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Abstract

We determine the three-loop effective parameters of the dimensionally reduced theory of EQCD
as matching coefficients to full QCD. The mass parameter mg is interpreted as the high tem-
perature, perturbative contribution to the Debye screening mass of chromo-electric fields and
enters the pressure of QCD at the order of g7. The effective coupling gg can be used to com-
pute the spatial string tension of QCD. However, we suspect that the effective coupling gg
obtains through renormalization contributions from higher order operators that have not yet
been taken into account. Therefore our result reflects the (still divergent) contribution from the
super-renormalizable EQCD Lagrangian. In addition, we present a new method for comput-
ing tensor sum-integrals and provide a generalization to the known computation techniques of
spectacles-type sum-integrals.
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Chapter 1

Motivation

The theory of strong interactions is well established for roughly fifty years and its validity has
been tested many times [I]]. It is known that the underlying theory is Quantum Chromodynamics
(QCD), a quantum field theory whose degrees of freedom are massive fermions and massless
gluons, both subject to the non-abelian SU(3) symmetry group.

Closely related to the the Yang-Mills theory, which is the underlying theory of the gluonic
integrations, is the asymptotic freedom of quarks and gluons [2, 3] in the UV and the confinement
of quarks at low energies [4].

Technically, QCD can be handled at high energies with the standard quantum field theory
approach of a perturbative weak coupling expansion in terms of the QCD coupling, since it is
very small in the energy region mentioned, a direct consequence of asymptotic freedom. This
method leads to the famous Feynman-diagram machinery of computing physical observables.

However, at low energies, which are the energies of interest, perturbative expansion breaks
down, as the strong coupling indeed becomes strong. Physically, the accessible degrees of freedom
are not quarks and gluons anymore, but rather mesons and baryons, whose masses are mostly
generated by interactions and merely (=~ 1%) by the constituent quark masses [5].

The question of how the transition from low energy hadronic matter to a state of an almost
non-interacting gas of quarks and gluons, a quark-gluon plasma (QGP)[6] [7, 8] occurs, is ad-
dressed within the framework of statistical mechanics of quantum fields. On the experimental
side it was the heavy ion collision programs performed at LBNL (Berkley) and later on at BNL
(RHIC), GSI and nowadays also at LHC, that have boosted the research in the field of ther-
mal QCD. On the theoretical side it was the numerical approach within the framework of field
theories discretized on a lattice that have provided first results on QGP and on the QCD phase
diagram (for a theoretical review on the matter, see [9]). Even though less advanced as in the
zero temperature case, analytical computations within thermal field theory have found a wide
use not only in particle physics but also on cosmology related problems 10} 11}, 12]. Also, they
turn out to be very fruitful as they can approach regions in the phase diagram of QCD that are
difficult to access with lattice simulations, such as regions with finite chemical potential [13] [14]
or even with a magnetic background [15, [16), [17].

There have been many challenges on both the numerical (via lattice simulations) and the
analytical (weak-coupling expansion) side so that even after decades of research we are still in
the situation in which only limited temperature and density scales can be addressed with any of
the approaches and they hardly overlap. Therefore a permanent check with the complementary
method has become a widely accepted procedure.



In quantum field theory the complexity of typical calculations shows a rapid grow with
every loop order, such that nowadays, when state of the art computations reach even the five-
loop order at zero temperature [I8], it has become a standard to rely on computer-algebraic
tools. The computational procedure has also standardized: the Feynman diagram generation
is followed by group-theoretical algebras and scalarization of the integrals. The typically large
number of integrals is reduced to a small set of master integrals that are computed analytically
or numerically. The last step represents the technically most demanding task and has boosted
the development of integral solving techniques.

Multi-loop calculation techniques in zero-temperature field theory are much more advanced
as in the case of thermal field theory as their applicability, hence their demand spans over all
particle collision related subjects. Some of the most fruitful integral solving methods and math-
ematical advances in the field include keywords like: Integration by Parts (IBP) [19], difference
equations [20], sector decomposition [2I], Mellin Barnes transformations [22], differential equa-
tions [23], Harmonic Polylogarithms [24]. An introduction to Feynman integral calculus can be
found in [25]. Some of the methods are implemented in software packages like Reduze [26] and
FIESTA [27].

Due to the finite temperature, quantum field theories exhibit a different analytical structure;
we are confronted not with integrals but rather with so-called sum-integrals. This makes a one-
to-one transfer of zero-temperature techniques difficult and even makes their feasibility a priori
uncertain.

Keeping all these ideas in mind, the present thesis intends to provide yet another building
block towards multi-loop computations in high temperature QCD. Precisely, we compute two
matching coefficients, mg and gg, of the low temperature effective theory of thermal QCD,
namely Electrostatic QCD (EQCD). Besides having the aim of a proof-of-principle of the per-
turbative expansion that in the zero-temperature case works so well, we also have two direct
applications of our result. The effective mass mp enters the QCD pressure at O(g") in the
coupling. This is the contribution to the first order beyond the famous non-perturbative term
o g% The most direct verification of the convergent nature of the perturbative expansion is
-precisely in the spirit of testing analytical results against lattice results- the computation of the
spatial string tension o, a non-perturbative quantity defined in the framework of lattice QCD
and being the subject of investigation ever since.

In addition, this thesis aims to offer a contribution to multi-loop calculation techniques
in thermal field theory; once more, borrowing a method from zero-temperature field theory, we
provide an adapted method of computing tensor sum-integrals and we generalize the computation
procedure first developed by Arnold and Zhai [28] to a broad class of so-called spectacles-type
sum-integrals of mass dimension two and zero.

The thesis is structured as follows: The first chapter gives a short introduction on the basic
concepts of thermal field theory and of the theory of QCD in the finite temperature picture as the
theory of our investigation. From there, the renormalization program for eliminating ultraviolet
(UV) divergences and the resummation program for eliminating infrared (IR) divergences for
bosonic degrees of freedom are sketched. Finally, we make some general considerations on multi-
scale theories and effective theories as a preparation of the second chapter.

In chapter two we provide a possible way out of the IR-divergence problem within the
framework of effective field theories by making use of the scale separation in thermal QCD. We
then set the matching coefficients to be determined in the physical context of Debye screening
and of the spatial string tension. The actual calculations are performed in the background



field gauge, since it considerably simplifies the matching computation. Finally we present the
technicalities of Feynman diagram generation and their reduction to a small set of master sum-
integrals.

The third chapter represents the main part of the thesis. Here we apply Tarasov’s method
[29] for tensor reduction to the concrete case of a master sum-integral. Afterwards, the gen-
eral properties of spectacles-type sum-integrals are presented and demonstrated on a concrete
example. With the experience gained we generalize the procedure to a set of arbitrary param-
eters in the constrain of two and zero mass dimensions. Finally, we provide two more concrete
computations of sum-integrals that do not completely obey our previously determined generic
rules.

In the last chapter, we give the result on the renormalized effective mass to three-loop order
and present the results on the effective coupling. As it turns out, in order to complete the
computation, renormalization constants from higher order operators are required. Finally we
discuss the future computation on the renormalization constants and present an outlook for the
present work.



Chapter 2

Introduction

In the following, we give a short introduction on the theory, in which our work is embedded.
While making use of the simple model of a scalar field theory, we point out the technical problems
that arise in this context and set the stage for a possible solutions presented in chapter Bl

2.1 Thermodynamics of quantum fields

Quantum field theory at finite temperatures is an extension of statistical quantum mechanics to
include special relativity. As it describes the thermodynamical properties of relativistic particles,
it finds direct use in problems related to the early Universe where thermal aspects of the Standard
Model (SM) [30} BI] become important. Throughout this thesis, natural units are employed,
h=c=k B = 1.

As in the non-relativistic case, the central quantity is the partition function, the sum over
all possible states of the system symbolically written as [32]:

Z=Tre "1 | g=1/T. (2.1)

Technically, in the case of quantum mechanics it is possible to find a concrete representation
of the partition function in terms of a path integral by making use of the position space |x)
and the momentum space representation |p). The extension to fields can be performed, if one
considers quantum statistical mechanics as a 041 dimensional quantum field theory and extends
the theory to d 4+ 1 dimensions. In that sense, the operator &(t) can be regarded as a field at a
fixed space point, gﬁ(O, t). Thus, the partition function in thermal field theory is:

1/T
Z=C Do exp [— / dr / AL g (¢, 8,@)] , (2.2)
$(8.%)=+6(0,x) 0

where the constant C' is infinite but will never play a role in actual computations, as seen later
on. As a short hand notation, we employ:

1/T
Z:C’/Dqﬁe_SE, SE:/cE, /5/ dr/ddx. (2.3)
x x 0

The 7 -direction is bounded and the temperature T enters the partition function via the
upper integration limit. Due to the fact that the fields obey (anti-)periodic boundary conditions



if they are (fermionic) bosonic, the time component of the momentum in Fourier space is discreet:

2mnT ,n€Z for bosons

. . (2.4)
m(2n+1)T ,n € Z for fermions

P = (po,p) , poz{

At this point, the formal equivalence between thermal field theory and the path-integral
formulation of quantum field theory at zero temperature becomes clear. By starting from the
usual generating functional, it is possible to obtain Eq. (22)) by simply performing a Wick
rotation, t — 7 = —it. This leads to a change of the weight inside the path integral, i — (—1)
and of the metric, from Minkovskian to Euclidean, g, = diag(1,1,1,1).

In the following, we keep the Lagrangian as general as possible. It can be split into a kinetic
term quadratic in the fields and an interaction term with higher powers in the fields.

Lrg =Ly + Ly

= L@u0)@0) + gm?P V() V() x A"

(2.5)

In order to introduce the mathematical quantities needed later such as propagators, n-point
Green’s functions or vertex functions, some definitions are needed. The free expectation value
of an observable is denoted with:

_C'ngbOe_SO

(O)o = W ) (2.6)

since only the free Lagrangian is used as a weighting factor and loop corrections are exactly zero.
The expectation value of two time-ordered fields is the free propagator of the field (cf. Eq.
later):

O Do $(a1)d(wa) e _§f ey (27)

Dy(z1,22) = (0[T{¢(x1)p(22) }|0)o = C [ D e TR P im2

where yIthe integration measure is defined in Eq. (43). In momentum-space the propagator is
simpl

1
Dy(P) = ———— . 2.8
0( ) P2 1 m2 ( )
Next, we define the full n-point Green’s function as:
1 _
G(z1, .y Tn) = (P1.-0n) = ZC/D¢¢1---¢n€ 58 ¢ = () (2.9)

In order to compute the Green’s function, a Taylor expansion of e =57 in terms of A has to
be performed, by using the splitting in Eq. (2.35]):

Do e S5, E5
[ Dpe5Se 2]00;0 (—;?!I)J

!For simplicity, we use the same notation in momentum space as it is always clear from the context which
representation is used.

G(21, o ) (2.10)




By using Wick’s theorem, each new term of the sum generates diagrams according to all
the possibilities of contracting the n external fields to the 4 x j internal fields. Due to the
numerator, all disconnected diagrams vanish. This is illustrated for the one-loop 2-point function

by expanding the denominator as: 1%; ~1—ux.

o —3xo—ox®—12x.&o
+...

= — o — 12 Xo—<;Lc +O()\2).

G((L‘l, (L‘Q) =

If we modify the partition function, by introducing a source term J(x) as

ZlJ]=C / D exp [—SE— / J(m)Q(m)] , (2.11)

we can define the full n-point Green’s function in terms of a source derivative:

G(1, .y y) = %%WU =0, J=J(x), (2.12)
with
WJ] =n Z[J] . (2.13)

By taking the logarithm of Z, the disconnected pieces exactly cancel and only the connected
ones remain. Thus, W[J] can be regarded as the generating functional of connected Green’s
functions.

In the following we perform a Legendre transformation of the form:

oo = Wil - [ J@)t) (2.14)
The new variable ¢ is the field configuration that minimizes I'[¢] in the limit J(z) = 0:
- SW1J]
= — 2.1
¢=-5 ) (2.15)
as seen from: ST SWI 8T J(x)
T WlJ] oJ(x J(x) -
— > = ——L — ———=¢(z) — J(z) = —-J(z) . 2.16
o) ~ 5w da(w)  dote) ) T =) 210
By taking the second derivative of Eq. (ZI4]), we obtain:
820 6 561" 2w .
G G P I A b 2.1
w w5 lw e ’ 217
where D denotes the full propagator:
D(x1,29) = G(x1,22) . (2.18)

Ne)
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Figure 2.1: Relation between connected and one-particle irreducible two-point functions.

We rewrite Eq. ([2.17) as:
T
D x —L xD=D, (2.19)
d¢p?
or diagrammatically as in Fig. (2.
In conclusion, the vertex functional defined in Eq. (2I4]) is the generating functional of

one-particle irreducible diagrams. Further, if we define the self-energy II as:
1 1

_D = = s
P24+ m?2+1I1(P)  Dy'+1I(P)

(2.20)

where Dy is the free propagator, we can relate the self-energy to the two-point vertex function
as:

I(P) = —P? —m? — or
6¢* (2.21)
. B .
__pr_g2y CZ=0]

6.J2 1PI

Concluding, the self-energy of a field is simply the one-particle irreducible two-point function
from which the free propagator has been subtracted. Later on, this will be the starting point of
the computation.

Finally, we relate the earlier defined functions to thermodynamical observables by using
their definitions from statistical mechanics. In this way, observables such as the free energy, the
pressure or the entropy can be obtained:

f=-p= %an[J]
J()=0 (2.22)
_of
or -’

2.2 Path-integral formulation of QCD

So far, we have formulated statistical mechanics in terms of a path-integral of a simple scalar field.
In the following, the theory of QCD will be introduced, as a starting point of our calculation.
The most important property that the theory of QCD and that of scalars share, is their bosonic
nature and therefore the same low energy behavior, which is very different from that of fermionic
fields.

Historically, the theory of Quantum Chromodynamics was preceded by Gell-Mann’s so-called
Eightfold Way, which was an attempt to order the increasing number of newly discovered parti-
cles, similar to the previously established SU(2) isospin symmetry of neutrons and protons, in
a systematic way.

10



The proposal to construct the “elementary” particles out of so-called quarks (spin 1/2 and
fractional electric charge: +1/3, +2/3) demanded a new property/charge of the quarks that
should take up 3 values in order for the mesons and the baryons to be in concordance with
Pauli’s exclusion principl.

Their mathematical description is grounded on the principle of local gauge invariance of
“colored” matter particles that naturally introduces gauge bosons as an intermediating color
field.

Consider an n-tuple field in color-space (cf. [33]):

$1

P = (2.23)

ON.
where ¢ may be either a scalar or a spinor field, and N, is the number of colors.

Next, we construct a generic theory containing these fields, which is Lorentz invariant and
invariant under local phase transformations of the fields, that is gauge invariant:

D= =V()d= L(D,9,0)=L(D,0,0) , V(iz)=el '@, (2.24)

The N2 — 1 matrices T, = T° are the generators of the SU(N,) group under which the
Lagrange density is invariant.

In the fundamental representation (7% is N. x N.) we have (together with the vector space
spanned by the T%’s) the Lie Algebra:

(7%, T = ifebere (2.25)
with the normalization relation ,
5@
Te(TT) = - (2.26)
“Tr” is the trace of the matrix and f%¢ are called structure constants and are totally antisym-
metric: f%¢ = —2iTr([T% T°|T¢). Another useful representation is the adjoint representation

in which the generators T are of dimension (N2 —1) x (N2 — 1) and:
(Tz)ac = ifabc ) ([T27T2])ae = ibed(Tg)ae : (2.27)

In this representation, the Casimir quadratic operator is simply the number of colors: C'4 = N,.
When allowing independent phase variations of the fields at any space-time point, the deriva-
tive term (which is simply the subtraction of the fields at neighboring points) needs to be mod-
ified with a scalar quantity that transforms as U(x,y) — V(2)U(z,y)V'(y), in order for the
derivative to behave properly under phase transformations:
n"9,® = lim Plrten) = @) nD,® = lim Plrten) = Ulwtemo)®(z) o

e—0 € e—0 €

where n* is a unit vector and U(z,y) can be expanded in the separation of the two points:

Ux +en,x) = 1 —igen AT* | D, =0, —igA;T", (2.29)

>That is, to allow for the ground state of baryons to exhibit spin 3/2 (e.g. The AT baryon).

11



with g being the coupling constant.
Thus, this new quantity naturally introduces N2—1 vector gauge fields that need to transform
as: ‘
i
4¢%+w@<ﬁw+§@>W@)
1 (2.30)
= [AZ + Eauoﬂ — fabcoszfl} T + O(g?) .

so that the Lagrange density containing the covariant derivative remains gauge invariant.

For the theory to be complete, a kinetic term for the newly introduced vector fields is
needed. The kinetic term can be obtained constructing a term bilinear in the gauge fields out
of the covariant derivative, or using so-called Wilson loops (cf. Chapter 15 of [33]).

Finally, the Lagrangian for the gauge fields, which throughout the thesis will be considered
to be the gluonic part of the full QCD Lagrangian, looks like:

1 1
Ly = —iTrF#,,FW = —ZFﬁVFﬁV , (2.31)
where the trace is performed in color space and the field strength tensor F),, = FgT* is defined
as:
Ff, = 0,A% — 0,A% +igf*° Ab AS . (2.32)

The fermionic part of the thermal QCD Lagrangian contains spinors that solve the Dirac
equation in Euclidean metric:

(340, +m)p =0, (2.33)
where 9y = 9;, 9; = 0; and 7" are the four 4 x 4 Euclidean gamma matrices. They are four-
dimensional objects in Dirac space and anti-commute like Grassmann numbers, ab = —ba. The

fermionic part of the QCD Lagrangian, constructed to be gauge invariant by substituting the
derivative 0, with the covariant derivative D,,, is:

Ny

Li=Y i7" Dy +m)iy . (2.34)
=

The sum in Eq. ([235) is over the fermion flavors Ny and 1 = A0,
The QCD Lagrangian adds up to:

Lqcp = Le+ Ly
Ny

o 1 » (2.35)
:§:wﬂwl%—4m¢f—§ﬂEwF :
f

However, when plugging the Lagrangian (2.35]) into the partition function from Eq. (IZZI)H,
the quantity is infinite because the integration over the gauge fields runs over all physically
equivalent gage configurations. To overcome this problem, the Faddeev-Popov procedure is
employed. Integration is restricted only to a gauge-configuration orbit, set by a gauge fixing
condition G(A) = 0 which is chosen to be the generalized Lorentz gauge:

G(A) = 9, A (z) — w(2) , (2.36)

3The integration measure reads now DADYDr).

12



From here the gauge-fixing term in the Lagrangian emerges:
1
Lor=—¢Tr [(aﬂAﬂ)Q] . (2.37)

However, this procedure generates a gauge-fixing determinant in the path-integral that ex-
plicitly depends on the gauge fields and therefore is expressed as a functional integral over

Grassmann fields: 5D
det [u} _ / DeDéexp [_ / c(@MDM)c] . (2.38)
g

xT

This leads to a term in the Lagrangian containing ghost fields:
Lohost = 08 0puc” + g f**0,c" Al . (2.39)

Finally, the full QCD partition function reads:

Z=C DA DéDe / DYDY exp [—SqeplA, ¥, ¥,¢6,d]
periodic periodic anti-periodic (2 40)

1 a 1a 1 al? —~a a abcy =a c NS
Sqcp = ZFWFW + i [OAM] +0,c"0uc" + gf b ouc AZC + Zz/)f(qu# +m)y .
f

Extension to the partition function with a source term J(x) is straightforward.

2.3 Renormalization of ultraviolet divergences

When actually computing physical observables by using structures similar to those in Eq. (Z10),
the results are in general infinite due to the large momentum behavior of the integrals (hence
ultraviolet divergence). Their divergence is traced back to the fact that the Lagrangian does
not contain physical quantities such as physical fields, electric charge or mass, but rather some
theoretical (bare) ones (c.f. Ref. [34]).

To overcome this problem, one has to follow three steps. The first step is to regularize
the integrals, since technically they are the source of the UV divergences. The second step is to
choose some renormalization conditions that set a fixed finite value for the renormalized /physical
quantities at a certain energy scale. In the last step, by relating the bare quantities to the
renormalized ones, it is possible to absorb all divergences into the renormalization constants of
the specific renormalized quantities. Once the renormalization constants are known, all physical
quantities are assured to be finite.

In practice, divergences come from structures like:

/Oo d4p; . (2.41)

o PP A m2?

This integral diverges for high enough momentum, as the integrand runs like 1/p. A straight-
forward so-called regularization schemes for parameterizing the divergences is the momentum
cut-off, in which an upper limit on p? is imposed:

oo 1 A = A2 m2 m2
dlp—s——s =2 2/ dp—sr——=m?’n—+————=+In(l+—)—1|.
/_OO Pl imme = ) Pt m2 T Lt e T T A

13



In the final result the momentum cut-off has to be removed, A — co.

A mathematically much more convenient regularization scheme that will be used throughout
the thesis, is the so-called dimensional-regularization scheme, in which the dimension of the
theory and thus the dimension of the resulting integrals is analytically continued to d — d — 2e,
with € > 0 being a small parameter that is taken to be zero at the and of the calculation. Details
on the scheme are to be found for instance in [35]. Since Eq. (241 changes its dimensionality
to 2 — 2¢, an arbitrary scale has to be introduced to render its dimension unchanged, thus
[ — p?¢ [. The divergent integral from Eq. (2.4I) becomes:

2¢ ood4—25 1 _ . 2—¢ I EF _ ol ] s 1 9.43
1 /_OO pm—w <W> (e)=m |:E+DW—’7E—D7T . (2.43)
Even though in both equations, ([2.42]) and (2.43]), we encounter the new mass scale within
the logarithm, only A has the direct physical interpretation of an upper energy scale to which
the computation is reliable. As in Eq. (243) the divergence comes from 1/e rather than from
, its physical meaning is not obvious from the beginning. However, as it enters in logarithms,
o< In pi2 /m?2, their relative contribution to the final result for a fixed energy scale is an indication
of the reliability of the result at the given scaldd.
There is a certain freedom in choosing the renormalization constants. Taking for simplicity
the scalar field theory, they usually are defined as:

OB = \/ ZyPR
AB = Z)\AR (2.44)
my = Zyp2me .

Closely related to the regularization scheme is the renormalization scheme. A very useful

and the most used scheme is the so-called Minimal Subtraction scheme (MS) [36] and variations
thereof, such as the MS -scheme [37] with

p? = ple®E far . (2.45)

Since for any modification of the mass scale u?¢ — 1% f(e) the counter-terms remain un-
changed, we can write them as:

L n n
App 2 Cn k
Z =1+ E [ (471')2 ] E E—k, (2.46)
n=1 k=1

with L being the number of loops and ¢, ;, are complex numbers.

The MS procedure is the following. By inserting Eq. (244) into the ¢* Lagrangian for
instance, it is possible to split it into the part in which all quantities have been replaced by the
renormalized ones and a counter-term piece:

€

1 1 AR
Lo = 5(Oun)" + gk + ok (2.47)
2.
1 1 AR
+5(Zs = D@08 + 5 (ZoZynz = Umpdh + (202~ 1) Rf ot .

“The scale p is kept arbitrary but finite.
SFor a concrete example on this matter, see chapter

14



The counter terms are all at least of O(Ar) (cf. Eq. 2246]) and do not enter tree-level computa-
tions, as should be the case.

The coefficients ¢, from Eq. (246) are determined by calculating the renormalization
conditions with the renormalized Lagrangian, Eq. (2.47), and by absorbing order by order the
divergences into the renormalization constants.

If the renormalization constants are known to a given order in Ar, then any other physical
quantity can be computed in this way. However, new interactions with new Feynman rules
emerge from the counter-terms. Therefore, this procedure is tedious due to the large number of
diagrams that arise.

The second method that will also be used in this thesis is simply to compute quantities with
the original Lagrangian containing only bare quantities £(¢p, mp). In the divergent result these
quantities are then replaced by the renormalized ones with Eq. (244]). In this way a finite result
is assured.

In principle, all physical quantities are renormalization prescription independent. However,
since in practice the perturbative expansion is truncated at a finite order, the renormalization
prescription enters the physical (renormalized) quantities through an arbitrary mass scale (such
as i for MS ). The equation that describes the change of the renormalized parameters with
respect to the change of the mass scale, is called renormalization group equation (RGE). For a
single-mass theory and for a mass-independent scheme (such as MS ) it looks like:

) ) ) . B
M@ + ﬁ()\R)@ + ’Ym()\R)mR% - n’Y()\R) PR(I), )\R7mR7M) =0. (2-48)

A very important quantity of the previous equation is the so-called beta function S(Agr) that
describes the change of the coupling with the change of the scale:

d
A = AO) (2.49)

In general the beta function is expressed as a perturbative expansion in the renormalized

coupling:
2%\
- 2.
+ b1 <167T2> + (2.50)

Mk
1672

B(Ar) = Bo

The sign of the beta coefficients 3; determine the strength of the coupling at high energies;
positive coefficients such as those of quantum electrodynamics make sure that at high energies
the coupling strength grows. QCD has negative coefficients and this leads to its famous property
of being asymptotically free.

By plugging in the first term on the right hand side (rhs.) of Eq. (Z50) into Eq. (2:49]) we
obtain

1672 1
B mE

Ar(p) = (2.51)

as a leading order approximation for the running of the coupling with the energy scale. From
here, the QCD renormalization is straightforward.
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2.4 Resummation of infrared divergences

In the following, we present the infrared problem, which is typical to any Yang-Mills theory.
Given its bosonic nature, we compute the free energy density of a scalar field and take the limit
m — 0 in the end, in order to illustrate the procedure.

Considering a massive scalar field theory with a ¢* interaction: V(¢) = %gb‘l, the naive free
energy density is [32]:

f= T InZ
v - . (2.52)
= fO(m’ T) + v<51>0 oy <S[>0 connected T --

The definition in Eq. (2.6]) for the expectation value and the Taylor expansion of In(1—z) ~
—r — "”2—2 have been used in order to generate only connected diagrams.

The term fy is the (scalar field version of the) Stefan-Boltzmann law,
2T
90

and it contains also a divergent factor that can be removed by renormalization. However, this
is beyond the purpose of this example.
The first correction to fy is:

. T [Dé[ F6(z)* e
film, T) = vlgnoovf ffpfp =50
A / | Do (a)p(x)p(x)p(x) e
o = Vﬁoo fD¢ G_SO

fo(m,T) = — + O(m?*T?) , (2.53)

4
=BV 3[(#(0)#(0))o]?

= 2o =2 [?; ﬁr

Since the the propagator Dy(z,y) depends only on = — y, terms of the form Dg(x,z) are
due to translational invariance Dg(0,0). The factor 3 comes from applying Wick’s theorem
that states that the free expectation value of an n-point function can be expressed in terms of
products of two-point functions:

(@(@1)d(@2)..d(@n-1)d(@n))o = D (S(w1)d(w2))0-($(Tn-1)d(xn))o - (2.55)

all comb.

(2.54)

The last term reads:

T \?

potm. 1) = = Jim 35| [ totaret o ([ e )]

(2.56)
Fasess]

The dot on the loop denotes an extra power on the propagator, thus 1/[P? +
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The first diagram in Eq. (2.56]) does not cause divergences in the limit m — 0, therefore it
will not enter the discussion. IR divergences in the limit m — 0 are caused only by the second
diagram as will be shown shortly.

For that consider the most general one-loop sum-integral:

Ja(m,T) =
(2.57)

/ 1
A p +m2 ip [P2+m2]A’

where the sum was split into the Matsubara zero mode, py = 0, and the non-zero modes. For
the zero-mode the integral has a simple expression (cf. Appendix [Bl for details on solving such
integrals):

1 T T(¢-4) 1
Jg(m,T):T/ T A Z IEA A4
p PP +m?A s T(A)  p21A-3

For the non-zero mode part, a Taylor expansion for small m is performed and we obtain a
solution in terms of an infinite series as:

’ ! 1
J T = _
A(m7 ) ip [PQ +m2]A

_ 2T s -m F(A+i— ) .
= (47r)%(27TT)2A—d ZZ1 |:(27TT) } (i + 1)F(A)<(2A+ 2i—d).

(2.58)

(2.59)

Thus, the zero-mode part generates only terms with an odd power in m (as we consider
d = 3), whereas the non-zero mode part generates only terms with even power in m. Moreover,
the non-zero modes part also generates divergences that are removed by renormalization.

So, with the definitions at hand, we can compute the first two corrections to the free energy.
The following result excludes the divergent part:

3 mT [Tt mT?
- [ 2| _2A L LT 272
oN2TY T
Pl ) = = g g Ol

It becomes clear that the first divergence in the limit m — 0 is coming from fo, more precisely
from the following piece of the diagram:

[%/ﬁ]2XT/pm- (2.61)

It turns out that such combinations of odd powers of m coming from the zero-mode pieces
of the sum-integrals generate IR divergences. So, to the n-th order the diagram that generates
the divergence is the product of n 4+ 1 one-loop diagrams of which n pieces are non-zero modes
and one piece is a zero-mode integral with the propagator to the n-th power:

_1\n+1 _1\n+1 n 27m
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The term 672" !(n — 1)! is the symmetry factor coming from the 4n field contractions:

2(n—1) 2(n—2)
| p— | | p— |
<¢1|<751_<751| P12 |¢2_¢2| 203 P3...)0 (2.63)
6 6

and T'/12 is the leading term from the non-zero modes.
Further, by writing the zero-mode term as a derivative with respect to the mass, we obtain:

1 —-m d —m3
1 (ma ) /ppg + m2 Ar dmz2 < 67 ) ( )

The integral in Eq. (Z62) can be re-expressed as:

[ = () (5) 259

To this point, we have the generic n-loop term that gives rise to a divergence in the limit
m — 0. By summing up all the pieces (cf. Fig. ([2:2))), we obtain:

3
1 AT\ d \" (mPT T 5  AT?\2
Zm( 4> <dm2> («;W)—‘m(m +T> : (2.66)

n=1

The lhs. of Eq. (Z86) is simply the Taylor expansion of the rhs. around A7?/4. It becomes
clear that, by summing up the leading IR divergent contributions to all orders in A\, we generate
a term that permits taking the limit m — 0. It also changes the weak coupling expansion
qualitatively, by introducing a term of the form \3/2.

Figure 2.2: Diagrammatic resummation of the infrared divergence. The dotted loops denote
zero-mode contribution whereas a black dot means an additional power on the propagator. The
dashed lines denote non-zero mode loops.

Thus, the free energy density of a massless scalar field to the resumed one-loop order is:

7274 15\ 15)3/2
T) = — 1— —2 4 =2 2 2.
H(T) 90 3972 T 1673 + O\ (2.67)

Higher orders for the free energy density are known up to O(X>/21n \). (c.f. [38]).

Physically, the massless fields acquire an effective thermal mass (similar to the Debye mass
in a QED plasma), hence the zero-modes cannot propagate beyond a length proportional to
me_ﬂ} An alternative approach is by starting with a Lagrange density in which a mass term for
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the Matsubara zero-modes is added to the free part and the same amount is subtracted from the
interaction part. A calculation using this technique to four-loop order can be found in [39, [40].
Of course non-zero modes are screened as well, but in the weak coupling expansion their effective
mass contribution plays a sub-dominant role (AT < 27T).

Fermionic fields do not generate IR divergences since their zero-mode contribution is of the
form:

1

and hence finite in the limit m — 0.

2.5 Effective field theories

As seen previously, even though the original massless scalar field theory contains only one scale
coming from the Temperature T, a second scale of the order of /AT emerges through the
resummation of the soft modes. This phenomenon is specific to bosonic fields, which are the
only fields to exhibit a zero Matsubara mode. Since the fermionic fields are IR safe, their acquired
thermal mass is negligible close to the original scale T'.

From here, the question arises of how to handle in a systematic way the soft scale and any
other scale that might arise at higher loops. At one-loop order, the prescription states to add
up only products of one-loop integrals in which the momentum flow factorizes. However, at
higher loop orders the situation aggravates, since also diagrams with no factorable momentum
flow may contribute and keeping track of all possible contributions becomes cumbersome.

An alternative approach in computing IR safe observables is the effective field theory method.
The reasoning is that only at the level of physical observables the dynamical screening of soft
modes sets in, but not at the level of the theory itself. Therefore, it is not important which
theory works as input in the partition function, as long as the physical outcome is the same.

In order to adopt the effective field theory approach here, the decoupling theorem [41] has to
hold. That is, all the effects depending on the higher scale can be absorbed into the redefinition
of the renormalized parameters of the effective theory@. In addition, the requirement that the
energy scales are well separated, VAT < 27T, should be fulfilled.

Thus, from the starting point of a generic two mass scale theory, m < M, an effective
low-energy field theory can be generated in the spirit of [42]. By aiming at the reorganization
of the effective theory operators in terms of 1/M?, the effective theory will generate new point
interactions by integrating out the heavy scale (cf. Fig. (2.3])).

Moreover, higher order operators containing only light fields and fulfilling the symmetries
of the original theory need to be added to the effective Lagrangian. The operators can be
classified according to their UV and IR importance. There are marginal operators that are
equally important to any scale of the effective field theory, such as the kinetic part of the
Lagrangian. Relevant operators are those that contribute only at low energies and have a
negligible effect in the UV regime. Such an operator is the effective mass operator (o gbﬁght).
Finally, irrelevant operators are those that have a vanishing contribution in the low energy regime
and are of the order O(m?/M?). Higher loop contributions to the coefficients are to be computed
by a perturbative matching of n - point vertex functions with the requirement that they coincide

bIn fact, this requirement is mandatory for any effective theory and it lies in the very nature of the Standard
Model (SM) that the physics at higher scales, such as the Planck scale, is encoded via renormalization.
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M

Figure 2.3: Generation of effective vertices by integrating out heavy loops. The original coupling
is taken to be g¢}21eavy¢light.

up to a given order in the coupling in the low energy regime. Therefore, renormalization is equally
important in defining an effective field theory as well as the Lagrangian itself.

The momentum cutoff regularization introduces a mass-dependent subtraction scheme. There-
fore, the counter-terms and with them the S-coefficients of the coupling depend explicitly on
the heavy mass of the original theory. In this situation the UV cutoff A is consistent with the
physical interpretation of the effective theory. It indeed is the upper energy bound at which
the effective theory is reliable. Nevertheless, Lorentz and gauge invariance are broken in this
case. A more important disadvantage is that beyond tree-level, loop corrections may come with
a relative contribution of O(1), indicating a breakdown of the perturbative expansion.

The more convenient renormalization program is the mass-independent scheme introduced
by dimensional regularization of the integrals. The arbitrary scale p occurs only in logarithms,
In(M/p), and does not introduce explicit powers such as M?2/u?. Therefore, truncation of the
effective Lagrangian to a given order still renders a loop expansion convergent. Higher order
operators can be added gradually according to the aimed accuracy of the matching.
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Chapter 3

Setup

In this chapter we first implement the effective theory approach for thermal QCD as a possible
solution to its multi-scale nature. Before starting the matching computation for the parameters
of the effective theory of QCD, we embed them in the picture of physical quantities of a QCD
gas via the Debye mass, the QCD pressure and the spatial string tension. In the remaining part
of the chapter we introduce the computational framework, more specifically the background field
method, the matching computation, the diagram generation and the reduction of the matching
parameters in terms of a few master sum-integrals.

3.1 Electrostatic and Magnetostatic QCD

The particular example of the resummation of the free energy density of a scalar field presented
in section 2.4 can be extended to a generic prescription of whether a Yang-Mills theory is IR
safe or not. Linde and Gross et al. (Ref. [43] [44]) have argued that for a massless bosonic field
theory at n-loop order the most IR sensitive part of the free energy density f(7') is the zero
Matsubara mode. If one takes into account the thermal mass generation, so that the bosonic
propagator looks like 1/[(2mnT)? + p? + m?(T)], the IR sensitive part of f(T) is (with g being
the strong coupling and q; some linear combination of p;):

12 3 3 = 1 o [ 92T "7
F(T) oc (27T)" (g )n/d P1.-.d°Prt1 H m ~gT [m] : (3.1)
i=1 4

In the case of gluons it turns out that the temporal component Af behaves differently from
the spatial components A¢. The former one exhibits a thermal mass starting from the first
loop order. This comes from the fact that the Ilgo(p?) component of the self-energy tensor 11,
does not vanish, whereas the spatial components do. Therefore, in the spirit of a QED plasma,
the screening of the color-electric field was called Debye screening, with the QCD Debye mass
computed first by Shuryak [45]:

22
m(T) = 93T <Nc + %) . (3.2)

By plugging this result into Eq. (B.I]), we see that the perturbative expansion still is conver-
gent but the thermal mass generates a qualitative change in the perturbative series of thermo-
dynamic quantities in terms of a contribution of the form (g2)halfinteger
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Unlikely to QED, where magnetic fields are not screened due to the nonexistence of magnetic
monopoles (9;B; = 0), in QCD a field configuration can be found in which the divergence of
the chromo-magnetic field is not zero, since the corresponding equation involves the covariant
derivative: D;B; = 0.

There is strong evidence that the first contribution to a screening mass of the spatial com-
ponents of the fields is of order ¢?T (cf. section B.2). By using the argument stated by Linde
and Eq. (B.J), it becomes clear that, when trying to go beyond first order all other contributions
become equally important as they are of O(1). In conclusion, thermal effects induce a third
scale related to magnetic screening, which is purely non-perturbative.

Being confronted with three scales, a hard scale o« 27T, a soft scale « ¢g7T" and an ultra-
soft scale oc ¢*T, a straightforward approach in QCD computations is to isolate each scale
and perform the computations independently. Obviously, the non-perturbative scale calls for
alternative methods such as lattice QCD. In the end the contributions have to be summed up.
A different and successful scheme of integrating out the hard scale is the hard thermal loop
framework pioneered in [46, [47] and pushed towards three-loop accuracy [48], 49], 50].

The scale separation has been first done in [51, 52, 53] and extended later to higher order
operators in [54]. In these works, the hard scale was directly integrated out generating an
effective Lagrangian in which the spatial and the temporal vector field components decouple.
Nevertheless, determining the new parameters of the theory beyond leading order is in general
difficult as it is necessary to keep track of diagrams with mixed propagators of zero and non-zero
modes, very similar to the discussion in section

Another method was employed later on in [31], [55] 56] that will be used also here and later for
the calculation. The procedure is to construct a general Lagrangian considering the symmetries
and properties of the original theory and to perform a matching between them in order to
determine the parameters of the new theory.

Since we are interested in generating an effective theory describing the soft modes that do
not depend on the temporal coordinate 7, the procedure is called dimensional reduction and the
emerging effective field theory is called Electorstatic QCD (EQCD). The symmetries involved
are spatial rotations and translations (as Lorentz invariance is broken by the heat bath), the
gauge symmetry of the original Lagrangian and the symmetry under A9 — —Ay. Moreover, the
fields do not depend on 7, so its integration will generate a simple T'~!-factor in the action.

The gauge transformations of the fields differs for A; and Ag:

/L‘ —)V/L‘V_l + lvaiv_l s
o g (3.3)
AO —)VA()Vil .

The spatial components transform like gauge fields, whereas the temporal component trans-
forms like a scalar field in the adjoint representation. The fields change as well. At tree-level
we have A, = \/T_lfiu + O(g?) and at higher loop order they obtain even gauge-dependent
contributions [30, 57]. However, in the following we drop the tilde on the fields to simplify the
notation.

As the time derivative is also zero dy — 0, the gluonic part of the QCD Lagrangian in Eq.

(Z3T)) becomes:
1
Liqep = o Tr{Fij Fig} + Te{[Di, Ao][Di, Aol}

Di = 0; +igndi ,

(3.4)
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where [A, B] = AB — BA is the commutator of A and B. Besides the part coming directly from
the original QCD Lagrangian, there are in principle infinitely many other operators that are
allowed by symmetries and thus can be included. The effective theory is non-renormalizable.
Nevertheless, for the purpose of this work, we restrict ourselves to the operators up to dimension

4. The action of the EQCD theory reads:

1
Secp = 7 / dx {a%QCD +mETr[AZ] + 2D (Tr[AZ)? + )\(Q)Tr[Aé]} : (3.5)

The low energy regime of the QCD Lagrangian is described by a pure gauge theory coupled to
a massive scalar field in the adjoint representation and lives in a three-dimensional (3d) volume
(hence dimensional reduction). Without referring specifically to the finite temperature aspects
of the problem, the UV properties of this theory can be drawn.

Truncated up to the operators shown in Eq. (33)), this theory is super-renormalizable [58],
so there is only a finite number of ultraviolet divergent diagrams, specifically with the topology

shown in Fig. (31):

_3-9¢ 1
d i>26 — -+ finite terms .
€

Figure 3.1: The topology of the integrals that exhibit UV divergences and hence contribute to
the mass counter-term.

They enter the mass term of the Ag-filed to two-loop order, thus it is the only parameter
that requires renormalization [30), 59]:

mg = mg (i3) + om?

e (3.6)
H3 (2 2

om? = 2(N2 +1)

Here, the parameter A2 was set to 0 and A = X because the quartic terms in Ay in the
Lagrangian are independent only for N, > 4.

The mass parameter ps3 is the arbitrary scale introduced through the MS renormalization
scheme in the effective theory and it is independent of the mass scale p of full QCD, which
enters the expression in Eq. (B.6) after matching (cf. chapter [). Since the fields and the
effective coupling do not require renormalization, they are renormalization group invariant (e.g.
130, g% = 0). On dimensional grounds the relation between the effective coupling in 3d and
the coupling in 4d is:

gt = Tlg* (1) — BoIn(i/cp2T)] . (3.7)

Hence, the effective coupling depends on the arbitrary MS -scale u of full QCD only and
the coefficients in front of the logarithm are to any loop-order entirely determined by the beta
function (cf. Eq. (2.30)) of the QCD coupling. The coefficient cg» can be determined by a
matching as seen later.

In order to describe the thermal effects of the theory, the matching to the full QCD theory
of the so far undetermined parameters has to be performed. For EQCD, the hard scale ~ 27T
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is entirely encoded in the parameters gg, mg and A. This can be seen through their dependence
solely on (g2)™*¢8°r  The most recent results on mp and gg are to be found in [60].

It is possible to go a step further and to integrate out also the soft scale gT', hence to eliminate
Ag. The procedure is similar to the QCD-EQCD reduction; the most general Lagrangian that
satisfies the properties of the underlying theories is simply a SU(N,) gauge theory living in three
dimensions. It is called Magnetostatic QCD (MQCD):

1 .
Lyiqep = S FyFi+ ..., Di= 0; +igmA; . (3.8)

The equality between the EQCD and the MQCD gauge fields is only at tree-level: A; =

A; + O(g). Nevertheless, we drop the double tilde for simplicity.

The magnetic coupling can be computed by matching to the theory of EQCD and is expressed
as a function of the EQCD parameters g\i(gg, mg, AV, A2)..). To tree level the relation is trivial:
gum = gr. The coupling has been computed to two-loop order in [61].

As the expansion of gy is rather in g and not in g2 (cf. section B.3]), it becomes clear that
both, the hard scale and the soft scale, enter the MQCD theory via its parameters.

In conclusion, one isolates the non-perturbative ultra-soft scale, which is related to the
magnetic screening, in a simple three-dimensional gauge theory, whereas the hard and the soft
scales are treated analytically through the matching to full QCD.

At this point, it is possible to use this theory in numerical lattice computation in order
to extract physical observables [9] [62] 63, [64]. This can be done, if the parameters of the 4d
continuous theory of QCD are properly mapped onto the parameters of the equivalent 3d theory
discretized on the lattice. This non-trivial task has been extensively addressed in [65, 66 67

(68, 69].

3.2 Debye screening

The Debye mass is a fundamental property of a plasma. It quantifies to which extent fields
are screened due to thermal effects. It is well known that in usual QED plasmas only electric
fields are screened (VB = 0), whereas magnetic fields are not. In the non-abelian case magnetic
screening is present due to the self-interaction of gluons.

In the case of a non-abelian plasma the situation is much more complicated, as for a long
time it was not even clear what the mathematically correct definition of the screening mass
is. Taking the straightforward definition of QED, as to what constitutes a screening mass of
electric fields, namely to the first loop order this is simply the longitudinal part of the gluon
self-energy (polarization tensor) in the static regime (po = 0) and in the limit of vanishing spatial
momentum [45], we obtain:

m% = lim Hog(po = 0,k?) . (3.9)
k—0

The transverse part of the polarization tensor Il;; is zero to this loop-order.

On the other hand, first estimates on the possible magnitude of the magnetic screening mass
came from [70), [71]. However, soon it became clear that the screening of chromo-magnetic fields
is a purely non-perturbative effect that scales like mmagn o g*T. Moreover, definition (3.9) does
not hold at next-to-leading order for the chromo-electric screening due to the explicit gauge
dependence of the electric screening mass [72].
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After further investigations on this matter a more sensible definition was proposed, so that
the Debye mass is both, gauge independent and infrared safe |73, [74] [75] [76] [77, [78]. The Debye
mass is defined in terms of the pole of the static gluon propagator:

P’ +1I(po = 0,p%)| o2 =0 (3.10)

A more subtle definition is found in [79].

At next-to-leading order the computation of the Debye mass requires regularization by ex-
plicitly introducing the magnetic screening mass. Therefore, it acquires a non-perturbative con-
tribution from the ultra-soft sector that can be determined only via non-perturbative methods
[80L [79]. Some numerical studies even suggest that the image, in which the magnetic screening
mass is much smaller than the electric screening holds only at very high temperatures [81].

Thus, to the first non-perturbative terms, the Debye mass is up |75, [R1), [82]

Ng*T = mko
Lo 19 1ng—D+cNg2T+dN,Nfg3T+(9(g4T), (3.11)

where the ¢T term in the logarithm comes precisely from the magnetic screening mass: Mmagn =
Cnon-pert, X ¢*T. The term mIf)O is the leading-order term of the Debye mass, Eq. (3.2]). The
coefficients ¢y and dy;, N, are non-perturbative and are to be determined via lattice QCD [81]
or even analytically [79].

Given the definition in Eq. ([B.I1]), the Debye mass can be related to the mass parameter of
EQCD mg. First of all, mg is a bare parameter that requires renormalization (cf. Eq. (3.6])).
The renormalized parameter mpg ren is the high-temperature perturbative contribution to Eq.
(BI1), as it contains only the hard scale. Thus, when referring to mg as being the Debye mass,
the perturbative contribution thereof should be understood.

Further, the mass parameter my enters the pressure of QCD at O(g”). The investigation of
the pressure of a hot gas of quarks and gluons traces back to the seventies. It represents the
equation of state of thermal QCD and is therefore essential in understanding the phase diagram
of QCD (in particular the high temperature and the finite density [I1] region).

Closely related to the previous section, the pressure acquires contributions from all three
scales 27T, gT and ¢*>T. Starting from the leading order, resummation needs to be done in
order to remove infrared divergences. However, the famous Linde problem sets in at three-
loop order oc O(g%) rendering a breakdown of the perturbative expansion. Thus, resummation
changes the analytic behavior of the pressure:

p(T) =T* (co + c2g® + c39° + ca’g* In(1/g) + cag* + c59° + c6'g° In(1/9) + c69°) . (3.12)

The first three coefficients ¢y [45, B3], ¢35 [84] and ¢4’ [85] were computed in the classical
picture by tedious diagram resummation. Merely the following two coefficients ¢4 [28] and cs
[86] where computed by using a modified Lagrangian that explicitly includes the EQCD mass
parameter mp, as pioneered in [39]. Braaten finally introduced the method of effective field
theories in the computation of the pressure by individually calculating its contributions coming
from the three different scales by using their according effective theories (QCD, EQCD, MQCD).
After having determined the parameters of the theories by matching (cf. section later) to
the desired order, all the contributions can be summed up [55 56]. Finally, the last perturbative
coefficient c¢g’ was computed in [59, 87, [88], whereas the coefficient cg, which contains both
perturbative and non-perturbative contributions was determined only partly up to now [89] [90].
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Despite the fact that, in the end infrared divergences can be handled systematically up to the
non-perturbative scale, the convergence of the perturbative expansion down to temperatures of
interest still remains an open issue [88], 91].

In this spirit, the pressure reads:

. T a =
pocn(T) = ‘/lgnoovln/DAuszsz exp [—Sqcp]

T
= T i —1 DA?D A2 -5
PE( )+vgrloov n/ i DAG exp [~Seqep] (3.13)

. T o
=pe(T)+pm(T) + Vlgnoo v In / DA} exp [-Suqcn]
= pe(T) +pm(T) + pa(T) .

Eq. (8I3) summarizes the effective theory procedure in computing thermodynamical quan-
tities. This procedure ensures that the final quantity does not require infrared resummation,
since this is accounted for through the parameters of the low energy effective theories.

In particular, the soft-scale contribution of the pressure pjs is expressed as an expansion in
the EQCD parameters as:

g
T) = T'm?
pM( ) mg me me

2 2\ 2
e 2 (bt ) oy (1) +o<x<l>7x<2>,gg/m%>] s
E

The next perturbative contribution beyond the last result known in literature is of order
O(g"). As it has an odd power in g, it is a contribution from the soft scale, thus from the pys(T)
terml!. Investigating Eq. (B.14) more closely by explicitly plugging in the effective parameters
mg(g) and gg(g), the g7 contribution to the pressure comes only from the by coefficient oc m3,.

Taking the notation from Eqs. (4.1) and (5.2) from [88] and Eq. (5.7)), we obtain:

pu(T) dAm:f3 daT3 a}Q% 7
= 4 . 1
T2 > 5 + O(e) Sy \ o +4y/agsors | g' + O(e) (3.15)

In Eq. (5I3) the coefficient is computed explicitly.

3.3 Spatial string tension

The most important phenomenological application of the effective coupling of EQCD g¢f is related
to the so-called spatial string tension, os(7T") of QCD. Since it is a non-perturbative quantity, it
has been determined with lattice simulations for quite some time [62] 92] 93] and recently even
using novel theoretical approaches such as the AdS/CFT duality [94].

It is obtained from a rectangular Wilson loop Ws(Ry, R2) in the (z1, 22)-plane of size Ry X Rs.
Given the Wilson loop, the potential V; is defined as:

1
‘/S(Rl) = — lim —IHWS(Rl,Rg) . (316)

Ra—o00 L9

!Since gm contains through its matching to EQCD both hard (277T) and soft (g7 scales, a contribution to
the pressure at O(g”) comes also from pe(T) and it is multiplied by the non-perturbative constant coming from

0(g°%).
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The spatial string tension oy is defined as the asymptotic behavior of the potential:

A0
= lim ———=. 3.17
s Ri—o0 R1 ( )
It has the dimensionality of [GeV]? and thus expressed in lattice calculations in terms of a
dimensionless function of the normalized temperature [62]:

VI (Z> , (3.18)

T T.

where T, is the QCD transition temperature (T, ~ 150 — 160MeV [95], [96]).

The spatial string tension can also be determined in a three-dimensional pure Yang-Mills
theory such as MQCD as repeatedly confirmed [97, 98, 99]. As in this theory the magnetic
coupling gyp is the only scale and it has energy dimension one, it is possible to relate the spatial

string tension to the coupling by a non-perturbative constant os = ¢ X glA\‘/I. The constant was
computed in [I00] for N, = 3

Vs 0.553(1) . (3.19)

9
This value is remarkably close to the theoretical prediction \/7,/g3; = 1/\/T.

On the other hand, the magnetic coupling gy has an analytic expression in terms of both,
the QCD coupling g (via gg) and the QCD scale in the MS scheme Agis- According to Eq.
([B.I8), the relation between Ti. and Agg is needed for a comparison to lattice results.

On the analytical side, the relation between gy and gg is known up to the second loop-order

[61]:

1 g2Ca 17 [g2Ca\°
2 2 E E
= 1—-— - 3.20
M= I8N TS oy 4608 <7rmE (3:20)
where the contributions coming from A2 are omitted [60]:
8g3 2(CACE + DA 4+ (6Cr — 1)A?
9w _ _ 2o X A+ (6Cr 1) (3.21)
95 384(mmg)

since they contribute, in terms of the 4d coupling only to order O(g%) and are numerically
insignificant.

However, as lattice computations constantly increase their accuracy and their predictive
potential, it is worth looking at higher order corrections on gg, coming from the matching to
QCD. For instance at T' ~ 107, and using the jiopi-scale as defined in [58], the last term in (B.20)
gives a correction of ~ 20% relative to the second term and even at T'= 10007, the correction
is still of 14%.

This suggests that both higher order corrections in mg and gg may give a noticeable con-
tribution to gyt but also higher order terms in the (g% /mg)-expansion certainly contribute. A
rough estimate on the third expansion term in gy (gr, mg), namely g% /m3, shows that at the
order g° in gyi(g) the contributions coming from the coefficients of mg(g) and gr(g) are ~ 60%
of the coefficient standing in front of ¢S/m3,. This suggests that at higher orders both, the
expansion of gy as well as the higher orders in gy and mpg are important.

The task to relate the theoretical prediction from EQCD and MQCD to the lattice computa-
tions translates into the determination of Tt./Ay;g. This has been rigorously done in [60] in two
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manners: via the zero temperature string tension /o5 and via the so-called Sommer parameter
To m

For the first method, results for the ratio 7../,/o, are taken from [102] and combined with
the ratio Ayg/+/0s from [103], to obtain the needed relation 7. /Ay;g-

The second method makes use of the result of ro7;. from [104] to combine it with roAyg
[105] to again obtain the desired ratio. A discrepancy with the range T./Ayg = 1.15 ... 1.25 was
found.

Meanwhile, it is expected that further studies in lattice simulations lead to more reliable
results, for instance for the Sommer parameter and the QCD scale [106), 107]. This would
definitely narrow the uncertainty of Tt /Ay on the numerical side and thus justify the need for
higher order corrections on the theoretical side.

The remarkable good agreement between the numerical and the theoretical studies given in
[60] support this idea:

T,/ Agg = 1.10...1.35

0.6+ ® 4d lattice, N=8| —
\ \ \ \
1.0 2.0 3.0 4.0 5.0
T/ Tc

Figure 3.2: The lattice data comes from [62], whereas the theoretical curves represent the one-
and two-loop results with a variation of T,./Agrg = 1.10 to Tt./Agg = 1.35.

3.4 Background field method

In general terms, for performing a matching computation (very similar to the computation of
renormalization constants), n-point vertex functions need to be computed in both theories, hav-
ing as external legs the same fields that the coupling multiplies in the Lagrangian. For instance
in determining the effective mass parameter mg, the Ag self-energy needs to be computed. Sim-
ilarly, in computing the effective coupling it is in principle possible to choose between computing
3-point or 4-point vertex functions with the gauge fields as external lines.

However, by making use of the so-called background field method, first developed in [10§],
it is possible to achieve quite a simplification: only self-energies need to be computed. In the
following, the line of argument from [I08] is used to shortly present the properties and benefits
of the background field method.
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Starting with the effective action from Eq. (IQIII)E, we define a new quantity by shifting the
gauge fields only in the gauge action with a so-called background field, Ay, — Aj + Bj:

~a

oG 1 ~ -~
5@@] exp [_S[A+B]_/x2_§GaGa+/

T

Z[J,B] = / DA det

4]

~a

G -
= [ D(A+ B)det [504“] exp [_S[A+B]_/362_1§“GGGG+/JCJ(A+B)] /B

= Z[J]e 'B
(3.22)
with JA = J3Aj.
The term 6G® /da® is the derivative of the gauge fixing term with respect to the gauge
transformation:

1
Al — AY = A — [P0l (AS + BS) + P (3.23)

With this definition, we have a new generating functional for connected Green’s functions:

W(J,B] =InZ[J,B] = W[J] — / JB (3.24)
and by defining
- OWI[J,B]  §WI[J]-JB) W[ _
A? = = = —BY= A% - B® 2
» 6Jg 6Jg 6Jg # # mo (3.25)

we perform a Legendre transformation in order to obtain a modified effective action (the gener-
ator of 1PI functions):

['[A, B]

W|J,B] — / JA

xT

[J, B] —/QCJA:W[J] —/JB—/QCJ(A—B) (3.26)

114
WJ) —/JA:F[A] =T[A+ B].

In the end we set A = 0 and obtain:

[0, B] =T[B] . (3.27)

The last equation shows that I'[0, B] contains all 1PI functions generated by I'[B]. Since
the 1PT functions are generated by computing derivatives with respect to A, which here is 0, it
means that I'[B] is the sum of all vacuum 1PI graphs in the presence of B.

There are two methods of computing f[O, B]. The first one treats B exactly in such a way
that it directly enters the propagators and the vertices in the Feynman rules. This is difficult to
perform in practice.

2Note that here, the ghost fields do not enter yet as the gauge-fixing determinant is still in the path- integral.
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The most convenient method is to treat B perturbatively, that is to split the action in the

following way:
S[A+ B) = SolA] + Simi[4, B] (3.28)

The part containing the original A-fields is taken to be the free Lagrangian, thus propagators
are as usual, whereas the remaining part containing the B-fields represents the interactions.
Furthermore, as T’ generates only vacuum diagrams, the original A-fields enter the diagrams
only as internal lines.

The effective action I' is in general not gauge-invariant due to the source term Jj. Only
for observables computed on the mass shell, I'/6A = 0, the independence on the gauge fixing
term is recovered. The advantage of the background field method is that it retains explicit
gauge invariance for the background field. A specific gauge fixing term G exists that ensures
gauge invariance of I'[0, B] with respect to B. In other words, instead of computing 1PI n-
point functions in a theory with explicit gauge invariance breaking I'[ B], we rather compute 1PI
vacuum diagrams in a modified theory f[O, B that is still gauge invariant with respect to B. In
practice, the B-fields will enter only as external lines in the diagrams, whereas the A-fields will
enter only as internal lines.

The gauge fixing term that ensures gauge invariance under a B-field variation is simply the
background field covariant derivative of A in the adjoint representation:

G* = 0, A5, + gf ™™ A} B, = D(B) Al

a. (3.29)

By performing an adjoint group rotation on the source term and on the original gauge field
be b be b
A = A — f0CAL T = Jy = [T (3.30)
the gauge invariance of I'[0, B] under
1
be b
B — B, — f"a"B;, + gauoﬂ (3.31)

can be confirmed.

The explicit gauge invariance of the action I'[B] connects the renormalization constant of
the coupling and that of the fields due to the following reasoning. The gauge invariant action
needs to take the form of divergent constantx (F),,)?. According to Eq (2.44)) this would be:

(Fy)ren = 2 2[0,BE — 8,B% + 2,2} *ig f** BL BS] | (3.32)

thus imposing:
Zy=27,""7. (3.33)

Since the Lagrangian has been changed through the addition of the B-field, also the Feynman
rules will change. They can be found in [108], [109].

3.5 Parameter matching

After establishing the framework for performing the computation, the matching procedure is
initiated. For that, some preparations are needed. First of all, the computation is performed in
the static regime so that external momenta are taken purely spatial, pg = 0. In fact, the limit

30



for vanishing spatial external momenta p — 0 is considered as well, as will be motivated later
on.

Even though the background field B has no gauge parameter, it is introduced by hand as
a cross-check of the validity of the final result: &here = 1 — &standard- The gluon propagator
becomes:

(B () BY(=p)) = bas [‘;—— (J;ﬂ (3:34)

In the following the gluon self-energy is split into temporal and spatial components since
we already know that the effective mass is related only to the Ay fields, hence to Ilgg. The
tensor structure is separated from the self-energy by making use of all symmetric combinations
of vectors and rank-two tensors that can generate the same tensor structure as in II,,. These
are: guu, Puby, Puuy + Pyuy,, where u, = (1,0) is the rest frame of the heat bath which is
orthogonal to the static external momentum, u,P, = 0. The components Ily; and I3 vanish

identically and only three independent component remain:
oo (p) = T (p?) ,

i, P, (3.35)
IL;j(p) = <5z~ - p—j) I (p?) + p; 101, (p°) -

It turns out that the longitudinal part IIj, vanishes order by order in the loop-expansion.

For the matching computation of the mass parameter mg we use the definition of the Debye
mass in Eq. (B.I0), disregarding the fact that the actual Debye mass contains non-perturbative
terms. We are merely interested in its magnitude oc g7

On the full QCD, side the Eq. (B.I0) looks like:

p’ +1Ig(p*)[ 2,2 =0 (3.36)
On the EQCD side, we have:
p? + m% + % cp (P?) e =0 (3.37)
= mD

In the following we perform a twofold expansion in terms of the external momentum p? and
in terms of the coupling, since the self-energies contain at this point the contributions from all
orders in g. The expansion in the external momentum is justified by the fact that it is evaluated
at the scale of O(¢T'), which by definition is a soft scale:

o0 oo oo
I(p?) =D T(0)(¢)" + P> D IL/(0)(g*)" + - + (p*)) D TP (0)(6*)" . (3.38)
n=1 n=1 n=1
On the EQCD side, as all vacuum diagrams are scaleless, they vanish identically in the
dimensional regularization scheme that we employ, IIrqcp(0) = 0. Thus, from equation (B37)
we are left with the identity:
mi =m? . (3.39)
Eq. ([B36) however needs to be solved iteratively for every loop order. Recall that any p?
accounts for a ¢g>T? term. Thus, at one-loop we break the Taylor expansion in p? at the first
term (cf. Eq. (338))):
m]%:kloop = HEl—loop(O) = HE1(0)92 . (3.40)
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At two-loop we go to order p? in the expansion and substitute the external momentum with Eq.
: 2 2 !
mE2—loop = HE?—loop (O) B mEl—loopH E1-100p (0)
= g1 (0)g” + [Mra(0) — M1 (0)['s1 (0)] g* -

And finally to three-loop, we have:

(3.41)

m% = m}233 loop HE37loop (0) — m%ﬂg_loopHIEkloOp (0) + (_m%ﬂl_loop)2H1/E17100p (0)
= T (0)g° + [Mg2(0) — g1 (0)1'g1 (0)] g* + [Mg3(0) — g1 (0)T'p2(0) (3.42)
~IT'11(0)TTg2(0) + Iy (0) (11 (0))? + (HEl(O))QH”El(O)] 9.

In order to compute the effective coupling, merely the self-energy of the gauge field is needed.
Consider the general structure of the gauge part of the EQCD Lagrangian:

EEQCD = CQB,L? + ngBZ3 + 6492321 . (343)

The coefficient ¢y is the field normalization in the effective theory and can be simply absorbed
by a redefinition of the field: B; — |/c2B;, thus having:

Lrqcn ~ B + c3cy 8/2 ng’ + C4052923f . (3.44)
From here we can read off the effective coupling: gr = c3cy 3/2 g= 0411/ 202 L. However, due to the
background field arguments of gauge symmetry, it is required that the coefficients are identical
¢y = c3 = c4. Finally, transforming the 3d notation via scaling B — v/ T'B and comparing it to
the full QCD Lagrangian, we obtain:

gE = T1/2c2_1/2g . (3.45)

In conclusion, in order to obtain the effective coupling within the framework of the back-
ground field theory, it is necessary to compute the field normalization cs.
This can be done through the effective potential:

5 :i%/p /pn Byt (p1)-- By (pa) Ty [B(p1)s o B(pn)] - (3.46)

As it is connected to the effective action, the computation can as well be translated into matching
the terms of the potential which are quadratic in the fields. Note that to the lowest order the
term proportional to the quadratic field is the inverse gluon propagator. It contains two terms,
o 9;; and oc p;pj. They both will lead to the same result as it should be, but for simplicity we
take only the d;; term:

[p* +I1(p?)] Bcp = [P° + Hg(iQCD(pz)]B]%QCD

| (3.47)
= [p*+ Hg@cD(Pz)]@BéCD :

Again, after expanding the self-energies, the EQCD self-energy vanishes identically and we
are left with: ) e )
P +HT(O)+p HT(0)+ = Cp (3 48)

= cy =1+1I'1(0), '
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Note that the equation in the last line is exact. We have picked out only the terms proportional
to p?, therefore a further expansion in p? is not needed. The constant term and the higher terms
in p? are expected to contribute to an effective mass in the EQCD theory, which theoretically
would be the thermal mass of the chromo-magnetic fields. But we already know that it is of
non-perturbative nature and in particular that it vanishes at order O(¢7"). This is indeed the
case, since the calculations later will show that IIT(0) = 0 at least to three-loop order.

Finally, expanding the self-energy in terms of g2,

I'7(0) = g°I'11(0) + ¢*T'12(0) + ¢°'3(0) (3.49)

we obtain for the effective coupling:
g8 = Tg* {1 - ¢y + g* [ (W11(0))° — Wra(0)]

(3.50)
g [(H’Tl(o))?’ — OIT 1 (0)IT 12 (0) + H'Tg(O)] } .

3.6 Automatized sum-integral reduction

The remaining task is to compute the QCD gluon self-energy to three-loop order. The fermion
masses are neglected throughout the calculation, as their contribution is sub-leading.

At this order in the coupling approximately 500 Feynman diagrams should be generated. As
the encountered task is tremendous, a computer-algebraic approach is needed. The following
project builds upon a two-loop calculation [60] and its extension is described in detail in [109]
[I10]. Here, merely a summary is given.

The diagrams are generated with QGRAF [111] and further manipulated with FORM [112]
and FERMAT [I13]. The preparation of the generated diagrams consists of decoupling the
tensor structures (scalarization), decoupling the external momentum (Taylor expansion), the
color sums of the SU(N)-algebra and performing the traces over gamma matrices. The O(107)
generated sum-integrals can be parametrized as:

M375839 ) — pS7QS8T89 3.51
e = Yoo PRI S QA P T A O

where the fermion signature is encoded as: P? = [(2n + ¢;)7T]? + p?, with ¢; = 0(1) for
bosons(fermions). As later on only pure bosonic sum-integrals are used, we adopt the simplifi-
cation

MS78859 = M875859 (352)

$15253545556;000 515283545556

The non-trivial topologies are shown in Fig. (3.3]):

Figure 3.3: Non-trivial topologies at one-, two-, and three-loop order. The two-loop sum-integral

is called sunset-type. The three-loop ones are of basketball-, spectacles-, and mercedes-type.
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OO

Figure 3.4: Fermion signatures of the one- and and three-loop order master sum-integrals. There
arrow defines a fermion propagator and the simple lines define a bosonic one.

The essential task is to reduce the resulting sum-integrals to a small number of master
integrals [I14]. This has been done by implementing Laporta’s algorithm [20] of Integration by
Parts (IBP) [19].

The IBP procedure generates algebraic relations between master sum-integrals of different
topologies and different exponent parameters by using the d-dimensional divergence theorem

[115], 116] (Gauss’ law):

p87q887“89 -
inR Os [t [P2]51 Q52 [R2] (P + Q)2 [(P + R)2*[(Q — R)2]*s | 0, (3.53)

where s and t are linear combinations of p, q and r.

Additional relations among the sum-integrals are generated by performing momentum shifts.
These shifts reduce also the fermion signatures to a total number of three (cf. Fig. (84)). The
so generated under-determined system of equations is solved by using a so-called lexicographic
ordering in order to express the most “difficult” sum-integrals in terms of the most “simple” ones.
The “simplicity” of a sum-integral depends in general terms on the power of its propagators.

The essential difference to integrals encountered in zero-temperature physics is the fact that
here the momentum derivatives specific to the IBP algorithm act only on spatial components,
leaving the Matsubara modes untouched [116] (cf. appendix [DI).

The IBP reduction generates one- and three-loop master sum-integrals. The general structure
of the self-energy is therefore:

M3 = a;A;j+ ) b;B;, (3.54)
J J

where 4; = (one-loop)? are products of sum-integrals of the first two types in Fig. (3.4) and B,
are sum-integrals of the last three types in Fig. (B.4). The coefficients a; and b; are ratios of
polynomial in d = 3 — 2e.

As will be extensively presented in the following chapter, state of the art techniques for sum-
integral calculations offer exact analytic solutions only for the one-loop and (via IBP reduction)
for the two-loop cases. Methods for solving basketball- and spectacles-type sum-integrals are
based on an extensive procedure of subtraction of divergent parts and a numerical calculation
of the finite remainder. It is rather a case-by-case analysis that permits computation only up to
the constant term. Unfortunately, the IBP reduction generated terms that diverge in the limit
€ — 0 as 1/e in the case of IIgz and as 1/e2 for Irs. Therefore, a change of basis is required in
order to proceed with the sum-integral evaluation.
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3.7 Basis transformation

The basis transformation is performed only for the gluonic part of the self-energy, thus permitting
us to solve only for the pure gluonic case.

The task of finding a suitable basis of master sum-integrals that do not have divergent pre-
factors consists in reverse engineering the IBP reduction process. This task is demanding in
two ways. First of all, there is no prescription to trace the algorithm back and this translates
into a manual search for a suitable basis. From here the second difficulty arises, namely to find
the balance between finite pre-factors and yet simple enough master sum-integrals that can be
computed with today’s techniques.

There is no doubt that the possible choices are numerous, however, we have orientated our
search to find sum-integrals that have already been computed, or at least that are parametrically
close to the known sum-integrals.

Starting with Eqs. (C.14) and (C.15) from [110], which represent the IIg3(0) and the II'13(0)
contributions and by using the IBP relations from appendix [E] provided by Jan Méller [I17], we
obtain the following expressions:

3T — — (d—7)(d=3)(d—1)* 40 ~(d-=3)d- 1)(7d — 13) o0
A HE3 9 31111-2 4 111110
720 — 13912d + 35443d? — 34716d°
—8(d — 4)(d — 3)(d — 12V 10 + 30 —7d (13
15515d* — 3440d° + 417d5 — 284" + d® 10219
30(d — 7)d 1
N 3024 — 48076d + 168800d% — 261896d"> + 214359d* — 99892d° (192
36(d — 7)(d — 5)(d — 2)d 12
28027d% — 4824d" d® — 32d° + d*
8027 8 + 509 32d° + 019[1812 (3.55)

36(d — 7)(d —5)(d — 2)d
and
Cy° s =r1(d)M{5}110 + ro(d) M3t + 73(d) Mssiy1o + ra(d) Mgt + rs(d) Mgt (3.56)
+ 76(d) M3ioo11 + 77(d) Mi1in00 + rs(d) Mis5000 + 79(d) Mas000 »
with

) 107662 — 196843d + 138960d> — 48945d3 + 9198d* — 837d° + 20d® + d”
T =

! 8d(d—5)(d—2)(d—1) ’
94896 — 215472d + 201560d? — 101965d° + 30585d* — 5566d° 4 606d° — 37d” + d°

d
r2(d) 8d(d —5)(d — 2)(d —1) ’
—62 — 717d + 876d* — 330d> + 42d* — d°
(d) = 1440 — 7876d + 7801d? — 3004d® + 526d* — 40d° + d°
A 3d(d — 2) ’
4(—186 + 65d + 37d? — 13d3 + d*)(d — 6)
rs(d) = d(d — 2) ’
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(d—31)(d — 1)?

4d ’
—25568 + 22382d — 3253d? — 1932d> + 806d* — 122d° + 7d°

2d(d — 9)(d — 2) ’
ra(d) = 110760 — 151302d + 74899d? — 11395d> — 1654d* + 632d° — 53d° + d”
3d(d —9)(d —7)(d — 2) ’
ro(d) = 964718 — 2366265d + 2451867d% — 1335353d3
24d(d — 7)(d — 5)2(d — 2)2(d — 1) ’

397943d* — 61043d° + 3225d5 + 229d" — 25d®

24d(d — 7)(d — 5)2(d — 2)2(d — 1)

re(d) =

7“7(d) =

(3.57)

Note that the sum-integrals of the form Ma?chOO are products of one-loop tadpoles and there-
fore known analytically (cf. Eq. (B3)). The sum-integrals MY, and M, have already
been calculated in [40] and [I18], respectively.

Finally, we present the two matching coefficients to three-loop order in d dimensions. Note
the gauge independent result.

¢@*T*1)C d? — 11d + 46)19
= T |14 PO T 163 (@IS + a1
@=L (43T 1M 8 3)(d — )M
210 410 0

(3.58)

with
720 — 12472d + 9779d2 — 2686d° + 364d* — 26d° + dS
30d(d — 7) ’
3024 — 42028d + 81720d? — 5642843 + 19783d* — 3898d° + 448d°% — 30d” + d®
36d(d — 2)(d — 5)(d — 7)

T‘m71 (d) =

V“m72(d) =

(3.59)
and

d—25 —31d + 144) V1Y

B-g'Ci ( 3d<d 7 )
)
)

g =9°T |1—g°Ca
(d—25%[13]*  72(d — 3)(d — 4)(4d* — 21d — 7)[I9]* 33 000
—ri(d)M
36 36d(d — 2)(d — 5)(d —7) +9°Ca | —rd)Mizn
- T2(d)M§??110 (d)M221110 T4 d)M311110 (d)M411110 (d)M:?%)on (3.60)
d —1)%(d — 25)(d? — 31d + 144) + 9d(d — T)rs(d)
_ d IO 2[0 _ (
7/1'7( )[1] 4 9d(d—7)

144(d — 3)(d — 4)(d — 25)(4d*> — 21d —7)  (d — 25)3
(S e @) )]

R

The non-trivial sum-integrals in Eq. ([B.55]) are multiplied by a factor (d — 3), meaning that
only the divergent pieces of the sum-integrals have to be determined. The remaining task is
to O%Emputeogle 7 yebtmunknown 1(1)(2)2n—trivial master sum-integrals, MY o, Vi, M0,
Mj111100 M3ai110, M3it110 and Myiie-
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Chapter 4

Master sum-integrals

This is the main part of the work and it deals with techniques of solving 3-loop sum-integrals for
so-called spectacles type (cf. Fig (£42])). The main ideas are based on the paper by Arnold and
Zhai, [28] and they have been extended to the spectacles type topology. In addition, we adopt
a technique for manipulating tensor sum-integrals, originally developed for zero temperature
integrals, in Ref. [29]. This method turns out to be very fruitful since the standard technique
for tensor structure manipulation was shown to lead outside the usual classes of sum-integrals.

The main feature that sets sum-integrals apart from integrals encountered in zero tempera-
ture field theory is the sum over Matsubara modes. There are several complications that come
along with this new analytic structure. First of all, the summation over the temporal compo-
nent of the vectors breaks the rotational invariance of the integrand. Moreover, these temporal
components act like masses for the space-like ones in the propagators, such that, for a I-loop sum-
integral this fact translates into an [-scale problem. Assuming that by any given technique it is
possible to give a (numerical) result (e-expansion) in terms of these [ scales, still the summation
over these “masses” has to be performed. Since the mass dimension of sum-integrals is usually
0 (for coupling matching), 2 (for mass matching) or 4 (for pressure/free energy computations),
the summations over the Matsubara modes typically necessitate regularizatio .

The above mentioned particularities of sum-integrals make it difficult to automatize their
evaluation. Up to this point, the methods presented in this chapter, are state of the art and are
based in principle on a case by case analysis of the sum-integrals involved.

This chapter is structured as follows: First, Tarasov’s method for dealing with tensor integrals
is presented and applied to our particular case of the master sum-integral M), ,. Afterwards,
we present the general properties of spectacles type sum-integrals and their splitting in order
to make them accessible for the succeeding computation. We then demonstrate the solving
techniques on the simple example of MY%,,,. A detailed presentation of this computational
method is also to be found in Refs. [38] [40] 118, 119]. With the experience gained from this
particular case, we proceed to the generalization of the method and pave the way for the semi-
automatized computation of (almost all) remaining master sum-integrals. All the results on the
sum-integrals can be found in section [4.3], in subsections [A5.1] and and in appendix [Al

'Similar to the zeta function regularization: > o  n = ((—1) = —1/12.
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Notations and conventions

In the following we slightly modify the notation convention the generic sum-integral in Eq. (3.51])
like:

255557334350 = V(d; 51525354855 8657) » (4.1)
and in particular:
M3ty = M3 o (4.2)
d || parameters | V; || parameters | Z;
3 21111520 2 12111;02 1
31111;22 3 12111520 2
12211;22 3
12121;22 4
5 31122;11 4
7 32222;00 5 23222;00 5
52211;00 6 23231;00 6
4222100 7 23321;00 7
43211;00 8
33221;00 9
33212;00 | 10
33311;00 | 11
3 12111;00 | 12 12111;00 8
21111;00 | 13 12121;02 9
22111;02 | 14 12121;20 | 10
31111;20 | 15 12211;02 | 11
41111;22 | 16 12221;22 | 12
13111;02 | 13
02221;02 | 14
03121;02 | 15

Figure 4.1: Convention for denoting the sum-integrals and their finite parts

In order to ensure a smooth reading, we number the sum-integrals, as well as the zero-mode
sum-integrals as shown in Fig. (4I]). The same convention will be used to denote the numerical,
finite pieces of each sum-integral, as in:

V (d; s152538485; s657) = V;

T3d+3—2s12345+567 (4_3)
£9 (4 . - )
v (d’ 5152535455; 8687) (47T)2812345_867_%(d+1) Vl’# ’
with the convention:
8123.. =81+ S92+ 83+ ... (4.4)

The sum-integral measure is defined as:

for S o [l w
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This measure is split into:

fof
S0 '

Ppo7#0

the parts denoting the omission of the py = 0 Matsubara mode and the corresponding remainder.
In addition, we have the integral measure:

fo=r | 0

which is the integral measure defined in Eq. (£3)), with the additional shift d — d + 1.

4.1 Taming tensor structures

This section follows the presentation given in Ref. [120].

4.1.1 Reduction of 3-loop massive tensor integrals in Euclidean metric

In the following, the technique based on Ref. [29] is used to reduce tensor sum-integrals typically
encountered in thermal field theory. We treat only a particular case of spectacles type integrals,
needed in the calculation for M3 5. A more generalized approach can be found in [120].

First, the 3-loop massive spectacles-type integral with Euclidean metric is defined as (c.f.

Fig. (4.2)):

1
Sg VU3 V4V = /
R e e e (e e R (PR R
(4.8)
1
2 3
Figure 4.2: The generalized massive spectacles-type integral.
Using the parametric representation via a Laplace transformation
1 1 o 2,2
= daa?te~ oW ™+m?) 4.9
T T, )
we obtain
e b 2 2 2 2
Sg1u2u3u4u5 = C/ / <daiaz‘yi_1) 6—041(10 ) et e—ag,((p-i—r) ms) ) (4'10)
parJ0 iy
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with C = [[>_, T(w)~" .
The rearrangement of the exponents in order to obtain Gaussian integrands in the momenta
and their subsequent integration lead to:

C 0 5 1 5 2
§é = ﬁ/ [ dasal ™t e i oam? (4.11)
[(477)5] 0 o1 [D(a)]2
where
D(a) = aj(ag + ayg)(as + as) + (ag + as)asay + (ag + ag)agas , (4.12)

is the so-called Symanzik polynomial and can be obtained from graph theory (c.f. [121]).

This particular representation of loop integrals is useful since the dimension is encoded only
as the exponent of the D(«) polynomial, besides some unimportant pre-factors.

Two types of tensor integrals needed in further calculations are defined as:

d? 5

d . d

17, (v1,v2, v3,v4,15) = day,das, (SV1V2V3V4”5)£:8 ’ (413)
] d* &d
. . v vaLvs) = € Joro 4.14
2Wpo(m V9, V3, V4, Vs) dai,day,dag,dag, \~ RIS g;;g ( )
with

qd et etz

V1VoV3V4aVs /pqr (p2 + m%)lq (q2 + m%)w (r2 + mg)”:”((p + Q)Q + mZ)V4((p + T)Q + mg)yz415)

Using the a-parameterization, Eq.(@I5]) becomes:

5
§io Y [T [doart — L emm(Bretoaeitotsoa) -2 amt (4 15)
[<47T>%f’ o i1 [D@)?

On the one hand, using the representation of Eq. (4I5]) we get for Eq. (£I3):

quTv
Td L= / M .
H e (07 m3)i (g2 + m3)2(r? + m3) e ((p + @) + m3) 4 ((p + )% + m3)

(4.17)
On the other hand, using the representation of Eq. (£I6]), we have:

5
0,,C °° 1—[ - e _1_(B,q2 2 : 5 o2
Tld;u,/ = L dOéZOéIZ/l 1ie4D(Q) (ﬁ1a1+62a2+263a1 a2)6_ Zi:l QM , (418)

3 d+2
[(4%)%} 0 =1 2[D(a)] 2
with
b1 = al(ag + 045) + 043(044 + 045) + agas
B2 = aq (a2 + au) + as(ou + as) + asos (4.19)
B3 = auas .

Except for some pre-factors, this integral seems to be a scalar integral in d 4+ 2 dimensions
and of the same topology as the one in Eq. (48] containing two propagators raised to a higher
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power. Therefore, by simply adjusting the pre-factors and reading off the dimension and the
different powers of the propagators, we obtain:

47)3
Tlduy(yh Vo,V3,lV4, 1/5) = (Suy( 2) V4V5Sgl—tziu3u4+1u5+1 . (420)

In conclusion, using the a-parameterization of the loop-integral it is possible to rewrite a
tensor integral as a scalar integral of higher dimension but with the same topology and with the
tensor structure appearing as a pre-factor.

In order to determine a similar relation for Eq. ({I4]), we perform the following calculation,
with 0; 0

gy = aaw:

1 2 2
9 )
01,,01,02,00,€4P (Braj+B2a;+2B3a1-az)

a1=0
. a2=0 (4.21)

D |

ﬁlﬂ?auuépa + 532, (5u05up + 5#/)51’0)] .

This result shows that the tensor integral in Eq. ([414) is expressed as a linear combination
of 26 scalar integrals of dimension d + 4. Instead of showing the result, we will exploit some
symmetries of a particular integral, in which my = mg = my4 = ms. This particular choice of
the masses ensures that the massive integral (4.8)) will have the same symmetries as the massless
sum-integrals we are interested in to compute.

The procedure is to group all terms of 5152 that lead to identical massive scalar integrals
after several changes of the integration variables. For instance, the term a2asay will generate
an integral of the form S§1+2y2y3+1y4+1y5 which, after a momentum translations ¢ - —q — p
becomes Sgl+2y2+1y3+ly4,/5. In this way it is possible to group all 25 terms of 312 into 7 terms
of which everyone generates one scalar integral.

After some calculations, we obtain for the second tensor integral (£I4]):

d _ 6 d+4 d+4 d+4
T2 pvpo (47[') { [blSV1+2V2+1V3+1V4V5 + b2SV1+1V2+1V3+1V4+11/5 + b3SV1V2+1l/3+1V4+1l/5+1
d+4 d+4 d+4
+b4SI/1+1V2+2I/3+1V4V5 + b551/1l/2+21/3+11/4+ll/5 + b651/1112+2113+11/4l/5 6/“’6PU (422)

d
+b75u1+u§+2u3+2u4u5(5w5p0 + 0o Oup + 5#/)51/0)} )

with
by =vi(v1 + )(v2 +va)(vs +v5) ,
by = 2v1 [vavy(vs + v5) + vavs(va + va)]
b3 = 2vov314v5
by = vi[vs(vs + 1) (V2 + va) + va(va + 1) (v3 4+ v5)] (4.23)
bs = vy(vg + Do(vs 4+ vs) + vs5(vs + 1)vg(ve + 1)
be = vavs[va(va + 1) +va(vs +1)]
by = va(va + Dvs(vs + 1) .

In principle each new tensor index will raise the dimension of the scalar integral with 2 and
the tensor structure will appear as a pre-factor of all possible combinations of Kronecker deltas.
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4.1.2 Lowering dimension of scalar integrals

By projecting out the tensor structure of massive integrals in Euclidean metric, higher dimen-
sional scalar integrals are obtained, as was shown above. It is also possible to find a relation for
lowering the dimension of scalar integrals, as will be shown in the following.

To this end, we define the operator:

0 o 0 0
D(©) =D { o = 4.24
© (a - 3m?> om? Om3 Om? (4.24)
Applying this operator to Eq. ([@IT]), we obtain:
5

¢ ~ vi— 1 0 — 3% aym?

D(a)sngl/aml/s N EE Hdaiail ! 2 D <8m2> e 2= Qi
o 53 ot o s

— _ 1 Sd—Z

(47‘(‘)3 V1VV3V4V5 )

where we have used that D(«) (c.f. Eq. ([@EI2])) is a homogeneous polynomial of degree three.
On the other hand, applying D(9) on Eq. (L8] we get terms of the form:

EC T :_Vis.c.l.ui+1...' (4.26)

For our particular choice of D(0) we will obtain a linear combination of eight scalar integrals.
We choose the masses to be mg = m3 = m4 = ms in order to relate this integral to our needed
sum-integrals later on. After some momentum translation, it is possible to rewrite all integrals
in terms of only two.

d d
D(a)SV1V21/3V4V5 = - 7/1(7/2 + V4)(V3 + V5)Sl/1+11/2+ll/3+11/41/5

(4.27)
— [(vava(vs + vs) + (vo + va)vss) S it tva s 1vs -

Combining Eq. (#23)) and Eq. (£27]), we get an expression that relates scalar integrals of
different dimension:

V1VoV3V4aVs5 bS vive—lvs—lug—1lvs bS vi+1lvovsvg—1lus °

-3
Sd (47T) Sd—Z b9 d (428)

where
bg = (1/2 - 1)(1/4 - 1)(1/3 + U5 — 1) + (1/3 - 1)(V2 + vy — 2)1/5 ,

4.29
bgzyl(V2+V4—2)(V3+V5—1). ( )

These relations can be used to obtain the result in Ref. [I120] as an alternative to Eq. ([Z30).
In fact, we have used the different results as a cross check of Tarasov’s method for sum-integrals.

4.1.3 Rearrangement of M3 _,

In the following Tarasov’s method (Ref. [29]) is applied to the master sum-integral M3 _5. For
that, M3 _o is rearranged by exploiting its R <+ () symmetry and by expanding the numerator:
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Ms _9 = ip [(Q — R)2]2

’ or PPQ*R*(P + Q)*(P + R)?
_ Q° (@ R)?
- QiPQR PSRE(P + QPP+ R? | 4%3@3 PSQR*(P + Q)*(P + R)? (4.30)

QR i 1
-8 + 2
?ém PORE(P+ Q2P+ B2 T on PO(P + QPP + R
=2M, + 4Mb —8M, + 2Md .

My, and M, are tensor sum-integrals. Nevertheless, M, has a simple enough structure to be
computed via usual projection techniques as will be shortly presented. For M, it is necessary to
apply Tarasov’s method.

M,, M, and M,

In order to calculate these sum integrals, we first exploit their symmetries with respect to the

integration variables, the property of dimensionless integrals to be 0 in dimensional regularization

and the fact that integrals of the type 122 Q,./[(Q*)"] are 0 due to oddness of the integrand.
After momentum translation, we get:

Q—Q—-P o 1
M, =T S —
“ "o PAQ2(P +Q)?

where I and L are defined in appendix [Bl Eqs. (B.3] [B.6) and for these particular values, L is

given in Eq. (B.9).

Similarly, My is merely a product of tadpole integrals (cf. Eq. [B.3)):

= 17L%(211;00) , (4.31)

My = D)1 . (4.32)

The sum-integral M, is written in terms of its tensor components:

1 -
M, = g“,,ip ﬁVﬂ(P)V,,(P) ) (4.33)
with 0
kol Q—Q—P 0
szii“ = -I/P,. 4.34
H( ) 5 (P+Q)2 15 p ( )
and
"=y, Yo
Q*( P + Q)? (P +Q)°Q? (4.35)
1 .
=2 —— =V, (P) = —=P,I1110(P),
$Q2P+Q $Q2P+Q) u(P) = —3Fulliio(P)
with II119 defined in Eq. ([@43]).
Eq. ([@33) yields:
1 1 1
M, = 5110% Syl = §I?Ld(211;00) . (4.36)
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4.1.4 Reduction of tensor sum-integral ),

In order to reduce My, we split the numerator of the second term in Eq. (£30]) into the temporal
and the spatial components:

(R-Q)* = (rogo + 7:q:)(roq0 + 7j¢;) = 1545 + 2r0q0(r - q) + (7 - ¢)* (4.37)

so that we obtain:

M, = i rodd +2¢ r0qo(7 - q)
Por PPQ?R*(P+ Q)*(P+ R)* * Tpor POQ*R*(P + Q)*(P + R)?
—V/(3;31111;22) (4.38)
+¢ (r-q)?
Por POQ?R*(P 4+ Q)*(P + R)*’
The first term in Eq. (A38]) is a regular scalar sum-integral whereas the last two terms

contain a tensor structure that will be treated with the methods shown previously.
The second term can be identified with (cf. Eq. E20]):

TOQO(T : C]) 3 d
= T T‘Oqul--(3,1,1,1,1)
% on PR T 2 ronTi

m1=po
ms=po+7ro

47)3
_ {4m) 5T > 10q0SS3,

2
P0GoTO

m1=Po (4.39)
ms=po+10
d (477)3 i{dw} 040
2 Jpor PCQ*R*(P+ Q)4(P+R)*

3
d@w& 31122;11) .

This manipulation is possible due to the fact that we have identified the masses of the integral
of Eq. ([A20) with the Matsubara modes which we sum over. By using the constraint on the
masses (c.f. mg = ... = ms), we ensure that both the sum-integrals and the massive integrals
exhibit the same symmetries.

Finally the third term of Eq. ([#38) is written as (cf. Eq. ([@22])):

(T'Q)Q 3 d
=T E T¢ (3.1.1.1.1
inR P6Q2R2(P+Q)2(P+R)2 QWJ(’ B )

pPoqoro ml_fpo
ms=po+70
(4m)°, 5 d+d d+d d+d d+d
=1 T Z [52‘3’5@']' (253;222 + 485551, + 24545555, + 24555,

PpoqoTo

+ 8, + 4S5t + 3SR ) + (00 + 6401455 |

m1=po
ms=po+ro
_ (47T)6d 2${d+4} 1 +48¢{d+4} 1
4 Por POQ'RY(P+ Q)Y (P + R)* Por PUQ'RY(P+Q)*(P + R)?
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{d+4} 1 {d+4} 1
+ 24# + 24$
Por PPQ'RY(P+ Q)Y (P + R)? Por PPQORY(P+Q)*(P + R)?

{d+4} 1 {d+4} 1
8 4
* %DQR POQSRI(P 1+ QNP+ R)? %QR POQORI(P 1 QR2(P + R)1
{d+4} 1
42+ d
@ )?;QR PSSR (P + QP2 (P + B)?

(4.40)

We have managed to express Eq. (A38) as a sum of nine 3-loop scalar sum-integrals of
different dimensions . A different basis set for M3 _5 can be found in [120]:

Ms,_o = 2[IV1219 — 210 L4(211;00) + 4V (3; 31111; 22) + 4d(4n)*V (5;31122; 11)
+ d(47)% [2V/(7,32222; 00) + 48V (7,52211;00) + 24V (7; 42221; 00)

+ 24V (7;43211;00) + 8V/(7; 33221; 00) + 4V (7; 33212; 00) + 4(d + 2)V (7;33311; 00)] .
(4.41)

4.2 Properties of spectacles-types. Splitting

The goal is to express the sum-integrals as a Laurent expansion in e up to O(e"). Experience
shows that every loop can exhibit at most a pole of order 1, 1/¢, so that the highest degree of
divergence encountered is 1/e3. The basic idea in computing three-loop sum-integrals originates
from the paper of Arnold and Zhai [28]. It is based on two essential properties of the sum-
integrals.

The first property is related to the topology. For three-loop sum-integrals of basketball and
spectacles type it is possible to perform a decomposition into one-loop structures, by cutting the
diagram as demonstrated in Fig (4.3]). In this way, the one-loop structures are treated separately
and plugged in the overall integration.

P

Q
P
= X X
P+Q P+f P

R
P+OQ P+R
Figure 4.3: One-loop substructures of V-type sum-integrals.

The second property originates in the fact that the propagator (and therefore the one-
loop generalized 2-point function) has a simpler structure in configuration space rather then
in momentum space, if the structure itself is finite when setting ¢ = 0. Therefore, the idea is to
subtract from the one-loop substructures terms which generate divergences and then to express
the finite remainder via a Fourier transformation in configuration space.

In order to perform a proper splitting of the sum-integral, the origin of divergences should
be investigated. We call ultraviolet (UV) divergences those that arise from the limit of high
momenta, p — oo and pg — oo. The infrared (IR) divergences refer here to those arising
whenever some Matsubara-mode is set to zero, pg = 0. There is no need to distinguish between

2Notice that d = 3 — 2e is still valid, and that deviating values are explicitly denoted in the notation of the
integral as: V(d+ 2, ...)
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these divergences in the final result (that is, to explicitly use eg and eyy) since the matching
procedure in the effective theory setup presented in section is taking care of separating them.
Thus, the most general form of a spectacles-type sum-integral is rewritten as:

1
1I 1I
V(d; 51, ..., 55; 5657) = ), Teesasesesser 442
( yS1, 73578687) 2‘ 3 ip [PQ]SI ’ ( )

with the generalized one-loop 2-point function:

_ 45
Hape —% QTP+ O (4.43)

In the following, we investigate the analytic behavior of the substructures and separate the
contributions that give rise to (IR and UV) divergences. This splitting is kept as general as
possible. As it turns out, it can be applied to almost all sum-integrals encountered in our
computation.

4.2.1 UV divergences

First, we concentrate on the UV divergences of the substructures and the UV divergences they
may generate in the overall integration. It is possible to isolate them into three terms.

For that, notice that the sum in the 2-point function increases its complexity considerably
and therefore it is replaced by an shifted integral into the complex plane as in the thermal sum

formula [122] 123]:

co—i0T

_ [ dwo dpo I
5=T 1) = [ arres [ U femat
=8 +87,
with | .
np(ipo) = ST 1 (4.45)

The function f needs to be analytic in the complex plane and regular on the real axis. In
addition it should grow slower then e®lPl at large |p|, so that the contour of integration can be
closed in the complex plane, as shown later.

The first part of the expression is the zero temperature limit of the sum (obvious by the
explicit lack of the T-parameter and denoted by IT1Z, c.f. Eq. (@48) below), whereas the second
term is the thermal remainder of the sum.

C

B 4y
Hae = /Q QP QI

(4.46)
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The latter part of the sum is UV finite. However, it might happen that by plugging this
remainder in the overall P-integration, it will generate some further divergences. Therefore,
the recipe is to subtract from the remainder II°~# as many leading terms as necessary in its
asymptotic expansion of P (c.f. subsection [L.2.3]). These leading UV terms are denoted with
II¢ and their concrete definition is given in Eq. (@II0).

There is one additional term needed for a proper expansion, denoted as II”. It is related to
the zero-temperature term, II”. Since the zero temperature term exhibits an e divergence (c.f.
Eq. (£I08] B.2) below), the term is constructed just to cancel this divergence by introducing
an arbitrary parameter «; which will cancel in the end:

2\e
p _ (P7) —p
;. = (aiTQ)EH“bC . (4.47)
In this way, the combination Hﬁ;D can always be constructed to be finite, (of O(e?)).
With these ideas in mind, we can now perform a preliminary splitting of the product of two
such one-loop structuresﬁ, denoting for brevity I, =11 , , ¢ = 1,2:

1 1
11,11, = 5H(l)ang*B + P Pg B PP + 511?1123 +(1+2). (4.48)

The first two terms, as well as the first two terms from (1 <> 2) are (in principle) finite when
plugged in into Eq. (£42]) and can be computed in configuration space, whereas all the other
terms are expressed in momentum space via zeta and gamma functions.

This splitting is to be understood as a guideline. In general there are some conditions for
how many terms should be subtracted from the II’s. They are related to the superficial degree
of divergence of the sum-integral (c.f. subsection £.2.3)).

4.2.2 IR divergences

There are two sources of divergences that may occur. The first one is related to the zero
Matsubara-mode of the overall integration variable pg = 0 and the other may occur within the
one-loop 2-point function I, ..

In the latter case, the IR divergence is coming from the zero Matsubara mode, thus we define
that particular contribution as :

I / !
@0 Sl 0+ @) + il
Note that only s3 = 0 gives a finite contribution to the IR part. This integral can now be
simply regarded as a massive one-loop tadpole in d dimensions. Thus, it can be manipulated
with standard zero temperature techniques such as Integration by Parts (IBP) relations (c.f.
appendix [D).
There are two situations in which the IR-sensitive part has to be subtracted. The first
scenario occurs whenever the following condition is true:

(4.49)

max(281 — 83, 282) >d. (4.50)

3The factor 1/2 avoids over counting in (1 ¢ 2).

“There is a second IR divergence arising when sz is sufficiently high. In that situation, the mode go = —po
will generate an IR divergence, that will occur even for non-vanishing s3. Nevertheless, this case does not arise
here.
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In this case Il ,, ., is IR divergent and the following splitting should be performed: II =
II°-F £ TI¥, otherwise the finite piece of the 2-point function yields a contribution of the form:
q()%o. In both cases, II_, .(po = 0) and II , .(po # 0), this behavior has to be accounted for. In
addition, a T1¥ (py = 0) may have to be subtracted even if the condition is not fulfilled in order
to render the overall integration over p IR safe. In this situation one may think of II” as the IR

counterpart of II€.

4.2.3 Splitting

Considering the most general spectacles type sum-integral from Eq. (£42]), after subtracting
the divergent zero temperature parts from the sub-loops the integrand runs as (c.f. leading UV
behavior of the sub-loops, Eq. A110):

HO—B HO—B ) )
52545635587 __ [P2]73171’1’111’1(32786/2,84)71’1’111’1(83787/2,35) ) (4.51)

[PQ]SI
Therefore, the condition for the first term of Eq. (£48)) to be UV finite, reads:

— 251 — min(2sy — s¢,2s4) — min(2s3 — $7,2s5) < —d — 2, (4.52)

or
co =0(d—2(sy — 1) — min(2sy — s¢,2s4) — min(2s3 — s7,2s5)) . (4.53)

Should this condition not be fulfilled, leading UV terms (II®) have to be subtracted, as
seen through the Heaviside theta function. However, it turns out that for sum-integrals of mass
dimension 2 only basketball type sum-integrals may exhibit a non-vanishing cg, whereas for the
spectacle-types encountered here, it varies between -4 and 0.

Further, since IIZ - goes as In P2/[P2]“+b_§_% , the condition for the second term in Eq.

abc

([@48) to be UV finite, reads:
— 28194 + (d + 1) + 8¢ — min(233 — 87, 285) <-2-d, (4.54)

or
co = 0(2d + 3 — 25124 + 56 — min(2s3 — s7,2s5)) . (4.55)

In this way, a better splitting is:

1

ML = 2 (1977 — 0§ | (1577 — eoi§ | + 1177 (157 — 01| + couif 1" 56
. .

+ 112 1877 — 01| + eomifmig + D0¢ng + SUPIE + (16 2)

In the case where the Matsubara mode of the overall integration variable is zero, pg = 0, the
only potentially divergent terms are the zero temperature and the zero-mode parts, I{B:E} We
have determined an empirical rule for deciding which part should be subtracted and which not
and it is related to the superficial degree of divergence of the substructures. The following rule
works for all I, .. (po = 0) except for IL;,(, for which both terms need to be subtracted.

M4, =0(d+2—2a—2b+ )15, +60(2a+2b — ¢ — 2 — 2d)T15, . (4.57)

abc abc abc
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Thus, for the py = 0 part, the separation of the substructures looks like:

1. _
I (po = 0)Iy(po = 0) = §H(1) Apo = 0)II3 *(po = 0) + TI1 (po = 0)II3(po = 0) + (1 ¢+ 2) .

(4.58)
Finally, summarizing all divergences, the generic splitting becomes:
HS S48 ]'_‘[S 858
V(d;s1, ..., 551 5657) = ip W
— 1) %H(s];sfseng;s?m + H?zs456H838587 + (246 < 357)
- A Po [P2]81
IBP

+ ?f BT T + TS 158572 + (246 5 357)

7 [P2] (4.59)
+ {?5 ¢ MG, 456 Tastsr + 1T su06 Mozuger > + CaTl5h 55115, 55, + (246 ¢ 357)

4, [P2]51

528486~ 535587 8254868358587

+ [PQ]Sl

i'%onc ne, 4 imB_ mB +(246H357)}
P

ye(ero—mode) y /f(inite) {Vd(ivergent)} .

Again, VT contains all necessary subtractions to make the integrals finite, and V4 all sub-
tracted terms. More explicitly, we have:

?5 3o M0, 0 4 (246 ¢ 357) _ iy

) P i (4.60)

i ,TIBD T10-B—c2C | (246 ¢+ 357)
P

b

825486 8358587

£2
e e

(2

f,2 f,2b if a =
=V RVt E

The zero-mode contribution V” is a special case for itself, since in general it is not possible to
eliminate all divergences by only subtracting contributions IT{5#} from the one-loop structures.
In that sense, the divergences are much too “high”. To “lower” them, IBP relations are used
(only for V2!):

0 1I 1I II 1I
Tpioiépo 525486~ 535557 %#1%5170 $28486" " S38587

P2 S1 P2 s1—1
5215486835587 528456 83-15587
+ #2% Opo P + #3% dpo P + ...

Therefore, only after IBP reduction, the splitting program of the sub-loops can be used. The
zero mode divergent and respectively finite parts are denoted with Z9 and Zf. Details on IBP
zero-mode reduction are to be found in appendix

Finally, in Fig. (4] we provide the splitting coefficients from Eqgs. (£53]) and ([£55]), for all
the sum-integrals that obey this generic separation procedure.
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‘ d ‘ V(Sl,...,88) ‘ Co ‘ C1

Q
\V)

3 21111;020 [0 | 1 | 1
31111;022 [0 | 1 | 1
21111000 | 0 | 0 | O
31111;020 | 0 | 0 | O
A1111;022 |0 [0 | 0

531122011 |0 | 1 |1

7 [32222;000 | 0| 0|0
52211;000 | 0 | 0 | O
42221;000 | 0 | 0 | 0
43211,000 | 0 | L | 0
33221000 | 0 | 1|0
32212;000 | 0 | 1| 0
33311000 | 0 | 1 | 1

Figure 4.4: Splitting coefficients of the sum-integrals.

4.3 A first example, V/(3;21111;20)

In the following, we demonstrate both the splitting procedure and the actual computation of
each term in part on one of the two non-trivial master sum-integrals that enters the three-loop
term of the mass parameter ([B.58]), V'(3,21111;20) [124] (c.f. Fig. (£3)). Based on this example
it is possible to generalize the computation to a generic set of parameters. Thus, the remaining
sum-integrals are to be treated in a similar way, by using the formulas from section 44l The
corresponding result can be found in Appendix [Al

Figure 4.5: Sum-integral V/(3,21111;20). The dot denotes an extra power on the propagator
and the “x” denotes a quadratic Matsubara-mode in the numerator.

The sum-integral is split as:

0—B1{0—-B , {{B—D10—B—C | 1{B—Dy{0—B—C
V(3;21111; 20) :i My Mg + 101 Hl;OZ + e 1o
P [P?]
—-B-C —-B-C
n i AR~ + IR, T + TP~ + T I, + I, T15, (4.62)
P

(P72
11,11
5 11244110 .
*?; P [p2p2

The prescription is to compute the finite parts first and the divergent terms in the end. The
zero-mode contribution generates two additional sum-integrals via IBP transformations.
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4.3.1 Building blocks of the sum-integral

Before starting the actual computation, we define all necessary pieces in both momentum space
and in configurations space. For a detailed presentation of their computation, see section .41
The zero temperature piece of II;, is according to Eq. (4.40):

i gLLd+1) T -0
Mo = J, @7 P +QP ppr i (4n) T2 - 20)[PY
where the integral can be solved via Feynman parameters (c.f. Eq. (B.)) and g is defined in

Eq. (B2).

The zero temperature part of I19;, is:

Qulv
Mo = /Q2P+Q _u“u”/@p“JrQ = (1,0) . (4.64)

The tensor integral is solved by using the standard projection technique with the ansatz:

(4.63)

_Q2

Jo QJ%S{ =0=P*(d+1)A+B)

=1((P+Q)%-P?-Q?? ’

 Quy

(P OF = AP%g,, + BP,P, =

P,P,Q,Q
4
fQ 52(11/:;+6)2V =4 Hﬁo - P4(A + B)
(4.65)
where we have used the property g,,g,, = d+ 1= 4 — 2¢. By solving the system of equations,
we obtain:

g(L,1,d+1) (d+ 1)p§ — P?
4d [P2]2+%

b, = (4.66)

As presented in more detail in section (@4)), the leading UV contributions II¢ are simply
obtained by adding up the contributions of II with the external momentum flow (P) going
through each propagator in the limit P — oc:

217
Mo = Jim, [iQQPJrQQ $Q2P+Q2] PZiQQ_P—é

—qo — po)® 211 + p_I?
If), = Aim 2 2) 2 2 P2 02 0z~ pz
7 Q%( P +Q?) Q (P+Q? P Q P
(4.67)
For defining these quantities in configuration space, we use the inverse Fourier transform of

the propagator (c.f. Eq. @I12)) 2 = £+ fd3ri:we*|p°|r. In this way, II;;, and II;;, become:

elart+i(qt+p)s X
— 3 — —|po+
Iy 40 —T/ /d /d T E e~ lgolr—Ipo+qols

qo=—00
¢iP)s X
_ / Br / @5 (r +5)- S e laolr—lpotaols (4.68)
2 T8 oo
e ipr
= dPr—-e I 3 110(7, [Pol) ,
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and similarly

275 5 €PT —|polr
My =7°T /d L POI” fa 112(7, [Pol) (4.69)
with
o0
f3110(z,n) :Z e~ (Iml+Imtnl=InNz _ .ot} 4 4 In|; faiie(z,n) Z m2e—(Iml+m+n|—|n|)z
m=—o00 m=—o00
(4.70)

given in Egs. (E.5 and [E.6).
In a similar way, we compute H%ﬁ’gl}u}. Notice that the I'(e¢) term from Eq. (f63), that

exhibits a 1/e pole, cancels the I'(¢) term from the denominator of Eq. (4I12)), and renders the
quantity finite:

C T3 ip .
H}ﬁo 1}12} = I/d3r—2€ ol {fBlgo(l“ Y), (QWT) f3 112($ y)} ) (4.71)

with the definitions of f to be found in appendix [El

4.3.2 Finite parts

With the previously calculated building blocks, we can compute all pieces in the splitting of Eq.

[EED).

The first finite piece of the sum-integral reads:

0—By70—B
! H112 1_[110
P4

2T9 e —lpol(r _ —B/= |= d3p eip(HS)
_ Z /d3 / 3 f3 112( ,|p0|)f£?,11%(8’ |p0|) /(27‘(‘)3 P4

d7ds e~ lpol(r+s) _ ﬂd@ ) eef\po\\/m
T (A 42/ rdase 3112( |p0|)f3110( a|P0|)/0 sin ol

vEL(3;21111;20) = i

T2 00 1 O o—n(z+y)
=yt et S e [l — ) = I (1 (e )
0

n=1

X

1 2 1 2 1
[i(n—i—cothx)csch% + %cothx + % 98 2Lw2 — Z_w] X [cothy — ﬂ
T2
= —— x 0.014356026(1) .

(4m)*

(4.72)
In the second line of the previous equation, we have simply plugged in the 2-point functions
and have performed the Fourier transform (Eq. (AI12]). Afterwards we have rescaled the
integrand and have performed the configuration space angular integrations by choosing the
spherical coordinates such that: |r + s| = /72 + s2 + 2rs[polar angle]. The remaining angular
integration becomes trivial. Finally, the sum can be performed analytically. The two dimensional
integration is performed with Mathematica [125] numerically.
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The second finite piece consists of two terms:

B—-Dyj0-B-C B—-Dy0-B-C
1_[112 HllO HllO 1_[112 ) (473)

(P22 (P22

!

Vv23(3:21111; 20) 4+ VH2P(3,21111,20) = i
P

Expanding the terms II”~P in ¢, we obtain:

B-P 1 _ arT? and HB—D_4p3_P21 anT?

1o gz = NPz B TP R 22 (4.74)

As «; is a dummy variable that cancels in the final result, it can be chosen to simplify the
computation. For o; = 472 no term of the form In(const) will appear in the integral and the
first term of Eq. (474)) simply reads:

i 2P P T Z,/ d3p (P2 —4p3)In P2/ dsrge—\polrfoffpc(? 17ol)
P [P2]2 48(477)2 7o (271')3 P4 72 3,110 )

(e [ = *(4pg — P?) | gsinpr
- — —|polr £0—B—C' (= |~ _p”(4py 1, p2Snp
48(27)? %; /0 dre P fy 10 (7, !PO\)/O dp——5; n P>

—2nx

T? K[ 1
:—72/ dz |cothz — = — Z| &
6(4m)* <= Jo x 3] =

2
[’yE(l — 2nz) + 2nx + " (1 + 2n2)Ei(—2n2) — (1 — 2nz)In =0
z

X

2

— (417;) x (0.001351890(1)) .

~

(4.75)

In the second line we have rescaled the integral and have performed the angular integration

of r and p (c.f. Eqs (C4] [CH)). Afterwards, the momentum integration was performed as in
Eq. (C12).

The second term is computed in a similar way:

/HBfDH()foC T2 co [ee] 1 2
ip 110 —-112 = — )i ngl/o dz [5(71 + coth z)csch 2z + % cothx

[P2] (
1 2 2 —2nx 2)
Y gmemE ot o] e |1 ) 12 (470
X X X X
T2
= @) x (—0.006354602(1)) .
s

A good consistency check is not to set « to a particular value and to check that in the finial
result of the sum-integral is a-independent. The numerical value is obtained by performing the
integral numerically for the first 10000 terms of n. In order to get an estimate of the remainder,
we have fitted the the integral between n = 10.001 and n = 100.000 to a power law f(n) = an™?
and have performed the summation n = 10.001...00 analytically. Thus, by chopping the sum at
n = 10.000 we get a relative error of O(10719).
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4.3.3 Divergent parts

According to the splitting in Eq. (£50) there are for the non-zero modes py # 0 five divergent
terms. Keeping in mind that terms like ) pII%/[P?] are two-loop sum-integrals (c.f. Eq.
and for fixed parameters, they are in appendix [B)) and by using the definitions in Eqs. (£8] [B.3]

B.5), we obtain:

‘

‘

g(1,1,d+1) 2I)

P, 279  g(1,1,d+1) il(d—i—l)pg—]ﬂ
P 4d(a 2) P

2 d+1

Iz R 21

1,1, d+ 1
aT 2

(
~ Ld(lll 00) + J4(111;0) + g(1, 1,d + 1)I9 4y + 217 x Ig}
2

T2 ©? oy 7 In 27 0
“ame (1) [ (o) v

(4.77)
i I8, TIS :i v9(1,1,d+1) (d+1)pt — P* 219
r P P 4d (P2t [P
1,1,d+1)1Y
_ % (R (4.78)
T2 w2 \*71 1
= Sz 24InG + O
48(4m)* <47TT2> L o tom G (6)] ’
i A" 9, Ld+ 1)# (M (d+Dpf—PPg(LLd+1) 1
P pt (aTz) — 4 pt 4d (P25 Pt
2 1
oPy 217\ 1
- (flﬁ * ﬁ) P
1,1,d+1 1,1,d+1
_gLLd+1) [Ld(211;02) i) - LA (4.79)
(aT?)*>= "2 4d
x <(d+ DI} ot — I§7%> S 0x I 21l < 19 ]
T (p2\* 1/ 5 G  ((3)
~ (4m)t (ﬁ) [Z <_E_ﬂ+ >t 120> +0le )] ’
P, i gL Ld+1) 1 (om0 py | 204
P4 P[P —al pa \“lp2 T p2
—g(1,1,d+1) [I? X Iy + 20} Ig_%] (4.80)
T2 2 \r1 19 4¢(3)
= —+-(= 24InG — =~ 0
96(4m)* <47TT2> |:E2 T <2 Tt 24 G 5 ) 0l )] ’
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and

i AL 9(171,d+1)2$ /(d+1)pg — P? 1 1
P P

P 4d (P2 [pr- 5t P
g(1,1,d + 1)
44 [(d+1)I5_g — I{_4]
_1 ,UJZB_’YE 3e 1 72 ln G _ 1 77T2 )
B S+ ————— 42+ — +360lnG - 216¢" (-1
48(4r)* < 47T?2 > L? + . + 2+ 1 +360InG 6¢" (—1) + O(e)
(4.81)

G = 1.2824 is the Glaisher constant. And the g constant, along with the Stieltjes constants
are defined via:

R T e = (482
i=1 ’

The generic formulas for the divergent parts are listed in Eqs. (£I37 {138 A.139).

4.3.4 Zero-modes

The zero-mode component of V' (3;21111;20) exhibits an IR divergence that cannot be cured
by simply subtracting different terms from the one-loop substructures, as in Eq. (@57). This
behavior stems from the d,,/[P?]? factor in the overall integration. Therefore, we use IBP
relations to lower the exponent of P and afterwards to apply proper splitting to the sum-integrals
emerging from the IBP reduction:

dpp o ip 5p0% =0. (4.83)
Using Eq. (D)), we obtain:
POpOpyLi1g = [—P°Tlayo — Ty1g + 1] Gy, (4.84)
and
PIpdpe i1z = [P Tlyys — Tyyp + L] by, - (4.85)

With the product rule in Eq. ([£383]) and by plugging in the relations for the substructures,
we obtain:

5 ol 1 5 y01T149 +H212H110 oy g
- P P4 T d—69p " P2 P2 2 pr 72 pa
Z(3;12111;02) + Z(3;12111;20) — 19 x J4(211;1) — I} x J4(211;0)
d—=6 '
(4.86)
The last two terms are of the form 1lloopx2loop, and are trivial to compute (cf. Eqgs.
(B3IB.A)). The first two terms are zero-mode 3-loop sum-integrals that need further manipula-
tion.
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4.3.5 Zero-mode masters

For V'(3;21111;20), we encountered two non-trivial zero-mode sum-integrals that are calculated
now in detail. In addition, the definitions of two new 2-point functions (and their divergent
pieces) are needed here, both in momentum space and in configuration space. Since the method
of computing them was presented in subsection A3.1], we simply refer to their definitions in
appendix [E]
For Z(3;12111;02) we have the splitting:

Z(3;12111;02) = i O 52

The first term is finite and according to Eqs.(E.I6] [E.6] [E:24), it looks like:

) Hgl_OEH(l)l_ZB - d3p 1 d3 3 ezp rts) E(’I“ 0) 0— B( 0)
Po P2 32 7210 3,112
P

|:H(2)10EH(1)I2 + 1_[2101_[112 + I12101_[112] . (487)

T2 & B sin pr sin ps
= 4(277)5/0 deSTf:a 210(7,0) ??112( ,0) [/0 dp o ps
4T? [ In(1—e 2 th y csch 2 1
= — 1 / dﬂjdyx n( © ) <CO yCSC y — —3> (488)
(4m)* Jo r+y+|z—yl 2 2y
T2 1 —y3cothycsch?y 3 9 9 9
= — 4y° — 2 3(2¢ Li Y)) —3¢(3
(4ﬂ)4/0 121 [+4y” — 2n°y + 3(2imy” + Liz (e*)) — 3¢(3)]
T2
= W x —0.02850143769881264033(1) .
T

In the second line we have performed all angular integrations (c.f. Eqs. (C.4] [C.6]). After-
wards integration over p was done as in Eq. (C8). In the second last line of Eq. (4388]) the
integration over x was performed by separating the interval into [0, y] and [y, co] and solving the
parts individually. The generic formula for the finite term can be found in ET3T1

At last, the divergent, analytic terms read (cf. Eqs (@49] [B.2] [B.5)):

1
ip‘spoﬁ [H210H Do + 105, 0H112]

(4.89)
1,1,d+1 d+1 d
:_de(z_L727170)+Tg(2717d)‘]d( 717171)
4d 2 2
The second zero-mode sum—integral Z(3;12111;20) is split as:
Z(3;12111;20) i Po P2 H(2)12BH(1]10Bi +H212H112 +ngﬂno] : (4.90)

The finite term requires the same steps as Eq. (£88]):

HO EHO B—F 2T2 00 h2 1 1
i Opo 212 112 = / dady * ecaer - cothy — ——1
ICEOR z+y+|z—yl 2 222 y

B T2 /‘X’d (1+y—ycothy)(y+ Iny + Incschy)
 (4m)t 2y
2

IR

x 1.197038267(1) .
(4.91)
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The divergent, analytic terms read:

1 d+1
yfépo 5 Mool + oM 0| = 9(1, 1,4+ 1) = = —,2,1;1)
Por d 2¢(1,1,d +1 2,1,d 12 d+1 (4.92)
+Tg(1,1,d) T3 - 2,2,1,1) + g(LLd+1) —g(21,d+ )Jd(3—i,1,1,0)
2 4d 2
Finally, we sum up all terms:
Z(3;12111;02) = AN (B s omesnr — 242, ) + O()
’ YT T \12) e T\ g T ET Al n ! o
(4.93)
T2 12 1o m
Z(3:12111;20) = STIeET <ﬁ> [6—2 + = <8 — g +1n —) + (24 — 1698
27vg? 37
+24m2 (1 -9+ ) - =F +1—72T 36102+ (16 — 9ye) n 7 (494)

9
+ 5 ln? % — 367, — 1622> + 0(60)] .

4.3.6 Results

In the end, we add up the terms of the previous section and obtain the e-expansion up to O(e)
of the second master sum-integral of the effective mass parameter.

1 T2 2 \%*T1
V(3:21111;20) = o <“ ) L—ﬁe<55+m+241na>+v2+0(e>}. (4.95)

96 (4m)% \ 4712 6
673 68 8¢(3) 79
= 4+In2{—-——-28 288In G + ——= — —T2InG
U2 36 ( 3 VE + nG + 5 +E 6 n
3lyg? 14372 5 )
i + 36 —8In“2+300In G+ 16In7 + 81n“ 7w — 48y, (4.96)
2 8
_XE) C()erc( 1) + ng
) )
~ 93.089439628(1) .
And
= 496V, — 32(21 + 25) ~ —36.495260342(1) . (4.97)

By using the definition in Eq. (£30) and the results from appendix [A] for the component
spectacles sum-integrals, the last building block of the effective mass becomesd:

5 T2 /2 \*T1 1/11
[y - 24In G @ 4.8
5727 36 (4n)d (47TT2> [e e <30+7EJr " >+m+ (6)] ’ (4.98)

5The constant term m shows a deviation from the result in [120] of 1%, most probably due to the poor
numerics. However, at this point we could not locate the exact error source. Fortunately the term m is not
needed in the final computation.
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with

491 167 384InG  2¢(3) 2506 1687g
= ——— +In2(-12 — +InG
m= Tyt < T T 25 25 5
N 536y 99vg> N 377n%  24In%2  48Inw  24Inm 112y 23((3)
75 10 150 5 5 5 5 150 (4.99)
72 p ¢'(3)
~ 42.1672( )
with
144V 432V, 216Vs 5184V 2592V,  2592V% 864V,
ny = — - - - - - -
! 5 5 5 5 5 5 5
432 144(2, + Z 11882 15122
B 5V10 4300y, ( 215+ 2) ' 3L 4307, 5 (4.100)

~ —2.17594(1) .

4.4 Generalizing the sum-integral computation

In subsection E2.3] we have determined a general separation of the sum-integral such that
any piece can be computed in part with certain methods. Moreover, the concrete example
of V(3;21111;20) indicates that generalization of the computation procedure can be achieved
to a certain extent.

In order to proceed with the computation of the finite and divergent parts, the different
building blocks of the one-loop structures need to be determined in more detail than previously
in subsection 3.1

In Eq. (446), the definition for the zero-temperature part of the 2-point function in Eq.
([EZ3) is given. It is an analytic function in P? and pg but a closed formula for generalized
parameters is yet unknown. Therefore, only the needed cases s3 = 0, 1, 2 are explicitly calculated.
For s3 = 0, we have an integrand with rotational invariance and the integral can be solved in
d 4 1-dimensional spherical coordinates (c.f. Eq. [B.2).

For the remaining cases, s3 = 1,2, the most general (tensor) zero-temperature part of Eq.

([443)) is defined as:

/ Quy X .. X Qp, (4.101)
Q (@7 [(P+ Q)] '
The common projection technique expresses the tensor integral as a linear combination of all
possible tensors made out of the metric tensor, g,,,, and out of the external momentum F,.
They are the basis vectors of the tensor space.

O, % . % Q [n/2] ) [n/2]—j n
/ [QQH]1 [(P+ Q)?] Hn =22 B | I gmaiae x P2 % II  Pul. (4102
Q o(n) j=0 i=1 i=2([n/2]—j)+1

where [n] denotes the integer part of n and in particular, whenever we have a combination
including an e-term, we always consider:

[number + ¢ X €] = [number] . (4.103)
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The first sum ) . denotes the sum over all possible combinations of y1, ..., i, taking into
account the g,, = g,, symmetry and the commutativity of g,, and P,. The coefficients are
computed by contracting each side of the equation with every “basis vector” and by solving then
the system of equations (having a unique solution) with respect to the coefficients Bz(ﬁl Our
concrete case however simplifies, since we need only the ¢y = U,Q,, case with U, = (1,0). In this
situation, the sum over all possible combinations of the term g, u, X... X Gpup, 1 i X Prugs iy X oo X Py,
simply reduce upon contraction with U, ...U,, to (symm. fact.) x p872i+1 We therefore absorb

the symmetry factor into the coefficient and redefine: (symm. fact.) x Bn(jll = By, j+1- In the

end we have:

[e/2] c

B H o [P2][c/2]*]'
P2 P Z e
o [P?[(P + Q)7 i=2([c/2]—j)+1

4.104
[0/2} ( )

=3 Bujin x gl x [P/
7=0

0, c even

1, ¢ odd
The coefficients B are assumed to be known, since they are simply the solution of the system
of [¢/2] equations. Their general structure is a linear combination of scalar integrals of the form

where {c¢} =c—2][c/2] = %[1 — (=1 =

1 / 1
[P2]e Jo [@2)atv[(P + Q)2b—=—v

(4.105)

Since these scalar integrals are all proportional to 1/ [P2]a+b_%, we redefine the general
expression of the zero-temperature part of II as:
0 [c/2] {c}+2J x [P2]le/21=i
A 4.106
/Q [P [(P+Q Z ,]—1—1 ]a+b*% ’ ( )

A key ingredient in determining the coefficients A, ; is to rewrite scalar products as 2(PQ) =
(P + Q)% — P2 — Q% when generating the system of [c/2] equations. In the end we have (a = s,
b= 82):

[9(81552 - 17d+ 1) - 9(81552,d+ 1) —9(51 - 1)S2ad+ 1)]

,_.l\.')lr—l

Agr = = [29(s1 = Lso,d+1) +29(s1,50 =1, d+1) +29(s1 — 1,52 =1, d+1)  (4107)

4d[
—g(s1,82 —2,d+1) — g(s1 — 2,52, d+ 1) — g(s1,52,d + 1)]
Ao =g(s1 —1,s9,d+1)— (d+1)Az; ,

with g(a,b,d) defined in Eq. (B.2). The dependence of A on {s1, s2,d} is implied. In summary:

(4.108)

/ {1, 40,43} _ {9(s1,82,d+ 1), poA1,1, A2 1 P* + Ay 2p0}
o Q% [(P + Q)?]* [p2]s2—f

29



For the leading UV part of Hob ., Eq.(B44) is used:
1
[(q0 +p0)? + (¢ + )’

+
HO B //oo 10 qu Q(c)
abe co—i0t 27T QO+q]
1

i [(q0 — po)? + (q + P)Q]b] et/ —
The integration over gy has to be performed using the residue theorem. In order to extract the
leading UV piece out of the integral, an asymptotic expansion in terms of p? is carried out. In
this way the integrand simplifies and integration over q can be performed for each term of the
expansion in part. These terms represent the leading UV pieces of 11075,

There is a much simpler way to extract (at least the first two) leading UV contributions
(T1S,.) out of the thermal part of 1T, , as will be discussed now [28].

(4.109)

abe?

P

S —n
o -
\/

P
Figure 4.6: Extraction of leading UV piece out of II(P).

By adding up the contributions in which the external momentum flows through both loop
lines and by taking the limit P — oo, one obtains the leading momentum behavior multiplied
by some one-loop tadpole.

. q5 . (—qo — po)©
lim + lim
P00 7o [QP[(P + Q)PP P=oo 74 [(P + @Q)7]4[Q%]°

- [?é o o+ > (1) [?é ) (4110)

n=0

c/2 c c—n
_ncIa 1\ C\ TPy n/2
=T+ X (1)

L {0, i odd

where 7; = 5 L i even’
)

s

abc —

The term 7; needs to be included as I? contains by definition only even powers in the
Matsubara mode. Thus, we have to make sure that terms with odd powers in the Matsubara
modes vanish. The second term of the right hand side (rhs) of Eq. (#II0) is obtained by
performing a momentum translation, Q — —Q — P.

The last term needed for the computation of the sum-integral is II¥(pg = 0). It is simply a
generalized one-loop self-energy in d dimensions. This case is largely used for the zero modes:

g(a,b,d)

E
aho(po = 0) = (p2)arbd/2 - (4.111)

With these definitions, the finite and divergent parts can finally be computed.
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4.4.1 Finite parts

This setup follows the one in [120], but with a slightly different approach on the finite pieces.
The central formula for performing the finite terms in configuration space is the inverse Fourier
transformation of the propagator:

1 21-¢ s o (R
= ipr | F0O
[P2]s — (2m)4/2T(s) /d re <r2> Kq_(Ipolr) (4.112)

where K, (z) is the modified Bessel function of the second kind, Eq. (C.I)).

Based on this definition the general one-loop function can be computed in configuration
space. By plugging Eq. ([AI12) into Eq. ([@43]) and by performing the momentum integration,
we get:

d—2s9

. T92—512 Z ddI"I“QSm_deipr[ ﬂ%{( + )2] 1
s18983 — (27T dr (s1)L(s2) ) do qo T Po

(4.113)
x Kg_sl(!fJo\T)Kg_SQ(!qO +polr) -

Using the definition in Eq. (C.2)) that explicitly determines the Bessel function of half-integer
argument, we obtain:

(27TT)2d+1—2512 +s3

— d.. — d—1 -
Horsass = 9o o) (51)T(s2) / e 72PN £y o (7 0]) (4.114)

with

[ T PRI
fd818283(x n _e|n\x Z Z Z g d : 1
m=—o0 =0 v (it ]s =51 -3) (4.115)
(G+|4—s2]—3)! mSSIm\TI_Sl_i!n +m|T o~ (im|+|n+ml)
G (=i + |5 —s2| — 3)! (2x)iti '
The function fg s, s,s5(x,n) is in general some function f(cothz,|n|) and specific values are
explicitly shown in appendix [EL
The zero temperature part II? is in general a product of a simple propagator-like structure
of the form [P?]~¢ and a divergent pre-factor. Therefore, the I'(¢)~! from Eq. (EILZ) cancels
the dilé/ergence of the pre-factor and renders the zero-temperature piece in configuration space
finite

(27TT)2d+1—2512 +s3

B _ d., —s12—d—1 - B -
0 s = ooy T eg) J %7 B D, (4116)

with

(47T) 2 9(817827d+1) ( )F(82)|n|d—812
T (s12 = 45)

||3—s12+d| 3|

Ul osmrd g,
X ]ZZ:O ]—}—|§—S —{—d‘——(”)

ffsmo =
(4.117)

®Tt is not the case for IT,y, for which only TIZ}C is finite in d = 3.
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The definitions for s3 = 1,2 are straightforward.
For the leading UV part, we simply plug Eq. (£I10) into Eq. (AI12):

(27TT)2d+172S12+53 ~ o
Moisass = S oy T(sg) ] T €T Silrsasa 7 IP0l) (4.118)
with
a+1 s3/2
o B ) B2 TR w e
fd7818283($’n) == (27TT)d+1f2s1+3381 z T |n| 52R3*32(|n|$)
) 2821‘(52)] i/2 ESS Y S B (4.119)
Z Gyl e (k)
=0

where « is defined in Eq. (C.2)).

After defining the building blocks of the computation in configuration space, all three generic
types of finite pieces can be determined.

We start with the term:

f,1 Hg SBS Hg SBS
V5H(d; s15258358485; S657) = i W . (4.120)
P

There is a specific ordering in the computation that guarantees the analytic manipulation of this
sum-integral to at most a double integral from 0 to co. The prescription is the following:

e Plug in the definitions from Eq.([dI14] EIT6]) by first explicitly computing the sums in
Eq.(@I115, &117).

e Perform the momentum integration/Fourier transformation, Eq. (£I14]):

ip(r+
/ezp(r i _ 2” la —\Po\\rﬁ-sl’pol%—a’r_i_s‘%—a
» [P (21)F T(a)
|

1
||2 a| 2

J+ g —al-3)!
oy ditlame o)l o gy
=0 J(=i|§ —al - 3)!

(4.121)

e Perform the angular integrations of the configuration space variables. Notice that, by
conveniently choosing the axes in such a way that the angle between r and s is the polar
angle, all remaining angular integrations become trivial (c.f. Eq. (Cd4))). The angle
integration generates the function hg (7, s, [pol), Eq. (C9).

e Perform summation over pg. It is not always worthwhile for a numerical integration to
perform it. It turns out that for terms in higher dimensions it is more efficient to sum up
the first few terms of the numerically integrated double integral.

e rescaling (to avoid a dimension-full integrand) can be performed at any stage of the com-
putation.
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The generic result is:
Vf71 d . _
( 73182838485,8687) =
T3(d+1)*2312345+367

93 (d—1)—s12345+s46 [Hf T(si )] _1/2F( )F(%)(4ﬂ)2812345—867—%(d+1)

e nlmte:) 4.122
[t S I 08 o) 08 ) )
2

nln

le=sil=2l (. a1 _ 1y A oun _3(z1,22,M)
(]+ ‘2 $1| 2) - + +s1 ]7 L 2,

X
2 A(Hd-nl-b G

The second class of finite terms is of the form:

HBDHOBC

vh2(4- - zi 525456 535557 4.123
( a8182838485a8687) ya [P?]Sl ( )

Due to the B — D term, whose e-expansion generates a term of the type In P2 +In « x const,
the integral will contain a trivial part which is merely a two-loop sum-integral (to be computed
analytically) and a complicated term that necessitates a numerical evaluation.

ch/ﬂ Ac7j+1[P2][c/2}fjpéC}+2j

Habc Habc ([PQ] [O‘Tz]_e) [PZ][CH-IJ—%]
[c/2] [PQ][C/Q]fj {c}+2j p2 o T2 (4'124)
- —€A, ——1In O
;L 60(._/(’)];1) [P2][a+b—ﬂ] [n 472 472 ] +0(9) .

The trivial part contains the dummy variable @ and makes sure that it cancels the a-
dependence in the divergent piece so that in the end the sum-integral is indeed a-independent.

By plugging in the second term in Eq. (£124) in Eq. (@I23]), we obtain:

6
2 —j, {s6}+2j
f,2 O‘TQ -  [P2]lse/A-ips 0—B—C
V|, =n Z €Asg,j+1) ip P T - B-c (4.125)
J

’ 35
Terms of the form Y P[;’Q%HSQS%AL

mode subtracted) that can be reduced via IBP relations to products of one-loop tadpoles (c. f.

Eq. (B.6)):

are simply two-loop sum-integrals (with the py = 0

’ pSS
i —[PQO]SI H525354 = Ld(313283; 8485) — [1 — 50755]Jd(818283; 84) . (4.126)
P

The delta function takes care that the zero-mode subtraction makes sense only for s5 = 0 for
which a zero-mode is existent. All the other terms are simply products of one-loop tadpoles

defined in Eq. (B.3). So by plugging in Eqs. (£46] [£110) into Eq. ([£I123), we get:
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3] 0
OzTQ P d+ 1 S6
Vf’2‘lna =In A2 (EASGJJrl) |:Ld <|:824 - T:| - |: ] + 51+ J, 83, S55 {56} + 25, S7>
j=0
d + 1 S St
— 09 {s¢}+2j X Tsy ¥ J? ([824 - T} - [ 6] + s1+ J, 83, S5; 9 >
[%7] {Sz}+{S§} g
— Ago i1 X Loax ]2
2 Aeried X MMerbH{oo200) X Sy 841 4 [oag— 2] 3] - [F 4145
F o
= Tlst X e} +25 X Lsg % Is15+[824—ﬂ]_[%6]+j
. Cird 87 i 327+{56}__'+j
ST () %Mty 1 LA
1=
(4.127)
The first term in Eq. (£123)) is now:
. %] pleat+2 P2
Ve =;£ Z% ) [Pz]sw[sakdi]f[%ﬁ]ﬂ e Magsssr - (4.128)

The ordering of integration is:
e Perform angular integration of configuration space variable, Eq. (C.3l [C.6])
e Angular integration of the momentum space variable becomes trivial.

e Perform integration of radial component of momentum variable, which generates the func-

tion 1, 4, Eq. (CI2).
e Rescaling can be performed at any stage.

The outcome is

- \/7_'( T2d—25135+567+2—2[524—ﬂ]
v -
{IHP2 F(%)F(Sg)r(85) 23dT—1717335+s7 (471_)28135_8674‘2[824_@]—d—l
o0 [%£] s6—2[ 2] +25
s35—2,—na 0—B—C —€Ass 1 X1 4.129
XZ/O doram fd838587 (w’n) i—0 256~ [826] 31*[524*M]+] ( )
j=

The last class of finite integrals is part of the zero-mode contribution V*f,

The IBP zero-mode reduction program proceeds this step (c.f. appendix[D]). Tt works in such
a way, that the new obtained zero-mode sum-integrals can be calculated with a similar splitting
procedure as for the non-zero case. That means, that potentially IR divergent pieces stem only
from the one-loop substructures, II. The proper subtraction should render the remainder finite

(c.f. A8).
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The generic finite part is then:

1
Vz’f(d; $182835485; S6S7) = i Opo -4 o4 . (4.130)
P

[P2]51 $284867 838587

Similarly to the first two finite parts, there is some prescription of the ordering in which
the integrals should be performed. During integration, two different cases need to be taken into
account: s1 # 0 and s; = 0.

e 51 # 0 case:

— Perform the angular integration of the configuration space variables, Eq. (CI).

— Perform the integration over the radial part of the momentum variable, Eq. (C.S8).
It’s angular integral is trivial.

e 51 =0 case:

— The momentum integral is the integral representation of the Dirac delta function. It
generates a (3 (r+s) and eliminates directly one of the configuration space integrals.

— Perform angular integration of the configuration space variable, Eq. (C4).
e Rescale the integral.

e For a certain combination of exponent parameters, the integration can be reduced to 1
dimension. E.g. Z(3;1212;20).

The general result for the s; # 0 case is:

0—A 0 A
id ]'_‘[823485 S385S57
Po

P2 Ss1
\/7_-({‘(5 _ 31) T3(d+1)—2812345+867
= 4.131
2d717$2345+281+567r(%)2 |:H;L—’ 1 F( )] (47-‘-)__(d+1)+2512345 S67 ( )

o
/ dayday o} a3 2 (01,00 [ (2, 0) s, a(wn, 22)

Since Eq. (A.57) shows that in any sum-integral of interest, there is (at least) one substructure
of the form II°~F, that is, for which summation over the Matsubara modes need not to be
performed a priori, we give an alternative expression for this substructure (c.f Eq. (E4)), in
particular for the case s;1 = 0:

z,f __ 0—F 0—B
V = i 5 H828486H83S587

ﬁ T3(d+1)7282345 +s67

gt () [, T(sy)] (dr) 50 # 2o

=2

[5=ss|-3] . |a 1
o0 i+ |5 — s3] —3)!
XA dpps2345— —d— 3fd533557($=0) Z ( ‘|2 3‘ 2)

= (it [g s =)

M&.

d l
T s o) T asnsis (6

% FCrEmsl-Dl eom

(4.132)
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with

Liy () =Y =— . (4.133)

4.4.2 Divergent parts

With the expressions of the divergent pieces II{5:C:F} in Eqs. (@108, EI10, E49, EI1T) and
through their simple propagator-type structure, it becomes clear that the divergent parts of the
sum-integral are formed of at most two-loop sum-integrals, but predominantly of some factorized
one-loop structures.

There are in principle two types of divergent structures that occur. The first one is of the
form:

, or . .
1, or IETIY 4.134

These have the property that all propagators are of the form 1/[P?]% and the two-loop sum-
integrals that they form, can be systematically reduced to a product of one-loop by IBP. By
recalling the definition of a two-loop sum-integral, Eq. (B.f]), and also the fact that the zero
Matsubara mode is omitted in the outermost integration, we have:

" P60 Po Po

The first term on the right hand side is a standard two-loop sum-integral, (L%(bcf;ag)) and
the second term is -only if @ = 0- a special two-loop sum-integral defined in Eq. (B.3), Jd(bcf; 9)
and otherwise 0.

The other case occurs if we are dealing with any combination of II{5:C:2:-E} n that case, it
is not excluded to obtain some combinations of propagators of the form 1/[P?]?*¢. The result
will be some product of simple one-loop tadpoles or J¢ (in the case of II¥). In addition, the
omission of zero Matsubara mode is irrelevant, since it gives rise to a scaleless integral, with in
dimensional regularization is 0:

jpapoﬁ ~0. (4.136)

With these ideas in mind, we have 5 types of divergent structures (omitting those multiplied
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by ¢p). The first divergent part is of the form:

/HD HO—B—CQC
V4L(d; s159535485; s657) = i 528456 335557 4 (246 <> 357)

P [P2]s1
[s6/2]
= (aT?) ; Agg it [L (8124 — 5 [7] + 1,53, 55;{s6} + 21, s7
dl +1 Sg s7
- 60,{86}+2i X 77s7Jd <5124 - [ ]2 - [5} + 1, 83, 853 B}
4.137
[372/2] N I{SG};{MHH ( )
- G171 i+7) X s S L
L Do T ) T g1 5] [ i
A
— Callsy X Nsg}t2i X Lsz X I812457[d]2+17[576]+i
k {36}+57_k+i

s7
S7 =
— (=17 <k>77k77{56}+2i+57—k x I x I~ 2 a1 sag 5| F (246 +» 357) .

1234 —
k=0 2

Recall that [z] means the integer part of x, particularly [3 — 2¢] = 3.
The second term is of the form:

d,2 ! HgS4SGHSC35587
VEE(d; 51525354853 8687) = LT P + (246 <> 357)
[s6/2] - ol
= 2 At [ X2 X L X D g (4.138)
1=

{s¢}r+s7—J +i

s7 .
S7 L
+ (=1)°" Z < ‘>”7j77{86}+2i+87—j S ap1 0]y, + (246 <> 357) .

=0 ] 51234 — "5 b}

Finally, the last divergent part of the non-zero modes is:

S8 118
Vd,3 d; . — i 528486838587
(d; 51525354553 5657) T
[s6/2] [s7/2] (o6} tlon} oo (4.139)
= Ag i1 X Ag i1 X ax T 2 et .
E E 56,i+1 s7,J+1 X Mse}+{s7}+2(i+7j) s1zsas—d—1—[ 28] =[] +i+s

i=0 j=0
The divergent parts that may occur in the zero-mode integrals are:

Aot HSES s Hs S58
V7 (d;5132338485; 8687) = i 5})0%
4, (4.140)

d s
= 00,65 X sz X Tg(52,84,d) x J? <8124 — 5753, 855 57> ;

and
B

1I II
Vd,Z,Z(d; 8152838485; 8687) = i 5p0%
. (4.141)

d+1 S S
= (50,{36} X Ngy X ASG,l X Jd <8124 — T — [56] , 83,85, 57> .

Concrete examples of divergent part calculations are given in the next two sections.
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4.5 Dimension zero sum-integrals

All the sum-integrals of mass dimension zero enter the three-loop term of the effective coupling
in Eq. (360). They are different from the previous class because, firstly not all of them can
be treated the splitting prescription given in Eq. (4350 and they are the first known three-loop
sum-integrals that exhibit the full power of divergence, namely ¢3.

In this section the calculation of two sum-integrals for which splitting differs from Eq. (£.56)
is presented in more detail. The remaining sum-integrals are to be found in Appendix [Al

4.5.1 Example 1: V(3;12111;00)

This subsection follows the computation in Ref. [126]. In order to improve legibility, we will
denote for the moment this sum-integral from Fig. (£7) as: Vis = V(3;12111;00), according to
the convention of naming the finite parts (c.f. Table [A1]).

Figure 4.7: Sum-integral V' (3,12111;00).

It is due to the explicit pg = 0 mode in II,;, expressed in configuration space (and that would
generate a 1/0 term), that one has to subtract the IR part rather than the zero temperature
part. In this sense, we have the following splitting:

11,011
Vip = i 21011110
P

P2
0—FE770—B 0—B B—Dy0—E—-B-C 0—F
— i ’H210 HllO 4 i ’H2E10H110 4 i HllO 1_[210 4 i ’H30H210
r P2 I P2 p P2 (4.142)
B—D1yB+C
+ 1_[110 1_[21J6 + H%OHHO 5 H210H110
% P2 b Ppo

£,1 £,2 £,3
=V +VE + Vi + Vi +V12 +V12 +V12,
with Vi, = Vi + V5" + V™.
Finite parts
Using the definitions in Eqgs. (@114 [E.5], [£23) we get for the first part of Vi

Vﬂl _ ! (H210 - Hglo)(nno - Hﬁo)

dBp 1 T T3
_T d3r2eiPr e~ laolr—lgo+polr =__
Z / (27()3 p2 2(47‘r)2 / I' ¢ Z ’CIO 4 (4'143)

Po

1 . 1
. /d3s_—261p (COthg— j> e~ Ipols
5 5
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Notice, that the sum in II,,, is not performed yet; it turns out that the sum-integral can be
reduced to a one-dimensional integral if the order of summation and integration are switched
(opposed to the prescription from page [62]).

After performing first the momentum integration and afterwards averaging over the angles
in configuration space, Eq. (C9), we obtain:

val_ / e / dyt (Cothy > ~ nly—(jm|+m-+n)y
2 GZ [afm]

. <ef|nuxfy\ _ ef\n|<x+y>) .

(4.144)

We now perform the integration over x. The case for which |m|+ |m + n| — |n| = 0 has to
be treated separately. After carefully splitting the interval over m accordingly, and performing
the z-integration, we get:

e 2lnly
f
Vs = 62/ dy Cothy—— o it
(4w |m|
e 2nly 1 _ o—Imly—|m+nly+|nly
d th
4W6Z Z|n 1/ Yy <CO v > nlfm| “Jml+ [m + 0] — | (4.145)
U(l 00)

e~ Imly—Im=+nly—inly _ ,—2In|y

+2Z,/°°d1<th1> 1
——5 y— | cothy— :
@m)S = Jo Ty y/ Inllm| |m[+ |m +n| + |n|

where H,, is the harmonic number of n: H, =Y ;" | 1/i.
By explicitly resolving the summation intervals and using symmetry transformations of the
form m — —m and m — m + |n|, we can rewrite the term as:

o—2ny
12 = 47762/ dy (Cothy——> H,

5 X (] o2y & ey (1 ) (4.146)

Fap ) (comy—3) 2 (=) (o~ o)

Performing first the integration over m:

o0 2 % _—2m

S == Y= ()

mozl 1 m=1 ~omy (4.147)

mZ:l R =W (n+1), mZ:l T — e WP(e?,2,1+n),

Lis(z) being the Dilog function, (") the Polygamma function and ® the Hurwitz Lerchphi
function, we obtain:

£l 2 * 1 1 2 . e—2ny f2ny
Vig = W/o dy; <cothy - §> [(E — Lig(e™) Zl + QyZ
"= (4.148)

s 6—2ny
(n+1)+e 2 E —®(e W, 2,n+1)
n
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It turns out that the sums over n can be performed analytically, by using the integral
representations of the special functions involved:

o _
e 2ny

> =Lij (e¥)=-In(1-e%). (4.149)
n=1 n
For the second sum in Eq. (£I48]), we use the identity H,, = ¥(n + 1) + g and the integral
representation of :
] G 4.150
= t| — — . .
v = [Ca (- 155) (4.150)
By first performing the sum, we get:
x© _—2ny 00 1 (1 _ 72y) 1 (1 _ 72y7t)
e n e n e
)=—[ dte™? — : .
D ———vn+1) /0 e [ ; — ] (4.151)

n=1
We now turn our attention to the second term in the brackets and by using the transformation
1 — e~ ? = u, we obtain:

/°° dtln(l - e_Qy_t)eft _ /1 duln(l —e W + e W)
0 0

1—et U
—2y
1 In(1-— ei—_u
_ / %ln(l —e 23/) +/ du ( v—1 ) (4152)
0o u 0 u

L du e 2
= 11'1(1 — 6_2y) —_— = L12 <27> .

0 U e ¥ —1

We rewrite now the following integrals as:

et d U v ! d
/ dt— L /1 : Ul / v (4.153)
0 nv’ o 1—w

Next, we make use of the definition of the yg constant, yg = fol dov (ﬁ + ﬁ) and obtain:

x ef2ny 672y
=—Lig [ — ] . 4.154
> o (=) (4139

n=1

For the sum involving 1) and @, we use their integral representations and employ the same
approach as above.

tefzt 1 o] —
M) — P - S 4.1
W0 = [ a e vlesa) el (4.155)

Finally, we get:

£1 1 °  1—ycothy 2 o 2 2 2 : 2
Vg = @ J, dyT 8y(m* — 3iry + y°) + In(e® — 1) (—2n° + 24imy + 12y
1+ cothy

+31In(e? — 1)(—2im — 4y + In(e? — 1))) —3(m + iln(e® —1))?In 5

thy + 1
—61In(1 — e %) Liy (ef2y) — 12y Lip (%) + 6 Liz (—2¢? sinh y)

1 1
= va = @ - 0.6864720593640618954(1) .
(4.156)
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The second finite part of Eq. (£I42), according to the IBP reduction of I1¥}, in Eq. [D.5

B
vi2 _ sz Mo — e
12 = 210 P2
P

, [ dp T |po]\ 1 T3 1 1
=T -—— =7 dPr— th7 — = ) e~ IPol™
[ (w7 [ e (o)
0

Momentum integration and rescaling are performed:

Vit = ~T@ Z/ dm( > (cothx - i) e (4.158)

First the integration and afterwards the summation can be done analytically:

(4.157)

£2 3+ 2n —4nlnn + 4n(n) — 202 (n)
Vi = (47T 6 Z

4n3

(4.159)

= 2 - T nor - 3

=— 2 - — - — == .
(477)6(”)“ 3 T g 2«)
For computing:
[B-P10-E-B-C
‘/lfé?) — i 110 2120 , (4160)
b P

the generic formula in Eq. (£I29) can be used, noticing that only the combination Hggc makes
sense in d = 3 dimension, since every piece is divergent individually and only their sum is finite.

Therefore we have, Eqs (E51 m
ln P2 ap 1 T L
Vi3 _ / N / d3r=¢'Pr
12 = 7g3 Z 472 P? ) 2(47)? e

(4.161)
x [fgglo(f, pol) — S5 (7 rpow}
Finally, we obtain:
VS —In a1 22957 —dy — €42
472 (4m)6
1 i /00 dze 2" |2 B(e™2* n 4+ 1,0) 4+ H, — In(1 — e72%)
(4m)S 0 7 ’
n=1 (4.162)

2
— <*yE — ?"Ei(—2nz) +In QE + 6£> } [(m il ’yE> — Ei(—2nx)e*
x  6n T

= ﬁ [lnf—;g (2 — 29g” — 4y — %3)> + V1,3] ;
with V1273 = —3.202(1).

The summation over the second part converges very slowly and the evaluation of the in-
tegrand itself is tedious since it contains special functions. The summation was done up to
n = 7000 with a relative error of @(10~3) and beyond that a power-law function (a-n=", b ~ 1.89)
was used to fit the data in the interval [9000,19000]. The analytic summation n = 9001...c0
gives an error of O(1074).
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Divergent parts

The divergent parts are:

E
vt _ sk o Haro = 1Moo
12 — ya 110

P2
g(l’lad+1)|: d d d
=22 2 I L4(121;00) — J4(121;0) — J (211;0)]
( /_Ole)?’_d
YE _ In(4maq) 3e
1 ples T3 1 3 1 w2
= — 4+ - 1+Z(9—-4 ___8 4.163
2(47)6 < T2 ) LB TEte ( g 71) (4.163)
16 5
n (23 1292 gE - 1—7; +1672InG — ?mzw

— 24y 4+ 167E71 + 872 — 7((3)) + (9(6)] ;

HC
d,2
Vig :i (Huo Hno) ;;O

’ 1 1
=g(1,1,d + 1)#]3 <(P2)2—% a (alTQ) _dil>

92,1, d+ VI g+ T 4y + 101 an
2 2

g2, L,d+1) 1§ 1)1
(P2)3—% +ﬁ ﬁ ﬁ

=g(1,1,d +1)

9(2’ 15 d + 1)]07d+1 + [IO]2 + ‘[10‘[??

d+1

(nT2)*" =

1 (AN 1+1 4 3mor) 1 97E 2
~ 3(4m)6 \ 17 €3 2 € 4

3 9 3 3 3[In a1)?
— 5[111471]2 — 671 —Ina (5 + - + 5111471) + M) + (’)(eo)] )

2 4
(4.164)
and
43 I8 TTE ’ d+1
P 1 p - ; (4.165)
:_W (ﬁ) |:E+<§—|—3’7E—7QIDG+3IH7T>:|—|—O(6).
Notice that:
1 /2N 1
vilpyd?— - <—> — [1 + ] e+ ]2+

2R eums \12) ¢ (4.166)

+ ( +ln7( 12 4+ 12952 + 241 + (3 ))) 3] :
From here we could read off the analytic expression for Eq. (£I162).
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Zero mode-master

Here we briefly present the calculation of one of the zero-mode masters coming from V'(3; 12111; 00).
As already mentioned on page 48], from II;;, both the zero temperature and the zero-mode con-
tribution have to be subtracted, such that we end with:

11,411
Z(3;12111;00) = i By 2105110
(4.167)
i(s HSlOEH(l)loB r +¢ s 1150104 _i_i s 01113 ” .
Po % Po P2 % Po P2
Thus, the finite part is:
[0-E0-B—E
Z'(3;12111;00) i Opy—220 110 110
4 — |z — 1
== Tie / dxdym—i_y—”ln(l —e ) <Cothy - — = 1>
2 * ycothy —y—1 9 .9 3 . ( 2y
= ~30470 /, d /? (—27%y + 6imy® + 4y° + 3Liz (e) — 3¢(3))
Z; 1
= GF = (—5.16622349123187417171(1)) .
The divergent terms are:
E B+E d
i S H310H 110 +211210H110 — Tg(2,1,d)7%(4 — £,1,1,0)
P P . 2 ] (4.169)
+g(1,1,d+ 1)J43 - % 2,150) + Tg(1,1,d)J%(3 - 5,2,150) .
And finally:
1 1 3 4 3¢(3
Z(3,12111,00):m<;2> |:_ <§_%>+<’7E+ID7T+§> <7T2—|—%
¢ (4.170)

+ ¢(3) 32— 2 — 2472 InG -3¢ (3)+ 25 )| -
3

4.5.2 Example 2: V(3;22111;02)

Figure 4.8: Sum-integral V(3,22111;02).
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This is the last sum-integral (cf. Fig. (48)) for which the splitting of Eq. (£56]) does not

apply:
L, 01
Vig = i My101l119
r» Pt
0—FEy70—B B—Dy0—-E—-B-C
_ ’H210 1_[112 H210H112 1_[112 1_[210
- 4 + 4 +
P P P P P (4.171)
B—Dy1B+C
+ 1_[{)121_[210 + H112 H21j5 + 1_[210I1112 5 1_[2101_[112
Pt Pt PO
P P P

£1 £,2 £,3 4,1 4,2 4,3
=Vig Vi VTV VT + VY "‘V14-

Finite part

The first finite part, we treat in the same way as Eq. ({I43]); we first perform p integration,
Eq. ([C3) and rescale the integral.

0—E0-B
Vf,l _ ’H210 1_[112
14 — P4

1 e~ Imle—|m-+nlz—|nly

47‘( (41)6 Z / dzd y ’n’?)’m‘ f;?ilBg(y, |TL|) (4.172)

x [e—*""x—y'u = [nlle = yI) = "1~ |nf(z + )] -

It becomes clear that integration over z and summation over m is much more demanding in
this case. Therefore, we use the generalized formulas in Egs. (C.19] [C.I8)) and obtain:

co [e'S) —2ny
Vlfil = m Z/o dyiL47 [3y3ef2y (n2 cothy + (n + coth y)csch 2y) -3
n=1
— ny(3+ 3ny — yg)] X {—Gn [—3@(6_29, 2,14+n)+nd(e 23,1+ n)}
+ [ =2n)nm* + 6 [ye + Yo(1 +n)] [1 + 2n (y(3 + ny) — 1)] (4.173)
+12n(y — 1)(In[l — e 2]+ ®(e"2,1,1 +n)) + 3n ((—6 + 4ny)y; (1 +n)
— mipa(1 +n) + (4n — 4dny — 6) Liz (e~ ?¥) — 2nLiz (e~ %) + 2n((3))] }

- ﬁ % (0.1544(1)) .

The second finite term, is after momentum integration and scaling simply:

vi2 _ i H210H112
14 = — pi
P

p4
3 3 0—B _—2nx 4.174
= 471' TG Z dx— 1 + + - 3112€ (4.174)
1
= G ¥ (—0.101108838933043(1)) .
T

The sum has been done analytically and the integration numerically.
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The third finite part is according to Eq. (@I129):

B—-D1{0—E—-B-C
Vf’?’ _ H112 H210
14 — P4

1
34 6/ dmZ fato 7mC @, n)e ™™ [l3a(z,n) — 202l 5(2, )]

= - E / dze " |2 B(e™* 1 + n,0) + >"Ei(—2nz) + H,, — z
3(477)6 6
n=1"0
—2x ne’r 2nx : 2n
—In(l—¢**)—1In 5 | % 2nx 4+ e (1 + 2nx)Ei(—2nx) + (2nx — 1) In e
= —0.162(1) .
(4.175)

These finite parts are time consuming as they contain special functions. Moreover their
convergence is very low. For the last finite part, the integral has to be evaluated up to n =
150.000 in order to obtain an relative error of O(1077).

Divergent parts

The divergent parts are simply:

Vd,l — i /HEQH(Q]IOE — i ! (d + 1)p% — P2 g(la 17d + 1) H(Z)IOE
" P4 P 4d (anT2)2 4 P*

_ g(1,1,d +1) [d ) /pgﬂglo_ ,%
4d(0[2T2)27M ( + ) % P4 7 p4
(4.176)
d“i ;ﬁ q°P4Q4P+Q ;ﬁ ;ﬁ q°P2Q4P+Q)}
% [(d +1)L%(221;20) — <Ld(121;00) - Jd(121;0))
4d(a2T2) T2

—(d+1)J%221;1) + J*(211; 0)} )

B—Dy1B+C

Vd’2 _i l_[112 H210

14 — - 54
P Pt

_ 9(1,17d+1)i /(d+1)pg — P*
P

o dt1

1 1
4d pt (P25 mg%'T]

92,1d+1) 1§ I
(P2)3—% P2 p4
_g(l,l,d+1)
- 4d

— (902, 1.d + DIY_ss (a2) + B(0e) + BEf())]

(4.177)

(@ +1) (92, 1.d+ DI s (a2) + B} () + [} (o))
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Vd,3:¢’H%OH1B12:$’$6 1 9(1’1’d+1)(d+1)p%_P2
14 B P4 7 70 qOQ4(P+Q)2 4d P4 (P2)27%

(1,1,d+1) d+1 d+1 (4.178)
gll,1,d+ d + d +
=== |(d+1 2,4 —— 1;1) — 2,3 — ——,1; .
4d [( + )J < ) 2 Y 9 > J < ?3 2 Y ’O>}
Zero-mode
The zero-mode contribution simplifies via IBP reduction to (c.f. Eq. (D.30)):
. . . . 7l d .
ya _ Z(31221102) + Z(3:1212102) - I} x J(22150) (4.179)

d—>5

The explicit values for the zero-mode masters are in appendix (Al).

Summing up, we notice that the generalization of the splitting procedure and the generic
formulas of the individual pieces simplify the work considerably. Even in the two concrete
example presented at last, we have partially borrowed some of the generic results from section

4.4
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Chapter 5

Results

At this point we have computed all necessary pieces in order to determine mg and gg. We plug
in the computed sum-integrals into Eqs. (3.58) and (3:60) and provide the final, renormalized
results on the matching coefficients. We find out that in the case of the effective coupling we
still need to consider operators of higher dimension in the Lagrangian from Eq. (8.3]). Further,
we discuss in which way the higher order operators will enter our computation by pointing out
the UV properties of the diagrams that contain the new interactions. We end the current thesis
with an outlook on this work, specifically on finishing the computation of gg and on a wider
prospective: on the need of new techniques for solving sum-integrals.

5.1 Debye mass

With the master sum-integrals at hand M:??%k% M{){]ﬂo and Mgf?uo, we are able to express
Eq. (B58) in d = 3 — 2¢ dimensions. However, the mass parameter is expressed in terms of the
4d bare coupling g? and thus it requires renormalization to render the parameter finite.

For that, we recall the relation between the bare and the renormalized coupling from Eq.
([2.44)), here rewritten as: g% = Z,¢*(ii) and the combination p~2*¢¢?(fi) is dimensionless. We
have dropped the subscript R for simplicity. The renormalization constant Z; has to be known
to three-loop order in terms of the beta coefficients of QCD.

By starting from the condition that the bare coupling g% should not depend on the mass
scale 1, we obtain the RGE equation for the renormalized coupling and relate it afterwards to
the renormalization constant

d 9 ! d 2/
—0=u—2~2 5.1
MdMQB 'udu 09” (1) 5 (5.1)

with Z, taking the general form (2.46]):

9@t e | (9@ fea2 e
Zg=1+ (4m)2 € + (47)? ( ez T > (5.2)
9(@)*n>" (a3 | 32 | 31 8 |
* [ (47)? ( €3 + €2 + > +0(g")



As we intend to obtain the RGE equation in terms of the beta coefficients in the Iimi e — 0,

Bo B1 B2

A oy . 6/ 8/~ 10
i (R) )Y (1) + @m)i? () + an)? (1) +0(g™) (5.3)
we relate the unknown coefficients ¢; ; to 8; and obtain:
2, —2 —2¢72 —2¢ 3
Z, =1 ()M 50 g(@)?pn* +50 n g()°u* +750ﬁ1+5_0 7
C (4n)? 2 " C (4m)? de 42 (4w 6e 242 ' 83
(5.4)
were . - -
—22 —68 —2857
Bo = 4 1= A Pp=—7-"4 (5.5)

3 3 7 27 ’
are the first three beta coefficients for the pure gluonic QCD [5].

In addition, we recall that EQCD is a super-renormalizable theory with the mass-term as the
only parameter requiring renormalization (cf. Eq. (3.8])). To obtain the correct counter-term,
we need the tree-level EQCD matching coefficients A and gg with respect to the renormalized

4d coupling, g(i) [127]:

1 ,Uzi46
omp = 2(NZ2 +1 3 FAC 4 + N2
1 g™ 20 C3F g(p)'p*T
2(N2 +1 3 0)°T) | -4 Ca+ O(g® 5.6
( c+ )(471')2 de ( Q(M) )<3 N02+1 (471')2 AT+ (g ) ( )
1005 1° 6, —de, —2¢ 8
— i ¢ @) .
3 | 4ﬂ)49(u) py pm "+ 0(g%)
Due to reasons of dimensionality, the matching introduces an extra term p~2¢ as only the

combination ¢*(u)u~2¢ is dimensionless. Hence m$ is of dimension two. By using Eq. (5.6)) for
the definition of the renormalized mass, the divergence in Eq. ([3.58]) is exactly cancelled and we
obtain the renormalized effective mass in EQCD to three-loop order:

g (1) 9°(m)
(47)> (4m)4

The known coefficients agy4, aps, ags and Sgo from [60] (an the references therein) are
recovered. The constant terms in € are

mE,zren =77 92(:&)(@}34 + 604E5) +

(aps + €0r2) + Tans| +O(g *(1)) - (5.7)

C 5C2
aps = =, ape = —foCal + 4 (5.8)

3 9

where e
pe®
L=In 5.9
AnT (59)
Finally defining
/
-1

TN ) (5.10)

ArT2 21 = C(—l) )

'Before taking ¢ — 0, note that Eq. (53] contains on the rhs. terms like [¢%(7)u~2€]™ to match the dimen-
sionality with the lhs.
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we obtain for the last coefficient the following expression:

3 1091 56((3
aps = 2—? 48412 + 244L — 180L5 + - - CT()

(5.11)
Note that the coefficients in front of the logarithm L are entirely determined by the beta coeffi-
cients and the effective mass coefficients of lower order: e.g. 484C'§’1 /27 = —BS’. The three-loop
result depends on two arbitrary scales i and ug, the first one coming from the 4d renormalization,
whereas the second scale enters through the 3d renormalization.

For plotting the result, the concrete running of the 4d coupling with respect to the energy
scale is needed. For that, Eq. (B.3)) is solved iteratively to three-loop order [5] [128§]

9° (i) 1 Bilnt 1 <5_%

(4m)2 Bt B2 B\ A2

with ¢ = In[fi/Agg), and Ay is the QCD scale defined in the MS scheme [37, 128].

There is a freedom in choosing the arbitrary mass scales p and us. We employ the standard
procedure to choose the “optimal” value that minimizes the one-loop effective coupling gg [58]
129]: popt = 4re~B~1/22 In order to inspect the sensitivity of the result with respect to the
arbitrary scale, we vary it in the range fiopt/2 and 2pept. As we have no information on an
optimal scale for 3, we simply set it equal to u.

(In?t —Int — 1) + 52> : (5.12)

mEZ/TZ

1 5 10 50 100 500 100C

Figure 5.1: The normalized mass parameter m2 /T2 up to one-, two- and three loops (dotted,
dashed and continuous lines) as a function of T'/Ay.

The plot in Fig. (5.1) shows the mass parameter up to the one-, two- and three-loop order
and with the fixed piops. It shows a slight increase of the three-loop result with respect to the
lower loops. Moreover, the plot indicates the convergence of the perturbative expansion to a
limiting value, as the correction to the two-loop result is much smaller then the correction from
one to two loops. Remarkably, the convergence shows to hold up to temperatures near the QCD
scale.
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1 10 100 1000
T/Ams

Figure 5.2: The normalized mass parameter m}% /T? up to one-, two- and three loops (continuous
(red), dashed (yellow) and dotted (black) lines) as a function of 7'/ Agzg. The colored bands come
due to the variation of the optimal scale piopy.

In Fig. (5.2)), we plot the mass parameter to increasing loop order and with the variation of
the arbitrary scale. Indeed, the convergence is confirmed again as the sensitivity on the arbitrary
scale is slightly smaller than for the one- and two-loop cases.

In the end, we provide the renormalized contribution to the QCD pressure to O(g"), coming
from the mass parameter (cf. Eq. (B.13) and [88]):

54dT*C7/? e . 205 9907 560(3
= 220 A 160512 B 2991 BC 1801 2E _ 56BN g7

T — 4" A
P (Dl V3(4m)5 AnT AnT AnT? T 4 5

(5.13)

5.2 Effective coupling

For computing the effective coupling, we perform the same steps as for the mass parameter; we
plug in the master sum-integrals computed in the previous chapter into Eq. (3.60) and perform
the renormalization of the QCD coupling. The outcome is:

%)
(dm)?

wm+%m+§%#@+o@%. (5.14)

The coefficients agy7, Srg and g1 can be found in [60] and contain also the fermionic degrees
of freedom. Here, we present merely the gluonic pieces:

g9* (1)
(4m)?

Q

98 =T |g*(R) + (amy + €frs) +

Ca cal? %
agy = —fBoL + = 0 MEL= —B1L + |BoL — =5 + 1= (341 —20¢(3)) - (5.15)
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And finally:

, 61¢(3)CY
BT T R
10648 1408 14584 4394((3) 9187 11367 10643
— 34+ ——1I? — L+—— — 6892 — ——
+{ o7 -~ T3 +< 27 45 36 9 E 9
1033372 188ygm?  1247* 4216722  1136In2  104yg2In2 N 184472 In 2
1134 25 2835 189 9 3 63
421672 In 7 1168vey1 2087 In2 688y,  1503337¢(3)
S 136y — — —
ST n 3 3 5 T 9450
32144pC(3)  2821C(3)  410¢(3)In2  29¢(5)  8852('(3) 5
- - 8(1 .
5 T3 7 TRl 35 T o038(1)Ca
(5.16)

The most striking property is the presence of a divergent term, even after renormalization.
The terms in front of the logarithms L are entirely determined by the beta coefficients and the
coefficients of the lower loop-order of gg. The numerical term 303.8(1) has a very low accuracy
mostly due to the finite terms in Eqs. ([£162]) and (£I75).

In the following we discuss the divergent term in Eq. (5.16). Recall that the Lagrangian used
in this computation (Eq. (83)) is super-renormalizable and thus the 3d effective coupling does
not exhibit any divergent counter-terms that could cancel the leftover divergence. Obviously,
we have overlooked something.

The possibility of a technical error in evaluating the master sum-integrals or in performing the
IBP reduction is very low, since the master sum-integrals were cross checked independentl,
and the same IBP reduction was used for the mass parameter. Moreover, the explicit gauge
independent result consolidates our arguments.

Therefore, we inspect the idea that higher order operators in the effective Lagrangian may
contribute with a divergent factor to the effective coupling gg at the order g®.

5.3 Higher order operators

The hint that we may not have considered operators of high enough dimension comes precisely
from the ((3)-term multiplying the divergent piece in Eq. (5.16), as the same term is found for
all the tree-level matching coefficients of the dimension six operators in [54]:

2 . .

9°C(3)N, ig 19 o 19ig
Abracn = ~gpras 1 (g el = gg (Dnfie = bt
5.17

1 67 11
+ %(DMFMOP - ?gAO(DuFW)FOV + F92A3F3V} :

Here, we employ the fundamental representation and Jy = 0. By adding Eq. (GI7) to
the original Lagrangian, the theory becomes non-renormalizable. Therefore, we expect to find
renormalization constants for the fields and for the effective coupling starting with O(g®). To
find diagrams, which are potentially divergent at O(g®) and have the correct structure in order

2The most complicated sum-integral M2 ,,_, was expressed in terms of a different set of higher dimensional
sum-integrals as in Ref. [120] and the results agree.
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to be regarded as renormalization counter-terms, the new vertices have to be extracted from the
Lagrangian.

As a simple exercise, we read off the possible vertices that emerge from the operators, without
explicitly performing the Lorentz-index symmetrization or the color algebra. We are merely
interested in the power of the 4d coupling g and in the power of the momentum that multiplies
the vertices. Fig. (5.3]) shows all possible vertices. The general structure of a ny-particle vertex
is found to be vy, oc g"LkS—"L .

Figure 5.3: The vertices emerging from the dimension six operators (5.I7). The curly lines are
the gauge fields A and the full lines are the adjoint scalar fields Ag.

Figure 5.4: A generic 2-loop integral with a dimension 6 vertex that may contribute to the
effective coupling renormalization at O(g%).

A direct consequence of d = 3 — 2¢ is the fact that divergent integrals arise only in integrals
with an even number of loops . Hence, we look for a simple and divergent integral to contribute to
the effective coupling counter-term. As it turns out, one of the simplest divergent sum-integrals
in which one of the inner lines is the first dimension-six vertex from Fig. (53) is G(d, p?) (cf.
Fig. (54)). A quick inspection shows that it behaves due to dimensional reasons like:

1 2
G(3 — 2¢,p?) =x - +1In % + finite . (5.18)

This kind of divergence would precisely account for the coupling renormalization constant to
O(g®).

However, there are other possible new diagrams that appear already at O(g®), such as shown
in Fig. (5.5). They are of dimension two and naturally would be proportional to m?. These
potentially account for the mass renormalization already at O(g%), an order that is entirely de-
termined by the super-renormalizable Lagrangian. In fact, having a closer look on the integral
M(d, m?), it becomes clear that the dimension-six vertex in the diagram has the role of contract-
ing the propagator to a point. Thus, we obtain in fact no contribution to any renormalization
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constant, because the two-loop integral factorizes into a product of two one-loop integrals:

M(3 — 2¢,m?) x % — finite . (5.19)

= ¢ M(d, m?)

Figure 5.5: A generic two-loop integral with a dimension-six vertex, that may contribute already
at O(g%) to the mass renormalization. As the mass counter-term is already determined precisely
within the super-renormalizable theory, all contributions of this form should cancel.

In conclusion, we expect that, by adding the dimension-six operators to the Lagrangian in
Eq. (33), as the theory becomes non-renormalizable, counter-terms emerge precisely to O(g%)
to cancel the divergence in Eq. (5.10]).

Therefore, the remaining task is to determine all the renormalization constants of the fields
A? and Af, and of the effective coupling gr by a standard procedure of computing two- and
four-point functions to two-loop order in d = 3 — 2e dimensions. As the background field method
can be applied in this situation as well, the procedure reduces merely to a two-point function
computation.

In addition, no further diagrams need to be evaluated in EQCD since the matching procedure
of section B3l employed a Taylor expansion in the external momentum, making all loop integrals
on the EQCD side to vanish identically. Thus, in this computation the only contribution from
the new operators is through the renormalization constants.

5.4 Outlook

In the present thesis, the mass parameter mg and the effective coupling gg of EQCD have
been computed to three-loop order as matching coefficients to full QCD. The usual technique of
computing three- or four-point functions was simplified to computing only two-point functions
by applying the background field method. The task was simplified further by computing the
vertex functions in the limit of vanishing external momenta that led to identically vanishing
integrals on the EQCD side.

The demanding task was handled with computer algebraic software. To three-loop order
~ 500 Feynman diagrams were generated and reduced via IBP relations to a set of a few tens
of master sum-integrals. As their pre-factors diverge in d = 3 — 2¢ dimensions, a clever basis
transformation was performed that could eliminate the divergent pre-factors at the price of
introducing sum-integrals of a higher complexity.

Finally, the master sum-integrals have been solved by partly generalizing the known tech-
niques [28] and by borrowing a method from zero-temperature field theory of tensor integral
manipulation [29].

The mass parameter contributes to the computed order to the QCD pressure starting with
order ¢”. We did not manage to finalize the computation on the effective coupling as it turns
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out that contributions from higher order operators enter our result through the renormalization
of the fields and of the coupling, starting with O(g®). After determining these renormalization
constants, the result on the effective coupling can be used in determining the spatial string
tension of QCD, as already done in [60].

The remaining task is to compute the renormalization constants to O(g®), which involves
a two-loop computation of two-point functions within the framework of the modified, non-
renormalizable Lagrangian of EQCD. This computation is not expected to be mathematically
demanding but rather demanding on the organizational side, as we have 14 new types of inter-
actions.

Once the effective coupling is completed to three-loop order, a computation of the magnetic
coupling gyt would be desirable for a more accurate determination of the spacial string tension
(cf. section B.3]).

An extension of the present results to the fermionic sector is indicated due to the reasons
of completeness. However, we do not expect a quantitative change in Fig. (5.)). For that, a
similar basis transformation needs to be performed for the master sum-integrals with a fermionic
signature. There are reason to believe that a suitable basis does exist with both, finite pre-factors
and simple enough master sum-integrals as to be manageable with the present techniques.

On a wider perspective, the present computation has shown that state of the art techniques
for solving sum-integrals are pushed to their limit. There is certainly a need for new methods
that permit the computation of sum-integrals in principle to arbitrarily high order in € and for a
wider class of topologies. A future computation of the complete QCD pressure to O(g®) involves
four-loop sum-integrals of which only few topologies can be handled with the methods presented
here. Any diagram that contains a mercedes-type subdiagram is in principle unsolvable yet.
Also, at O(g%) three-loop sum-integrals have to be known up to O(e) due to renormalization.
At last, one could mention the extension from a scenario of massless fermions to the massive
case and ideally to the case with finite chemical potential. All these additions would change the
analytical structure of the sum-integrals. These technicalities have to be overcome eventually
if we want to push reliable analytical results closer towards the non-perturbative region in the
QCD phase diagram.
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Appendix A

Integrals

In this appendix, we gather all pieces for the remaining sum-integrals that are the building
blocks of M3 _o and of II7 and that were not explicitly computed in the main text.

A.1 Finite parts

For a large number of these integrals, the last summation over Matsubara-modes was not per-
formed analytically as this usually generated integrands containing hundreds of terms. Instead,
we have evaluated the integral numerically for every mode individually and have truncated
the sum such that the remainder would not exceed a fixed relative contribution usually taken
O(107?). The relative contribution of the remainder was determined by interpolating the the
sum with a power-law f(n) = an~® and by performing the summation from the truncated term
to oo analytically. As some of the pieces showed a very low convergence, we truncated the sums
to a relative error of O(1079).

A.1.1 First finite piece

These terms are of the form:

i ! HE;SESGHQ::SfS? (A 1)
P [P2]s1 ’ '

and their generic result is Eq. (£122]):

2 2

VEL(3,31111;22) = Wvg,l = @ (0.0046390318(1)) , (A.2)
7 7
2 T2
VEhL(5,31122;11) = Ww,l = @y (0.00199480835(1)) , (A.3)
7 7
2 2
VEL(7:32222;00) = va = @ (5.495(1) x 1077) , (A.4)
2 T2
VEL(7,52211;00) = va = @0 (3.5741(1) x 1077) , (A.5)
¢ T2 2
VEL(7,42221;00) = szl = o (4.2900(1) x 1077) , (A.6)



VEL(7,43211;00) =
VEL(7:33221;00) =
VEL(7:33212;00) =
VEL(7:33311;00) = ———
VEL(3;21111;00) = ——
VvE1(3;31111;20) = ——

VEL(3;41111;22) =

A.1.2 Second finite piece

2 T2

_ -7
WV&l == W X (88987(1) x 10 ) s
2 T2 e
WVQJ = W X (8277(1) x 10 ) s

2 T2
WVlO’l = (47‘1’)10 X (00000119229(1)) s
2 2
o Vi = G X (0.0003192203(1)) ,
1 1
Vi = s (0.09378301925(1)) ,
1 1
(471_)6])1571 W X (002978074457(1)) s
1 1
WVW = Ty ¥ (0.01099409787(1)) .

The generic result of these integrals is Eq. ([£I123):

2

(4m)*
T2

V2(5,31122;11) = @
7

2

VvE2(3;31111;22) =

V12(7,32222;00) =

T T
VH2(7:52211: 00) = ——— Vg0 = ———
2

T

@ = amn
2 2

T2
V372 = W X(

T2
= — % (=0.0001 1
Vi @y x (—0.000106808(1)) ,

—0.000721758(1)) ,
2
= % (—0.00028062(1)) ,

-5
1 (7.8965(1) x 1079) ,

Vf,2a+2b(7; 42221; 00) = —(V772a + V7,2b)

—

T2

—

2

47‘1’)10

471.)10

T
Vf,2a+2b(7; 43211;00) = ——==(Vg.24 + Vs 2)

—~

(47.‘.)10

2
V2 t2b(7: 33221 00) =

T2

(47.‘.)10

2
Vh2at2b(7,33212; 00) =

—~
N

(47.‘.)10

47.‘.)10
2

(V9,24 + Vo 2p)

x [0+ (=7.606(1) x 107°)] ,

T
)0 (V10,2a + Vig,2v)
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x [(—7.8964(1) x 107°) + (7.0158(1) x 107°)] ,

x [(—7.8964(1) x 107°) + (—3.5715(1) x 1077)],

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)



T2

= Ty [(—1.4031(1) x 10™%) + (7.1430(1) x 1079)], (A.21)
7
2 2
£2/m. . _ _ —4
v12(7,33311;00) (M)wvn,g a0 (1.4286(1) x 1074 , (A.22)
1
v12(3;21111;00) = va = @ (—0.9507801527(1)) , (A.23)
7 7
1
yi2at2b(3:31111;20) = W(Vﬁ,ga + Vis.2)
— (41)6 x [(—0.0169179735(1)) + (—0.08467859163(1))] , (A.24)
7
1 1
f,2
2(3;41111;22) = —— = — % (—0.015384 1)) . A2
vi2(3; :22) (M)va,g e (—0.015384387080(1)) (A.25)

A.1.3 Finite parts for the zero-modes

Here, we list the concrete results for Eqs. (EI31] E132):

T? T2
T T
T? T2
Z(3;12121;22) = i Gy (F0012563934311(1)) (A.27)
T T
2 2
Z(7,23222; 00) = 0% = gy X (0.000275985995(1)) (A.28)
¢ T2 T?
Z(7:;23231;:00) = ————Z5 = ——— 0.0000305224843(1 A .29
( ) ) ) (471‘)10 6 (47‘1’)10 X( ( )) ) ( )
‘ T2 2
Z(7:23321;:00) = ———=Z7 = 0.00208559268(1 A.30
( ) ) ) (47‘(‘)10 7 (47‘()10 X( ( )) ) ( )
1
Zf 3:12121:;02) = —0.0417499660(1 A.31
( ) ) ) (471‘)6 9 (471‘)6 X( ( )) ) ( )
1 1
Zf(?); 12121;20) = Wzm (47‘1’)6 X (—2.0660279047(1)) , (A.32)
1 1
Z(3;12211;02) = 521 = (g X (Z05170838408(1) (A.33)
1 1
Zf(?); 12221;22) = WZH (4 )6 X (—0.2399902511(1)) , (A.34)
T 78
1 1
Zf(?); 13111;02) = WZB = (4 )6 X (—0.04487446214(1)) , (A.35)
T 78
1
7£(3;02221;02) = 721 = gy X (F007420667719(1)) (A.36)
T T
1 1
Zf(?); 03121;02) = WZB (47‘1’)6 X (—0.01111795886(1)) . (A.37)



A.2 Zero-modes results

Finally, we gather all remaining sum-integrals. Besides the zero-mode sum-integrals encountered
in Eqs. (493, @94 {170), also the following ones are required. They are built up from the
finite pieces listed above and from divergent pieces from Eqs. (EI40], £141]) and by using the

generic splitting of Eq. (A58):

Z3a2ot22) - L (1 B LR +0(e) (A.38)
) 3 - ] (471')4 T2 c VE nm 3 € ) .
1 72 /p2\*[1 2
Z(3;12121;22) = — 2y |24+2- 1 482 A.39
(3; ;22) 18 (4 <T2> [e+3 3vg +3Inm + 48 4+O(€):| , ( )

Z(3;12121;02) =

RN N Y A InT)  3¢(3) (A.40)

3e
Z(3;12121;20) = ! (“—2 KF—Q - @> % + %2 (3495 —24InG + In7)
) (A41)
+g(3)<7+—E+ >— 5+ 210+ 0(e)

)

Z(3;12211;02) =

__! <ﬂ2>36 [”_21+w2<l+7_E_41nG+ln(”/4)>—7C(3)+zn+0(e)], (A42)

(4m)6 \ T2 12°€ 37 4 12 4
Z(3;12221;22) =
1 2\ € 71-2 1 7T2 (A.43)

Z(3;13111;02) =

1 u? a2l o 13 g In(m) ¢(3) (A.44)
= Ty (ﬁ) [ﬁz“ 08 Toa TRET S )~ FEetO@)]

Z(3;02221;02) =

_ 1 (2N [P e In(r) , 3¢(3) (A4.45)
_W<ﬁ> |:E€+7T2<Z—61HG+ 4 >+ 1 +Z14+O(6)} )
2\ 3¢ 2
7(3;03121;02) = —(471)6 (%) [0 x % 5 %3) + Zi5+ (9(6)] : (A.46)
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1 712 2\N¥*11 1/1
Z(7;23222;00) = (“ ) [— + - (—6 — 75+ In E) + 0(60)} : (A47)

T 720 (4m)10 \ T2 €2 15 4
2(7:23231;00) = — NN 12 imT) 4o (A.48)
. . = = — 4+ (== n-— € .
’ ’ 960 (A4m0 \72 ) |2 Te\5 BT Y ’
—1 T2 [/2\*[1 1/16 T
7(7:232929- - _ z_ o = In — @) 0 . A .49
(7:23222:00) = 55 Gy <T2> [62 T (15 e+ n4> +0(e )} (4-49)

A.3 Remaining sum-integral results

The remaining sum-integrals entering the definition of M3 _5 (c.f. Eq. (&30)) and also the
sum-integrals with mass dimension zero entering Il are listed below. The results for the 7-
dimensional sum-integrals are shown only up to the constant term, because they will not enter
the final result in the mass parameter.

1 T2 (2 \*[1 1/1 0
;31111;22) = — S+=|—= 241 A.50
V(3:;3LLL:22) = oee <47TT2> [62 T (12 Tt nG> 0l )} , (A50)
1 T [ 2\ 11 0
: 1) = - A51
V(5;31122;11) = = @y <4WT2> [0 X 5+ - +0(e )} : (A.51)

-7 T2 p2 \*11 1/17 0
- 392999- — - | = 241 A.52
V(7:32222:00) = 1555 gy <47TT2> L? T (105 et nG) +0le )] , (A52)

~19 T2 w2 \*[1 1/ 61
:52211;00) = S 24InG | + O(€
VI(7:52211:00) = 37535 (o <47TT2> L?Jre( ogs e >+ (€ )}’
(A.53)

19 T2 p2 \*T1 1/1747 25y 78InG  63In2r 0
:42221;00) = =+ - — @
Vi 100) 2160 (47)10 (47TT2> [62+6<2280 3 19 19 O]
(A.54)

1 72 p2 \*T71 1/ 281 0
V(7;43211;00) = 610 {@n)T0 <47TT2> L—z + = (—% + 75 +241n G) + O(e )} , (A.55)

7 T? w2 \*T1 1/ 13 0
. . _ i I et 241 A.56
V(7:33221;00) = {55 7o <47TT2> Lz + - < 2o tEt nG) +0(e )} , (A.56)
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1 72 2N\ 11 1/1 0

1 T2 w2 \* 11 1/ 7 0
V(7;33311;00) = 510 @)™ (W) L—Z + - (—% +7E + 24In G) +O(e )] , (AS8)

V(3;12111;00) =

1 (p2e=\*[1 3 1 , 32
= () 222 (13-6 12y —3¢(3
6(4m)6 <47TT2> |:63 TETe ( e M = 36(3)

19
+ (51 — 42452 + 4n? (— +In27 —121n G) +2In2 (12 — 12952 — 24y — ((3))

16
25¢(3)

+ Ve (24 — 247y +18((3)) — 841 — 3672 + —5 16¢'(3) +6(V1a + Z8)>} + O(e)

2\ 3¢
1 [,u ) (1 2.86143 n 15.2646 _452(1) + (’)(e)] 7

"~ 6(4m)6 | T2 €3 €2 €
(A.59)
with
Vigg + Vigs + Zg = —7.68(1). (A.60)
The largest uncertainty comes from Vi 3.
V/(3;21111;000) =
1 2\ 1 2 1 , 32
= o8- 9
3(4m)6 <47TT2> atate 8= b + 4 M+
2
+ (16 + 24vE*In2 + %(7 +961In G — 81n 27) + 247, (g + 2In 2) + 3672 (A.61)
43 /
- (5 +0m) @+ 66+ BV - 220)) + 00
1 /p2\*[1 386 2093
with
2
V1371 + V1372 — 528 [ 25870483449(1) . (A62)
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V(3;22111;002) =

5 20\ 11 /209 5 4 41n 2
= - re S (o (2B
A8(47)6 \ 4nT2 e 30 9" 5 5

(@ <4ln2 2087) By 24yt 28In2 48y, 4¢'(3)

15 225

5 5 995 T 5 5 15 (A.63)

) )

_ _48(27T)6 <;_2>3 E 504+ 0(6)]

48 24
- —Vuu+ —Zg> + (9(6)}

with

1
Vi1 + Vi + Vias — 5(29 + Z11) =0.17(1) (A.64)

with the largest error coming from Vi4 3.

V/(3;31111;020) =

1 20\ 71 1/13 20(3 140 20 201n 2
o L (L 118 %)) (M0 200
8(4m)6 \ 4nT e e\ 3 15 9 3 3

m 2(35 5 Tln2  16InG 4ln7r>

36 9 15 15 + 45

¢(3) <—% - 4% + 21;12 +8In G) 1072 — 207 — 8C1_£(’)3) (4.65)
+8V15 + %(39 + Z10)> + O(E)]
_ 8(41%)6 (%Z)g ng - 1—:’6 +10.80 + 0(6)] ,
with
Vist + Viss + Viss + (2o + Z10) = —0.2825936076(1) . (A.66)

10
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V(3;41111;022) =

T 432(47)6 \ 4xT? e \ 18 4
(985 e o (107 432 936G 78w
985 L2 (10T B
18 T g1 BT T35 35 35

1243
+¢(3) <W — 30y +10In2 + 1201n G> + 71 (=52 4 24y + 481n 2)

2374
1050

54
+ %(—629 — 44219 — 4213 + Z14 + 4215)> + 0(64)]

1 2\*[1 086  19.10
= (%) |-+ == +18

+2y52(12In2 — 13) + —8In2+ 3647 + 10¢'(3) + 432V

with

1
Viea +Vie2 + == (4215 + Z14 — 4213 — 44215 — 629) = 0.0344343(1) .

280
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1 20\% 11 5 1/341 32
<” > [5+;§+—<———6wﬁ+——~—u%+ﬁqm>

(A.67)

(A.68)



Appendix B

Analytic functions

Here we collect some analytic functions that are the main building blocks of the divergent
pieces of the master integrals. They are obtained by either expressing the integral in spherical
coordinates or by using the Feynman parameterization of the form:

R T T /wdxl.../mdmné(l‘ml—'--—wnm?‘l---wﬁ"1 .
0 0

AT AT T T(ay).. T(an) (2147 + . .. 2 Ap]erT-an

(B.1)
The massless one-loop generalized propagator at zero temperature is:

~2¢0(s1. s — 2% (p2 512*% 1 F(%l - Sl)T(% — SQ)F(Sm — %l)
w“g(s1,82,d) = pu“(p*) /(q2)sl[(p+q)2]82 (47)%F(s1)F(32)F(d—312) . (B.2)

The generalized one-loop tadpole is:

2\a d+2a—2b d
% ra iy D 2T (2nT) r'b-9)
pE I = 2$ (POQ)b: - 22¢(—d — 2a + 2b) , (B.3)
P [P?] (47)2T(b)
and a variation thereof is: 74
Ta a b
A special two-loop tadpole is:
2\S4
—4e 7d —4e (p5)
p (8182833 84) = i 4 p, 5 .
( ) 2o M IPTRQUR (P + QS 55
2T2(27TT)2d_28123+284 F(%l — Sl)r(slg — %)F(slg — %)F(Slgg — d) -
= 7 P C(2$123 - 284 - 2d) .
(47) ['(5)T(s2)I'(s3)" (51123 — d)
The generalized two-loop sum-integral
S4 S5
Ldsss;ss zi Po 9o B.6

can always be reduced via IBP relations to a product of one-loop tadpole integrals multiplied
by a ratio over polynomials in d. The explicit reduction of all two-loop sum-integrals that are
needed in the calculations, are:
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L4(111;00) =0,
L4(211;20) =0,

L%4(211;00) = _muy ,

L4(311;22) = _dt(r dlid;)(_j_ld?;r 76110 x 19

L4(211;02) = %I? x 13,

L(221;20) = —3 d £d2;(cll)£d5;(§)_ 7 (2%,

L4(311;20) = = 2)((21?)2(d 5 11912,

L4(311;02) = 5 EdQ;(z)(_d5;(fl)_ o) [191% + Z:Z;I? x 19,
L4(411;22) = —S(d(il;)(égz_(dﬂ_(;)_ 9)[ 92 — %I? x 19,
L4(421;00) = i ;;Eﬁiiifﬂ ;r)?j)_ H)zg x 19,
L%(322;00) = d— 2)1(31(651)%(:)5(11 ~10) I > I
L4(312;11) = —;{ld__?’;)((dd__57))((dd__6;) 19 % 19
L%(331;00) = i 2;(1;(}4_)(?(?5(?_ H)[g x 1
L4(232;00) = 12(d - 8)(d — 5) 9 x 19 .

(d—2)(d—4)(d—9)(d—11)"3
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Appendix C

Configuration space definitions

Here we give the remaining building blocks for the finite pieces of the sum-integrals. For writing
the propagators in configuration space, a central ingredient is the modified Bessel function of
the second kind with half-integer order:

K,(z) = %%/{y(z), (C.1)
with | |
lv|—3 Ll L) ‘ 1
k() = ;) j!E]—;LHu\ j)%)!@z)_], v-s€ez. (C.2)

The Bessel function enters the Fourier transformation of the propagator:

/pFP;])a - (27r)2dl/2ar(a) (%) 4 Kg_a(\/@) : (C.3)

The integrals in configuration space are expressed in terms of spherical coordinates. The

d-dimensional integration measure is:

T 2
/ A0y = / / Sin® gydeby sin® dadg- - - sin u_sdda_sdda_t
0 0

d—2 . d (C4)
_ VID(1/2 +1i/2) 272
-9 il_[o (

L(1+i/2)  T(d/2)°

If the integrand contains a scalar product of the form p - r, it is always possible to choose the
orientation of the coordinate system in such a way that p - r = pr cos ¢1. Therefore, we have:

/ A e’PT = F?ZZT /(212)0F1 @7—(1)2)2) , (C.5)

with gF} being the confluent Hypergeometric function. Concretely:

/dQ{375,7}6ipr — 4r {sinpr ’ 27Tsinp7“ - pgcospr’ (2r)? 3sin pr — 3pr cos p;“ — (pr)?sinpr } |
pr (pr) (pr)
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These definitions are used to compute the generic integral:

d
1 ; 23 214 (47)i0 (4 —
/ddp oI /erdQSeZp(”S) — WdQ (4m) 22 n) X Gp a(T,s) (C.7)
[p?] I TIrE)
with ( rpal)?
r+s—|r+s
2Fi(l = 1§ — s 5 Garae)

(C.8)

Ind = (r+s+|r—s|)d2n

The integration was performed by going to spherical coordinates in the p-variable and by choosing
the orientation of the coordinates system such that: p(r +s) = prcos ¢, 1 + pscos ¢, 1. In this
way the other two angular integration become trivial. o F} is the Gauss Hypergeometric function.
This integral is used for the zero-mode finite piece calculation (Eqs. EI31] £132]).

The next generic angular integration needed in the computation of the first finite piece, Eq.

([#I122), is of the form:

hap(z,y, n) = / e Ayl |x + y|* sin2t*+1 9do

0
b 21 . ;
1 b (21 (z2 + y?)7
=— . —1Z+]<,>F4i—2j+a+27.
nxy ; <Z> ]Zo( ) ) y)® (C.9)
4i—2j+a+1 6_n|$_y||x o y|4i—2j+a—k+1 _ ety |z + y|4i—2j+a—k+1
X
Z nkT (45 — 25 +a — k + 2)

k=0

where n > 0, a > —1, b > 0 and x and y are vectors with xy = zy cos 6.
In order to compute the second finite piece, Eq. (£123]), we need an integral of the form:

[e'e] pd—l )
/ dp In P2 / dQge’Pr
0

[P?)e
d-1 27Tg d r)?
= —(%{}W X @0 1(5,—@4) ) (C.10)

_ _arta, [r—1<a> (M) Ka_g(|P0|7“)] -

After performing the derivative with respect to a, we define the integral as:

< pit! 2 ipr —a a1
/0 dp[PQ]a In P /dee =272m) 2 T (a)la,a(r, |pol) , (C.11)
with
d_q 9
tnalam) = /2 (2 Kw(a) tn %‘) K, y(n2) — 0,K,_s(na)| . (C.12)

Eq. (10.2.34) of Ref. [I30)] gives a relation between the derivative of K, (z) at n = £1/2 and
the function Ei(x). From this relation we derive all other derivatives of higher |n|. So, starting

from Eq. (10.2.34) of Ref.[130]:
0 T . .
=T/ %El(—2$)6 , (C.13)

aK,,(x)




and using the recursion formula:

Fa1(2) = far1(2) = @n+ )27 fu(2), ful(z) = ()" V7 /(22) K, 1(2) (C.14)
e 2 Kl) - i\/g [Ei(—Qw)ez (1 - i) 4 %e} , (C.15)
a%f(y(m) - = i\/% [Ei(—%) ( 1+ § - %) + % (1 + %) e‘”ﬁ] : (C.16)

The following generic formula is used in calculating the first finite piece of V(3;12111;00)
and V/(3;22111;02). It shows how to perform the integration in configuration space before
performing the sum of one of the II’s. There are two cases:

, e—Inly

abcya Z e |b/ dxe*(\m\+|m+n|)xef\n|szy|az:|x_y|c‘ (C.17)
n|e|m

« is simply a control parameter. The prime in the sum denotes omission of the zero-mode. After

splitting the integration interval into [0,y] and [y,00) and carefully splitting the summation
intervals, so that for any interval the integration is finite, we obtain:

) =33 {203 () k(_l)kg<i+%>

i n mb " (m+n)

k .
(k + 1 —2my k—i k‘ + 1) yc+1 6_2ny
X <(2m)k+1 T Tom Z 2m)? +20%m,1

—i+1) 1+c¢ n®
- (C.18)
c - c k: < c—k— i C —k + 1)
2
#20 3 (1)t S S
ef2ny Hb " ef(2m+2n) 1 1 1
X 5m71 z 1 + —b+ b 1 .
n® (2n)tt ne ml  (m4+n)®) (2m+ 2n)*t
The second case is:
—Inly 00
s (o) =S L / dze—(ImiHmn)z —Inl@+)ge (5 1 4)e
a,b,c mzm |n|a|m|b 0
00 00 c o—2ny H,
= 2a° hP(k 4+ 1 Sm T (C.19)
n=1m—1 { ¢ kz—;) <k> i+ ) ne [ 5 (2n)k+1

" <$ " <min>b) 2m +12n>'f+lﬂ |

Here, Hy,, = > 1" 4 n~? is the Harmonic number of order b, and the factor Om,1 states that the
summation over m should be omitted.
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Appendix D

IBP reduction for zero-modes

In this appendix we present the strategy for mapping the zero-mode sum-integrals to others
that can be computed by using the separation of Eq. (@58]). For that, the derivative of the
propagator is needed:

dpo Sy
pﬁpﬁ =—2n [pz;]n )
4 0 P+ 2_p2_02
% [Pg]n :_”5120( ?])az]nﬂ < )
b O o b (PEQP AP Q7 (D.1)
p P[(P-i- Q)Z]n =P q[(P+ Q)Z]n - PO (P + Q)Q]n+1 )
g w_ (PrOP-P @
qaq [(P+Q)2]n - qap [(P+Q)2]n - TL(SpO [(P+Q)2]n+1 .

Before turning the attention to the zero-mode sum-integrals, we shortly present the IBP
reduction of II5},, needed in the computation of V(3;12111;00). According to Eq. (D.IJ), we
can write down two relations for Hﬂo as:

1
%t % "0 [P+ Q)7

- =0=[(d—2a—0b)— bl 2" +pP?27| I}, =0, (D.2)
and

Oqp oIy = 0= [(a—b) —al™2™ + b1 2" +aP?1" —bP?2% + 2pp32*| 115,y =0, (D.3)

with I£Z(d; ...s;..., s¢s7) = Z(d;...s; & 1...,5657). Applying it on the concrete case of 11, we
obtain:

1 1
M5 = 2 TG0 — (d — 303, ] ; 50 = P2 [(P? — 2pp) Ty — T3] (D.4)
leading to:
2p2 _ P2 2p2
H2E10 = (d - 3)01Tﬂﬁo - P—EH(J;BQO : (D-5)
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The first term vanishes in the limit of d = 3 and the second term is simply:

1 T
e :T/ = ) D.6
020 g @+ 87pol (D)

Now we turn our attention to the general IBP relation for a zero-mode sum-integral:

appOZ(d; 51825838485, 8687) =0 (D 7)

[(d — 28] — S84 — 85) + 844Jr (27 — 17) + 855Jr (37 — 17)]Z(d; 5$182535485; 8687) =0, -

In addition to this equation, also a boundary condition is needed for the first parameter sy
of Z. When looking at Eq. (C.8) the obvious condition for that, in order to have a converging
momentum integral, is d—1 > 2s;. This means for instance, that zero-modes of the form Z(7;3...)
should be manageable. It turns out however that for some combination of the other parameters,
in other words due to the particular form of ?;gi, the integral cannot be rendered convergent
through subtraction of simple terms. This implies that only for Z(7;2...) all combinations of
parameters lead to IR “manageable” results.

In the following the case of Z(3;21111;20) is skipped, since it is treated in the main text.
For the case of Z(5;31122;11), we have the relation:

Z(5;31122;11) =0, (D.8)

due to the fact that the substructures II,5; are identically zero for py = 0. Due to the summation
the terms cancel exactly:

o q0 Qpo—==q N
Habl(po = O) = iQ (Qg)a[qg T (p T q)g]a - Habl(po - 0) . (Dg)

D.1 IBP for Z(3;31111;22)
Applying Eq. (D.7)) on the sum-integral in case, we obtain:
(d — 8)Z(3;31111;22) — 27(3;22111;22) + I3 J%(311;1) =0 . (D.10)
Note that we have used the property of the one-loop structure: I, .(pg = 0) = II,,.(po = 0)
and the factorization I x.J? in case one parameter is equal to zero. The zero-mode Z(3;22111;22)
does not fulfill the above mentioned condition, so a second IBP reduction needs to be performed:
(d —5)7(3;22111;22) — Z(3;12121;22) — Z(3;12211;22) + I3 x Jd(221; 1)=0, (D.11)
so that in the end we have:

2 [Z(3;12211;22) + Z(3;12121;22) — I} x J(221;1)
d—8 d—5

Z(3;31111;22) = — I} x J4(311; 1)]

(D.12)
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D.2 1IBP for zero-modes in d =7 — 2¢

This set of sum-integrals turns out to have a common basis set of only three sum-integrals. The
procedure is to start from the sum-integral with the highest parameter s; and reduce it step by
step via IBP to the desired order of Z(7;2...). So we have:

(d —10)Z(7;52211;00) — 27(7;42221;00) =0 . (D.13)
This requires:
(d —10)Z(7;42221;00) — Z(7;32222;00) — 27(7;33221;00) + 22(7;43211;00) =0 . (D.14)
From here, we need three more relations:

(d — 10)Z(7; 32222; 00) — 47(7;23222; 00) + 4Z(7; 33212; 00) = 0
(d — 6)Z(7;33221;00) — Z(7;23222;00) — 27(7;23231;00) =0  (D.15)
(d — 9)Z(7;43211;00) — Z(7;33212;00) — Z(7;33221; 00) + Z(7;42221;00) =0 .

Up to this point, we still need to reduce the following zero-mode:
(d —8)Z(7;33311;00) — 27(7;23321;00) + Z(7;33212;00) =0 . (D.16)
And finally, from the previous equation, we still need to reduce:

(d —9)Z(7:33212;00) — Z(7;23222;00) — 2Z(7;23321;00)+

(D.17)
Z(7;32222;00) + 27(7;33311;00) =0 .
From this system of equations, we obtain the following solutions for our zero-modes:
(d(d —18) 4+ 76) Z5 — 2(d — 10) Z7
Z(7;32222;00) =4
(7 100) (d—6)(d—9)(d—12) ’
4(3d — 32)(d — 8)Z5 + 8(d — 9)(d — 12) Zs — 4(6d — 56)Z7
Z(7;52211;00) =
(7 $00) (d—6)(d—8)(d—9)(d—11)(d —12) ’
d—1
Z(7;42221;00) = TOZ(7; 52211;00) ,
(d —8) ((2d — 53)d + 340) Z5 + 2(d — 12)(d — 9)Zs
Z(7;43211;00) =
(T 00) (d—6)(d—8)(d—9)(d—11)(d —12)
2(d —10) ((d —20)d + 104) Z7 (D.18)
(d—6)(d—8)(d—9)(d—11)(d—12)’ )
Zs + 274
Z(7;33221;00) = ————
( 9 9 ) d B 6 9
(d—8)(d—14)Z5 + 2(d — 10)? Z;
Z(7;33212;00) =
(7 $00) (d—6)(d—9)(d—12) ’
214 — d)Zs + 2(d(d — 21) 4+ 106) Z7
Z(7;33311;00) =
(7 $00) (d—6)(d—9)(d—12)
where we have denoted (table [A.1]):
Z(7;23222;00) = Zs; Z(7;23231;00) = Zg; Z(7;23321;00) = Z7 . (D.19)
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D.3 1IBP reduction for the master-integrals of mass dimension
zero

In this case, the reduction generates a larger basis set as the original one, this being due to the

presence of Matsubara modes in the numerator of some propagators, which has the consequence

that the new basis sets overlap only sparsely.

The approach is the same as previously; the first zero-mode Z(3;12111;00) does not need
further reduction. In the following we generate IBP relations as:

(d —6)Z(3;21111;00) — 2Z(3;12111;00) + 2Z(3;22101;00) = 0, (D.20)

(d —5)Z(3;22111;02) — Z(3;12121;02) — Z(3;12211;02) + Z(3;22210;02) =0.  (D.21)

This relations are not coupled and already give the needed result. In the following, we
proceed to the last two zero-modes sum-integrals, that require several steps of IBP reduction.
First:

(d —8)Z(3;31111;20) — Z(3;22111;02) — Z(3;22111;20) + Z(3; 32101; 02)+

(D.22)
7(3;32101;20) =0 .

This equation calls for two other equations:

(d —5)Z(3;22111;02) — Z(3;12121;02) — Z(3,12211;02) + Z(3;22210;02) =0,  (D.23)

and

(d—5)Z(3;22111;20) — Z(3;12121;20) — Z(3,12211;02) + Z(3;22210;20) =0 . (D.24)
Finally we have:

(d—10)2Z(3;4111;22) — 22(3;32111; 22) + 2Z(3;42101;22) = 0 (D.25)

and the subsequent relations are:

(d—7)Z(3;32111;22) — Z(3;22121;22) — Z(3;22211;22) + Z(3;32210;22) =0,
(d—7)7Z(3;22121;22) — Z(3;12221;22) — 2Z(3;13121; 22) +
+27(3;23111; 22) + Z(3;22220;22) =0,
(d—4)7(3;22211;22) — 27(3;12221;22) =0 ,
(d—6)Z(3,23111;22) — Z(3;13121;22) — Z(3;13211;22) +
+7(3:22121;22) + Z(3;23210;22) =0.  (D.26)

Thus, the new basis set is much larger than the initial one. In order to avoid new substruc-
tures, such as I35, and Il3;5, we use an additional IBP relation to transform then into already
known substructures:
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9qa © I;j0(po = 0) = 0

o ) . . . (D.27)
= (d —2i — j) ;0 + 2ill; 4 ;0 — G104 j4q 0+ JPQHi,jJrl,O + 2511 410 =0,
leading to:
1 2
399 = 3 [(d — 6)ITy9g — 213, + 2p° 1399
8 (D.28)
319 = 71 [(d — 6)TTy0 + 20Tp99 + P°Tlgg] -

Thus, we obtain the following result in terms of the new eight basis zero-mode masters:

27(3;12111; 00) — 219.J%(211; 0)

Z(3;21111;00) = yp— , (D.29)
Z(3:12211:02) + Z(3:12121:02) — I} J%(221:0
7(3;22111;02) = 3; 102) + (C’l = $02) — I J7(221; ), (D.30)
Z(3:31111: 20) — Z(3;12121;02) + Z(3;12121;20) + 27(3;12211; 02)
(d—8)(d—5)
13J4(221;0) + 19J4(221;1) + (d — 5)(19J%(311; 1) + 13J%(311;0)) D31)

(d—5)(d-28)
Z(3;02221;02) — 13J9(122;0) + (d — 6) [Z(3;12211;02) + I3J4(221;0)]
(d—10)(d — 8)(d — 7)(d — 5)

Z(3;41111;22) =

27(3;13111;02) — (d — 6)Z(3;12121;02) 7(3;03121;02)
2(d — 10)(d — 8)(d — 5) 400 — 170d + 23d? — d3
(6d — 40)Z(3;12221;22) — 2(d — 4)13J4(222;1)  213J%(321;1)
(d—10)(d — 8)(d — 7)(d — 4) 70 — 17d + d?
211 J4(411;1
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Appendix E

Configuration space definitions for Il ,

This appendix provides details about the concrete form of all the needed one-loop structures
IT,. in configuration space used in the finite pieces of the master integrals.
Recall formula ([@I14):

2d+1—2s12+53
0,B,C,E __ (2nT) d.. =s12—d—1 _ipr _—|po|r £0,B,C,E (= | -
v = e (i) ) T s (D (B

In the following all the f’s are provided. First we start with f(g abe- 1t is in general a function
of f(cothz,|n|), according to:

o
Z e—(Iml+lntm|—|n[) _ In| 4 coth z (E.2)
m=—0oQ
and, for any polynomial in |m]|:
(3] In| 1 ) 672\n|r
Z e~ Imltlntml=InD)p )y = Z p(m)|) +p(_82r)e2r — e '"‘Tp(—a%)ezr — (E.3)
m=—00 m=0

In addition, note that for pg = 0, fgapc(z,0) reduces to a sum of polylogarithms according
to:

e—an ) »
< ne Liq (7). (E.4)
n=
Denoting ¢ = coth x, we have:
f??,no(%n) =c+|n|, (E5)
3clnf? + 2/nf® +3(c — 1
fg?7112($,n) = ‘n‘ + c[n’ + ‘n‘ 6+ (C )(C+ ’n’) , (EG)
142
e (E.7)
3 -9 3 2 3 9 9
£0 01 (z,m) = ~n@B(c+n|) +( +6 c? + 3c|n| + 2|n|?)x) | s
7 T
19 (2,n) = 18(¢? 4 ¢|n| + |n|? — 1)z + (12¢(c? — 1) + 2(6¢2 — 7)|n| + 3¢|n|? + 5|n?) >

e N 6.%'3 )

(E.9)
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n 36(c + |n|) + (3 +9c* — 9c|n| + 9c3|n| — 4|n|? + |n|* + 32 (|n|? — 4))z3

, (E.10)
1223
C n\x X 02_ Is nlx n nlx n2_ 232
f97220(x7n):6(1+| |7) + 3x(c? — 1)(2 + ( +6|x2|) )+ Inl(6 + Blnfe + (nf” — V)a?)
(B.11)
x(c? — cx + nx c nx nx n z(x +n na
f?,slo(%”):?)( SRl L 6(x32+ ) +n(18 4+ z(z +n(9+2 )))7
(B.12)
f2a20(x,n) = (¢~ D+ (C;Q; [n])(2 + |n|x) 7 E13)
f$,330(957“) =c+|n|. (B.14)

Next, we provide the f’s with specific parameters that may demand an a priori subtraction
of the TTI¥ pieces to avoid 1/0 terms in the summation. These pieces are needed only for the
zero-mode parts, so that we set n = 0:

g;l%(x,n) = e2|"‘xB(e*2m, |n| 4+ 1,0) + Hp, —In(1 - 672:’3) , (E.15)
5210(7,0) = —2In(1 —e7%7) | (E.16)
§290(7,0) = 2Liy (e72%) (E.17)
f§7222(x,0) =c—1, (E.18)
2Liz (e™2*
§310(2,0) = 2Liy (e7**) + # : (E.19)
2Liy (72
$390(2,0) = 2Lig (e727) + # , (E.20)
- - 4 Lis 6_2“”) 2Lig (e72*
S (2,0) = 2Liy (e7*) + i + 352 ) : (E.21)
where .
B(z,a,b) = / Attt (1 — 1)L, (E.22)
0
is the incomplete Beta function.
Now we provide the zero temperature definitions of :
1
ffno(xan) = [n| + . (E.23)
B I G S
fshia(@,n) = 3 T o3 T2 Ty (E.24)
B+4-C . In| x
f3,$0 (x,n) =98 + e2|n\xE1(—2|n|x) +In o + m , (E.25)
1 n
B I L 2
f3212(z,m) = o2 T T In|”, (E.26)
B n  nln| nd
=3 - — — E.27
f5,121(35an) 22 - 3 ( )
35 35|n| 15n|>  5nf®  |n/t
fPoro(x,n) = — n I Inl” | Inl” (E.28)

44 43 42 6z 12’

'Note that only the combination ITZF€ is finite in d = 3 dimensions.
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5 5n| [ |n]? | |nf
B _
Froz0(@,m) = 213 + 222 + z * 6
5  5ln] 2> |nf?
B _ = 0 it L
frs10(z,m) = -3 + 2 . + 3
3 3| |n|?
B _
f7320(w,m) = 92 + o7 5

And finally, we show the necessary leading UV terms:

C
f3,112(3€,n) =

C
f57121(3€,n) =

1
C
f7,310($a n) =

c
f7,320($a n) =

n?z =
6 30’
56
o] | Inf*
% 26
6 6 180

105

+

)

)

73

1890 ’

(E.33)
(E.34)
(E.35)

(E.36)



Appendix F

IBP relations for the basis changes

In this appendix, we give the needed IBP relation in d = 3 — 2e¢ dimensions, in order to perform
the suitable basis transformation of (C.14) and (C.15) from [110], to render coefficients finite in
the limit € — 0. These relations are part of a large database of IBP relations that was provided
by Jan Moller [I17]. The relations presented here were chosen in the spirit described in section

B.7
For Ilgs3, they are:

148 — 60d + 6d° _ 100 16 000 (F1)

M0 = 3(d — 5)(d — )2 210011 + WMgloon )

2702 —240 + 134d — 21d> + d3 17000
896 — 446d + 73d* — 4d°® 17000
2(d —7)(d — 6)2(d — 5)(d — 4) 122000
299728 — 275712d + 100444d> — 18108d° + 1615d* — 57d° 47000
12(d — 7)(d — 6)(d — 5)2(d — 4)2 210011
—24 + 3d
2(d —7)(d — 5)(d — 4)
—80 + 18d — d? 2020
2(d—7)(d —6)(d—5)(d—4) M
51232 — 23128d + 3470d? — 173d> 17200
6(d—7)(d—6)(d—5)(d—4)2 310011

512
ME F.2
+(d—6)(d—5)(d—4)2 510011 » ( )

M320011002

_|_

27000 _ p11(d)
SN2 9(d — 8)(d — 7)(d — 6)(d — 4)(d — 3)(d — 2)(3d — 20
p12(d

( )M?P??OOO
) MOOO
2(d — 8)2(d —7)(d — 6)2(d — )2(d 3)(d —2)(3d — 20) 122000
1,3
(d

(d

i 12(d — 8)(d — 7)(d — 6)(d — ) — 4)2(d — 3)(d — 2)(3d — 20) Maito
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p1.4(d)
T A= 8)(d—7)(d—6)(d—4)°(d - 3)(d — 2)(3d — 20) Mo

~ —18367680 +12301488d — 3275264d? + 433278d> — 28477d* + 744d°

2(d —8)(d —7)(d — 6)(d — 4)(d — 3)(d — 2)(3d — 20)
B 72(—12 + d)(—10 + d) 47130
(d—8)(d—T7)(d —4)(d — 3)(d —2)(3d — 20) " 10011
1024(2691 — 777d + 56d?) 17600
 (d—8)(d—6)(d - 4)2(d-3)(d-2) "M
98304
d—8)(d—6)(d—4)2(d —3)(d — 2

+ ( )Mg?ilooon ;

with

020
310011

(F.3)

p1.1(d) = 59336640 — 63078320d 4 28473920d> — 7490234d> + 1336901d* — 174277d°

+16160d° — 928d" + 24d° |

p1,2(d) = 2855308800 — 3237773312d + 1591362144d> — 442880256d° + 76305228*

— 8326788d° + 561189d° — 21310d" + 348d° |
p1.3(d) = 26632233600 — 35846652912d + 209281428764 — 6924466708d>

+ 1420678191d* — 185150687d° + 14974094d° — 687360d" + 13716d° |
p1.4(d) = 108234240 — 89067072d + 305508484 — 5590308d° + 575340d*

— 31557d° + 720d° .

For II'ts, we have:
3

(F.4)

_ p2,1(d)
ME%IQHO - 8(d—T7)(d—8)(d — 9)(d2—1 4)(d —5)2(d — 6)2(d — 3)2 M??z?ooo

+ p2.2(d) 27000
4(d —8)(d — 9)(d — 4)(d — 5)2(d — 6)2(d — 7)2(d — 3)2~ 123000

+ p2:3(d) 17000
256(d — 7)(d — 8)(d — 9)(d — 4)(d — 5)2(d — 6)%(d — 3)2 ***°!!

+ p274(d) MOOO
384(d — 4)(d — 8)(d — 9)(d — 2)(d — 6)2(d — 7)2(d — 3)2(d — 5)3 222000

+ —P2;5(d) 27000
128(d — 7)(d — 8)(d — 9)(d — 4)(d — 5)2(d — 6)2(d — 3)2~ 31001

+ p2.6(d) 17002
4(d —7)(d — 8)(d — 9)(d — 4)(d — 5)2(d — 6)2(d — 3)2~ 320011

+ —p27(d) 27020
8(d —7)(d —8)(d —9)(d — 4)(d — 5)2(d — 6)2(d — 3)2 410011

—24(269d* — 8320d3 + 95490d? — 479860d + 888021) 590

(d—6)(d—"7)(d—9)(d—4)(d—5)2(d — 3)2 510011
8(8047d" — 247972d" + 2849686d> — 14485888d + 27502047) , 40
(d—6)(d—T7)(d—9)(d—4)(d —5)2(d — 3)2 510011
—30720(49d% — 711d + 2623) 200

+ (d—6)(d—T7)(d—9)(d—4)(d —5)2(d —3)2" o0l

107



—368640
d—6)(d—"7)(d—9)(d—4)(d—5)%(d—3)?
—1290240
d—6)(d—7)(d— 0)(d — 4)(d — 5)2(d — 3)2

730
* ( Mzz0-111

+ ( M0 111 (F.5)
with
po.1(d) =(d — 2)(8d° — 368d° + 7504d" — 89111d° + 683254d° — 3608255d"
+ 14256518d° — 46293495d> + 116182716d — 152317971) ,
po2(d) =4d"0 — 204d° + 4803d° — 72029d" + 809167d°® — 7339813d° + 52777475d*
— 278994927d% + 986568461d> — 2048698083d + 1870829946
pa.3(d) =79869d° — 4037326d" + 87620700d® — 1061968604d° 4 7812514612d*
— 35356262430d° + 943513424484% — 130527026040 + 64326147651
po.a(d) =96d" — 86421d" 4 5375292d° — 153305147d° + 2586291594d"
— 28437667028d° + 212405026246d° — 1089048350724d"
+ 3775673987846d° — 8444268898919d> + 10951876160526d — 6212405250801 ,
paos5(d) =168943d° — 9557016d" + 235488122d° — 3301073030d° + 28792746146d"
— 160004011372d> + 553185231922d> — 1087803532662 + 931423919427 ,
po6(d) =11d" + 1645d° — 89139d° + 1794069d* — 18776435d> + 109500887d>

— 339147237d + 436796199 ,
p2,7(d) =3(2171d" — 113535d° + 2540413d° — 31533199d" + 234594837d°
— 1046679269d° + 2595120339d — 2760725997) , (F.6)
d)
M, = Ps.( 27000
+ —P32(d) 27000
2(d —4)(d — 6)(d — 8)(d — 3)(d — 7)2(d — 5)2~ 123000
+ —P3,3(d) 21,7000
128(d — 6)(d — 7)(d — 8)(d — 4)(d — 5)2(d — 3)2~ 220011
+ P34() 27000
64(d — 4)(d — 6)(d — 8)(d — 2)(d — 7)2(d — 3)2(d — 5)3~ 222000
p3,5(d)
Myigon

T 644 = 6)(d —7)(d — 8)(d — 4)(d —5)°(d — 3)?
3(d+1)(3d —19)(d — 9)

2(d — 4)(d — 6)(d — 8)(d — 3)(d — 5)2

—3(d — 9)(53d® — 1123d* + 7891d — 18437) 17020

4(d — 4)(d — 6)(d — 7)(d — 8)(d — 3)(d — 5)2~ 41001

—288(d — 9)

(d—4)(d—T7)(d - 3)%(d — 5)?
—96(57d? — 876d + 3355) 409

(d—"7)(d—4)(d - 5)2(d _ 3)2 510011

002
M320011

220
T M510011
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122880

MED F.7
+(d—7)(d—4)(d—5)2(d—3)2 710011 » ( )
with
p3.1(d) =3(d — 9)(5d* — 42d + 1)(d — 2) ,
p3.2(d) =8d°® — 273d° + 3858d* — 29038d> + 123676d> — 285521d + 281754 ,
p3.3(d) =3(1199d° — 41508d° + 578831d* — 4114536d° + 15388613d>
— 27364596d + 15595005) ,
p3.a(d) =1143d® — 55758d" + 1176024d° — 13988986d° + 102457978d*
— 4718854104 + 13292875284% — 2080966998d + 1371885519 ,
p3.5(d) =3(2357d° — 96694d° + 1642835d* — 14793300d°
+ 74449531d? — 198518262d 4 219089661) , (F.8)
3(d—2) —d? 4+ 9d — 24
M002 _ MOOO MOOO
2010 =507 _5)(d—6)(d —3) 114000 + (d 6)(d —3)(d —5)2 " 123000
64(d — 6)(d — 3)(d — 5)2 220011
9d* — 136d> + 684d? — 1368d + 1131 _ 00
96(d — 3)(d — 6)(d — 2)(d — 5)3 222000
—(3d — 19)(7d? — 102d + 339) /000
32(d — 6)(d — 3)(d — 5)2 310011
3d — 19 —9(3d — 19)(d — 7)
M002 M020
+—(d—6)(d—5) 320011 T 2(d—6)(d—3)(d—5)2 410011
—96 32
M220 M400 F9
+—(d—3)(d—5) 510011+—(d 3)(d — 5)2 1510011 » (F.9)
000 7d3 — 97d? + 405d — 459 00
MlellO (d 5)( )( )(d 3)2 220011
—2(5d* — 102d3 + 748d? — 2322d + 2511) 217000
3(d —4)(d — 6)(d —2)(d — 5)2(d — 3)2 0%
—2(7d? — 84d + 249)(d —7) 00 512 400
M. M, F.10
(d—5)(d—6)(d—4)(d—3) 310011+(d 5)(d 4)(d 3) 510011 » ( )
and
1 1
Mg = == Masio11 — 57— Mabaooo - (F.11)

d—3 3(d — 3)(d — 2)
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