ≥ 2s1. This means for instan
e, that zero-modes of the form Z(7; 3...)
should be manageable. It turns out however that for some 
ombination of the other parameters,

in other words due to the parti
ular form of f0−A
7,abc, the integral 
annot be rendered 
onvergent

through subtra
tion of simple terms. This implies that only for Z(7; 2...) all 
ombinations of

parameters lead to IR �manageable� results.

In the following the 
ase of Z(3; 21111; 20) is skipped, sin
e it is treated in the main text.

For the 
ase of Z(5; 31122; 11), we have the relation:

Z(5; 31122; 11) = 0 , (D.8)

due to the fa
t that the substru
tures Π121 are identi
ally zero for p0 = 0. Due to the summation

the terms 
an
el exa
tly:

Πab1(p0 = 0) =
∑
∫

Q

q0
(Q2)a[q20 + (p+ q)2]a

q0→−q0
= −Πab1(p0 = 0) . (D.9)

D.1 IBP for Z(3; 31111; 22)

Applying Eq. (D.7) on the sum-integral in 
ase, we obtain:

(d− 8)Z(3; 31111; 22) − 2Z(3; 22111; 22) + I12J
d(311; 1) = 0 . (D.10)

Note that we have used the property of the one-loop stru
ture: Πabc(p0 = 0) = Πbac(p0 = 0)
and the fa
torization I×Jd

in 
ase one parameter is equal to zero. The zero-mode Z(3; 22111; 22)
does not ful�ll the above mentioned 
ondition, so a se
ond IBP redu
tion needs to be performed:

(d− 5)Z(3; 22111; 22) − Z(3; 12121; 22) − Z(3; 12211; 22) + I12 × Jd(221; 1) = 0 , (D.11)

so that in the end we have:

Z(3; 31111; 22) =
2

d− 8

[
Z(3; 12211; 22) + Z(3; 12121; 22) − I12 × J(221; 1)

d− 5
− I12 × Jd(311; 1)

]

.

(D.12)
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D.2 IBP for zero-modes in d = 7− 2ǫ

This set of sum-integrals turns out to have a 
ommon basis set of only three sum-integrals. The

pro
edure is to start from the sum-integral with the highest parameter s1 and redu
e it step by

step via IBP to the desired order of Z(7; 2...). So we have:

(d− 10)Z(7; 52211; 00) − 2Z(7; 42221; 00) = 0 . (D.13)

This requires:

(d− 10)Z(7; 42221; 00) − Z(7; 32222; 00) − 2Z(7; 33221; 00) + 2Z(7; 43211; 00) = 0 . (D.14)

From here, we need three more relations:

(d− 10)Z(7; 32222; 00) − 4Z(7; 23222; 00) + 4Z(7; 33212; 00) = 0

(d− 6)Z(7; 33221; 00) − Z(7; 23222; 00) − 2Z(7; 23231; 00) = 0

(d− 9)Z(7; 43211; 00) − Z(7; 33212; 00) − Z(7; 33221; 00) + Z(7; 42221; 00) = 0 .

(D.15)

Up to this point, we still need to redu
e the following zero-mode:

(d− 8)Z(7; 33311; 00) − 2Z(7; 23321; 00) + Z(7; 33212; 00) = 0 . (D.16)

And �nally, from the previous equation, we still need to redu
e:

(d− 9)Z(7; 33212; 00) − Z(7; 23222; 00) − 2Z(7; 23321; 00)+

Z(7; 32222; 00) + 2Z(7; 33311; 00) = 0 .
(D.17)

From this system of equations, we obtain the following solutions for our zero-modes:

Z(7; 32222; 00) = 4
(d(d− 18) + 76)Z5 − 2(d − 10)Z7

(d− 6)(d − 9)(d− 12)
,

Z(7; 52211; 00) =
4(3d − 32)(d − 8)Z5 + 8(d− 9)(d − 12)Z6 − 4(6d − 56)Z7

(d− 6)(d − 8)(d − 9)(d− 11)(d − 12)
,

Z(7; 42221; 00) =
d− 10

2
Z(7; 52211; 00) ,

Z(7; 43211; 00) =
(d− 8) ((2d− 53)d + 340)Z5 + 2(d − 12)2(d− 9)Z6

(d− 6)(d − 8)(d − 9)(d− 11)(d − 12)

+
2(d − 10) ((d− 20)d + 104)Z7

(d− 6)(d− 8)(d − 9)(d− 11)(d − 12)
, (D.18)

Z(7; 33221; 00) =
Z5 + 2Z6

d− 6
,

Z(7; 33212; 00) =
(d− 8)(d− 14)Z5 + 2(d− 10)2Z7

(d− 6)(d − 9)(d − 12)
,

Z(7; 33311; 00) =
2(14 − d)Z5 + 2(d(d − 21) + 106)Z7

(d− 6)(d − 9)(d − 12)

where we have denoted (table 4.1):

Z(7; 23222; 00) = Z5; Z(7; 23231; 00) = Z6; Z(7; 23321; 00) = Z7 . (D.19)
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D.3 IBP redu
tion for the master-integrals of mass dimension

zero

In this 
ase, the redu
tion generates a larger basis set as the original one, this being due to the

presen
e of Matsubara modes in the numerator of some propagators, whi
h has the 
onsequen
e

that the new basis sets overlap only sparsely.

The approa
h is the same as previously; the �rst zero-mode Z(3; 12111; 00) does not need

further redu
tion. In the following we generate IBP relations as:

(d− 6)Z(3; 21111; 00) − 2Z(3; 12111; 00) + 2Z(3; 22101; 00) = 0 , (D.20)

(d− 5)Z(3; 22111; 02) − Z(3; 12121; 02) − Z(3; 12211; 02) + Z(3; 22210; 02) = 0 . (D.21)

This relations are not 
oupled and already give the needed result. In the following, we

pro
eed to the last two zero-modes sum-integrals, that require several steps of IBP redu
tion.

First:

(d− 8)Z(3; 31111; 20) − Z(3; 22111; 02) − Z(3; 22111; 20) + Z(3; 32101; 02)+

Z(3; 32101; 20) = 0 .
(D.22)

This equation 
alls for two other equations:

(d− 5)Z(3; 22111; 02) − Z(3; 12121; 02) − Z(3, 12211; 02) + Z(3; 22210; 02) = 0 , (D.23)

and

(d− 5)Z(3; 22111; 20) − Z(3; 12121; 20) − Z(3, 12211; 02) + Z(3; 22210; 20) = 0 . (D.24)

Finally we have:

(d− 10)Z(3; 4111; 22) − 2Z(3; 32111; 22) + 2Z(3; 42101; 22) = 0 (D.25)

and the subsequent relations are:

(d− 7)Z(3; 32111; 22) − Z(3; 22121; 22) − Z(3; 22211; 22) + Z(3; 32210; 22) = 0 ,

(d− 7)Z(3; 22121; 22) − Z(3; 12221; 22) − 2Z(3; 13121; 22) +

+2Z(3; 23111; 22) + Z(3; 22220; 22) = 0 ,

(d− 4)Z(3; 22211; 22) − 2Z(3; 12221; 22) = 0 ,

(d− 6)Z(3, 23111; 22) − Z(3; 13121; 22) − Z(3; 13211; 22) +

+Z(3; 22121; 22) + Z(3; 23210; 22) = 0 . (D.26)

Thus, the new basis set is mu
h larger than the initial one. In order to avoid new substru
-

tures, su
h as Π322 and Π312, we use an additional IBP relation to transform then into already

known substru
tures:
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∂qq ◦ Πij0(p0 = 0) = 0

⇒ (d− 2i− j)Πij0 + 2iΠi+1,i,2 − jΠi−1,j+1,0 + jp2Πi,j+1,0 + 2jΠi,j+1,2 = 0 ,
(D.27)

leading to:

Π322 = −1

8

[
(d− 6)Π220 − 2Π310 + 2p2Π320

]

Π312 = −1

4

[
(d− 6)Π210 + 2Π222 + p2Π220

]
.

(D.28)

Thus, we obtain the following result in terms of the new eight basis zero-mode masters:

Z(3; 21111; 00) =
2Z(3; 12111; 00) − 2I02J

d(211; 0)

d− 6
, (D.29)

Z(3; 22111; 02) =
Z(3; 12211; 02) + Z(3; 12121; 02) − I12J

d(221; 0)

d− 5
, (D.30)

Z(3; 31111; 20) =
Z(3; 12121; 02) + Z(3; 12121; 20) + 2Z(3; 12211; 02)

(d− 8)(d − 5)

− I12J
d(221; 0) + I02J

d(221; 1) + (d− 5)(I02J
d(311; 1) + I12J

d(311; 0))

(d− 5)(d − 8)
, (D.31)

Z(3; 41111; 22) =
Z(3; 02221; 02) − I12J

d(122; 0) + (d− 6)
[
Z(3; 12211; 02) + I12J

d(221; 0)
]

(d− 10)(d − 8)(d− 7)(d − 5)

+
2Z(3; 13111; 02) − (d− 6)Z(3; 12121; 02)

2(d− 10)(d − 8)(d− 5)
+

Z(3; 03121; 02)

400 − 170d + 23d2 − d3

+
(6d− 40)Z(3; 12221; 22) − 2(d− 4)I12J

d(222; 1)

(d− 10)(d − 8)(d − 7)(d− 4)
− 2I12J

d(321; 1)

70− 17d + d2

− 2I12J
d(411; 1)

d− 10
. (D.32)
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Appendix E

Con�guration spa
e de�nitions for Π
abc

This appendix provides details about the 
on
rete form of all the needed one-loop stru
tures

Πabc in 
on�guration spa
e used in the �nite pie
es of the master integrals.

Re
all formula (4.114):

Π0,B,C,E
s1s2s3 =

(2πT )2d+1−2s12+s3

2s12(2π)dΓ(s1)Γ(s2)

∫

ddr r̄s12−d−1eipre−|p0|rf0,B,C,E
d,s1s2s3

(r̄, |p̄0|) . (E.1)

In the following all the f 's are provided. First we start with f0d,abc. It is in general a fun
tion

of f(cothx, |n|), a

ording to:

∞∑

m=−∞
e−(|m|+|n+m|−|n|) = |n|+ coth x (E.2)

and, for any polynomial in |m|:
∞∑

m=−∞
e−(|m|+|n+m|−|n|)p(|m|) =

|n|
∑

m=0

p(|m|) + p(−∂2r)
1

e2r − 1
+ e2|n|rp(−∂2r)

e−2|n|r

e2r − 1
. (E.3)

In addition, note that for p0 = 0, fd,abc(x, 0) redu
es to a sum of polylogarithms a

ording

to: ∞∑

n=1

e−2nx

na
= Lia

(
e−2x

)
. (E.4)

Denoting c ≡ coth x, we have:

f03,110(x, n) = c+ |n| , (E.5)

f03,112(x, n) =
|n|+ 3c|n|2 + 2|n|3 + 3(c2 − 1)(c+ |n|)

6
, (E.6)

f03,212(x, n) =
−1 + c2 + |n|(c+ |n|)

2
, (E.7)

f05,121(x, n) = −n(3(c+ |n|) + (−2 + 3c2 + 3c|n|+ 2|n|2)x)
6x

, (E.8)

f07,210(x, n) =
18(c2 + c|n|+ |n|2 − 1)x+ (12c(c2 − 1) + 2(6c2 − 7)|n| + 3c|n|2 + 5|n|3)x2

6x3
,

(E.9)
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+
36(c + |n|) + (3 + 9c4 − 9c|n|+ 9c3|n| − 4|n|2 + |n|4 + 3c2(|n|2 − 4))x3

12x3
, (E.10)

f07,220(x, n) =
6c(1 + |n|x) + 3x(c2 − 1)(2 + (c+ |n|)x) + |n|(6 + 6|n|x+ (|n|2 − 1)x2)

6x2
,

(E.11)

f07,310(x, n) =
3x(c2 − 1)(3 + cx+ nx) + 3c(6 + nx(3 + nx)) + n(18 + x(x+ n(9 + 2nx)))

6x2
,

(E.12)

f07,320(x, n) =
(c2 − 1)x+ (c+ |n|)(2 + |n|x)

2x
, (E.13)

f07,330(x, n) = c+ |n| . (E.14)

Next, we provide the f 's with spe
i�
 parameters that may demand an a priori subtra
tion

of the ΠE
pie
es to avoid 1/0 terms in the summation. These pie
es are needed only for the

zero-mode parts, so that we set n = 0:

f0−E
3,210(x, n) = e2|n|xB(e−2x, |n|+ 1, 0) +H|n| − ln(1− e−2x) , (E.15)

f0−E
3,210(x, 0) = −2 ln(1− e−2x) , (E.16)

f0−E
3,220(x, 0) = 2Li2

(
e−2x

)
, (E.17)

f03,222(x, 0) = c− 1 , (E.18)

f0−E
3,310(x, 0) = 2Li2

(
e−2x

)
+

2Li3
(
e−2x

)

x
, (E.19)

f0−E
3,320(x, 0) = 2Li3

(
e−2x

)
+

2Li4
(
e−2x

)

x
, (E.20)

f0−E
3,330(x, 0) = 2Li4

(
e−2x

)
+

4Li5
(
e−2x

)

x
+

2Li6
(
e−2x

)

x2
, (E.21)

where

B(x, a, b) =

∫ x

0
dtta−1(1− t)b−1 , (E.22)

is the in
omplete Beta fun
tion.

Now we provide the zero temperature de�nitions of f 1:

fB3,110(x, n) = |n|+ 1

x
, (E.23)

fB3,112(x, n) =
|n|3
3

+
1

2x3
+

|n|
2x2

+
n2

2x
, (E.24)

fB+C
3,210 (x, n) = γE + e2|n|xEi(−2|n|x) + ln

|n|
2x

+
x

6|n| , (E.25)

fB3,212(x, n) =
1

2x2
+

|n|
x

+ |n|2 , (E.26)

fB5,121(x, n) = − n

x2
− n|n|

x
− n3

3
, (E.27)

fB7,210(x, n) =
35

4x4
+

35|n|
4x3

+
15|n|2
4x2

+
5|n|3
6x

+
|n|4
12

, (E.28)

1

Note that only the 
ombination ΠB+C
210 is �nite in d = 3 dimensions.
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fB7,220(x, n) =
5

2x3
+

5|n|
2x2

+
|n|2
x

+
|n|3
6

, (E.29)

fB7,310(x, n) =
5

x3
+

5|n|
x2

+
2|n|2
x

+
|n|3
3

, (E.30)

fB7,320(x, n) =
3

2x2
+

3|n|
2x

+
|n|2
2

. (E.31)

(E.32)

And �nally, we show the ne
essary leading UV terms:

fC3,112(x, n) =
|n|2x
6

− x

30
, (E.33)

fC5,121(x, n) = −n
6
− n|n|x

6
, (E.34)

fC7,310(x, n) =
1

2x
+

|n|
2

+
|n|2x
6

+
x3

1890
, (E.35)

fC7,320(x, n) =
1

6
+

|n|x
6

+
x2

180
. (E.36)
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Appendix F

IBP relations for the basis 
hanges

In this appendix, we give the needed IBP relation in d = 3− 2ǫ dimensions, in order to perform

the suitable basis transformation of (C.14) and (C.15) from [110℄, to render 
oe�
ients �nite in

the limit ǫ→ 0. These relations are part of a large database of IBP relations that was provided

by Jan Möller [117℄. The relations presented here were 
hosen in the spirit des
ribed in se
tion

3.7.

For Π
E3, they are:

M000
111110 =

148 − 60d+ 6d2

3(d− 5)(d − 4)2
M000

210011 +
16

3(d− 4)2
M000

310011 , (F.1)

M020
211110 =

−240 + 134d − 21d2 + d3

2(d− 7)(d − 6)(d− 5)(d − 4)2
M000

113000

+
896− 446d + 73d2 − 4d3

2(d− 7)(d − 6)2(d− 5)(d− 4)
M000

122000

+
299728 − 275712d + 100444d2 − 18108d3 + 1615d4 − 57d5

12(d − 7)(d − 6)(d − 5)2(d− 4)2
M000

210011

+
−24 + 3d

2(d− 7)(d − 5)(d− 4)
M220011002

+
−80 + 18d− d2

2(d− 7)(d − 6)(d− 5)(d − 4)
M020

310011

+
51232 − 23128d + 3470d2 − 173d3

6(d− 7)(d − 6)(d − 5)(d − 4)2
M200

310011

+
512

(d− 6)(d− 5)(d − 4)2
M600

510011 , (F.2)

M000
31111−2 =

p1,1(d)

2(d − 8)(d − 7)(d − 6)(d− 4)2(d− 3)(d − 2)(3d − 20)
M000

113000

− p1,2(d)

2(d− 8)2(d− 7)(d − 6)2(d− 4)2(d− 3)(d − 2)(3d − 20)
M000

122000

+
p1,3(d)

12(d − 8)(d− 7)(d − 6)(d − 5)(d− 4)2(d− 3)(d − 2)(3d − 20)
M000

210011
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+
p1,4(d)

2(d− 8)(d − 7)(d − 6)(d− 4)2(d− 3)(d − 2)(3d − 20)
M002

220011

− −18367680 + 12301488d − 3275264d2 + 433278d3 − 28477d4 + 744d5

2(d− 8)(d − 7)(d − 6)(d − 4)(d − 3)(d− 2)(3d − 20)
M020

310011

− 72(−12 + d)(−10 + d)

(d− 8)(d − 7)(d − 4)(d − 3)(d− 2)(3d − 20)
M130

410011

− 1024(2691 − 777d + 56d2)

(d− 8)(d − 6)(d − 4)2(d− 3)(d − 2)
M600

510011

+
98304

(d− 8)(d − 6)(d − 4)2(d− 3)(d − 2)
M640

530011 , (F.3)

with

p1,1(d) = 59336640 − 63078320d + 28473920d2 − 7490234d3 + 1336901d4 − 174277d5

+ 16160d6 − 928d7 + 24d8 ,

p1,2(d) = 2855308800 − 3237773312d + 1591362144d2 − 442880256d3 + 76305228d4

− 8326788d5 + 561189d6 − 21310d7 + 348d8 ,

p1,3(d) = 26632233600 − 35846652912d + 20928142876d2 − 6924466708d3

+ 1420678191d4 − 185150687d5 + 14974094d6 − 687360d7 + 13716d8 ,

p1,4(d) = 108234240 − 89067072d + 30550848d2 − 5590308d3 + 575340d4

− 31557d5 + 720d6 . (F.4)

For Π′
T3, we have:

M022
411110 =

p2,1(d)

8(d − 7)(d− 8)(d − 9)(d− 4)(d − 5)2(d− 6)2(d− 3)2
M000

114000

+
p2,2(d)

4(d − 8)(d− 9)(d − 4)(d − 5)2(d− 6)2(d− 7)2(d− 3)2
M000

123000

+
p2,3(d)

256(d − 7)(d− 8)(d − 9)(d− 4)(d − 5)2(d− 6)2(d− 3)2
M000

220011

+
p2,4(d)

384(d − 4)(d− 8)(d − 9)(d− 2)(d − 6)2(d− 7)2(d− 3)2(d− 5)3
M000

222000

+
−p2,5(d)

128(d − 7)(d− 8)(d − 9)(d− 4)(d − 5)2(d− 6)2(d− 3)2
M000

310011

+
p2,6(d)

4(d − 7)(d− 8)(d − 9)(d − 4)(d − 5)2(d− 6)2(d− 3)2
M002

320011

+
−p2,7(d)

8(d − 7)(d− 8)(d − 9)(d − 4)(d − 5)2(d− 6)2(d− 3)2
M020

410011

+
−24(269d4 − 8320d3 + 95490d2 − 479860d + 888021)

(d− 6)(d− 7)(d − 9)(d − 4)(d − 5)2(d− 3)2
M220

510011

+
8(8047d4 − 247972d3 + 2849686d2 − 14485888d + 27502047)

(d− 6)(d − 7)(d− 9)(d − 4)(d − 5)2(d− 3)2
M400

510011

+
−30720(49d2 − 711d + 2623)

(d− 6)(d − 7)(d− 9)(d − 4)(d − 5)2(d− 3)2
M800

710011
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+
−368640

(d− 6)(d − 7)(d− 9)(d − 4)(d − 5)2(d− 3)2
M730

730−111

+
−1290240

(d− 6)(d − 7)(d− 9)(d − 4)(d − 5)2(d− 3)2
M820

820−111 , (F.5)

with

p2,1(d) =(d− 2)(8d9 − 368d8 + 7504d7 − 89111d6 + 683254d5 − 3608255d4

+ 14256518d3 − 46293495d2 + 116182716d − 152317971) ,

p2,2(d) =4d10 − 204d9 + 4803d8 − 72029d7 + 809167d6 − 7339813d5 + 52777475d4

− 278994927d3 + 986568461d2 − 2048698083d + 1870829946 ,

p2,3(d) =79869d8 − 4037326d7 + 87620700d6 − 1061968604d5 + 7812514612d4

− 35356262430d3 + 94351342448d2 − 130527026040d + 64326147651 ,

p2,4(d) =96d11 − 86421d10 + 5375292d9 − 153305147d8 + 2586291594d7

− 28437667028d6 + 212405026246d5 − 1089048350724d4

+ 3775673987846d3 − 8444268898919d2 + 10951876160526d − 6212405250801 ,

p2,5(d) =168943d8 − 9557016d7 + 235488122d6 − 3301073030d5 + 28792746146d4

− 160004011372d3 + 553185231922d2 − 1087803532662d + 931423919427 ,

p2,6(d) =11d7 + 1645d6 − 89139d5 + 1794069d4 − 18776435d3 + 109500887d2

− 339147237d + 436796199 ,

p2,7(d) =3(2171d7 − 113535d6 + 2540413d5 − 31533199d4 + 234594837d3

− 1046679269d2 + 2595120339d − 2760725997) , (F.6)

M020
311110 =

p3,1(d)

4(d− 5)(d − 6)(d − 7)(d − 8)(d − 4)(d− 3)2
M000

114000

+
−p3,2(d)

2(d − 4)(d − 6)(d − 8)(d− 3)(d − 7)2(d− 5)2
M000

123000

+
−p3,3(d)

128(d − 6)(d − 7)(d − 8)(d− 4)(d − 5)2(d− 3)2
M000

220011

+
p3,4(d)

64(d − 4)(d − 6)(d − 8)(d − 2)(d− 7)2(d− 3)2(d− 5)3
M000

222000

+
p3,5(d)

64(d − 6)(d − 7)(d − 8)(d − 4)(d− 5)2(d− 3)2
M000

310011

+
3(d+ 1)(3d − 19)(d − 9)

2(d − 4)(d − 6)(d − 8)(d− 3)(d − 5)2
M002

320011

+
−3(d− 9)(53d3 − 1123d2 + 7891d − 18437)

4(d − 4)(d − 6)(d − 7)(d− 8)(d − 3)(d− 5)2
M020

410011

+
−288(d − 9)

(d− 4)(d − 7)(d− 3)2(d− 5)2
M220

510011

+
−96(57d2 − 876d + 3355)

(d− 7)(d − 4)(d− 5)2(d− 3)2
M400

510011

108



+
122880

(d− 7)(d − 4)(d− 5)2(d− 3)2
M800

710011 , (F.7)

with

p3,1(d) =3(d− 9)(5d2 − 42d + 1)(d− 2) ,

p3,2(d) =8d6 − 273d5 + 3858d4 − 29038d3 + 123676d2 − 285521d + 281754 ,

p3,3(d) =3(1199d6 − 41508d5 + 578831d4 − 4114536d3 + 15388613d2

− 27364596d + 15595005) ,

p3,4(d) =1143d8 − 55758d7 + 1176024d6 − 13988986d5 + 102457978d4

− 471885410d3 + 1329287528d2 − 2080966998d + 1371885519 ,

p3,5(d) =3(2357d6 − 96694d5 + 1642835d4 − 14793300d3

+ 74449531d2 − 198518262d + 219089661) , (F.8)

M002
221110 =

3(d− 2)

2(d− 5)(d− 6)(d − 3)
M000

114000 +
−d2 + 9d− 24

(d− 6)(d− 3)(d − 5)2
M000

123000

+
−(11d2 − 72d + 141)(3d − 19)

64(d − 6)(d − 3)(d− 5)2
M000

220011

+
9d4 − 136d3 + 684d2 − 1368d + 1131

96(d − 3)(d − 6)(d − 2)(d − 5)3
M000

222000

+
−(3d− 19)(7d2 − 102d+ 339)

32(d − 6)(d − 3)(d− 5)2
M000

310011

+
3d− 19

(d− 6)(d − 5)2
M002

320011 +
−9(3d− 19)(d − 7)

2(d − 6)(d− 3)(d − 5)2
M020

410011

+
−96

(d− 3)(d − 5)2
M220

510011 +
32

(d− 3)(d − 5)2
M400

510011 , (F.9)

M000
211110 =

7d3 − 97d2 + 405d − 459

(d− 5)(d− 6)(d − 4)(d − 3)2
M000

220011

+
−2(5d4 − 102d3 + 748d2 − 2322d + 2511)

3(d− 4)(d − 6)(d− 2)(d − 5)2(d− 3)2
M000

222000

+
−2(7d2 − 84d+ 249)(d − 7)

(d− 5)(d − 6)(d− 4)(d − 3)2
M000

310011 +
512

(d− 5)(d− 4)(d − 3)2
M400

510011 , (F.10)

and

M000
121110 =

1

d− 3
M000

220011 −
1

3(d− 3)(d − 2)
M000

222000 . (F.11)
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