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Abstract 

With the introduction of the Quality-by-Design (QbD) initiative, the American Food and 
Drug Administration and the other pharmaceutical regulatory Agencies aimed to change the 
traditional approaches to pharmaceutical development and manufacturing. Pharmaceutical 
companies have been encouraged to use systematic and science-based tools for the design and 
control of their processes, in order to demonstrate a full understanding of the driving forces 
acting on them. From an engineering perspective, this initiative can be seen as the need to 
apply modeling tools in pharmaceutical development and manufacturing activities. 
The aim of this Dissertation is to show how statistical modeling, and in particular latent 
variable models (LVMs), can be used to assist the practical implementation of QbD 
paradigms to streamline and accelerate product and process design activities in 
pharmaceutical industries, and to provide a better understanding and control of 
pharmaceutical manufacturing processes. 
Three main research areas are explored, wherein LVMs can be applied to support the practical 
implementation of the QbD paradigms: process understanding, product and process design, 
and process monitoring and control. General methodologies are proposed to guide the use of 
LVMs in different applications, and their effectiveness is demonstrated by applying them to 
industrial, laboratory and simulated case studies. 
With respect to process understanding, a general methodology for the use of LVMs is 
proposed to aid the development of continuous manufacturing systems. The methodology is 
tested on an industrial process for the continuous manufacturing of tablets. It is shown how 
LVMs can model jointly data referred to different raw materials and different units in the 
production line, allowing to understand which are the most important driving forces in each 
unit and which are the most critical units in the line. Results demonstrate how raw materials 
and process parameters impact on the intermediate and final product quality, enabling to 
identify paths along which the process moves depending on its settings. This provides a tool 
to assist quality risk assessment activities and to develop the control strategy for the process. 
In the area of product and process design, a general framework is proposed for the use of 
LVM inversion to support the development of new products and processes. The objective of 
model inversion is to estimate the best set of inputs (e.g., raw material properties, process 
parameters) that ensure a desired set of outputs (e.g., product quality attributes). Since the 
inversion of an LVM may have infinite solutions, generating the so-called null space, an 
optimization framework allowing to assign the most suitable objectives and constraints is 
used to select the optimal solution. The effectiveness of the framework is demonstrated in an 
industrial particle engineering problem to design the raw material properties that are needed to 
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produce granules with desired characteristics from a high-shear wet granulation process. 
Results show how the framework can be used to design experiments for new products design. 
The analogy between the null space and the Agencies’ definition of design space is also 
demonstrated and a strategy to estimate the uncertainties in the design and in the null space 
determination is provided. 
The proposed framework for LVM inversion is also applied to assist the design of the 
formulation for a new product, namely the selection of the best excipient type and amount to 
mix with a given active pharmaceutical ingredient (API) to obtain a blend of desired 
properties. The optimization framework is extended to include constraints on the material 
selection, the API dose or the final tablet weight. A user-friendly interface is developed to aid 
formulators in providing the constraints and objectives of the problem. Experiments 
performed industrially on the formulation designed in-silico confirm that model predictions 
are in good agreement with the experimental values. 
LVM inversion is shown to be useful also to address product transfer problems, namely the 
problem of transferring the manufacturing of a product from a source plant, wherein most of 
the experimentation has been carried out, to a target plant which may differ for size, lay-out or 
involved units. An experimental process for pharmaceutical nanoparticles production is used 
as a test bed. An LVM built on different plant data is inverted to estimate the most suitable 
process conditions in a target plant to produce nanoparticles of desired mean size. 
Experiments designed on the basis of the proposed LVM inversion procedure demonstrate 
that the desired nanoparticles sizes are obtained, within experimental uncertainty. 
Furthermore, the null space concept is validated experimentally. 
Finally, with respect to the process monitoring and control area, the problem of transferring 
monitoring models between different plants is studied. The objective is to monitor a process 
in a target plant where the production is being started (e.g., a production plant) by exploiting 
the data available from a source plant (e.g., a pilot plant). A general framework is proposed to 
use LVMs to solve this problem. Several scenarios are identified on the basis of the available 
information, of the source of data and on the type of variables to include in the model. Data 
from the different plants are related through subsets of variables (common variables) 
measured in both plants, or through plant-independent variables obtained from conservation 
balances (e.g., dimensionless numbers). The framework is applied to define the process 
monitoring model for an industrial large-scale spray-drying process, using data available from 
a pilot-scale process. The effectiveness of the transfer is evaluated in terms of monitoring 
performances in the detection of a real fault occurring in the target process. The proposed 
methodologies are then extended to batch systems, considering a simulated penicillin 
fermentation process. In both cases, results demonstrate that the transfer of knowledge from 
the source plant enables better monitoring performances than considering only the data 
available from the target plant. 
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Riassunto 

La recente introduzione del concetto di Quality-by-Design (QbD) da parte della Food and 
Drug Administration e delle altre agenzie di regolamentazione farmaceutica ha l’obiettivo di 
migliorare e modernizzare gli approcci tradizionalmente utilizzati dalle industrie 
farmaceutiche per lo sviluppo di nuovi prodotti e dei relativi processi produttivi. Scopo 
dell’iniziativa è di incoraggiare le industrie stesse all’utilizzo di procedure sistematiche e 
basate su presupposti scientifici sia nella fase di sviluppo di prodotto e processo, che nella 
fase di conduzione del processo produttivo stesso. A tal proposito, le Agenzie hanno definito 
paradigmi e linee guida per agevolare l’implementazione di queste procedure in ambito 
industriale, favorendo una migliore comprensione dei fenomeni alla base dei processi 
produttivi, in maniera da assicurare un controllo stringente sulla qualità dei prodotti finali, in 
termini di proprietà fisiche, ma soprattutto di efficacia e sicurezza per i pazienti. 
Da un punto di vista ingegneristico, il Quality-by-Design può essere visto come il tentativo di 
introdurre principi di modellazione in ambiti di sviluppo e di produzione farmaceutica. 
Questo offre enormi opportunità all’industria farmaceutica, che può beneficiare di 
metodologie e strumenti ormai maturi, già sperimentati in altri settori industriali 
maggiormente inclini all’innovazione tecnologica. Allo stesso tempo, non va tralasciato il 
fatto che l’industria farmaceutica presenta caratteristiche uniche, come la complessità dei 
prodotti, le produzioni tipicamente discontinue, diversificate e in bassi volumi e, soprattutto, 
lo stretto controllo regolatorio, che richiedono strumenti dedicati per affrontare i problemi 
specifici che possono sorgere in tale ambiente. Per questi motivi, vi è l’esigenza di concepire 
metodologie che siano adeguate alle peculiarità dell’industria farmaceutica, ma al tempo 
stesso abbastanza generali da poter essere applicate in un’ampia gamma di situazioni. 
L’obiettivo di questa Dissertazione è dimostrare come la modellazione statistica, e in 
particolar modo i modelli a variabili latenti (LVM, latent variable models), possano essere 
utilizzati per guidare l’implementazione pratica dei principi fondamentali del Quality-by-
Design in fase di sviluppo di prodotto e di processo e in fase di produzione in ambito 
farmaceutico. In particolare, vengono proposte metodologie generali per l’impiego di modelli 
a variabili latenti nelle tre aree principali sulle quali l’iniziativa del Quality-by-Design si 
fonda: il miglioramento della comprensione sui processi, la progettazione di nuovi prodotti e 
processi produttivi, e il monitoraggio e controllo di processo. Per ciascuna di queste aree, 
l’efficacia della modellazione a variabili latenti viene dimostrata applicando i modelli in 
diversi casi studio di tipo industriale, di laboratorio, o simulati. 
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Per quanto riguarda il miglioramento della comprensione sui processi, nel Capitolo 3 è 
proposta una strategia generale per applicare LVM nello sviluppo di sistemi di produzione in 
continuo. L’analisi è applicata a supporto dello sviluppo di un processo industriale continuo di 
produzione di compresse su scala pilota. La procedura si basa su tre fasi fondamentali: i) una 
fase di gestione dei dati; ii) una fase di analisi esplorativa; iii) una fase di analisi globale. 
Viene mostrato come i parametri dei modelli costruiti a partire dai dati del processo possano 
essere interpretati sulla base di principi fisici, permettendo di identificare le principali forze 
motrici che agiscono sul sistema e di ordinarle a seconda della loro importanza. Questo può 
essere utile per supportare una valutazione dei rischi necessaria a definire una strategia di 
controllo per il processo e per guidare la sperimentazione fin dalle prime fasi dello sviluppo. 
In particolare, nel caso studio considerato, la metodologia proposta individua nel processo 
utilizzato per macinare le particelle di principio attivo e nella sezione nella quale il principio 
attivo è formulato le principali fonti di variabilità entranti nel sistema con effetto sulle 
proprietà fisiche del prodotto finale. Dall’analisi globale, è mostrato come l’utilizzo di 
modelli a variabili latenti a blocchi multipli permetta di individuare le unità del processo più 
critiche e, all’interno di ciascuna di esse, le variabili più critiche per la qualità del prodotto. 
Inoltre questi modelli si dimostrano particolarmente utili nell’identificare le traiettorie lungo 
le quali il processo si muove, a seconda delle proprietà delle materie prime e dei parametri di 
processo utilizzati, fornendo così uno strumento per garantire che l’operazione segua la 
traiettoria designata. 
 
Nell’ambito della progettazione di nuovi prodotti e processi, l’efficacia dei modelli a 
variabili latenti è dimostrata nel Capitolo 4, dove è proposta una procedura generale basata 
sull’inversione di LVM per supportare lo sviluppo di nuovi prodotti e la determinazione delle 
condizioni operative dei rispettivi processi di produzione. L’obiettivo della procedura 
proposta è quello di fornire uno strumento atto a dare un’adeguata formalizzazione 
matematica, in termini di inversione di LVM, al problema di progettazione, secondo gli 
obiettivi e i vincoli che il problema stesso può presentare. 
Dal momento che l’inversione di LVM può avere soluzioni multiple, vengono individuati 
quattro possibili problemi di ottimizzazione, tramite i quali effettuare l’inversione. L’obiettivo 
dell’inversione del modello è di stimare le condizioni ottimali in ingresso al sistema (in 
termini, per esempio, di caratteristiche delle materie prime o di parametri di processo) che 
assicurino di raggiungere la qualità desiderata per il prodotto in uscita. La procedura è 
applicata con successo in un caso studio industriale, per la determinazione delle proprietà 
delle materie prime in ingresso a un processo di granulazione a umido, con l’obiettivo di 
ottenere in uscita granuli con determinate caratteristiche di qualità. 
È inoltre esaminato il concetto di spazio nullo, lo spazio cioè cui appartengono tutte le 
soluzioni di un problema di inversione di LVM, che corrispondono ad uno stesso insieme di 
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variabili desiderate (proprietà del prodotto) in uscita. In particolare, si dimostra come la 
definizione di spazio nullo presenti diverse caratteristiche comuni alla definizione di spazio di 
progetto (design space) di un processo, stabilita dalle linee guida delle Agenzie di 
regolamentazione, e come lo spazio nullo possa essere utilizzato al fine di una identificazione 
preliminare dello spazio di progetto. Al fine di avere una misura sull’affidabilità delle 
soluzioni del problema di inversione, viene proposta una strategia per stimarne le incertezze. 
Sono inoltre presentate alcune soluzioni per affrontare questioni specifiche relative 
all’inversione di LVM. In particolare, si propone una nuova statistica (P2) da utilizzare per la 
selezione del numero di variabili latenti da includere in un modello utilizzato per l’inversione, 
in modo tale da descrivere adeguatamente l’insieme dei regressori, oltre a quello delle 
variabili in uscita. In aggiunta, dato che a causa delle possibili incertezze del modello non è 
assicurato che la sua inversione fornisca una soluzione che consenta di ottenere le proprietà 
desiderate per il prodotto, è proposta una strategia per sfruttare la struttura di covarianza dei 
dati storici per selezionare nuovi profili di qualità per il prodotto, in modo da facilitare 
l’inversione del modello. Gli approcci proposti sfruttano i parametri del modello e i vincoli 
imposti per la qualità del prodotto per stimare nuovi insiemi di proprietà, per i quali l’errore di 
predizione del modello è minimo. Questo agevola l’inversione del modello nel fornire le 
proprietà del prodotto desiderate, dal momento che queste possono essere assegnate come 
vincoli rigidi al problema di ottimizzazione. 
Nel Capitolo 5 la procedura presentata al Capitolo 4 per l’inversione di LVM è applicata per 
progettare la formulazione di nuovi prodotti farmaceutici, in cui l’obiettivo è di stimare i 
migliori eccipienti da miscelare con un dato principio attivo e la loro quantità in modo da 
ottenere una miscela di proprietà adeguate per la fase di compressione. La procedura proposta 
al Capitolo 4 è ampliata al fine di includere i vincoli per la selezione dei materiali e di 
considerare gli specifici obiettivi che un problema di formulazione può presentare (per 
esempio, massimizzare la dose di principio attivo, o minimizzare il peso della compressa 
finale). L’inversione del modello è risolta come problema di programmazione non lineare 
misto-intera, per il quale è sviluppata un’interfaccia utente che consenta ai formulatori di 
specificare gli obiettivi e i vincoli che il problema di formulazione da risolvere può 
presentare. La metodologia proposta è testata in un caso studio industriale per progettare 
nuove formulazioni per un dato principio attivo. Le formulazioni progettate in-silico sono 
preparate e verificate sperimentalmente, fornendo risultati in linea con le predizioni del 
modello. 
Nel Capitolo 6 è presentata una diversa applicazione della procedura generale per l’inversione 
di LVM presentata al Capitolo 4. Il caso studio riguarda un problema di trasferimento di 
prodotto, in cui l’obiettivo è di ottenere nanoparticelle di diametro medio predefinito, tramite 
un processo di precipitazione con anti-solvente in un dispositivo obiettivo. La metodologia 
sfrutta i dati storici disponibili da esperimenti effettuati su un dispositivo di riferimento di 
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diversa dimensione da quello obiettivo, e sullo stesso dispositivo obiettivo ma con una diversa 
configurazione sperimentale. Un modello di tipo joint-Y PLS (JY-PLS) è inizialmente 
utilizzato per correlare dati di diversa origine (per dispositivo e configurazione sperimentale). 
Quindi, la procedura presentata al Capitolo 4 viene impiegata per invertire il modello JY-PLS 
al fine di determinare le condizioni operative nel dispositivo obiettivo, che assicurino 
l’ottenimento di nanoparticelle di diametro medio desiderato. La convalida sperimentale 
conferma i risultati ottenuti dall’inversione del modello. Inoltre gli esperimenti consentono di 
convalidare sperimentalmente il concetto di spazio nullo, dimostrando come diverse 
condizioni di processo stimate lungo lo spazio nullo consentano effettivamente di ottenere 
nanoparticelle con le medesime dimensioni medie. 
 
La sezione finale di questa Dissertazione propone l’applicazione di LVM a supporto del 
monitoraggio e controllo di processo in operazioni farmaceutiche. In particolare, nel 
Capitolo 7, è affrontato il problema del trasferimento di modelli per il monitoraggio di 
processo tra impianti diversi. In questo caso il problema è di assicurare che l’operazione in un 
impianto obiettivo sia sotto controllo statistico fin dai primi istanti di funzionamento 
dell’impianto, sfruttando la conoscenza disponibile (in termini di dati) da altri impianti. È 
proposta una procedura generale basata su LVM per far fronte a questo tipo di problemi. La 
procedura identifica cinque diversi scenari, a seconda del tipo di informazioni disponibili 
(solo dati di processo o sia dati di processo sia conoscenza di base sul processo), della 
provenienza dei dati disponibili (solo dall’impianto di riferimento o sia dall’impianto di 
riferimento sia dall’impianto obiettivo) e dal tipo di variabili di processo considerate per la 
costruzione del modello (solo variabili comuni tra gli impianti o sia variabili comuni sia altre 
variabili). Per modellare in maniera congiunta i dati disponibili da impianti diversi, sono 
utilizzate analisi delle componenti principali (PCA) o modelli di tipo JY-PLS, a seconda che, 
per la costruzione del modello di monitoraggio, si considerino solo variabili comuni tra gli 
impianti (nel caso PCA), o sia variabili comuni sia altre variabili (nel caso JY-PLS). 
Le metodologie proposte sono verificate nel trasferimento di modello per il monitoraggio di 
un processo industriale di atomizzazione, dove il riferimento è un impianto su scala pilota, 
mentre l’impianto obiettivo è un’unità produttiva su scala industriale. Le prestazioni in fase di 
monitoraggio del processo su scala industriale sono soddisfacenti per tutti gli scenari proposti. 
In particolare, è dimostrato come il trasferimento di informazioni dall’impianto di riferimento 
migliori le prestazioni del modello per il monitoraggio dell’impianto obiettivo. 
Le procedure proposte sono inoltre applicate in uno studio preliminare per il trasferimento di 
sistemi di monitoraggio in processi discontinui, considerando come caso studio un processo 
simulato di fermentazione per la produzione di penicillina, in cui sono simulati due impianti 
differenti per scala e configurazione. Le prestazioni del sistema di monitoraggio indicano che, 
anche in questo caso, considerare nella costruzione del modello i dati disponibili dalle 
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operazioni nell’impianto di riferimento rende il sistema più efficiente nella rilevazione delle 
anomalie simulate nell’impianto obiettivo, rispetto a considerare nel modello di monitoraggio 
i soli (pochi) dati disponibili dall’impianto obiettivo stesso. 
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Chapter 1 

Motivation and state of the art 

This Chapter provides an overview of the background and the motivations of this 
Dissertation. First, the Quality-by-Design (QbD) initiative for the pharmaceutical industry is 
introduced from a regulatory point of view. Then, the significance of this concept and the 
opportunities it gives for the process systems engineering community are pinpointed and 
discussed. Finally, the role and the importance of latent variable models in the 
implementation of QbD paradigms are highlighted, providing the objectives of the 
Dissertation and a roadmap to its reading. 

SECTION A – OVERVIEW OF REGULATORY ISSUES 

1.1 The Quality-by-Design (QbD) initiative 
Despite being perceived as on the cutting edge for its social impact and for the innovation and 
relevance of the manufactured products, the pharmaceutical industry has been traditionally 
based on experienced and strict procedures not only for product and process development but 
even for product manufacturing. This situation has been partly due to the rigid regulatory 
environment, which strongly contributed to prevent improvements and innovation in the 
manufacturing technologies. According to the regulatory agencies, like the American Food 
and Drug Administration (FDA), it seemed more important to manufacture drugs precisely to 
the required specifications in order to protect the patients’ safety, rather than latching on the 
latest in manufacturing trends. This contributed to spread the belief that using tried-and-true 
systems and operating with traditional accepted manufacturing procedures, which ensured to 
produce drugs with very targeted specifications, would have served as basic requirements 
from the regulatory point of view. As a consequence, pharmaceutical companies felt 
stimulated to invest their money in finding and marketing new drugs, rather than in 
revamping development procedures or manufacturing facilities. The result is that the 
pharmaceutical industry, even inventing futuristic new drugs, still relies on manufacturing 
techniques that lag far behind those of potato-chip and laundry-soap makers (Aboud and 
Hensley, 2003). 
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The little emphasis set by the pharmaceutical industry toward manufacturing technologies and 
process efficiency increased the economical efforts of companies to ensure high quality 
standards for the products. Pharmaceutical manufacturing has always been able to achieve 
reasonable product quality, but at the price of high percentages of rejected products due to 
process inefficiency. 
In 2003, a survey of the Wall Street Journal on the state of the pharmaceutical industry 
quantified the percentage of product scraps due to manufacturing shortcomings in between 
5% and 10% of the produced medicine. This was contrasted with the 0.0001% of the 
semiconductor industry. Another measure of the impact of the manufacturing system 
deficiencies is the number of drug recalls for quality reasons: in 2002 the FDA counted 354 
prescription-drug recalls, up from 248 in 2001 and 176 in 1998. However, the manufacturing 
expenses to ensure those percentages of discards accounted for 36% of the total industry’s 
costs, more than double than the share of research and development, and almost as much as 
the 41% devoted to marketing and administrative costs (Aboud and Hensley, 2003). 
If pharmaceutical manufacturing has been dramatically affected by the lack of modernization 
and efficiency, pharmaceutical development activities have been hardly less so. In general, 
pharmaceutical development includes all the activities dealing with the transformation of one 
or more active pharmaceutical ingredients (APIs) into the final drug ready for the 
commercialization. These activities involve three main steps: product design, process design 
and technology transfer. 
Product design includes all the activities that ensure that the designed product meets the needs 
for which it is intended, in terms of safety, efficacy and marketing. This involves the choice 
of the product form (solid, granulated, inhaled, etc.), the product formulation (namely, the 
choice in terms of type and amount of the materials to be mixed with the API), and the 
selection of the packaging materials. Process design includes the identification of the unit 
operations that should be used to manufacture the desired product and the definition of the 
process operating conditions. Both the product and the process activities must be repeatedly 
refined to ensure that they are sufficiently reliable for the technology transfer phase. This 
phase includes the scale-up from laboratory (via pilot plant) to the manufacturing scale for 
mass production; this is not limited to the process operating conditions, but involves all the 
technologies tested and implemented in the small scale plants (e.g., sensors, analyzers, etc.). 
Manufacturing is the culmination of this complex set of activities, which FDA has called 
industrialization process (FDA, 2004a). This process has been recognized to be the weak link 
in the path from scientific discovery of the API to the commercialization of the final product 
(IBM, 2005). Nevertheless, the FDA has acknowledged to have unintentionally contributed to 
this situation, by transforming its relation with companies in a strict oversight rather than an 
interactive collaboration, preventing companies to invest in the modernization of the 
industrialization process. The result is that product and process development in the 
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pharmaceutical industry has often been highly inefficient and in general burdensome in terms 
of time and resources employed. Furthermore, the lack of updating in the procedures has 
progressively led the pharmaceutical development to become an art rather than a scientific 
and technical activity. The main consequence of these issues is that a long time is needed for a 
new product to be approved and launched into the market, which has an unavoidable impact 
on the product market price. 
Attention towards the inefficiencies in pharmaceutical development and manufacturing 
dramatically increased in the last decade, due to the particular situation the pharmaceutical 
industry has been coping with. While in the past, the discovery activities were particularly 
fruitful for the companies, ensuring an adequate number of new products in the pipeline for 
approval and allowing them to cover the high expenses due to the long developmental times 
and inefficiencies after their commercialization, in recent years the number of discoveries has 
experienced a progressive decrease. The FDA approved only 15 new molecular entities in 
2010, while 19 were approved in 2009 and 21 in 2008. In 1996, the new molecular entities 
approved were 53 (Mullard, 2011). New discoveries have been limited to modifications of 
existing products or mainly related to the drug delivery systems, rather than to new products. 
In the meantime, many patents of blockbuster products have (or have already) approached 
their expiration, while companies’ pipelines miss worthy substitutes. This contributed to 
increase the pressure on the bigger pharmaceutical research companies, which have to face 
the increasing competition with generic drug makers. 
Considering this technical and economic background, the regulatory agencies have tried to 
respond to the industry needs by focusing the attention towards the modernization of the 
pharmaceutical development and manufacturing apparatus, with the ultimate objectives of 
providing tools that can be exploited to improve the efficiency in both the development and 
the manufacturing stages, and can lead to a return and an advantage in terms of time, 
resources and competition. 
For this reason, in recent years the FDA launched several initiatives in order to reform its 
relations with pharmaceutical companies (FDA, 2004b, 2004c). The principal aim of these 
initiatives was to encourage a broad change in the way industry develops and makes its 
products. The FDA acknowledged that the state of the rigid regulatory framework was the 
main cause for companies to not invest in innovation and high technology in manufacturing. 
In fact, as mentioned earlier, companies preferred to keep their processes frozen, as every 
change in the process technologies would have required new submissions to the agencies for 
change approval, with subsequent production delays. 
Taking inspiration from the experiences of different industries (e.g. automotive, 
semiconductors, etc.), the FDA introduced the concept of Quality by Design (QbD), namely a 
new approach to pharmaceutical development and manufacturing, which had the purpose of 
favoring an efficient and flexible environment to produce reliably high quality products, 
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without extensive regulatory oversight (Winkle, 2007). The QbD initiative encourages 
companies to the adoption of systematic science-based tools, rather than fixed traditional 
procedures. The ultimate objective of this approach is to promote product and process 
understanding in pharmaceutical development, in order to increase manufacturing flexibility 
and process robustness (i.e., the ability of the process to tolerate variability of materials and 
changes in the process and equipment without negative impact on product quality). According 
to the QbD philosophy, the quality of a product cannot be assessed at the end of the product 
development activity or after manufacturing, but must be “built into” the product and ensured 
since its design, through a thorough mechanistic understanding of the relations between the 
quality of the product and the parameters that have an impact on it. 
In general, a QbD approach to pharmaceutical development must be scientific, risk-based, 
holistic and proactive (Winkle, 2007). In other words, to achieve a full understanding of the 
several sources of variability affecting a pharmaceutical product (and impacting its quality) 
through the raw materials and the process, companies are invited to apply mathematical and 
physical tools, that can describe quantitatively the relations between variables. This would 
help to identify the most critical variables for the quality of the product and to rank them 
according to the risk that their variations affect the product quality. 

1.2 QbD paradigms for pharmaceutical development 
The QbD guidelines identify and define different elements of the new QbD-based approach to 
pharmaceutical development. These elements, which should be integral parts of a QbD 
application, are proposed in order to inspire a practical implementation of QbD. Table 1.1 
lists the main regulatory agencies’ documents that introduce and define the QbD paradigms, 
with the main contribution they provide. 

1.2.1 Critical-to-Quality Attributes and risk assessment 

Since the ultimate scope of the initiative was to improve the control of the pharmaceutical 
companies on the quality of its manufactured products, the first important step of QbD is the 
definition of what is meant for product quality. 
According to the guidelines of the International Conference on Harmonization of Technical 
Requirements for Registration of Pharmaceuticals for Human Use (ICH), which brings 
together the regulatory authorities of Europe, Japan and United States with experts from the 
pharmaceutical industry, quality is defined as the suitability of either a drug substance or drug 
product for its intended use (ICH, 1999). Now, the quality of a pharmaceutical product has to 
take into account the safety and the efficacy of the drug, together with the product 
characteristics related (for example) to the route of administration, the dosage form, 
bioavailability, strength and stability. The summary of these characteristics, which have to be 
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achieved to ensure the desired quality, forms the so-called Quality Target Product Profile 
(QTPP; ICH, 2009). 

Table 1.1. Main regulatory agencies’ documents introducing and defining 
the QbD paradigms. 

Document Contribution 
ICH (1999)# Defines the concept of quality and assists in the establishment of global specifications 

for new drug substances or drug products. 

FDA (2004a) Defines the industrialization process as the set of activities related to product design, 
process design and technology transfer. Acknowledges that problems in these steps 
routinely derail or delay development programs. 

FDA (2004b) Outlines the QbD concept and summarizes initiatives to encourage science-based 
policies and innovation in pharmaceutical development and manufacturing. Proposes 
risk assessment as a tool to evaluate the impact if variations in process inputs for 
product quality. 

FDA (2004c) Introduces the Process Analytical Technology (PAT) framework. Defines process 
understanding, critical-to-quality attributes and critical process parameters and 
identifies PAT tools. Introduces the real time release concept. 

ICH (2005) # Defines the concept of risk for pharmaceutical quality and provides principles and 
examples of tools for risk assessment and management.  

ICH (2008) # Describes a model for an effective quality management system throughout the 
lifecycle of the product. Outlines the control strategy and continual improvement 
concepts. 

ICH (2009) # Provides an overview of QbD in pharmaceutical development. Defines most of the 
QbD paradigms (quality target product profile, critical-to-quality attributes, risk 
assessment, design space, control strategy), providing guidelines of their 
implementation and submission in technical documents. 

ICH (2010) # Questions & Answers session in order to facilitate the implementation of the 
Q8/Q9/Q10 guidelines. Provides several clarifications and the regulatory perspective 
mainly focused on QbD topics as design space, real time release testing and control 
stratgy 

ICH (2011) # Provides a guide for ICH Q8/Q9/Q10 guideline implementation, with emphasis on 
criticality identification, control strategy, design space and process validation. 
Introduces the use of modeling as a tool to implement QbD at every stage of 
development. Categorizes models and provides an ouline for their implementation, 
validation and verification. 

# ICH documents are recommended for adoption to the regulatory bodies of European Union, Japan and United 
States. The same documents can be found in the adopted form as regulatory agencies’ guidances. 

 
The product characteristics that are identified as having an impact on the QTPP are defined 
critical-to-quality attributes (CQAs; FDA, 2004c). These include the physical, chemical, 
biological or microbiological properties or characteristics that have been demonstrated to 
ensure the desired product quality, if within an appropriate limit, range or distribution. 
According to this definition, the CQAs are associated not only to the product, but also to the 
raw/input materials used in product formulation (e.g. excipients), intermediates (in-process 
materials) and to the APIs. Product and process development in a QbD framework should be 
guided by the CQAs of the drug product derived from the QTPP and/or prior knowledge 
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(ICH, 2009). Accordingly, the FDA suggests to identify the CQAs of the input materials 
(APIs and excipients) or intermediates through a systematic procedure based on experiments, 
to assess the extent to which their variation impact on the quality of the product. 
Other than CQAs, the ICH guidelines indicate the manufacturing process as another main 
source of variability for product quality. In particular, among the process parameters, namely 
those settings of the process that can be manipulated at the beginning or during the operation, 
the ones whose variability is demonstrated to have an impact on one or more CQAs are 
defined as critical process parameters (CPPs). CPPs need to be monitored or controlled to 
ensure the desired product quality (ICH, 2009). 
To identify CQAs and CPPs, the FDA suggests to implement procedures based on the 
evaluation of the risk that considering or not an attribute as a CQA or a process parameter as a 
CPP has on the final product quality. The risk is linked to the impact that a variation in a 
material or intermediate attribute or in a process parameter has on product CQAs. This 
procedure of risk evaluation is called quality risk assessment (FDA, 2004b), which is defined 
as the “qualitative or quantitative process of linking the likelihood of occurrence and severity 
of harm” (ICH, 2005). Risk assessment “is typically performed early in the pharmaceutical 
development process, and is repeated as more information becomes available and greater 
knowledge is obtained” during the development and the manufacturing of the product (ICH, 
2009). In the ICH Q9 guide (2005), a series of quality risk management tools are indicated to 
support the risk assessment phase in selecting and ranking the quality attributes (including 
material attributes) and/or process parameters that should be further evaluated or controlled 
within appropriate ranges to ensure the desired product quality (e.g. failure mode effect 
analysis, fault tree analysis, hazard operability analysis) and to manage the identified risks. 
The results of the risk assessment procedure should be a list of potential parameters selected 
on the basis of prior knowledge, scientific first principles and experimentation. This list can 
be refined further through experimentation to determine the significance of individual variable 
and potential interactions. Once the significant parameters are identified, they can be further 
studied to achieve a higher level (possibly mechanistic) of process understanding. It is 
important to note that CQAs and CPPs can evolve throughout the product lifecycle, from the 
initial development through marketing and until the product discontinuation (ICH, 2009). 

1.2.2 Design space 

The risk assessment and process development experiments can lead to an understanding of the 
linkage and effect of process parameters and material attributes on product CQAs, and also 
help identifying the variables and their ranges within which consistent quality can be 
achieved. These process parameters and material attributes can thus be selected for inclusion 
in the design space of the process (ICH, 2009). The ICH Q8 guideline defines the design 
space as “the multidimensional combination and interaction of input variables (e.g. material 
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attributes) and process parameters that have been demonstrated to provide assurance of 
quality”. The design space concept is one of the fundamental paradigms on which the QbD 
framework is based, and its description is expected to be one of the results of the 
pharmaceutical development investigation according to a QbD approach. 
The design space concept introduces a revolution for pharmaceutical development and in the 
relation between pharmaceutical companies and regulatory agencies. When a design space is 
established for a manufacturing process, working within the design space is not considered as 
a change. Only movements out of the design space are considered to be a change and would 
normally initiate a regulatory post approval change process. This philosophy drastically 
changes the classical way agencies used to supervise pharmaceutical development, when 
every change in the process had to be communicated for evaluation and approval. 
The design space is therefore considered as the final achievement of process understanding in 
the development of new products and processes. A process is generally considered well 
understood when (FDA, 2004c): 
• all critical sources of variability are identified and explained; 
• variability is managed by the process; 
• product quality attributed can be accurately and reliably predicted over the design space 

established for materials used, process parameters, manufacturing environmental and other 
conditions. The ability to predict reflects a higher degree of process understanding. 

However, a design space can be updated over the lifecycle of the product as additional 
knowledge is gained. 
The ICH guidelines provide general indications on how to describe and establish a design 
space in different situations, leaving the initiative to the companies on the most appropriate 
tools to employ. As emphasized by the definition, the design space has a multivariate nature, 
suited to explore not only the effect of the single material attributes or process parameters, but 
also their interactions and combined effects. For this reason a design space cannot be 
expressed as a combination of proven acceptable ranges, namely ranges of the process 
parameters, obtained for each single parameter while keeping the other constant, for which the 
operation resulted in producing a product meeting the relevant quality criteria. This is due to 
the fact that experiments to define proven acceptable ranges would be univariate, thus lacking 
an understanding of the interactions between process parameters and material attributes. 
Hence, the definition of the design space requires performing multivariate experiments which 
can highlight possible parameter interactions. Nonetheless, a design space can still be 
described in terms of ranges of material attributes and process parameters, but also in terms of 
more complex mathematical relationships, time dependent functions, or as a combination of 
variables such as components of a multivariate model (ICH, 2009). 
ICH specifies that a design space can be developed also for formulations only. In this case it 
should be described in terms of compositions rather than components, and consists of ranges 
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of excipient amount and their physicochemical properties, based on an enhanced knowledge 
over a wider range of material attributes. Formulation adjustments within the design space 
depending on material attributes does not need a submission in a regulatory post approval 
change (ICH, 2010), unlike changes in the formulation components. 
For a manufacturing process, the agencies leave the applicant with the choice to establish 
independent design spaces for one or more unit operations, or to establish a single design 
space that spans multiple unit operations in a line. While a separate design space for each unit 
operations is often simpler to develop, a design space that spans the entire process can provide 
more operational flexibility. In general, when describing a design space, the applicant should 
consider the type of operational flexibility desired. A design space can be developed at any 
scale, but the applicant should justify the relevance of a design space developed at small or 
pilot scale to the proposed production scale manufacturing process, and discuss the potential 
risks in the scale up operation. In general, if a process design space has to be applicable to 
multiple operational scales, the design space should be described in terms of relevant scale-
independent parameters (ICH, 2009). 

1.2.3 Control strategy and real time release testing 

To ensure that a manufacturing process is maintained within the boundaries described by the 
design space, the definition of an appropriate control strategy is required. It should be noted 
that the term control does not usually refer to the traditional engineering understanding of 
process control. In fact, according to the regulatory agencies, the control strategy is defined as 
“a planned set of controls, derived from current product and process understanding, that 
ensures process performance and product quality. The controls can include parameters and 
attributes related to drug substance and drug product materials and components, facility and 
equipment operating conditions, in-process controls, finished product specifications and the 
associated methods and frequency of monitoring and control” (ICH, 2008). These controls 
should be based on product, formulation and process understanding and should include, at a 
minimum, control of the sources of variability that can impact the product quality. 
Understanding these sources of variability and their impact on downstream processes or 
processing, in-process materials and drug product quality can provide the opportunity to shift 
controls upstream and minimize the need for end product testing (ICH, 2009). The objective 
is therefore to design a system able to compensate for the variability entering the system (e.g. 
through the raw materials) in an adaptable manner to deliver consistent product quality. This 
would enable an alternative manufacturing system paradigm, where the variability of the 
input materials could be less tightly constrained, as the process is designed to be responsive to 
that variability. 
Enhanced product understanding of product performance can justify the use of alternative 
approaches to determine that a product (intermediate or final) is meeting its quality attributes. 
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The use of such alternatives could support real time release testing, namely “the ability to 
evaluate and ensure the quality of in-process and/or final product based on process data” 
(measured material attributes, process parameters). For example, the uniformity of unit dose 
performed in-process (e.g., using weight variation coupled with near infrared – NIR – assay) 
can provide real time release testing and an increased level of quality assurance compared to 
the traditional end-product testing (ICH, 2009). From this point of view, the real time release 
concept is introduced with the aim of reducing or eliminating slow end product testing, by 
ensuring a real-time assurance of quality. 
In summary, a control strategy can include, but it is not limited to, the following (ICH, 2009): 
• control of input material attributes (e.g. APIs, excipients, primary packaging materials), 

based on understating of their impact on processability or product quality; 
• product specification(s); 
• controls for unit operations that have an impact on downstream processing or product 

quality; 
• in-process or real-time release testing in lieu of end-product testing; 
• a monitoring program for verifying prediction models performances (e.g. through full 

product testing at regular intervals). 
The control strategy should facilitate feedback/feedforward controls and appropriate 
corrective/preventive actions for the manufacturing process. It must be underlined that, as 
mentioned above, in the ICH documents the control strategy is intended both to control 
product specifications and for the control of unit operations. These two purposes have 
however a completely different meaning from a practical point of view: if the control strategy 
aims at narrowing the region determined by product specifications, in order to ensure a robust 
product quality, the objective of the unit operation control is that of providing tools to respond 
to the variability entering the process, thus widening the acceptance region for the variables in 
input to the manufacturing process (e.g., raw material attributes) and subsequently the process 
design space. The qualitative difference between a design space established with and without 
defining an appropriate control strategy and its linkage to the product specification space is 
exemplified in Figure 1.1. In this case, for the sake of simplicity the design space is 
represented in both the input variable space and the product specification space, even if the 
latter would be the mathematical image of the former. Moreover, in both cases they are 
considered as subsets of a wider knowledge space, represented by the historical or 
experimental gained knowledge. As can be seen form Figure 1.1, the design space with the 
control strategy implemented is much wider than a design space without controls. The 
corresponding region around the product specifications (called control space) is accordingly 
much narrower than the region corresponding to the design space without controls. This is 
something commonly known in control engineering, namely the fact that to achieve tighter 
control of the final quality variables, one needs to accept more variation in the manipulated 
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variables. In this way the variability is transferred from the product specifications to the 
manipulated variables (Bruwer and MacGregor, 2008), i.e. from where it “hurts” to where it 
does not. 
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Figure 1.1. Schematic of the relation between the design space with and without control 
strategy and the product specifications (adapted from Bruwer and MacGregor, 2008). 

The design space and the control strategy should be verified and improved over the lifecycle 
of the product, especially when new knowledge is gained. For this reason, continuous process 
verification tools should be applied by the companies to monitor the process and make 
adjustments to the process and/or to the control strategy. Continuous process verification is an 
approach to process validation that includes the continuous monitoring and evaluation of 
manufacturing process performance (ICH, 2009). It can enhance the evaluation of the 
manufacturing process if it provides substantially more information on process variability and 
control. Continuous process verification can utilize in-line, on-line or at-line monitoring or 
controls to evaluate process performance, which are based on product and process knowledge 
and understanding. Monitoring can also be combined with feedback loops in order to adjust 
the process to maintain output quality. The advantage of using continuous process verification 
is that it provides the foundation for a robust process performance and product quality 
monitoring system, increasing in the meanwhile product and process knowledge and 
facilitation of continual improvement opportunities for process and product quality. This 
would provide a higher assurance of an ongoing state of control (through the adoption of 
appropriate statistical tools), enabling the earlier detection of manufacturing-related problems 
and trends, and contributing to the verification of the design space (ICH, 2010).  

1.2.4 Process Analytical Technology (PAT) 

Building quality into products rather than testing it at the end of the manufacturing process 
implies that a comprehensive understanding of the characteristics of the drug (chemical, 
physical, pharmacological, pharmacokinetic, etc.), of the design and selection of the product 
components, and of the design of the manufacturing process and quality assurance is 
achieved. To reach this level of comprehension and develop well understood processes that 
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are able to ensure consistently the predefined product quality, appropriate tools need to be 
employed, in order to measure and analyze effectively the relevant data. To this end, the FDA 
introduced in 2004 the process analytical technology (PAT) framework. According to the 
agency definition, PAT is “a system for designing, analyzing and controlling manufacturing 
through timely measurements (i.e., during processing) of critical quality and performance 
attributes of raw and in-process materials and processes, with the goal of ensuring product 
quality”. It is important to note that the term analytical in PAT is viewed broadly to include 
chemical, physical, microbiological, mathematical and risk analysis conducted in an 
integrated manner (FDA, 2004c). 
Through the PAT initiative, the FDA indicates the tools to be considered for an effective 
innovation in development, manufacturing and quality assurance. In particular, the objective 
of PAT is to provide support to clarify on a scientific basis typical issues that are likely to be 
encountered in development and manufacturing studies: for example, which the effects of 
product components on quality are, what sources of variability are more critical for the 
product, or how the process is able to manage variability. 
In general, PAT includes all those tools that can provide an effective and efficient mean for 
acquiring valuable information to facilitate process understanding, continuous improvement 
through process and product monitoring and development of control and risk-mitigation 
strategies. In the PAT framework, these tools can be categorized according to the following 
(FDA, 2004c): 
• multivariate tools for design, data acquisition and analysis; 
• process analyzers; 
• process control tools; 
• continuous improvement and knowledge management tools. 
The multivariate tools category includes all the multivariate mathematical approaches, such as 
statistical design of experiments, response surface methodologies, process simulation and 
pattern recognition tools, in conjunction with knowledge management systems, which allow 
to gain scientific understanding of the relevant multi-factorial relationships between 
formulation, process, and quality attributes. It includes also the means to evaluate the 
applicability of this knowledge to different scenarios. When used appropriately, these tools 
“enable the identification and evaluation of product and process variables that may be critical 
to product quality and performance”. They may also “identify potential failure modes and 
mechanisms and quantify their effects on product quality” (FDA, 2004c). 
Process analyzers include all the tools committed to the collection of data from the process. 
These measurements can be obtained at-line, i.e. by removing, isolating and analyzing the 
sample in proximity to the process stream; on-line, i.e. by diverting the sample from the 
manufacturing process and returning it to the process stream after the measurement; in-line, 
i.e. by keeping the sample inside the process stream, while the measurement can be made 
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invasively or not. Process analyzers are identified as useful tools to generate data not only for 
process understanding, but especially for real-time control and product quality assurance 
during manufacturing. Process analyzers generate typically large volumes of data. For this 
reason, multivariate methodologies are indicated to extract critical process knowledge that can 
be related to product and process quality and used for process monitoring, control and end 
point determination. The design and installation of the analyzers on the process equipment is 
also identified as a critical step, as it must be ensured that the collected data are relevant and 
representative of process and product attributes. For this reason, the installation of process 
analyzers should be done after risk analysis, in order to ensure that it does not adversely affect 
product or process quality (FDA, 2004c). 
The process control tools include all the “process monitoring and control strategies intended 
to monitor the state of a process and actively manipulate it to maintain a desired state. 
Strategies should accommodate the attributes of input materials, the ability and reliability of 
process analyzers to measure CQAs, and the achievement to process end points to ensure 
consistent quality of the output materials and the final product”. Multivariate Statistical 
Process Control (MSPC) is advocated as a feasible and valuable tool to realize the full benefit 
of these (often real time) measurements. In a PAT framework, the process should be 
continually monitored, evaluated and adjusted using in-process measurements, tests and 
controls in order to guarantee continuous quality assurance. This represents a way to 
demonstrate process validation. 
Finally, the Agency encourages the adoption of PAT as continuous improvement tools, which 
enable a continuous learning through the data collected and analyzed over the lifecycle of the 
product. Approaches that support the acquisition of knowledge from these data would be 
valuable for manufacturing and facilitate the communication with the Agency on a scientific 
basis. 
On the basis of PAT tools and principles, the design and optimization of drug formulations 
and manufacturing processes within the PAT framework can include the following steps 
(FDA, 2004c): 
• identify and measure CQAs and CPPs; 
• design a process measurement system to allow real time (or near real time) monitoring of 

all CQAs, using direct or indirect analytical methods; 
• design process control strategies that provide adjustments to ensure control of all critical 

attributes; 
• develop mathematical relationships between product CQAs and material CQAs and process 

parameters. 
The combination of assessed material attributes and process controls constitutes the PAT 
component of real time release. According to the FDA guidelines, process understanding, 
control strategies plus on-, in- or at- line measurement of CQAs that relate to product quality 
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provides a scientific risk-based approach to justify how real time quality assurance is at least 
equivalent to, or better than, laboratory-based testing on collected samples. This can serve as 
the basis for real time release of the final product (FDA, 2004c). 

Table 1.2. Comparison between traditional and QbD-based approaches to 
pharmaceutical development and manufacturing (ICH, 2008). 

Aspect Traditional approach QbD-based approach 

Pharmaceutical 
development 

− Empirical 
− Typically univariate experiments 

− Systematic, relating mechanistic 
understanding of material CQAs and CPPs 
to product CQAs 

− Multivariate experiments 
− Establishment of design space 
− PAT tools utilized 

Manufacturing 
process 

− Fixed 
− Validation based on initial full-scale 

batches 
− Focus on optimization and reproducibility 

− Adjustable within design space 
− Lifecycle approach to validation 
− Focus on control strategy and robustness 
− Use of statistical process control 

Process control − In-process tests for go/no go decisions 
− Off-line analysis 

− PAT tools utilized with appropriate 
feedforward and feedback control strategies 

− Process operations tracked and trended to 
support continual improvement 

Product 
specifications 

− Primary means of quality control 
− Based on batch data available 

− Part of the overall quality control strategy 
− Based on desired product performance 

(safety and efficacy) 

Control 
strategy 

− Drug product quality controlled mainly 
by intermediate and end product testing 

− Drug product quality ensured by risk-based 
control strategy 

− Quality controls shifted upstream, with the 
possibility of real time release 

Lifecycle 
management 

− Reactive (i.e., problem solving and 
corrective action) 

− Proactive action 
− Continual improvement facilitated 

1.2.5 QbD implementation in pharmaceutical development and 
manufacturing 

QbD provides an enhanced approach to pharmaceutical development and manufacturing, 
based on scientific and engineering principles for assessing and mitigating risks related to 
poor product quality and process performances. In pharmaceutical development, the objective 
of QbD is the achievement of a scientific understanding of how input material factors and 
manufacturing process factors affect product quality. The level of achieved understanding is 
the basis for a robust design of the product formulation and of an effective and efficient 
manufacturing process. In manufacturing, the main objective of QbD is to provide systems 
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able to assure in real time that the product meets the quality requirements. This implies that 
the process should have the capability to identify and respond to disturbances entering the 
system. 
In Table 1.2, a comparison between the strategy outlined by the QbD paradigms and the 
traditional approaches is summarized for some of the key aspects of pharmaceutical 
development and manufacturing (ICH, 2009). As can be seen, unlike the traditional approach 
that is substantially empirical, the implementation of the QbD paradigms in pharmaceutical 
development has to be based on a mechanistic understanding of the driving forces acting on 
the process, both in the developmental phase and in the manufacturing phase. This 
mechanistic understanding can be achieved only through the execution of appropriate 
multivariate experiments in which the relevant process inputs are excited to register their 
impact on the output (response variables). Indeed, process understanding achieved through 
designed experiments and from manufacturing data has real business, other than scientific, 
value. 
 

 
Figure 1.2. Revenue trend for a drug product during its lifetime, if a traditional (solid line) 
or a QbD-based approach (dashed line) were used for pharmaceutical development and 
manufacturing (adapted from IBM, 2005). 

Figure 1.2 reports the trend of the total revenues a drug product brings, from the discovery to 
the patent expiration in a traditional pharmaceutical development and manufacturing 
framework (solid line) (IBM, 2005). As can be seen, after the pre-launch phase, in which 
investments in research and development are needed and which usually lasts around ten years, 
the product is launched and drug sales increase the revenues. Since very often companies 
launch their products before the manufacturing process is fully optimized, in the first year or 
two there still are not revenues. Afterwards, product sales start to increase, until reaching a 
peak usually ten years after the product launch. Sales then may decrease, when the product is 
mature, e.g., for competition reasons. IBM estimated that improving new product and process 
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development to design robust manufacturing processes through a QbD-based approach prior 
to the launch of new products could help reducing the period from launch to peak sales by as 
much as five years, thus unlocking an enormous amount of added value (dashed line in Figure 
1.2). As an example, a drug with peak annual sales of US$1 billion was estimated to generate 
an extra US$1.6 billion over its lifetime. 
In order to exploit the scientific and economic benefits of QbD, appropriate methodologies 
need to be conceived and/or implemented to support the design of experiments, the analysis 
of the data, the extraction of information needed for process understanding, the definition of 
the control strategy. From an engineering point of view, these issues can be addressed by 
resorting to appropriate modeling tools. The pharmaceutical companies can therefore benefit 
strongly from modeling tools, which are now mature and widely used in other industries (e.g., 
chemical, petrochemical, polymer, consumer goods, energy) and need only to be adapted to 
the needs and constraints the pharmaceutical environment is subject to. 
Stemming from the QbD paradigms, the practical implementation of QbD in the development 
of new pharmaceutical products can go through the following steps (Winkle, 2007; Yu, 
2008): 
1. Define the desired performances of the product and identify the CQAs. 
2. Design the product formulation and the manufacturing process in order to meet the CQAs.  
3. Understand the impact of materials attributes and process parameters on product CQAs. 
4. Identify and control the sources of variability due to the raw materials and the 

manufacturing process. 
5. Continually monitor and improve the manufacturing process in order to assure consistent 

product quality. 
The first three steps of the above-mentioned roadmap can be seen as part of the 
pharmaceutical development activities, while the last two are mainly related to 
pharmaceutical manufacturing. Appropriate modeling tools can enter in each step of the 
presented procedure, thus supporting the practical implementation of QbD paradigms. 

SECTION B – OVERVIEW OF RESEARCH ISSUES 

1.3 QbD and modeling 
Most of the QbD paradigms described in the FDA guidelines (design space, control strategy, 
PAT) can be understood as the application of Process Systems Engineering (PSE) to the 
development and manufacturing of pharmaceutical products (García-Muñoz and Oksanen, 
2010). The QbD aim is to improve process efficiency and quality control on the manufactured 
products through a scientific understanding of the relationships between the variables 
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impacting the quality. The description of these relationships can be mathematically 
formulated in a model, linking input variables (raw materials CQAs, CPPs) with product 
CQAs. The trends highlighted by QbD have therefore opened the route towards a new 
concept of product development, which has to be model-based, rather than experience based, 
and integrated with the process development. Modeling can be used in every stage of 
pharmaceutical development and manufacturing, and is mainly intended to enhance process 
understanding and predict the behavior of a system under different conditions (ICH, 2011). 
As a consequence, models can be used to support development activities, in order to 
accelerate the launch of new products in the market, but also to improve the productivity and 
to control the product quality in manufacturing environments. PSE plays then a central role 
for the pharmaceutical industry by providing the tools to address simultaneously process 
design, the design space definition, and process monitoring and control using PAT. 
The use of modeling to support QbD implementation has been encouraged by the regulatory 
agencies, which distinguish between different categorizations of models (ICH, 2011). For the 
purpose of regulatory submissions, an important factor for categorization is the model 
contribution in assuring the quality of the product. Accordingly, models can be distinguished 
in low, medium and high impact. Low-impact models are typically the ones used to support 
product and/or process development (e.g., formulation optimization); medium-impact models 
can be useful in assuring the quality of the product but are not the sole indicators of product 
quality (e.g., most design space models, many in-process controls); high-impact models are 
those whose prediction is a significant indicator of the quality of the product (e.g., a 
chemometric model for product assay). For the purpose of implementation, models can also 
be categorized on the intended outcome of the model. Within each of these categories, models 
can be further classified (as above) in low, medium and high impact in assuring product 
quality. As an example, different categories based on the intended use of the model are 
models to support process design (usually low or medium-impact models as those for 
formulation optimization, process optimization, design space determination and scale-up), 
models to support analytical procedures (mainly chemometric models based on data generated 
by PAT, which are usually high-impact, especially if used for release testing), models for 
process monitoring and control (medium or high-impact models as multivariate statistical 
process control models for continuous process verification or models for feedforward process 
control). 
PSE provides many tools for model development and application, and the pharmaceutical 
sector has the opportunity to benefit strongly from these mature tools. In general, 
mathematical models can be derived from first principles reflecting physical laws (e.g., mass 
and energy balances, heat transfer relations, etc.), from data (data-based models), from 
previous knowledge or from their combinations. Aside from the kind of model used, 
modeling cannot be thought as a stand-alone activity, but needs to be fully integrated with an 
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experimental strategy. The benefit of using modeling during development should then be seen 
in reduced experimentation and reduced developmental resources. Accordingly, modeling 
would be the tool that allows both to guide smart decisions about fit for purpose 
experimentation and to provide more process understanding, by formalizing in mathematical 
terms the relationships between variables. This implies that the critical-to quality input 
variables have been identified and included in the model equations, thus accounting for their 
importance. 
On the basis of the PAT framework (FDA, 2004c), models themselves can be considered as 
PAT tools. In fact, the classification of PAT tools described in §1.2.2 (multivariate tools, 
process analyzers, process control tools and continuous improvement tools) has defined the 
application fields of modeling in pharmaceutical development and manufacturing. This has 
opened the route for several studies employing classical PSE approaches in pharmaceutical 
applications, in order to demonstrate how modeling can be used to support QbD 
implementation (Gernaey et al., 2012). 
As multivariate tools for design and data analysis, several approaches based on chemometric, 
mechanistic and hybrid models have been proposed in recent years. Chemometric models 
have been widely used and are now generally accepted by the pharmaceutical community as 
tools for improving process knowledge especially in PAT applications (spectroscopy, image 
analysis, acoustic signals, etc.). The interest for multivariate data analysis methods like 
principal component analysis (PCA; Jackson, 1991), partial least-squares regression (PLS; 
Wold, 1983; Höskuldsson, 1988) and statistical design of experiments (DoE; Montgomery, 
2005a) has tremendously grown after the PAT initiative, together with the diffusion of 
advanced characterization techniques (Hinz, 2006). Very recently, Rajalahti and Kvalheim 
(2011) and Pomerantsev and Rodionova (2012) have reviewed dozens of published case 
studies in pharmaceutics that, mainly in the last three years, combined analytical methods 
such as infrared (IR), near-infrared (NIR), Raman spectroscopy, hyperspectral and digital 
imaging, and other tools as X-ray diffraction, chromatography or nuclear magnetic resonance 
(NMR), with multivariate analysis tools able to analyze the lots of data these instruments 
allow to acquire quickly. The applications mainly range from the design of predictive models 
for the estimation of the API or excipient contents in tablets (Chalus et al., 2005), liquids 
(Kim et al., 2007), pellets (Mantanus et al., 2010), or syrups (Ziémons et al., 2010); to the 
characterization of polymorphs in mixtures (Blanco et al., 2006); the design of models to 
monitor operations like crystallization (Pöllänen et al., 2005), blending (Vanarase et al., 
2010), granulation (Halstensen et al., 2006), drying (Peinado et al., 2011), coating 
(Kucheryavski et al., 2010), or end-product quality (Matero et al., 2010); the prediction of 
physical properties for granules or tablets (Shah et al., 2007); the visual characterization of 
product appearance (García-Muñoz and Camody, 2010b) or coating uniformity (García-
Muñoz and Gierer, 2010c). 
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If multivariate methods have been largely employed to support analytical methods 
implementation and as soft sensors (Kadlec et al., 2009), their use in pharmaceutical 
development and manufacturing with other purposes (e.g., process design and control, 
product transfer) is less common. Kourti (2006) provides a thorough review of the role of 
multivariate analysis beyond real-time analyzers and a more complete survey will be given in 
the next section (§1.4).  
In general, to define the best process operating conditions and the possible control strategies, 
it would be highly desirable to have tools that allow simulating the behavior of the process in 
silico, without resorting to experimental campaigns, especially in large scale plants. 
Mechanistic models based on first principles enable to map the process knowledge in a series 
of input-output relationships, which reflect the physical behavior of the system. Although the 
formulation of a first-principles model requires deep knowledge of the physical phenomena 
occurring in a process, and adequate estimation of the model parameters is needed to use the 
model as a simulator and predictive tool, applications employing mechanistic models in terms 
of ordinary differential equations (ODEs), differential algebraic equations (DAEs) and partial 
differential equations (PDEs) have recently been proposed in the pharmaceutical literature 
(Gernaey et al., 2012). Examples of mechanistic models based on ODEs can be found in Sin 
et al. (2008) for the modeling of an antibiotic production, or in the work of Zimermann et al. 
(2007) for the modeling of reaction in the synthesis of neuraminic acid. 
Due to the unique challenges faced by the pharmaceutical industry, which is mainly 
characterized by batch productions in which solid materials are often manufactured, PDE 
models have been increasingly applied, especially in the form of population balance models 
(PBMs). These have been proposed to describe the dynamics of crystal size distribution in 
crystallization processes (Nagy et al., 2008; Aamir et al., 2010), for the description of the 
particle size distribution and the binder content in granulation processes (Poon et al., 2009; 
Ramachandran et al., 2009), blending operations (Boukouvala et al., 2011) or milling 
processes (Bilgili and Scarlett, 2005), or the description of the moisture content in particles 
during drying (Mortier et al., 2011). Other PDE applications that are increasingly being used 
in the pharmaceutical industry are those related to computational fluid dynamics (CFD) to 
simulate mixing, solid handling, separations and drying processes (Pordal et al., 2002). 
Kremer and Hancock (2006) and Wassgren and Curtis (2006) have provided thorough 
reviews of the use of CFD for pharmaceutical unit operations. If the first applications of CFD 
were mainly oriented to the study of the flow of materials into the equipment, nowadays the 
trend and the challenge is toward the development of combined CFD-PBM models that can 
describe the change of distributed properties as a function of spatial coordinates inside a unit 
operation (Gernaey et al., 2012). As an example, Woo et al. (2009) combined CFD and PBM 
to model an impinging jet crystallizer. 
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The need of technologies to describe the behavior of granular materials has contributed to 
resort to modeling tools able to describe the interactions between particles, other than between 
the particles and the fluid. Discrete element methods (DEM) are now often used to this 
purpose, especially for the simulation of powder mixing processes (Remy et al., 2009; Dubey 
et al., 2011). Ketterhagen et al. (2009) reviewed a series of applications of DEM in the 
pharmaceutical industry, whereas Adam et al. (2011) provided a specific example on the use 
of DEM within the definition of the design space for a blending process. 
In many cases, even if a detailed mechanistic model can be written, its implementation entails 
a high computational burden, which prevents the use of the model in many real-time 
applications, such as those related to the control or optimization of the operation. For this 
reason, reduced-order models (Krasnyk et al., 2012) and hybrid models mixing mechanistic 
models with a data-driven component (Doyle et al., 2003) are often used. Akkisetty et al. 
(2010) reported for example the use of a neural network for representing the breakage 
function in a PBM describing the particle size distribution of a milled material. 
The ultimate advantage of using modeling to describe pharmaceutical processes would be 
their implementation as control and optimization tools. Other than the computational 
requirements, the challenge of mechanistic models would be that of incorporating advanced 
online measurements (coming for example from spectroscopic instruments or online process 
analyzers) into the models. For these reasons, applications of advanced control methods, such 
as model predictive control (Hermanto et al., 2011), have been limited so far. Some studies of 
the use of classical control theory tools for pharmaceutical processes have recently appeared 
in the literature (Ramachandran et al., 2011; Singh et al., 2012). 

1.4 Latent variable models and QbD 
Unlike other manufacturing industries, the pharma sector has to cope with some unique 
challenges in product development and manufacturing, such as a variety of production paths, 
multi-product low volume and mainly batch productions, the complexity of products, which 
are basically formulations of different raw materials (APIs, fillers, binders, disintegrants, 
lubricants, etc.), and, above all, a peculiar regulatory environment (García-Muñoz and 
Oksanen, 2010). These challenges contribute to complicate product and process design 
activities, because many materials and process conditions need to be tested in order to 
understand their impact on the final product quality. 
Although mechanistic models would always be desirable to assist the implementation of the 
QbD paradigms, as they provide a transparent representation from first-principles of the 
relations between input variables (e.g., raw materials characteristics, process parameters) and 
product quality, the specific features of the pharmaceutical productions make their 
development and use particularly burdensome in most pharmaceutical development and 
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manufacturing applications. For these reasons, pharmaceutical development has often relied 
on extensive experimental campaigns, aiming at generating data to increase the understanding 
on a process under development. As a consequence, pharmaceutical environments are usually 
characterized by the availability of large amounts of production and research data from 
development and manufacturing environments, being them obtained from designed 
experiments, on-going manufacturing processes, or historical products already developed. 
According to the QbD framework, pharmaceutical companies can benefit from a better 
management of these data, from which useful information for the development of new 
products and processes, process monitoring and control can be extracted. 
There is therefore the need of developing systematic design and analysis tools that can be 
used throughout the variety typical of pharmaceutical productions, in order to give the 
opportunity for pharmaceutical development personnel to exploit optimally these data. The 
information extracted from these data can then drive process understanding and descision-
making in product and process development, or support troubleshooting and process 
supervision in manufacturing environments. Latent variable models (LVMs) can represent 
appropriate modeling tools to better leveraging these data and respond to these needs. 
LVMs are statistical models specifically designed to analyze massive amounts of (usually 
correlated) data. The basic idea behind LVMs is that the number of underlying forces acting 
on a system is much smaller than the number of available measurements taken on the system. 
Indeed, the forces that drive the system leave a similar signature on different measured 
variables, which in turn means that the measurements are correlated. LVMs enable the 
identification and the quantification of these driving forces thanks to the estimation of the 
model parameters. By combining the correlated variables, LVMs find new variables (the 
latent variables, LVs) that optimally describe the variability in the data, and can be useful in 
the identification of the driving forces acting on the system and responsible for the data 
variability. Figure 1.3 reports a geometrical interpretation of the operation performed when a 
LVM is built on a dataset X  which collects 11 samples characterized by 3 measured variables 
xn (n = 1,2,3). 
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Figure 1.3. Geometrical interpretation of the LVM built on the dataset X. 
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As can be seen, the LVM transforms the three-dimensional X space into a two-dimensional 
space (the latent space) defined by the LV1 and LV2 directions. These indeed correspond to 
the directions along which the scattering (i.e. the variability) of the data is higher. The original 
X space can then be described by the latent space (on the right of Figure 1.3), and the 
projections (called scores) of the original variables (x1, x2 and x3) on the LV space become 
then the new variables defining the state of the system. 
There are several other advantages, other than dimensionality reduction, in using LVMs rather 
than the original variables to describe a system. Since LVs find the directions of maximum 
variability in the data, they can be easily interpreted, based on the engineering knowledge, to 
identify which are the driving forces acting on the system. Moreover, LVs are independent 
(orthogonal) and (assumed to be) normally distributed. This allows to use the probability 
theory to evaluate how new data are similar to the data used to build the model. 
Other than modeling single spaces as in Figure 1.3, LVMs can be used to relate data from 
different datasets, as in latent variable regression models (LVRMs). These models are 
commonly associated to analytical instruments, to relate highly correlated input variables 
(e.g., spectroscopic variables) to response variables as product quality, as described §1.3. In 
general, they are powerful modeling tools in every situation in which the number of measured 
variables are large as compared to the number of runs/samples (Burnham et al., 1996). 
It must be noted that, while LVMs have found wide application as predictive tools, their 
importance (also in industrial applications) has not been limited to predictions. For example, 
they have been used for process understanding and troubleshooting (García-Muñoz et al., 
2003), for process operating conditions design (Jaeckle and MacGregor, 1998), for process 
control (Flores-Cerrillo and MacGregor, 2004), process monitoring (MacGregor and Kourti, 
1995), process scale-up (García-Muñoz et al., 2005) and also for product design (Muteki et 
al., 2006) and optimization (Yacoub and MacGregor, 2004). 
Details on the theoretical background behind LVMs and on the algorithms will be provided in 
Chapter 2. The main interest here is to show how LVMs can be feasibly used to support the 
practical implementation of QbD. Figure 1.4 provides a schematic of the steps described in 
§1.2.3 for the practical implementation of QbD in pharmaceutical development and 
manufacturing, together with some indications on how LVMs can be used. As can be seen, 
LVMs could have an important role in each of the QbD implementation steps reported in 
Figure 1.4. These steps can be summarized according to the three main objectives of QbD: 
product and process design, process understanding and process monitoring and control. In the 
following, some insights on how LVMs can be used as supporting tools in each step are 
presented, with a survey on reported applications of multivariate statistical approaches to face 
the above issues within pharmaceutical industries. 
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1. Definition of product CQAs

2. Formulation and process design to meet 
the product CQAs

3. Understanding relations between raw 
materials, CPPs and product CQAs

4. Identification and control of disturbances 
(raw materials, process conditions)

5. Continuous monitoring of the 
manufacturing process

Process understanding
• Interpretation of LVM 

parameters

Process monitoring and control
• Multivariate statistical process control (MSPC)
• Raw material acceptance regions
• LVM Fedback/Feedforward controllers
• LVM Predictive Control

Product and process design
• LVM inversion

 
Figure 1.4. Schematic of the QbD implementation steps, with the indication of the possible 
use of LVMs in each step (adapted from Yu, 2008). 

1.4.1 Product and process design 

The use of multivariate analysis in pharmaceutical development for product and process 
design has considerably increased after the introduction of the QbD framework. Contributions 
which show the application of multivariate statistical analysis to support the QbD 
implementation can be divided in three main categories: those based on DoE and response 
surface models, those combining design of experiments with LVMs, and those based on the 
inversion of LVMs built on historical databases. 

1.4.1.1 Design of experiments 
Prior to the QbD initiative, applications of statistical models for product and process design in 
pharmaceutical industry were limited to DoE tools (Montgomery, 2005a), with the aim of 
optimizing product formulations or processes. Gabrielsson et al. (2002) reviewed several 
applications of DoE and multivariate analysis in pharmaceutical applications, acknowledging 
that, at that time, DoE was very common in pharmaceutical development, especially for 
formulation design and product optimization. As an example, Campisi et al. (1998) used an 
experimental mixture design for the optimization of the theophylline solubility in a four-
component blend. Ramabali et al. (2001) used a DoE strategy to generate data for modeling 
and optimizing a fluid bed granulation process. 
After the introduction of the QbD initiative, the identification of the design space of the 
process has become the ultimate objective of the product/process design activity for 
pharmaceutical companies. A general guidance on the topic can be found in the work of 
Lepore and Spavins (2008), who outlined a series of approaches and steps for the 
development of a design space. Clearly, several different approaches have been proposed 
regarding the way a design space should be identified. Most of the industrial case studies in 
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this field apply statistical DoE to explore the knowledge space and identify the regions within 
which parameter values are demonstrated to ensure the desired product CQAs. As a matter of 
example, am Ende et al. (2007) applied a QbD approach based on risk assessment and DoE 
performed on the parameters identified as CPPs, to define the design space for an API 
manufacturing process (Torcetrapib). A similar strategy was used by Burt et al. (2011) who 
exploited DoE results to develop a hybrid model to guide the development of the design space 
for a drug manufacturing process. In the work of Kapsi et al. (2012), an orthogonal design 
space for a compression-mix blending unit operation was developed by overlaying design 
spaces obtained for different product CQAs. Zacour et al. (2012a) constructed a tolerance-
based design space from the combination of the response surface models of the single product 
CQAs, which reflected the probability of a given parameters combination to give CQAs 
within specifications. 

1.4.1.2 Design of experiments and latent variable models 
In the review of Gabrielsson et al. (2002) it was acknowledged that few examples were 
available on the use of multivariate data analysis methods in pharmaceutical applications, 
compared to DoE. After QbD was proposed by the FDA, multivariate analysis methods as 
LVMs have started to creep in pharmaceutical development environments, often coupled with 
DoE, with the main purpose of facilitating the choice of the parameters to include in a DoE 
analysis (e.g., on the basis of a PCA), or to discover the relationships between the input 
variables (design parameters or measured variables) and responses (e.g., using a PLS model), 
especially when the product CQAs were multivariate. 
Bergman et al. (1998) presented a strategy based on sequential design of experiments and 
multivariate analysis (namely, PCA and PLS models) to optimize a multi-step process 
involving a granulation and a tabletting operation. Gabrielsson et al. (2003) used a strategy 
based on PCA to choose, within a large database, the excipients to test in a screening 
experimentation to define a pharmaceutical tablet formulation (multivariate design). The PLS 
model built between the excipient properties and the responses obtained from the experiments 
was later validated and used to design the formulation to give the desired tablet properties 
(Gabrielsson et al., 2004). Lundsted-Enkel et al. (2006) reported a similar approach for a 
product formulation development, in which they underlined the usefulness of PCA for the 
analysis of the excipient databases, as interpretation of the material behavior was greatly 
improved, thus facilitating the choice of the excipient for formulation. Andemichael et al. 
(2009) were able to identify which batches were acceptable from an impurity point of view 
from a PCA on the IR spectra obtained from an API fermentation process, thus allowing to set 
specifications for process development in the synthesis of an antibiotic. 
Another advantage in the use of multivariate models, which is often emphasized, is the 
possibility of analyzing several measured response variables using a single model. Andersson 
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et al. (2007) demonstrated it with reference to an industrial case study related to the early 
development of a tablet formulation. In their work, the authors showed how a PLS model was 
able to cluster the response variables according to their correlation, thus guiding the 
experiments for the improvement of the model and for its subsequent use to guide the 
formulation design. Multivariate statistical analysis tools have also been used in the 
establishment of a design space to study the relationships among variables processed by DoE 
and those which are only measured. Huang et al. (2009) applied an approach based on DoE to 
perform the experiments, and then they used PCA and PLS to evaluate the impact of materials 
CQAs and CPPs on manufacturability and final product CQAs, with the aim of establishing 
the design space for a tablet manufacturing line involving high shear wet granulation, milling, 
blending, compression and coating units in small scale. 
As PCA and PLS allow to model efficiently highly correlated data like those coming from 
online process measurements, they have often been used to include them in the analysis for 
the design space establishment. Streefland et al. (2009) used PCA and PLS to model data 
obtained from a DoE performed on a bacterial vaccine cultivation process. The techniques 
allowed to consider DoE parameters, online process measurements, NIR data, process 
variables related to process evolution and product CQAs in a unique model, in order to 
identify the design space for the process. In the study by Thirunahari et al. (2011), a design 
space for a batch cooling crystallization process was established using orthogonal PLS 
(OPLS; Trygg and Wold, 2002) and PCA to analyze attenuated total reflectance Fourier 
transform IR and Raman spectra, with the aim of favoring the desired form in a polymorphic 
system. Lourenço et al. (2012) reported a QbD study applied to an industrial pharmaceutical 
fluid bed granulation process. The authors acknowledged the usefulness of multivariate 
analysis (in the form of LVMs) in extracting information from the historical available datasets 
of the industrial process to increase process knowledge and guide risk assessment. This 
allowed to establish a better design space for the pilot scale process. Furthermore, the 
importance of multivariate analysis in finding correlations among different kinds of available 
data (process measurements, spectra) was emphasized, as well as the usefullness in 
identifying process patterns useful for process monitoring and control. Zacour et al. (2012b) 
used a strategy based on DoE and PAT to develop the design space for a fluid bed dryer, 
considering both raw material CQAs and CPPs. In the presented case study, a programmable 
logic controller was implemented to control the operation on the basis of the predictions 
obtained from a hybrid first-principles/PLS model (Zacour et al., 2012c). This somehow 
agrees with the framework proposed by MacGregor and Bruwer (2008) for the development 
of design and control spaces for pharmaceutical operations. As stated by the authors, the 
design space in raw materials and in process parameters must be developed jointly, as 
changes in either one would affect the other. Furthermore, it is important to consider the 
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control system the manufacturing plant will use while defining the design space, as changes in 
the control procedure would change the design space. 

1.4.1.3 Latent variable model inversion 
Other than the applications described above, LVMs, such as PCA and PLS, can have a 
prominent role in setting up a product and process design environment under a QbD 
framework, by analyzing the data from historical experiments and especially by exploiting 
data available from already developed products. If a LVRM relating raw material CQAs, 
CPPs (e.g., input variables) and product CQAs (response variables) is designed from 
historical data, it can be used to support product or process design or even to integrate them. 
Once the product CQAs have been defined (step 1 in Figure 1.4), the LVRM can be used to 
assist product and process design by using LVRM inversion technologies (Jaeckle and 
MacGregor, 1998 and 2000a; García-Muñoz et al., 2006 and 2008). A LVRM will enforce the 
relationships drawn from the historical data or the performed experiments to calculate the 
optimal sets of raw materials and/or raw material properties (in case of product design), the 
optimal process operating conditions (in case of process design) or both in order to obtain a 
desired product, as the process output. In this way, a LVM can be used to guide the 
experimentation in developmental studies or for the definition of the process design space, 
which, as proposed by Kourti (2006) and demonstrated by García-Muñoz et al. (2010), can be 
defined directly in the LV space. Indeed, the analysis of historical data has also been 
suggested by ICH (2009) as a tool that can contribute to the establishment of a design space. 
Furthermore, if data from different plants are available, LVRMs can be inverted to support the 
transfer of products between different plants, namely to estimate the process conditions in a 
new plant in order to manufacture a product already developed in a reference plant (Jaeckle 
and MacGregor, 2000b). This is typical for example of process scale-up and is considered a 
highly risky and burdensome activity in pharmaceutical manufacturing. 
Further details on LVRM inversion for product and process design will be provided in 
Chapter 4 of this Dissertation. In general, very few applications of model inversion for 
product/process design have appeared so far in the pharmaceutical literature. Very recently, 
some industrial case studies have been presented which applied LVRM inversion for the 
modeling and optimization of a tablet manufacturing line in which data from different 
formulations and unit operations (namely roller compactor and tablet press) were considered 
(Liu et al., 2011a). A similar approach was proposed by Yacoub et al. (2011a) for the robust 
design and optimization of a whole manufacturing line involving wet granulation, drying, 
blending, compression and coating. In that work, it was shown how the LVRM identified the 
variable to manipulate in order to make the process robust to the raw material variability and 
lead to the introduction of a feedback control loop in the process to control in-process 
variables. Other contributions have shown how LVRM inversion could be used to support the 
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scale-up of a roller compaction process (Liu et al., 2011b), and to de-risk the scale-up of a 
challenging operation such as high-shear wet granulation, by using an optimized PLS model 
on a small scale plant to estimate the end point for the large scale operation, in order to 
respond to the API lot-to-lot variability (Muteki et al., 2011). 
 
Many other contributions have been proposed by practitioners and academia, to define the 
design space of a process based on data from experiments. To account for uncertainties in 
model parameters and for correlation between responses at assigned operating conditions, 
Bayesian approaches have been proposed (Peterson, 2008; Peterson and Yahyah, 2009) in 
alternative to traditional approaches, such as desirability functions or overlapping contours of 
different response surface models, commonly used in DoE (Stockdale and Cheng, 2009). 
Feasibility analysis techniques have recently been proposed to consider uncertainties in the 
model parameters and the process feasibility when developing design spaces using data-based 
approaches (Boukouvala et al., 2010; Boukouvala and Ierapetritou, 2012). 

1.4.2 Process understanding 

As discussed in §1.2.1, process understanding involves all the activities related to the 
identification and management of the critical sources of variability affecting the product and 
process quality. In her review on the role of multivariate methods to implement PAT, Kourti 
(2006) emphasizes the role of multivariate analysis in pharmaceutical development for 
process understanding, by suggesting that tremendous insight into the process can be derived 
from data-based models like LVMs. 
LVMs are in fact efficient tools in which the relationships among measured variables are 
transparent. Therefore, as mentioned earlier, LVMs parameters can be interpreted from first 
principles, enabling a deep understanding of the process and of the factors affecting a 
manufacturing operation. This type of modeling offers a tremendous advantage over other 
empirical/data-based models also from a regulatory point of view: as stated by the FDA 
(2004c), the predictive ability of a model has to reflect a higher degree of process 
understanding. The level of understanding achievable when black-box models (e.g., neural 
networks, expert systems, artificial intelligence) are used is usually lower than an LVM, due 
to the lack of transparency in the mechanics behind the predictions, even if the former can be 
more efficient than the latter for prediction (due to their nonlinear mapping capabilities). As a 
consequence, LVMs are preferable and accepted by the regulatory agencies to demonstrate 
process understanding in file submissions for approval. For all these reasons, LVM parameter 
interpretation has been indicated in Figure 1.4 as a useful tool for process understanding, to 
identify relations between raw material CQAs, CPPs and product CQAs. The consent 
demonstrated by the agencies toward these techniques has contributed to increase the number 
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of published works, concerning mainly industrial case studies, which apply LVMs for process 
understanding. 
Westerhuis and Coenegracht (1997) pioneered the use of a multi-block PLS model (MB-PLS, 
MacGregor et al., 1994) to improve the interpretability of the model parameters and 
understand the critical variables in a two-step process consisting of granulation and tabletting. 
The MB-PLS model allowed both to include in the analysis the measurements on the 
intermediate product (the granules, which had a strong correlation with the final tablets) and 
to segregate the group of input variables (raw material compositions, granulator outputs, 
process parameters) in blocks, in order to study separately the influence of both groups on the 
tablet properties. 
Soh et al. (2008) applied LVMs (PCA and PLS) to understand and model the effects of raw 
material properties (different grades of lactose and microcrystalline cellulose) and process 
parameters on the granule and ribbon properties obtained in a roller compaction process. 
Maltesen et al. (2008) reported an industrial case study in which PCA was used to identify the 
most important parameters and to find correlations between dependent and independent 
variables in a spray-drying process of insulin intended for pulmonary administration. In the 
work of Verma et al. (2009) multivariate regression techniques were used to identify the most 
critical parameters that affected nanosuspension preparation through microfluidization. 
Norioka et al. (2011) showed that multivariate statistical methods were useful to extract 
cause-effect relationships that allowed to understand on a scientific basis the process 
parameters more affecting the average and variance of the response variables in a solid form 
manufacturing process. A recent study of Dumarey et al. (2011) shows that analyzing data 
from an experimental design with OPLS improved the interpretability of the model. The 
authors applied this technique to enhance understanding on a roller compaction process, in 
which different grades of microcrystalline cellulose were tested at different process settings. 
Oftentimes, multivariate methods are used to support the implementation of novel analytical 
technologies, which allow to improve understanding on a given process. An example is given 
by Lourenço et al. (2011), who used a microwave resonance technology (MRT) to monitor a 
fluidized bed granulation. The analysis through multiway PCA (MPCA; Nomikos and 
MacGregor, 1994) and multiway PLS (MPLS; Nomikos and MacGregor, 1995) of the MRT 
data allowed to discover a seasonality effect that affected the final granule size. Moreover, the 
use of a PLS model demonstrated that a relation between the particle size and the MRT 
measurements could be quantitatively established. This was found essential for the 
improvement of the process. In a similar study, Saerens et al. (2012) used in-line NIR 
spectroscopy to gain understanding on the polymer-drug interactions in a pharmaceutical hot-
melt extrusion. The authors showed that NIR spectra indicated the presence of amorphous 
API and of hydrogen bonds between the polymer and the drug, thus demonstrating that the 
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technology could be used to monitor the solid state behavior of the system, other than for 
determining the API concentration.  
Other examples have been reported on the use of multivariate methods and LVMs to improve 
process understanding in technology transfer and process scale-up. Portillo et al. (2008) used 
analysis of variance to understand the impact of different blending parameters on the mixing 
rate in different scale blenders, in order to support the scale-up of a batch mixing process; the 
blender size was considered as a parameter in the experimental design. Kirdar et al. (2008) 
used MPCA and MPLS to identify scale-up differences and process parameters interactions 
that adversely impacted cell culture performances and product attributes in a 
biopharmaceutical application. García-Muñoz and Settell (2009) showed how PLS model 
parameters could be interpreted from first principles, allowing to identify the driving forces 
acting on a spray drying process. In the same study, they used a joint-Y PLS model (JY-PLS; 
García-Muñoz et al., 2005) to understand the relationships between variables at multiple 
scales (pilot and commercial), identifying similarities that can be useful during scale-up. 
Despite being used with reference to process or product development to clarify the impact of 
different input variables on the product or process quality, process understanding has also a 
significant role in product manufacturing, for example for process troubleshooting (García-
Muñoz et al., 2003) or root-cause analysis. This usually requires an offline analysis of the 
process data. An example can be found in the case study presented by García-Muñoz et al. 
(2009), who applied a JY-PLS model to determine the root cause for a bias found during the 
development of a multivariate calibration model for a NIR instrument coupled to a batch 
dryer. The proposed technique allowed to model jointly data from different batches with the 
laboratory data, while the interpretation of the model parameters was essential to isolate the 
cause of the observed drift, which was due to the nearness of the probe to the heating system 
port. Thanks to a MPCA model, Thomassen et al. (2010) were able to identify in the 
cultivation media the source of operational variation in the production of inactivated polio 
vaccine model. The obtained results led to an optimization in media preparation, resulting in a 
more robust composition. Furthermore, they acknowledged that a PLS analysis on the 
manufacturing data could not help in defining correlations between CPPs and product CQAs, 
being the former run at set points within strictly controlled ranges by the control system. 

1.4.3 Process monitoring and control 

The last two steps reported in Figure 1.4 pertain properly to pharmaceutical manufacturing 
and in particular to the use of LVMs for process monitoring and control. With the 
introduction of the QbD initiative and the PAT framework, the number of case studies 
employing analytical technology for process monitoring and control has tremendously 
increased (Chew and Sharratt, 2010). This has also been due to the fact that a process 
development activity cannot be considered under a QbD framework if an appropriate control 
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strategy ensuring that the process is moving inside the design space has not been defined. In 
this context, LVMs such as PLS have found a wide range of applicability, especially when 
coupled to instruments to relate analytical measurements to product variables (e.g., 
concentration, moisture, particle size, etc.). In §1.3 some examples of these applications for 
process monitoring, end point determination and online product quality verification have 
already been reported. Chen et al. (2011) recently reviewed issues and challenges of 
multivariate statistical models in spectroscopic applications for real time process control, and 
described a practical system to enhance the robustness of closed loop control systems which 
include PAT instruments. 
Other than multivariate calibration, LVMs can be directly used to analyze process 
measurements for process monitoring and control. As indicated in step 4 of Figure 1.4, LVMs 
identified from historical process data (e.g., experimental design procedures) can be used to 
implement feedback or feedforward controllers, aiming at identifying and responding to 
possible disturbances entering the system. One of the first examples applying LVMs to 
control a pharmaceutical process was presented by Westerhuis et al. (1997). The authors 
proposed a strategy to control a two-step process formed by wet granulation and tabletting, in 
which the process variables of the tabletting step could be adjusted depending on the granule 
properties to obtain tablets of desired properties. The control scheme was based on a grid of 
process parameter combinations, corresponding to different values for the tablet properties. 
García-Muñoz et al. (2010) proposed a feedforward controller based on a PLS model to 
compensate a high-shear wet granulation process for the observed changes in the properties of 
the incoming materials. The implementation of the controller on the process contributed to 
widen the range of acceptance of incoming materials and demonstrated to be useful in 
defining an integrated design space accounting for the network of complex relations between 
raw materials, process conditions and product quality. A similar exercise was recently 
proposed by Muteki et al. (2012), who implemented a feedforward controller in a tablet 
manufacturing process, involving blending, dry granulation, milling and tabletting. The model 
the controller relied on was built by considering different lots of raw materials: for different 
combinations of lots, the controller calculated the best parameters to operate the process in 
order to obtain a tablet of desired attributes. The rationale of the use of LVMs as control tools 
is based again on LVM inversion, where the model is inverted to estimate the manipulated 
variable values in order to ensure a desired set point or trajectory for the controlled variables, 
which often corresponds to the desired product quality. This rationale is the basis for LV 
model predictive control (Flores-Cerillo and MacGregor, 2004 and 2005; Wan et al., 2012). 
Given the statistical nature of LVMs, they can be employed for multivariate statistical process 
control (MSPC) in online process monitoring (step 5 in Figure 1.4). This is a well-known and 
applied use of LVMs in several types of industry (Kourti, 2005). Several studies in this field 
have recently been carried out also in the pharmaceutical industry. For example, García-
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Muñoz and Settell (2009) used a PCA model built on common-cause variability data from an 
industrial spray drying process, to monitor the operation. They demonstrated how the model 
was effective in promptly detecting and identifying a fault that was occurring during the 
process. Burggraeve et al. (2011) developed a LVM procedure to monitor online a fluid bed 
granulation process. The strategies helped in identifying batches that gave poor quality 
products while the process was ongoing. Zomer et al. (2010) have showed how LVMs can be 
helpful in monitoring the development process itself, in a continuous quality verification 
framework. Multivariate tools are suggested to be used to review periodically the data as 
more knowledge is acquired during development, allowing to review the design space, change 
raw material CQAs or CPP values in the agreed design space, if needed. 
The idea behind MSPC to establish multivariate “limits” to delineate operating regions, can 
be used to establish specifications for raw materials, as highlighted in step 5 of Figure 1.4. 
Defining an acceptance space for raw materials is fundamental for the pharmaceutical 
industry, where the number of materials employed in a formulation can become extremely 
high and affect the product quality only due to lot-to-lot variability. This was identified as a 
critical step also in the framework for the definition of design and control spaces proposed by 
MacGregor and Bruwer (2008). García-Muñoz (2009) has shown how a LVM can be used to 
relate data from different raw materials, scales and unit operations, while decoupling the 
effects of each contribution onto the product CQAs. This allows to define multivariate 
specifications for raw materials, independently of the process or scale in which they are used. 
In this way, a LVM can be used to support quantitatively the design space definition, 
separating the variability brought by the process operation, the control system and the raw 
materials. 

1.5 Objectives of the research 
Despite the number of studies on the application of modeling in pharmaceutical development 
and manufacturing has increased considerably in the last decade, in most published 
contributions tailored solutions to specific problems have been provided. However, there is a 
strong need to conceive general modeling strategies to support the implementation of QbD in 
the pharmaceutical industry. This need, together with the regulatory framework described 
earlier, provide the background and the motivation this Dissertation is intended for. The main 
objective of the research presented in this Dissertation is to demonstrate how LVMs can be 
feasibly used in a wide range of applications to assist the practical implementation of QbD 
paradigms into pharmaceutical development and manufacturing. 
Stemming from the steps indicated in Figure 1.4, this Dissertation proposes different 
strategies based on LVMs to address many of the issues commonly encountered when 
developing new products and processes. The proposed strategies are of particular interest for 
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the pharmaceutical community as they respond to the requirements dictated by the QbD 
initiative paradigms. The Dissertation presents innovative and general procedures for latent 
variable modeling within a pharmaceutical industry setting, and shows how LVMs can be 
used to support process understanding, product and process design (including the transfer of 
technology between different plants), and process monitoring and control. 
LVMs are becoming popular among pharmaceutical experts as PAT tools or as modeling 
tools for analytical instruments. This Dissertation aims at demonstrating that LVMs can be 
used to assist any phase of the development of a pharmaceutical product, of its manufacturing 
and during the operation for commercial production. LVMs are shown to be extremely useful 
to i) optimally analyze and exploit historical data from known products or processes or from 
designed experiments, in order to draw understanding on the system under study, ii) 
accelerate development steps by guiding experiments for the achievement of the desired 
product properties and process performances, iii) find normal operating conditions that ensure 
the correct process operation and identify possible anomalies and actions to take for their 
correction. 
Novel approaches are presented in this Dissertation (in the form of general procedures) to 
address problems commonly encountered in product and process development and 
manufacturing, for which either solutions have not yet been proposed, or the proposed 
solutions are very tailored to the specific application. The main application areas of the 
procedures proposed in this Dissertation and the innovative contributions they provide are 
summarized in the following. 
• Supporting process understanding, in particular with reference to the design of 

continuous pharmaceutical processes. In the last few years, the use of continuous 
processing has greatly attracted the attention of pharmaceutical companies, traditionally 
based on batch processes (Plumb, 2005). For this reason, there is the need to have efficient 
tools to streamline the design of continuous pharmaceutical processes. The objective is 
therefore to provide a general framework for the use of LVMs to deal with the relevant 
features of continuous processes, such as the presence of different unit operations in the 
same manufacturing line, the possibility of disturbances entering different sections of the 
process, the propagation of these disturbances across the units and their effect on the final 
product. The framework should manage efficiently developmental data, extract information 
from them that are useful for process understanding in order to identify the main sources of 
variability and to establish a plantwide design space and control strategy. 

• Supporting the design of new products and processes, and the transfer of a new 
developed product between the plant where it has been developed and a different 
manufacturing plant. Development environments are usually characterized by the presence 
of datasets that keep track of raw materials and product characterization, historical or new 
experiments designed for product or process development. Strategies that could exploit 
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efficiently these data to guide the experimentation for the design of new products and new 
processes would be needed. LVMs provide a useful tool to this purpose, through the 
implementation of appropriate model inversion technologies. However, since 
experimentation has to deal with many constraints, due for example to the used raw 
materials and to the operating limits, the inversion problem has to consider these 
constraints. The objective is therefore to provide a general framework for LVRM inversion 
that can deal with the several types of constraints commonly encountered in pharmaceutical 
development. The framework aim is to give a systematic tool that exploits the historical 
knowledge to suggest the optimal experiments to perform in product and formulation 
design, process design and in the transfer of products between different plants (e.g., scale-
up), with the ultimate scope of accelerating development to reduce the time-to-market for 
new products. 

• Supporting process monitoring activities during technology transfer, namely 
transferring models for process monitoring between different plants, in order to ensure that 
a process be in control since its start-up. From the perspective of process monitoring, one 
of the most common issues when transferring technologies between a reference plant and a 
target plant is that the target plant is desired to be under MSPC as soon as possible. An 
issue therefore arises on whether it is possible to transfer a monitoring model developed in 
the reference plant, where most of the experimentation can be carried out, to the target 
plant, when usually experiments are limited (e.g., when scaling-up a production). The 
objective is therefore to provide a general framework based on the use of LVMs to transfer 
knowledge between plants with the aim of having an efficient monitoring model for the 
target plant available since its start-up. 

The effectiveness of the general procedures proposed in this Dissertation is demonstrated by 
applying each of them to experimental case studies. The next section presents a roadmap to 
the Dissertation and clarifies how the above-mentioned issues and objectives fit in the 
framework of Figure 1.4 for the practical implementation of QbD. 

1.6 Dissertation roadmap 
The research work carried out in this Dissertation focuses around the three milestones which 
the QbD initiative is founded on: process understanding, product and process design, and 
process monitoring and control (Figure 1.5). The relationship between these three milestones 
is not necessarily sequential: process understanding can be improved as more knowledge is 
gained during process design and during manufacturing (and this is the meaning of the 
continual process verification and improvement paradigms described in §1.2.1). However, by 
considering the three milestones from a modeling perspective and considering that the 
objective of the Dissertation is to support LV model-based design and process control, 
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process understanding is believed to precede design, as a model is considered as the result of 
a process understanding activity. 
Given this background, the general procedures described in §1.5 can be categorized as 
responding to common needs in process understanding, product and process design activities, 
and process monitoring and control. Figure 1.5 represents these three categories, reporting for 
each of them the specific applications which will be presented in the Dissertation. As a 
consequence, after the description of the LVM techniques and of the statistical modeling 
background in Chapter 2, the following Chapters of the Dissertation can be divided according 
to those three research areas. 
 

PROCESS 
UNDERSTANDING

PRODUCT AND 
PROCESS DESIGN

PROCESS  
MONITORING AND 

CONTROL

LATENT VARIABLE MODELS FOR QbD

LVM INVERSION FOR 
PRODUCT AND 

PROCESS DESIGN
(Chapter 4)

IN-SILICO PRODUCT 
FORMULATION

(Chapter 5)

TRANSFER OF 
PRODUCTS BETWEEN 

PLANTS
(Chapter 6)

DEVELOPMENT OF 
CONTINUOUS 
PROCESSES

(Chapter 3)

TRANSFER OF 
MONITORING MODELS 

BETWEEN PLANTS
(Chapter 7)

 
 

Figure 1.5. Dissertation roadmap with reference to the framework for the QbD practical 
implementation given in Figure 1.4. 

With respect to process understanding, a general approach is presented for the application of 
LVMs to aid the development of continuous manufacturing processes. This study will be 
presented in Chapter 3 and is applied to an industrial case study concerning a continuous 
tablet manufacturing pilot line involving different unit operations. Data on experiments 
performed considering raw materials that underwent different pre-treatments and different 
process settings were available. A framework is proposed based on a data management, an 
exploratory analysis and a comprehensive analysis steps. These steps are shown to be useful 
to understand respectively the main driving forces acting on each unit operations and how 
these propagate their effect into the system, impacting on the process performances and the 
product properties. 
The central part of the Dissertation (Chapter 4, 5 and 6) is focused on the use of LVM 
inversion to assist product and process design and product transfer (Figure 1.5). In Chapter 4, 
the theory on LVRM inversion is revisited and a general framework is proposed, which can 
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deal with different objectives and constraints commonly encountered in development 
activities. The framework aim is to formulate and solve the most appropriate inversion 
problem depending on the constraints that are provided by the user. For this reason, the 
inversion problem is formulated as an optimization problem. The inversion output will be a 
set of conditions with which the experiment should be performed in order to obtain the 
desired product. The framework effectiveness is tested for the design of the raw material 
properties to obtain granules of desired characteristics, assuming that a high-shear granulation 
process is used. Data on an industrial process (Vemavarapu et al., 2007) are used to build the 
model and test the results. It is shown how the QbD definition of design space is linked to the 
mathematical concept of null space, which is intended as the multivariate space of the input 
conditions all corresponding, according to the model, to the same product properties (Jaeckle 
and MacGregor, 1998). 
In Chapter 5, the framework for LVRM inversion is extended to an in-silico formulation 
design case study. Here, the objective is to provide an automatic tool for the formulation 
scientists in order to select the best excipients and their amount, which have to be mixed with 
a given API in a tablet formulation to obtain a blend of desired characteristics. The LVRM 
inversion problem is then adjusted to the specific objectives of the formulation problem (e.g., 
the maximization of the dose per tablet) and integrated with logical constraints, accounting for 
the material selection. A software with a user-friendly interface is developed to allow 
specifying the different objectives and constraints the user may have in terms of desired 
product properties or materials to be employed. The software solves a mixed-integer 
nonlinear programming problem (MINLP, Quesada and Grossman, 1992) and returns the 
formulation to be tested in order to obtain the desired blend. 
In Chapter 6, the LVRM inversion framework proposed in Chapter 3 is applied to support the 
transfer of a product between different plants. The solution strategy is applied to an 
experimental case study concerning a nanoparticle manufacturing process through solvent 
displacement, using static mixers (Lince et al., 2009). The objective is to obtain nanoparticles 
of desired mean size in a new static mixer, by exploiting the information acquired from the 
experiments performed in a static mixer of different size. An appropriate modeling technique 
(JY-PLS; García-Muñoz et al., 2005) is implemented to relate data of different plants. The 
inversion is then performed with the aim of estimating the process conditions for the new 
mixer in order to obtain the desired mean nanoparticle size. This case study is also used to 
verify experimentally the theoretical concept of null space. The examples proposed in 
Chapter 4, 5 and 6 aim at demonstrating how LVRM inversion can be feasibly used as a 
systematic and science-based tool to accelerate experimentation in several phases of 
pharmaceutical development. 
Finally, Chapter 7 addresses one of the most challenging issues in the design of systems for 
process monitoring and MSPC, namely the problem of transferring monitoring models 
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between different plants (Figure 1.5). A framework is proposed for the use of LVMs to 
address this problem. The framework distinguishes between approaches merely based on data 
obtained online from the process, from approaches that combine the use of online 
measurements with the use of simple process knowledge coming from conservation laws 
(e.g., mass or energy balances). The different strategies are implemented to design a 
monitoring system for an industrial production-scale continuous spray-drying process, 
transferring knowledge acquired from a pilot-scale plant. The methods are then tested in the 
detection of a real fault. The framework is also extended to a simulated case study concerning 
a biopharmaceutical process for penicillin production via batch processing. The proposed 
examples show how the framework can be feasibly used to implement continuous quality 
assurance programs in pharmaceutical product manufacturing, where usually limited data are 
available if new productions are being started. 
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Chapter 2 

Latent variable modeling background 

This Chapter provides a general overview of the statistical and mathematical techniques that 
are applied in this Dissertation. First, a background on latent variable models (LVMs) is 
presented. Techniques like PCA and PLS are discussed from both an algorithmic and a 
practical point of view, together with advanced LVM tools that will be used in the following 
Chapters. Furthermore, the concepts of multivariate control charts and LVM inversion are 
introduced, and the fundamentals for their determination are provided. 

2.1 Latent variable models 
A latent variable model (LVM) is a statistical model that relates a set of N manifest (i.e. 
observable) variables to a set of A latent variables (LVs) which are unobservable and explain 
the dependence relationships between the manifest variables. LVs are found as linear 
combinations of the manifest variables in order to “summarize” their information content in 
an appropriate way according to the objective of the analysis (Varmuza and Filzmoser, 2009). 
Therefore, in order for an LVM to be useful, A should be significantly smaller than N. 
Observed manifest variables are usually organized in a dataset X  [ ]NI × , in which the N 
variables have been observed per I observations (or samples), or distinguished in a dataset X  
of regressors and a dataset Y  [ ]MI ×  of response variables. 
In the first case, the objective of an LVM analysis is to explain the correlation structure of the 
N variables, in order to understand the relationships among them. Principal component 
analysis (PCA; Jackson, 1991) is one of the most useful techniques to this end. 
In the second case, the objective of an LVM analysis is to explain the cross-correlation 
structure of the variables in X  and in Y , in order to study and quantify the relationships 
between regressors and response variables. To this purpose, a latent variable regression model 
(LVRM) as projection to latent structures (PLS; Wold et al., 1983) can be used. In both cases, 
the manifest variables space is transformed into a lower-dimensional LV space: the 
coordinates of the I samples on this LV space provide a compressed representation of the 
observations, while the directions of the LV space provide a corresponding representation of 
the manifest variables. The general objectives of the different LVM techniques are therefore 
the same: i) data reduction and ii) data interpretation. In the following, theoretical and 
practical aspects of some LVM techniques are discussed. 
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2.1.1 Principal component analysis (PCA) 

Principal component analysis (PCA; Jackson, 1991) is a multivariate statistical method that 
allows summarizing the information embedded in a dataset X  of correlated variables, by 
projecting the data through a linear transformation onto a new coordinate system of latent 
orthogonal variables, which optimally capture the variability of the data and the correlation 
among the original manifest variables. Each of these coordinates identifies a latent direction 
in the data and is called principal component (PC).  
To find the directions of the new coordinate system, a combination of the original variables in 
X  is found which maximizes the variance of the data projections. For one PC, the 
optimization problem is represented by Eq.(1.2)1
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where p  is the [ ]1×N  vector of the combination coefficients, called loadings, that represent 
the director cosines of the PC, i.e. the latent direction of maximum variance in the data. The 
original data can be projected onto the PC direction, by obtaining a vector t  [ ]1×I  of the 
coordinates into the PC space, called scores: 
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As a consequence, the problem in (2.1) can be reformulated as in (2.3), representing the 
maximization of the score vector length (Burnham et al., 1996): 
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The analytical solution of this problem is readily obtained from its optimality conditions 
(López-Negrete de la Fuente et al., 2010) and is represented by the following eigenvalue 
problem: 

 
pXpX λ=T      , (2.4) 

 

                                                 
1 In this Dissertation, the superscript T attached to a vector/matrix is used to indicate its transpose. 
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where p  corresponds to the eigenvector of the covariance matrix of X  ( XXC T= ), 
corresponding to the eigenvalue λ . λ  is a measure of the variance explained by the product 

Ttp , namely the amount of information embedded in the model by the calculated PC. 
The model loadings of a PCA model can therefore be determined from the eigenvector 
decomposition of the matrix C , from which N np  eigenvectors are determined. It results that, 
geometrically, the loadings are orthonormal: 
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Furthermore, the score vectors are orthogonal, as results from Eq.(2.2), Eq.(2.4) and Eq.(2.5), 
and have length equal to the eigenvalue associated to the corresponding PC: 
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Eventually, when all the PCs have been determined, the dataset X  can be viewed as the sum 
of the outer products of the N pairs of scores-loadings vectors: 
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Given the equivalence with the eigenvalue problem in Eq.(2.4), PCs are ordered according to 
the variance of the original dataset X  they capture. When the columns (i.e. variables) of X  
are correlated, the X  matrix is not full rank, and can be represented with a number A of PCs, 
such that NA << . If two or more original variables in X  are correlated, they identify a 
common direction of variability. This direction can be described by a unique PC if a PCA 
analysis is performed. A single PC will therefore capture the variability of all the variables 
which are correlated along the direction identified by the PC. One of the most important 
contributions of PCA is therefore that it allows to describe the original dataset X  with a 
lower number of variables, by projecting the data in X  from the hyperspace of the original 
variables to the low-dimensional latent space of the PCs. As a consequence, the 
decomposition of X  reported in Eq.(2.8) can be described by two terms: the sum of the outer 
products of the scores and loadings on the first A PCs of the models and the sum of the outer 
products of the scores and loadings vectors on the last ( )AN −  PCs: 
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On this basis, only the first A PCs can be used to build a PCA model on X  and to effectively 
describe its variability. The first A score vectors can be collected in the columns of a matrix of 
scores T  [ ]AI × , whose rows include the projections of the data samples of matrix X . 
Analogously, the loadings of the first A PCs form the columns of a loading matrix P  [ ]AN × : 

 
ETPX += T      , (2.10) 

 
where E  is the [ ]NI ×  matrix generated by the last ( )AN −  PCs of the model, which 
includes the residuals, if X  is reconstructed using only the first A PCs:  

 
Tˆ TPX =      , (2.11) 
XXE ˆ−=      . (2.12) 

 
Figure 2.1 reports the geometrical interpretation of the PCA model parameters, in a simplified 
case. A dataset X  which collects 7 samples characterized by 2 measured variables nx  (n = 
1,2), is plotted. 
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Figure 2.1. Geometrical interpretation of the PCA scores and loadings for a dataset with 7 
samples and 2 variables (x1 and x2). 

As it can be seen, data follow a defined trend in the (bi-dimensional) space of the original 
variables ( nx ). If a PCA model is applied, the direction of maximum variability of the data is 
identified by PC1. The loadings of the model ( 1p , 2p ) represent the director cosines of PC1, 
namely the cosines of the angles between the latent directions and the axes of the original 
variable space. The scores represent the coordinates of the data samples of matrix X  in the 
new reference system represented by PC1. The lack of representativeness of the data by the 
model is quantified by the residuals, represented by the perpendicular distances of the points 
from the line representing the first PC direction. In Figure 2.1, the second principal 
component that can be estimated from the data (PC2) is also reported as a dashed line. As it 
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can be seen, PC2 is orthogonal to PC1 but accounts for a very limited variability in the data 
compared to PC1. In this case, it can be therefore concluded that PC1 is enough to adequately 
describe X . 
PCA model scores and loadings are usually plotted and interpreted to gain understanding on 
the similarity between different samples in the dataset (through scores) and on the correlation 
among the original variables (through loadings). Further details on the interpretation of the 
PCA scores and loading plots are provided in Appendix A. The parameters of a PCA model 
are usually calculated from the singular value decomposition (SVD; Meyer, 2000) of the C  
matrix or using the nonlinear iterative partial least squares algorithm (NIPALS; Wold, 1966; 
Geladi and Kowalski, 1986). Details on the algorithms used in this Dissertation are provided 
in Appendix B. 

2.1.1.1 PCA data pretreatment 
Before the model is developed, it is convenient to tailor the data to the analysis to be 
performed. For this reason data are often pre-treated, in order to better fulfill the important 
assumptions of the method. Pre-treatments depend on the characteristics of the available data 
and on the objectives of the analysis. They may include filtering, denoising, transformations, 
advanced scaling and data compression (Eriksson et al., 2006) 
In general, when dealing with datasets including many variables of different type and physical 
meaning (as process or development datasets) it is important that variables are weighted in a 
similar way, in order to exploit the PCA model to understand their importance. This can be 
achieved by auto-scaling, i.e. by mean-centering variables and scaling them to unit variance. 
Mean-centering consists in subtracting to each column nx  of the X  matrix the mean value of 
the column itself. This is essential for the correct interpretation of the PCA model, as, if not 
mean-centered, principal components may identify as significant directions of variability in 
the data due to the differences between the variable mean values (Wise et al., 2006). 
The scaling to unit variance is performed by dividing each column of the X  matrix by its 
standard deviation, so that the total variance of the column is equal to one. This is an essential 
step to make the analysis independent of the units of the variables and allows the 
simultaneous analysis of quantities which have different magnitudes. The scaling operation 
has also the advantage of partially linearizing data. Variables can undergo further scaling or 
weighting operations to determine a different impact of each variable on the model (Kourti, 
2003). It is important to underline that when data in X  are only mean-centered, matrix Σ  
represents the covariance matrix of X , while if data are auto-scaled, it becomes the 
correlation matrix of X . For this reason, correlations between variables can be identified 
from the loadings of a PCA model performed on auto-scaled data. 
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2.1.1.2 Selection of the number of PCs 
An additional issue to be considered in building a PCA model is the determination of the 
dimensionality of the latent space of the model, namely the selection of the number of PCs to 
be used in the model. Several methods have been proposed in the literature to this purpose 
and the work of Valle et al. (1999) provides a thorough review and comparison of the most 
important ones. 
In general, to select the appropriate number of PCs different issues should be considered, as 
the number of samples, the total variance explained, the relative size of the eigenvalues (i.e. 
the variance explained per component), and the subject-matter interpretations of the PCs 
(Johnson and Wichern, 2007). In this Dissertation three of the several available methods have 
been applied and are here presented: 
• the scree test (Jackson et al., 1991); 
• the eigenvalue-greater-than-one rule (Mardia et al., 1979); 
• the cross-validation based on the prediction error sum of squares (Wold, 1978). 
The scree test is an empirical and graphical procedure, which is based on the analysis of the 
profile of an index indicating the variability of the original data captured by the PCA model 
per PC (e.g., the explained variance 2R  per PC, the eigenvalues or the residual percent 
variance). The method is based on the idea that the variance described by the model should 
reach a “steady-state”, when additional PCs begin to describe the variability due to random 
errors. When a break point is found in the curve or when the profile stabilizes, that point 
corresponds to the number of PCs to be included in the model. The implementation of the 
method is relatively easy, but if the curve decreases smoothly it can be difficult to identify an 
“elbow” on it. 
The eigenvalue-greater-than-one rule is a simple rule for which all the PCs whose 
corresponding eigenvalues are lower than one are not considered in the model. The basic idea 
behind this method is that, if data are auto-scaled, the eigenvalue corresponding to a PC 
represents roughly the number of original variables whose variability is captured by the PC 
itself. If so, a PC capturing less than one original variable should not be included in the 
model. Although this method is very easy to implement and automate, in some cases PCs are 
discarded even if their eigenvalue is very close to one and their contribution to explain the 
systematic variability is significant. In these cases, it may be reasonable to lower the threshold 
in order to include PCs whose eigenvalue may be (slightly) lower than one. 
Cross-validation (Wold, 1978) is another technique which can be employed in the 
determination of the number of PCs. The basic idea of cross-validation is that the number of 
PCs to be selected to build the model is the one for which the error in reconstructing new 
samples through the model is minimum. When no external validation data are available, the 
data in the X  matrix itself are used to evaluate the reconstruction error (or prediction error 
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sum of squares, PRESS). Different cross-validation algorithms can be employed. In general, 
the steps of the procedure are the following: 
1. divide the X  dataset in G subgroups gX  of C samples (with g = 1,…,G); 
2. delete the samples in one of the gX  groups from the original dataset X ; 
3. build a PCA model with the reduced dataset X ; 
4. project the data in gX  in the PCA model built in step 3.; 
5. compute PRESSg for the reconstruction of gX  and store it: 
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being g

ncx ,ˆ  the reconstructed element of gX  in the c-th row and n-th column and 2
,nce  the 

corresponding reconstruction error; 
6. go back to step 1 to select the next subset until all the G subsets have been considered; 
7. repeat the procedure by increasing the number of PCs used to build the PCA model. 
By summing all the partial PRESS values per subgroup, eventually a total PRESS per PC is 
obtained. The evaluation of the PRESS profile can be useful to select the number of PC to 
build the model. Namely, a PC is included if it increases the predictive power of the model. 
Therefore, the number of PCs for which the minimum value of PRESS is found or for which a 
steady state in the profile is reached, should be considered. Relevant indices and statistical 
tests have also been proposed to support the analysis (Wold, 1978). 
Note that if IG = , then 1=B . Therefore cross-validation deletes and reconstructs one sample 
at a time from the original dataset. This is analogous to a delete-1 jackknife approach 
(Duchesne and MacGregor, 2001). In general, cross-validation has been shown to be not 
reliable when autocorrelation or nonlinearities are present in the data, as happens in dynamic 
processes (Ku et al., 1995). Therefore, unless needed for online applications, the selection of 
the PCs to be used in a PCA model should be based on the analysis of different criteria. 

2.1.1.3 PCA diagnostics 
There are several diagnostics which can be used to evaluate the performance of a PCA model. 
In general, model, variable and sample diagnostics can be distinguished (Eriksson et al., 
2001). 
Among the model diagnostics, it is important to consider the amount of variability of the 
original data explained by the model, which is quantified by 2R  (for autoscaled data): 
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where ESS and TSS stand respectively for error sum of squares and total sum of squares. In 
(2.14) nix ,ˆ  represents the element in the i-th row and n-th column of the matrix X̂  
reconstructed through the PCA model. 2R  is therefore calculated for different number of PCs 
included in the model and is also reported as a cumulative value ( 2

CUMR ). To evaluate the 
performances of the model with new samples, a similar statistic is used, exploiting the PRESS 
values calculated in cross-validation: 

 

TSS
PRESSQ −=12      . (2.15) 

 
As for 2R  and PRESS, the values of 2Q  are calculated for each PC and are usually cumulated 
( 2

CUMQ ). 2Q  can be used in alternative to PRESS for the selection of the PCs to include in the 
model and can be seen as a measure of the “predictive” power of the model. Usually 22 RQ < . 
The variation explained by the model for the dataset X  can be reported also per variable 
included in the dataset, both in model calibration and in cross-validation. The same equations 
as in Eqs.(2.14)-(2.15) apply, limited to each column n of matrix X . In (2.16), only the case 
of the explained variance per variable in calibration is reported ( 2

,pv nR ): 
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Beside diagnostics on the model performances, when a PCA model is built, it allows to 
calculate statistics on the data used for its calibration, in order to discover potential outliers or 
data that have a strong influence on the model. Two statistics are used to this purpose: the 
Hotelling’s 2T  and the squared prediction error (SPE). 
The Hotelling’s 2T  statistic (Hotelling, 1933) measures the overall distance of the projections 
of an observation (i.e. a sample) of the X  dataset from the PC space origin. Since each PC of 
the model explains a different percentage of variance of the data, the Mahalanobis distance is 
used to calculate it (Mardia et al., 1979): 
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where it  is the [ ]1×A  vector including the projections iat ,  of the i-th observation on the A 
PCs used to build the model, while Λ  is the [ ]AA×  eigenvalue diagonal matrix. The 2T  
statistic represents the multivariate generalization of the Student’s t-test, and provides a check 
for observations adhering to multivariate normality (Eriksson et al., 2001). In general, it is 
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used to assess the deviation of an observation from the average conditions represented in the 
dataset. A sample with a large 2

iT  has a large influence to the model (high leverage) and 
should be handled with care: if it is well-represented by the model, the information it provides 
can be legitimate and useful to expand the data space and ensure the robustness of the model. 
The representativeness of the observation by the model is quantified through the SPE statistic: 

 
( ) ( ) iiiiiii eexxxx TT ˆˆSPE =−−=      , (2.18) 

 
being ie  the [ ]1×N  vector of the residuals in the reconstruction of the i-th observation set ix . 

iSPE  measures the orthogonal distance of the i-th observation from the latent space identified 
by the model, namely it accounts for the mismatch of the model in representing ix : samples 
with a high value of SPE  are characterized by a different correlation structure compared to 
the one described by the PCA model and, as a consequence, they are not well-represented by 
the model. In general, samples with high values of SPE  but low values of 2T  have no 
influence on the model and do not provide information. Therefore, by removing them the 
model is unlikely to change. Nonetheless, they can be useful to establish good bounds for 
uncertainty. Statistical tests are established to evaluate if a sample should or not be considered 
an outlier based on the 2T  and SPE  statistics. The discussion the confidence limits for these 
statistics is reported in Section 2.1.4. 
Regardless of being pinpointed as an outlier, when a sample is reconstructed through a PCA 
model, it may be useful to identify the variables that are most responsible for its distance from 
the origin of the PC space or from the PC space itself. This can be done by analyzing the 
contributions of each variable in the X  dataset to the 2T  and SPE statistics of the sample. In 
particular, the contributions to 2T  can be calculated as follows: 

 
T21TT

,CONT PΛtt −= ii      . (2.19) 
 

i,CONTt  is a [ ]1×N  vector of the contributions of each variable to the Hotelling’s 2T  statistic 
and can be considered a scaled version of the data within the PCA model. The formulation in 
(2.19) has the property that the sum of the squared elements of icon,t  gives 2

iT  for the i-th 
observation. 
The contribution of each variable to the iSPE  statistic for the i-th sample coincides instead 
with the residuals in the reconstruction of the sample through the model (i.e. each single 
element nie ,  of the i-th row of the residual matrix E ). 

 
nini e ,,,CONTSPE =      . (2.20) 

 
The analysis of the variable contributions can reveal which variables mainly determine the 
position of a sample in the score space or out of it. This, together with physical knowledge on 
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the system, may be useful especially when outliers are pinpointed, to understand the root 
cause of the problem. Procedures to calculate limits for the variable contributions have been 
proposed (Conlin et al., 2000). 

2.1.2 Projection to latent structures (PLS) 

Projection to latent structures (PLS; Wold et al., 1983; Höskuldsson, 1988) is a regression 
modeling technique which relates a dataset of regressors X  to a dataset of response variables 
Y  through the projections on their latent structures. As seen in the previous section, it is 
possible to represent a matrix X  in terms of its score matrix T . T  can be directly related to 
Y  instead of X , since scores are orthogonal and are characterized by a high signal-to-noise 
ratio. This is performed in principal component regression (PCR; Geladi and Kowalski, 
1986). PCR allows to solve problems due to the possible ill-conditioning of the X  matrix, for 
which ordinary least square regression may not be feasible. However, PCR assumes that the 
main variability in X , captured by the PC scores, is correlated to Y , and that Y  is full rank. 
Both of these assumptions are rarely satisfied, especially if Y  is multivariate. Instead of 
relating the directions of maximum variability of X  with Y , PLS finds a transformation of 
the X  data in order to maximize the covariance of its latent variables (LVs) with the Y  
dataset variables. For the first LV this is represented by the following optimization problem 
(Burnham et al., 1996): 
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where 1w  is the [ ]1×N  weights vector for the first LV, representing the coefficients of the 
linear combination of the X-variables determining the PLS scores 1t : 

 
11 Xwt =      . (2.22) 

 
Note that the solution of the problem in (2.23) corresponds to the eigenvector decomposition 
of matrix XYYX TT : 

 
111

TT wXwYYX λ=      . (2.23) 
 

In order to obtain the weight vectors for the further LVs, the problem in Eq.(2.23) may be 
solved iteratively using the deflated aX  and aY  matrices. The deflation process, for 

1,...,1 −= Aa  being A the number of LVs to consider, is defined as: 
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where II  is the [ ]II ×  identity matrix. Namely, at the a-th step the reconstructions of each 
dataset from the a-th estimated LV are subtracted to the datasets themselves. In particular, 
from the second terms of Eqs.(2.24)-(2.25) it results that: 
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where ap  and aq  represent respectively the [ ]1×N  and [ ]1×M  loadings in the reconstruction 
of aX  and aY . Eventually, the datasets are decomposed and related through their latent 
structures: 

 
ETPX += T  (2.28) 
FTQY += T  (2.29) 

*XWT =      . (2.30) 
 

In Eqs.(2.28)-(2.30), T  is the [ ]AI ×  score matrix, P  and Q  are the [ ]AN ×  and [ ]AM ×  
loading matrices, while E  and F  are the [ ]NI ×  and [ ]MI ×  residual matrices accounting for 
the model mismatch. In (2.30), *W  is the [ ]AN ×  weight matrix, which is calculated from the 
weight matrix W , to allow interpretation with respect to the original X  matrix: 

 
( ) 1T* −

= WPWW      . (2.31) 
 

The advantage in using PLS is that it provides a model for the correlation structure of X , a 
model for the correlation structure of Y  and a model of their mutual relation. Therefore PLS 
is most suitable to handle reduced-rank datasets, in which highly correlated and possibly 
noisy data are included. More specifically, its basic assumption is that the spaces identified by 
X  and Y  have a common latent structure, which can be employed to relate them. Note that 
oftentimes in Eq.(2.29) of the PLS model the score matrix T  is substituted by the Y  space 
score matrix U  [ ]AI × , with TBU =  (called the inner relation; Geladi and Kowalski, 1986), 
providing than a completely bilinear structure for the PLS model. Even if this is not 
necessary, it is fundamental when dealing with nonlinear systems, for which the relations 
between U  and T  is nonlinear (Martens, 2001). 
Figure 2.2 provides a geometrical interpretation of the PLS model: a dataset X  [ ]320×  of 
regressor and a dataset Y  [ ]220×  of response variables are considered. As can be seen, data 
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in X  arrange mainly on a plane, defined by two latent directions. Latent directions are 
identified in the X  and in the Y  space in order to best approximate the directions of 
maximum variability of the points in the original spaces and to provide a good correlation 
between the projections of the points themselves along these directions. As in the PCA case 
(Figure 2.1), the projections of the original points on these directions represent the PLS 
scores, while the loadings are the director cosines of the latent directions. Note that, while 
weights W  are orthogonal in the X  space, the loadings Q  in the Y  space may not 
necessarily be (Eriksson et al., 2001). 

x3

x2

x1

y1

y2

w1

w2

q1

q2

 
Figure 2.1. Geometric interpretation of the PLS model decomposition in latent structures. 

As for PCA, PLS model scores, weights and loadings can be interpreted to gain understanding 
on the similarity between different samples and on the correlation among variables within and 
between datasets. Further details on the interpretation of the PLS scores and weights/loadings 
are provided in Appendix A. Several algorithms have been proposed in the literature to 
calculate the parameters of a PLS model, such as NIPALS (Wold et al., 1983) and SIMPLS 
(de Jong, 1993). The advantage in using these algorithms instead of solving the eigenvector 
decomposition in Eq.(2.30) or the optimization problem in Eq.(2.29) is that they are iterative, 
allowing to stop after calculating a given number of LVs. Furthermore they can easily handle 
datasets with missing data, providing robust models. Details on the algorithms used in this 
Dissertation for PLS are provided in Appendix B. A thorough theoretical analysis on PLS 
modeling techniques can be found in the work of Höskuldsson (1988) and in the studies of 
Burnham and coworkers (1996, 1999a and 1999b). 

2.1.2.1 Selection of the number of LVs and model diagnostics 
In general, before applying a PLS model, appropriate data pre-treatments may be needed. The 
same considerations provided in Section 2.1.1 for PCA are valid for PLS. In particular, mean-
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centering and scaling to unit variance are the pre-processing methods applied throughout this 
Dissertation when applying PLS modeling. 
Another issue related to the development of a PLS model is the selection of the number of 
LVs to include in the model. As in the PCA case, different methods have been proposed and 
compared in the literature (Li et al., 2002; Wiklund et al., 2007). One of the most popular 
methods, which is widely applied also in this Dissertation, is cross-validation. The procedure 
is the same described in Section 2.1.1.2 for PCA and is repeated increasing at each iteration 
the number of LVs included in the model, obtaining a profile of PRESS or alternatively the 
root mean square error of cross-validation per LV (RMSECVa): 

 

NI
PRESSRMSECV a

a ⋅
=      . (2.32) 

 
In the regression case, the PRESS values are calculated on the basis of the predictions of the 
response variables in Y . Accordingly, the number of LVs to consider should be the one for 
which PRESSa (or RMSECVa) is minimum. The profile of explained variance in cross 
validation ( 2Q , Eq.(2.23)) provides a similar information. However, it must be underlined 
that a PLS model provides a model both for the X  and for the Y  datasets. Depending on the 
objectives of the analysis, it may be limiting to perform the cross-validation only on the Y  
matrix. In fact, as shown by Burnham et al. (1999a), if the dimensionality of the latent spaces 
of these two datasets is different, there could be LVs of a dataset not overlapped with the LVs 
of the other dataset. For this reason indices accounting for the variance captured for each 
dataset would be preferable to use. Further details on this issue will be given in Chapter 4. 
Once a PLS model is built, the diagnostics to evaluate its performances are the same as for the 
PCA model (Eqs.(2.14)-(2.20)). In this case, they can be applied to both the involved datasets. 
Furthermore, for a successful calibration of the PLS model and for model interpretation, it 
may be useful to understand which are the regressor variables that most affect the projections 
and that are most appropriate to build the PLS model. This can be quantified by the VIP index 
(variable importance in the projection; Chong and Jun, 2005), which is defined as: 
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where N is the total number of variables considered, 2

,ayR  is the variance of Y explained by 
the a-th LV of the model, while anw ,  is the weight of the n-th variable on the a-th LV 
calculated from the PLS model. By comparing the variables VIP, variables more relevant for 
explaining Y can be identified. Since the sum of squares of all the N VIPs is equal to the 
number of terms in the model, the average VIP would be equal to 1. Variables with 1VIP ≥n  
are therefore considered valuable predictors of the variables in Y (Eriksson et al., 2001). 
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2.1.3 Other latent variable modeling techniques 

In the following Sections, a description of other advanced LVMs used throughout this 
Dissertation is provided. In particular, multi-block PLS and Joint-Y PLS are considered. 

2.1.3.1 Multi-block PLS 
Multi-block PLS (MB-PLS; Wangen and Kowalski, 1989) is an extension of the PLS method 
to consider multiple matrices (blocks) of data in a single model. The blocks can be both 
regressor and response variable matrices. This technique offers the advantage of improving 
the interpretability of the model in all the cases in which it is more convenient to keep 
variables in separate blocks rather than in a whole dataset. Blocking the available data can be 
justified for example by the different origin of the considered data, by the presence of 
variables with similar meaning and in different numbers, or by the need of understanding the 
relationships between variables in different blocks. This made MB models particularly 
attractive for the analysis of process data in which, for example, data from different plant 
sections or different unit operations needed to be considered separately (MacGregor et al.; 
1994; Kourti et al., 1995; Westerhuis and Coenegracht, 1997). 
The MB-PLS algorithm can handle many types of pathway relationships between the blocks. 
Blocks can be left end blocks, which only predict subsequent blocks, right end blocks, which 
are only predicted by preceding blocks, or interior blocks, which are predicted by other blocks 
to their left but also predict blocks to the right of themselves (Westerhuis et al., 1998). 
The typical matrix structure handled by a MB-PLS is represented in Figure 2.3 for the case in 
which 2=B  regressor blocks AX  [ ]ANI ×  and BX  [ ]BNI ×  and one response variables 
block Y [ ]MI ×  are considered. The basic idea of MB-PLS is to find a common latent space 
between blocks in order to maximize the covariance of the regressor block scores and the 
response variable blocks, while at the same time determining the latent structures proper of 
each block. In such a way, not only is the relation between each regressor block and the 
response variables optimized, but the model is also able to represent the relationships between 
different blocks. The practical advantage is that, in addition to a global latent space 
considering all blocks, a latent space of each block is available. This can be useful for 
example in monitoring a process formed by different units in a line (MacGregor et al.; 1994). 
The parameters involved in a MB-PLS model are represented in Figure 2.3, for 1=A  LV (i.e. 
the first iteration of the parameter estimation algorithm). They include the weights 
( Aw [ ]1A ×N , Bw [ ]1B ×N ), loadings ( Ap [ ]1A ×N , Bp [ ]1B ×N ) and scores ( At [ ]1×I , 

Bt [ ]1×I ) of each block model and the super weights ( Sw [ ]1×B ) and super scores ( St [ ]1×I , 
u [ ]1×I ) of the combined regressor block model. The algorithm for their determination is 
described in Appendix B and is based on two levels: in the sub-level each block is used in a 
PLS cycle with Y  to calculate the block scores; in the super level, the block scores are then 
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combined in the super-block MBT  and a PLS cycle between MBT  and Y  is performed, to 
calculate the super weights and super scores. The procedure is repeated until convergence of 
the super scores and for the A LVs considered to build the model (Westerhuis et al., 1998).  
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Figure 2.3. Schematic of the data structure and parameters of a MB-PLS model 
considering a single LV (adapted from Westerhuis et al., 1998). 

Westerhuis et al. (1998) have shown that it is possible to calculate the MB-PLS parameters 
based on the standard PLS method, if the appropriate variable scaling is applied. In particular, 
with reference to Figure 2.3, PLS can be applied between the auto-scaled X  and Y  matrices, 
where X  is defined as: 

 

[ ]TB
T
BA

T
A    NN XXX =      . (2.34) 

 
In this case, the PLS scores T  and U  equal the MB-PLS super scores ST  and U . The block 
parameters can therefore be calculated from them. For each LV considered in the model and 
for the b-th block, it results that: 

 
uuuXw T

bb =  (2.35) 

bbbb NTwXt =      , (2.36) 
 

Furthermore, the super weights results from Eq.(2.44): 
 

( ) 1TT
MBS

−
= UUUTW      . (2.37) 

 
The above equivalences between PLS and MB-PLS are valid only if there are no missing data 
in the datasets. Missing data in general decrease the performances of blocking methods. 
For the MB-PLS model, the same considerations for the selection of the LVs as for the PLS 
model apply. The diagnostics used to evaluate the model are the same described above, and 
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are extended in this case to the multiple blocks. An additional index can be used to quantify 
the importance of each block of variables in the projection, namely how important the 
variability included into a block to predict the response variables is. This index, called BIP 
(block importance in the projection; Yacoub et al., 2011a), can be calculated as follows for 
the b-th block: 
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In Eq.(2.45) B is the number of blocks in the model, while abw ,  the weight of the b-th block 
on the a-th LV calculated from the MB-PLS. A threshold at BIP = 1 can be set and the b-th 
block is considered significant if 1BIP ≥b . 

2.1.3.2 Joint-Y PLS 
Joint-Y PLS (JY-PLS; García-Muñoz, 2004; García-Muñoz et al., 2005) is a latent variable 
regression model (LVRM) technique which allows to relate two or more regressor datasets 
(e.g., a dataset AX  [ ]ANI ×  and BX  [ ]BNJ × ) through the joint space formed by their 
corresponding response variables datasets (e.g., AY  [ ]MI ×  and BY  [ ]MJ × ). The basic idea 
of JY-PLS is that, if the correlation structure of the response variable datasets AY  and BY  is 
similar, a common latent space can be identified between AY  and BY . Assuming that the 
regressor datasets are correlated with the corresponding response variables, this common 
latent space (or part of it) will be spanned by (part of) the LVs of the regressor datasets. 
Otherwise stated, there will exist a region in the latent space of the matrix JY , obtained by 
joining the response variable datasets ( [ ]TT

B
T
AJ  YYY = ), in which the LVs of the regressor 

datasets will be overlapped. This region can be exploited to relate the different datasets and to 
transfer information between them. To find this common region, the available datasets are 
decomposed on their latent structures in order to maximize at the same time the squared 
covariance between AX  and AY , and between BX  and BY , together with the squared joint 
covariance between them. For the first LV, this can be written as a variation of the PLS model 
objective function in Eq.(2.21): 
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where 1w  is a ( )[ ]1BA ×+ NN  common weight vector including the weights of dataset A and 
B ( [ ]TT

B1,
T

A1,1  www = ). As in the PLS case, the solution of the problem in Eq.(2.39) is 
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demonstrated to correspond to the eigenvector corresponding to the largest eigenvalue λ of 
the left hand matrix in Eq.(2.39) (García-Muñoz et al., 2005): 
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Once the weights in 1w  have been calculated, the rest of the parameters for the JY-PLS 
model can be computed from them. As in the PLS case, the problem can be solved iteratively, 
using at each step the deflated versions of the considered datasets, in order to compute the 
parameters for all the LVs used to build the model. Eventually, the datasets are decomposed 
onto their latent structures: 
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*
BBB WXT =      , (2.45) 

 
where JQ  represent the [ ]AM ×  matrix of loadings defining the common latent space of JY , 
being A the number of LVs used to build the model. The meaning of the other symbols is the 
same as in the PLS model case. Indeed, the JY-PLS method calculate two separate PLS 
models for datasets A (XA and YA) and datasets B ( BX  and BY ), whose spaces are however 
rotated to align with the common correlation structure of the variables in JY . 
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Figure 2.4. Schematic of the data structure and parameters of a joint-Y PLS model 
(adapted from García-Muñoz et al., 2005). 



Chapter 2 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

58 

Figure 2.4 reports the typical structure of the datasets used in a JY-PLS model, with the 
representation of the model parameters for each dataset. As can be seen, the JY-PLS model 
does not impose any restrictions on the number of columns in AX  and BX , which can be 
different between the datasets, or on the number of observation per regressor dataset. The 
only restriction is that the number of columns in the response variable matrices must be the 
same. 
Given the similarity with PLS, a modified version of the NIPALS algorithm has been 
proposed for the computation of the JY-PLS model parameters. The algorithm is described in 
Appendix B and is demonstrated to converge to the solution of the eigenvector problem in 
Eq.(2.40), provided that the appropriate scaling is performed on the considered matrices. In 
particular, the same scaling as for the MB-PLS model apply on the auto-scaled response 
variable datasets AY  and BY  (Eq.(2.34)). A similar scaling is performed also on the auto-
scaled regressor matrices AX  and BX  (García-Muñoz et al., 2005): 

 

AAA NI ⋅= XX  (2.46) 

BBB NJ ⋅= XX      . (2.47) 
 

As for the choice of the number of LVs and the model disgnostics, each PLS part of the JY-
PLS structure can be seen as an independent model. Therefore cross-validation and 
diagnostics can be computed independently, giving for each dataset the same indices 
described in Section 2.1.1.3 (García-Muñoz, 2004). 
Although for simplicity the JY-PLS method description has been limited to two regressor and 
response variable datasets, the method can be easily extended to consider datasets from 
multiple sources in a unique modeling framework (as will be shown in Chapter 6). 
Accordingly, the modified NIPALS algorithm can be generalized to calculate the sets of 
scrores and loading matrices for the multiple sources of data (multi-site JY-PLS). In the 
original work of García-Muñoz (2004), the technique is also extended to multiple block 
(MBJY-PLS) and nonlinear versions of the model. 

2.1.4 Monitoring charts and control limits 

Once a LVM has been calibrated on the available datasets, the model can be used to assess the 
overall conformance of a new sample NEWx  to the data used to build the model (i.e. the 
historical data). This can be done by projecting NEWx  onto the reduced latent space of the 
model, in order to calculate the corresponding scores NEWt̂  [ ]1×A :2

                                                 
2 The superscript NEW is used throughout this Dissertation to distinguish new samples presented to the model from the ones 
used for model calibration. 

 

The superscript ^ is used to indicate that a variable is estimated and belongs to the LVM space. 
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Pxt TNEWTNEWˆ =      , (2.48) 

 
if a PCA model is used, or: 

 
*Wxt TNEWTNEWˆ =      , (2.49) 

 
if a PLS model is considered. The scores NEWt̂  can be used to calculate the Hotelling’s 2T  
(Eq.(2.19)) of the new sample ( 2

NEWxT ), which provides a measure of the deviation of the new 
sample from the average conditions of the data used to build the model. Once the scores have 
been calculated, sample NEWx  can be reconstructed from the model for X: 

 
NEWNEW ˆˆ tPx =      , (2.50) 

 
which is valid both for a PCA or a PLS model. Furthermore, in the case of the PLS model, a 
prediction of the response variables can be obtained by reconstructing NEWŷ  [ ]1×M : 

 
NEWNEW ˆˆ tQy =      . (2.51) 

 
From NEWx̂  the value of the squared prediction error for NEWx  ( NEWSPE x ) can be obtained 
from Eq.(2.20). This statistic represents the model mismatch for the new incoming sample 

NEWx . 
The statistics NEWt̂ , 2

NEWxT  and NEWSPE x  provide therefore measures of the conformance of 
NEWx  to the historical data. Confidence limits can be set for each of them, based on the values 

they assume for the data in model calibration. In particular, the scores have zero mean, 
variance equal to their associated eigenvalues and are orthogonal. Assuming that the data used 
to build the model are independent and identically distributed, scores are normally distributed. 
Therefore, for the scores on the a-th LV, an univariate confidence limit can be calculated from 
the critical value of the Student’s t-distribution, with 1−I  degrees of freedom at significance 
level α : 

 

( ) ( ) aItat λαα ⋅±= −− 2,1lim1      , (2.52) 
 

Under this assumption, the Hotelling’s 2T  can be well-approximated as a Fisher’s F-
distribution, being it computed from the ratio of approximately normal variables (Eq.(2.19)). 
Its relevant confidence limit can therefore be estimated as (Mardia et al., 1979): 

 

( ) ( ) ( )
( ) αα ,,

2
2

lim1
1, AIAF

AII
IAIAT −− ⋅

−⋅
−⋅

=      , (2.53) 
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where α,, AIAF −  is the critical value of the F distribution with A and AI −  degrees of freedom 
at significance level α . This determines in the A-dimensional score space an ellipsoidal 
confidence region, whose semi-axes are: 

 

( ) ( ) AaIATsa aa ,,1     with ,λ 2
lim1 == −α     . (2.54) 

 
In particular, to allow a visual representation, confidence ellipses can be determined through 
Eq.(2.54) for the projections of the scores of data in bi-dimensional planes. 
The SPE statistic is a sum of squared errors, which can be assumed to follow a normal 
distribution. As a consequence, SPE can be approximated as a χ2-distribution, and its relevant 
limit calculated as follows: 

 
( ) ( )[ ] 2

α,2lim1 2χ2SPE
νµα µν

⋅− ⋅⋅=      , (2.55) 

 
where 2

α,2 2χ
νm⋅  is the critical value of the χ2-distribution with νµ 22 ⋅  degrees of freedom at 

the significance level α ; µ  and ν  are respectively the mean and the variance of the SPE 
values of the data used to build the model (Nomikos and MacGregor, 1995b). 
On the basis of the computed confidence limits, monitoring charts can be built for the scores, 
the Hotelling’s 2T  and SPE. In particular, when a new sample is available, the mentioned 
statistics are compared with the relevant confidence limits to judge the similarity and the 
adherence of NEWx  to the data used to build the model. Being multivariate indices, charts on 

2T  and SPE are more effectively used to this purpose, by observing that: 
 

( )

( )





≤

≤

−

−

lim1

2
lim1

2

NEW

NEW

α

α

SPESPE

TT

x

x      . (2.56) 

 
If the conditions in (2.56) are satisfied, NEWx  is considered in a state of statistical control with 
a ( )%1100 α−  probability; otherwise an occurrence of special cause is detected. This 
occurrence may be due to a change in the mean conditions ( ( )

2
lim1

2
NEW α−> TTx ) or in the 

representativeness of the model ( ( ) lim1NEW α−> SPESPEx
) compared to the common cause data 

used to build the model. The procedure in (2.56) is equivalent to test the hypothesis that NEWx  
complies with the calibration (i.e. historical) data according to the 2T  and SPE  statistics 
(Johnson and Wichern, 2007). If a problem is detected, the root cause can be identified by 
analyzing the relevant contributions, calculated as shown in Eq.(2.19) and Eq.(2.20). Note 
that the confidence limits calculation procedures can be applied also when using the LVRMs 
described in Section 2.1.3. 
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2.2 Latent variable regression model inversion 
LVRMs are commonly used to predict a set of response variables NEWŷ  starting from an 
available set of regressors NEWx . However, if a LVRM is available based on historical data 
and a set DESy  [ ]1×M  of desired response variables is defined, the model can be used also to 
estimate the set of input variables NEWx  which provide, according to the model, the desired 
responses DESy . This can be achieved through model inversion and can be useful to assist 
product and process design or process control problems. Assuming that DESy  is completely 
defined, the LVRM inversion for a PLS model estimates its projections DESt̂  onto the latent 
space of the model (Jaeckle and MacGregor, 1998): 

 
( ) DEST1TDESˆ yQQQt −

=      . (2.57) 
 

DESt̂  can be used in Eq.(2.50) to reconstruct the set of input variables NEWx̂  corresponding, 
according to the model, to DESy  (direct LVRM inversion). In this way, NEWx̂  follows the same 
covariance structure of the historical data (Jaeckle and MacGregor, 1998). However, the 
solution from the LVRM inversion may be not unique, depending on the dimension of the 
latent spaces of the X  and Y  datasets (i.e. on their statistical rank) and on the number A of 
LVs used to build the LVRM.  
Assuming that XR  is the statistical rank of matrix X , while YR is the statistical rank of matrix 
Y, from the cross-validation performed as described in Section 2.1.1.2, it usually results 
that ),max( YX RRA = . Depending on the ranks of the datasets, three different cases may arise 
in the inversion: 
1. ( )XYY RRRA ≥=   : in the most favorable case, i.e. when there is a substantial overlapping 

between the latent spaces of X  and Y  (Burnham et al., 1999a), all the LVs of the X  space 
can potentially have an effect on the Y space. In this case, the model inversion corresponds 
to a projection from a high dimensional space ( YR ) to a lower dimensional space ( XR ). 

2. ( )YXX RRRA >=   : in this case (which is the most common situation) there are some LVs 
(or their combinations) in the X  latent space that are statistically significant for the 
description of the systematic variability in X , but do not contribute in explaining the 
variability of the data in the Y  space. Namely, they account for a part of the X  data 
variability that is not related to the Y  space (Burnham et al., 1999a). In this case, a 
projection from a lower ( YR ) to a higher ( XR ) dimensional space is required. 

3. YX RRA ==  but [ ]( ) A>Y Xrank : in this case, even if the rank of the matrices is equal, 
the rank XYR  of matrix [ ]Y X  is greater, meaning that there are AR −XY  latent dimensions 
which do not overlap between the X  and Y  latent spaces. The situation is therefore similar 
to the one described in the previous point. 

In the first case, direct model inversion in Eq.(2.57) can be applied, giving the least-squares 
projection onto the model latent space. A unique solution therefore exists. In the second and 
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the third cases, the inversion problem is underdetermined and the set of solutions is infinite. 
The direct model inversion in Eq.(2.57) provides again the least-squares solution to the 
problem. However, this solution can be moved along the directions of the latent space not 
affecting Y (thus changing DESt̂ ), providing the same set of desired response variables DESy . 
These latent directions form the null space, which is a subspace of the model space 
representing the locus of the X  projections with no influence on the quality space (Jaeckle 
and MacGregor, 1998). The direct inversion solution can therefore be moved along the null 
space, in order to find the solution that achieves the objectives and satisfies constraints the 
inversion problem may have (e.g., in product or process design). For this reason, optimization 
approaches have been proposed to solve LVRM inversion (García-Muñoz et al., 2006 and 
2008), which also allow to deal with cases in which the values in DESy  are not completely 
specified, but ranges (i.e. inequality constraints) are assigned to some/all the response 
variables. These approaches will be thoroughly reviewed and discussed in Chapter 4 of this 
Dissertation. In the following section, insight is provided on the computation of the null 
space. 

2.2.1 Null space computation 

The null space (or kernel) of a generic matrix A [ ]NI ×  is defined as the set of vectors x  for 
which 0Ax =  (Meyer, 2000). As seen above, when in a LVRM XRA =  and YX RR >  a null 
space exists. This means that, when a new sample NEWx  is presented to the model, the 
prediction of the response variables NEWŷ  can be seen as formed by two latent contributions: 
i) a contribution NEWt  [ ]1×A  due to the effective scores of NEWŷ  in the latent space of the 
model; ii) a contribution NULLt  [ ]1×A  accounting for the translation of the scores along the 
null space in order to provide the reconstruction NEWx̂  at minimum distance from the latent 
space of the model (i.e. minimum SPE). 

 
( )NULLNEWNEWˆ ttQy +=  (2.58) 
( )NULLNEWNEWˆ ttPx +=      . (2.59) 

 
The latent space is such that in Eqs.(2.58)-(2.59) 0Qt =NULL , while 0Pt ≠NULL , namely the 
null space is needed for the model to represent adequately the regressor variables, but it does 
not contribute in explaining the variability in the response variables. Considering the LVRM 
parameters, the null space represents therefore the kernel of the loadings Q  matrix. As a 
consequence, the null space can be computed from the singular value decomposition of matrix 
Q  (Jaeckle and MacGregor, 2000a): 

 
[ ]T21

T GGSUVSUQ QQQQQ ==      , (2.60) 
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where QU  is the matrix of the left singular vectors of Q , QS  is the diagonal matrix of the 
singular values of Q  and [ ]21 GGVQ =  is the matrix of the right singular vectors of Q . In 
particular, the right singular vectors corresponding to the vanishing (zeros) singular values of 
Q  spans the null space of Q . These are included in the columns of matrix 2G  ( )( )YRAA −× , 
which therefore defines the null space of the model. NULLt  can therefore be moved arbitrarily 
along it, without affecting NEWŷ : 

 
T
2

TTNULL Gγt =      . (2.61) 
 

In Eq.(2.61), γ  is a ( )[ ]1×− YRA  vector arbitrary in magnitude and direction. In LVRM 
inversion, the null space for a desired response variable set DESy  is computed by imposing 
that the direct inversion solution projections DESt̂  belong to the null space of matrix Q . The 
regressor sets belonging to the null space are then reconstructed according to Eq.(2.59), where 

DESNEW t̂t = , while NULLt  is calculated from Eq.(2.61). This ensures that NEWx̂  adheres to the 
historical data covariance structure, but it is not ensured that it lies in the range of the 
historical data, nor that possible constraints assigned to the regressors are satisfied. The 
above-mentioned optimization approaches are needed to address these issues and will be 
described in Chapter 4. 
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Chapter 3 

Latent variable models to support process 
understanding*

This Chapter shows how latent variable models (LVMs) can be used as tools to gain process 
understanding in the development of new pharmaceutical processes. In particular, the use of 
continuous manufacturing systems is examined. A general procedure is proposed to deal with 
data referred to different raw materials and different units along the production line. An 
industrial continuous tablet manufacturing process is used as a test bed for the analysis. It is 
shown how LVM parameters can be interpreted to identify and to rank the main driving 
forces acting on the system, providing a starting point to guide a comprehensive and science-
based quality risk assessment and the definition of a robust control strategy. 

 

3.1 Introduction 
As discussed in Chapter 1, process understanding is an essential step for the implementation 
of QbD in both pharmaceutical development and manufacturing. Any product and process 
design and control activity cannot be carried out without the full identification and 
understanding of the driving forces acting on the system, and of the critical sources of 
variability that can affect the product and process quality. Under this perspective, the interest 
towards modeling as a tool to integrate experience-based knowledge in quality risk 
assessment acivities on pharmaceutical processes has increased, as demonstrated by the 
several contributions recently appeared in the literature and reviewed in Chapter 1 (Section 
1.3 and Section 1.4). 
On a parallel side, as a part of the path towards the use of innovative manufacturing systems, 
in the recent years the interest of the pharmaceutical industry has been focused on the 
transition of the production from batch to continuous processes, due to the advantages that 
continuous operations have compared to the batch ones (Plumb, 2005; Schaber et al., 2011), 
such as reduction of the manufacturing time, maximization of the product yield, and 

                                                 
*Tomba, E., M. De Martin, P. Facco, J. Robertson, S. Zomer, F. Bezzo and M. Barolo. General approach to aid the 
development of continuous pharmaceutical processes using multivariate statistical modeling – An industrial case study. Int. J. 
Pharm., in press. DOI: 10.1016/j.ijpharm.2013.01.018. 
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minimization of wastes and energy consumption. Furthermore, continuous plants are usually 
smaller than batch plants on equal productivity, easier to scale (thus simplifying technology 
transfer activities) and offer indisputable advantages from a control and safety point of view 
(Leuenberger, 2001). 
One of the main advantages of continuous manufacturing is that it allows to link different 
processing units into a single manufacturing line, so that the transformations from the raw 
materials to the final products can occur without interruption. Due to the nature of the 
available unit operations, different configurations are feasible within the process stream 
(Boukouvala et al., 2012). A proper selection of the optimal process operating conditions 
requires the in-depth understanding of the main driving forces acting on each processing unit 
and on the whole system to obtain a product of acceptable and reproducible quality. The 
different nature of the raw materials used and the complexity in their characterization, as well 
as the lack of detailed physical models (or of parameters therein) describing each processing 
unit, have hindered the development of deterministic models to describe pharmaceutical 
processes. For this reason, multivariate statistical techniques, and in particular latent variable 
models (LVMs), can provide a very useful tool to improve process understanding, by 
identifying the most important mechanisms acting on a manufacturing system and affecting 
the product attributes. 
As pointed out in Chapter 1 (Section 1.4), LVMs are particularly useful in analyzing product 
and process developmental data, and the interest towards multivariate statistical modeling for 
QbD has recently grown especially with respect to the identification of the design space of 
pharmaceutical processes (MacGregor and Bruwer, 2008). In most of the case studies 
presented in Chapter 1 (Sections 1.4.1 and 1.4.2), the design space is identified by carrying 
out some designed experiments and a multivariate analysis of the resulting data (Huang et al., 
2009; Lourenço et al., 2012; Zacour et al., 2012b). However, development environments are 
often characterized by the presence of limited datasets, which additionally might be sparse 
and unstructured or sub-optimally designed in reflection of the product/process development 
history. When developing a continuous manufacturing process that comprises different 
processing units in the same manufacturing line, wherein raw materials from different sources 
can be processed, additional issues arise on how data from each single unit can be analyzed 
jointly with data from the other units to obtain information on the entire process, and on how 
different raw materials and different processing conditions within each unit impact on the 
intermediate and final product quality. This is essential in the definition of the design space 
for a continuous process, which should be preferably thought as a whole, instead of defining it 
as the combination of the design spaces of the single unit operations (Chapter 1, Section 
1.2.2). 
It has been pointed out recently (Gernaey et al., 2012) that extraction of knowledge from 
available data still represents a bottleneck, and that future research should focus exactly on 
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this issue to improve pharmaceutical manufacturing. Under this premise, in this Chapter a 
general procedure is proposed for the application of LV methods to support the development 
of new continuous pharmaceutical processes in the presence of limited experimental data. The 
objective is providing a framework to improve product/process understanding in the 
development of a continuous manufacturing process, which represents an essential step 
toward the definition of the process design space and process control strategy (Chapter 1, 
Section 1.2.3). Furthermore, it provides a science-based and quantitative tool to perform a 
robust quality risk assessment, which allows to integrate the modeling perspective with the 
personnel experience on the process. The intent is not to propose any new multivariate 
statistical method to analyze an available set of data. Rather, the aim is to show that, with a 
systematized use of existing methods, even limited data collected under non designed 
conditions can be turned into knowledge, improving the understanding of the process under 
development. This may provide a contribution to attenuate the reluctance that traditionally 
accompanies the introduction of innovative methods in pharmaceutical production processes. 
The proposed procedure is applied to an industrial case study concerning the development of 
a continuous process for the manufacturing of paracetamol tablets. The study aims to provide 
an answer to such questions as: Which are the main driving forces acting on the single unit 
operations and on the whole manufacturing process? Can they be ranked in order of 
importance? Does the origin of raw materials affect the quality of the final product? Which 
are the main critical-to-quality variables? How are the resulting product properties related to 
the process settings? The answers are the primary material to enable conducting a thorough 
risk assessment, defining complementary experimentation and laying down the foundations 
for the definition of a robust control strategy, possibly inclusive of a design space. 

3.2 A general procedure to use latent variable models in the 
development of continuous processes 
Despite being identified as black-box models, LV model structures are transparent and 
straightforward to interpret, and can be easily understood from a mechanistic point of view. 
The model parameters (i.e. the loadings) highlight the variables that most contribute to 
explain the systematic variability in the data and order them according to their importance. 
Thus, interpreting the parameters of the model from a first-principles perspective can be 
useful to identify the main driving forces acting on the system and to enable a deep 
understanding of the process and of the factors that affect the operation (García-Muñoz and 
Settell, 2009). Note, however, that some a priori engineering knowledge of the system is 
always required in order to obtain physically sound conclusions from an LV modeling 
exercise. 
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Since LV techniques are specifically designed to analyze data wherein significant correlation 
exists also when a limited amount of experimental samples is available, they appear to be 
particularly suitable to support product and process development in pharmaceutical 
companies, which traditionally are not “data-rich” organizations. Additionally, when data are 
collected from different sources, due to the presence of different processing units on the same 
manufacturing line, a procedure to fuse them is highly desirable, and LV models can be useful 
tools to face this issue. 
In pharmaceutical development, experiments are usually carried out to study the influence of 
different parameters (e.g., raw materials, process parameters) on the process and on the 
product quality. These experiments are sometimes not designed in a systematic way (e.g., 
through design-of-experiments techniques; Montgomery, 2005a), because an extended 
experimental campaign may be infeasible for economic reasons and limited time horizons, 
especially when high number of factors have to be tested (e.g. input materials in a product 
formulation). In other cases, the experiments may be incomplete or not all the interesting 
variables may be measured, thus causing the presence of missing data in the available 
experimental databases. A systematic procedure to support the development of continuous 
processes in the pharmaceutical industry based on LV models can be thought as a sequence of 
three main activities (Figure 3.1): 
1.dataset organization; 
2.exploratory data analysis; 
3.comprehensive data analysis. 

 

EXPLORATORY 
DATA ANALYSIS

COMPREHENSIVE 
DATA ANALYSIS

Pidentify inputs and ouputs
Pidentify data blocks
Pbuild data matrices
Pcheck for missing data
Pperform data preprocessing

Analysis of single blocks

Punderstand relations between inputs and outputs within 
each block

Pidentify the driving forces for each block

Analysis of multiple blocks

Punderstand how variables relate through blocks
Punderstand how disturbances propagate through blocks
Prank the block importance

Process 
understanding

DATASET 
ORGANIZATION

 
Figure 3.1. Schematic of the general procedure to support the implementation of a QbD 
approach in the development of pharmaceutical continuous processes through LV models. 
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The rationale behind the proposed procedure is that each processing unit (also called “block” 
in the following) defining the continuous manufacturing process, and possibly each stream 
connecting the individual blocks, should be analyzed individually first. To this purpose, the 
process is first decomposed into blocks and related connecting streams. Then, knowledge is 
extracted from block/stream data in the form of similarities between available input materials, 
correlations between variables measured within a block, similarities between manufactured 
samples, and the like. After sufficient knowledge has been gained on each individual unit, the 
overall process is reassembled by merging and analyzing the available data altogether. This 
makes it easier to understand how the variability due to the input materials propagates along 
the manufacturing line and combines with the selected operating conditions. This in turn 
allows to understand if and how the selected operating conditions can compensate the input 
materials variability, and what their impact on the final product is. The information so 
obtained can be used to possibly define complementary experimentation to gather further 
understanding that can be combined with prior knowledge as part of the quality risk 
assessment to define a control strategy with (or without) the development of a formal design 
space. 

3.2.1 Dataset organization 

In the dataset organization step, the main operations are the identification of the processing 
steps, the reorganization of the available data in matrices, and data preprocessing. The main 
idea behind this step is to arrange the available data in a way that matches the process 
flowsheet as closely as possible. 
After identifying the input variables (e.g. raw material properties, manipulated process 
variables) and the output variables (e.g. intermediate and final product properties, measured 
process variables), the available process measurements should be organized in different 
matrices (i.e., blocks), according to the unit operation they refer to. Likewise, data concerning 
the properties of the tested input materials and of the intermediate or final products should be 
organized in different matrices as well. It is preferable to divide input materials according to 
their specific type (e.g. API and excipient data should be collected in different matrices, as 
they may undergo different testing). This division should consider also the chemical and 
physical differences among the used materials. 
Finally, all the data preprocessing activities that may be needed prior to performing the 
subsequent statistical analyses should be performed. These may involve pre-treatment or 
filtering actions (e.g., scaling and mean centering materials or process data, smoothing 
spectral data; Eriksson et al., 2006), as well as the selection of a proper algorithm to deal with 
missing data (Walczak and Massart, 2001a and 2001b; López-Negrete de la Fuente et al., 
2010). 
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While dataset organization may be quite time demanding (particularly the first time around 
for a given continuous process/product), it is crucial for the entire data analysis procedure. 
Poor data organization will make the modeling exercise more difficult and, most importantly, 
can make the interpretation of results cumbersome. 

3.2.2 Exploratory data analysis 

The second step of the procedure presented in Figure 3.1 involves the exploratory analysis of 
the data matrices created in the first step. Even if exploratory analysis may include several 
different types of analysis, in this study the analysis of each single data block is considered. 
This analysis is intended to identify the most important variables describing the systematic 
variability in the data for each unit operation, the main correlations among them, and the 
similarities between samples processed in different experimental runs. PCA can be used as a 
valid modeling methodology to this end. In the interpretation of the results, it is fundamental 
to highlight the distinction between process variables that can be modified/manipulated (e.g., 
some process operating conditions, or some raw material properties such as the particle size 
distribution, PSD) and those that can be only measured but not manipulated arbitrarily. This 
distinction is vital particularly if, as a part of the control strategy definition, a design space of 
the process is pursued, as this should be determined in terms of manipulated variables only 
(these data will be referred to as inputs). From this point of view, it is important to underline 
that multivariate statistical techniques can only highlight correlations (and not causality) 
among variables. However, the knowledge of correlations is functional to understanding 
cause-effect relations that are useful for the definition of a control strategy or of a design 
space. 
Performing an exploratory analysis on the data collected from each single unit operation helps 
to identify the driving forces acting on each process step. This can be achieved by 
understanding how the inputs act on the operation of the unit and by identifying the most 
important variables that should be monitored during the operation to check whether or not the 
process is under control. Therefore, the results from this interpretation exercise can be 
feasibly used to support quality risk assessment activities in the identification of the critical 
process parameters (CPPs) and possibly of the critical-to-quality attributes (CQAs) of the raw 
materials and of the product (Chapter 1, Section 1.2.1). 

3.2.3 Comprehensive data analysis 

The third step of the proposed procedure concerns a comprehensive analysis of the available 
data. This analysis differentiates from the one carried out in the second step because it is 
thought as a multiblock analysis. Namely, the aim is to study how variables in different 
blocks relate and interact, in order to analyze how downstream units, or intermediate and final 
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product properties, are affected by different raw materials properties or different settings in 
the upstream units. The results from this type of analysis allow to identify the most critical 
blocks in the manufacturing line, as well as the most critical parameters/variables within each 
block. This kind of results can be obtained by performing multiblock PCA or by relating the 
different block datasets through regression models such as multiblock PLS (Westerhuis et al., 
1998). Interpreting the parameters of multiblock models helps to find out correlations among 
variables of different blocks, which can then be interpreted from first principles, once the 
distinction between input and output (i.e. regressor/response) block variables is defined. 
Therefore, the comprehensive analysis may be particularly useful for risk assessment, in order 
to define the most critical unit operations for the intermediate or final product properties. It 
also allows to build a single model for the whole manufacturing line, thus giving the chance 
to have a valid starting point for the definition of both the design space and the control 
strategy for the whole process, rather than defining the design spaces for each unit operation. 

3.3 Case study and available data 
The proposed procedure was applied to support an industrial project concerning the 
development of a continuous line for the manufacturing of paracetamol tablets, in which a 
continuous granulator is used to mix the raw materials and enlarge their particle size for 
subsequent tableting. Note that, for ease of presentation, how the arrangement of the available 
dataset was carried out (Section 3.2.1.) is reported in this section, although it could be 
considered a result of the proposed data analysis procedure (Figure 3.1). 

3.3.1 The tabletting process 

Figure 3.2 shows a block flow diagram of the continuous process under investigation. Four 
main operating steps are included: 
1. granulation, carried out in a 16 mm Thermo-Fisher continuous twin screw granulator. The 

inlet material is fed to the granulator through a K-Tron-Soder T20 with core and coarse 
spiral screws. The powder mixtures are fed to the granulator via a gravity-drop feed funnel, 
while the granulating liquid (purified water) is added using a Jasco twin piston pump; 

2. drying, performed in an Aeromatic Strea -1. The granules are dried to a water content lower 
than 2 wt% (where wt% = water mass/wet granule mass × 100) and an outlet temperature 
of 35°C. The inlet temperature is in all cases 60°C; 

3. milling, performed in a Quadro CoMill 197 with a 0.55”R screen with round beater arm; 
4. compaction, carried out in a compaction simulator. 
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Figure 3.2. Block flow diagram of the paracetamol tablet manufacturing line in which a 
continuous granulator is employed. The matrices in which the available data have been 
organized are indicated within dotted squares (the symbols used to denote the matrices are 
summarized in Table 3.1 and explained in subsections 3.3.2 to 3.3.6). 

The available data were obtained from non-designed experiments performed at an early stage 
of process development, by processing input materials with different characteristics under a 
set of different process operating conditions. Some of the process operating parameters were 
varied as well during the experiments to study the interaction between the raw material 
properties and the process operating conditions, and to gain understanding on how to operate 
the process in order to compensate for possible variability in the raw material properties. 
Measurements were taken on the input materials, the process, the granules out of the 
granulation step and the manufactured tablets. To better clarify the nature of the available 
data, in Figure 3.2 the matrices in which the available data were arranged following the 
indications of Section 3.2.1 have been appended to the operations or streams which data refer 
to. Table 3.1 provides a compact summary of the variables included into each matrix of 
Figure 3.2. Additional information on the available data, their organization and the considered 
variables is reported in the subsections to follow. 

Table 3.1. Summary of the matrices in which the available data have been 
organized with the relevant included variables. 

Matrix name Dimension Variables included 
Z [5×11] Input materials characteristics 
w [13×1] Granulation water content  
X1 [12×9×245] Granulator online measurements 
X2 [13×4] Particle size distribution of granules out of the granulator 
Y1 [13×8] Properties of granules out of the mill 
X3 [201×2] Compactor operating parameters 
Y2 [201×19] Compaction process measurements and tablet properties 

 

3.3.2 Input materials characteristics 

Data for five different input materials (M1 to M5) were available. The differences between 
the materials were due to the active pharmaceutical ingredient (API) particle size reduction 
routes, the techniques used for API isolation/drying, and the point in which formulation (API 
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blending with excipients) occurred. Note that, whatever the input combination, the overall 
input formulation to the wet granulator was the same in all experiments. Two alternatives 
were considered for each input material pre-processing: 
• wet-milling vs. microfluidization, for the API particle size reduction routes (this alternative 

will be described by a variable named Size reduction route in the following); 
• agitated filter dryer vs. centrifuge/conical dryer, for the API isolation mean (described by 

variable Isolation mean); 
• formulating at the point of isolation as opposed to adding the excipients post isolation, for 

the formulation point (described by variable Formulation). Namely, a material will be 
indicated as “+ excipients” if it was formulated at the isolation point, while it will be 
indicated as “API alone” if it was formulated post isolation. The latter occurred by blending 
the API with the excipients in a 15 litre Pharmatec IBC bin rotated at 17.5 rpm for 15 min. 

Being these three variables categorical, they were included in the datasets as binary variables 
(0; 1) to distinguish among the two possible alternatives available for each of them. Table 3.2 
shows the resulting categorization for all available input materials. The adopted categorization 
provides a key to the interpretation of results in the subsequent analysis. For example, a Size 
reduction route resulting “high” means a wet-milled API, whereas a Formulation resulting 
“high” stands for a material formulated at the isolation point (“+ excipient”). 

Table 3.2. Adopted categorization for the available API materials. 

Material  Size reduction route  Isolation mean  Formulation   
  wet-milled = 1  agitated filter drier =1   + excipient = 1  
  microfluidized = 0  centrifugal conical drier = 0  API alone = 0  
M1  0  1  1  
M2  1  0  1  
M3  0  0  1  
M4  1  0  0  
M5  0  0  0  

 
Each of the available five different input materials was further characterized by measuring the 
bulk density (to assess the material flow properties) and the particle size distribution (PSD). 
For each case, 100 cc cylinders were used with a VANKEL bulk density apparatus. Densities, 
both aerated (ρ aerated raw) and tapped (ρ tapped raw), were measured and reported together 
with the material Hausner ratio (Hausner ratio raw). The PSD measurements were obtained 
using a Sympatec (HELOS/GRADIS set up). The 10th, 50th and 90th percentiles (x10 raw, x50 
raw, x90 raw) of the distribution were reported for the analysis together with the distribution 
span (span raw). 
Overall, ten variables were therefore available to characterize the five available input 
materials. As shown schematically in Figure 3.2, these variables (together with one additional 
variable that will be discussed in the next subsection) were collected in matrix Z [5×11]. Note 
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that not all of the measurements had actually been carried out for all materials. Accordingly, 
missing data are present in the Z dataset. 

3.3.3 Granulator parameters and online measurements 

All the granulation experiments were carried out by keeping the following machine 
parameters constant: powder feed rate (2 kg/h), screw speed (200 rpm), screw set-up, barrel 
set-up, and barrel temperature setpoint (20 °C). To study the effect of the granulating 
conditions on the granules and on the final products (tablets), the water feed rate was varied 
between three levels, in order to manufacture wet granules containing 15, 17.5 and 20 wt% of 
water. A summary of the granulator experimental runs for the different input materials is 
reported in Table 3.3, where the values of the water content and of the feed factor at charge 
are reported for each lot of material processed (the five input materials resulted in 13 
processed lots). Note that, due to insufficient feedstock, not all the three levels of water were 
tested for all input materials. 
The feed factor at charge in Table 3.3 represents the capacity of the granulator at 100% screw 
speed and is related to the input material density. Since the powder feed rate was kept 
constant in all the experiments, the differences in the feed factor are mainly due to the 
differences in the input material density. For this reason, in this study the feed factor at charge 
(named feed factor) was considered as a condition of the input material (rather than a 
granulator condition), hence included in matrix Z. On the contrary, since only the water 
amount was varied across all experiments while keeping all the other granulation parameters 
constant, the water content values reported in Table 3.3 were collected in a separate vector w 
(see Figure 3.2). 

Table 3.3. Water content and feed factor at charge for each granulated lot. 

Lot no. Water content 
[wt%] 

Feed factor at 
charge [kg/h] 

1 15.0 13.38 
2 17.5 13.38 
3 15.0 16.03 
4 17.5 16.03 
5 20.0 16.03 
6 15.0 12.8 
7 17.5 12.8 
8 20.0 12.8 
9 15.0 14.12 
10 17.5 14.12 
11 17.5 14.12 
12 15.0 13.89 
13 17.5 13.89 
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During each experiment, several variables were measured online on the granulator with a 1 s 
sampling interval: 
• motor torque, measured from motor drive (indicated in the following as TorqueNM); 
• percentage of maximum torque, measured from motor drive (TorquePV); 
• motor torque, measured from the transducer (TorqueTransd); 
• temperatures in different zones of the granulator ( 7T , 8T , 9T  and 10T ); 
• motor speed (SpdAV); 
• feedrate of the powder feeder (FeederRate). 
The steady state granulation data were collected in the three-way array 1X  [ ]245912 ××  
(Figure 3.2). This array includes the trajectories of the 9 above-mentioned variables measured 
online for 12 lots (Lot 10 and Lot 11 of Table 3.3 are actually the same from the granulation 
point of view, but they differ in the milling operation). The third dimension of the matrix 
[ ]245  is the time length representing steady-state conditions, and corresponds to the shortest 
length registered for the steady states operations among all lots processed. 

3.3.4 Granulator output data 

For each experimental run, some samples of granules obtained from the wet granulation 
process were sized (on-line) during the process using an in-house particle imaging 
measurement system (PIMS). The PSD of each sample was characterized in terms of 10th, 50th 
and 90th percentile and distribution span (L10 PIMS, L50 PIMS, L90 PIMS and span PIMS). 
Since several samples were collected for each experiment, the mean value of each variable 
across the collected samples was included in the corresponding 2X  [13×4] matrix (Figure 
3.2). Note that, since not all the processed lots were characterized through the PIMS, some 
data are missing in 2X . 

3.3.5 Mill output data 

Granules out of the granulation step were dried and milled. All experiments had been carried 
out with the same mill settings. After milling, the output materials were characterized in the 
same way as the input materials. Therefore, aerated and tapped densities (ρ aerated, ρ tapped) 
and Hausner ratio (Hausner ratio) were measured to determine the flow properties of the 
output material. 
These variables were included in matrix 1Y  [ ]813× , together with the measurements of the 
10th, 50th and 90th percentiles and the span of the PSD obtained with Sympatec (x10, x50, x90, 
span). Note that, although one of the granulated lots (lot no.11 in Table 3.3) was not milled, it 
was nevertheless characterized as the lots that underwent milling. For this reason, in matrix 

1Y  thirteen lots are considered. 
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3.3.6 Compaction data 

Five milled lots (lots 2, 4, 7, 10 and 13), all processed at the intermediate water level (17.5 
wt%), were compacted in tablets to give the final product. For each lot, ~40 tablets were 
manufactured by varying the minimum punch tip separation distance and the fill depth. A 
total of 201 tablets were analyzed and minimum punch tip separation distance and the fill 
depth measurements were collected in matrix 3X  [201×2]. 

Table 3.4. Variables assigned, measured and calculated for the compaction 
step (matrices 3X  and 2Y  in Figure 3.2). 

Variable #  Variable name Description Type  
1  minimum punch tip separation distance operating parameter assigned  
-  duration of profile operating parameter assigned  
2  Fill depth operating parameter assigned  
3  Tablet weight tablet property measured  
4  tablet thickness tablet property measured  
5  tablet diameter tablet property measured  
6  Hardness tablet property measured  
7  Density tablet property calculated  
8  Relative density tablet property calculated  
9  Porosity tablet property calculated  
10  Total energy  calculated  
11  Recovered energy  calculated  
12  Irrecoverable energy  calculated  
13  Plasticity ratio tablet property calculated  
14  Max Upper Punch Force compactor variable measured  
15  Max Lower Punch Force compactor variable measured  
16  Max Ejection Force compactor variable measured  
17  Max Upper Punch Stress compactor variable calculated  
18  Max Lower Punch Stress compactor variable calculated  
19  Max Ejection Stress compactor variable calculated  
20  Stress Transmission Ratio compactor variable calculated  
21  Tensile strength tablet property calculated  

 
Tablets were characterized by measuring some physical and mechanical properties, and by 
measuring or calculating some of the compactor variables. These data have been included in 
the 2Y  [201×19] matrix of compaction process responses. Since not all the variables had been 
measured for all the tablets, some missing data are present in the dataset. The list of the 
compression step variables is reported in Table 3.4 together with their description and the 
distinction in assigned, measured or calculated. 
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3.4 Results and discussion 

3.4.1 Dataset organization 

The first step of the proposed procedure (Figure 3.1) involves the dataset organization. These 
operations have been reported in Section 3.3 for the process under investigation. Additionally, 
note that all matrix data have been mean-centered and scaled to unit variance prior to perform 
the analysis. In the case of the multiblock analysis (Section 3.4.3), each block has also been 
preprocessed as suggested by Westerhuis et al. (1998). 

3.4.2 Exploratory data analysis 

The exploratory data analysis was carried out on each single block reported in Figure 3.2, in 
order to identify the main driving forces acting within each unit operation and to find possible 
similarities among samples obtained under different experimental conditions. In the following 
subsections, the objectives and the results of performing an exploratory analysis on the 
available datasets are reported and discussed. 

3.4.2.1 Analysis of input materials data 
A PCA model was used to analyze the data in matrix Z. Table 3.5 reports a summary of the 
model diagnostics, namely the eigenvalues, the explained variance for PC ( 2R ) and the 
cumulative explained variance per PC ( 2

CUMR ). The number of PCs used to build the model 
has been determined with the “eigenvalue-greater-than-one” rule (Mardia et al., 1979). It can 
be seen that, although only the first two PCs show an eigenvalue greater than 1, also the 
eigenvalue corresponding to the third PC can be feasibly rounded up to 1. For this reason, the 
PCA model on Z was built on 3 PCs. Since some data in Z were missing, the analysis was 
carried out using the NIPALS algorithm (see Appendix B), which is known to be robust in 
calculating the model when the percentage of missing data in the dataset is not high. 

Table 3.5. Diagnostics of the PCA model on the input material matrix Z. 

PC Eigenvalues 2R  2
CUMR  

1 6.07 56.02 56.02 
2 3.24 29.99 86.01 
3 0.85 7.87 93.88 
4 0.58 5.61 99.50 
5 3e-3 0.36 99.85 

 
In Figure 3.3a the loadings of the PCA model are reported as bar plots, whereas in Figure 3.3b 
the diagram of the scores on the first 2 PCs is plotted. Note that the loadings in Figure 3.3a 
have been weighted according to the variance explained per variable by each PC of the model 
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( 2
pvR ). Thus, the loadings corresponding to those original variables that are better described by 

the model have a larger weight, which improves the interpretability of the model (García-
Muñoz and Settell, 2009). This weighting operation will be repeated in all the loading 
diagrams presented in this study. Details on the interpretation of the loadings and scores plots 
are reported in. 
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Figure 3.3. (a) Loading bar plots of the PCA model on matrix Z. (b) Score plot on the first 
2 PCs of the PCA model on matrix Z. 

From the analysis of the top plot of Figure 3.3a, it can be seen that the first PC (accounting for 
~56% of the total variability of the data in Z) mainly describes differences due to the Size 
reduction route (wet-milled vs. microfluidized) among the processed materials; these 
differences are accompanied by differences in the PSD and density (especially aerated, ρ 
aerated raw) of the materials. This can be understood by noticing that the bar corresponding 
to the size reduction route variable is on the same side of the plot (positive correlation), and 
with similar magnitude, compared to the bars of x10 raw, x50 raw and ρ aerated raw, 
whereas the bar corresponding to span raw is on the opposite side (i.e. negative correlation). 
Therefore, an API size-reduced by wet-milling (high Size reduction route) is characterized by 
larger particles on average (larger x10 raw and x50 raw) if compared to the microfluidized 
one, where the particle distribution is narrower (lower span raw). In general, it can be 
concluded that wet milled input materials have also larger aerated densities (ρ aerated raw), 
which result in higher feed factor to the granulator. 
The middle plot of Figure 3.3a indicates that the second source of variability (~30%) for the 
input materials data is mainly related to the point in which the API is formulated 
(Formulation). Materials that have been formulated post isolation (“API alone”) are 
characterized by lower Hausner ratio (and lower ρ tapped raw), whereas the corresponding 
PSDs have larger tails compared to the “+ excipients” materials, being the variable indicating 
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the 90th percentile (x90 raw) of the distribution inversely related to the variable indicating the 
formulation point. 
The bottom plot of Figure 3.3a indicates that the third PC mainly describes the different API 
isolation mean. However, the Isolation mean seems rather unrelated with all the other 
variables included in Z, meaning that it has a lower impact on the variability of the input 
material characteristics compared to the other API pre-treatments. Furthermore, it accounts 
for only ~8% of the total variability in input materials. 
The score diagram of Figure 3.3b reflects the loading structure of the model and indicates the 
similarities between the available input materials (Wold et al., 2001). From the considerations 
driven by the top plot of Figure 3.3a, one would expect that PC1 separates wet-milled 
materials (i.e. materials M2 and M4; see Table 3.2) from microfluidized ones (i.e. M1, M3 
and M5). In fact, in Figure 3.3b M2 and M4 project on the right of the diagram, and are 
separated from M1, M3 and M5, which are located on the left of the diagram. Therefore, the 
separation indeed occurs along PC1. On the other hand, “+ excipients” materials (M1, M3 and 
M2; diagram bottom) can be distinguished from “API alone” materials along PC2 (top of the 
diagram), as anticipated by the middle plot of Figure 3.3a. Note that materials M1 and M3, 
which are both microfluidized and “+ excipients” (see Table 3.2), indeed project very close to 
each other in Figure 3.3b. 
These results demonstrate that LV modeling provides a very useful method to assess the 
acceptability of new materials (Duchesne and MacGregor, 2004). According to the model, a 
new material can be accepted for granulation as long as it falls inside the range of the 
historically accepted materials, even if it had been subject to different API pre-treatments (for 
example, if neither wet-milling nor microfluidization were used to isolate API). This 
procedure could be integrated as part of the risk assessment on input materials and could also 
be considered as a preliminary step toward the definition of a model representing their design 
space. 

3.4.2.2 Analysis of granulator process data 
The data collected online from the granulator and included in matrix 1X  were analyzed 
through PCA with the following aims: 
• understanding the relations between the variables monitored during the granulation process; 
• understanding if and how the differences in the input materials affect the granulation; 
• understanding the role of the water amount and its effect on the granulation process; 
• finding potential similarities between the different lots that had been tested. 
To allow the analysis with PCA, the three-way array 1X  was transformed into a two-way 
matrix 1X  ( )[ ]924512 ×⋅  through a variable-wise unfolding operation (Nomikos and 
MacGregor, 1994), which in this case is the most appropriate, as the interest is in the analysis 
of the steady state-part of the granulation for each lot. 



Chapter 3 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

80 

The diagnostics of the PCA model built on 1X  are reported in Table 3.6. It results that 5 PCs 
are enough to build the PCA model (which captures ~93% of the total variability of the 1X  
data), with the first two PCs explaining ~62% of the total variability. 

Table 3.6. Diagnostics of the PCA model on the granulation online data in 
1X . 

PC Eigenvalues 2R  2
CUMR  

1 2.79 31.03 31.03 
2 2.77 30.74 61.77 
3 1.00 11.14 72.91 
4 0.92 10.20 83.12 
5 0.89 9.84 92.96 
6 0.28 3.07 96.03 

 
Figure 3.4a reports the loadings on the five PCs considered. It can be clearly seen that the 
granulation process is driven by two main factors of similar importance. The first one (top 
plot), represented by PC1 (which describes ~31% of the variability of the data), is represented 
by the temperatures measured along the granulator ( 8T , 9T  and 10T , which are all correlated on 
PC1), except the granulator inlet temperature ( 7T ; this can be explained by the fact that this 
temperature sensor is located very close to the granulator feed point, and therefore this 
temperature is much more related to the feed temperature than to the granulation process). 
The second important factor (second plot) is concerned with the motor torque measurements, 
which are all correlated on PC2 and unrelated to the temperature measurements (the 
temperature measurements bars have negligible widths in the second plot). Also PC2 explains 
~31% of the variability of the data, meaning that the two phenomena have a similar 
importance in the process. This information is useful both from a process understanding and 
from a quality risk assessment point of view, as it indicates that these variables convey two 
independent driving forces that can both have a significant impact on the process, and should 
be monitored to keep the granulator operation under control. Although three additional PCs 
are significant to describe the variability in the granulator data, their importance is much 
lower if compared to PC1 and PC2 (~10% of explained variance each). 
A combined analysis of the loading plots with the score diagram of Figure 3.4b can give some 
insights for a deeper physical interpretation of these results. Figure 3.4b shows that most of 
the samples corresponding to the same lot (i.e., having the same symbol and color in the 
figure) are located in the same region of the score space (with few exceptions). In general, lots 
are separated along PC1 because of the differences in the temperatures measured during the 
granulation, as highlighted by the top plot of Figure 3.4a. These temperature differences can 
be associated to the different amount of water employed during the granulation. In fact, 
consider (for example) lots 1, 3, 6, 9 and 12: they all fall mainly on the region of the score 
diagram with positive PC1; an analysis of the relevant datasets showed that all these lots were 
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processed with a low amount of water (15 wt%). On the contrary, lots whose samples have 
negative PC1 were usually processed with medium/high amount of water (17.5/20 wt%). It 
can be concluded that the amount of water used is positively correlated with the temperatures 
measured online on the granulator. 
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Figure 3.4. (a) Loading bar plots of the PCA model on matrix 1X . (b) Score plot on the 
first 2 PCs of the PCA model on matrix 1X  (the different processed lots are indicated by 
different symbols/colors). 

Comparing Figure 3.4b with the information drawn from the second loading plot of Figure 
3.4a, it can be noticed that samples corresponding to lots with higher motor torque mostly 
project onto the region of the score space with negative PC2 (for example lots 3, 9, 10). 
Analysis of the relevant databases showed that these lots were all wet-milled, hence 
characterized by narrow PSD with high mean, and higher density. These material 
characteristics probably increase the stresses on the granulator screw, leading to higher torque 
measurements. On the contrary, microfluidized materials (such as lots 1, 6, 7, 8, 12, 13) are 
characterized by lower torque values (scores with positive PC2), probably because of their 
smaller PSD. 
This analysis confirms that the characteristics of the input materials do affect the granulation 
process variables, and different materials can be feasibly distinguished also based on the score 
and loading plots. 

3.4.2.3 Analysis of mill output data 
A PCA model was designed on the matrix of the measured properties of the milled granules 
( 1Y ). The aim of this analysis was to evaluate if the differences in the input materials can be 
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recognized also after milling or if the granulation and milling operations can “filter out” the 
raw materials differences. If this were the case, the process might be resilient (robust) enough 
to inherently compensate for input materials variations, hence the design space would enlarge 
(a very desirable occurrence). The PCA model on 1Y  was built with 3 PCs (total variance 
captured: ~89%), as can be seen from the model diagnostics in Table 3.7.  

Table 3.7. Diagnostics of the PCA model on the mill output data in 1Y . 

PC Eigenvalues 2R  2
CUMR  

1 3.40 48.58 48.58 
2 1.79 25.62 74.21 
3 1.03 14.74 88.95 
4 0.61 8.72 97.67 
5 0.15 2.09 99.76 
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Figure 3.5. (a) Loading bar plots of the PCA model on matrix 1Y . (b) Score plot on the first 
2 PCs of the PCA model on matrix 1Y . The arrows show the path followed by two different 
materials processed at increasing levels of granulator water. 

The analysis of the loading plots (Figure 3.5a) shows that most part (~49%) of the variability 
in 1Y  is due to the differences in the PSD of the milled granules. These differences in turn 
explain the differences between lots along PC1 on the score plot (Figure 3.5b), where lots 
resulting in larger granules (e.g., lots 4, 10, 2 and 8) are projected on the left. Since these lots 
had been granulated with intermediate to high amounts of water (17.5 and 20 wt%), it can be 
concluded that the granule size increases as the granulator water content increases (as 
expected). This is confirmed by the analysis of lots 6, 7, 8, which all refer to the same input 
material (M3): the processed material moves from the far right to the far left of the score plot 
as the water content is increased (red arrows in Figure 3.5b). 
It should however be mentioned that the distinction between the effects of the intermediate 
and high water level is not entirely clear for all lots (see for example lots 3, 4, and 5, all 
coming from input material M2 and granulated at increasing water levels; blue arrows in 
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Figure 3.5b). This may be due to the combination of different processing operations prior to 
milling, which can partly mask the relationships between water and PSD. Also note that M2 is 
a wet-milled material, whereas M3 is microfluidized. Therefore, it seems that wet-milled 
materials are less sensitive to the effect of the highest water amount used for the granulation. 
However, this conclusion should be checked by further experimentation. 
It also appears that the “main footprint” of the source material (i.e., whether microfluidized of 
wet-milled) is still visible after milling. In fact, note that lots 3, 4, 5, 9 and 10 project onto the 
region of the score plot with positive PC2, which means that they all result in granules with 
densities larger than the average. However, all these lots come from wet-milled materials. 
Therefore, even if the granulation step (water content) can change the location of a lot in the 
score plot, resulting in similar final PSD for different starting input materials, the “memory” 
of the milled granule origin is not entirely lost even after milling. This type of information 
could be utilized as part of the quality risk assessment on the product to demonstrate that an 
additional control to the input material is necessary rather than controlling the process only. 

3.4.2.4 Analysis of compaction data 
Compaction data included in matrix 3X  (operating data) and 2Y  (tablet properties) were 
analyzed in order to understand how the compactor parameters affect the tablet properties and 
if the differences in the input materials are still visible in the final product. A PCA model was 
therefore built on the data of matrix [ ]23 YX , obtained by concatenating matrix 3X  and matrix 

2Y  (Figure 3.2). This matrix presents a significant amount of missing data (~ 22%). 
Table 3.8 reports the model diagnostics, which indicates that 3 PCs are enough to describe the 
systematic variability in the data (~91%). It can be seen that the first PC accounts for a very 
large fraction (~73%) of the total data variability. Since the value of the first eigenvalue is 
12.26 (i.e., PC1 represents ~12 original variables), there are a lot of variables in [ ]23 YX  that 
are correlated and possibly redundant. 

Table 3.8. Diagnostics of the PCA model on the compression data in 
[ ]23 YX . 

PC Eigenvalues 2R  2
CUMR  

1 12.26 72.96 72.96 
2 1.90 11.34 84.29 
3 1.13 6.50 90.80 
4 0.67 3.85 94.65 
5 0.42 2.47 97.13 
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In Figure 3.6a the loading plots are shown†

The separation distance appears to be: 

. It results that the correlation structure of tablet 
data is driven by the compactor operating parameters (i.e. variables [1] and [2], corresponding 
to minimum punch tip separation distance and fill depth, respectively), with the separation 
distance dominating (first PC). Furthermore, most of the measured tablet properties data 
appear strongly correlated, as expected. 

• correlated to tablet thickness [4], porosity [9], plasticity ratio [13], and to the stress 
transmission ratio [20] associated with the compactor. This means that higher punch tip 
distances give higher values of these properties, on average; 

• inversely correlated (i.e. anti-correlated) to hardness [6], density [7], relative density [8] 
and tensile strength [21], and to most of the variables measured on the compactor ([10], 
[11], [12] and from [14]-[19]). From a practical point of view this means that operating 
with higher punch tip distances is expected to give tablets that are thicker, more porous and 
plastic, but at the same time less dense, hard and tensile; 

• uncorrelated to (not affecting) tablet weight ([3]) and tablet diameter ([5]), which is 
obviously expected. 
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Figure 3.6. (a) Loading bar plots of the PCA model on matrix 2Y . (b) Score plot on the 
first 2 PCs of the PCA model on matrix 2Y . Symbols refer to different punch tip separation 
distances. The ellipse indicates the subset of samples for which a dedicated PCA model was 
also built. 

The middle plot of Figure 3.6a shows that the other significant source of variability ([2], fill 
depth) strongly correlates with tablet weight (higher fill depths give heavier tablets, as 
expected), but seems not to be correlated with any other tablet property. Tablet diameter [5] is 
not correlated to any tablet or machine property (Figure 3.6a, bottom plot). The score plot 

                                                 
† To improve readability, Figure 3.6a reports numbers instead of the actual names of the variables as bar labels. Table 3.4 can 
be used to match the reported numbers with the corresponding variables. In the main text, each variable is indicated by the 
corresponding number n within square brackets [n]. 
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(Figure 3.6b) shows that PC1 (minimum punch tip separation distance) distinguishes among 
tablets obtained in different experiments, with samples obtained at larger distances projected 
far left. 
In order to study whether different input materials leave any footprint on the properties of the 
manufactured tablets, a new PCA model was built using a subset SUB

2Y  of matrix 2Y  
including all samples of different materials that had been processed at the same value of 
minimum punch tip distance (3 mm), but with different fill depths (black dots within the 
ellipse in Figure 3.6b). 
The results in terms of loading and score diagrams are reported in Figure 3.7 for the 3 PCs 
used to build the model, which account for ~95% of the total variability in the data. The 
numbers in the plots indicate the original index of the selected samples in matrix 2Y . 
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Figure 3.7. (a) Loading bar plots of the PCA model on matrix SUB
2Y . (a) Plot of the scores 

on PC1 versus PC2 and (b) of PC2 versus PC3 of the PCA model on matrix SUB
2Y . The 

numbers in the score plots indicate the original index of the selected samples in matrix 2Y . 
The dashed lines separate the final tablet properties according to types of raw materials 
they originate from. 
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The loadings bar plots in Figure 3.7a better disclose the effect of the fill depth [2] on the 
measured variables (which was observed in the second plot of Figure 3.6b), showing that the 
correlations between most of the variables are maintained. 
Figure 3.7b shows that samples originating from microfluidized or wet-milled materials 
project onto different sections of the score plot (with one exception: sample 185 is 
microfluidized, but projects onto the region of wet-milled materials). By analyzing this score 
diagram with the corresponding loading bar plots (top and middle plot of Figure 3.7a), it 
could be concluded that microfluidized materials give harder ([6]) and stronger (more tensile 
[21]) tablets than wet-milled materials, which reflects the fact that they were processed with 
higher fill depths ([2]) on average. In the score plot of PC2 versus PC3 (Figure 3.7c), the 
different lots are separated with respect to the point at which the excipients were added to the 
API, and this separation occurs along PC3. The analysis of the loadings (bottom plot of 
Figure 3.7a) suggested that tablets from “API alone” materials have a smaller diameter ([5]) 
and to be denser ([7], [8]) and less porous ([9]) than the “+ excipients” ones. 
Despite the limitations in the dataset due to missing data and the lack of data related to other 
experimental conditions, the analysis could therefore clarify that input materials coming from 
different PSD reduction routes and formulated at different points prior to granulation do result 
in tablets with different properties upon compaction. On the other hand, the API isolation 
mean does not seem to impact on the final product properties. 

3.4.3 Comprehensive data analysis 

The exploratory analysis on the single datasets (blocks) highlighted correlations among 
variables within each processing unit. The aim of the comprehensive data analysis is instead 
that of studying the relations between variables pertaining to different blocks and between the 
blocks themselves. This can be useful for several purposes: understanding how variables 
relate through blocks, understanding which assignable variables matter more in determining 
the final product properties, understanding how disturbances in materials inputs or to a block 
propagate to the final product. This can be useful to develop a control strategy for the process, 
in order to ensure the proper response to possible disturbances entering the system. 
Although the final tablet properties that one is most interested at are included in 2Y , the 
related tablet measurements were available for some lots only. For this reason, a multi-block 
PLS (MB-PLS) model was built to predict the milled granule properties ( 1Y ) instead of the 
tablet properties. Only those variables that could be modified in the experiments (namely, 
input materials properties and granulator water level) were used as regressors. These were 
arranged in matrix [ ]2

*   XwZ , where *Z  [ ]1012×  was generated by repeating the rows of 
matrix Z (Figure 3.2) for each lot that had been manufactured from the same input material. 
Note that the granulator variables that had been monitored online (matrix 1X ) were not used, 
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because (as shown earlier) they can be related to the granulator operating parameters and the 
input material properties. 
Table 3.9 reports the diagnostics of the MB-PLS model in terms of explained variance per LV 
both for the regressor matrix ( X2R , indicating as X the regressor matrix) and for the response 
matrix ( Y2R , indicating as Y the response matrix). The corresponding cumulative values are 
reported as well ( X2

CUMR  and Y2
CUMR ). Furthermore, the variances explained by the model in 

cross-validation ( 2Q  and 2
CUMQ ) are reported. It is shown that after the fourth LV the variance 

explained by the model is no longer significant, both in model building and in cross-
validation. For this reason, four LVs were used to build the MB-PLS model. 

Table 3.9. Diagnostics of the MB-PLS model between matrix [ ]2
*   XwZ  and 

matrix 1Y . 

LV X2R  X2
CUMR  Y2R  Y2

CUMR  2Q  2
CUMQ  

1 49.79 49.79 24.99 24.99 -13.56 -13.56 
2 29.88 79.68 17.93 42.93 41.14 27.57 
3 10.83 90.51 11.93 54.86 18.48 46.06 
4 5.37 95.88 2.87 57.73 4.63 50.69 
5 1.56 97.44 5.56 63.29 0.30 50.99 
6 1.94 99.38 2.69 65.98 7.53 58.51 

 

0.0
0.2
0.4

 

 

 w*
[1

] x
 R

2 pv
x

-0.2
0.0
0.2

 

 

 w*
[2

] x
 R

2 pv
x

0.0
0.2
0.4

 

 

 w*
[3

] x
 R

2 pv
x

-0.3
0.0
0.3
0.5

spa
n P

IM
S (X 2

)

L9
0 P

IM
S (X 2

)

L5
0 P

IM
S (X 2

) 

L1
0 P

IM
S (X 2

)

 

 

w*
[4

] x
 R

2 pv
x

 

wate
r (w

)

Iso
lati

on
 m

ea
n (

Z*)

fee
d f

act
or 

(Z*
)

spa
n r

aw
 (Z

*)

x90
 ra

w (Z
*)

x50
 ra

w (Z
*)

x10
 ra

w (Z
*)

Hau
sne

r ra
tio 

(Z*
)

ρ t
ap

pe
d r

aw
 (Z

*)

ρ a
era

ted
 ra

w (Z
*)

Size
 re

du
ctio

n r
ou

te 
(Z*

)

Fo
rm

ula
tion

 (Z
*)

   

-0.10
-0.05
0.00
0.05

 

  

q[
1]

 x
 R

2 pv
y

-0.20
-0.15
-0.10
-0.05
0.00

 

 

 

q[
2]

 x
 R

2 pv
y

-0.04
0.00
0.04
0.08
0.12

 

 

q[
3]

 x
 R

2 pv
y

-0.02
-0.01
0.00
0.01

 
 

q[
4]

 x
 R

2 pv
y

 

spa
n (

Y 1
)

x90
 (Y 1

)

x50
 (Y 1

)

x10
 (Y 1

) 

Hau
sne

r ra
tio 

(Y 1
)

ρ t
ap

pe
d (

Y 1
)

ρ a
era

ted
 (Y 1

)

 
 (a) (b) 

Figure 3.8. (a) Bar plots of the weights *W  of the MB-PLS model between matrix 
[ ]2

*   XwZ  and matrix 1Y . (b) Bar plots of the loadings Q of the MB-PLS model between 
matrix [ ]2

*   XwZ  and matrix 1Y . 

To understand the intra-block and inter-block relations, the loadings of the MB-PLS model 
can be analyzed. In particular, the bar plots of the weights *W  of matrix [ ]2

*   XwZ , weighted 
on the variance explained by each LV per regressor variable, are reported in Figure 3.8a, 
whereas the bar plots of the loadings Q  of the response matrix 1Y , weighted on the variance 
explained by each LV per response variable, are reported in Figure 3.8b. 
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The first LV of the model mainly describes the correlation among the water levels and the 
variables in 2X , i.e. the PSD of the granules out of the granulator. These appear to be 
positively related (only) with the variables of the PSD of the granules out of the mill, which is 
an expected occurrence: higher water levels give larger and narrower PSDs out of the 
granulator, which in turn gives larger and narrower PSDs out of the mill (being the mill 
settings constant). LV2 shows that less dense granules out of the mill are obtained with higher 
water levels and with microfluidized materials. LV3 is mainly affected by the formulation 
point: “+ excipients” materials (which appear to be denser) result also in denser granules out 
of the mill. 
The added value of using an MB-PLS model is that it can be used to predict the responses 
from the input data. The prediction will be mainly affected by the variables that have a 
stronger influence on the responses. As shown in Chapter 2, (Section 2.1.2.1), the importance 
of the variable n in the projection can be measured through the VIP index (Eq.(2.33)). 
Similarly, to quantify the importance of each block in the projection, the BIP index can be 
calculated (Eq.(2.38)). 
Figure 3.9 reports the VIP and BIP indices for the variables and blocks involved in the MB-
PLS model. Recall that a threshold equal to 1 is usually applied to decide whether a variable 
or a block is important or not in the prediction of the response variables. In this case, several 
variables have a VIP-index next to the threshold. 
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Figure 3.9. (a) VIP and (b) BIP indexes of the variables and of the blocks respectively used 
to build the MB-PLS model between matrix [ ]2

*   XwZ  and matrix 1Y . 

Figure 3.9a shows that the most important variables for the prediction of the milled granule 
properties are the water level and the variables describing the PSD out of the granulator. 
However, the correlation between the variables within 2X , and between these variables and 
the PSD of the milled granules, strongly affects the model (as expected since the mill settings 
are constant). Figure 3.9b indicates that although the PSD block is the most important in 
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(a) (b) 

determining the milled granule properties, the contribution of the input materials properties is 
also significant. 
In general, these results further confirm the driving forces that were identified in the 
exploratory data analysis, and give a quantitative measure on which are the blocks with the 
most significant contribution in explaining the variability of the process data, providing a 
valid support to guide risk assessment. 
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Figure 3.10. (a) Plot of the scores on LV1 versus LV2 for the matrix Z* in the MB-PLS. (b) 
Plot of the scores on LV1 versus LV2 for the water levels w in the MB-PLS. (c) Plot of the 
scores on LV1 versus LV2 for the matrix X2 in the MB-PLS. (d) Plot of the scores on LV1 
versus LV2 for the matrix Y1 in the MB-PLS. 

Finally, Figure 3.10 shows a very useful information that can be obtained by using an MB-
PLS model. As already noted in Chapter 2 (Section 2.1.3.1), since the MB-PLS builds a 
model for each block involved in the manufacturing line (MacGregor et al., 1994), a score 
diagram can be identified for each block. Figure 3.10 shows the score diagrams on the first 2 
LVs of each block of the model. These score diagrams, which indeed reflect the correlation 
structure highlighted by the loadings of Figure 3.8, provide an useful tool to assess the 
performance of the entire manufacturing process, by identifying “paths” along which the 
material being processed moves along the manufacturing line. These paths identify the 
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directions followed by the process if a particular material and a particular water level is used 
in the manufacturing. Furthermore, they especially give information on which the expected 
characteristics for the milled granules are. 
Let us take lot 10 as an example. It originates from a “wet-milled” and “API-alone” input 
material, and can be identified in Figure 3.10a (score plot of matrix *Z ). After processing in 
the granulator with a water level of 17.5 wt%, its projection onto the water level score plot 
moves to the point indicated by the arrow in Figure 3.10b. The resulting granules are 
characterized by a large PSD on average, as can be seen by the score diagram of Figure 3.10c, 
where the projection of lot 10 is within the region of large PSDs out of the granulator (recall 
that according to the loadings in Figure 3.8a, high scores on LV1 mean larger PSD). Finally, 
the resulting granules out of the mill are characterized by a large PSD and high density values 
compared to the other materials, and these properties are projected onto the corresponding 
region of the score plot in Figure 3.10d. It is interesting to note that in Figure 3.10d lot 10 is 
close to the projections of lot 4 and lot 5. The common feature between these three lots is that 
they all originate from a wet-milled API, reinforcing the finding that the particle size 
reduction route is the most important variable in explaining the variability among the different 
lots. This representation of the process on the score diagrams as in Figure 3.10 can provide an 
useful tool for the development of both the design space and the control strategy for the whole 
manufacturing line. 

3.5 Conclusions 
In this Chapter, a general strategy to apply multivariate statistical techniques to support the 
development of continuous processes has been presented. In particular, LVMs have been 
shown to be very useful tools to extract information from development datasets, which are 
sometimes sub-optimally structured and sparse, in reflection of the fact that knowledge is 
generated in a cyclical and incremental manner, which in turns leads to the availability of 
heterogeneous datasets. Moreover, it has been shown that these techniques may be effective 
in supporting the design of continuous manufacturing lines, in which data from different unit 
operations are collected and need to be analyzed jointly. 
The proposed strategy aimed at formalizing the application of LV modeling in order to get a 
systematic support tool to gain process understanding from the available development data. 
The procedure is based on three main steps. The first step deals with data management, where 
the data are organized in distinct matrices corresponding to the units (or blocks) of the 
process. In the second step, an exploratory analysis is carried out on the data of each single 
block, in order to identify the driving forces acting on each unit operation and to find 
redundancies and correlation between the measured variables. In this step, the focus is to 
understand how the design variables act on the process, and if they can potentially have an 
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impact on the subsequent operations and on the intermediate and final product properties. 
Finally in the third step, a comprehensive analysis on all the available data is performed, with 
the aim of discovering/confirming relations between the variables of different blocks and the 
impact of each block on the downstream blocks and on the final product properties. 
The proposed framework has been successfully applied to an industrial case study concerning 
the development of a continuous paracetamol tablet manufacturing line. The aim was to 
understand how different input material preprocessing and formulation routes, and how 
different process settings (granulator water levels, compactor settings) impacted on the 
downstream processing and on the final product properties. Using the proposed procedure, it 
was shown how the parameters of the LVMs can be interpreted from first principles, allowing 
to identify the main driving forces acting on the system and to rank them according to their 
importance. In particular, it was found that the route chosen to reduce the size of the API 
particle prior to granulation, the point at which the API is formulated and the amount of water 
used in the granulation steps were the three most important driving forces acting on the 
process. The different API particle size reduction route (wet-milling or microfluidization) and 
the point in which the API was formulated (at the isolation point or post isolation) could also 
be distinguished by analyzing the intermediate (milled granules) and the final (tablets) 
product property data, meaning that the process parameters (granulation water and compactor 
settings) can reduce only partially the differences due to the input materials, at least within the 
domain of available experimental data. 
Furthermore, it was shown that multi-block modeling tools can help in identifying which are 
the most critical units in the process and the most critical variables within them. These tools 
have also been demonstrated to be useful in identifying paths along which the whole 
continuous multi-unit process can move, depending on the selected process settings. 
The outlined procedure can be used in the earlier stage of a product development framework 
to help define the input materials/process settings to explore in the next experimentation 
cycle. In a later stage, it can be used to integrate additional prior knowledge as part of a more 
thorough quality risk assessment to provide the rationale for defining a robust control 
strategy. Finally, if sufficiently large and pertinently structured datasets exist on the finalized 
process, the same procedure could be used to integrate (where feasible) the control strategy 
with a latent variables-based design space on individual or combined continuous unit 
operations. 
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Chapter 4 

Latent variable model inversion to 
support the design of new products and 

processes*

In this Chapter, latent variable regression models (LVRMs) are proposed as tools to assist the 
design of new products and processes through model inversion. A general framework for 
LVRM inversion is presented in which different scenarios to invert the model are identified. It 
is shown that the design problem may have infinite solutions, generating the so-called null 
space, which is demonstrated to share many common features with the design space defined 
by the regulatory Agencies. The proposed framework is tested on an industrial particle 
engineering problem involving high-shear wet granulation. A discussion is provided on the 
effect of uncertainties in the reconstruction of the design solution. Finally, strategies are 
described to exploit the historical data covariance structure in the selection of new desirable 
product properties most suitable for LVRM inversion. 

 

The Chapter is organized as follows. In the first section, a thorough review of the applications 
of LVRM inversion is provided. The second section presents the framework, and the different 
LVRM inversion scenarios are discussed. In the third section, scenarios are tested on the 
above-mentioned particle engineering problem, considering three different case studies. In the 
fourth section, details are provided on the use of the historical data to reconstruct new product 
target profiles. Finally, conclusions and further issues are discussed. 

4.1 Introduction 
Model-based product and process design requires a mathematical abstraction that represents 
the complex network of interactions between input materials, processing conditions and 

                                                 
*Tomba, E., M. Barolo and S. García-Muñoz (2012). General framework for latent variable model inversion for the design 
and manufacturing of new products. Ind. Eng. Chem. Res., 51, 12886-12900. 
Tomba, E., S. García-Muñoz, P. Facco, F. Bezzo and M. Barolo (2012). A general framework for latent variable model 
inversion to support product and process design. Computer Aided Chemical Engineering 30, (I.D.L. Bogle and M. 
Fairweather, Eds.), Elsevier, Amsterdam (The Netherlands), p.512-516. 
Tomba, E., P. Facco, F. Bezzo and S. García-Muñoz (2012). Exploiting historical databases to design the target quality 
profile for a new product. Submitted to Ind. Eng. Chem. Res.. 
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desired product properties. As stated in Chapter 1, a deterministic model to describe these 
interactions is always desirable, as it describes the behavior of a system from first principles, 
giving a transparent representation of the physical phenomena acting upon the system. 
Several examples which consider the interactions between processes and raw materials for the 
prediction of the final product quality have appeared in the literature (Hatzantonis et al., 1998; 
ter Horst et al., 2006). These models typically require a large amount of resources to be 
developed and may not be a viable solution if there is a lack of detailed understanding to build 
a model that explains product performance metrics. For this reason, empirical models based 
on data are often built. 
In development activities, a large amount of experiments are typically required to 
independently excite all the driving forces guiding the relations between input material 
properties, process parameters and product performances, due for example to the large 
number of candidate materials and permutations to consider for the formulation of a product 
(e.g. in the pharmaceutical industry). If data on historically developed products or processes 
were available, useful information could be drawn from these databases, to support the design 
and the optimization of new products or processes and/ or to guide the experimentation from 
the first steps of the development. This would accelerate the development cycle and avoid 
expensive exploratory experimentation, replacing this with targeted optimal experiments. 
Historical data analysis for product/process design was first reported by Moteki and Arai 
(1986), who used PCA and theoretical models to analyze historical data from a LDPE process 
and infer process conditions for new grades of products. Other authors proposed the use of 
expert system tools (like fuzzy logic or artificial neural networks) to model the relations 
between input variables and product properties and use them to estimate the inputs 
corresponding to new product characteristics (Borosy, 1999; Sebzalli and Wang, 2001). 
However, although these methodologies can provide a prediction of the response of interest, 
they lack of transparency in relating large amount of data and are not easily understandable. 
As seen in Chapter 2, LVRMs are tools specifically designed to analyze large datasets of 
highly correlated data, reducing the vast information included in them in few meaningful 
LVs, which identify the underlying driving forces relating input data with system outputs. The 
driving forces identified from the available historical data (represented by the LVs) can 
therefore be used to support new product and process development activities. From a LVRM 
point of view, the design of a new product can be seen as the estimation of the best model 
inputs NEWx  [ ]1×N , where N is the number of considered input variables, which correspond 
to the desired model outputs DESy  [ ]1×M , where M is the number of considered product 
quality properties. The values in NEWx  can therefore be obtained through an operation of 
model inversion (Chapter 2, Section 2.2). 
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4.1.1 Latent variable model inversion background 

The use of LVRMs to support process design was introduced by Jaeckle and MacGregor 
(1998, 2000a). In their studies, the authors showed how the inversion of LVRMs built on the 
available historical development data could be used to estimate a window of conditions at 
which a process should operate in order to yield a product with desired quality characteristics. 
In particular, they proposed a framework for the inversion of empirical models in which the 
new process conditions NEWx  were estimated from the desired product quality DESy , through 
a projection matrix TM , which depended on the modeling technique used. The solution 
obtained through this projection matrix represents therefore the analytical inversion of the 
model. 
In the above studies, it was acknowledged that the solution of the LVRM inversion could not 
be unique due to possible differences in the matrix ranks (as described in Chapter 2, Section 
2.2). The multiple solutions arising from the inversion form a subspace of the model space 
called null space (Chapter 2, Section 2.2.1). The selection of the best solution among the 
multiple ones belonging to the null space required the introduction of appropriate constraints, 
which the analytical model inversion described in the works of Jaeckle and MacGregor did 
not allow. For these reasons, in order to obtain a solution physically sound and in the range of 
the historical data used to build the model, an optimization problem with the appropriate 
constraints had to be solved. Depending on the case under study, different formulations of the 
optimization problem have been proposed. A summary of the references to studies in which 
LVRM inversion has been used is reported in Table 4.1. 
Lakshminarayanan et al. (2000) proposed to use hard constraints (HC) on the distance of the 
solution from the origin of the model space (represented by the Hotelling’s T2 statistic) and on 
the model mismatch in representing the solution (represented by the SPE  for NEWx ), to invert 
an LVRM in which the relation between X and Y was modeled with genetic programming to 
account for possible nonlinearities. The objective was to minimize the difference between the 
desired product properties and those predicted by the model, by forcing the solution T2 and 
SPE  to lie inside the confidence limits calculated from the data used to build the model. 
Hwang et al. (2004) used a multi-block PLS model inversion to determine the optimal 
environmental factors to ensure a desired level of cellular function in the development of 
tissue-engineered devices. In their model inversion procedure they introduced a cost function 
into the objective function to find the optimal solution, in order to identify the most cost 
effective combination of environmental factors respecting the correlation structure given by 
the model. 
García-Muñoz et al. (2006) extensively investigated the concept of null space and proposed 
an optimization framework to invert PLS models, with the aim of estimating batch operating 
policies (the time varying profiles for the manipulated variables) to reach a desired output  
product quality. 
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96 Table 4.1. Summary of the references to studies which used LVRM inversion. References are listed in a chronological order. 

Reference Application Main contribution 
Jaeckle and MacGregor (1998) Process design for new LDPE grades Direct LVRM inversion/Null space concept 
Jaeckle and MacGregor (2000a)  Industrial batch polymerization process condition design Direct LVRM inversion/Null space concept 

Lakshminarayanan et al. (2000) Design of a rubber compound formulation PCA-based regression model inversion. SC on solution scores and HC on the solution T2 
and SPE. 

Hwang et al. (2004) Environmental factors for desired levels of cellular 
function in tissue engineering. Multiblock PLS model inversion through cost-based optimization. 

Yacoub and MacGregor (2004) Design and optimization of the operating conditions of 
an industrial over-molding injection process. 

Nonlinear PLS model inversion. HC on the solution T2, SPE and on xNEW elements. SC on 
yDES elements and on quality variables variance.  

Flores-Cerillo and MacGregor 
(2004) Trajectory tracking in batch polymerization processes. Dynamic PCA model inversion for set point trajectory tracking. SC on control action. HC 

on scores and on process and manipulated variables. 
Flores-Cerillo and MacGregor 
(2005) Control of industrial batch polymerization processes. Score space optimization for manipulated variable estimation. SC on control action, 

variable set points and T2. HC on control action. 

Garcia-Muñoz et al. (2006) Optimization of the operating conditions of an industrial 
batch pulp digester. 

Optimization framework for PLS model inversion in the presence of a null space. SC on 
solution T2. SC and HC on yDES elements. 

Muteki et al. (2006) Optimal selection of materials for the development of 
new polymer blends. 

Mixture PLS model inversion. SC on cost and number of materials in the mixture. HC on 
solution T2 and SPE. Mixture and logical constraints for material selection. 

Muteki and MacGregor (2007) Sequential design of mixture experiments for new 
product development. Mixture PLS model inversion. Inversion problem as in Muteki et al. (2006). 

Muteki and MacGregor (2008) Optimal purchasing of raw materials for product design. Mixture PLS model inversion. Inversion problem as in Muteki et al. (2006). 

Garcia-Muñoz et al. (2008) Optimization of batch operating policies in an industrial 
semi-batch polymerization process. 

Two steps optimization for PLS model inversion. SC on solution SPE and on batch 
length/material consumption. 

Garcia-Muñoz (2009) Process operating conditions scale-up. Two steps optimization for JY-PLS inversion. SC on solution SPE. HC on xNEW elements. 

Garcia-Muñoz et al. (2010) Feed-forward controller for mid-course correction in a 
wet granulation process. 

PLS model inversion for process control. SC and HC on solution SPE. SC on yDES 
elements. HC on xNEW elements. 

Yacoub and MacGregor (2011b) Robust modeling and optimization of an industrial 
membrane manufacturing process. 

Nonlinear PLS model inversion for robust process development. HC on the T2, SPE and 
xNEW elements. SC on yDES elements and on sensitivities of product quality to disturbances. 

Yacoub et al. (2011a) Robust modeling and optimization of a tablet 
manufacturing line. 

Nonlinear multi-block PLS model inversion for robust process development. Inversion 
problem as in Yacoub and MacGregor (2011). 

Liu et al. (2011b) Scale-up of a pharmaceutical roller compaction process. JY-PLS model inversion. SC and HC on solution T2 and SPE. SC on yDES elements. HC on 
xNEW elements. 

Muteki et al. (2011) De-risking scale-up of high–shear wet granulation. PLS model inversion. SC and HC on yDES elements. HC on T2, SPE and xNEW elements. 

Liu et al. (2011a) Modeling and optimization of a tablet manufacturing 
line. 

Multiblock PLS model inversion. SC and HC on solution T2 and SPE. SC on yDES elements. 
HC on xNEW elements. 
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The proposed solution strategy could deal with both equality and inequality constraints for the 
variables in DESy , and considered a soft rather than a hard constraint on the Hotelling’s T2, in 
order to avoid to anchor the solution at the given value of the hard constraint. On the contrary, 
no constraints or conditions were considered for the regressor space. In a later study, García-
Muñoz et al. (2008) modified the problem in order to include in the framework also possible 
constraints in the regressor space ( NEWx ); the optimization problem was then split in two 
steps: in the first step the model was inverted to find the optimal latent space projections for 
the required product quality DESy ; in the second step, the optimal set of regressor variables 

NEWx  was found, by matching the projections of DESy  calculated in the first step with the 
projections of NEWx  in the latent space. In order to find a solution of the inversion problem 
satisfying the possible constraints in the regressor space (i.e. on NEWx  variables), the 
optimization procedure might be forced to extrapolate, namely to find a solution that did not 
belong to the model space. This was obtained by considering a soft constraint (SC) in the 
optimization problem for the SPE  of NEWx . The same procedure in two steps was used by 
García-Muñoz (2009) to invert a JY-PLS model (García-Muñoz et al., 2005) in order to 
estimate the process conditions in a plant, assuming that the same raw materials as in a 
reference plant were used, obtaining the same product properties DESy . 
Yacoub and MacGregor (2004) extended LVRM inversion to nonlinear models, with the aim 
of optimizing the final product quality and compensating for the uncontrolled sources of 
variability (e.g., raw materials and environmental factors). To minimize product variability 
and increase robustness, they also proposed to use a soft constraint on the variance of the 
product properties. The product robustness problem was further refined including in the 
objective function of the LVRM inversion the sensitivities of the product quality with respect 
to specified disturbances. The effectiveness of the proposed methods was assessed to optimize 
a tablet manufacturing line (2011a) and a membrane manufacturing process (2011b). In this 
approach it was assumed that one could measure but not control the disturbances entering the 
system, and the model inversion was applied to achieve the desired product quality, properly 
modifying the process parameter settings. 
LVRM inversion was also proposed in process control for trajectory tracking (Flores-Cerrillo 
and MacGregor, 2005) and manipulation (Flores-Cerrillo and MacGregor, 2004), to ensure 
the quality of the operation in a batch process. In these studies the problem of estimating at 
the decision point the future control actions to implement was completely solved in the space 
of the LVs, thus not considering constraints on the mismatch of the model in fitting the 
previous measured and manipulated variables. This ensured a more conservative approach in 
the calculation of the control action. Garcia-Muñoz et al. (2010) performed a similar exercise 
in which they applied a feed-forward controller to perform mid-course corrections in a wet 
granulation process, but imposing also soft and hard constraints to the SPE  of the regressors 
in NEWx , which included fixed variables (for example the raw material properties or process 
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variables measured until the control action decision point) and the manipulated variable 
values to calculate, allowing slight model extrapolations. 
LVRM inversion was also used for product development to estimate new product 
formulations (Muteki et al., 2006). In this case, the LVRM was built to relate the properties of 
the raw materials, weighted according to the their fraction inside the formulation, with the 
processing conditions and the final product properties. The objective of the inversion in the 
cited case study was to select the best materials, their fractions in the formulation and the 
process settings to ensure a product of desired properties. The model inversion optimization 
problem was properly modified to account for the material selection part (logical constraints) 
and the mixture constraints. Moreover, in the objective function, soft constraints to minimize 
the cost for the material and the number of materials used in the formulation were considered. 
The same type of strategy was proposed to evaluate raw material purchasing for product 
manufacturing (Muteki and MacGregor, 2008) and to guide experiments through a sequential 
procedure of model inversion, result verification and model updating to accelerate the 
development of new products (Muteki and MacGregor, 2007). In these inversion problems 
hard constraints on the T2 and SPE statistics were considered. 
As described in Chapter 1, the interest in model-based product and process design is recently 
increased in the pharmaceutical industry in support of QbD activities. Pharmaceutical 
scientists are seeking to increasingly apply computational tools using models of multiple 
natures to design robust and reproducible products and processes. Some applications which 
involve LVRM inversion have therefore been proposed also in the pharmaceutical industry, as 
seen in Section 1.4.1.3 of this Dissertation (García-Muñoz, 2009; Liu et al., 2011a; Yacoub et 
al., 2011a; Liu et al., 2011b; Muteki et al., 2011). 
However, although all the above-mentioned studies used LVRM inversion to solve different 
kinds of problems, the objective function being minimized has often been tailored to the 
specific case study. In the following sections, a general framework to perform LVRM 
inversion is proposed, which includes several possible different cases which one may 
encounter in a product/process design exercise. The framework provides the most appropriate 
objective function and sets of constraints for each specific scenario the user may encounter, 
given any combination of constraints in both the quality and the regressor spaces. 

4.2 A general framework for latent variable model inversion 
Let us consider an LVRM, such as PLS, built between a dataset X  [ ]NI ×  of I input 
conditions in which N variables (e.g., process parameters, raw material properties) were 
measured (the regressor space) and a dataset Y  [ ]MI ×  of I products for which M product 
properties were measured (the response/quality space). The objective of model inversion is 
that of using the model to estimate a set of new input conditions NEWx  corresponding to a 
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desired set of response variables DESy . As it was shown in Chapter 2 (Section 2.2), depending 
on the effective latent dimensionality (i.e. the rank) of the matrices involved in the model (and 
on the number A of LVs used to build the LVRM), the model inversion problem may have 
infinite solutions, all lying in the model null space. Furthermore, in a design problem the 
target properties defining the product quality in DESy  may not be completely assigned but 
possibly allowed to vary inside acceptance ranges (defined through inequalities). At the same 
time, some input variables may not be adjustable or allowed to vary only in specific ranges 
(e.g., the raw material properties), thus representing further constraints for the design 
problem. For all these reasons, to find the optimal design solution through LVRM inversion a 
constrained optimization problem has to be solved, whose formulation depends on the 
problem constraints. 

4.2.1 Model inversion problem formulation 

In general, LVRM inversion can be summarized by the following steps (Figure 4.1): 
1.Build the LVRM between the preprocessed X  and Y  matrices. 
2.Determine the desired product specifications DESy  in terms of assigned values (equality 

constraints), one or two-sided constraints (inequality constraints), and physical bounds††

3.Determine the necessary constraints for the solution 
. 

NEWx  (if any), in terms of equality 
(assigned values), inequality constraints and physical bounds, so that the solution found is 
of practical relevance†. 

4.If DESy  is completely specified (all equality constraints), verify that the LVRM is valid for 
DESy  by comparing DESSPEy

 with the SPE  of the historical samples or the relevant 
historical confidence limit lim ,95%SPEY  (if meaningful). If  lim ,95%SPESPE DES Yy >  it is not 
recommended to perform model inversion. 

5.Invert LVRM solving the appropriate inversion problem. 
6.Show the results in terms of estimated input conditions NEWx , corresponding predicted 

quality NEWŷ , Hotelling’s 2T  and squared prediction error for the solution NEWSPEx
. 

As can be seen from the above-mentioned steps and from Figure 4.1, in case DESy  is 
completely defined (all equality constraints on DESy ) an LVRM can be inverted to estimate 

NEWx  only if the model is valid for DESy , as the relations described by a LVRM are valid only 
in the space defined by the LVs. One way to assess it is to project DESy  onto the latent space 
of Y and verifying that the value of DESSPEy

 is at least under the (say) 95% confidence limit 
calculated from the historical samples (García-Muñoz et al., 2006). Note that this practice 
provides a robust indication of the closeness of DESy  to the latent space depending on the 

                                                 
†† Note that physical bounds represent the variable domain in the optimization procedure. Differently, inequality constraints 
represent the regions inside which the properties (either quality or regressor) are desired to fall, and are then subsets of the 
physical bounds. 



Chapter 4 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

100 

nature of the historical data in Y. As a matter of fact, the 95% confidence limits that can be 
calculated from the historical samples can be meaningless in the case a limited number of Y 
samples is available (as often happens in development environments). In these situations it 
would be more informative to compare DESSPEy

 with the values of the SPE  of the available 
historical samples, rather than with the relevant confidence limit. 

Build LVRM 
between X 

and Y

Define problem 
constraints for 

response
(yDES)

Is
yDES coherent with 

the historical
data?

LVRM 
inversion

Model inversion is 
not reccomended

Results
(         ,        ,
T2,              )

YES

NO

Define problem 
constraints for 
input variables 

(xNEW)

NEWŷ
NEWSPEx

NEWx

 
Figure 4.1. Schematic of the LVRM inversion steps. 

Although DESy  may be coherent with the historical data in Y, if the model mismatch in 
representing DESy  is significantly different from zero, the uncertainties propagate in the 
inversion, thus increasing the uncertainties in the estimation of NEWx . Managing DESSPEy

 in 
the inversion problem would require to consider the prediction uncertainty, which is sample-
dependent and formed by different contributions as the uncertainties due to the measurement 
system, to the lack of fit of the model and to the sample bias, all of which are not easily 
manageable. For these reasons, in the following, DESy  is assumed to belong to the space of the 
quality of the historical samples in Y ( 0SPE DES =y

). Namely DESy  is projected and 
reconstructed on the model for Y, acknowledging that the handling of the uncertainties on the 
Y space in the LVRM inversion problem still constitutes an open research area. Further 
details on the reconstruction of DESy  will be provided in Section 4.4.1. 
By analyzing the steps in Figure 4.1 it is clear that, when performing model inversion, three 
different type of constraints for the problem can be distinguished: 
• Model constraints, i.e. the underlying model has to be satisfied.  
• Statistical constraints, i.e. the solution should preferable lie within the region established by 

the historical data used to build the model. This region could be represented by statistical 
limits on the Hotelling’s T2 and on NEWSPEx

. 
• variable constraints, namely equality constraints or inequality constraints for the product 

properties in DESy  or the input variables in NEWx  which the solution has to obey. 
The LVRM defines the first type of constraints. The second type of constraints can be 
different depending on the problem under study and on the specified variable constraints. In 
general they can be soft constraints (i.e. constraints included indirectly within the objective 
function) or hard constraints. The third type of constraints are defined by the user depending 
on the problem. 
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As noted by García-Muñoz et al. (2010), the statistical constraints (namely the bounds that are 
imposed on the Hotelling’s T2 and on NEWSPEx

), are implicitly imposing range boundaries to 
the variables in the estimated solution set NEWx  and for the predicted quality NEWŷ . For this 
reason it is expected that the limits of the Hotelling’s T2 and of the NEWSPEx

 ensure that the 
estimated solution variables respect the bounds of the historical sample variables. 
Nevertheless, it is useful to consider physical bounds of variables (when needed) in the 
formulation of the inversion problem, since physical bounds are linear constraints, which can 
be more effective in aiding the optimization routine to find a solution compared to the 
statistical constraints, which are nonlinear (Biegler, 2010). 
In general, whether constraints on variables exist or not makes the inversion formulation 
problem different. In particular, in Figure 4.2 a general framework for LVRM inversion is 
proposed. A first classification between different model inversion problems depends on 
having or not constraints on the regressor vector NEWx . Depending on this, different objective 
functions and problem constraints can be found according to whether all the values in DESy  
are specified or not. 

LVRM inversion 
problem

No constraints on 
xNEW variables

Constraints on xNEW 
variables

yDES variables 
completely defined

yDES variables NOT 
completely defined

yDES variables 
completely defined

yDES variables NOT 
completely defined

SCENARIO 1 SCENARIO 2 SCENARIO 3 SCENARIO 4
 

Figure 4.2. General framework for LVRM inversion. 

4.2.1.1 Unconstrained regressors 
In the case no constraints are considered for the solution NEWx , and DESy  is completely 
defined (Scenario 1 in Figure 4.2), the direct LVRM inversion described in Chapter 2 
(Eq.(2.57)) can be applied. The direct inversion of the model provides the score vector DESt̂  
[ ]1×A  corresponding to the desired product quality vector DESy , from which the input 
variable vector NEWx̂  can be reconstructed (Jaeckle and MacGregor, 1998): 
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DESNEW ˆˆ tPx =      . (4.1) 

 
In Eq.(4.1), NEWx̂  belongs to the model space and has the same covariance structure of the 
historical data used to build the LVRM. 
In case where the elements in DESy  are not completely defined because some elements lack an 
equality constraint, or if an inequality constraint is assigned for that element (Scenario 2 in 
Figure 4.2), the model inversion problem formulation is the following: 
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where t  is the vector of the decision variables, composed by A at  scores, 2

as  is the variance of 
the a-th column of matrix T, NEWŷ  is the quality variable vector corresponding to the solution 

NEWx̂ , jb  is the inequality constraint specified for the j-th element of NEWŷ  ( NEWˆ jy ); y
klb  and 

y
kub  are respectively the lower and upper physical bounds for the k-th element of NEWŷ  

( NEWˆky ), while x
llb  and x

lub  are the lower and upper physical bounds for the l-th element of 
NEWx̂  ( NEWˆlx ). 

Γ  is a matrix whose diagonal elements determine how much weight is given to meet the 
possible specified equality constraints DESy  in the solution. More weight could be given to 
those variables which are more important for the specific application under study. 
Alternatively, the fractions 2

,pv yR  of the sum of squares of each property explained by the 
model for the historical samples could be used as weights (Eq.(2.16)). A value of zero is 
assigned to the weights for those variables for which equality constraints are not specified 
(García-Muñoz et al., 2006). 
As can be seen, the objective function in Eq.(4.2) minimizes the sum of the weighted squared 
difference between the desired product properties in DESy  and those predicted by the model 
included in NEWŷ  and of the Hotelling’s T2, represented by the second term of the objective 
function (soft constraint). The Hotelling’s T2 term is weighted according to the weight 1g  to 
balance the importance of the two terms in the objective function. For this reason, one could 
vary the weight 1g  assigning more importance to the model representativeness or to the 
closeness to the historical knowledge. A good choice for 1g  is represented by the reciprocal 
of the 95% confidence limit for T2 ( 2

lim 95%T ), in order to keep the second term of the objective 



Latent variable model inversion to support the design of new products and processes 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

103 

function below 1 (if possible). Note that the soft constraint on T2 is included in order to find a 
solution lying as close as possible to the historical available data when multiple solutions exist 
(i.e. in the case of inequality constraints for NEWŷ  or, in alternative, when a null space exists). 
In general, when DESy  is completely defined, the analytical model inversion in Eq.(4.1) gives 
the best possible solution even when a null space is present, if the projections DESt̂  of DESy  in 
the latent space of the model are inside the design space given by the historical data. If not, it 
would be preferable to use the formulation in Eq.(4.2) instead of the direct model inversion, 
thus exploiting the soft constraint on T2 to move the solution along the null space. Moreover, 
the optimization framework has to be preferred to the direct model inversion if the calculated 
solution NEWx̂  does not respect the physical boundaries ( x

llb  and x
lub ). 

4.2.1.2 Constrained regressors 
If too many constraints are specified for the input variables in NEWx , the model inversion 
solution may be forced to move away from the model plane ( 0SPE NEW >x

). The model 
inversion problem can be formulated in such a way as to take this occurrence in account, by 
including a soft constraint for NEWSPEx

, namely the mismatch of the model in representing 
NEWx  (García-Muñoz et al., 2008). Differently from the previous scenarios, the solution will 

lie outside the model space, although only slightly, as long as NEWSPEx
 is lower than a 

specified threshold (which can be represented by the historical confidence limit lim ,95%SPEX ). 
However, instead of considering a two-step optimization problem as proposed by Garcia-
Muñoz et al. (2008), the inversion problem can be solved in a single step. The problem 
formulation changes depending on having the desired quality DESy  completely specified or 
not. In the former case (Scenario 3 in Figure 4.2), by exploiting the direct model inversion, 
the inversion problem can be written as: 
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being Σ  the covariance matrix of the LV scores T  with 2
as  in the main diagonal (García-

Muñoz et al., 2010), rc  the equality constraints for the r-th element of NEWx , fd  the 
inequality constraint for the f-th element of NEWx , 2g  a parameter weighting the importance 
of the soft constraint for NEWSPEx

 in the objective function, while the other symbols have the 
same meaning as described above. As in Eq.(4.2), a good choice for 2g  is represented by the 
reciprocal of the 95% confidence limit for the SPE  ( lim ,95%SPEX ), calculated from the 
historical data in X  used to build the model. On the basis of the experience in applying this 
method, a reasonable way to limit the model mismatch is to apply a weight 13 <g  to decrease 
the value for the obtained NEWSPEx

. 
Note that in the problem of Eq.(4.3) both a soft and a hard constraint are assigned for the 
model mismatch NEWSPEx

. The soft constraint is needed to avoid the solution to have an SPE  
value anchored to the value set by the hard constraint. At the same time, the use of the soft 
constraint only could still yield a solution with an unacceptable SPE , i.e. higher than 

lim ,95%SPEX . For this reason, both the soft and the hard constraint on NEWSPEx
 are needed 

(García-Muñoz et al., 2010). 
In the case not all the desired quality variables in DESy  are defined (Scenario 4 in Figure 4.2), 
because some elements are not specified or inequality constraints are given for these, the 
formulation of the inversion problem is presented in Eq.(4.4) and represents the most complex 
scenario for this framework. 
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with the same meaning for the notation as in the previous scenarios. Note that in this 
optimization problem, the decision (optimization) variables are included in vector NEWx , 
differently from Eq.(4.2) and Eq.(4.3) where the optimization was performed on the score 
vector t . 
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The described framework for LVRM inversion has been implemented in Matlab® (the 
MathWorks Inc., Natick, MA) using an in-house developed multivariate analysis toolbox (phi 
v1.7) while, as it concerns to the optimization part, it has been solved in GAMS (GAMS 
Development Corporation, Washington DC), with an in-house developed interface between 
them. 
In the following sections results are presented on the application of the proposed procedures 
for a real case study from the pharmaceutical industry, concerning a particle engineering 
problem when a high-shear wet granulation manufacturing route is necessary to obtain the 
desired product. 

4.3 Case studies: latent variable model inversion for particle 
engineering 
In this case study, the proposed general framework is applied to a particle engineering 
problem for the design of a product under the assumption that it is manufactured using a high-
shear wet granulation process. In this example the experimental data reported in the work of 
Vemavarapu et al. (2009) have been used. In the original work, the authors studied the 
influence of the raw material properties on the performance of a wet granulated product. Each 
raw material was characterized and processed at fixed process conditions, which provides the 
necessary information in order to study the effect of the input properties on the final product. 
The objective of this exercise is the calculation of the optimal values for the properties of the 
raw materials, to obtain a product of desired quality through wet granulation. Results for three 
different model inversion exercises are presented. 
In the first case study, all the desired properties for the product ( DESy ) are fixed by the user 
(all equality constraints), while no constraints are given for the input material properties in 

NEWx  (Scenario 1). Thus, the values of all the variables in NEWx  are estimated through the 
inversion of the model. In the second case study, the objective is to design the particle size 
distribution (PSD) and the surface area for the raw material in input to the wet granulation 
process, assuming that the other raw material properties are fixed and not adjustable. As in the 
first case study, the product quality variables in DESy  are completely defined (all equality 
constraints; Scenario 3). In the third case study, the objective is the same as in the second case 
study, but the product quality variables in DESy  are not completely defined, as upper or lower 
limits (inequality constraints) are given for some of them (Scenario 4). 

4.3.1 Available data and preliminary analysis 

Data are collected in two datasets: a dataset X  [25×7] of input material properties, including 
25 different materials and 7 measured variables, and a dataset Y  [25×7] of product 
properties, including the 25 products corresponding to the different input materials with 7 
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different quality variables measured. The materials were selected in order to cover a large 
design space with the variables of interest, but at the same time ensuring workable 
granulations at the chosen process conditions. The measured properties of the input materials 
and the variables measured for the product characterization are listed in Table 4.2. The reader 
is encouraged to refer to the original work of Vemavarapu et al. (2009) for more information 
about these variables and the rationale for selecting them. 

Table 4.2. Measured properties for the input materials (X) and for the 
obtained granules (Y). 

X Y 
1. H2O solubility (mg/mL) 
2. Contact Angle (°) 
3. H2O holding capacity (wt % gain) 
4. D[3,2] (µm) 
5. D90/D10 
6. Surface Area (m2/g) 
7. Pore Volume (cm3/g) 

 

1. LOD (%) 
2. % Oversize 
3. ∆Flodex (mm) 
4. ∆Compactability (kPa/MPa) 
5. D[3,2] (µm) 
6. D90/D10 
7. Growth Ratio 

 

 
A preliminary analysis on the available data was performed to understand the statistical rank 
of the datasets, namely the number of LVs needed to describe the variability in the data. The 
most useful way to assess it is to perform a PCA on the X  and on the Y  matrices. A 
summary of the primary diagnostics of the PCA models for X  and for Y  are reported in 
Table 4.3 in terms of eigenvalues (EigX and EigY) and explained variance in model design 
( X2R  and Y2R ) per latent variable (LV). 

Table 4.3. Diagnostics of the PCA models for the X and Y datasets: 
eigenvalues and explained variance per latent variable. 

LV EigX R2X EigY R2Y 
1 3.06 41.10 2.59 37.63 
2 1.63 23.32 2.30 30.84 
3 1.20 18.00 1.29 18.35 
4 0.73 10.72 0.54 7.80 
5 0.27 3.63 0.21 2.95 
6 0.12 2.09 0.12 1.70 
7 0.06 1.01 0.04 0.64 

 
From the results reported in Table 4.3 it can be seen that the eigenvalues for both the data in 
X  and in Y  are greater than 1 for the first three LVs. Following the eigenvalue-greater-than-
one rule (Mardia et al., 1979), three LVs should then be chosen for both PCA models. This 
seems a robust choice in the case of the Y dataset, as there is a sharp decrease in the 
eigenvalue and in Y2R  between the third and the fourth LV; furthermore the fourth LV 
eigenvalue is significantly below 1. Differently, in the case of the X  dataset it can be seen 
from the value of X2R  that the fourth LV still describes a significant amount of the variability 
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of X , while the subsequent LVs are much less explanatory. For these reasons four LVs seem 
to be more appropriate to properly describe the systematic variability of the data in X , while 
three LVs are chosen for the Y dataset. This also means that, when a PLS model is fit between 
X  and Y , in the most favorable case (i.e. all LVs in Y  are explained by X ; Burnham et al., 
1999) there is one LV in the X space that has no or little effect on Y  and generates a one-
dimensional null space that must be considered in the model inversion exercise. 
A PLS model was then built and cross-validated using the X  and Y  datasets. Note that 
before the design of the PLS model, some of the variables in X  and in Y  were log-
transformed, to account for probable nonlinearities, which were highlighted also in the 
original paper (Vemavarapu et al., 2009). In particular, H2O solubility, D[3,2], surface area 
and pore volume among the regressors, and D[3,2] among the quality variables, were log-
transformed. 
In the design of predictive LVRMs like PLS, the main interest is towards the prediction of the 
response variables in Y . For this reason, as was shown in Chapter 2 (Section 2.1.2.1), the 
cross-validation of a regression model is traditionally based on diagnostics depending on 
samples of Y , like the explained variance in cross validation ( 2Q ) or the root mean square 
error of cross-validation (RMSECV). Indeed, a LVM captures the covariance structure also for 
the variables in X . A comprehensive strategy for the selection of the number of LVs needed 
to design a LVRM should therefore also consider a metric to diagnose the performances of 
the model in cross-validation using the X  data. This is essential in particular when 
performing model inversion, where the objective is the estimation of the regressors starting 
from the response variables, and it must be ensured that the model adequately represents not 
only the Y  but also the X  space. In this work a new metric (referred to as 2P ) is proposed, 
representing the variance explained by the model in cross-validation for the data in X . 
Table 4.4 provides a summary of the diagnostics for the PLS model between X  and Y . In 
particular, the values of the explained variances for X  and Y  per LV in model building 
( X2R  and Y2R ) and in cross-validation ( 2Q  and 2P ) are reported. The corresponding 
cumulative values ( X2

CUMR  and Y2
CUMR , 2

CUMQ  and 2
CUMP ) are reported as well. Cross-

validation was performed with a jackknife approach (Duchesne and MacGregor, 2001). 

Table 4.4. Diagnostics of the PLS model between X and Y. 

LV X2R  X2
CUMR  2P  2

CUMP  Y2R  Y2
CUMR  2Q  2

CUMQ  
1 40.84 40.84 35.71 35.71 32.34 32.35 24.68 24.68 
2 18.69 59.54 18.26 53.97 23.34 55.69 24.31 48.99 
3 15.99 75.53 15.38 69.35 8.30 63.99 11.72 60.71 
4 17.45 92.98 22.03 91.38 1.58 65.57 2.30 63.02 
5 2.49 95.47 3.66 95.04 2.77 68.34 2.88 65.90 
6 2.93 98.40 2.60 97.64 0.45 68.79 0.10 66.01 
7 1.43 99.83 2.17 99.82 0.56 69.34 1.59 67.59 
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From the results reported in Table 4.4, it can be seen that both X2R  and 2P  show a 
significant decrease in the amount of explained variance after the fourth LV. Differently, 
analyzing the values of Y2R  and especially of 2Q  it can be seen that the LVs after the third 
do not explain a significant amount of variance. Even if the analysis of Y  would suggest to 
use three LVs, four LVs were selected for the PLS model design, considering both the values 
of X2R  and 2P  and that the model should adequately describe X  for the model inversion 
exercise. Indeed, the values reported in Table 4.4 confirm the results of Table 4.3. 

4.3.2 Case study 1: product quality completely defined and no 
constraints on the input variables 

In this case study the objective was to design the complete set of chemical and morphological 
characteristics of the input material ( NEWx ), in order to obtain a desired set of product 
properties ( DESy ), assuming a wet granulation process is to be used. It was assumed that all 
the product properties in DESy  were fixed by the user while no constraints were considered for 
the input variable space (Scenario 1). To evaluate the method, the inversion exercise was 
tested on three completely different product profiles, which were selected from the original 
datasets in such a way that they spanned a large range of product quality attributes and raw 
material properties. The considered targets were the granules obtained in the original paper 
when using Avicel PH200, Isoniazid and maize starch. For each material, the corresponding 
rows in X  and Y  were extracted from the datasets and the model was rebuilt without the 
considered target material. The value used for DESy  was the reconstruction of the real material 
quality (i.e. the extracted row of Y ) through the PCA model built on the historical quality 
variable space Y . This was done to ensure that the desired quality profile had the same 
correlation structure as the historical Y . Note that even if no constraints were assigned for the 
input variable space, some physical bounds were specified for some of the variables in NEWx̂ . 
In particular: 
• The contact angle could vary between 0° and 180°. 
• The H2O holding capacity had to be greater than 0 wt. %. 
• D90/D10 had to be greater than 1. 
Considering the presence of the null space, the design specifications and the physical bounds, 
the procedure used for the model inversion is the one described in Eq.(4.2). 
Note that the direct validation of any inversion exercise would be the experimental validation 
of the results obtained in-silico. However in this case study it was not possible to perform the 
experiments to validate the model results. Therefore, the inversion performances were 
evaluated by comparing the results estimated from the model inversion with the real 
properties of the considered material. In particular, since the optimization is performed in the 
model latent space, in Table 4.5 the projections in the LVRM space of the solution obtained 
through direct inversion ( DESt̂ ) and through the optimization approach in Eq.(4.2) ( t̂ ) are 
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compared to the projections of the real input material variables ( REALt̂ ) for each of the three 
considered materials. Furthermore, to have a better comparison between the direct inversion 
and the optimization solution, Table 4.5 reports the values of the Mahalanobis distances 
(indicated as 

M
⋅ ; Mardia et al., 1979) between t̂  and REALt̂ , and between t̂  and DESt̂ . 

Table 4.5. Comparison between the optimization solution ( t̂ ), the direct 
inversion solution ( DESt̂ ) and the real material property projections ( REALt̂ ). 

Material  t1 t2 t3 t4 
M

REALˆˆ tt −  
M

REALDES ˆˆ tt −  

Avicel PH200 
t̂  -0.236 1.414 -0.520 0.241 

0.487 0.398 DESt̂  -0.226 1.678 -0.616 0.985 
REALt̂  -0.210 1.429 -1.125 0.643 

        

Isoniazid 
t̂  -2.894 -1.338 -0.121 -0.576 

0.741 4.338 DESt̂  -3.001 -2.051 -1.680 -1.740 
REALt̂  -2.481 -1.186 -0.217 -0.347 

        

Maize Starch 
t̂  -0.583 2.593 1.596 0.420 

3.023 47.493 DESt̂  -0.561 3.579 4.921 -3.818 
REALt̂  -0.506 2.167 1.537 2.105 

 
As can be seen from Table 4.5, for all the considered materials the results obtained from the 
optimization ( t̂ ) are very close to the real input material properties projections ( REALt̂ ) 
compared to the direct inversion solution ( DESt̂ ). In general it can be observed that the 
difference between the calculated and real scores on the first LVs are lower than the 
difference between the scores on the last LVs. This is due to the fact that the first LVs explain 
an higher percentage of the variability of the data, as resulted from Table 4.4, and are then 
predominant in the calculation of NEWŷ  and in the minimization of the first term of the 
objective function in Eq.(4.2). 
To better understand the results in Table 4.5, Figure 4.3 reports the projections of the direct 
inversion solution ( marker), of the optimized solution (blue  marker) and of the real input 
variables ( marker) in the model score spaces of the first and second LVs and of the second 
and third LVs respectively. Each plot reports also the scores of the historical samples used to 
build the model (black dots), the 95% confidence ellipse for the sample scores (dashed black 
line), and the null space projections on the considered score planes (solid black line). 
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Figure 4.3. Projections of the LVRM inversion solutions in the model score plots. (a) t1 vs 
t2 for Avicel PH200; (b) t2 vs t3 for Avicel PH200; (c) t1 vs t2 for Isoniazid; (d) t2 vs t3 for 
Isoniazid; (e) t1 vs t2 for maize starch; (f) t2 vs t3 for maize starch. In each plot the 
analytical optimum ( DESt̂ , ), the solution from the optimization in Eq.(4.2) ( t̂ ,  in blue) 
and the real input material variable projections ( REALt̂ , ) are reported. The solid black 
line represents the projection of the null space on the considered planes. The solid red lines 
represent the uncertainties in the null space calculation, while the dotted blue lines the 
uncertainty in the optimization solution calculation. 
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The calculation of the null space has been performed as described in Chapter 2 (Section 
2.2.1). If the rank-deficiency of the matrices were exact, the null space calculation would 
identify a true multivariate null space. Namely, a point along the null space could be moved 
without affecting the model estimation for the product quality. However, measurement errors 
and model mismatch contribute to increase the uncertainties in the estimates of the parameters 
of the LVRM. As a consequence, these occurrences increase the uncertainties also in the null 
space estimation. The estimation of the uncertainties is essential to understand the reliability 
and the quality of the model inversion solution. In this exercise a procedure is proposed and 
applied to calculate the 95% confidence limits for the estimation of the null space. 
The procedure is based on jackknife (Duchesne and MacGregor, 2001) and described in 
Appendix C. The calculated limits, which are represented by the red lines in the plots of 
Figure 4.3, represent the variation in the null space calculation due to model uncertainty. 
Likewise, the uncertainties in the estimation of the inversion solution t̂  were calculated in 
terms of 95% confidence limits using the same jackknife approach, and are represented as 
confidence ellipses (dotted blue lines) in the plots of Figure 4.3. 
From the analysis of Figure 4.3, it can be observed that the direct model inversion solution 

DESt̂  belongs to the null space and that the null space confidence limits are divergent. This is 
an important occurrence due to the fact that in this case the estimated null space is not 
properly a pure null space. Namely, it is not properly orthogonal to the Y  space, but it 
contributes to explain part of the systematic variability in the quality space. This can happen 
when the null space is a pseudo-null space, which is generated from the combination of the 
single variable (univariate) null spaces (García-Muñoz et al., 2006), or when the model is not 
representative enough of the historical data (i.e. when the selected LVs explain a limited 
percentage of the variance of the data or there is a low correlation between the X  and Y  
datasets). Thus, the uncertainty in the estimation of the null space is limited when the solution 
is close to DESt̂ , but is larger for the points of the null space far from DESt̂ , as can be noted 
from the plots in Figure 4.3. Two important remarks should be emphasized at this point: first, 
even if the null space is a pseudo-null space and is not completely independent from the Y  
space, it still represents the direction of minimum influence on Y ; second, since the null 
space calculation is strongly affected by the model parameter uncertainties related to the 
model performances in fitting the data, and the uncertainties for the null space increase as the 
solution is moved away from the direct inversion solution, a model inversion solution should 
be considered belonging to the null space as long as it falls inside the null space confidence 
limits, even if this belonging is more uncertain as the solution gets farther from the direct 
inversion one. 
From the analysis of Figure 4.3a and Figure 4.3b it can be seen that in the case of Avicel 
PH200 the desired (i.e. calculated) material property projections fall inside the historical 
design space. In this case both the optimization and the direct inversion procedures give an 
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estimation for the input material properties which is very similar to the real ones. This can be 
appreciated by the Mahalanobis distance values in Table 4.5 and by the fact that the 
projections of t̂ , DESt̂  and REALt̂  are overlapped in the space of the scores on the first two 
LVs. 
Differently, in the case of Isoniazid (Figure 4.3c and Figure 4.3d) and in the case of maize 
starch (Figure 4.3e and Figure 4.3f) it has been verified that the desired product quality 
profiles are out of the range of the historically known product quality. Both these cases well 
describe the role of the null space in the inversion: the optimization procedure moves the 
direct solution along the null space (or inside its 95% confidence limits) until it finds a 
compromise solution between the two terms constituting the objective function in Eq.(4.2). In 
both cases the solution t̂  is very similar to the real input material properties projected onto the 
latent space compared to the direct inversion solution, as can also be seen from the 
Mahalanobis distances in Table 4.5. 

4.3.2.1 Reducing a null space to practice 
The advantage of finding a true multivariate null space in the LVRM inversion is that the 
solution can move along the null space without affecting the product quality. If a pseudo-null 
space is found (García-Muñoz et al., 2006), moving the solution along the null-space 
guarantees the least amount of deviation in the obtained quality set NEWŷ  versus the target 

DESy . Therefore an infinite set of input conditions NULLx̂  can be obtained from the null space 
projection points: 

 
NULLNULLˆ Ptx =      , (4.5) 

 
where NULLt  is the vector of the scores corresponding to a null space point. All the input 
conditions NULLx̂ , whose projections belong to the null space, are associated by the 
correspondence to the same product quality, according to the model, and form a multivariate 
space of the input variable combinations with no (theoretically) or minimum impact on the 
product quality. 
The null space is a mathematical concept not easy to understand from the design point of view 
for many reasons. First, it is not defined into the real design space of the input variables but in 
the reduced space of their projections on the LVs; second it is infinite, while a design space is 
expected to be finite, since physical variables move in a finite range. 
The results along the null space need to be communicated in terms of input variable values to 
the person or group in charge of implementing the design. For these reasons, there is the need 
to define a link between the null space and the design space, which, following the definition 
of the regulatory Agencies (Chapter 1, Section 1.2.2), is intended as the space of the input 
variable combinations that robustly ensure to obtain a defined product in output. This is 
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essential in order for the product/process design personnel to understand what a variation 
inside the null space means in terms of changes in the input variables. 
This link can be established by building the multivariate space of the input variable sets 
reconstructed from the null space projections according to Eq.(4.5). This would generate an 
N-dimensional space of the combinations of the input variables that (theoretically) correspond 
to the same assigned product quality. 
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Figure 4.4. Plots of the input variable combinations belonging to the null space. (a) 
D90/D10 versus log(D[3,2]). (b) Contact Angle versus log(H2O solubility). (c) log(D[3,2]) 
versus log(H2O solubility). (d) log(Pore Volume) versus log(Surface Area). The solid black 
lines indicate the points reconstructed from the null space (i.e. the solid black lines in 
Figure 4.3); the dashed black regions represent the 95% confidence limits. The red dots 
and the red stars in each diagram represent two different sets of reconstructed variables 
each one having the same null space projections. 

Since the multivariate space is N-dimensional and cannot be represented graphically, in 
Figure 4.4 the projections of this multivariate space onto bidimensional plots of pairs of the 
input variables are reported for the Avicel PH200 model inversion exercise. Four of the 21 (in 
total) diagrams are represented. The diagrams report the projections on the planes of D90/D10 
vs D[3,2], Contact Angle vs H2O solubility, Pore Volume vs Surface Area, and D[3,2] vs H2O 
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holding capacity. In each plot the solid black line includes the points whose projections 
belong to the null space (namely to the black line in Figure 4.3a and 4.3b). The different input 
variable combinations belonging to the null space form the solid black lines in the diagrams 
of Figure 4.4. 
Thus, each point in one of the diagrams of Figure 4.4 corresponds to one appropriate point in 
each of the other diagrams, according to the combination computed by the model in Eq.(4.5). 
For example, in each of the diagrams of Figure 4.4 the points highlighted by the red dots 
correspond to the same set calculated by the same projection on the null space. Analogously, 
the red stars represent another set of variables reconstructed from the same point of the null 
space, and here reported to clarify the directionality of the points in the plots. The dashed 
lines represent instead the 95% confidence limits, which were estimated through the above-
mentioned jackknife procedure. Note that the space of the input variable combinations was 
truncated when some of the variables in the combination resulted out of their physical 
boundaries or meaningless (e.g. the contact angles greater than 180°). 
Finally, note that the relations between the variables highlighted by the diagrams in Figure 4.4 
are linear because the model is linear (even if some variables used to build it were nonlinearly 
transformed). If a nonlinear model had been used the trend would have been nonlinear. This is 
to say that the shape of the null space depends on the model that was built on the data. 
Therefore the null space may not exactly represent the design space of the process, but most 
probably a subset of the design space, which can be helpful as a basis for further 
experimentation to properly develop it. 

4.3.3 Case study 2: product quality completely defined and constraints 
on the input variables 

In this case study it was assumed that only some of the properties of the input material could 
be modified to obtain a desired product. Specifically, it is assumed that the particle size of the 
crystals can be modified by milling, and hence a target particle size is needed (D[4,3], 
D90/D10), which would in turn modify the surface area. All the other variables measured for 
the input material are assumed to be fixed and not adjustable because of the chemistry of the 
system. Therefore there are equality constraints both in the input variable and in the quality 
spaces (Scenario 3). Since all equality constraints are specified for DESy  and for some 
elements of NEWx , the inversion problem is solved exploiting the formulation in Eq.(4.3). 
The granules originally obtained with Avicel PH200 are considered as the target product. 
Since in this case there are no constraints on the 2T  of the solution, it must be checked a 
priori that the desired quality vector is consistent with the covariance in the historical data. 
The rows corresponding to the target product in X and Y were then extracted from the 
datasets and the model rebuilt without the considered material. It is assumed that the row 
extracted from Y corresponding to Avicel PH200 had the desired quality DESy . More 
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precisely, DESy  is the reconstruction of the real Avicel PH200 quality set through the PCA 
model built on the historical quality variable space Y, so that it belongs to the quality space. 
The model was then inverted according to Eq.(4.3) with the specified constraints. 
Additionally, the constraint D90/D10>1 was considered as done earlier to ensure the 
soundness of the solution. 
In Table 4.6 and Table 4.7 the results from the LVRM inversion are reported in terms of the 
original variables reconstructed through the PLS model equations. In particular, in Table 4.6 

DESy  is reported together with NEWŷ , which represents the quality corresponding to the 
inversion solution NEWx  through the model. Moreover, the percentage variances explained by 
the model in cross-validation are reported for each response variable ( 2

pvQ ). Differently, Table 
4.7 reports the real values for the input variables REALx , the obtained input variable solution 

NEWx  and the corresponding value of SPE . For each variable, the value of the percentage 
variances explained by the model is reported for cross-validation ( 2

pvP ). Note that the values 
of D[3,2], D90/D10 and surface area calculated through the inversion and the corresponding 
reference ones are indicated with a # superscript. 

Table 4.6. Desired product quality ( DESy ), product quality corresponding to 
the calculated solution ( NEWŷ ), percentage variance explained by the model 
per response variable in cross-validation ( 2

pvQ ). 

 
LOD 
(%) 

Overisize 
(%) 

∆Flodex 
(mm) 

∆Compactability 
(kPa/MPa) 

D[3,2] 
(µm) D90/D10 Growth 

ratio 
DESy  2.85 10.85 2.15 -1.37 130 9.3 0.79 
NEWŷ  2.40 15.24 2.78 -0.89 141 10.0 1.8e-8 

2
pvQ  0.884 0.452 0.225 0.550 0.756 0.296 0.252 

Table 4.7. Constraints for the input material variables ( REALx ), input 
conditions calculated through the model inversion ( NEWx ), percentage 
variance explained by the model per input variable in cross-validation ( 2

pvP ). 

 

H2O 
Solubility 
(mg/ml) 

Contact 
Angle 

(°) 

H2O holding 
capacity 
(wt. %) 

D[3,2] # 
(µm) D90/D10# 

Surface 
Area# 
(m2/g)  

Pore 
Volume 
(cm3/g) 

SPEx 

REALx  0.1 73 10.97 124# 4.6# 1.19# 2.95E-3 0.795 
NEWx  0.1 73 10.97 99# 6.8# 0.98# 2.95E-3 0.696 

2
pvP  0.749 0.810 0.963 0.920 0.890 0.885 0.909 - 

# indicates an input whose value was not assigned as a constraint in the optimization procedure (i.e. a variable 
calculated by model inversion) 

 
As it can be seen from Table 4.6, the optimization procedure finds a solution that is very close 
to the desired quality values. This can be noticed especially for those variables which are well 
represented by the model as LOD ( 884.02

pv =Q ) and D[3,2] ( 756.02
pv =Q ), while for other 

variables like the growth ratio the estimation is worse. However, note that in the case of the 
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growth ratio the model itself has bad performances if compared to the other variables 
( 252.02

pv =Q ). 
From the analysis of Table 4.7, it can be seen that the values obtained for D[3,2], D90/D10 
and for the surface area of the solution are satisfactory if compared to the reference values 
given by REALx . The value of NEWSPEx

 is slightly smaller than REALSPEx
 , but they both are 

under the 95% confidence limit ( 218.1SPE lim ,95% =X ) that was used as a hard constraint for 
SPE , with 9.03 =g  in the relevant constraint in Eq.(4.3). 
To confirm the goodness of the LVRM inversion solution and better understand the 
importance of the terms in the objective function of the problem in Eq.(4.3), the Mahalanobis 
distances (indicated as

M
⋅ ) between the scores of the solution obtained though the 

optimization problem t̂ , the real input material variable projections REALt̂  and the desired 
quality projections DESt̂  are compared in Table 4.8. 

Table 4.8. Mahalanobis distances between the projections of the 
optimization solution ( t̂ ), of the desired quality ( DESt̂ ) and of the real input 
material variables ( R EA Lt̂ ). 

M

REALˆˆ tt −  
M

REALDES ˆˆ tt −  

0.045 0.417 

 
As can be seen, the optimization solution ( t̂ ) is much closer to the real input variable 
projections ( REALt̂ ) than is the direct model inversion solution ( DESt̂ ). This is due to the fact 
that the first term in the objective function tends to force the solution toward the desired 
quality projections, while the equality constraints on NEWx  indirectly force the solution to 
approach the real input material variable projections REALt̂  (which are obviously not known a 
priori). The result is therefore a compromise between these two requirements, with the second 
term in the objective function additionally aiming at minimizing the SPE  of NEWx . The 
difference between DESt̂  and REALt̂  not due to the null space forms the model prediction error 
in the estimation of DESy . 

4.3.4 Case study 3: inequality constraints both on the product quality and 
on the input variables 

In this case study the objective is the same as the one illustrated in Case study 2; however, the 
variables in DESy  are not completely specified with equality constraints (Scenario 4). Namely, 
equality and/or inequality constraints are given for DESy . In the same way, equality and/or 
inequality constraints are specified for the input variables in NEWx . In particular, in this case 
study the focus is on the design of the PSD (i.e. D[3,2] and D90/D10) and of the surface area 
of Avicel PH200, in order to obtain a desired product quality DESy  falling inside an 
acceptance region defined through inequality constraints. As before, the values of the other 
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variables of NEWx  are assumed to be fixed due to the chemistry of the system. The following 
constraints for DESy  were specified (also reported in Table 4.9): 
• LOD greater than 2%; 
• Percentage of oversize granules less than 15%; 
• ∆Flodex between before and after the granulation greater than 0 mm; 
• D[3,2] greater than 140 µm; 
• D90/D10 less than 12; 
• Growth ratio greater than 3. 
No requirements for ∆Compactability were specified, leaving the model to calculate it. All 
these constraints define a region around the real Avicel PH200 quality variable set, which was 
used in the previous exercise (i.e. DESy  in Table 4.6). 
Since different types of constraints are involved both in the quality and in the regressor space, 
the most general inversion procedure problem, formulated in Eq.(4.4), was applied. In Table 
4.9 and Table 4.10 the results obtained from the LVRM inversion are shown, together with 
the constraints enforced on the system. The values of D[3,2], D90/D10 and surface area 
calculated through the inversion and the corresponding reference ones are indicated with a # 
superscript in Table 4.10. 

Table 4.9. Desired product quality constraints ( DESy ) and product quality 
corresponding to the calculated solution ( NEWŷ ). 

 LOD 
(%) 

Overisize 
(%) 

∆Flodex 
(mm) 

∆Compactability 
(kPa/MPa) 

D[3,2] 
(µm) D90/D10 Growth 

ratio 
DESy  ≥ 2 ≤ 15 > 0 - ≥ 140 ≤ 12 ≥ 3 
NEWŷ  2.2 15 6.41 -0.46 140 10.4 6.4 

Table 4.10. Constraints for the input material variables ( REALx ) and input 
conditions calculated through the inversion of the model ( NEWx ). 

 

H2O 
Solubility 
(mg/ml) 

Contact 
Angle 

(°) 

H2O holding 
capacity 
(wt. %) 

D[3,2] 
(µm) D90/D10 

Surface 
Area 

(m2/g) 

Pore 
Volume 
(cm3/g) 

SPEx 

REALx  0.1 73 10.97 124# 4.6# 1.19# 2.95E-3 0.795 
NEWx  0.1 73 10.97 55# 14.4# 0.82# 2.95E-3 0.751 

# indicates an input whose value was not assigned as a constraint in the optimization procedure (i.e. a variable 
calculated by model inversion) 

 
From Table 4.9 it can be seen that all the constraints enforced on DESy  are fulfilled by NEWŷ , 
which represents the quality corresponding (through the model) to the calculated solution 

NEWx . From Table 4.10 it can be seen that the inversion has identified the values of the PSD 
variables and of the surface area for Avicel PH200 that are needed to obtain a product with 
the desired quality. It can be noted some difference with the real Avicel PH200 values in 
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REALx , even if the values of NEWSPEx
 is similar to that of the SPE  of REALx  

( 218.1SPE lim ,95% =X ). This is caused by the soft constraint on 2T  in Eq.(4.4), which let the 
procedure find a solution at a minimum distance from the origin of the model space. The 2T  
of the optimization solution is in fact found to be equal to 1.310, while the 2T  of the real 
input variable projections is equal to 3.368. This provides a conservative approach to the 
inversion, in order to limit the distance from the historical knowledge and the possibility of 
extrapolations. However, if the desired quality is found to be inside the historical confidence 
limits, the soft constraints on 2T  could be relaxed. For example, Table 4.11 reports the 
Mahalanobis distances (indicated as 

M
⋅ ) between the scores of the solution obtained through 

the optimization problem t̂ , the real input material variable projections REALt̂  and the real 
quality projections DESt̂ , in the case the soft constraint (SC) on 2T  is considered or not in the 
Avicel PH200 model inversion problem. 

Table 4.11. Mahalanobis distances between the projections of the 
optimization solution ( t̂ ), of the real Avicel PH200 quality ( DESt̂ ) and of the 
real input material variables ( REALt̂ ) considering or not the soft constraint on 
T2 in the problem formulation. 

 
M

REALˆˆ tt −  
M

DESˆˆ tt −  
M

REALDES ˆˆ tt −  

SC on T2 0.727 0.590 0.417 
no SC on T2 0.259 0.357 0.417 

 
In the first case, it can be seen that in order to limit the distance of the solution from the 
model space origin, the optimization finds a solution having a distance from the real granule 
quality (

M

DESˆˆ tt − ) and from the real input material variable projections (
M

REALˆˆ tt − ) greater 
than the distance between them (

M

REALDES ˆˆ tt − ). In the second case, if no SC is considered 
for 2T  it can be seen that the optimization solution is closer to both REALt̂  and DESt̂  than in the 
case considering the SC on T2. Moreover, in this case t̂  is closer than DESt̂  to REALt̂ , as 
happened in the results of Table 4.8, as the equality constraints on NEWx  pull more the 
solution toward REALx . 
 
Finally it must be underlined that the solutions from the LVRM inversion should not be taken 
as absolute, but the validation through the execution of the suggested experiment is highly 
recommended, to physically verify the goodness of the procedure, and to better calibrate the 
model around the design space regions of interest, in order to obtain better estimates from the 
inversion. The general framework should therefore be applied iteratively: after the first 
inversion, the results should be validated through the experiments, and the data from the 
experiments added to the historical database, with which the model should be rebuilt (locally 
weighting the data) and re-inverted, until an acceptable convergence between the experiments 
and the LVRM inversion solution is reached. 
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4.4 Exploiting historical data to design new product quality profiles 
As seen in the previous sections, LVRM inversion is built on an optimization framework 
aiming at identifying a solution (in terms of score vector t̂  or input variables set NEWx ) for 
which the difference between the desired set of output variables (i.e. product properties) DESy  
and the one estimated through model inversion NEWŷ  is minimum. As can be seen from the 
problem formulations in Eqs.(4.2)-(4.4), this can be achieved by setting soft constraints for 

NEWŷ  in the formulation of the objective function using ad-hoc weights. 
Assigning soft constraints in the objective function offers the advantage that the equality 
constraints specified in DESy  do not necessarily lie in the model sub-space to find a solution to 
the optimization. Otherwise stated, the optimal solution NEWŷ  would differ from the desired 
one in proportion to the orthogonal distance between the assigned values of DESy  and its 
projection onto the model hyperplane of the LVs. This may become an issue when the end 
customer assigns specific values to some of the elements of DESy  or only slight variations are 
allowed; in this case, it is necessary to iterate between the customer requirements and a 
feasible DESy  complying with the model. Furthermore, there is the inherent need for the user 
to define weights for each of the terms of the objective function and for each of the elements 
in NEWx  and DESy . Soft constraints add also additional degrees of freedom to the optimizer, 
thus making the optimization exercise harder. 
Mathematically, the alternative is to set hard constraints for the elements in NEWŷ , by forcing 
them to be equal to the ones in DESy . The establishment of hard equality constraints reduces 
the number of iterations in the application of the LVRM inversion procedure to support the 
design problem, since, once the solution is found, there is no discrepancy between the 
obtained and the desired values of the response. Moreover, the problem is easier to solve for 
the optimizer from a numerical point of view. The downside of using hard constraints in the 
LVRM inversion problem is that the set of constraints given for DESy  must be coherent with 
the covariance structure of the original matrices used to build the model. In fact, if hard 
constraints were used, there is the possibility that the assigned values of DESy  do not lie on the 
model hyperplane. In this case, the optimization step may fail due to the possible infeasibility 
of the hard constraints, since it may be numerically impossible to obtain the desired values for 
the elements of DESy  and simultaneously satisfy the covariance structure described by the 
model. 
In this Section, the above-mentioned challenges are addressed by proposing a structured 
approach to guide the selection of a target attribute profile ( DESy ) with the same covariance 
structure as the matrix of historical response variables in Y used to build the model. Given 
such a vector for DESy , it is then possible to use hard rather than soft constraints into the 
optimization formulation for the LVRM inversion, allowing a product developer to achieve 
the desired values for as many elements of the desired product profile DESy  as possible. 
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4.4.1 On the reconstruction of the product target attribute profile 

As described in Section 4.2.1, a metric that can be used to quantify the distance of DESy  from 
the LVRM space is the squared prediction error ( DESSPEy ). In principle, it would be desired 
that 0SPE DES ≈y  so that the hard constraint tqmmm yy == DESDES ˆ  for the m-th variable specified 
for DESy  can be established, where mq  represents the m-th row of the Q  matrix. In order for 

DESSPEy  to be approximately zero, DESŷ  (namely a reconstruction of DESy  through the model) 
should be used instead of DESy  for the model inversion. Two alternatives can then be 
considered. In the first case, DESŷ  could be estimated by directly projecting and reconstructing 

DESy  through the model. This strategy was applied in Section 4.4.2 and Section 4.4.3, where 
the PCA model on Y was used to reconstruct DESy  in order to discard the (possible) 
uncertainties in the quality variables, which are not handled in the presented model inversion 
framework. 
However, the reconstruction DESŷ  can be very different from the desired product quality set 

DESy , despite being its best reconstruction onto the model space (minimum distance from 
DESy ). In fact, none of the product quality variables in DESŷ  will have the same value as that 

originally specified in DESy , thus giving a solution NEWŷ  that may be significantly different 
from DESy .  
Since the interest is to satisfy the constraints as closely as possible for the desired values of 
the elements of DESy , the second alternative is to force some of the elements of DESŷ  to be 
equal to those assigned in DESy , while estimating a proper value for the others (e.g. the 
conditional mean). 
In the following sections two different strategies for the selection of DESŷ  are proposed. The 
strategies differ according to the way in which the specifications for the elements in DESy  
(namely, the equality constraints) are managed. In the first approach, one of the elements of 

DESy  is assigned at a time, while the other elements are calculated through the model using a 
direct model inversion approach in order to obtain DESŷ  belonging to the model space. In the 
second approach, DESŷ  is calculated by assigning the largest number of elements of DESy  still 
leading to obtain a DESŷ  within the model space; the number and type of the elements are 
selected according to an optimal criterion. In both approaches it is assumed that the values for 
all the M elements of DESy  have been assigned by the user, but the methods can be easily 
applied even if ML <  elements have been specified. 
An issue, however, arises on which model to use to project and reconstruct DESŷ . In general, 
the covariance structure of the historical data can be optimally described by a PCA model on 
the historical product dataset Y or by the Q  loadings of the PLS model between X and Y 
(Chapter 2, Section 2.1.2). Thus DESŷ  could feasibly be reconstructed either exploiting the 
PCA or the PLS model loadings. However, the covariance structure described by the PCA 
model on Y could potentially not be as the one described by the Q  loadings of the PLS 
model, given the different objectives of the two techniques (see Chapter 2). 
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Given that the objective of the proposed procedures is to allow the use of a hard constraint for 
DESy  in the optimization formulation of the LVRM inversion problem, the reconstruction of 
DESŷ  has been based on the Q  loadings of the PLS model. The proposed methodologies can 

however be applied with no modifications to the case in which the PCA loadings are used to 
reconstruct DESŷ . Further details on this issue are provided in Appendix C. 

4.4.1.1 Theoretical considerations 
Let us consider the vector of the desired product profile DESy  autoscaled according to the 
mean and the standard deviation of the columns in the historical data of product properties 
(Y) used to build the model. Although the method outlined in the subsequent section (Method 
1; Section 4.4.1.2) is proposed to provide an estimate of the 1−M  free elements of DESy , 
given an equality constraint enforced on each i-th element DES

iy  of DESy , it is reasonable to 
think that such an estimate is uniquely defined only if the 1−M  free elements of DESy  have a 
strong correlation with the i-th that is being assigned. This situation would imply that the 
effective rank of Y is one (only one LV is necessary to represent Y) and hence the 
reconstruction of DESŷ  based on one element is reasonable. 
However, if the effective rank of Y is of higher order, assigning the value of the i-th element 
of DESy  would create an induced null space where multiple values of t  can provide the same 
predicted value for DES

iy  while providing multiple possible values for the M-1 free elements of 
DESy , depending on the correlation structure of Y. This artificial null space will change 

depending on what element of DESy  is being assigned and can be explicitly determined by the 
linear system of equations Qty =DESˆ  represented by: 
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     , (4.6) 

 
being amq ,  in Eq.(4.6) the element on the i-th row and j-th column of the Q  matrix, and at  the 
a-th element of the column vector t , with Mm ,...,1=  and Aa ,...,1= . For illustrative 
purposes, consider four scenarios: 
a) the variables of Y are completely independent (Y is full rank) and each variable is 

represented by one LV; 
b) Y is full rank, but the variables are explained in groups by different LVs; 
c) Y is rank deficient and correlation is captured in A components, where MA < ; 
d) Y is rank deficient and correlation is captured in A components, where MA ≤ , but 

)(rank Y>A . 
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The appearance of these induced null spaces is obvious in case a), where the right hand of 
Eq.(4.6) is reduced to the main diagonal elements (Eq.(4.7)). If an equality constraint is 
applied to one of the elements of DESy , the rest of the equations define the available null space 
in which the user can pick any value of the free scores. 

 

AAM tqMy
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DES
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DES
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=

=
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=



     . (4.7) 

 
Scenario b) would imply that there are as many independent directions of variability in Y as 
columns in it; however, each direction of change affects multiple variables. Consider the 
scenario of a three dimensional space with three LVs such that the representative loadings 
across all LVs are as in Eq.(4.8). Given the below situation and a constraint placed on the first 
element of DESy , one could isolate 1t  from the first row and replace it into the third row to end 
with a system of two equations with four unknowns ( 2t , 3t , )2(ˆ DESy  and )3(ˆ DESy ). This system 
represents the two dimensional induced null space where any solution chosen for 2t  or 3t  can 
be used to estimate 1t  and satisfy the equality condition for the first element of DESy  while 
also keeping the vector DESŷ  in the latent space. 
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In scenario c), the number of LVs is lower than the number of variables in Y and not all 
variables are represented in all latent spaces (e.g., Eq.(4.9)). In such case, a hard constraint 
enforced on the first element will assign the value of the fourth and will result in a one 
dimensional induced null space where the user can choose any value of 1t  (which in turn 
defines the values of the second and third element of DESŷ ). 
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Finally, consider scenario d). In this case the number of LVs is lower than the number of 
variables in Y, however it is greater than the effective rank of Y. As it was shown in Chapter 
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2 (Section 2.2), this is a common situation when building a PLS model between two matrices 
X and Y, and ( ) )(rankrank YX > . In these cases, if the PLS model is built with )(rank Y=A  
LVs, a null space due to the different matrix rank is generated, which gives additional degrees 
of freedom in the estimation of the score vector t , in addition to the induced null spaces 
which can generate in situations similar to those described above. For example, assume the 
same case as in Eq. (4.9) in which the Y space is four-dimensional and 2)(rank =Y , but 
consider that three LVs were chosen to build the PLS model, as they were needed to represent 
adequately the X space (Eq.(4.10)). In this case, a hard constraint imposed on the first element 
will result in the estimation of 2t , but the user can choose any value for 1t  and 3t . The system 
represents a two dimensional null space, which however is formed by the combination of a 
one-dimensional induced null space and the PLS null space due to the differences in the ranks 
of X and Y. 
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Note that the case presented in scenario d) (Eq.(4.10)) could only occur when DESŷ  is 
reconstructed through the PLS Q  loadings, differently from the situations described in the 
previous scenarios which are valid also in the cases in which DESŷ  is reconstructed based on 
the PCA loadings (Appendix C). 
In practice, it is common to have only desirable ranges for some quality attributes of the 
product while having specific assigned conditions for other quality descriptors. In the 
following, methodologies are proposed to handle the free elements of DESy  as missing data for 
the sake of simplicity and to expedite the decision of a vector of quality properties that will 
result in the target overall performance for a new product. Other researchers have already 
presented and studied the behavior of the analytical estimators of missing data methods and 
have already discussed whether the expected predicted value for the missing elements are 
close to the unconditional mean, the conditional mean, the least Mahalanobis distance or the 
least SPE (Nelson et al., 1996; Arteaga and Ferrer, 2002). From the perspective of this 
application, similar approaches are used here as a shortcut to the construction of potential 
vectors representing the target quality profile for a product. The discussion on the induced 
null space is presented due to the obvious reaction towards estimating the majority of the 

DESŷ  vectors based on one element (in the worst of the cases, they will be nothing but the 
unconditional means). In other words, the presented methods offer a simple way to appreciate 
the tradeoffs of assigning one element of the quality profile versus another one, as discussed 
in the following sections. 
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4.4.1.2 Method 1: assigning one quality variable at a time 
In the first method, the selected product quality set DESŷ  is calculated imposing that, for the 
m-th element of DESŷ , )DES()DES(ˆ mm yy = , while the values of the other elements in DESŷ  are 
assumed to be missing. 
Several approaches have been proposed to deal with missing data when using multivariate 
statistical techniques like PCA or PLS, especially in multivariate statistical process control or 
process modeling applications (Nelson et al., 1996; Arteaga and Ferrer, 2002). In all these 
contributions the objective was to use the model to estimate the scores corresponding to a new 
sample presented to the model characterized by missing measurements in the input data (e.g., 
in the regressor side, if a PLS model is considered). Differently, in this application, in order to 
reconstruct the product quality profile, the measurements referred to the response set DESŷ  are 
considered as missing, thus using the model inversion to reconstruct them on the basis of the 
available fixed values. The proposed method exploits the sub-model constituted by the PLS 
Q  loadings to reconstruct the new product target profile DESŷ  through a direct inversion of 
the PLS model (Eq.(2.57)). 
For each variable m, the proposed procedure aims at estimating the scores )(ˆ mt  of )( DESˆ my  on 
the basis of the m-th element of  DESy  ( )( DES my ) which is assigned, by projecting it back to the 
model plane through a direct inversion of the model: 

 

( ) )(DEST)(
1

)(T )()(ˆ mmmmm yQQQt
−

=      , (4.11) 
 

where )(mQ  is the sub-matrix of the loadings Q  in which only the [ ]A×1  row of Q  
corresponding to the element assigned in )( DES my  is considered. 
This method is applied to all the M variables specified for DESy , giving then in output a matrix 

TDESŶ , whose columns are the M different reconstructions for the product quality )( DESˆ my  
obtained assigning in turn each element m. The procedure goes through the following steps: 
1. Assign the value of the m-th element of )( DESˆ my  in order for it to be equal to the 

corresponding element in DESy  ( )( DES)( DESˆ mm yy = ), considering the other elements in 
)( DESˆ my  as missing data. 

2. Estimate the score vector )(ˆ mt  corresponding to )( DESˆ my  through the direct model inversion 
in Eq.(4.11). 

3. Reconstruct )( DESˆ my  from )(ˆ mt  and the Q  loadings of the PLS model and store it in the 
matrix TDESŶ : 

 
)()(DES ˆˆ mm tQy =      . (4.12) 

 
4. Assign the next desired product property, until all the M properties in DESy  have been 

considered. 
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Thus, from the different suggestions for the new product quality set )( DESˆ my , the user can have 
an idea of the mutual variation of the variables according to the historical knowledge, and 
select the combination involving the most interesting product property. 
In some cases, reconstructing )( DESˆ my  through the direct inversion of the model (Eq.(4.11)) 
may lead to an unfeasible solution clashing against the physical limits some of the product 
quality variables may have. If that occurs, additional flexibility to the procedure described for 
Method 1 may be added by substituting the step 2 and 3 of the above procedure (i.e. Eq.(4.11) 
and Eq.(4.12)) with the optimization problem described in the next section (Eq.(4.13)). That 
will be better clarified when discussing the case study results in Section 4.4.2.1. 

4.4.1.3 Method 2: assigning more than one quality variables 
The second proposed method is based on an approach that is somehow dual to Method 1. The 
method starts from the originally defined product quality vector DESy , and uses an iterative 
procedure to progressively find the assigned variables in DESy  that contribute the most to the 

DESSPEy  value, and to relax the corresponding equality constraints until a new estimated 
desired product quality NEWy  is obtained that is as close as possible to the model space. Let us 
assume that the variables in DESy  are completely (or for the most part) assigned (all equality 
constraints) and let us define a (small) threshold ε  setting the acceptability limit for the value 
of NEWSPEy

. A general schematic of the procedure is reported in Figure 4.5. After setting 
NEW DES=y y , at each iteration the procedure verifies if the desired set NEWy  belongs to the 

model space, by calculating NEWSPE
y

 and comparing it to ε . If this is not verified, the 
contributions to NEWSPE

y
 are calculated according to Eq.(2.20) (Chapter 2, Section 2.1.1.3). 

The element in NEWy  with the highest contribution to NEWSPE
y

 is selected and relaxed. An 
optimization problem is then solved to update the design set NEWy : 
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where the equality constraint DESNEW

mm yy =  is set for all the elements in DESy , except the 
relaxed ones. The meaning of the other symbols is the same as in Eq.(4.2). 
From the optimization problem, a new set NEWy  representing the new estimated target quality 
profile is obtained, which is again assessed against threshold ε . The procedure of 
progressively relaxing the equality constraints initially specified for the elements of DESy  is 
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repeated until NEWSPE
y

 is found below the given threshold ε . Then, a new product quality set 
NEWy  (= DESŷ ) is obtained, which represents the best compromise between the set of the target 

quality profile initially defined by the user ( DESy ) and the model requirements.  
Conversely, if after relaxing all the equality constraints in DESy , NEWSPEy

>ε  still holds, then 
the problem is unfeasible and a revision on the constraints specified in Eq.(4.13) should be 
considered. 

Find variable most 
contributing to

BEGIN

DESNEW yy =

ε>NEWSPE y END

Solve the optimization 
problem (13) to find the new 

set yNEW

YES

NO

NEWSPE y

 
Figure 4.5. Schematic of the algorithm implemented for Method 2. 

The second term of the objective function in Eq.(4.13) represents the Hotelling’s T2 of the 
solution. This term is added to the objective function to consider the cases in which an 
induced null space is present due to the structure of the loadings Q . In these cases, the null 
space can be exploited to move the solution along it, in order to find a new set NEWy  that 
belongs to the model space, but at the same time is inside (or close to) the range of the 
properties of the historical products (thus avoiding extrapolated solutions). To this end, 0≠g  
and reliably 1<<g  in Eq.(4.13), in order to give more importance in the objective function to 

NEWSPEy  rather than to the Hotelling’s T2. In the case the null space is due to the differences in 
the ranks of the X and Y matrices (namely, the Q  loading matrix is redundant), g  can be set 
to zero, since the Hotelling’s T2 of the solution can be considered in the subsequent PLS 
inversion problem, for the estimation of the regressors which provide the desired responses 

NEWy , by applying one of the previously proposed scenarios in Figure 4.2. 
Finally, note that the solution of Method 2 coincides with that of Method 1 (namely, the direct 
inversion of the model) if an equality constraint for only one element of DESy  is assigned in 
Eq.(4.13), 0=g  and no inequality constraints or boundaries are present in the inversion 
problem. 
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4.4.2 Case study: defining the quality profile for a wet-granulated product 

The proposed methodologies are applied to a particle engineering problem to design the 
quality profile of a wet-granulated product. The case study, the available datasets and the 
considered PLS model are the same as described in Section 4.3. 
For the aims of this study, it is assumed that it is required to manufacture a granulated product 
with the characteristics DESy  reported in Table 4.12. Note that these data do not correspond to 
a real product, but in general they represent an example of the combination of desirable 
properties for a wet granule. 

Table 4.12. Desired product properties DESy  for a wet-granulated product. 

 LOD 
(%) 

Oversize 
(%) 

∆Flodex 
(mm) 

∆Compactability 
(KPa/MPa) 

D[3,2] 
(µm) D90/D10 Growth 

ratio 
DESy  3 0 20 5 400 2.5 8 

 
Before proceeding with any inversion, it must be ensured that the model is able to adequately 
describe the desired product quality DESy  in Table 4.12. DESy  is then projected onto the latent 
space of the historical samples in Y. Figure 4.6 reports the values of the SPE versus the values 
of the Hotelling’s 2T  for the historical samples (black dots), together with the relevant 95% 
(red short-dashed lines) and 99% (blue dashed lines) confidence limits. The squared dot () 
represents the values of 2

DESyT  and DESSPEy . As it can be seen, even if 2
DESyT  is inside the 95% 

(= 10.97) confidence limit, meaning that the values specified in DESy  are not far from the 
mean of the historical values, DESSPEy  is above the 95% relevant limit (= 5.75), meaning that 
the historical correlation structure is not valid for DESy . Thus, the model is not really 
appropriate in representing DESy  due to the high model mismatch, and it is not recommended 
to perform the inversion with DESy . 
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SP
E

T2  
Figure 4.6. Plot of SPE versus T2 values for the historical products in Y () and the new 
desired product quality set yDES (). The lines represent respectively the 95% (short-
dashed red) and 99% (dashed blue) confidence limits. 



Chapter 4 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

128 

The methods previously described can then be applied to exploit the historical covariance 
structure of the data in order to give suggestions on possible new product properties sets DESŷ , 
which can be feasibly used for the model inversion. 

4.4.2.1 Method 1: results 
In Table 4.13 the results obtained after applying Method 1 using the proposed direct inversion 
approach are reported. Each row represents a vector DESŷ  suggested by the model, obtained 
fixing one at a time each one of the 7 properties of DESy  in Table 4.12. The assigned 
properties for each of the 7 DESŷ  sets are those bold in brackets in Table 4.13, and coincide 
with the original values of DESy  in Table 4.12. In the two last columns of the table, the values 
of the 2T  and of the SPE  are also reported for each calculated set. 

Table 4.13. Method 1. New sets of product properties DESŷ  for a wet-
granulated product suggested on the basis of the historical data model. The 
bold values represent the assigned element in each set (the original values of 

DESy  are reported in brackets). The proposed approach has been used to 
calculate the others. T2 and SPE statistics are also given. 

 LOD 
(%) 

Oversize 
(%) 

∆Flodex 
(mm) 

∆Compactibility 
(KPa/MPa) 

D[3,2] 
(µm) D90/D10 Growth 

ratio T2 SPE 

(1) DESŷ  3 (3) 13.5 10.2 -0.58 137 8.7 12.2 0.90 ~ 0 
(2) DESŷ  2.6 0 (0) 11.2 0.22 68.4 15.0 11.7 1.00 0 
(3) DESŷ  1.4 22.9 20 (20) 1.47 147 12.3 30.4 1.33 0 
(4) DESŷ  -2.1 34.7 21.6 5.00 (5) 111 22.6 35.4 7.64 ~ 0 
(5) DESŷ  1.1 41.1 9.4 0.28 400 (400) 4.5 17.5 0.44 ~ 0 
(6) DESŷ  1.8 38.2 8.4 -0.49 411 2.5 (2.5) 15.1 0.54 ~ 0 
(7) DESŷ  1.8 21.1 6.3 0.03 166 9.6 8.0 (8) 0.35 ~ 0 

 
As it can be seen, for all the suggested new product quality sets DESŷ , the calculated values 
for the assigned elements of DESŷ  are equal to the corresponding equality constraint DESy  
(reported between paranthesis). Moreover, from the values of the SPE , the suggested variable 
combinations result to be all lying onto the model space. 
It is interesting to note that for each of the calculated sets DESŷ , the covariance structure of the 
historical samples in Y is optimally used in the proposed approach to estimate the new sets 

DESŷ , even if only one of the 7 variables is constrained in each case. Prior to such discussion, 
the reader is referred to Table 4.14, where the mean and standard deviation values of the 
variables in Y are provided for a clear comparison with the results of Table 4.13, and to 
Figure 4.7, which reports the loadings q (i.e. the columns of the Q  matrix) of the PLS model 
on the four considered LVs (see Table 4.4 for model diagnostics). The loadings have been 
standardized by 2

pv,yR  to get a better contrast and to allow for a “cross-component” analysis. 
The interpretation of these plots goes beyond the aims of this discussion and is reported in 
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Appendix A. Nonetheless, it is interesting to note that the analysis of these plots allows 
assessing the main driving forces, which explain the variability in the Y data most related to 
X, that are exploited by the proposed methodology for the selection of the new target product 
quality profiles DESŷ . 

Table 4.14. Mean and standard deviation (st. dev.) values for the properties 
of the wet granulated products in the historical database Y. 

 LOD 
(%) 

Oversize 
(%) 

∆Flodex 
(mm) 

∆Compactibility 
(KPa/MPa) 

D[3,2] 
(µm) D90/D10 Growth 

ratio 
mean 1.55 24.5 10.6 0.5 181 9.8 15.8 

st. dev. 1.41 29.1 9.6 1.9 410 13.1 15.1 
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Figure 4.7. Loadings Q of the PLS model on the X and Y datasets. 

Let us consider the case in which the percentage of oversize granules was assigned to 0 
( (2) DESŷ ), which is quite different from the historical mean in Table 4.14. From Figure 4.7, it 
can be seen that this variable is related to D[3,2] and inversely related to D90/D10 on LV1; 
furthermore, it is scarcely related to the other LVs. In fact, giving that in (2) DESŷ  the oversize 
percentage is lower than the historical mean, the suggested set is characterized by a low value 
of D[3,2] and a high value of D90/D10 (even if within one standard deviation as from the 
values in Table 4.14). The other variables are more similar to their unconditional mean (Table 
4.14), because they do not show a strong relation with the oversize percentage (Figure 4.7). 
This kind of analysis can be repeated for the other sets in Table 4.13. In particular, in the case 
of (4) DESŷ , a value of ∆Compactability out of the range of the historical product data was 
assigned. In this case, it can be observed that in order to obtain such a value of 
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∆Compactability, the product needs to exhibit a low and broad PSD, and higher-than-mean 
oversize percentage and ∆Flodex. Furthermore, a negative (and physically meaningless) value 
of loss on drying (LOD) is obtained. This can be explained because Method 1 does not allow 
the inclusion of physical boundaries for the variables and, as a consequence, unfeasible design 
outputs may be achieved sometimes (especially when extreme values are desired for some 
other variables). To account for this issue, as anticipated in the end of Section 4.4.1.2, the 
problem has been solved using the procedure described for Method 1 by substituting the 
direct model inversion to reconstruct (4) DESŷ  (Eq.(4.11) and Eq.(4.12)) with the optimization 
framework formalized in Eq.(4.13), which allows to bound the variables to physically sound 
values. In particular, the assigned value for ∆Compactability (∆Compactability = 5) has been 
set as a hard constraint for NEWy  in Eq.(4.13). 
Using an optimization framework in this case has also another advantage. By analyzing the 
loading plots in Figure 4.7, it can be seen that ∆Compactability is mainly described by the 
first two LVs (Figure 4.7), while it does not contribute significantly on the other LVs. This 
means that by assigning this property, it is possible to isolate the score on LV1 or on LV2, 
and to replace it for the reconstruction of the other variables (see Eq.(4.8) above). The scores 
on the other LVs can be selected independently, thus generating an induced null space, which 
intersects with the existing PLS model null space (Section 4.3.1). The soft constraint on the 
Hotelling’s T2 proposed in Eq.(4.13) allows for the optimizer to move the solution along this 
null space towards the origin of the latent space so as to find a solution that satisfies the given 
constraints in the range of the historical data.  
In Table 4.15 the solution obtained applying the procedure described for Method 1 by 
substituting the direct model inversion with the optimization framework in Eq.(4.13) is 
shown, when the equality constraint is set for ∆Compactability ( (4) DESŷ ). Physical boundaries 
were specified for LOD and oversize percentage which were assigned to vary between 0 and 
100, while D90/D10 and the growth ratio were set to be greater than 1. The solution is 
presented for the cases in which the soft constraint (SC) on the Hotelling’s T2 is considered 
( 410−=g ) or not ( 0=g ) in the optimization formulation. 

Table 4.15. Method 1. New sets of product properties calculated using the 
optimization framework in Eq.(4.13) instead of the direct model inversion in 
the case ∆Compactibility of the granulated product is assigned ( (4) DESŷ ), 
considering or not the soft constraints (SC) on T2. The bold values in 
brackets represent the values assigned to ∆Compactability. T2 and SPE 
statistics are also given. 

 LOD 
(%) 

Oversize 
(%) 

∆Flodex 
(mm) 

∆Compactability 
(KPa/MPa) 

D[3,2] 
(µm) D90/D10 Growth 

ratio T2 SPE 

No SC on T2 0 0 12.4 5 (5) 11 36.7 7.1 11.8 0 
SC on T2 0 0 28.5 5 (5) 22 31.5 37.5 8.4 1.8e-6 
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As can be seen, both the obtained solutions satisfy the equality constraint on ∆Compactibility 
but are completely different from (4) DESŷ  in Table 4.13, in particular with respect to LOD and 
oversize percentage, which are found to be at their relevant boundaries. Note that the 
Hotelling’s T2 statistic for the solution obtained without considering the soft constraint on T2 
is above the 95% historical confidence limit represented in Figure 3. Including the soft 
constraint on the Hotelling’s T2 aids the optimizer to find a solution closer to the origin of the 
model space (and thus to the historical product profiles), and approximately lying on the 
model space ( 610SPE DES

−≈y
, second row of Table 4.15).  

Two important considerations on the solution with the soft constraint on T2 should be 
remarked. First, it can be seen that the addition of the soft constraint into the objective 
function penalizes the minimization of DESSPE y , which is slightly different from zero. This 
confirms that the induced null space is actually a pseudo-null space, i.e. moving the solution 
along it (while keeping fixed ∆Compactability) does not ensure that the solution belong to the 
model space, but slight deviations may occur ( 0SPE DES ≠y ). As can be seen, the decrease in 
T2 due to the presence of the soft constraint is limited, as the boundaries specified for some of 
the variables do not allow moving the solution further towards the origin of the model space. 
Second, note that in general the largest differences between the two solutions reported in 
Table 4.15 are mainly due to the Growth Ratio and to ∆Flodex. As can be seen from the first 
two plots of Figure 4.7, these variables scarcely affect the first two LVs of the model, which 
instead are those that better describe ∆Compactability, while they are the most significant on 
the third LV. This means that they are the most important variables on the induced null space, 
namely those which undergo the highest variations by moving the solution along it. 

4.4.2.2 Method 2:results 
In Table 4.16 the results obtained from the application of Method 2 are shown in terms of 
suggested new product quality sets NEWy . The procedure has been applied specifying an 
additional constraint for ∆Compactability, which was asked to be greater than 3 kPa/MPa 
(which represents a limit condition considering the available historical dataset), while LOD 
and oversize percentage were assigned to vary between 0 and 100, and D90/D10 and the 
growth ratio were set to be greater than 1 (physical boundaries). Furthermore, with reference 
to Section 4.4.1.3, ε  was set to 10-6 in order to obtain a new product quality set NEWy  that 
feasibly lies onto the model space. Results are reported for two cases: in the first case the soft 
constraint on the Hotelling’s T2 in Eq.(4.13) was not considered (i.e., 0=g ), while in the 
second it was included ( 410−=g ). For both cases in Table 4.16, the values of NEWy  which 
according to the procedure can be kept equal to the ones specified in the original desired set 

DESy  are indicated with the # superscript. In the last two columns, the values of the 2T  and 
SPE  statistics for NEWy  are reported, as well. 
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Table 4.16. Method 2. New set of product properties for a wet-granulated 
product suggested on the basis of the historical data model. The values with 
the # superscript represent the variable values equal to the ones in DESy . T2 
and SPE statistics are also given. 

 LOD 
(%) 

Oversize 
(%) 

∆Flodex 
(mm) 

∆Compactibility 
(KPa/MPa) 

D[3,2] 
(µm) D90/D10 Growth 

ratio T2 SPE 

No SC on T2 3# 0# 20# 5.4 3 42.7 8# 49.9 0 
SC on T2 0.1 16.1 17.6 3 75 20.5 25.1 2.1 0 

 
As can be seen from the first row of Table 4.16 (no soft constraint on T2), four of the seven 
product properties are maintained equal to the ones specified in DESy , namely LOD, the 
percentage of oversize granules, ∆Flodex and the growth ratio, while the solution NEWy  can 
be considered lying onto the model space ( 0SPE NEW ≈y ). This means that the user can at most 
keep these values equal to the corresponding ones in DESy  to obtain a set NEWy  which belongs 
to the model space. Otherwise stated, to obtain a product with the 4 indicated values assigned, 
the values of the other properties have to be those reported in the first row of Table 4.16 for 
the product to adhere to the historical product property covariance structure. Indeed NEWy  
represents the best tradeoff between the original target quality profile DESy  and the model 
requirements. Note that the T2 value (49.9) indicates that an extrapolated solution above the T2 
confidence limits is eventually obtained (Figure 4.6). As stated above (Section 4.4.1.3), this 
may not be a problem since, when applying LVRM inversion according to the scenarios 
proposed in Figure 4.2, this allows moving the solution along the null space in order to limit 
extrapolations in the input variable space, even if the desired product profile is out of the 
range of the historical products. 
The procedure described in Method 2 considering a soft constraint in T2 was also applied. 
Note that, as discussed in Section 4.4.1.1, an induced null space (depending on the subset of 

DESy  being assigned) may be generated in this case, too. The second row of Table 4.16 shows 
the solution obtained considering the soft constraint on T2 in Eq.(4.13). As can be seen, none 
of the variables keeps its value equal to those specified in DESy . Moreover, note that 
inequality constraint for ∆Compactability is active, while the T2 of the solution is significantly 
decreased, compared to the previous case (2.1 versus 49.9). In practice, in order to keep the 
solution onto the model hyperplane by limiting the corresponding Hotelling’s T2 and by 
satisfying the provided constraint, the procedure has to relax all the equality constraints on 

DESy  by estimating a completely new product quality set NEWy , in which only the inequality 
constraint on ∆Compactibility is satisfied. 
To clarify the iterative procedure on which Method 2 is based, in Table 4.17 the estimations 
of the product profiles per iteration are reported together with the corresponding values of T2 
and SPE  for the first case presented in Table 4.16, in which the soft constraint on T2 is not 
considered. In Figure 4.8 the plots of the contributions of each variable to SPE  ( CONTSPE ) are 
shown for each iteration. In Table 4.17, the variables for which the corresponding constraint 
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is relaxed at each iteration are underlined, while those which the procedure keeps equal to the 
ones specified in the original desired set DESy  are indicated with the # superscript. From the 
combined analysis of the plots of Figure 4.8 and the results in Table 4.17, a deeper insight on 
the algorithmic procedure can be obtained. 

Table 4.17. Method 2. Estimations of the product profiles NEW y  obtained at 
each iteration of the procedure described in Section 4.4.1.3. 

 LOD 
(%) 

Oversize 
(%) 

∆Flodex 
(mm) 

∆Compactibilit
y 

(KPa/MPa) 

D[3,2] 
(µm) 

D90/D1
0 

Growth 
ratio T2 SPE 

)1(NEW y  3# 0# 20# 5# 400# 2.5# 8# 8.8 7.3 
)2(NEW y  3# 0# 20# 3 400# 2.5# 8# 3.0 4.4 
)3(NEW y  3# 0# 20# 3 29 2.5# 8# 6.7 2.9 
)4(NEW y  3# 0# 20# 5.4 3 42.7 8# 49.9 0 
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Figure 4.8. Method 2. Contribution plots obtained during the procedure iterations to 
calculate NEWy . (a) 1st iteration; (b) 2nd iteration; (c) 3rd iteration. 
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From the projection at the first iteration of DES)1(NEW yy =  onto the Q  loadings of the PLS 
model, the contributions )1(

CONTSPE  are calculated (Figure 4.8a). It can be observed that 
∆Compactability is the property most contributing to SPE . Therefore, the corresponding 
equality constraint is relaxed, and the optimization problem in Eq.(4.13) is solved to find the 
new set NEW y  ( )2(NEW y  in Table 4.17), in which the value of ∆Compactability satisfies the 
specified inequality constraint for it. It results that 4.4SPE (2)NEW =

y
, which is still above the 

threshold ε . In Figure 4.8b the contributions to (2)NEW SPE
y

 are reported ( )2(
CONTSPE ). It can be 

noted that the highest )2(
CONTSPE  is still due to ∆Compactability. However, the value of 

∆Compactability, whose equality constraint has already been relaxed, is kept fixed by the 
inequality constraint. Given that this inequality constraint cannot be relaxed due to the 
product requirements, in the next iteration, the optimization problem in Eq.(4.13) is solved 
relaxing the equality constraints on both ∆Compactability and D[3,2], which is the variable 
with the second highest contribution to (2)NEW SPE

y
. The new set )3(NEW y  (Table 4.17) presents 

)3(NEWSPE
y

= 2.9, still above ε ; )3(
CONTSPE  (Figure 4.8c) highlights that the model mismatch is 

mainly due to D90/D10. Accordingly, the optimization problem is solved again, relaxing the 
constraint on this variable, too. Finally, solution )4(NEW y  exhibits 0SPE )4(NEW ≈

y
 and thus it 

represents the optimal solution (first row of Table 4.16). 
By analyzing the iterative solution through Figure 4.8 and the values of SPE  at each iteration, 
it can be noted that in this case a solution inside the 95% SPE  confidence limit (Figure 4.6) is 
obtained simply relaxing the equality constraint on ∆Compactibility ( )2(NEW y  in Table 4.17). 
The procedure could therefore have stopped at the first iteration. However, to allow for the 
inclusion of the hard constraints for DESŷ  in the LVRM inversion procedures (namely 

Qty =DESˆ ), the methods were asked to find a solution very close to the model space ( 0→ε ). 
Note that in general Method 1 and Method 2 return different information. The first method 
provides a general perspective on how the assignment of a product specification affects the 
other variables according to the historical knowledge. The second method provides an optimal 
solution as a tradeoff between the desired product quality variables and the need to fulfill the 
relationships between product variables obtained from the historical data and represented by 
the Q  loadings of the PLS model. However, it must be noted that Method 1 is more 
susceptible to uncertainty due to the calculation of the inverse of the )(T )( ii QQ  matrix. 
Depending on the variable which is assigned for DESŷ  or on the number of LVs selected to 
build the PLS model, matrix )(T )( ii QQ  may be ill-conditioned due to variable correlation. The 
ill-conditioning and the presence of noise in the measurements, which masks the effective 
rank of the Y space, could result in poor estimations of the solution scores using Eq.(4.11). 
For this reason, as shown in Section 4.4.2.1, Method 1 can be applied by substituting the 
direct inversion of the model with an optimization framework, which allows moving the 
solution along the (induced) null space to find the minimum Mahalanobis distance (i.e. with 
minimum Hotelling’s T2) solution (García-Muñoz et al., 2006 and 2008). 
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Finally consider that it may occur that none of the Methods returns a solution if the design of 
a product with very different properties from the ones in historical dataset is required. 

4.5 Conclusions 
In this Chapter a general framework to perform LVRM inversion has been proposed, in which 
the most appropriate problem is solved depending on the objectives and the constraints the 
user may have in the product/process development activity. The framework identifies 4 
different inversion approaches depending on the type of constraints the desired product 
quality variables have to fulfill, which can be equality and/or inequality constraints. Each 
approach gives rise to a different constrained optimization problem. Namely, if no constraints 
exist for the input variables, the optimization is performed in the LVRM space and the 
solution will lie in that space. If constraints are specified for the input variables as well, the 
optimization procedure may be forced to find an extrapolated solution (namely a solution that 
does not belong to the LVRM space) to satisfy the given constraints. The proposed 
methodology has been successfully applied in a particle engineering problem for the design of 
the raw material properties in a high-shear wet granulation process, to obtain granules with 
specified quality characteristics in output. Three design cases, with different problem 
constraints and objectives, have been presented and discussed. 
The null space concept has been further investigated and it has been shown how it can be 
employed in the definition of the design space of a process under a QbD framework. Since the 
null space represents a subspace of the reduced LVRM space, there is the need to translate it 
into ranges for the design variables. Bi-dimensional plots have been used to identify the 
design variable combinations whose projections belong to the null space. 
Some important issues have also been addressed. First, it has been emphasized that the model 
should not only provide accurate enough predictions of the response, but it should also 
provide a reliable reconstruction for the regressors (especially for model inversion). To aid the 
component selection a new metric has been proposed (the P2 statistic). This metric can be 
obtained in a similar way the Q2 is obtained in a cross-validation exercise but removing and 
reconstructing the elements from the regressor set. 
Secondly, the goodness of the results obtained from an LVRM inversion exercise is affected 
by the goodness of the model in describing the empirical data used to build it. Not every input 
variable and response datasets can be used for LVRM building for inversion. In general, if the 
regressor dataset does not contain enough information to describe the variability in the 
response dataset, the lack of appropriate response variable fitting, which is quantified by the 
percentage of unexplained variance, will propagate in the inversion, increasing the 
uncertainties in the estimation of the solution. The robustness of the model inversion results 
strongly depends on these uncertainties, which affect the model parameter estimation. To 
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account for them, a strategy based on a jackknife approach has been proposed to estimate the 
confidence limits in the calculation of the null space and of the optimization solution. These 
provide a metric to understand the reliability of the solution. 
Thirdly, it must be noted that under certain circumstances the results from the LVRM 
inversion may not give acceptable solutions in the first iteration (the obtained quality may not 
be exactly on target). Under this occurrence, it would be required to refit the model including 
the results from the experiment carried out based on the first attempt model inversion 
solution, and then re-run the inversion. By iteratively repeating this procedure (modeling, 
inversion, experimentation), the solution obtained by inversion will converge to the desired 
product target profile. 
Finally, note that the basic assumption of the implemented LVRM inversion procedures is 
that the model is able to represent the desired quality for the product to be designed, to an 
acceptable level of uncertainty. In particular, in the case studies presented for LVRM 
inversion, it has been assumed that the desired quality adhered to the historical product 
covariance structure (i.e. 0SPE DES =y

). This could be achieved by reconstructing DESy  
according to the PCA model on Y or on the basis of the Q loadings of the PLS model. The 
different way of reconstruction changes the constraints for DESy  in the optimization problems 
from soft to hard. However, this reconstruction does not ensure that the desired output 
variables DESy  are obtained. A methodology has therefore been proposed to exploit the 
covariance structure of the historical data, in order to guide the selection of a target attribute 
profile ( DESy ), as a tradeoff between the model structure and the desired product 
characteristics. 
Two different procedures have been presented to this purpose. In the first one, elements of 

DESy  are assigned one at a time, and an approach based on model inversion of the model is 
used to estimate the other variables. In the second procedure, an algorithm is used to 
iteratively select and relax the constraints of the variables that are found to be most 
responsible for the model mismatch. An optimization problem is solved to calculate their 
values according to the loadings of the Y space. It has been demonstrated how in both these 
methods an induced null space may be generated depending on the assigned variables, in 
which different solutions, all satisfying the given constraints, can be found. 
The proposed approaches have shown their effectiveness in assessing the feasibility of a new 
product, and in suggesting a reliable and physically sound product quality profile for the 
considered wet granulation case study. These methods allow to not set any constraints in the 
LVRM inversion problem on the mismatch in representing the desired quality (i.e. on 

DESSPEy
) and to reduce the number of iterations in the application of the LVRM inversion 

procedure. In particular, the inclusion in the framework of constraints on the model mismatch 
for DESy  would imply to estimate and decompose the error in its different contributions (since 
these are typically well understood), namely the model mismatch, the measurement 
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uncertainties and any sample bias. These contributions to the quality variable uncertainties are 
usually sample-dependent and not easily identifiable. For these reasons, the way to handle 
them in the model inversion problem still remains an open issue for future research. 
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Chapter 5 

Latent variable model inversion for in 
silico product formulation*

In this Chapter, a methodology based on latent variable regression model (LVRM) inversion 
is proposed to aid the design of the formulation for pharmaceutical products, namely the 
selection of the best excipient types and amounts to mix with a given active pharmaceutical 
ingredient (API). The general framework presented in Chapter 4 is here extended to consider 
also constraints on the excipient selection and to account for different objectives the 
formulation problem may have (e.g., API dose maximization). The procedure is tested on an 
industrial case study to design the formulation for a proprietary API. Results obtained in silico 
are validated experimentally, demonstrating the effectiveness of the proposed methodology. A 
user-friendly interface has been developed to allow formulators to apply the proposed 
methodology, by assigning the desired objectives and constraints through dropdown menus. 

 

5.1 Introduction 
In the development of a drug product, the first important decision to take is the choice of the 
formulation, namely the selection of the appropriate excipients that are to be mixed with an 
active pharmaceutical ingredient (API) into the final drug product. This choice is driven by 
constraints mainly related to the safety, the efficacy but also the processability of the drug 
product (Hamad et al., 2010). 
In general, if a model describing the mixture properties from the properties of the excipients 
and the APIs involved in the formulation were available, it could be used to aid the selection 
of the best materials that ensure to obtain a mixture of desired properties. To this end, the 
model itself can act as a constraint to an optimization problem aiming at 
maximizing/minimizing an objective function, which may represent a product performance 
index or a cost function quantifying the difference between model predictions and desired 
product quality. The optimization will then give as outputs the estimates of the best raw 

                                                 
*Tomba E., M. Barolo and S. García-Muñoz (2013). In-silico product formulation design through latent variable model 
inversion. In preparation. 
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material types and amounts to be used in order to achieve the desired mixture (or blend) 
properties (Smith and Ierapetritou, 2010). 
The use of deterministic models to describe these relationships would always be desirable, as 
deterministic models give a transparent representation of the physical phenomena acting on 
the system, explaining them from first principles. In the field of mixture modeling, some 
examples have been reported for the semiconductor industry (Kumar, 2003) and for 
polymeric blend design (Bernardo et al., 1996). The development of such models requires a 
detailed knowledge and understanding of the interactions between the materials entering the 
formulation and of their implications for the product properties. This may be burdensome to 
achieve in pharmaceutical product design, due to the variety of products and raw materials of 
different physical/chemical characteristics that may enter in a drug product formulation (e.g., 
APIs, fillers, binders, disintegrants, lubricants), which can be difficult to manage in a 
deterministic modeling framework. For these reasons, formulators have often resorted to 
building models based on data obtained either from targeted experiments or from historical 
manufacturing databases. 
Mixture design of experiments (DoE) and response surface modeling techniques 
(Montgomery, 2005a) have been among the first systematic multivariate approaches used to 
assist the design of the formulations of pharmaceutical products (Campisi et al., 1998). Due to 
the nature of the pharmaceutical formulations, the use of DoE techniques in the early stages of 
pharmaceutical development often requires performing a large number of experiments, as a 
large number of candidate materials and permutations have to be considered. To address this 
issue, multivariate design of experiments has been proposed (Wold et al., 1986). This 
approach combines DoE techniques with the multivariate analysis of databases of the 
available raw materials (e.g., through PCA), to select the most suitable for the experimental 
design. As an example, Gabrielsson et al. (2003) used a multivariate design to evaluate in a 
systematic way a large number of candidate excipients to include in a formulation, based on 
their similarity assessed through a PCA of their characterization data. Latent variable 
regression models (LVRMs) based on PLS were then built on the data obtained from the 
experiments and used to test new formulations in order to obtain a product of desired 
disintegration time and crushing strength (Gabrielsson et al., 2004). 
Indeed, one of the important characteristics a data-based model should have to support 
product formulation design, is the ability in accurately predicting the mixture properties based 
on the raw materials data. Many efforts have been produced by researchers in finding 
methods able to give models with good prediction performances, often regardless of the 
model structure. For example, several contributions on the use of black box models to support 
the design of pharmaceutical formulations have been proposed (Rowe and Roberts, 1998). 
Learning techniques like neural networks (Agatonovic-Kustrin and Beresford, 2000; 
Takayama et al., 2003; Sun et al., 2003), neuro-fuzzy logic (Abraham et al., 2007; Landín et 
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al., 2009), genetic programming (Barmpalexis et al., 2011) and expert systems (Shao et al., 
2007) have been applied to build models based on historical or DoE formulation data, and 
then used in an optimization framework to suggest the experiments to be performed for the 
design of the product formulation. Despite these tools are very attractive and the results are 
promising, most black box models suffer from the lack of transparency in understanding the 
mechanisms behind predictions. Model design is essentially based on the accuracy of 
predictions rather than on the optimization of the model complexity. As a consequence, black 
box models parameters are often difficult to interpret and may not provide a scientific 
understanding of the system being modeled. This conflicts with the QbD requirements, for 
which the ability to predict has to reflect a high degree of process understanding (FDA, 
2004c). 
Conversely, multivariate statistical methods like LVRMs combine the accuracy in prediction 
to a scientifically-sound understanding and interpretation of both model building procedure 
and model parameters, as was also shown in Chapter 3. In most of the contributions that used 
LVRMs to model mixture data, the model is however limited to describe the relationships 
between a matrix of regressors, including only the fractions of the raw materials in the tested 
formulations, and a response matrix, including the properties of the mixture. This type of 
analysis does not properly include in the model the physical/chemical properties of all the raw 
materials that could possibly be included in the final formulation. Muteki and MacGregor 
(2007b) addressed this issue by proposing an LV method called L-shaped PLS (LPLS), which 
includes in a unique LVRM framework the database of the physical/chemical characterization 
of all the available raw materials, the database on the fractions of each raw material in the 
historical formulations, and the properties of the obtained mixture. This modeling approach 
was then combined with LVM inversion techniques to successfully support the development 
of a new blend of rubbers (Muteki et al., 2006). 
Recently, García-Muñoz and Polizzi (2012) recognized that, despite its effectiveness, the 
approach proposed by Muteki and MacGregor (2007b) did not consider those situations in 
which the desired product is obtained by mixing materials of different nature or which 
underwent different characterization procedures, as typical for example of APIs and 
excipients in pharmaceutical formulations. To address this issue, the authors proposed a new 
approach in which they considered in a unique modeling framework datasets referring to 
materials of different nature (e.g., APIs and excipients) with the historical formulation and the 
properties data of the obtained mixtures. This method, called weighted-scores PLS (WSPLS; 
García-Muñoz and Polizzi, 2012), was applied for the prediction of the particle, powder and 
compact mechanical properties of pharmaceutical blends, starting from the raw materials 
properties and amounts, without resorting to extensive experimentation (Polizzi and García-
Muñoz, 2011). 
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In this Chapter, the LVRM strategy proposed by Polizzi and García-Muñoz (2011) (called 
blend prediction model) is used to perform in-silico a new drug product formulation design. 
The strategy is based on an optimization framework for LVRM inversion (based on the one 
proposed in Chapter 4; Figure 4.2) which, starting from a given API, returns as output the set 
of excipient type and amounts most suitable to reach a blend of desired powder, flow and 
mechanical properties. Since the formulation design problem may have different objectives 
and constraints (e.g., the maximization of the API dosage, the minimization of the tablet 
weight, the choice of excipients of a given family), the strategy is developed in such a way as 
to allow the user to specify several different types of constraints, both on the input variables 
(e.g., excipients families, type and ratio; the API dose) and on the output variables (the blend 
properties). The effectiveness of the proposed approach is tested experimentally in the 
development of a pharmaceutical blend for direct compression for an in-house API. 

5.2 Case study and methodology 

5.2.1 Available data 

The datasets used in this study are similar to those previously described in the work of Polizzi 
and García-Muñoz (2011). They were obtained from a wide database of physical properties of 
pharmaceutical powders, which includes individual excipients, APIs, formulated blends and 
granulations. As described in the original work, data on excipients (e.g., binders, fillers, 
disintegrants, lubricants), APIs and historical formulated blends were collected from the 
database and gathered in four different datasets, which were later used to build the model: 
• a dataset EXCX , including 45 physical properties and particle size distribution (PSD) 

measurements for 64 excipients (including disintegrants); 
• a dataset APIX , including 51 physical properties and PSD measurements for 118 APIs. 
• a dataset R  including the fractions of each considered raw material in 24 historical blended 

formulations (both active and inactive). This matrix can be seen as formed by and EXCR  
matrix of the fractions of each excipient, and a APIR  matrix of the fractions of each API in 
each individual formulation ( [ ]APIEXC RRR = ). 

• a vector MgStr  of the magnesium stearate fractions in the 24 historical formulations. The 
reason why the magnesium stearate fractions (that is a lubricant) are not considered in R  
will be explained later on. 

• a dataset Y , including 51 physical properties and the PSD measurements for the 24 
historical blends. 

These data are representative of the range of materials typically seen in solid dosage form 
development. The interested reader is referred to the original manuscript of Polizzi and 
García-Muñoz (2011) for the complete list of the measured material physical properties and 
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for details on the measurement procedures. It is important to note that not all the same 
properties have been measured for each raw material. Furthermore, even if some physical 
measured properties were the same for different materials (e.g., the PSD regimes), the testing 
method may not have been the same. In fact, all the APIs were tested using smaller (0.5 g, 

6138383 ′′×′′×′′ ) compacts compared to the excipients (5 g, 834343 ′′×′′×′′ ), thus causing 
some differences between the correlations among properties within the two distinct 
populations (Polizzi and García-Muñoz, 2011). This is the reason for which the WSPLS 
approach (García-Muñoz and Polizzi, 2012) has been proposed to model these data. 

Table 5.1. Families in which the excipients in the database are divided and 
number of excipients per family. 

Excipient families # of excipients per family 
Function  

Alkalizing 2 
Binder 2 
Buffering 1 
Disintegrant 5 
Filler 51 
Gum 1 
Lubricant 1 
Orally Disintegrating Tablet disintegrant (ODT) 2 
Stabilizer 1 
  

Mechanical behavior  
Brittle 30 
Duttile 27 
  

Main compound  
Calcium Carbonate (CaCo3) 4 
Calcium 7 
Calcium Phosphate (CaPho4) 2 
Calcium Silicate 1 
Hydrophilic Polymer Matrix (HPM) 4 
Hydroxy-Propyl-Methyl-Cellulose (HPMC) 3 
Lactose 14 
Lactose Anhydrous 11 
Lactose Hydrous 3 
Microcrystalline Cellulose (MCC) 8 
Polyethylene Oxide 2 
PolyVinylPyrrolidone 1 
Sodium 6 
Starches 2 
Sugars 13 

 
To assist the formulation design problem, the materials included in the excipient database 

EXCX  have been divided in “families” according to their function in the solid mixture, their 
mechanical behavior and their main chemical compound. In Table 5.1, the list of the 26 
identified excipient families is reported together with the number of excipients per family. In 
general, families representing the function of an excipient in the blend (e.g., filler, 
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disintegrant) include families of materials with different mechanical behavior (e.g., brittle, 
ductile), which in turn include families of materials based on different compounds (e.g., 
MCC, lactose). Accordingly, an excipient may belong to more than one family. 
This material categorization in families is not unique; nevertheless it is useful in the 
formulation design problem, as it helps to identify the materials that need to be considered for 
the formulation. The constraints and the level of knowledge the formulators may have, drive 
the selection of the families of excipients that can in turn narrow more or less significantly the 
range of candidate materials among which searching the most suitable ones for the desired 
formulation. This idea will be exploited later, in the implementation of the blend prediction 
model inversion for the in-silico formulation design. 

5.2.2 Blend prediction model 

The datasets described in the previous section were related through the WSPLS method 
(García-Muñoz and Polizzi, 2012), which allows to include mixture data involving materials 
of different nature and with different characteristics in a whole modeling framework. This 
results in a blend property prediction model, in which the relationships between the raw 
material properties and the final blend properties are mapped and understood. 
The application of the WSPLS technique (García-Muñoz and Polizzi, 2012) to build the blend 
prediction model is exemplified in Figure 5.1. The procedure goes through 3 main steps. First, 
two separate PCA models are built on the API ( APIX ) and excipient ( EXCX ) datasets, with the 
aim of describing the complex network of relationships (the correlation structure) between the 
API and the excipient properties using a few interpretable principal components (PCs). This 
allowed all materials to be positioned in a multivariate “design space” (Polizzi and García-
Muñoz, 2011). In this case 6=A  PCs have been found to be significant for each model. As 
mentioned above, the use of separate models is justified by the different correlation structure 
found among measured properties due to the difference in variables or to different testing 
methods employed. In the second step, the PCA scores of the excipients ( EXCT ) used in the 24 
historical formulations are weighted according to their fractions in the formulations ( EXCR ). A 
matrix EXC

WT  is obtained, whose rows are the sums of the weighted scores of each excipient 
entering each formulation. The same operation is performed for the API scores ( APIT ), by 
weighting them through their fractions in the historical formulations ( APIR ), thus giving the 
matrix API

WT  of the sums of the weighted API scores for each formulation. 
Eventually, the weighted scores matrices EXC

WT  and API
WT  are concatenated each other and with 

the vector MgStr  of the magnesium stearate fractions in the historical formulations 
( [ ]MgStAPI

W
EXC
WW   rTTT = ). The magnesium stearate fractions have been added in this case to 

account for the effect of the lubricant amount on the blend properties. Since this was the only 
lubricant used in the historical formulations, its physical properties have not been considered 
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in R  for the model building. Eventually, in the last step of the procedure, matrix WT  is 
related to the Y dataset of the historical blended formulation properties through a PLS model: 

 
XETPT += T

W  (5.1) 

YETQY += T  (5.2) 
*WTT W

PLS =      , (5.3) 
 

where the regressor matrix is the weighted scores matrix WT , while the meaning of the other 
symbols is the same as for a typical PLS model (Chapter 2, Section 2.1.2). For the PLS model 
design 6 LVs have been considered. 

PCA PCA

PLS

APIX

E X CT
EX CR A PIR

EXCX

EXC
WT API

WT Y
MgStr

WT

1st step

2nd step

3rd step

APIT

 
Figure 5.1. Schematic of the Weighted-Scores PLS procedure applied to the blend 
prediction model design. 

5.2.2 Blend prediction model inversion 

The blend prediction model described in the previous section can be used in a forward way to 
predict the properties of the blended mixture once the materials and their fractions (i.e. the 
product formulation) are known. However, in a pharmaceutical formulation design case study 
the interest is in determining the most suitable formulation for one or more given APIs in 
order to obtain a blend of desired properties. To solve this problem, a procedure to invert the 
blend prediction model is proposed. The rationale behind this procedure is shown in Figure 
5.2: once a set DESy  of desired blend properties has been established and the APIs have been 
specified, the PLS model linking the blend properties with the weighted scores of the input 
materials properties (3rd step in Figure 5.1) is inverted to find the weighted score vector 

[ ]MgStEXC
W

API
WW   rttt = . In Wt , API

Wt  includes the elements of Wt  related to the API, whereas 
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EXC
Wt  includes the elements of Wt  related to the excipients. From Wt , the magnesium stearate 

fraction MgSt r  can be directly determined (if not constrained). The weighting scores operation 
of the blend prediction model (2nd step in Figure 5.1) is then inverted to determine the API 
fraction(s) ( APIr ), and the excipient types and fractions ( EXCr ) to be mixed with the selected 
API/s in order to give the weighted score vector Wt . The selected excipient types and their 
fractions are represented by the gray boxes in Figure 5.2. 

DESy
PLS

model inversion
API
Wt EXC

Wt

MgStr

APIT

EXCT
Inversion of the 
weighting score 

procedure
Excipient types

Selected API/s

API/s fractionsA P Ir

E X Cr
Excipient fractions

Wt

 
Figure 5.2. Schematic of the blend prediction model inversion procedure. 

The blend prediction model inversion represented in Figure 5.2 would then require to perform 
a PLS model inversion and the weighting score operation inversion. As seen in Chapter 2 
(Section 2.2), from a mathematical point of view, the PLS model inversion could have infinite 
solutions (Jaeckle and MacGregor, 1998). Furthermore, there may exist an infinite number of 
combinations of raw materials and their fractions that can give the same weighted score 
vector Wt . An optimization approach is therefore needed to find the optimal combination of 
raw material types and fractions that satisfy the constraints provided for the blend properties, 
while adhering to the historical data covariance structure represented by the PLS model.  
Due to the large number of involved materials, the domain inside which the optimizer should 
search the optimal formulation can be very wide and may lead to unrealistic solutions if the 
problem is not correctly stated. Therefore, the following constraints have been considered for 
the implementation of the optimization framework; these can be easily adapted and modified 
as needed: 
1. the desired blend formulation is assumed to be made by one API (assigned by the user), 

two excipients of different families and one disintegrant, in addition to magnesium stearate 
as a lubricant. This reflects the composition of the historical formulations used to build the 
blend prediction model and is typical of direct compression blends.  
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2. Even if the blend prediction model returns the predictions for all the 51 blend physical 
properties considered in the model building phase, the interest in this case study is that the 
final blend meets the desired requirements for only a few core properties, which are 
considered most important in the formulation of blends for direct compression. These core 
properties, forming the set DESy  of the desired properties used for the model inversion 
(Figure 5.2), include BMID80 (which is a measure of the width of the blend PSD; Katdare 
and Chaubal, 2006), compression stress, tensile strength, brittle fracture index (BFI) and 
the flow function coefficient (FFC). Design specifications (i.e. the constraints for the model 
inversion optimization problem) are therefore assigned for each of these properties. 

3. Given that excipients in the database are divided in “families”, only one excipient per 
family can be selected by the procedure. This requires to implement some logical 
constraints to discard all the excipients in a family, once an excipient of that family has 
been selected. 

4. The inversion solution in terms of selected excipient types and fractions must satisfy the 
overall mass balance. This means that: 

 

1
1

MgStAPI)(EXC =++∑
=

NEXC

i

i rrr      , (5.4) 

 
where NEXC is the number of excipients included in the formulation, while )(EXC ir  is the 
fraction of the i-th excipient in the formulation. Namely, the sum of the material fractions 
in the formulation must be equal to one. 

On the basis of the above-mentioned remarks, an optimization framework to perform the 
blend prediction model inversion for formulation design has been implemented. The 
framework combines in a unique optimization problem the LVRM inversion strategies 
described in Chapter 4 (Section 4.2), with discrete variable constraints and mass balance 
equations, giving rise to a mixed-integer nonlinear programming (MINLP) problem (Quesada 
and Grossman, 1992), whose formal statement is discussed in Section 5.2.2.1. In addition to 
the formulation design, the framework enables to cope with a wide range of applications and 
constraints a formulator may encounter in a new formulation design problem; for example, it 
allows to determine or maximize in-silico the API dose in the new product formulation, or to 
minimize the blend total weight (with the aim of reducing the material consumption) or the 
final tablet weight. Therefore, in addition to the API that needs to be formulated, the 
following constraints need to be specified for the optimizer to find a solution: 
• The API dose, which can be assigned (equality constraint) or calculated by the procedure. 

In the latter case, a lower bound for the dose can be provided, or the procedure can 
determine the formulation with the maximum API dose. 
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• The blend (or tablet) total weight, which can be assigned (equality constraint) or calculated 
by the procedure. In the latter case, an upper bound (inequality constraint) can be provided 
for it or the procedure can minimize it. 

• The families within which the optimal excipients for the formulation (including 
disintegrants) should be searched. For each excipient family, upper boundaries (inequality 
constraints) can be set for the fraction of the selected excipient in the final blend. Moreover, 
initial guesses for each excipient type and fraction can be specified to aid the optimizer 
finding an optimal solution. If the selection of one or more excipients in the final 
formulation is fixed (e.g., for safety, processability or availability reasons), the mandatory 
excipient can be set as an equality constraint. 

• The magnesium stearate fraction in the final blended formulation MgSt r  (equality 
constraint). 

• The desired values for the (five) final blend properties. These can be assigned (equality 
constraints) or allowed to vary in assigned ranges (inequality constraints). 

In output, the framework returns the in-silico designed formulation for the given API, which, 
according to the model, ensures the achievement of the desired blend properties, together with 
their predictions and the calculated API dose and tablet weight (if not constrained). 

5.2.2.1 Problem statement 
The procedure for the blend prediction model inversion is based on the following MINLP 
formalization (Quesada and Grossmann, 1992). The objective function of the problem is: 

 

( ) ( )[ ]TOT
5

API
42

2
1

DESNEWTDESNEW
W

SPEˆˆmin mgmggTg ⋅+⋅+⋅+⋅+−− tt
yyΓyy    .(5.5) 

 
It is composed by different terms, according to the formulation problem that has to be solved. 
The optimization variable is represented by the score vector t  in the historical formulation 
latent space (i.e., in the latent space of the PLS part of the blend prediction model; Figure 
5.1). The first three terms of the objective function are the same terms of the objective 
function for Scenario 4 of the general framework presented in Chapter 4 (Eq.(4.4)), where Wt  
(the weighted score vector) represents the regressor set to be determined through the 
inversion. The fourth term represents the API dose ( APIm ), and the fifth one the tablet weight 
( TOTm ). These terms are weighted according to 3g  and 4g , and they appear in the objective 
function only if the optimization procedure is used to maximize the API dose in the 
formulation (for which 04 <g ) or minimize the final tablet weight. Otherwise 04 =g  and 

05 =g . 
The optimization problem is subject to several other constraints, which can be summarized as 
follows. 
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In Eqs.(5.6)-(5.8) the equations inherent to the PLS model part of the blend prediction model 
(see Figure 5.1) are reported. The meaning of the symbols is the same as for Eqs.(5.1)-(5.3). 

 
Qty =NEWˆ  (5.6) 

Ptt =W  (5.7) 

W
T* tWt =  (5.8) 

 
In Eqs.(5.9)-(5.10) the equations and constraints of the solution statistics 2T  and 

W
SPE t  are 

reported. In Eq.(5.9), at  is the a-th element of the score set t , which is composed by A  
elements corresponding to the number of LVs used to build the PLS model; 2

PLS
a

sT
 is the 

variance of the a-th column of the historical formulation score matrix ( T ). In Eq.(5.10), Wt̂  
is the reconstruction of the solution weighted scores through the model. As in Scenario 3 and 
Scenario 4 of the framework proposed in Chapter 4 (Eq.(4.3) and Eq.(4.4)), an inequality 
constraint is assigned to 

W
SPE t , which has to be lower than its 95% confidence limit 

( lim%95,W
SPET ), properly lowered by weight 3g . 
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lim%95,3 WW
SPESPE Tt ⋅≤ g  (5.11) 

 
In Eqs.(5.12)-(5.14) the equations for the calculation of the regressor set Wt  (the weighted 
score section of the blend prediction model, as represented in Figure 5.1) are reported. Wt  
(Eq.(5.12)) has already been described in Section 5.2.2. In Eq.(5.13), API

,W kt  is the k-th element 
of API

Wt , )(API
V

ir  is the volumetric fraction of the i-th API in the formulation while ),(API
PCA

kit  is the 
k-th score for the i-th API in the PCA model built on the API database, being APIPC  the 
number of PCs considered in the model and NAPI the total number of APIs in the historical 
database. In Eq.(5.14), EXC

,W tt  is the t-th element of EXC
Wt , )(EXC

V
sr  is the volumetric fraction of 

the s-th excipient in the formulation, while ),(EXC
PCA

tst  is the t-th score for the s-th excipient in the 
PCA model built on the excipient database, being EXCPC  the number of PCs considered in the 
model and NEXC the total number of excipients in the historical database (including 
disintegrants). 
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In Eqs.(5.15)-(5.16) the equations to transform the material massive fractions in volumetric 
ones are reported. )(API ir  is the massive fraction of the i-th API, while )(EXC dr  is the massive 
fraction of the d-th excipient in the formulation. APIρ  and EXCρ  are the vectors of the densities 
of the NAPI APIs and of the NEXC excipients included in the historical databases . 
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Note that Eqs.(5.6)-(5.16) represents the two blend prediction model steps, namely the 
weigthed score calculation procedure and the PLS model step between the weighted scores 
and the product properties. Logical constraints are then added to select the most suitable 
materials according to the hypotheses described above (Section 5.2.2). In Eq.(5.17) these 
logical constraints for the selection of only one excipient per family are reported. jj Lzb ),(EXC  is 
a binary variable which indicates if the z-th excipient of the jL  family is ( 1),(EXC =jj Lzb ) or not 
( 0),(EXC =jj Lzb ) inside the formulation. L  is the set of the J families, specified by the user, 
each including NEXCj excipients among which to select the most suitable ones. 
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In Eqs.(5.18)-(5.21) the constraints for the massive fractions of the materials are reported. In 
particular the fractions of all the APIs but the selected one are set to 0 (Eq.(5.19)), while the 
magnesium stearate fraction is assigned (Eq.(5.21)). In Eq.(5.20) jLU ,EXC  represents the upper 
limit defined by the user for the massive fraction of the zj-th excipient of the j-th family inside 
the formulation. 
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1MgSt =r  (5.21) 
 

In Eqs.(5.22)-(5.24), the constraints due to mass balances are shown. In Eq.(5.23), EXCm  
represents the vector of the masses of the all the excipients inside the blend, while MgStm  in 
Eq.(5.24) is the magnesium stearate mass. 
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1MgStEXCAPI =++ rrr  (5.22) 
TOTEXCEXC m⋅= rm  (5.23) 
TOTMgStMgSt mrm ⋅=  (5.24) 

 
In Eqs.(5.25)-(5.26), the constraints for the API dose in the formulation and for the final tablet 
total mass are reported. These constraints are active in the case APIm  and TOTm  do not appear 
in the objective function. In Eq.(5.25) and Eq.(5.25), 1M  and 2M  are the boundary values for 
the dose and the tablet weight defined by the user. 

 
( ) 14
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4 Mgmg ⋅≥=⋅  (5.25) 

( ) 25
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Finally, in Eqs.(5.27)-(5.31) the constraints for each of the variables in NEWŷ  (described 
above) predicted by the model are reported. lb  and ub  represent respectively the lower and 
upper bound of each variable. These bounds are considered in the inversion problem only if 
specified by the user. 

 
   ˆ 808080 BmidBmidBmid ubylb ≤≤  (5.27) 

engthTensileStrengthTensileStrengthTensileStr ubylb ≤≤ ˆ  (5.28) 
 ˆ FFCFFCFFC ubylb ≤≤  (5.29) 

BFIBFIBFI ubylb ≤≤ ˆ  (5.30) 

nStresCompressionStressCompressionStresCompressio ubylb ≤≤ ˆ  (5.31) 
 

The above-described procedure has been implemented using Matlab® (the MathWorks Inc., 
Natick, MA) and GAMS (GAMS Development Corp., Washington, D.C.). In particular, the 
data handling, the blend prediction model building and the results analysis have been 
performed in MATLAB using an in-house developed multivariate analysis toolbox (phi v1.7). 
The mixed-integer nonlinear optimization problem has been implemented and solved in 
GAMS using the BARON solver (Sahinidis, 1996). 

5.3 Results 
The blend prediction model inversion framework has been tested to design the formulation for 
a proprietary API, which for confidential reasons in the following text will be referred to as 
API-A. The proposed strategy is applied in two different case studies in which the objective is 
to maximize the API dose in the formulation. To this end, the objective function for the 
optimization problem (Eq.(5.5)) reduces to the term representing the mass of API in the 
formulation ( APIm  in Eq.(5.5), with a negative value for the weight 4g ). The procedure will 
thus give in output the list of material types and fractions that have to be included in the 



Chapter 5 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

152 

formulation, together with the API fraction which, according to the model, ensures the desired 
blend with the maximum API load. In particular, in Case study 1 it is assumed that the 
formulation is composed by two excipients, that have to be selected within the lactose and the 
MCC families, and a disintegrant which has to be chosen among the materials in its relevant 
family (Table 5.1). In Case study 2, one of the excipients in the formulation is assumed to be 
known (i.e., it is constrained in the optimization framework) and corresponds to calcium 
phosphate dibasic anhydrous (A-Tab). The second excipient is constrained to be selected 
within the lactose excipient families. Following the hypothesis reported in Section 5.2.2 (step 
1.), a disintegrant has to be selected as well inside the disintegrant family (Table 5.1). In both 
case studies, the magnesium stearate fraction is considered fixed and set to 1 wt%. 
In both case studies, the formulations were designed with the aim of reaching a blend suitable 
for direct compression. Accordingly, design specification ranges were assigned for each blend 
property, as reported in Table 5.2. These ranges act as constraints for the model predictions in 
the inversion problem. Note that the ranges were established based on experience, and they 
have been made dimensionless in Table 5.2 and in the remainder of the Chapter for 
confidentiality reasons. Following the industrial practice, a rating category system has also 
been applied for each blend property. The categories classify blend properties as “Attribute”, 
“Marginal”, “Deficient” and “Severely deficient”, and were developed for each property to 
give an indication of processing performance for solid-dosage form development (Polizzi and 
García-Muñoz, 2011). 

Table 5.2. Ranges of blend properties which define a blend suitable for 
direct compression. These ranges provide the constraints for the blend 
prediction model inversion problem. 

Property  Constraints 
BMID80 < 0.36  
Compression stress > 0.20 and < 0.50  
Tensile strength > 0.40  
BFI  < 0.22  
FFC  > 0.57 

 
The formulations obtained from the optimization exercise were experimentally tested to 
validate the model-based design. Experimental results and model predictions were compared 
based on the numerical results and on the rating category. The goodness of the results was 
also assessed through a Student’s t-test (Montgomery and Runger, 2010) with the aim of 
verifying that, for each blend predicted property, the difference between model predictions 
and experimental values was not statistically significant for the tested blends within 
uncertainties. The comparisons were performed univariately as the rating categories for the 
properties are defined univariately. Results of the statistical hypothesis testing are reported in 
terms of p-values: the tested null hypothesis that there is not a significant difference between 
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model predictions and experimental values within experimental and prediction uncertainty is 
rejected when the p-value is below the significance level α = 0.05. Experimental uncertainty 
has been estimated from the properties of the blends in the historical dataset with the same 
formulation (same material type and very similar material fractions). Model prediction 
uncertainty has been estimated through jackknifing (Duchesne and MacGregor, 2001). 

5.3.1 Case study 1: formulation design and experimental validation 

In Table 5.3 results are reported for the Case study 1, dealing with the in-silico formulation 
design for the maximum dose of API-A when no constraints were assigned to the input 
materials (except for the lubricant). In this case the optimization problem involves 961 
variables (of which 23 integers) and 951 constraints. The list of the estimated excipients is 
reported together with their fractions and the API fraction expressed in wt%. Note that this 
represents the formulation that, according to the model, has the highest API dose. However, 
this does not mean that a formulation with a higher API load could not exist. The formulation 
with the maximum API load calculated through the model is the one for which the model is 
still valid. Otherwise stated, the model can estimate a formulation with a higher API load but 
at the expenses of the reliability in its estimates, which may not adhere to the correlation 
structure represented by the PLS model. As described in Chapter 2, the squared prediction 
error (SPE) is used to quantify the lack of representativeness of the model. In the case of the 
formulation reported in Table 5.3, SPE = 4.75, that is equal to the value assigned for its 
constraint (= 28.59.0 ×  in Eq.(5.11) above). This means that the constraint on SPE is an 
active constraint in the optimization and the obtained formulation is a “limit” formulation, 
with respect to the model correlation. This is not surprising, since the objective is to maximize 
the API dose. 

Table 5.3. Case study 1. Model-based formulation design for API-A when no 
constraints are assigned to the input materials: estimated material types and 
fractions. 

Model-based formulation Material fraction in the 
formulation (wt.%) 

API-A 14.47 
Avicel PH200 63.31 
Lactose Anhydrous (direct tabletting) 18.21 
Sodium starch glycolate (Explotab) 3.01 
Magnesium Stearate 1.00 

 
The fact that the estimated API dose seems not to be very high (14.47 wt.%) is a consequence 
of the suboptimal properties of the selected API and of the historical data range used to build 
the model. The selected API (API-A) scores are quite far from the center of the multivariate 
API design space, meaning that its properties are different from the multivariate API mean. 
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The optimizer thus compensates for this difference (which impacts on the calculation of the 
weighted scores) by lowering the API fraction. Accordingly, the estimated formulation in 
Table 5.3 is found at a significant distance from the center of the historical formulation design 
space (represented by the PLS model latent space), even if still inside the relevant confidence 
limit. As a matter of example, in Figure 5.3 the space of the LV scores on the first and on the 
third LVs of the PLS model is reported. In the plot, the black dots () correspond to the 
historical formulations, while the empty triangle () represents the projections of the 
formulation in Table 5.3 (the empty square  is instead representative of the solution for 
Case study 2 reported in the next section). 
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Figure 5.3. Score space on the first and on the third LVs of the PLS model step of the blend 
prediction model. The black dots represent the historical formulation projections, the empty 
triangle () the projections of the solution for Case study 1, while the empty square () 
the projections of the solution for Case study 2. 

The distance of the formulation projections from the origin of the latent space calculated 
considering all the LVs of the model is quantified by the Hotelling’s T2 statistics (Chapter 2, 
Section 2.1.1.3), which for the formulation in Table 5.3 equals 11.45, below the relevant 
confidence limit calculated from the historical data (= 17.45). 
The model-based designed formulation reported in Table 5.3 was prepared in laboratory to 
test experimentally if the blend designed in-silico achieved the desired properties assigned as 
constraints to the optimization problem (Table 5.2). Note that the blend prediction model used 
in this study does not account for the effect of the number of blender revolutions on tablet 
properties (Kushner and Moore, 2010), as there was no information on the blending 
time/revoutions for the historical blends used to build the model. For this reason, two blends 
were prepared and tested at different blending times (~ 3 minutes and ~ 60 minutes), and the 
mean value of each obtained blend property was considered for the experimental validation. 
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Table 5.4 reports the comparison between the model predictions for the properties of the 
designed blend of Table 5.3 and the experimental values obtained from the prepared blend. 
For each model prediction, the uncertainty is quantified by half the width of the 95% 
respective confidence intervals, which are reported in parentheses (95% CI). Similarly, for 
each experimental value the experimental uncertainty, estimated from the historical data, is 
reported in parentheses. The last column represents the p-value of the Student’s t-test 
performed to compare model predictions with the experimental values. 

Table 5.4. Case study 1. Model predictions and experimental validation of 
the blend properties for the in-silico formulation of Table 5.3. Uncertainties 
are reported for model predictions and experimental values (95% CI), 
together with the p-value from the t-tests to compare them. 

Property Model predictions Experimental validation  p-value# Value (95% CI) Value (95% CI) Rating category 
BMID80 0.33 (0.29) 0.31(8.0e-2) Attribute 0.514 
Compression stress  0.50 (0.20) 0.31 (7.7e-2) Attribute 0.018 
Tensile strength 0.58 (0.21) 0.32 (0.37) Marginal 0.267 
BFI 3.82e-2 (7.31e-2) 6.19e-2 (5.37e-2) Attribute 0.392 
FFC 0.70 (5.4e-2) 0.75 (5.6e-2) Attribute 0.227 
# cutoff: 0.05 

 
The first important remark to note when observing the results in Table 5.4 is that all the 
properties measured for the real blend satisfy the constraints assigned to the optimization 
problem and listed in Table 5.2, except for tensile strength. Analogously, the rating category 
is found to be “Attribute” for all the properties but tensile strength. This is an important result, 
as blends with similar ratings are considered to be similar in a real-world manufacturing 
environment. Nevertheless, by examining the p-values, it can be seen that the difference 
between the prediction and the measured value for the tensile strength is not found to be 
significant. This is mainly due to the uncertainty in the experimental data, which is even 
larger than the prediction uncertainty for tensile strength. Therefore, despite the experimental 
value for this property is not satisfying the assigned constraint, in this case the model is 
actually doing a good job, as model predictions (and the value of the constraint) are well 
within the experimental uncertainty. 
Conversely, from Table 5.4 it can be noticed that, even if the compression stress measured for 
the real blend falls within the range desired for it, the difference between the model prediction 
and the measured value is significant (p-value below 0.05, even if the null hypothesis would 
not be rejected if the significance level were 0.01). It was found that this property is the one 
for which the model shows the least predictive ability, and therefore an inferior prediction 
performance was somewhat expected for this property. Furthermore, as mentioned earlier, the 
formulation reported in Table 5.3 is a limit formulation with respect to model 
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representativeness. This can impact on the uncertainties and therefore also on the reliability of 
the model predictions. 
To get a visual representation and a thorough understanding of the differences between 
measurements () and predictions (), Figure 5.4 shows a graphical comparison between 
the predicted and the measured values for each blend property. In particular, each predicted 
and experimental value is reported together with the relevant 95% confidence limit (the 
vertical bars). The regions corresponding to the different rating categories are reported as well 
with different gray shadings, going from the “Attribute” (in white) to the “Severely Deficient” 
region (in dark gray). The axes scales of each plot have been coded for confidentiality 
reasons. As can be seen, for BMID80, compression stress and BFI the prediction uncertainties 
are higher than the experimental ones. The reverse is true for tensile strength and FFC, where 
experimental uncertainties are larger than the prediction ones. These variables are however 
the ones most affected by the different blending time/number of revolutions. Since the blends 
in the historical dataset were obtained at different lubrication levels, which the model does not 
take into account, the effect of this parameter is included on the estimation of the 
experimental uncertainty, which is indeed more significant for the variables that are most 
affected by the lubrication itself. Nonetheless, for Case study 1 each plot of Figure 5.4 
confirms that the values of all the experimental properties fall within the model prediction 
uncertainty (except for tensile strength, as seen above). Moreover, the experimental values for 
most of the properties fall inside the Attribute region, even considering the uncertainty limits. 

5.3.2 Case study 2: formulation design and experimental validation 

Table 5.5 reports the in-silico designed formulation when one of the formulation excipients is 
constrained to be calcium phosphate dibasic anhydrous (A-Tab). Again, the objective was to 
design a formulation allowing the maximum API-A dose. In this case the optimization 
problem involves 950 variables (of which 12 integers) and 946 constraints. The estimated 
formulation is again found to be a limit formulation, being its SPE equal to 4.75, which is the 
value assigned for the corresponding constraint (Eq.(5.11)). The formulation is inside the 
multivariate design space of the historical formulations, as demonstrated by the value of the 
Hotelling’s T2 = 10.41, even if at a significant distance from the center of the space (as seen 
from the projections on the first and on the third LVs of the PLS model represented by the 
empty square  in Figure 5.3). 
The blend designed in-silico and reported in Table 5.5 was then prepared in laboratory as 
done for Case study 1, and the properties of interest were measured to validate the results 
obtained from the proposed procedure. 
Table 5.6 reports the comparisons between the model predictions and the experimental 
measurements. As above, predictions and real values are reported with the relevant 95% 
confidence intervals; the rating categories for the experimental values and the p-values of the 
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Student’s t-test are reported as well in the table. As in the previous case study, the properties 
measured for the prepared blend satisfy the assigned constraints (Table 5.2), thus giving a 
blend of desired properties, except from tensile strength. Accordingly, the rating category is 
found to be “Attribute” for all the measurements, except tensile strength. 

Table 5.5. Case study 2. Model-based formulation design for API-A when the 
choice of an excipient (calcium phosphate dibasic anhydrous) is constrained: 
estimated material types and fractions. 

Model-based formulation Material fraction in the 
formulation (wt.%) 

API-A 13.67 
Avicel PH200 72.03 
Calcium phosphate dibasic anhydrous (A-Tab) 10.30 
Sodium starch glycolate (Explotab) 3.00 
Magnesium Stearate 1.00 

 

Table 5.6. Case study 2. Model predictions and experimental validation of 
the blend properties for the in-silico formulation of Table 5.5. Uncertainties 
are reported for model predictions and experimental values (95% CI), 
together with the p-value from the t-tests to compare them.  

Property Model predictions Experimental validation  p-value# Value (95% CI) Value (95% CI) Rating category 
BMID80 0.34 (0.26) 0.28 (8.0e-2) Attribute 0.165 
Compression stress 0.49 (0.19) 0.36 (7.7e-2) Attribute 0.047 
Tensile strength 0.67 (0.19) 0.38 (0.37) Marginal 0.247 
BFI ~0 (6.32e-2) 5.24e-2 (5.37e-2) Attribute 0.178 
FFC 0.63 (4.4e-2) 0.79 (5.6e-2) Attribute 0.064 
# cutoff: 0.05 

 
From the p-values it is interesting to note that compression stress shows again a statistically 
significant difference between measurements and predictions, even if close to the 0.05 cutoff 
value. For all the other properties, the difference between the predicted and the real properties 
of the blend is not found to be significant, even if for FFC, if the p-value of the test is quite 
near to the 0.05 significance level. 
A graphical illustration of the results is reported in Figure 5.4 (right portion of the figures). 
The same remarks reported for Case study 1 applies also for Case study 2. 
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Figure 5.4. Comparisons between model predictions () and experimental values () for 
the properties of the blends designed in-silico in Case study 1 and Case study 2. (a) 
BMID80; (b) compression stress; (c) tensile Strength; (d) BFI; (e) FFC. In each plot, regions 
corresponding to different rating categories have been reported with different grey 
shadings. 
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5.4 A user-friendly interface 
Figure 5.5 reports a snapshot of the user-friendly interface that was developed to allow users 
(e.g., formulation scientists) to set the inputs required for the blend prediction model 
inversion. The interface provides the inputs to the Matlab and GAMS codes, in which the 
optimization problem is solved and results are processed. 

 
Figure 5.5. Interface developed for the blend prediction model inversion exercise. The 
interface allows users to input several objectives and constraints in terms of materials to be 
included in the final formulation, their fractions and desired properties for the final blend. 
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The structure of the interface reflects the inputs and the constraints needed by the procedure, 
described in Section 5.2.2. First, the user needs to provide a name for the formulation and to 
select the API. 
The second section of the interface is the one in which the user should set the constraints for 
the API dosage and the tablet weight. As described in Section 5.2.2, the API dose can be 
constrained to be equal or greater than an assigned value, or maximized. Similarly, the tablet 
weight can be minimized or constrained to be equal or lower than an assigned value. 
The third section of the interface refers to the excipient selection constraints. As can be seen 
from Figure 5.5, the user has to specify the group (family) within which the procedure has to 
select the best excipient. Options are provided to assign a given excipient in the formulation 
(as in Case study 2; Section 5.3.2) and to bound the maximum fraction of each excipient in 
the formulation ( jLU ,EXC  in Eq.(5.20)). Initial guesses both for the excipient type and fraction 
may be provided as well. As can be seen, following the initial hypothesis on the formulation 
composition (Section 5.2.2), the excipient selection section has been programmed in order to 
include 2 different excipients, a disintegrant and magnesium stearate in the formulation. The 
magnesium stearate fraction can be provided by the user as well. 
The last section of the interface refers to the ratings specifications. In this section, the user 
may provide the desired values/ranges for each of the five blend properties described in 
Section 5.2.2. For each property, the user can assign specific values (equality constraints) or 
ranges (inequality constraints). Furthermore, he/she may also decide to exclude one or more 
properties from the analysis. 

5.5 Conclusions 
In this Chapter, a novel method for the in-silico design of new pharmaceutical formulations 
has been proposed and experimentally validated. The aim of the work was to propose a 
systematic procedure, which, on a scientifically sound basis, is able to suggest which 
materials and in which amount should be tested in a formulation, in order to obtain a blend of 
desired properties. 
The method relies on the inversion of a latent variable regression model (LVRM) recently 
proposed to model mixture data of complex formulations. The proposed procedure relies on 
an optimization framework which, given an API, selects the best excipients types and 
amounts that, according to the model, would ensure the achievement of the desired blend. The 
methodology has been implemented in order to manage the different constraints a formulation 
scientist may have to face for the formulation of a new product. These may include 
constraints on the excipient family among which the most suitable excipient should be 
chosen, constraints on the excipient type itself, on the API dose, or on the final tablet weight. 
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Furthermore, the procedure can deal with different objectives the user may have, such as the 
maximization of the API dose in the final tablet, or the minimization of the tablet weight. 
The effectiveness of the method has been tested in the design of the formulation for an 
assigned proprietary API (API-A), in order to obtain a blend suitable for direct compression. 
In particular, the objective was to design the formulation for the maximum API dose, in two 
different case studies. In Case study 1, the excipient choice was not constrained; however, a 
constraint was active on the families of the excipients among which to address the search. The 
optimizer was used to design the whole formulation, in terms of both materials types and 
amounts. In Case study 2, a constraint on one of the formulation excipients was assigned, 
while the optimizer was asked to select all of the other excipients and their amounts. 
The blends designed in-silico have been prepared in laboratory and characterized, in order to 
compare the real properties of the blend with the desired ones, which formed the design 
specifications for the optimization problem. Experimental results showed a good agreement 
with model predictions. Almost all of the real blend properties fall within the model 
prediction uncertainty and, above all, they are ranked “Attribute”, namely optimal for direct 
compression. Some issues have been found for tensile strength, whose achieved value does 
not match the constraints assigned to the in-silico procedure. However, it was found that this 
property is strongly affected by the number of blender revolutions, whose effect is not 
accounted for by the model. Nonetheless, the difference between model predictions and real 
values is not found to be statistically significant. More significant were the differences found 
in the comparisons between the real and the predicted values of compression stress, which 
were however due to the modest performance of the model in predicting this property. To 
overcome these limitations, the model could be improved by augmenting the historical 
datasets, as more materials and especially formulations will be available. Furthermore, results 
showed that to obtain reliable predictions (and thus to have a robust model to be used in 
formulation design), information on the blending process should be included in the model. At 
the same time, the approach can be extended to consider other constraints and targets (such as 
stability), as long as there is a mathematical way to relate them (e.g., degradation extent) to 
the incoming formulation. These are further steps that will be taken into account in the future. 
The proposed strategy provides a systematic tool to support pharmaceutical development 
personnel in the design of new product formulations, by guiding experiments and suggesting 
a priori the most suitable materials to test, based on a scientific basis. Different and complex 
databases can be managed in a straightforward way through the use of LVRMs, which enable 
a more transparent model structure and simpler interpretation compared to other data-based 
methods (e.g., black-box models). Accordingly, the optimization framework ensures to find 
the optimal formulation, on the basis of the historical knowledge. This allows accelerating the 
decision making process in product development activities and overcome issues related to 
resorting to traditional procedures in pharmaceutical development. 
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Chapter 6 

Transfer of products between different 
plants*

This Chapter presents a methodology to address the issue of transferring in a target plant a 
product already manufactured in one or more source plants, which may differ for size, lay-out 
or involved units. The procedure is based on two steps: first, data from the source plant(s) are 
related to the (usually few) available data from the target plant through a latent variable 
regression model (LVRM). Then, the model is inverted, following the general framework 
proposed in Chapter 4, to suggest the optimal process conditions which, according to the 
model, ensure to manufacture the desired product in the target plant. The methodology is 
tested experimentally on a process for the manufacturing of nanoparticles for pharmaceutical 
applications through a solvent displacement process. The experiments confirm the 
effectiveness of the proposed procedure and provide an experimental validation of the 
theoretical concept of null space. 

 

6.1 Introduction 
One of the most burdensome problems in product and process development is the transfer of 
technology between plants. The ultimate objective of the transfer is to obtain in a target plant 
a product of desired quality, which has usually already been obtained in a source plant. This 
problem is commonly encountered in process scale-up or in the transfer of production 
between different manufacturing sites, where the involved equipment may be different for 
size or layout. Commonly, in the source plant (e.g., a small-scale plant) extended 
experimental campaigns are carried out to gain process understanding and disclose potential 
pitfalls in the process equipment, operating conditions or control configurations. This 
experimentation eventually leads to the definition of the process equipment layout, as well as 
of a set of operating conditions that can guarantee the required product quality with 
acceptable variability. When the production has to be moved to a different plant (e.g., a large-
scale plant), an extended experimental campaign may be impossible or economically 

                                                 
*Tomba E., N. Meneghetti, P. Facco, T. Zelenková, D.L. Marchisio, A.A. Barresi, F. Bezzo and M. Barolo (2013). Product 
transfer between different plants through latent variable model inversion. Submitted to AIChE J.. 
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unsustainable. An issue therefore arises on whether it is possible to exploit the data available 
from the experiments performed in the source plant to assist the transfer of technology to the 
target plant. To this end, appropriate methodologies are needed to exploit the knowledge 
available for the source plant in order to guide the experimentation in the target plant with the 
aim of accelerating the transfer and subsequently the time-to-market for new products. This 
Chapter focuses on the product transfer problem, namely the problem of estimating the 
process operating conditions in the target plant, wherein the manufacturing is being started, to 
obtain a product of desired properties, by exploiting the knowledge acquired from the source 
plant. 
Approaches to guide technology transfer activities have already been proposed for specific 
matters, as the transfer of models between instruments (Feudale et al., 2002) or plants (Lu and 
Gao, 2008a and 2008b; Lu et al., 2009). Model transfer approaches will be reviewed in 
Chapter 7, in which a procedure to transfer monitoring models between plant is proposed. 
In general, model-based transfer approaches exploit features that the process may have in 
common in the different plants to address the transfer. A similar rationale is exploited also in 
product transfer when dimensional analysis is applied. Dimensional analysis is commonly 
used to identify plant-independent variables (e.g., dimensionless numbers), which indicate the 
relevance of the physical phenomena occurring in the process. Usually, the transfer is driven 
by criteria that are set on the plant-independent variables and aim to ensure that the process in 
the different plants is operated under similar physical regimes (Zlokarnik, 2006). However, 
this approach often requires a deep mechanistic knowledge of the process under investigation, 
which for many processes may not be available. 
A feasible alternative to tackle the product transfer problem is to exploit the historical datasets 
that are usually available in product and process development environments, for example 
from screening experiments or from studies on products already manufactured. Jaeckle and 
MacGregor (2000b) pioneered to use historical databases of products already manufactured in 
the target and in the source plant to guide the experimentation in order to simplify and 
accelerate the transfer of a new product in the target plant. The authors related the datasets of 
the process conditions in each plant through the data of the historical common products 
manufactured in the plants, and used LVRM inversion to estimate the process conditions for 
the target plant to manufacture a new product of assigned properties. This strategy has been 
further refined by García-Muñoz et al. (2005), who proposed the joint-Y projection to latent 
structures (JY-PLS) method to relate data from different plants (Chapter 2, Section 2.1.3.2). 
Assuming that the correlation between the properties of the historical products manufactured 
in different plants is similar, JY-PLS exploits the latent space generated by the joint dataset of 
the product properties to relate the corresponding process data. The model can then be 
inverted to estimate the optimal process conditions that, according to the model, ensure the 
achievement of the desired product in the target plant. Some contributions on the application 
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of these techniques to support the scale-up of critical operations in the pharmaceutical 
industry have recently appeared in the literature and have been reviewed in Chapter 1, Section 
1.4.1.3 (Liu et al., 2011b; Muteki et al., 2011). 
In this Chapter a general methodology is proposed and tested experimentally to support 
product transfer between different plants based on JY-PLS modeling and LVRM inversion. 
To this purpose, the general framework for LVRM inversion proposed in Chapter 4 is used to 
invert the JY-PLS model built on the historical datasets available for the plants, with the aim 
of suggesting an appropriate set of operating conditions to be tested in the target plant, in 
order to manufacture therein a product with desired quality specifications. The proposed 
methodology explicitly addresses the issue of managing constraints in both inputs (operating 
conditions) and outputs (quality specifications). It can also cope with the differences that may 
occur in the experimental setup over time (due for example to maintenance, changes in the 
ancillary equipment, sensors or operators). By proceeding this way, the knowledge available 
from the experiments carried out in the source plant(s) is optimally exploited to streamline the 
product transfer. 
The proposed strategy is applied to an experimental case study dealing with a nanoparticle 
production process through solvent displacement in passive mixers (Lince et al., 2009). This 
process is widely used in the pharmaceutical industry to manufacture polymer nanoparticles 
that can be used as drug carriers for controlled drug delivery. The problem under investigation 
is to transfer the nanoparticle production system from a reference passive mixer (also called 
plant in the following), for which a large historical database is available, to a target passive 
mixer of different scale (or geometry), where limited historical data are available. The 
problem is further complicated by the fact that the historical dataset available for the target 
plant was developed by running the plant under a different experimental setup than the one 
under which the current experimentation can be carried out. By using new experiments 
designed and carried out in this study, the first experimental validation of the concept of null 
space (Chapter 2, Section 2.2.1), introduced theoretically by Jaeckle and MacGregor (1998), 
is also provided. 

6.2 Process and datasets 
An experimental precipitation process to manufacture pharmaceutical nanoparticles through 
solvent displacement is considered in this study. This process is used to manufacture polymer 
nanoparticles that are used for drug delivery and controlled drug release. It consists of a 
dissolution phase (in which the drug is dissolved in a solvent together with polymer and other 
additives), a mixing phase (in which the prepared solution is mixed with an anti-solvent, 
usually water, in a mixing chamber), and a solvent elimination phase to give the final product 
(Lince et al., 2008). The process is operated continuously in passive mixers, where the 
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solution of the drug and polymer and the anti-solvent are injected through separate inlets, and 
mixed. As soon as the two solutions mix, nanoparticles are formed and then collected at the 
mixer output. One of the most important issues related to this process is to control the 
nanoparticle size. In fact, depending on the administration route, the potential of nanoparticles 
as drug delivery systems depends on their particle size distribution. For parenteral 
administration, in order to avoid negative interactions with the reticulo-endothelial system, 
particles must have an assigned dimension (or range of dimensions), which guarantee an 
adequate life in the blood stream and a continuous and controlled drug release (Moghimi et 
al., 2001; Alexis et al., 2008). 
In the case study considered in this paper, the process occurs in confined impinging jets 
mixers (CIJMs). The objective is to manufacture nanoparticles of desired size in a target 
device B (CIJM-d2), by exploiting the data available from experiments performed on a source 
device A of different size (CIJM-d1) and from experiments performed on the device B itself, 
but under a different overall experimental setup. The mixers are schematically shown in 
Figure 6.1 and differ for the size of the inlet pipes: CIJM-d1 is characterized by a mixing 
chamber diameter of about 5 mm and inlet pipes inner diameter of 1 mm, whereas CIJM-d2 
has the same chamber geometry and dimension and the same pipe length as CIJM-d1, but 
inlet pipes inner diameter of 2 mm. 

   
(a)   (b) 

 
Figure 6.1. Sketch of the different mixers considered in this work for the product transfer 
problem. (a) Device A: CIJM-d1. (b) Device B: CIJM-d2 (adapted from Lince et al., 
2011a). All dimensions are in millimeters. 

Although the difference in the geometries of the two mixers may seem negligible, being the 
process highly mixing sensitive it has a drastic impact on the final nanoparticle 
characteristics. There are several reasons justifying the investigation of these two different 
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geometrical configurations. As an example, two of them are pressure drop optimization 
(clearly device B is characterized by smaller pressure drops than device A) and the 
requirement of improving process performances with respect to fouling or flow instability. 
Moreover, notwithstanding what the actual geometrical difference is, from the practical point 
of view any two different devices (with a measurable impact on product quality) can in 
principle be used to prove the capability of the presented methodology to successfully carry 
out process transfer activities. 
Data are available from historical experiments carried out earlier in both devices to study the 
influence of the process parameters on the nanoparticle size. Part of the available datasets 
refer to the actual chemical systems used in real applications, namely a drug used for breast 
cancer treatment (doxorubicin) and different polymers, including a PEGylated polymer that 
forms stealth nanoparticles (i.e. poly(methoxypolyethyleneglycolcyanoacrylate-co-
hexadecylcyanoacrylate)) (Lince et al., 2011b). However, a simpler system was considered in 
this study. In fact, since the final drug loading is often relatively low, in many cases the 
overall particle formation process is controlled by the polymer nanoparticle formation process 
(i.e. polymer molecules self-assembly into nanoparticles). For this reason, the analysis is 
limited to the chemical system for which the largest historical database was already available. 
The experiments on the mixers were therefore performed by manipulating four variables: the 
polymer concentration in the initial solution (cpol), the inlet water flowrate (FR), the anti-
solvent/solvent flow rate ratio (W/A) and the polymer type (Type). All experiments were 
performed using poly-ε-caprolactone (PCL) as a polymer, but considering two lots of 
polymers of different molecular weight (MW). These lots are named PCL14 for the lot with 
low MW (MW=14000 kg/kmol) and PCL80 for the lot having higher MW (MW=80000 
kg/kmol). Accordingly, the variable Type indicating the polymer lot is binary (Type = 0 for 
PCL14 and Type = 1 for PCL80). As mentioned above, all experiments were carried out with 
no drug in the polymer solution, and using acetone (HPLC grade by Sigma Aldrich) as the 
polymer solvent, while distilled and micro filtrated water (Millipore System, Milli-Q RG, 
millipack® R 4.0 sterile pack, 0.22:m, Holliston MA, US) was used as the anti-solvent. The 
mean particle size (dp) was the only property considered for the characterization of the 
nanoparticles obtained from the experiments. 
The experiments were performed according to the following protocol (Lince et al., 2011a). 
The polymer solution in acetone and bi-distilled water were fed into the mixers by means of a 
syringe pump (KDS200 syringe pump; KD Scientific, Massachusetts, US); 2 mL of water 
feed were generally employed for each test. The outlet stream was then collected in a small 
volume (10 mL) of distilled-microfiltered water under gentle stirring and then sampled for 
particle size measurements. This dilution quenched the particles and prevented the occurrence 
of secondary processes (e.g., aggregation) after the stream left the mixer. Experiments were 
typically repeated three times and the nanoparticle size distribution was then measured 
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through dynamic light scattering (Zetasizer Nanoseries ZS90, Malvern Instruments, 
Worchestershire, UK).  
The system under investigation can be unstable, hence it was not easy to ensure perfect 
repeatability across the experiments. Taking also into account the uncertainties in the 
preparation of the solutions, in the characteristics of the syringes, in the feeding rate of the 
pumping system and in the dp measurements, variations in the mean nanoparticle size from 
repeated runs are considered acceptable if they range within 15% of the average value. 

6.2.1 Dataset organization 

The data available from the experiments have been organized in three datasets. 
• Dataset A. AX  ( )4348×  and AY  ( )1348×  refer to the experimental campaign performed 

on device A (CIJM-d1). AX  includes the operating conditions of 348 experimental runs, 
whereas AY  collects the mean diameters dp measured for the nanoparticles obtained. 
Experiments did not follow a structured experiment design campaign. Three process 
settings (cpol, FR, W/A) were partially manipulated according to a one-factor-at-a-time 
strategy, but not all of the experiments were repeated with both available polymers. The 
extended experimental campaign on device A was carried out over a time window of about 
24 months. 

• Dataset B. BX  ( )439×  and BY  ( )139×  refer to the experimental campaign originally 
performed on device B (CIJM-d2). BX  includes the operating conditions of 39 
experimental runs, whereas BY  collects the mean diameters dp measured for the obtained 
nanoparticles. As for device A, three process settings (cpol, FR, W/A) were partially 
manipulated according to a one-factor-at-a-time strategy, but on a small number of polymer 
concentration levels. Furthermore (and unfortunately), the polymer type was changed 
according to the cpol level, thus confounding its effect on dp. This introduced an artificial 
collinearity between these two operating variables. The original experimental campaign on 
device B was carried out on a time window of 12 months. 

• Dataset C. CX  ( )417 ×  and CY  ( )117 ×  refer to a more recent experimental campaign 
purposely designed and performed on device B (CIJM-d2) for this study. CX includes the 
operating conditions of 17 experiments, whereas CY  collects the mean diameters dp 
measured for the nanoparticles obtained in the experiments. Nine of these experiments had 
been carried out using sets of experimental conditions already explored in dataset B (they 
were located close to the center of the historical experimental design space). However, 
some differences were observed in the obtained nanoparticle diameters with respect to the 
experiments included in dataset B. It should be noted that, compared to the experiments 
collected in historical datasets A and B, dataset C experiments were performed at a much 
later time and under a slightly different experimental setup (in terms of syringes used, 
pumping procedure and involved operators). This was believed to be a potential cause for 
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the observed differences in dp. Therefore, to take this issue into account 8 new experiments 
were carried out on CIJM-d2, in which all of the four operating parameters were 
manipulated. By these new runs, some form of orthogonality was introduced between the 
operating parameters, in order to study their independent effect on dp under the new 
experimental setup. 

Table 6.1 reports the type and level of the operating parameters used in the experiments, and 
the ranges of particle diameters that were obtained. As can be seen, the number of levels 
assigned to the operating parameters in dataset A is significantly larger than the one in dataset 
B (especially for cpol). 

Table 6.1. Operating parameters manipulated in the experiments, with the 
levels assigned for each operating parameter on each experimental 
campaign. 

 Level 
Parameter AX  (348×4) AY  (348×1) BX  (39×4) BY  (39×1) CX  (17×4) CY  (17×1) 

cpol [mg/mL] 

0.026, 0.21, 0.22, 
0.42, 0.82, 1.39, 
1.47, 2.28, 2.65, 
3.66, 5.04, 5.05, 
6.17, 10.46, 
15.07, 24.83 

– 1.47, 5.04 – 1.47, 3.25, 5.04 – 

FR [mL/min] 3, 20, 40, 60, 80, 
120 – 3, 40, 60, 80, 

120 – 3, 40, 60, 67, 
80, 120 – 

W/A 1, 1.83, 2.88, 
6.08, 8.06 – 

1, 1.83, 
2.88, 8.06 

– 1, 1.92, 2.84, 
2.94, 5.18 – 

Type PCL14 (= 0), 
PCL80 (= 1) – PCL14 (= 0), 

PCL80 (= 1) – PCL14 (= 0), 
PCL80 (= 1) – 

dp range [nm] − [98.9 ÷ 1194] − [181.2 ÷ 587.7] − [144.8÷437.5] 

 

6.3 Product transfer methodology 
As stated previously, the objective of this work is to obtain nanoparticles of desired mean size 
dp in device B under the new experimental setup, by exploiting the historical data available 
from experiments in device A and device B and the few new experiments performed in device 
B under the new setting. In this case, the transfer problem is therefore complicated by two 
different issues. 
The first issue is related to the difference in the device geometries (sizes of the inlet tubes), 
which determine a completely different mixing behavior and performances of the devices. 
Despite the limited size difference, the transfer from device A to device B can increase the 
productivity thanks to the larger amount of material processed in device B (at the same 
pressure drop and therefore at the same operating costs) or for the same productivity can 
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significantly reduce the pressure drops (see Lince et al., 2011a). Criteria to scale the 
production from one device to the other have been suggested based on dimensionless 
numbers, such as the Reynolds number and the Damkhöler number (Valente et al., 2012), or 
on the estimation of multi-scale mixing times (Lince et al., 2011a). Although in many cases 
definitive conclusions are difficult to drawn due to the complexity of the phenomena involved 
and the inherent experimental uncertainties, it seems that the Reynolds numbers of the inlet 
jets can be used for scale-up only when the device geometry and size ratios are maintained. 
On the other hand, relying on multi-scale mixing time principles requires the estimation of the 
characteristic time-scales involved in the process, which may be quite complicated if 
appropriate tools are not available (e.g., computational fluid dynamics; Lince et al., 2011a). 
Therefore, the complexity of the physical phenomena occurring in the mixers, the limitations 
to their predictability in different devices and the current lack of a fully predictive model (Di 
Pasquale et al., 2012) justify the use of multivariate statistical approaches (like LVRMs) to 
guide the transfer and gain a better understanding of the process providing useful insights for 
mechanistic model development. 
The second issue to take into account in the transfer is that, for the target device B, two 
different datasets referred to experimental campaigns carried out at different times and under 
a slightly different experimental setup are available. This complicates the understanding and 
the quantification of the operating parameters effects on the mean nanoparticle size, 
particularly if the two experimental campaigns carried out in device B were merged. The 
difference observed in the mean sizes of the nanoparticles obtained in the two campaigns 
suggests instead to analyze the relevant datasets separately, as if they came from two different 
devices (or sites). 
In light of the above, a procedure to jointly analyze all the available data to draw information 
for product transfer is proposed in the following. The procedure is based on two main steps. 
In the first step, a multi-site JY-PLS model (García-Muñoz et al., 2005) is built considering 
the three operating parameter datasets ( AX , BX , CX ) separately, and joining them through 
the common space generated by the nanoparticle diameter datasets ( AY , BY , CY ). This 
model allows describing the relationships between operating parameters and particle 
diameter, which is proper of each device and experimental setup, while relating at the same 
time the identity of the datasets coming from each device. In the second step, the JY-PLS 
model is used within the LVRM inversion framework proposed in Chapter 4, in order to 
estimate the optimal operating conditions to be used in device B to manufacture nanoparticles 
of desired mean size. 



Transfer of products between different manufacturing plants 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

171 

6.3.1 Multi-site JY-PLS 

In order to optimally exploit the information available from the different devices and from 
experiments carried out under a different experimental setup, JY-PLS (García-Muñoz et al., 
2005) has been applied. 
From a practical perspective, the rationale behind JY-PLS is that, if similar products are 
produced in different plants (i.e. sites) exploiting the same chemical and physical process, the 
product properties should share a common correlation structure, represented by their latent 
variables. Assuming that the regressors are correlated with the product quality within each 
plant (within-plant correlation), the latent spaces of the regressor datasets will span a common 
region, represented by the latent space of the product properties (or a subset of it). This latent 
space can therefore be used to relate regressor datasets from different sources (between-plant 
correlation). 
In the system under investigation, the product quality space is univariate, because it is 
represented only by the mean particle size dp. This variable identifies the only direction along 
which the latent structures of the regressor datasets of different devices should be aligned in 
order to be related. Considering the issues mentioned earlier, the three available datasets 
should be analyzed separately to explore the latent structures typical of each 
device/experimental setup. 
The three datasets were therefore organized as in Figure 6.2, and a multi-site JY-PLS strategy 
was implemented to model the relationships between them (García-Muñoz et al., 2005). 

within-plant 
correlation

between-plant 
correlation

AYAX

BX BY

CX CY

 
Figure 6.2. Schematic of the multi-site JY-PLS approach applied for the product transfer 
problem in this study. 
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Accordingly, multi-site JY-PLS decomposes the datasets for each site into their latent 
structures and overlaps them with the direction identified by the matrix JY  of the joint mean 
nanoparticle size datasets: 
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where the meaning of the symbols is the same as described in Chapter 2 for the classical two-
sites model (Section 2.1.3.2). As stated above, to apply a JY-PLS model it should be first 
verified that the different product properties datasets share a common correlation structure 
(García-Muñoz et al., 2005). Note that, for the system under investigation, this is not 
necessary, since JY  is univariate, thus identifying a unique direction of variability (i.e. a 
single LV), which the latent spaces of the regressors datasets are aligned with. 
It must be emphasized that the JY-PLS modeling approach has been shown to be particularly 
useful for transfer activities compared to other statistical methodologies, especially when the 
latent structures of the target site/plant/device are not fully observable from the available data 
(e.g., because the number of available data is not adequate to describe it) or the LVs effect is 
different in the modeled sites (García-Muñoz, 2004). This can be due to differences in the 
process parameters between the plants or to the different effect the process parameters may 
have on the LVs (and on the response variables), if the same parameters are considered in the 
different plants (Liu et al., 2011b). For the system under investigation, previous studies have 
demonstrated the different importance of the operating parameters on the different devices 
used (Lince et al., 2008 and 2011a). This consideration, together with the known differences 
in the experimental setup between old and recent experimental campaigns and the reduced 
number of data available from the experiments in the target device, justifies the use of JY-
PLS to support the transfer over other methodologies. 

6.3.2 JY-PLS inversion for product transfer 

Once the JY-PLS model has been built between the different datasets, it can be used to 
support product transfer, namely to estimate the process conditions NEW

Cx  (4×1) for device B 
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that, according to the model, provide nanoparticles of desired mean size dp. To this purpose, 
model inversion can be applied. 
Assuming that DESy  ( )1×M  is a generic set of M desired product properties and that values 
are assigned to all the M elements of DESy  (i.e., only equality constraints are set on DESy ), a 
JY-PLS model can be directly inverted to reconstruct NEW

Cx̂  (Jaeckle and MacGregor, 1998): 
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being DESt̂  the ( )1×A  score vector of the direct inversion solution NEW
Cx̂ . As stated in Chapter 

4, direct model inversion does not always provide a viable solution, for example when 
constraints are set for the solution NEW

Cx  or when inequality constraints are assigned to the 
elements of DESy . In fact, some of these constraints may not be satisfied through direct 
inversion. Furthermore, in the presence of a null space (Chapter 2, Section 2.2.1), the model 
inversion has infinite solutions. 
The possible presence of the null space and of constraints in either the regressor or the 
product quality space requires solving the JY-PLS inversion problem within an optimization 
framework. To this end, the general framework for LVRM inversion proposed in Chapter 4 
has been extended in this study to consider the inversion of a JY-PLS model. Namely, the 
most general scenario of the framework (Scenario 4; Section 4.2.1.2) has been considered and 
reported in Eq.(6.10) for a general case in which the transfer is intended between a plant A 
and a plant B: 
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Since the objective of the transfer is the estimation of the process conditions for plant B, only 
the relevant model parameters ( *

BW , BP ) appear in the inversion problem, together with the 
joint loadings JQ . The meaning of the rest of the notation in Eq.(6.10) is the same as used in 
Chapter 4 (Eq.(4.4)), but referred to plant B. 
As shown in Chapter 4 (Section 4.4), the use of the soft constraint for NEW

Bŷ  as in Eq.(6.10) 
does not ensure that the solution of the model inversion satisfies the equality constraints 
assigned for the desired value of the product quality. Therefore, the problem in Eq.(6.10) has 
been modified, for its application to the present case study, by setting the equality constraint 
for the desired value of dp ( DESy ) as a hard rather than a soft constraint. This is also possible 
because the desired product property set DESy  is univariate and there are not drawbacks due to 
the need of simultaneously satisfying the equality constraints for DESy , while adhering to the 
covariance structure of the historical product data (as if DESy  were multivariate; see Section 
4.4). Accordingly, the problem in Eq.(6.10) has been reformulated and adapted to the present 
case study, where the symbols related to the mean particle size dp are indicated in italics 
( NEW

Cŷ , DESy ), being the response variable univariate: 
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It can be seen in Eq.(6.11) that the parameters of the model referred to the target device in the 
new experimental setup ( CP , *

CW ) are used. Comparing the problem in Eq.(6.11) to problem 
in Eq.(6.10), the first term of the objective function (soft constraint) has been deleted in 
Eq.(6.11), and the equality constraint for the desired mean particle size has been set as a hard 
constraint ( DESNEW

Cˆ yy = ). This is used as an alternative to the inequality constraint by ≤NEW
Cˆ , 

which is used if the mean particle size is required to be below an assigned threshold b. 



Transfer of products between different manufacturing plants 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

175 

6.4 Results and discussion 
This Section reports the results of the application of the proposed product transfer 
methodology to the process described in Section 6.2. Results are organized in three sub-
sections. First, the multi-site JY-PLS model built on the available datasets is presented, 
together with its diagnostics and parameter interpretation. The model is then inverted to 
design the process conditions of device B in the new experimental setup for two different 
problems. In the first problem, the objective is to obtain in device B nanoparticles of an 
assigned mean size dp (i.e. an equality constraint is set for it). Since the existence of a null 
space can be postulated, different operating conditions are estimated and tested in order to 
experimentally verify its existence. In the second problem, the objective is to obtain in device 
B nanoparticles whose diameter is below an assigned threshold, for their final application as 
carriers. In both problems, the conditions estimated in-silico through the JY-PLS model 
inversion are tested experimentally to validate the procedure. 

6.4.1 Model design, diagnostics and interpretation 

The first step of the procedure is to build the JY-PLS model on the available datasets. Table 
6.2 and Table 6.3 report the diagnostics of the model in calibration (Table 6.2) and cross-
validation (Table 6.3). Namely, Table 6.2 presents the explained variance ( 2R ) and the 
cumulative explained variance ( 2

CUMR ) per LV and per dataset considered in model design. As 
can be seen, for the response variable matrices (Y’s) the variances explained after the first LV 
are not significant, which is expected since the response datasets are univariate. Differently, 
from the analysis of the variances explained for the regressor datasets, it can be noted that at 
least 3 LVs are needed to adequately describe the systematic variability in the AX  and CX  
datasets, whereas the BX  dataset variability is fully described with 3 LVs, due to the artificial 
collinearity introduced by experimentation between the polymer concentration and the 
polymer type variables. These results indicate that a null space is present, due to the different 
rank of the regressor and of the response variable matrices. 

Table 6.2. Diagnostics of the JY-PLS model. Explained variance ( 2R ) and 
cumulative explained ( 2

CUMR ) variance of the considered datasets per LV in 
model calibration. 

LV A
2XR  A

2
CUMXR  A

2YR  A
2
CUMYR  B

2XR  B
2
CUMXR  B

2YR  B
2
CUMYR  C

2XR  C
2
CUMXR  C

2YR  C
2
CUMYR  

1 0.293 0.293 0.548 0.548 0.465 0.465 0.712 0.712 0.232 0.232 0.658 0.658 
2 0.261 0.554 0.062 0.610 0.288 0.754 0.056 0.768 0.217 0.449 0.032 0.690 
3 0.196 0.750 0.001 0.611 0.246 1.000 ~0 0.768 0.364 0.813 7e-4 0.691 
4 0.250 1.000 ~0 0.611 0 1.000 ~0 0.768 0.187 1.000 ~0 0.691 

 
To get a better indication of the number of LVs to use in order to build the JY-PLS model, 
cross-validation has been applied with a jackknife approach (Duchesne and MacGregor, 
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2001). The cross-validation has been performed considering the three different “portions” of 
the JY-PLS model structure (Figure 6.2) as three different PLS models, thus cross-validating 
each portion separately (García-Muñoz, 2004). In Table 6.3, the variances explained by the 
model in cross-validation per LV and per dataset are reported. Namely, diagnostics are 
reported both for the regressors ( 2P  and 2

CUMP ; Chapter 4, Section 4.3.1) and for the response 
( 2Q  and 2

CUMQ ) datasets. 
The analysis of the results reported in Table 6.3 confirms what was observed from the model 
calibration diagnostics. Given that the objective of the product transfer is the estimation of the 
process conditions for device B in the new experimental setup, it is important to select a 
number of LVs that allows to adequately describe the variability of the CX  and CY  datasets. 
On the basis of the 2P  values (and in particular of value of C

2XP ), three LVs were selected 
to build the JY-PLS model. Given that the JY  space is univariate, this means that there exists 
a bi-dimensional null space that has to be considered in the inversion of the model, to estimate 
the process conditions for device B. 

Table 6.3. Diagnostics of the JY-PLS model. Explained variance and 
cumulative explained variance of the regressor ( 2P , 2

CUMP ) and the response 
( 2Q , 2

CUMQ ) datasets per LV in model cross-validation. 

LV A
2XP  A

2
CUMXP  A

2YQ  A
2
CUMYQ  B

2XP  B
2

CUMXP  B
2YQ  B

2
CUMYQ  C

2XP  C
2

CUMXP  C
2YQ  C

2
CUMYQ  

1 0.282 0.282 0.520 0.520 0.435 0.435 0.679 0.679 0.098 0.098 0.413 0.413 
2 0.261 0.543 0.075 0.595 0.295 0.730 0.079 0.758 0.327 0.425 0.150 0.563 
3 0.207 0.750 0.008 0.603 0.270 1.000 -0.012 0.745 0.422 0.847 0.120 0.683 
4 0.250 1.000 -0.003 0.600 0 1.000 0.022 0.767 0.153 1.00 0.008 0.691 

 
In Figure 6.3, the weights of the JY-PLS model per LV are reported as bar plots together with 
the joint loadings for the response variable dp ( JQ ) for device A (Figure 6.3a), device B in the 
old experimental setup (Figure 6.3b), and device B in the new experimental setup (Figure 
6.3c). Both the weights and the loadings have been reported per LV and weighted according 
to the variance explained by the model per original variable ( 2

pvxR  and 2
pvyR ). The joint 

loadings JQ  are of course the same in each plot, even if they appear different for scaling 
reasons. 
The plots in Figure 6.3 are particularly useful to gain understanding on the physics of the 
system and on the effect of the different process parameters on the mean nanoparticle size in 
the different devices and settings. Figure 6.3 clarifies that the impact of the operating 
parameters is quite different in the different devices, although the general trend is the same. 
To understand the effects on dp, especially the weights of the variables on LV1 have to be 
considered (see the R2Y values in Table 6.2). As can be seen, the main variables affecting the 
nanoparticle mean size are the polymer concentration (cpol) and the water flowrate (FR). In 
particular, the higher the polymer concentration, the larger is expected to be the mean 
nanoparticle size. This can be inferred from the positive weight cpol has on LV1 in all the bar 
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plots of Figure 6.3, which is concordant with the joint loading of dp on LV1 (meaning that 
there is a positive correlation between them). The effect of FR is the opposite instead: in all 
plots, FR has a negative weight on LV1, which is opposite to the dp joint loading on LV1. 
This means that larger nanoparticles are obtained at lower flowrates. The effects of the 
polymer type (Type) and of the anti-solvent/solvent ratio (W/A) generally seem to be less 
significant on LV1, being their weights on LV1 much lower (shorter bars). 
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Figure 6.3. JY-PLS model weights and of the joint-Y loadings QJ per LV for (a) device A, 
and device B in the (b) old experimental setup and (c) new experimental setup. 

While this analysis provides an idea of the general effect of the operating variables on dp, 
from a detailed analysis of each plot it can also be concluded that the importance of the 
operating variables in each device is very different. Figure 6.3a suggests that the dominant 
driving force in device A is due to cpol, and that FR has a lower impact on dp. Additionally, an 
indication on the effect of the polymer type can be drawn. In fact, from the value of the 
weight of Type it seems that, when this variable assumes a “low” value (a negative bar length 
means Type = 0, i.e. PCL14 is used), the nanoparticles obtained in device A are larger. The 
weights on LV2 explain the variability in the data due to Type and FR. Whereas the effect of 
FR is the same as described for LV1, the weight of Type seems to give contrasting 
information compared to what was concluded from LV1. However, it must be noted that the 
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LV weights are orthogonal, thus representing independent effects. Therefore, the weights on 
LV2 are not providing conflicting information to those on LV1, but are indicating a second 
driving force, which explains the second highest part of the variability in the data. This is 
mainly due to the combination of the polymer type and FR: a (very little) part of the 
variability in dp (on LV2; 6.2%, Table 6.2) is due to the experiments performed with PCL80 
(Type = 1) and low FR, which provide nanoparticles of size larger than the historical mean. 
The weights on LV3 accounts for a third part of variability, which is mainly in the regressor 
dataset, being LV3 not significant at all for dp (0.1%, Table 6.2). 
From Figure 6.3b it can be seen that the most important variables for the process in device B 
with the original experimental setup are cpol and the type of polymer used. However, it must 
be noted that, as mentioned above, a collinearity between these two variables was forced in 
the historical data from device B, due to the way in which the experiments were carried out. 
This collinearity is described by the weights of cpol and Type on LV1 in Figure 6.3b (which 
are opposite, meaning inverse correlation between them). As a consequence, the effect of 
these two variables on dp is confounded, even if it is likely that the cpol effect is prevailing. 
The variability due to FR is described mainly by LV2 and it looks less important than cpol. It 
is also interesting to note that W/A shows a significant weight on LV3, which is however not 
significant to describe dp (see Table 6.2). In this case, LV3 is useful only to describe the 
variability in BX  due to W/A. 
Finally, from Figure 6.3c it can be noted that the latent structure of CX  (i.e., of the data from 
device B in the new experimental setup) is quite different both from the one of AX  and 
(especially) from that of BX . This justifies the separate analysis of the datasets B and C, and 
the use of the JY-PLS model. The first important thing to note is that the most important 
variable on LV1 is the water flowrate (FR), differently from the other datasets. It is known 
that the dependence of dp from FR is strong at low water flowrates, whereas dp and FR are 
substantially unrelated at high flowrates (Lince et al., 2011a). Due to the different inlet 
diameters (and therefore to the different inlet jet velocities), the increased importance of FR in 
device B (with the new experimental setup) may be caused by the fact that in this device the 
relationship between FR and dp is strong on a wider range of flowrates than in device A. This 
could not be seen from the analysis of the BX  dataset only, as LV1 was biased by the 
artificially introduced collinearity between cpol and Type. 
Furthermore, in Figure 6.3c W/A is found to have an impact on LV1 (hence on dp), whereas 
cpol is poorly described by LV1. The effect of FR and cpol follows the trend observed earlier, 
but it is interesting to note that W/A is found to be inversely related to dp. This means that the 
nanoparticle mean size is expected to decrease at higher W/A values; under these conditions in 
fact less solvent is mixed with the same amount of anti-solvent, probably inducing the 
formation of smaller nanoparticles. It should be mentioned however that the effect of W/A on 
these systems has not been completely clarified on a physical basis (Lince et al., 2011a; 
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Valente et al., 2012), since under W/A values different from unity poor mixing conditions are 
generally obtained, resulting in complicated effects of the final nanoparticle size. However, its 
effect should be read in light of the polymer concentration: at high polymer concentration, the 
nanoparticle size decreases at higher W/A, probably due to the achievement of supersaturation 
conditions, which are favored if less solvent and more concentrated solutions are introduced 
as already mentioned, while at very low polymer concentration the role of the mixing 
efficiency may prevail. This would explain the pattern of the weights on LV1 in Figure 6.3c 
and its relation to the joint loading of dp. At the same time, the weights on LV2 account for 
the second (although minor; C

2YR  = 3.2% for LV2, Table 6.2) driving force in the data, 
which is due to the variability in cpol and W/A. Finally, LV3 describes mainly the variability 
associated to the type of polymer, that in this dataset seems to be not significant for dp. 
This first analysis already shows the utility of this multivariate statistical approach, as some of 
these conclusions would be very difficult to be drawn following a one-factor-at-a-time 
experimental strategy. In the following, the JY-PLS model described in this Section is 
inverted to design the process conditions in plant B to produce nanoparticles of a desired 
assigned mean size (Problem 1) or with a size below an assigned threshold of interest 
(Problem 2). 

6.4.2 Problem 1: transfer results and null space validation 

The objective is to manufacture nanoparticles of mean size 280DES =y  nm in device B under 
the new experimental setup. Nanoparticles of this size were already obtained in the 
experimental campaigns performed in device A and in device B with the old experimental 
setup (datasets A and B, respectively). The desired size is well within the ranges of the 
historical data (Table 6.1), and the JY-PLS model can be feasibly used to support the design 
of the process conditions to obtain the nanoparticles. 
Table 6.4 reports the results obtained by direct inverting the JY-PLS model through Eqs.(6.8)-
(6.9). 

Table 6.4. Problem 1; operating conditions in device B determined by direct 
inversion of the JY-PLS model to obtain nanoparticles of mean size yDES = 
280 nm. The 95% confidence limits are: 2

lim%95T = 11.46; lim%95SPE = 4.37e-2. 

 cpol 
[mg/mL] 

FR 
[mL/min] W/A Type T2 SPE 

NEW
Cx̂  3.2 53 2.27 0.58 0.62 0 

 
The direct inversion solution provides realistic results for cpol and FR, but the value of the 
variable Type is meaningless (this variable is binary). Therefore the value of this variable has 
to be assigned, unless resorting to optimization algorithms for mixed-integer problems. 
Furthermore, due to limitations of the experimental apparatus, W/A can assume values within 
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a given interval. This provides an additional constraint to the problem, which the direct 
inversion solution in Table 6.4 cannot satisfy. Table 6.4 reports also the T2 and SPE values for 
the solution, from which it can be concluded that the solution lies onto the space of the LVs of 
the model (SPE = 0) and is quite close to the mean of the nanoparticle sizes included in 
dataset CY  (T2 = 0.62). 
In addition to the issue on constraints, the existence of a bi-dimensional null space should be 
considered in the inversion. Due to the null space, the model inversion problem has infinite 
solutions, all of which (according to the model) correspond to the same DESy . To calculate the 
best set of process conditions NEW

Cx  along the null space (i.e. those minimizing the objective 
function and satisfying at the same time all constraints), the optimization problem in Eq.(6.11) 
was solved. 
First, the very existence of the null space was validated experimentally. This was done by 
evaluating different solutions to the JY-PLS model inversion problem along the null space, 
and performing in device B the experiments suggested by these solutions. To move the 
solutions along the null space, the problem in Eq.(6.11) was solved by setting equality 
constraints to variables Type and W/A (i.e. by assigning the polymer and the anti-
solvent/solvent ratio to be used in the experiments), and changing the constraint values in 
order to generate a set of solutions. Furthermore, 01 =g  was set, in order to prevent the 
optimizer from moving the solutions towards the origin of the historical data score space. The 
following boundaries (inequality constraints) were set for the other variables: 
• polymer concentration: 0.026 < cpol < cpol,max; 
• water flowrate: 3 < FR < 120 mL/min. 
These ranges represent the experimental domain defined by the physical limits of the 
experimental apparatus (for FR) and by the historical data range (cpol,max = 6.17 mg/mL for 
PCL80, and cpol,max = 24.83 mg/mL for PCL14,). 
Four different operating conditions sets NEW

Cx  were then calculated using this strategy. Figure 
6.4 shows the representation of the null space, as calculated from the JQ  loadings through 
singular value decomposition (Jaeckle and MacGregor, 2000b; Chapter 2, Section 2.2). 
Namely, Figure 6.4a shows the representation of the bi-dimensional null space in the three-
dimensional score space of the JY-PLS model. The projections of the points estimated by 
optimization along the null space are reported (), together with the scores of the direct 
inversion solution (), and of the historical data used to build the model and included in AX  
(), BX  () and CX  (). For the sake of clarity, Figure 6.4b reports the score space on the 
first two LVs of the model. The meaning of the symbols is the same as in Figure 6.4a, but the 
null space is represented by the thick line, which represents the intersection between the bi-
dimensional null space and the plane of the first two LV scores. The relevant 95% confidence 
limits for the null space are reported as thin lines. These limits have been calculated through a 
bootstrapping algorithm, following the procedure described in Appendix C. 
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(a) (b) 
Figure 6.4. Problem 1; null space validation. Representation of the null space for yDES = 
280 nm, and of the projections () on the score space of the JY-PLS model of the operating 
conditions in device B as estimated by model inversion along the null space: (a) score 
space of the 3 LVs of the model and (b) of first 2 LVs of the model. In each plot, the scores 
of the data in AX  (), BX  () and CX  () are reported together with the scores of the 
direct inversion solution (). The null space is represented in (a) by the gray plane and in 
(b) by the thick line with the relevant 95% confidence limits (thin lines). 

Table 6.5 reports the four different process operating conditions sets estimated along the null 
space through the JY-PLS model inversion. As can be seen, a reasonably wide region of the 
null space could be explored by simply changing the equality constraints for W/A and for the 
polymer type. This can be observed also from the projections of the solution sets into the 
score space and from the solution Hotelling’s T2 in Table 6.5. Furthermore, despite the 
constraints assigned to some of the variables, the solution SPEs are very low, meaning that 
the solutions are quite close to the LV model space, thus improving their reliability. 

Table 6.5. Problem 1, null space validation. Operating conditions in device 
B determined by inversion of the JY-PLS model to obtain nanoparticles with 
yDES = 280 nm, and comparison with the mean diameters obtained 
experimentally. Variables W/A and Type assigned as equality constraints. 
The 95% confidence limits are: 2

lim%95T = 11.46; lim%95SPE = 4.37e–2. 

Run 
no. 

cpol 
[mg/mL] 

FR 
[mL/min] 

W/A Type T2 SPE EXP
pd [nm] Error 

[%] 
1 1.5 3 1.00 PCL80 3.16 2.45e-4 289.5 –3.4 
2 2.9 24 2.94 PCL80 1.56 4.63e-6 287.4 –2.6 
3 4.1 53 1.00 PCL14 2.33 3.13e-4 268.6 +4.1 
4 5.0 68 2.84 PCL14 2.40 4.72e-4 247.9 +11.5 

 
To validate the existence of the null space and to verify that the desired nanoparticle size were 
actually obtained, the operating conditions estimated by JY-PLS model inversion were 
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actually implemented in a series of experiments on device B under the new experimental 
setup (i.e. the same used to obtain the data included in datasets CX  and CY ). The new 
experimental results are reported in the last two columns of Table 6.5, in terms of mean size 
of the obtained nanoparticles ( EXP

pd ) and of percentage error compared to the desired value 
280DES =y  nm. As can be seen, the obtained nanoparticles have a mean size very close to the 

target one, especially for the experiments performed with PCL80; slightly larger errors are 
observed when using PCL14. However, the observed errors are well within the repeatability 
threshold (15%). Hence, it can be concluded that particles of roughly the same size are 
obtained by running device B at very different operating conditions. These five sets of 
operating conditions (which include those obtained from direct model inversion) all lie on the 
same space on the score space (the null space), as Figure 6.4b clearly shows. 
Note that the errors for PCL80 are both negative, whereas for PCL14 they are both positive. 
Although the number of experimental runs is not sufficient to draw general conclusions, this 
seems to indicate that a polymer effect does exist, but it is not completely captured by the 
model. Notwithstanding this, the general trend observed in the data, according to which PCL14 
is associated with smaller nanoparticles compared to PCL80, is captured. Also note that the 
largest error between experimental and expected values is observed in run 4, when the largest 
water flowrate FR value was used. As mentioned earlier, from first-principles knowledge on 
the process it is known that the dependence of dp from the water flowrate is stronger at low 
values of FR, whereas at higher values the effect is less significant. The FR value used in run 
4 (68 mL/min) is an intermediate value (see Table 6.1), which is representative of a transition 
zone in the relationship between FR and dp. This may justify the increased error observed for 
this run. Since the JY-PLS modeling technique is linear, a solution to this issue may consist in 
the use of a nonlinear transformation for the FR variable. Alternatively, an iterative approach 
could be used, by designing the model after new experiments have been carried out, and 
performing the inversion with the updated model, until convergence on the desired mean 
nanoparticle size is reached (García-Muñoz et al., 2005). Local modeling approaches (Dayal 
and MacGregor, 1997) may also be used to cope with possible nonlinearities. 
The results validate experimentally the existence of the null space, and clearly show how 
different operating conditions along it indeed provide the same desired mean particle size. 
This can be useful in defining the design space of the process, under a QbD framework 
(Chapter 1, Section 1.2.2), confirming what was stated in Chapter 4 on the link between the 
null space and the design space concepts (Section 4.3.2.1). Therefore, this has very important 
implications in pharmaceutical engineering, where the desired product is often defined within 
very narrow characteristic property windows. 
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6.4.3 Problem 2: transfer results and validation 

Manufacturing nanoparticles whose dimension is smaller than an assigned threshold is a 
typical requirement when the particles are to be used as drug carriers (Section 6.2). To test the 
proposed methodology for the solution of this problem, the JY-PLS model inversion approach 
was applied with the objective of manufacturing nanoparticles of mean size dp < 190 nm in 
device B under the new experimental setup. The optimization problem in Eq.(6.11) was 
solved by setting an inequality constraint for NEW

Cŷ , and by assigning 190=b  nm as the 
constraint value. As in Problem 1, the polymer type and the anti-solvent/solvent ratio values 
were assigned and set as equality constraints in the optimization. 
In Table 6.6, three different sets of operating conditions determined by inversion of the JY-
PLS model at different values of W/A and Type have been reported, together with the relevant 
T2 and SPE statistics, and with the values of the mean nanoparticle size predicted by the 
model for the calculated solution sets ( pd̂ ). The experimental conditions obtained by 
optimization present high values of FR and (relatively) low values of cpol. This is not 
surprising, as the optimizer is asked to find operating conditions suitable to manufacture 
nanoparticles with small size compared to the historical available data. Therefore, to satisfy 
the constraints, the optimizer is forced to find solutions near the boundaries of the operating 
variable domain. In fact, in runs 1 and 3 the calculated value for FR hits its upper bound. As a 
consequence, the values of the SPE statistic are larger than in Problem 1 (although still 
acceptable), indicating that in order to satisfy the constraints, the solution has to be moved out 
of the LV model space. 

Table 6.6. Problem 2. Operating conditions in device B determined by 
inversion of the JY-PLS model to obtain nanoparticles with dp < 190 nm, and 
comparison with the mean diameters obtained experimentally. Variables W/A 
and Type assigned as equality constraints. The 95% confidence limits are: 

2
lim%95T = 11.46; lim%95SPE = 4.37e–2. 

Run 
no. 

cpol 
[mg/mL] 

FR 
[mL/min] W/A Type T2 SPE pd̂ [nm] EXP

pd [nm] Error 
[%] 

1 3.0 120 1.00 PCL80 1.2 3.28e-2 185.4 183.4 +1.1 
2 1.5 83 2.94 PCL80 1.5 7.93e-5 183.1 192.4 –5.1 
3 2.4 120 2.94 PCL14 2.8 5.30e-3 161.4 165.8 –2.7 

 
As in Problem 1, the operating conditions calculated by inversion of the JY-PLS model were 
implemented on device B, under the new experimental setup, to experimentally validate the 
results. The last two columns of Table 6.6 report the value of the mean size of the 
nanoparticles obtained experimentally ( EXP

pd ), together with the error accounting for the 
difference between model predictions and experimental values. For run 1 and run 3 the 
experimental values of the nanoparticle mean size satisfy the inequality constraint assigned in 
the inversion problem ( 190≤pd  nm). For run 2 the experimental value does not satisfy the 
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constraint, but the obtained value for the nanoparticle size (192.4 nm) is very close to the 
threshold. Nonetheless, the errors between experimental and predicted values are very small. 
It should be emphasized that at the high FR values used in runs 1 and 3 the behavior of the 
system is more easily predicted by the model, as data at similar flowrates were obtained also 
from the historical experiments. 
Figure 6.5 represents the projections of the operating condition sets reported in Table 6.6 in 
the space of the scores on the first two LVs of the JY-PLS model. The meaning of the 
symbols is the same as in Figure 6.4. It can be observed that the estimated process conditions 
project in the region of negative scores for both LV1 and LV2, which, by considering the 
weights in Figure 6.3c, corresponds to the region of high FR, low cpol and high W/A values. 
The (relatively) small values of the constraints assigned to W/A to estimate the sets of Table 
6.6 tend therefore to pull the solution projections to the center of the model latent space. 
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Figure 6.5. Problem 2. Projections () on the score space of the first two LVs of the JY-
PLS model of the operating conditions in device B as estimated by model inversion to 
obtain nanoparticles with dp < 190 nm. The scores of the data in AX  (), BX  () and 

CX  () are reported as well. 

6.5 Conclusions 
In this Chapter, the problem of the transfer of a product between different equipment, plants 
or manufacturing sites has been tackled. This problem is commonly encountered in process 
development environments, especially when scaling a production between a source plant 
(usually of small size) to a target plant, where the production is supposed to start (e.g., a 
large-scale plant). When dealing with transfer problems, a large amount of data is usually 
available from the experiments performed on the source plant, where the process has been 
widely studied, while few data are available from the target plant. In this Chapter, a procedure 
has been proposed to jointly analyze all the available datasets from experimental campaigns 
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already carried out on different products or different plants configurations, in order to suggest, 
on the basis of the historical knowledge, the most appropriate experimental conditions to test 
in order to address the transfer. 
The procedure is based on the use of a JY-PLS model to relate all the data available from the 
different sources in a whole modeling framework, in order to identify the common latent 
structures between the different datasets. The JY-PLS model is then inverted through the 
general LVRM inversion framework proposed in Chapter 4, in order to suggest the 
experiments to perform.  
The proposed procedure has been applied experimentally to a process involving the 
preparation of nanoparticles for pharmaceutical applications through a solvent displacement 
process in passive mixers. The objective was to produce in a target device, where limited data 
were available, nanoparticles of desired size, by exploiting the data available from a different 
device of smaller size as well as from the same target device but under a different 
experimental setup. 
Two historical datasets were available, which were related to experiments that had been 
carried out in both devices. A third dataset, of limited size, was built ad-hoc, by performing 
the experiments in such a way as to cope with the different experimental setup that the target 
plant experienced over time (mainly due to maintenance operations). 
The three datasets were first modeled through JY-PLS to gain understanding on the physics of 
the systems. The model parameters were interpreted from first-principles, confirming what 
was known only partially from other studies on the systems and providing very useful new 
insights on what determines the difference between the devices. The model was then inverted 
to suggest the optimal experimental sets to implement in the target device to produce 
nanoparticles of desired mean size. 
Two specific problems were studied. In the first one, JY-PLS inversion was used to estimate 
the conditions in device B with the new experimental setup to manufacture nanoparticles with 
an assigned mean size. A bi-dimensional null space had to be considered in model inversion. 
Different process operating conditions were estimated along the null space and 
experimentally tested. Experiments confirmed the existence of the null space and showed how 
different process settings were able to provide the same desired mean nanoparticle size, 
within the experimental uncertainty. 
In the second problem, JY-PLS inversion was used to design the experiments in order to 
obtain nanoparticles with mean size below an assigned threshold. Again, experiments 
confirmed the effectiveness of the proposed procedure in designing the target device 
operating conditions in such a way to obtain nanoparticles of assigned size range. 
The proposed procedure can be easily extended to problems where the product quality is 
characterized by a multivariate set of property specifications. It can be feasibly used to 
support product transfer in product and process development, especially in those industries (as 
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the pharmaceutical one), where transfer activities can be critical in terms of time, resources 
and regulatory oversight. 
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Chapter 7 

Transfer of process monitoring models 
between different plants*

In this Chapter, a general procedure is proposed based on LVMs to tackle the issue of 
transferring process monitoring models between different plants. The procedure identifies five 
different scenarios, which are described and discussed. The proposed methodology is applied 
on a benchmark problem related to the scale-up of the monitoring model for an industrial 
continuous spray-drying process. Then, the methodology is extended to batch process 
monitoring. 

 

7.1 Introduction 
When the manufacturing of a product with assigned quality specifications is transferred from 
a source plant A to a target plant B, it would be highly desirable to have a reliable monitoring 
system available for plant B as quickly as possible, in order to detect incipient faults and 
possibly to diagnose them since the beginning of the operation in plant B. Multivariate 
statistical process control techniques have been applied successfully in several industrial 
applications for online process monitoring and fault detection (Nomikos and MacGregor, 
1994; Wise and Gallagher, 1996; Wold et al., 1998). In order to build a reliable process 
monitoring model, these techniques require that data representing the common cause 
variability (CCV) to which the process is subject be available. 
In production transfer activities (e.g. plant scale-up), experiments in the target plant B are 
limited to those needed to define the normal process conditions of the operation, and process 
data are therefore usually insufficient to build a monitoring model for this plant based on 
multivariate statistical techniques. Experimental campaigns designed to produce CCV data in 
plant B are carried out very rarely, especially if the cost of raw materials is high or the product 

                                                 
*Tomba, E., P. Facco, F. Bezzo, S. García-Muñoz and M. Barolo (2012).  Combining fundamental knowledge and latent 
variable techniques to transfer process monitoring models between plants. Chemom. Intell. Lab. Syst., 116, 67-77. 
Facco, P., E. Tomba, F. Bezzo, S. García-Muñoz and M. Barolo (2012). Transfer of process monitoring models between 
different plants using latent variable techniques. Ind. Eng. Chem. Res., 51, 7327-7339. 
Facco, P., M. Largoni, E. Tomba, F. Bezzo and M. Barolo (2013). Transfer of process monitoring models between plants: 
batch systems. In preparation. 



Chapter 7 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

188 

manufacturing is subject to a rigid regulatory environment (as in the case of pharmaceutical 
industries). At the same time, if the product has already been manufactured in plant A, several 
operating data are usually available from this plant, and a set of normal operating conditions 
(NOC; MacGregor and Kourti, 1995) may have been identified that guarantee that the product 
quality meet the specifications with acceptable variability. 
It would be therefore useful to transfer the knowledge already available for plant A in order to 
monitor the manufacturing process in plant B until a sufficient amount of data are collected in 
this plant to design a process monitoring model entirely based on the plant B data. In this 
Chapter, a possible strategy to solve this problem (which is referred to as a process 
monitoring model transfer or simply model transfer problem) is presented. 
The model transfer issue can be considered as part of the much wider technology transfer 
problem, which has been partly reviewed in Chapter 5. However, model transfer is 
fundamentally different from the product transfer problem that was considered in Chapter 5 
and was based on LVRM inversion (Jaeckle and MacGregor, 2000b; García-Muñoz et al., 
2005). 
So far, the model transfer issue has been investigated mainly with reference to instrument 
calibration models, in particular in spectroscopy (Feudale et al., 2002). The underlying idea of 
calibration model transfer approaches is that if the same sample is analyzed using different 
instruments, there should be a correspondence between the spectra measured in each 
instrument. However, transfer approaches developed for these models are not suitable for the 
transfer of process monitoring systems, since it is hard or even impossible to find a 
correspondence between samples coming from different plants. Methodologies for 
transferring a model to a new process have been recently proposed by Lu and coworkers 
(2008a, 2008b and 2009). Although these procedures are effective, they basically refer to the 
transfer of predictive models (e.g., soft sensors) rather than to the transfer of monitoring 
models, and therefore are not appropriate for the problem under investigation.  
A first contribution to the transfer of monitoring models was presented by Chiang and 
Colegrove (2007), who implemented a method to monitor the quality of products 
manufactured in different plants and with different production targets, but showing similar 
correlation among the quality variables. Even if the procedure is very effective, it is applied 
for product quality control, thus not considering the online process measurements. 
The complexity of the model transfer problem arises from the fact that several issues 
intersecting with each other need to be accounted for when transferring a monitoring model 
between plants. First, one should consider the type of information initially available, namely 
if process measurements only, or process measurements as well as (perhaps limited) 
fundamental process knowledge (e.g. in the form of physical laws to which the process is 
known to obey) shall be used. The appropriate model transfer approach also depends on the 
source of the available process data, namely if plant A data only, or plant A data as well as 
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plant B data are available. Finally, the process variables that are used to design the monitoring 
model has to be considered as well. In fact, some variables measured in both plants might be 
similar in nature (common variables), but some other may not. Assuming that the 
fundamental driving forces of the process do not change between the plants, common 
variables deserve special attention because they may reflect similar signatures of the process 
in each plant, and therefore may provide a link between the plants. Therefore, whether 
common variables only should be used to design the plant B monitoring model, or both 
common variables as well as other variables are to be used is a matter of decision. 
A general framework is therefore proposed to tackle the problem of transferring a process 
monitoring model between different plants that manufacture the same product. The 
framework is illustrated in Figure 7.1 and is based on five different scenarios, depending on 
the combination of the issues mentioned above. For each scenario, a solution strategy based 
on LV modeling is proposed.  

AVAILABLE INFORMATION

PROCESS 
VARIABLES 
USED FOR 

MODEL DESIGN

SOURCE OF 
AVAILABLE 

DATA
plant A data

plant A data + 
plant B data

process data

common variables common variables 
+ other variablescommon variables

Scenario 4 Scenario 5

process data + 
fundamental 
knowledge

plant A data + 
plant B data

common variables common variables 
+ other variables

TYPE OF 
AVAILABLE 

INFORMATION

Scenario 1 Scenario 2 Scenario 3
 

Figure 7.1. Proposed framework for the development of latent variable approaches to the 
transfer of process monitoring models between different plants. 

In the following, the strategies conceived for each Scenario of the framework are described 
and applied to a case study concerning the transfer of the monitoring model for an industrial 
continuous spray-drying process between two plants that differ in the production scale. First, 
scenarios that exploit only process data for the transfer are presented, and monitoring results 
are shown (Scenario 1, Scenario 2 and Scenario 3). Secondly, scenarios that combine the use 
of process data with fundamental engineering knowledge in terms of conservation laws are 
described and the relevant results presented (Scenario 4 and Scenario 5). Finally, the 
techniques proposed for Scenario 2 and Scenario 3 of the proposed framework are extended to 
batch processes by application to a case study dealing with the transfer of the monitoring 
model for a penicillin batch fermentation process, and preliminary results are discussed. 
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7.2 Spray-drying process and available data 
The continuous process considered in this study is a pharmaceutical spray-drying process 
(Figure 7.2). Spray-drying is widely used in the pharmaceutical industry, not only for the 
preparation of solid amorphous dispersions, but also for excipient manufacturing, 
biotherapeutic particle engineering, drying of crystalline active pharmaceutical ingredients 
and encapsulation (Dobry et al., 2009). A schematic of the process is shown in Figure 7.2 
(García-Muñoz and Settell, 2009).  

 
Figure 7.2. Schematic of the spray-drying plants (adapted from García-Muñoz and Settell, 
2009). 

Two industrial plants of different size are considered, namely a pilot-scale unit (plant A) and a 
production-scale unit (plant B). The plants are designed with similar (although not identical) 
layouts. The objective is to develop a model to monitor the performance of the production-
scale plant using information from the pilot-scale plant, i.e. a way to scale-up the process 
monitoring model is sought for. 
Process data are available on normal operating conditions (NOC) in plant A and plant B, as 
well as on a real fault occurred in plant B. Data are organized in the following datasets: 
• AX , which includes 15031A =I  NOC samples from plant A, for which 16A =V  process 

variables were measured. 
• BX , which includes 4224B =I  NOC samples from plant B, for which 10B =V  process 

variables were measured. The sampling interval in the BX  dataset is larger than that in the 
AX  dataset. 

• BFX , which includes 81BF =I  samples from a real fault occurred in plant B, for which BV  
process variables were recorded. The fault was due to a little wandering metal piece that 
clogged one of the swirl nozzle channels of the production-scale plant. Because it is known 
that the fault onset at sample no. 25, the faulty dataset is split into two phases: phase 1 
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corresponds to the first 24 normal operating condition samples of the faulty sequence, 
whereas phase 2 includes samples from no. 25 to no. 81 (actual appearance of the fault). 

In Table 7.1 the process variables measured in each plant are listed. Note that, between the 
plants, the measured process variables differ in several respects, e.g. number, sampling 
frequency, variability, measurement units, and actual location of the measurement sensor in 
the plant. However, some variables (indicated in italics in Table 7.1) share the same physical 
meaning in both plants, and may therefore be thought as common between them. 

Table 7.1. Process variables measured in plant A and in plant B. Process 
variables that are common between the plants are indicated in italics; 
response variables that are common between the plants (an issue discussed 
in Section 7.4.2) are marked by †. 

Plant A (pilot-scale unit)  Plant B (production-scale unit)  
Var. no. Measured variables   Var. no. Measured variables  

1 Pressure 1 (psig) † 
2 Temperature 1 (°C)  
3 Temperature 2 (°C)  
4 Temperature 3 (°C) † 
5 Flowrate 1 (kg/h)  
6 Temperature 4 (°C)  
7 Flowrate 2 (kg/h)  
8 Pressure 2 (mmH2O)  † 
9 Pressure 3 (mmH2O)  † 

10 Pressure 4 (mmH2O)  † 
11 Pressure 5 (mmH2O)  
12  Pressure 6 (mmH2O)  † 
13 Temperature 5 (°C)  
14 Speed 1 (%)  
15 Speed 2 (%)  
16 Speed 3 (%)  

 

 1 Pressure 1 (barg) † 
2 Temperature 1 (°C)  
3 Temperature 3 (°C) † 
4 Flowrate 1 (kg/h)  
5 Flowrate 2 (kg/h)  
6 Pressure 2 (mbar) † 
7 Pressure 3 (mbar) † 
8 Pressure 4 (mbar) † 
9 Pressure 7 (mbar)  

10 Pressure 6 (mbar) † 
 

 
Namely, process variables { }12 ,10 ,9 ,8 ,7 ,5 ,4 ,2 ,1'A =v  of plant A have the same physical 
meaning of process variables { }10 ,8 ,7 ,6 ,5 ,4 ,3 ,2 ,1'B =v  of plant B**

9=′V
. Therefore, a set V   of 

 measured process variables are common between the plants. The within-plant 
correlation and between-plant correlation of common variables can provide very valuable 
information related to the transfer of a monitoring model from one plant to the other one. 
An additional classification of the measured variables will be considered in the case of 
Scenario 3 (Section 7.4.2), and the selected variables are marked in Table 7.1 by the † 
symbol. An overview of the variable classification criteria and of the datasets used for each of 
the model transfer Scenarios of Figure 7.1 is presented in Table 7.2, together with the relevant 
used notation. 
                                                 
** Superscripts ' and " are used in this Chapter to denote two different classifications of the measured process variables. 
Namely, superscript ' refers to the classification (common variables vs. other variables) used in model transfer Scenarios 1 
and 2, whereas superscript " is used to refer to the classification (common response variables vs. other variables) used in 
Scenario 3. 
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Table 7.2. Classification of the measured variables and their notation 
according to the model transfer scenario. The meaning of symbols k, S and W 
will be provided in the relevant sections describing each Scenario. 

Scenario Variable classification Plant  Number of 
variables 

Data 
matrix 

Dimension of 
data matrix 

Scenario 1 & 
Scenario 2 common variables 

A V ' AX′  IA×V ' 
B V ' B

kX′  (k–1)×V ' 

Scenario 3 
other variables 

A V "A AX ′′  IA×V "A 
B V "B B

kX ′′  (k–1)×V "B 

common response variables 
A V " AY ′′  IA×V " 
B V " B

kY ′′  (k–1)×V " 

Scenario 4 common variables 
A V ' A

SUB'X  S×V ' 
B V ' B

W'X  W×V ' 

Scenario 5 none 
A VA AX  IA×VA 
B VB B

WX  W×VB 

 
Furthermore, to assess the effect of uncertainty onto the proposed model transfer methods, 
one hundred different realizations of the plant B real fault were generated artificially. To this 
purpose, the original faulty data in BFX  were first filtered with a median filter (with a window 
size of 3 samples), and the noise of each of the original variables was characterized by 
estimating the variance of the difference between the original signal and the filtered one. The 
one hundred different realizations of the fault were then generated by adding to each of the 
filtered faulty variables a Gaussian random noise, with the same variance as the one estimated 
from the real data. Each fault realization includes 81 samples and maintains the same division 
in phase 1 and phase 2 as the original faulty dataset. 

7.3 Transfer based on process data only 
As long as the data collected from plant B are not enough to build a monitoring model based 
entirely on these data, a way to transfer to plant B the plant A dataset is sought for. Note that, 
when process data are becoming available from the operation of plant B, the plant B 
monitoring model may or may not be adapted using these incoming data. In both cases, a time 
will be reached when the model transfer will be stopped and the process will be monitored 
using plant B data only. 
In this section, the first three proposed model transfer scenarios of Figure 7.1 will be 
presented. Note that, for convenience, only a subset of the plant B dataset BX  was considered 
to build the monitoring model, which includes 3750B =I  data. 
With reference to the adaptive approaches, we will indicate with k the model updating instant, 
i.e. the time at which the incoming plant B measurements are used to adapt the monitoring 
model. As will be clarified later, all the proposed methodologies rely on the assumption that 
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the correlation structure between common variables remains essentially the same in both 
plants. 

7.3.1. Data pretreatment 

One key issue for all the proposed transfer procedures is data pretreatment. The differences 
existing in common variables (e.g. in measurement units, measurement sensor location, …) 
can be compensated for by autoscaling, i.e. by mean-centering the measured process variable 
measurements and scaling them to unit variance. However, the plant difference must be 
compensated for as well, and for this reason the pretreatment of data related to one plant must 
be performed within the same plant. Therefore, plant A data must be mean-centered and 
scaled on the mean and standard deviation measured on plant A, whereas plant B data must be 
mean-centered and scaled on the mean and standard deviation measured on plant B (García-
Muñoz, 2004; Chiang and Colegrove, 2007). 
With respect to plant A, the mean and standard deviation of any process variable v are known 
because the plant A dataset does not change over time. As for the plant B data, they can be 
autoscaled on values of mean and standard deviation that are adaptively updated any time new 
normal operating condition samples become available from this plant†

)1( −k

. In this case, the mean-
centering and scaling of process variable v are performed at updating instant k based on the 
mean and standard deviation of the samples available for plant B up to sample . 
Throughout this Chapter, reference is always made to measured data that have been 
autoscaled within the appropriate plant.  

7.3.2 Model transfer using common process variables only 

Usually, several of the process variables measured in one plant are correlated, the correlation 
structure being related to the (possibly unknown) fundamental mechanisms driving the 
process in that plant. For variables that are common between the plants, the correlation 
structure in one plant is expected to be nearly the same as that in the other plant, because the 
fundamental mechanisms driving the process do not change across the plants and therefore 
leave similar signatures on the measured common variables. Following this rationale, two 
different strategies are proposed to transfer the monitoring model from plant A to plant B 
based on process data only: 
• Scenario 1: this strategy builds the plant B monitoring model using plant A data only, and 

results in the design of a PCA monitoring model; 

                                                 
† Alternatively, autoscaling on fixed expected values of the mean and standard deviation for plant B may prove a viable 
alternative. 
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• Scenario 2: this strategy builds the plant B monitoring model using plant A data as well as 
incoming plant B data, and results in the design of an adaptive PCA monitoring model. 

A comprehensive discussion on the application of PCA to process monitoring is provided by 
MacGregor and Kourti (1995) and Nomikos and MacGregor (1994). 

7.3.2.1 Scenario 1: process monitoring in plant B using PCA 
The PCA monitoring model is built on matrix AX′  of the common process variables measured 
in plant A. Under the assumption that the directions of maximum variability in both plants are 
due to the same driving forces, projecting the incoming plant B data onto the latent space of 
the plant A principal components can effectively survey the operation of plant B. 
Accordingly, faults can be detected by projecting the incoming plant B data onto the PCA 
model designed on plant A data, and observing how each sample locates in the Hotelling T2 
and squared prediction error (SPE) control charts (Chapter 2, Section 2.1.4). 

7.3.2.2 Scenario 2: process monitoring in plant B using adaptive PCA 
The PCA monitoring model can be made adaptive (Rännar et al., 1998; Qin, 1998; Li et al., 
2000) if it is designed based not only on the available plant A dataset, but also on the 
incoming plant B samples. Model adaptation is carried out at updating instant k. At this 
instant, the monitoring model is built on a data matrix kX′  where the common variable data 
measured in plant B up to sample )1( −k  are included: 
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Matrix B

kX′  is concatenated vertically to the available plant A common variable data ( AX′ ): 
 








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

′

′
=′

B

A

k

k
X

X
X      . (7.2) 

 
Note that, if some of the incoming plant B samples are found or known to be far from the 
plant B normal operating conditions (e.g. because of purposely different settings of the plant), 
they should be removed from B

kX′ . 
At updating instant k, the algorithm goes through the following steps: 
1. design a PCA model on matrix kX′ ; 
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2. build the control charts for both the Hotelling’s T2 statistic and the SPE statistic with the 
relevant (say, %951 =−α ) confidence limits ( )

2
lim1 α−T  and ( )lim1SPE α−  (Chapter 2, Section 

2.1.4); 
3. autoscale the new incoming sample B

kx′  from plant B on the current values of mean and 
standard deviation for all the V ′  common variables of plant B available so far; 

4. project the new plant B sample onto the space of principal components determined by the 
PCA model designed at point 1; 

5. calculate 2
kT  and kSPE  for the incoming plant B data and compare them to the confidence 

limits in the relevant control chart. If at time instant k the new incoming sample is found to 
be out of the confidence limits, the model should not be updated. 

7.3.3 Model transfer using common variables as well as other variables 

Although the measurements of some variables that are similar in nature (common variables) 
may be available in both plants, in most cases some variables are measured in one plant but 
not in the other. In these cases, it may be not beneficial to discard a priori all the variables 
that are not measured in both plants, as the information embedded in these variables might be 
useful for process monitoring purposes, especially if the correlation between common and 
other variables within a plant is not very strong (for example, because the variables that are 
not common are representative of additional driving forces acting on the process). For these 
reasons, Scenario 3 considers all the measured variables in each plant to transfer knowledge 
between them for monitoring purposes. 

7.3.3.1 Scenario 3: process monitoring in plant B using adaptive JY-PLS 
This approach is based on the use of JY-PLS (Garcia-Muñoz et al., 2005) which is extended 
here to the transfer of process monitoring models. In this context, JY-PLS models the space of 
common variables in conjunction with the space of variables that have not been labeled as 
common and are specific of each single plant (Figure 7.3). This allows analyzing the between-
plant correlation structure jointly with the within-plant correlation structure for each plant. 
Therefore, the use of JY-PLS allows monitoring the process in a space of reduced dimension 
made of latent variables that take into account the correlation of common variables between 
the plants as well as the correlation between all the variables within each plant. The space of 
the directions of maximum joint variability between common variables in the different plants 
(the joint space) is used to monitor the plant B process through control charts, which include 
information on the relation between common variables and all other variables within each 
plant. The JY-PLS model and the control charts are adaptively updated each time a new 
incoming sample from plant B becomes available. 
It should be noted that the operation of labeling a set of variables as common between plants 
has some degree of arbitrariness. In fact, any subset Vsub ⊂V   of variables can be labeled as 
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common, which implies that, in the context of JY-PLS model transfer, defining what “other 
variables” are in a given plant may be a matter of convenience. As an example, let us consider 
the process under investigation and the measurements available in plant B (Table 7.1): only 
variable #9 is not common between the plants, and labeling this single variable as “other 
variable” in plant B would make matrix B

kX ′′  in Figure 7.3 a column vector, with limited 
predictability over the space V   of common variables. Therefore, to show the potential of 
model transfer via JY-PLS, in this study some common variables were moved to the space of 
other variables (in each plant). A simple criterion was used to move the variables: the 
subspace Vsub  of common variables was defined such that it is made only by those elements 
(i.e. variables) of V   that are also controlled by the control system in both plants. These 
variables, which are referred to as “common response variables” in the following, are 
indicated by symbol † in Table 7.1. All remaining variables in each plant are referred to as 
“other variables” for that plant. Therefore, the following variable classification is used in the 
context of JY-PLS (Figure 7.3 and Table 7.2): 
• common response variables ( AY ′′  and B

kY ′′ ): they correspond to variables 
{ }12 10, 9, 8, 4, ,1A =′′v  in plant A, and to variables { }10 8, 7, 6, 3, ,1B =′′v  in plant B; 

• other variables ( AX ′′  and B
kX ′′ ): they correspond to variables 

{ }16 15, 14, 13, 11, 7, 6, 5,3, 2, A =v  in plant A, and to variables { }9 5, 4, 2, B =v  in plant B. 

1−k

Plant A

Plant B

 between-plant 
correlation

within-plant 
correlation

other variables other variablescommon variables

NA X''A Y''A

V ''A V ''

Yk
''B Xk

''B

V ''B

 
Figure 7.3. Scenario 3. Schematic of the adaptive JY-PLS model at updating instant k. 

The use of adaptive JY-PLS for model transfer is based on the design of the monitoring model 
using the entire plant A dataset ( AX ′′  and AY ′′ ) as well as the samples incoming from plant B 
up to instant k–1 ( B

kX ′′  and B
kY ′′ ). At each updating instant k the algorithm goes through the 

following steps: 
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1.design a JY-PLS model (Chapter 2, Section 2.1.3.2) on all the data from plant A plus data 
available from plant B up to sample ( )1−k .; 

2.build the control charts for both the Hotelling’s T2 statistic and the SPE statistic, with (say) 
95% confidence limits; 

3.autoscale the incoming data from plant B ( B
ky ′′  as well as B

kx ′′ ) on the current values of 
mean and standard deviation for all the variables measured in plant B; 

4.project the incoming plant B data onto the joint space of the JY-PLS model designed at 
point 1: 

 
BTBTBˆ *Wxt kkk ′′=      ; (7.3) 

 
5.in such a way as to obtain the prediction Bˆ ky ′′  of the common response variables: 

 
B

,J
B ˆˆ kkk tQy =′′      ; (7.4) 

 
6.calculate 2

kT  and kSPE  for the new data, and compare them to the confidence limits in the 
relevant control chart of the joint space. If at time instant k the new incoming sample is 
found to be out of the confidence limits, the model should not be updated. 

The control chart design and interrogation procedures for the adaptive JY-PLS model are 
discussed in Appendix D. 

7.3.4 Results and discussion 

The proposed strategies for the transfer of the spray-drying monitoring model from plant A 
(pilot-scale unit) to plant B (production-scale unit) have been tested using the following types 
of data: 
• plant B normal operating condition data; 
• faulty data from the plant B real fault; 
• faulty data from the 100 artificial realizations of the plant B real fault. 
The alarm rate has been used to provide a quantitative evaluation of the fault detection 
performance of the model. To define the alarm rate, it has been assumed that an alarm is 
warned ( 1=iA ) by the monitoring model when ( 1−∆ ) out of ∆ consecutive plant B samples 
lie outside the 95% confidence limit in either the T2 or the SPE monitoring chart. The alarm 
rate AR has been defined as the ratio between the total number totA  of alarms warned on N 
samples projected onto the monitoring model and the number N of projected samples, i.e. (in 
percentage terms): 

 

N
Atot×= 100AR      , (7.5) 
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where: 
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The alarm iA  warned at sample n can take two values, i.e.: 
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where Ik ,,1, +∆∆= , and: 
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AR is expected to be close to zero for normal operating condition samples, whereas it should 
be close to 100% for faulty samples. 
The monitoring model detection performance has further been assessed by evaluating the time 
needed to detect a fault. To this purpose, the time to detection index has been used, which is 
defined as the number of samples after the real fault occurs and until an alarm is generated 
(García-Muñoz et al., 2004). For quick fault detection, the time to detection should be as short 
as possible. 
The results presented in the following refer to the case of 5=∆  samples. Results referring to 
the 100 artificial realizations of the plant B fault have been averaged over all the fault 
realizations, i.e. a mean AR and a mean time to detection have been evaluated in this case. 

7.3.4.1 Results for Scenario 1 
A two-principal component monitoring model has been designed using only the entire plant A 
dataset, and a preliminary study has been carried out to evaluate its performance when the 
available plant B normal operating condition dataset is presented to (i.e. projected onto) the 
model. Figure 7.4 presents the resulting T2 and SPE control charts. Both plots show that the 
plant B normal operating condition samples are correctly assessed as normal by the 
monitoring model designed using plant A data only (2.4% of them exceed the T2 limit and 
5.9% exceed the SPE limit, which is not too far to the 5% control limit violations expected for 
the plant A calibration samples). Following the definition of alarm rate, AR = 0.81% for this 
plant B dataset. 
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Figure 7.4. Scenario 1: monitoring performance on the plant B normal operating condition 
dataset. (a) Hotelling’s T2 chart, (b) SPE chart. 

Next, we study how many NOC samples need to become available from plant B before the 
monitoring model can perform satisfactorily in the detection of a fault (recall that in Scenario 
1 the available plant B normal operating condition samples are not used to update the 
monitoring model, but they only serve to update the mean and standard deviation of the plant 
B incoming samples). 
Results referring to the projection of the plant B real faulty dataset onto the PCA model are 
presented in Figure 7.5 in terms of alarm rate for different numbers of PCs retained in the 
monitoring model. Each point in the x-axis indicates the number of plant B normal operating 
condition samples that the monitoring model “has seen” before the faulty dataset is presented 
to the monitoring model. Recall that the fault onsets at sample no. 25; therefore, the faulty 
dataset is split into two phases: phase 1 corresponds to the first 24 normal operating condition 
samples of the faulty sequence (Figure 7.5a), whereas phase 2 includes samples from no. 25 
to no. 81 (actual appearance of the fault; Figure 7.5b). 
Figure 7.5 indicates that the monitoring performance is very satisfactory. Namely, Figure 7.5a 
shows that, regardless of the number of retained principal components, a satisfactorily low 
alarm rate during phase 1 can be obtained if ~300 (or more) normal operating condition 
samples are available from plant B. On the other hand, during phase 2 (Figure 7.5b) the alarm 
rate is high even when only few normal operating condition samples are available initially to 
update the mean and standard deviation of the plant B measurements. The effect of the 
number of retained PCs seems relatively unimportant in this respect, although using fewer 
PCs results in a somewhat faster model adaptation. 
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Figure 7.5. Scenario 1: monitoring performance on the plant B real faulty dataset. Effect of 
the number of available plant B normal operating condition (NOC) samples and of the 
number of principal components retained in the PCA monitoring model on the alarm rate 
during (a) phase 1 and (b) phase 2 subsets. 

A similar analysis was carried out also on the 100 artificial realizations of the plant B true 
fault, and the mean alarm rate plotted in Figure 7.6 confirms the results obtained for the 
dataset of the real fault. 
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Figure 7.6. Scenario 1: average monitoring performance on the 100 artificial realizations 
of the plant B faulty dataset. Effect of the number of available plant B normal operating 
condition (NOC) samples and of the number of principal components retained in the PCA 
monitoring model on the mean alarm rate during the (a) phase 1 and (b) phase 2 subsets. 

As for the delay in detecting the fault, Figure 7.7 shows that (on average of the whole 100 
fault realizations) the fault detection is delayed by at most 41 =−∆  samples, regardless of the 
number of PCs retained in the model. The apparently small time to detection value obtained 
when less than (say) ~1000 plant B samples are available is due to the following reason. 
When only few plant B samples are initially available, the last phase 1 samples are wrongly 
warned as faulty by the model, and an alarm is generated for each of these samples. Then, 
when the very first phase 2 samples are projected onto the model, they are detected as faulty 
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and the alarm condition 1=iA  in (7.7) is met even if less than ∆ samples have been actually 
collected in phase 2. 
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Figure 7.7. Scenario 1: average monitoring performance on the 100 artificial realizations 
of the plant B faulty dataset. Effect of the number of available plant B normal operating 
conditions (NOC) samples and of the number of principal components retained in the PCA 
monitoring model on the mean time needed to detect the fault. 

7.3.4.2 Results for Scenario 2 
An adaptive PCA model has been designed through the procedure described in Section 7.3.2.2 
using the entire plant A normal operating condition dataset as well as the incoming data from 
plant B. The monitoring performance has been evaluated against the plant B real fault dataset 
as well as its 100 artificial realizations, and similar general results were obtained. Therefore, 
only results for the case of the artificial realizations are reported. Note that, differently from 
Scenario 1, in Scenario 2 the available plant B samples are used not only to update the mean 
and standard deviation of the measured variables, but also to update the monitoring model 
itself. As in the case of the non-adaptive PCA model, how the alarm rate is affected by the 
number of plant B NOC samples available initially and by the number of PCs retained in the 
model was investigated. 
Figure 7.8a shows the alarm rate profile during phase 1 of the faulty dataset (normal operating 
conditions subset). It can be seen that the phase 1 conditions are correctly assessed as normal 
by the adaptive PCA model, with an acceptably low alarm rate, especially if at least ~300 
normal operating condition samples are available initially for model design. Using too many 
(e.g. 4 or 5) PCs worsens the monitoring results. Figure 8b shows that the faulty data subset 
(phase 2) is warned as such with a 95% alarm rate, regardless of the number of PCs retained 
in the model. 
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Figure 7.8. Scenario 2: average monitoring performance on the 100 artificial realizations 
of the plant B faulty dataset. Effect of the number of available plant B normal operating 
condition (NOC) samples and of the number of retained principal components on the mean 
alarm rate during the (a) phase 1 and (b) phase 2 subsets. 

Figure 7.9 indicates that, as in the case of Scenario 1, if enough NOC samples are available 
from plant B, 4 faulty samples are needed before the fault can be actually warned by the 
monitoring model. 
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Figure 7.9. Scenario 2: average monitoring performance on the 100 artificial realizations 
of the plant B faulty dataset. Effect of the number of available plant B normal operating 
condition (NOC) samples and of the number of principal components retained in the PCA 
monitoring model on the mean time needed to detect the fault. 

On the whole, the monitoring performances of the PCA model and of the adaptive PCA 
model appear very similar. 

7.3.4.3 Results for Scenario 3 
An adaptive JY-PLS model has been designed through the procedure described in section 
7.3.3.1 using the entire plant A normal operating condition dataset as well as the data 
incoming from plant B. Only those common variables that are controlled by the control 
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system were included in the joint-Y space; this makes the column dimension of the BX ′′  
matrix be 4. First, results are presented for the monitoring of the artificial realizations of the 
plant B faulty dataset, then the performance of the monitoring system for the plant B real 
faulty dataset is considered. 
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Figure 7.10. Scenario 3: average monitoring performance on the 100 artificial realizations 
of the plant B faulty dataset. Effect of the number of available plant B normal operating 
condition (NOC) samples and of the number of retained latent variables on the mean alarm 
rate during the (a) phase 1 and (b) phase 2 subsets. 
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Figure 7.11. Scenario 3: average monitoring performance on the 100 artificial realizations 
of the plant B faulty dataset. Effect of the number of available plant B normal operating 
condition (NOC) samples and of the number of latent variables retained in the JY-PLS 
monitoring model on the mean time needed to detect the fault. 

Figure 7.10a reports the phase 1 mean AR results for the 100 artificial realizations of the 
faulty dataset from plant B. The mean AR is very low for any number of latent variables 
(LVs) retained in the model. On the other hand, Figure 7.10b shows that, in order to achieve 
an acceptably high mean AR during phase 2, at least three LVs must be retained in the model, 
regardless of the amount of plant B NOC data initially available to design the model itself. 
Remarkably, Figure 7.10 also shows that the adaptive JY-PLS model (which makes use of 
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information retrieved from common variables as well as from variables that are not common 
between the plants) can adapt very quickly to the plant B conditions, especially if at least 
three LVs are used. It should be reminded that the spaces modeled by the adaptive JY-PLS 
model and by the PCA models are fundamentally different, and therefore a direct comparison 
between the optimal number of LVs for the different scenarios is improper. The indication of 
a minimum optimal number of LVs is confirmed by Figure 7.11, which suggests that retaining 
3 or 4 LVs makes the time to fault detection reasonably short. 
To further illustrate how the monitoring performance changes as the number K of plant B 
NOC samples initially available increases, the plant B real faulty sequence was projected onto 
three different models built on 3 LVs, which differ by the value of K (namely, 60,40,20=K  
samples), and the monitoring performance in each case was analyzed through the relevant 
control charts (Figure 7.12). 
When the model is designed based on a limited initial number of plant B NOC samples (K = 
20 samples) and the faulty sequence is projected onto the model (Figure 7.12a-b), the 
monitoring performance is unsatisfactory because the alarm rate is 100% in phase 1 (see also 
the averaged values of Figure 7.10a), i.e. alarms are generated even before the fault actually 
onsets. This is because the variability captured by a model designed on only 20 plant B NOC 
samples does not fully represent the variability of the incoming plant B samples, even if these 
samples are used to update the model. 
An improvement of the monitoring performance is obtained when K = 40 plant B NOC 
samples are available initially to design the model (Figure 7.12c-d): the alarm rate in phase 1 
decreases to the (still unsatisfactorily high) value of 40% (see also the averaged values of 
Figure 7.10a), whereas it reaches an appropriate value (94.7%) in phase 2 (see also Figure 
7.10b). Note in Figure 7.12c-d that the monitoring performance during phase 1 starts 
improving after sample #10 has become available from plant B. This highlights the beneficial 
effect of model adaptation using the incoming plant B NOC samples. 
Finally, when more plant B NOC data are available initially to design the model (K = 60 
samples, Figures 7.12e-f), the monitoring performance becomes fully satisfactory, with an 
alarm rate of zero during phase 1, and of 94.7% during phase 2 (also see the averaged values 
of Figure 7.10). Therefore, it can be concluded that in Scenario 3 satisfactory monitoring 
performances can be obtained with a much smaller dimension of the plant B NOC database 
than in the case of Scenarios 1 and 2. 
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Figure 7.12. Scenario 3: monitoring performance on the plant B real faulty dataset. 
Hotelling T2 and squared prediction error charts for different numbers K of the plant B 
normal operating condition (NOC) samples available initially: (a) and (b) K = 20 samples, 
(c) and (d) K = 40 samples, (e) and (f) K = 60 samples. The fault onsets at sample no.25. 
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7.4 Transfer based on process data and fundamental knowledge 
In general, in two plants dedicated to the same manufacturing process, the fundamental laws 
describing the physics of the system are expected to be the same, because the underlying 
physical phenomena driving the process are the same. 
As described in Chapter 6, in technology transfer activities between plants (e.g., plant scale-
up), it is customary to try identifying combinations of physical variables and/or physical 
properties (e.g. dimensionless numbers) whose values be as independent as possible from the 
plant, but dependent on the relevance of the physical phenomena driving the process 
(Zlokarnik, 2006). The values taken by these plant-independent variables can identify the 
regime (e.g. heat exchange, fluid flow) at which the plants are operated. Under NOC, two 
similar plants manufacturing the same product through the same process are expected to be 
driven by the same driving forces, hence to be characterized by similar values of the relevant 
plant-independent variables, or similar correlation between their values, or between their 
values and the values of the other process variables. This feature can be exploited to relate 
data coming from plant B to the data available from plant A in order to design a monitoring 
system for plant B. 
For the process under investigation, one plant-independent variable can be obtained from a 
macroscopic steady-state energy balance around the spray-drying chamber (Figure 7.2). This 
variable summarizes the available knowledge about the manufacturing process and will be 
used to assist the model transfer exercise. 
Following Dobry et al. (2009), the energy vapE∆  required to vaporize the solvent in the 
drying chamber can be calculated as: 

 
( ) vap

solidssoln
vap 1 HxME ∆⋅−⋅=∆       , (7.9) 

 
where solnM  is the solution flowrate entering the system, solidsx  is the mass fraction of solids in 
the solution, and vapH∆  is the heat of vaporization. The energy gasE∆  that is lost by the 
drying gas entering the drying chamber is calculated as: 

 
( )OUTIN

gas
gas TTcME p −⋅⋅=∆       , (7.10) 

 
where gasM  is the gas flowrate entering the drying chamber, pc  is the gas heat capacity, and 

INT  and OUTT  are the inlet and outlet temperatures of the gas. From an energy balance around 
the drying chamber, it follows that gasvap EE ∆=∆ . Therefore: 

 
( ) ( )OUTIN

gas
vap

solidssoln 1 TTcMHxM p −⋅⋅=∆⋅−⋅       , (7.11) 
 

which, after algebraic manipulation, gives: 
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The right-hand side term in Eq.(7.12) contains only physical properties ( vapH∆  and Pc ) and a 
variable ( solidsx ) related to the inlet solution, and it is reasonable to assume that the values of 
these quantities are similar in both plants. Therefore, under normal steady-state conditions, 
the term in the left-hand side of Eq.(7.12) is expected to take similar values in both plants. 
This term represents the difference between the inlet and outlet gas temperatures, weighted 
according to the ratio between the gas and the solution flowrates. We will refer to it as a 
weighted temperature difference (wtd). This plant-independent variable can be calculated 
from the available process measurements in both plants (Table 7.1), and can be used to match 
similar states reached in both plants. Indeed, wtd identifies the thermodynamic design space 
of the process (Dobry et al., 2009; ICH, 2009): as long as the process moves inside the design 
space, it can go through different thermodynamic states, characterized by different values of 
wtd, without affecting the operation and hence the quality of the manufactured product. 
Therefore, assuming that for the NOC of plant A the operation is inside the design space for 
wtd, if the values of wtd for the data in plant B match the values of wtd of the plant A data, the 
operation in plant B can be considered acceptable from a thermodynamic point of view. In 
Figure 7.13, the values of wtd calculated for all the samples of AX and BX  are shown. It can 
be clearly seen that the operation in plant B is represented well by the operation in plant A, 
according to wtd. 
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Figure 7.13. Values of wtd calculated for all the samples in (a) the plant A and (b) the 
plant B datasets. 

It should be remarked that the identification of an effective plant-independent design space to 
support the transfer of knowledge from one plant to another one depends not only on the 
fundamental equations describing the process, but also on the measurement systems available 
in both plants. For example, wtd can be an effective plant-independent variable only if the 
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temperatures and flowrates upon which wtd is calculated can be measured in both plants, i.e. 
if they are common variables. Note that in general more than one plant independent variable 
may be identified, each one describing a different physical phenomenon driving the process. 
Next, two different scenarios are proposed to transfer a process monitoring model from plant 
A to plant B. Both of them use wtd as a way to transfer fundamental process knowledge 
between the plants, but they differ for the way they use the available plant measurements: 
• Scenario 4: the plant B monitoring model is a PCA model that uses only measured 

variables that are common between the plants; 
• Scenario 5: the plant B monitoring model is a JY-PLS model using common variables as 

well as other measured variables. 
Differently from the previous scenarios, to evaluate the performance of the proposed model 
transfer approaches when only a limited number of plant B samples is available, only the first 
W samples of the whole plant B dataset BX  are assumed to be available initially (e.g. because 
the plant was just started up). These samples are organized in matrix B

WX  [ ]BVW × . 

7.4.1 Scenario 4: model transfer using common process variables only 

As disclosed in Section 7.3.2, if the fundamental mechanisms driving the process are assumed 
to be the same in the two plants, the correlation structure between common variables in one 
plant is expected to be similar to that in the other plant. Following this rationale, a strategy is 
proposed to transfer the monitoring system from plant A to plant B based only on the 
common variables measured in both plants and exploiting the available fundamental 
knowledge. 
The plant B monitoring model is built using PCA on the matrix ABX′  generated by 
concatenating the available common variables data from plant B with the data from plant A 
that (using the available process knowledge) are found to be most similar to plant B data. The 
similarity between the samples from the two plants is determined by the plant-independent 
variables (wtd, in this case study); details on the similarity concept will be given in the next 
subsection. The rationale is illustrated in Figure 7.14: wtd is calculated for each sample in AX  
and for the W available samples collected in plant B (matrix B

WX ). For each value of wtd 
calculated from samples of plant B (collected in column vector B

Wwtd ), the samples of AX  
having the values of wtd (collected in vector Awtd ) most similar to those of plant B are 
selected to form the matrix A

SUBX′  [ ]VS ′× , in which only common variables are considered. 
By concatenating A

SUBX′  with B
WX′  [ ]VW ′×  (generated from B

WX  considering only the 
common variables), matrix ABX′  is generated: 

 








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



′

′
=′
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A
SUBAB

WX

X
X      . (7.13) 
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The same considerations on data pretreatment reported in Section 7.3.1 are valid in this case. 
PCA is then applied to ABX′  in order to build the monitoring model for plant B. The number 
of PCs used to build the model has been selected automatically, and corresponds to the 
number of eigenvalues of the matrix ABTAB XX ′′  that are found to be greater than 1 (Chapter 
2, Section 2.1.1.2). 

AX

A
SUBX′

PCA

B
WX′B

WX

ABX′

Awtd

B
Wwtd

Plant A

Plant B

 
Figure 7.14. Scenario 4. Schematic of the transfer strategy using common process 
variables only. 

7.4.1.1 Assessing the similarity between plants 
For the construction of the ABX′  matrix, for each of the W samples available from plant B the 
most similar samples in plant A are selected. The similarity between samples in the two plants 
is assessed by comparing the wtd values calculated for each of them. For each element B

wwtd  
of B

Wwtd , the absolute distance between B
wwtd  and the i-th element of Awtd  is calculated as: 

 
WwIiwtdwtdd wiwi ,...,2,1   ;,...,2,1         ABA

, ==−=      . (7.14) 
 

The element A
iwtd  of Awtd , for which the smallest value of wid ,  is calculated, is selected as 

the most similar to B
wwtd . Repeating the procedure for all the W elements in B

Wwtd , a vector 
A
MINwtd , formed by the W wtd values of the plant A samples considered most similar to those 

of plant B, is eventually obtained. In A
MINwtd , the maximum and minimum wtd values are 

identified, which define the range for the selection of plant A samples: all samples of plant A 
having wtd values falling inside the identified range are selected as the most similar to those 
in B

WX , and are used to form the matrix A
SUBX′  (Figure 7.14). 

Note that this method to assess similarity between the plant samples is based exclusively on 
the plant-independent variable wtd. In general, the number and type of plant-independent 
variables depend on the specific case study. If more than one plant-independent variable is 
available, the distance calculated using Eq.(7.14) might not be a robust measure of similarity, 
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due to possible correlation between the variables considered. In these cases, it may be more 
effective to consider correlation-based spectral clustering (Fujiwara et al., 2010 and 2011) or 
nearest-neighborhood methods (Facco et al., 2010) in the latent space of the plant 
independent variables (obtained for example from a PCA) rather than in the real variable 
space. 

7.4.2 Scenario 5: model transfer using common process variables as 
well as other variables 

The motivations for considering both common as well as other variables to guide the 
monitoring model transfer have already been highlighted at the beginning of Section 7.3.3. In 
Scenario 5 all the measured variables in each plant and the available plant-independent 
variables are considered to transfer knowledge between the plants for monitoring purposes. 
In each plant, the plant-independent variables are expected to be highly correlated with the 
process variables measured in the corresponding samples. Moreover, if the driving forces 
characterizing the plant operation are similar, it is expected that the plant-independent 
variables calculated from the plant A and plant B samples share the same correlation 
structure. This means that plant A and plant B datasets can be studied through the common 
space generated by the plant-independent variables, following a JY-PLS modeling approach 
(García-Muñoz et al., 2005). 

within-plant 
correlation

between-plant 
correlation

B
WXB

WY

AYAXPlant A data

Plant B data

Plant-independent 
variables

 
Figure 7.15. Scenario 5. Schematic of the JY-PLS procedure for the model transfer strategy 
using common as well as other variables measured in the two plants, together with plant-
independent variables. 

Figure 7.15 shows the way in which JY-PLS is used in Scenario 5: the plant-independent 
variables are calculated for each sample in AX  and stored in the matrix AY , and the same 
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operation is repeated for the W samples available from plant B ( B
WX ), generating the matrix 

B
WY  of the plant-independent samples for plant B. In this way, JY-PLS models the within-

plant information embedded in each plant dataset jointly with the between-plant information 
provided by the plant-independent variables. 
The parameters of the JY-PLS monitoring model can be found according to what described in 
Chapter 2 (Section 2.1.3.2). In this case study, the number of LVs used to build the JY-PLS 
model is selected automatically based on the eigenvalue-greater-than-one rule applied to the 
correlation matrix of B

WX  (Chapter 2, Section 2.1.1.2). 
Note that to apply the JY-PLS approach it is essential that data in AY  and in B

WY  share the 
same correlation structure. This can be assessed for example by building a PCA model on B

WY  
and verifying that the SPE values for the AY  data projected onto the B

WY  model are within 
acceptable limits (García-Muñoz et al., 2005). Nearest-neighborhood methods in the latent 
space of the joint matrix [ ]TTBTA  WYY  could then be used to select samples in AY  most similar 
to those in B

WY , as was described in the case of the transfer strategy considering common 
variables only (Section 7.4.1). This would generate two datasets ( A

SUBX  and A
SUBY ) of selected 

samples, which allow to build local JY-PLS models to improve the performances of the 
transfer model. 
In this case study, AY  and B

WY  (Figure 7.15) are univariate, because there is only one plant-
independent variable (wtd). As a consequence, the JY-PLS model may be more affected by 
the within-plant correlation. For this reason, given that the appropriate data preprocessing is 
applied (Chapter 2, Section 2.1.3.2), in this case study there is no need to select the plant A 
samples which are most similar to those available from plant B, but the whole AX  dataset is 
used and the model transfer strategy is applied directly as represented in Figure 7.15. 

7.4.3 Online monitoring and model adaptation 

As long as samples are incoming from plant B, the model transfer procedure needs to be made 
adaptive for online use (Rännar et al., 1998; Qin, 1998; Li et al., 2000). For Scenario 4 and 
Scenario 5, a different adaptation strategy has been implemented compared to the Scenario 2 
and Scenario 3. At the generic sampling instant j, there are two different reasons why the 
model may need to be adapted: 1) the j-th sample collected from plant B ( B

jx ) is assessed as 
normal, and therefore a larger plant B database can be used to build the monitoring model (as 
for Scenario 2 and 3); 2) B

jx  is assessed as belonging to a set of new plant operating 
conditions reached recently (e.g. due to fouling, catalyst deactivation), to which the model is 
required to adapt by changing the plant B database upon which the model is built; this new 
model will be called a “local” model. If none of these two conditions occur, the monitoring 
model will not be adapted. 
Following this rationale we assume that, at instant j, a monitoring model for plant B is 
available, which has been built according to the modeling strategies described earlier 
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(Scenario 1 or Scenario 2) using the plant B NOC samples available until updating instant 
( )1−k  and the relevant plant A samples. Model adaptation is carried out at instant j if any of 
the following two conditions is met: 
• B

jx  is assessed as normal by the ( )1−k -th monitoring model; 
• B

jx  is not assessed as normal by the ( )1−k -th monitoring model, but it is representative of 
the new NOC defined by a window of the last W plant B samples together with the plant A 
samples selected on the basis of this window. 

Accordingly, two concurrent conditions must be met to warn an alarm for B
jx : 

• the last Φ consecutive samples collected from plant B are found as outliers in the T2 
monitoring chart or in the SPE monitoring chart for the ( )1−k -th monitoring model; 

• the last Φ consecutive samples collected from plant B are found as outliers in the T2 or in 
the SPE monitoring charts for the local monitoring model built using a window including 
only the last W plant B samples plus the plant A samples that can be selected from this 
window. 

A detailed description of the model adaptation mechanism is provided in Appendix D. Note 
that for both Scenario 4 and Scenario 5, the monitoring of plant B is carried out by calculating 
the monitored statistics ( 2T  and SPE) and their respective confidence limits on the basis of 
plant B data only. In particular, in Scenario 5 (monitoring through JY-PLS) SPE is calculated 
only on matrix B

WX . It would be possible to monitor plant B considering also the SPE on B
WY  

(similarly to what has been done in Scenario 3). However, it was found that for the case study 
under investigation this option did not provide any improvement to the monitoring 
performance. 
The adaptation procedure requires setting the values of two tuning parameters, namely Φ (i.e. 
the number of consecutive plant B samples that need to be detected out of the limits to warn a 
fault) and the window width W (i.e. the number of plant B samples considered for the design 
of the local model). Note that the local model strategy can be regarded as a form of just-in-
time modeling (Cheng and Chiu, 2005; Fujiwara et al., 2010), in which local monitoring 
models are built around a query point with the most appropriate samples selected according to 
the plant-independent variables. 

7.4.4 Results and discussion 

In this section, results on the monitoring performance of the strategies proposed for Scenario 
4 and Scenario 5 are reported using both the original plant B faulty dataset and its 100 
artificial realizations. For each strategy, the effect of the local model window width W on the 
monitoring performance is studied. In all presented results, it is assumed that three 
consecutive samples need to be detected out of the confidence limits of the T2 or SPE 
statistics to warn a fault, i.e. 3=Φ  is always used. 
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The monitoring performance is evaluated in terms of fault detection probability, mean time to 
detection, and amount of type I and type II errors (Montgomery, 2005b). The fault detection 
probability is calculated as the percentage of fault realizations in which the fault is detected 
with respect to the total number of realizations considered (one hundred). The percentages of 
type I and type II errors averaged over all fault realizations are reported separately for the T2 
and the SPE statistics. 
Preliminarily, a limiting condition was studied where the plant B dataset is assumed to be rich 
enough to allow building a monitoring model using plant B data only. A PCA monitoring 
model was therefore built using the entire BX  dataset. Figure 7.16 shows the monitoring 
charts for the 2T  and SPE statistics when the original faulty dataset is projected onto the 
model (5 PCs were used). As can be seen, the fault is highlighted very clearly and promptly in 
both the SPE and the T2 chart (recall that the fault onsets at sample no. 25). 
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Figure 7.16. Reference monitoring results: (a) T2 and (b) SPE control charts for the actual 
faulty dataset projected onto a PCA model built using the entire plant B dataset BX  and no 
plant A data. The dashed lines correspond to the 95% confidence limits. 

Table 7.3 shows the monitoring performances of the considered model in terms of 
percentages of type I and type II errors. Recall that type I errors are calculated on the plant B 
NOC samples available before the onset of the fault (phase 1), whereas type II errors are 
calculated exclusively on the 57 faulty samples (phase 2). 

Table 7.3. Reference monitoring results: amount of type I and type II errors 
for the actual faulty dataset projected onto a PCA model built using only the 
entire plant B dataset BX . 

 Type I errors (%) Type II errors (%) 
T2 8.3 0 

SPE 4.2 0 

 
The results shown in Figure 7.16 and Table 7.3 represent a benchmark for the evaluation of 
the model transfer strategies proposed for Scenario 4 and Scenario 5, as they refer to the best 
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monitoring results that could be achieved using the entire dataset available from plant B (and 
no plant A data). 

7.4.4.1 Results for Scenario 4 
The performance of the PCA model transfer strategy was evaluated assuming that the transfer 
started when W samples had become available from plant B, in such a way that the first 
monitoring model (k = 1) could be built using these samples along with the plant A samples 
selected at k = 1 (Figure D.1). Incoming plant B data were then projected onto the model as 
they were collected, and the model was updated whenever appropriate, as discussed in 
Section 7.4.3. To assess the monitoring performance, the phase 2 samples of the faulty dataset 
realizations were presented to the monitoring system after a given number of NOC samples 
had already been collected from plant B and projected onto the model; namely, it was 
assumed that the fault onset after 75, 100, 125, 150 or 175 plant B NOC samples had already 
been presented to the monitoring model and assessed according to the procedure indicated in 
Figure D.1. It was found that the percentage of the total variance of the AB

kX′  dataset captured 
by the PCA models varied between 80.3% and 90.3% (minimum and maximum calculated 
values, respectively) for a number of PCs ranging from 5 to 6. 
The fault detection probability and the mean time to detection are shown as a function of the 
window width W in Figure 7.17a and Figure 7.17b, respectively. Recall that W corresponds to 
the number of consecutive in-control plant B samples used for local modeling. Several curves 
are reported in the figures, each one being parametric in the number of plant B NOC samples 
presented to the model before the fault onsets. Note that each curve terminates at a window 
width equal to the number of NOC samples after which the fault is presented to the system 
(e.g., if the fault onsets following, say, 75 NOC samples, obviously W cannot be set larger 
than 75 samples). 
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Figure 7.17. Scenario 4: (a) fault detection probability and (b) mean time to detection for 
the artificial realizations of the fault. The curves are parameterized with respect to the 
number of plant B NOC samples projected onto the model before the onset of the fault. 
Results have been averaged over all the realizations. 
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Figure 7.17a shows that the fault detection probability of the PCA model is excellent (~100%) 
if windows larger than ~40 samples are used to build the local model and at least ~100 NOC 
samples have been projected onto the monitoring model before the fault enters the system. On 
the other hand, the detection performance is slightly inferior when the fault onsets after only 
75 NOC samples, due to the fact that the available NOC samples are not yet enough to 
entirely describe the normal variability of plant B data. 
The mean time to detection results reported in Figure 7.17b show that, if the window width 
for local modeling is selected appropriately, the fault can be detected promptly and the mean 
time to detection can be made close to the limiting value of 3=Φ  samples. Overall, the mean 
time to detection results are consistent with the fault detection probability results: likewise the 
probability to detect a fault is small when a small window width is used (e.g. W < 30 
samples), also large mean time to detection values are obtained with small widths. This is due 
to the fact that when a fault has a small probability to be detected, several incoming faulty 
samples are needed before the fault can be detected, which delays the detection; this is why 
the mean time to detection ≅ 55 samples for small window widths (recall that the total number 
of faulty samples in phase 2 of the faulty datasets is 57). It can also be noted that for large 
values of W the delay in fault detection tends to increase. This result may be due to the fact 
that larger window widths include more plant B samples, which account for a larger 
variability than those included in small windows; this can cause an undue adaptation of the 
model to the first samples of a faulty sequence and therefore to a delay in the fault detection. 
In Figure 7.18, the percentages of type I and type II errors are reported as a function of the 
window size W for both the 2T  and the SPE monitoring charts, for the same cases presented 
in Figure 7.17. It can be seen from Figure 7.18a and Figure 7.18b that the proposed transfer 
methodology is quite performing with respect to type I errors if windows wider than ~40 
samples are used for model adaptation, irrespective of the number of plant B NOC samples 
that have been projected onto the model before the fault onsets. For narrower windows, the 
high percentages of type I errors suggest that several NOC samples are erroneously projected 
out of the confidence limits for both statistics (and particularly for SPE). 
Figure 7.18c shows that the percentage of type II errors in the 2T monitoring chart is 
significant even for large window widths and large numbers of plant B NOC samples 
presented to the model. In the case of SPE (Figure 7.18d), the percentage of type II errors is 
very small if window widths larger than ~40 samples are used and more than ~100 NOC plant 
B samples have been presented to the model before the fault onsets. For smaller window 
widths, higher percentages of type II errors are obtained, due to the fact that narrow windows 
are prone to make the model adapt to faulty data, preventing the correct detection of the fault 
(as is also highlighted in Figure 7.17a). With respect to type II errors, the number of plant B 
NOC samples has a larger impact on the results than in the case of type I errors; despite this, 
the fault detection performance is satisfactory, as was shown in Figure 7.17. 
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Figure 7.18. Scenario 4: type I and type II error results for the artificial realizations of the 
fault. (a) Type I error percentage in the T2 monitoring chart; (b) Type I error percentage in 
the SPE monitoring chart; (c) Type II error percentage in the T2 monitoring chart; (d) Type 
II error percentage in the SPE monitoring chart. The curves are parameterized with respect 
to the number of plant B NOC samples projected onto the model before the onset of the 
fault. Results have been averaged over all the realizations. 

As discussed in Section 7.4.1, the transfer of the monitoring model is based on the selection 
of the plant A samples that are more similar to those available from plant B on the basis of the 
values of the plant-independent variable (wtd). A study was therefore carried out to 
understand the impact of the plant A data selection method on the monitoring performance.  
The plant A data selection procedure uses a range of wtd values identified from the plant B 
samples, but the limits of this range could be tightened or widened to increase or reduce the 
number S of samples selected. A weight can be used to tighten or widen the range limits: 
negative values of the weight imply that the limits for wtd selection are tightened (hence 
fewer plant A samples are selected), while positive values imply that they are widened (hence 
more plant A samples are selected). Note that the results presented in Figure 7.17 and Figure 
7.18 were obtained using zero weight. 
The effect of the weight (hence of the number of selected plant A samples) on the 
performance of the monitoring model was studied. The faulty samples (phase 2) were 
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presented to the model after 100 NOC samples had already been collected from plant B and 
projected onto the model. Results are reported in Figure 7.19 in terms of fault detection 
probability and fractional number of selected plant A samples, averaged over all fault 
realizations. The fractional number of selected plant A samples is the ratio between the 
number S of samples selected and the window width W. The reported results are parametric in 
the local model window width W, and five different evenly spaced values of W were 
considered, namely 20, 38, 56, 74, and 92 samples. 
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Figure 7.19. Scenario 4, plant A data selection: effect of the weight on the wtd range limits 
on (a) the fault detection probability, and (b) the fractional number of selected plant A 
data. 

Figure 7.19a illustrates that to achieve a satisfactory fault detection probability, sufficiently 
wide windows of plant B samples (W ≥ 38 samples) should be used. Loosely speaking, this 
means that in order to achieve a good detection probability, the monitoring model should keep 
sufficient memory of past plant B data to assess whether or not adaptation is needed. For any 
value of W, the fault detection probability increases as the weight increases, i.e. as more data 
from plant A are included in the PCA model. However, note that increasing the weight above 
a threshold value (which depends on W) make all plant A be selected. This occurrence is 
visible in Figure 7.19b because each curve steadies at a constant value. Values of the weight 
smaller than about –0.08 imply that no samples are selected from plant A, and this 
significantly decreases the fault detection probability. Also note that even when very small 
weight values are used (e.g., –0.06), the number of selected plant A samples is not zero 
(approximately, it ranges from 20 to 45 times the selected window width). It can be concluded 
that if no plant A data were selected, the resulting adaptive PCA monitoring system based on 
plant B data only would have lower monitoring performance. This indeed confirms that the 
transfer of knowledge from plant A to plant B is useful to monitor plant B when not enough 
NOC data are available from it. Furthermore, good monitoring performance can be achieved 
even without using all the data available from plant A. 
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7.4.4.2 Results for Scenario 5 
The same procedure adopted to evaluate the performance of the PCA model transfer approach 
was used also to evaluate the adaptive JY-PLS approach. To build the joint-Y matrix, only the 
wtd values were used, as shown in Figure 7.15. It was found that the models capture a 
percentage of the total variance of B

kX  (see Figure 7.15) varying between 39.1% and 90.0%, 
and a percentage varying between 75.1% and 97.5% of the total B

kY  variance, with a number 
of selected LVs ranging from 3 to 6. 
In Figure 7.20, the effect of the local model window size and of the number of plant B NOC 
data presented to the model before the fault onsets is reported in terms of fault detection 
probability (Figure 7.20a) and mean time to detection (Figure 7.20b). Good monitoring 
performance is achieved both in the probability to detect the fault and in the mean time to 
detection when more than 100 NOC samples from plant B have been collected prior to the 
onset of the fault. However, even if enough NOC samples are available, good detection 
probabilities are reached only when W is wider than ~90 samples, i.e. for window widths 
larger than in Scenario 4. This seems to suggest that in this case, if narrow window widths are 
used, the JY-PLS adaptive approach is more prone to adapt to the faulty data compared to the 
PCA approach. 
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Figure 7.20. Scenario 5: (a) fault detection probability and (b) mean time to detection for 
the artificial realizations of the fault. The curves are parameterized with respect to the 
number of plant B NOC samples projected onto the model before the onset of the fault. 
Results have been averaged over all the realizations. 

The mean time to detection plot in Figure 7.20b confirms the results provided by the fault 
detection probability plot. In this case, the smallest values reached for the mean time to 
detection (~5 samples) are slightly greater than those obtained in Scenario 4, confirming that 
the JY-PLS approach slightly tends to adapt to the faulty data. 
The percentages of type I and type II errors for both the 2T  and the SPE statistics are reported 
in Figure 7.21. The percentage of type I errors for 2T  (Figure 7.21a) is small (~2 to 5 %), 
even for small window widths and independently of the number of NOC samples from plant 
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B. The percentage of type I errors for SPE (Figure 7.21b) is more affected by the selection of 
the window width, but the smallest percentage reached (<10%) for appropriate values of W 
are lower than in Scenario 4, even if they are larger than the reference value in Table 7.3 
(4.2%). 
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Figure 7.21. Scenario 5: type I and type II error results for the artificial realizations of the 
fault. (a) Type I error percentage in the T2 monitoring chart; (b) Type I error percentage in 
the SPE monitoring chart; (c) Type II error percentage in the T2 monitoring chart; (d) Type 
II error percentage in the SPE monitoring chart. The curves are parameterized with respect 
to the number of plant B NOC samples projected onto the model before the onset of the 
fault. Results have been averaged over all the realizations. 

The percentage of type II errors in the 2T  and SPE monitoring charts (Figure 7.21c and 
7.21d) is very large (>80%) for small window widths, independently of the number of plant B 
NOC data available. This means that for small window sizes, high percentages of truly faulty 
data are projected inside the confidence limits, which confirms that the JY-PLS approach is 
prone to adapt to the faulty data. Overall, in Scenario 5 a smaller number of type II errors is 
obtained in the 2T  chart for an appropriate choice of W compared to Scenario 4, whereas a 
slightly larger number of type II errors in the SPE chart is obtained. 
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The JY-PLS procedure for the transfer of knowledge between different plants in Scenario 5 
seems therefore to require more plant B NOC data to obtain an effective monitoring model 
than the PCA approach in Scenario 4 (which uses only common variables), and consequently 
larger window sizes for model adaptation are required. This is due to the fact that the joint 
correlation between plants and within each plant is more difficult to be captured when also 
variables that are not common are present, because of the larger variability introduced by the 
uncommon variables. However, both techniques seem to be very effective in the transfer of 
knowledge between plants for monitoring purposes. Deeper comparison between the 
techniques seems improper, due to the differences in the spaces modeled by PCA and by JY-
PLS. 

7.5 A comparison between scenarios 
In order to have a better touch of the relative performances of the monitoring model transfer 
methods proposed in the previous sections, the presented approaches have been compared on 
a common basis. Namely, Scenario 2, Scenario 3, Scenario 4 and Scenario 5 have been used 
to address the model transfer problem, by using the same sets of data, model adaptation 
mechanism and fault detection criterion, as well as the same diagnostics for the monitoring 
performance evaluation (Scenario 1 is not considered since it is not adaptive). 
All the scenarios have been implemented assuming that W samples were available initially 
from plant B and following the online monitoring and model adaptation method described in 
Section 7.4.3 (formerly used for Scenario 4 and Scenario 5). Furthermore, for all the scenarios 
it was assumed that the fault onset after 75, 100, 125, 150 or 175 plant B NOC samples had 
already been presented to the monitoring model and assessed according to the procedure 
indicated in Figure D.1. Monitoring performances have been compared on the basis of the 
mean alarm rate (AR) and mean time to detection, defined in Section 7.3.4, and averaged over 
the 100 artificial fault realizations. 5=∆  is considered as criterion to warn an alarm. 
Table 7.4 summarizes the results for the scenario comparison. For each scenario, the 
minimum window width W is reported, together with the minimum number of initially 
available plant B NOC samples after which the mean alarm rate profile in phase 1 is steadily 
below a 5% threshold, while at the same time the mean alarm rate profile in phase 2 is 
steadily above a 90% threshold‡

                                                 
‡ Note that the 5% and 95% thresholds for the alarm rate have been used for illustrative purposes. They have nothing to do 
with confidence limits. 

. The corresponding value of the mean time to detection is 
reported as well. 
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Table 7.4. Comparison between the performances of the monitoring model 
transfer scenarios in terms of minimum window width and number of plant B 
NOC samples required to achieve good monitoring performances. The 
corresponding mean time to detection is reported as well. 

Scenario Window width W 
[samples] 

Plant B NOC samples 
[samples] 

Mean time to detection 
[samples] 

2 52 100 4.2 
3 68 125 2.7 
4 40 125 4.4 
5 68 100 5.1 

 
From the analysis of the results in Table 7.4 some general considerations can be drawn. 
• Overall, all scenarios show satisfactory monitoring performances when at least 100 samples 

from plant B are available, and considering at least 70 past samples in the window to 
update the model each time the adaptation mechanism requires it. The mean time to 
detection values conform to the criterion selected to highlight the fault, except for Scenario 
3, where on average the fault is detected earlier (for the same reason described in Section 
7.3.4.1). 

• The PCA-based methods requires in general smaller windows than the JY-PLS-based 
methods to achieve good performances. Otherwise stated, the JY-PLS approaches are more 
prone to adapt to the data (and therefore also to faulty data) if not enough samples are 
available in the window. This is mainly due to the differences in the latent space modeled 
by PCA (which captures the actual correlation structure between variables), and JY-PLS. 
Furthermore, only common variables are considered in the PCA cases, which may require 
less samples to fully observe the data latent structures. 

• Considering the PCA-based approaches, Scenario 2 requires less NOC samples from plant 
B than Scenario 4, even if the required window width is larger. Therefore, in this case 
study, the PCA-based transfer approach does not seem to benefit from the plant A samples 
selection mechanism based on wdt. 

• Considering the JY-PLS-based approaches, Scenario 5 shows very satisfactory 
performances compared to Scenario 3. In this case the use of the plant-independent variable 
wdt looks advantageous. However, it must be noted that the two scenarios are characterized 
by a completely different matrix structure (as can be seen from Figure 7.3 and Figure 7.15). 
In Scenario 3, variables are divided in common response variables between the plants and 
“other” variables, proper of each plant. Furthermore, the process is monitored only on the 
joint space of the common response variables. This may worsen the monitoring 
performances, which depend on the observability of the fault in the joint space. Differently, 
in Scenario 5 the process is monitored on the latent space estimated from the plant B 
available data ( B

WX ), which includes all the plant B variables. In this way, and thanks to 
wdt, the full plant B covariance structure is captured better. 
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The results confirm that the PCA-based approaches are preferable to support the transfer, as 
they are very effective in detecting possible faults even if limited plant B NOC samples are 
available. However, they can be used only with common variables and they can be reliable 
only if the fault leaves a signature on their correlation structure. In any other case, JY-PLS is 
better, especially if plant-independent variables are used to match different plant datasets. 

7.6 Extension to batch processes 
The approaches described earlier have been conceived with the aim of transferring 
information between different plants to monitor the steady state operation of a process. This 
implicitly requires that the monitored process is continuous. However, the general framework 
proposed in Figure 7.1 can be extended to consider the transfer between batch processes. In 
this Section, a study on the extension of part of the framework to batch processes is reported. 
Although results are still preliminary, it was nevertheless decided to make them available to 
the reader to complete the analysis of the monitoring model transfer issue. 

7.6.1 Batch fermentation process and available data 

The case study under investigation is a simulated fed-batch fermentation process for the 
production of penicillin. A detailed description of the process can be found in Birol et al. 
(2002) and in Çinar et al. (2003). The operation goes through two operating stages: the first 
stage is a batch phase for biomass growth, consuming oxygen and the initial substrate; the 
second stage is the fed-batch production of penicillin in the absence of substrate. The 
penicillin is produced in a well-mixed reactor where substrate and air are fed in a controlled 
environment. A control system keeps the reactor temperature and pH at desired values. A 
batch is considered terminated when the penicillin concentration attains the assigned target 
(1.1 g/L for plant A and 0.74 g/L for plant B). 
Data on two different plants were obtained using the PenSim§

                                                 
§ http://simulator.iit.edu/web/pensim/index.html 

 simulator, which solves a 
detailed mechanistic model of differential-algebraic equations describing the biological 
behavior of the process. Two plants were simulated, which differ for scale, instrumentation, 
and control system. Plant A is a smaller plant with a culture volume of 105 L, whereas plant B 
has an average culture volume of 195 L. Table 7.5 reports the process variables that are 
obtained as simulation (i.e. measured) outputs. Not that some variables are measured in both 
plants, while other are measured in only one of the two plants. Table 7.5 reports the indication 
of the plant in which the variable is assumed to be measured, together with the classification 
between common variables (symbol †) and other variables. 
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Table 7.5. Variables measured in the simulated process for the production of 
penicillin. Variables that are considered common between the plants are 
marked by †. 

Var. no. Measured variable  Plant A Plant B 
1 Aeration rate (L/h) †   
2 Agitation power (W) †   
3 Substrate feed rate (L/h) †   
4 Substrate feed temperature (K) †   
5 Glucose concentration (g/L)    
6 Concentration of dissolved oxygen (mmol/L)    
7 Biomass concentration (g/L)    
8 Penicillin concentration (g/L) †   
9 Culture volume (L) †   
10 Carbon dioxide concentration (mmol/L) †   
11 Fermentor pH (-)    

12 Fermentor temperature (K)    

13 Generated heat (kcal)    
14 Acid flowrate (L/h) †   
15 Base flowrate (L/h) †   
16 Coolant/heating flow rate (L/h)    

 
Whereas the fermentor temperature control system is assumed to be the same in the two 
plants, the pH control system is an on-off controller in Plant A and a proportional-integral-
derivative (PID) controller in Plant B, with the same settings as indicated by Birol et al. 
(2002). The coupling of controlled and manipulated variables for both controllers is the same 
in the two plants. Namely, the reactor temperature is controlled by manipulating the 
heating/cooling water flowrate in the reactor jacket, while pH is controlled by adjusting the 
concentrated acid/base flowrate entering the reactor. 
Finally, different initial conditions are used to simulate the two plants in terms of biomass and 
carbon dioxide availability, aeration rate, and substrate feed rate and inlet temperature. Details 
on the simulations are provided in Appendix E. 
One hundred simulations have been carried out for both plant A and plant B, obtaining the 
time trajectories of the measured outputs. For a given plant, the trajectories differ due to noise 
and to different initial conditions. This causes the batch length to vary from batch to batch for 
a given plant. The length of plant A batches ranges between 250 h and 320 h, and the length 
of plant B batches ranges between 200 h and 315 h. Variables trajectories have therefore been 
synchronized before proceeding with any analysis. The indicator variable approach (Nomikos 
and MacGregor, 1995b) has been adopted to synchronize time trajectories. Through this 
method, variable trajectories are reported as a function of the indicator variable, which is an 
index of the percentage of batch completion. As a result each variable trajectory is not 
reported as a function of time, where batches have different length, but as a function of the 
percent of batch completion, where batches have the same length. In particular, considering 
the dynamic of the process, variable trajectories have been resampled in K = 200 aligned 
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samples, corresponding to increasing percentages of batch completion. Further details on the 
indicator variables and on the synchronization procedure are provided in Appendix E. 
Two datasets of NOC batches for plant A and plant B have been obtained. 
• AX  [ ]20012100 ××  includes 100 plant A NOC batches, for which 12 variables are 

reported, each with 200 samples (after alignment); 
• BX  [ ]20015100 ××  includes 100 plant B NOC batches, for which 15 variables are reported 

each with 200 samples (after alignment). 
In addition to NOC batches, 6 faulty batches have been simulated for Plant B. The following 
faults were considered: i) anomalies of the aeration systems (fault #2, fault #3 and fault #4); 
ii) anomalies of the substrate feeding systems (fault #5); iii) anomalies of the agitation system 
(fault #1); iv) anomalies on sensors (fault #6). The fault characterization is summarized in 
Table 3. Note that some faults are sustained (e.g., fault #1), some are very mild (e.g., fault 
#5). Furthermore, fault #6 is a sensor fault which affects only variable 7. Namely, the relevant 
batch is a normal batch, but a step has been appended to variable 7 only, once the simulation 
results have been obtained, to simulate a sensor damage. In this way, the fault does not affect 
the other monitored variables. 

Table 7.6. Faulty batches of Plant B: process variable affected by the 
anomaly, amplitude and type of anomaly. 

Fault no. 
Process variable  
affected by fault  

Type of  
anomaly 

Fault  
amplitude 

#1 2 step -15% 
#2 1 step -25% 
#3 1 ramp -0.5 
#4 1 ramp -1.0 
#5 3 ramp -0.001 
#6 7 step -70% 

 
Whatever a fault, it onsets 100 h after the start of a batch and is protracted until the end of the 
batch. Therefore, the first 100 h of operation always refer to normal conditions, and will be 
referred to as phase 1 of the batch in the following. On the other hand, phase 2 of a batch will 
refer to the fraction of the batch after the occurrence of the fault. 

7.6.2 Transfer methodology 

As in the spray-drying case-study, here the objective is to exploit the data available from plant 
A, where an extended experimental campaign has already been completed, to monitor plant B, 
where the production is assumed to have just been transferred.  
Transfer scenario 2 and transfer Scenario 3 of the general framework of Figure 7.1 are 
referred to in this case study; therefore, only common variables (Scenario 2) or both common 
as well as other variables (Scenario 3) are considered for monitoring, with no first-principle 
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information. Set { }15 ,14 ,10 ,9 ,8 ,4 3, ,2 ,1'=v  identifies the V ′  common variables between 
plants (Table 7.5). The remaining variables are assigned to either plant. Namely, 

{ }16 ,21 ,11A =′′v  are the AV ′′  variables measured only in plant A, whereas { }13 7, ,6 ,5B =′′v  
are the BV ′′  variables measured only in plant B. Note that, despite being measured in both 
plants, controlled variables are not assigned to the set 'v  of common variables, due to the 
mentioned differences in the control systems. 
Given the peculiar nature of the considered datasets, which include variable trajectories, the 
multiway versions of PCA (MPCA; Nomikos and MacGregor, 1994) and of JY-PLS (MJY-
PLS) are used. 

7.6.2.1 Scenario 2: process monitoring in plant B using MPCA 
In this case the aim is to exploit the information embedded in common variables only to 
transfer information useful to monitor plant B. It is assumed that a number AI  of completed 
batches is available from plant A, while Bi  batches have been completed in plant B, with 

AB Ii << . The approach is the same described in Section 7.3.2.2, with the difference that the 
model is multiway, and the rationale is summarized in Figure 7.22. 
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Figure 7.22. Schematic of the multiway PCA applied in Scenario 2 of the proposed 
framework for the transfer of monitoring models between batch processes. 

The three-way datasets A
AIX′  [ ]KVI ×′×A  and B

BiX′  [ ]KVi ×′×B  are considered, which are 
subsets of the simulated databases AX  and BX ; they include AI  and Bi  batches 
(respectively), and consider only common variables. First, batch-wise unfolding (Nomikos 
and MacGregor, 1994) is applied to the datasets to generate the bi-dimensional matrices A

AIX′  
( )[ ]KVI ⋅′×A  and B

BiX′  ( )[ ]KVi ⋅′×B , where 200=K . The data in each matrix are auto-scaled 
according to the mean and the standard deviation values of the plant in which they are 
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collected. A PCA model is then built on matrix BiX′  ( ) ( )[ ]KViI ⋅′×+ BA  built according to 
Eq.(7.2). 
The same steps described in Section 7.3.2.2 apply for monitoring of the ( )1B +i -th batch in 
plant B at each aligned sample k. Recall that in the continuous case (Section 7.3.2.2) the 
model is adapted each time a new set of measurements is available from plant B (i.e., 
adaptation is done at k). In the batch case, the situation is different: the model is updated after 
completion of a batch using all the data from that batch. 
Considering that K is the total number of indicator variable intervals representing the batch 
duration, vector B

1B +
′
ix  ( )[ ]1×⋅′ KV  includes the trajectories of the V ′  variables for the entire 

history of the batch: 
 

( ) ( ) ( ) ( )[ ]TB
,1

B
11,1

B
1,1

B
1,1

B
,1

B
1 BBBBBB   KVikvikvikvikvii xxxxx

⋅′++⋅+′++⋅′+⋅+′+⋅′++
′′′′′=′ x      , (7.15) 

 
with Vv ′=′ ,...,1  and Kk ,...,1= . The online monitoring of the ( )1B +i -th batch at sample k is 
performed by projecting vector B

,1B ki +
′x  ( )[ ]1×⋅′ KV  onto the space of the model PCs. This 

vector includes the unfolded trajectories of all the V ′  variables until aligned sample k. Since 
at the k–th interval measurements for the ( )1B +i -th batch are available only from the 
beginning of the batch up to the aligned sample k itself, the elements of B

,1B ki +
′x  for samples 

from 1+k  to K are missing. In order to allow the batch monitoring, the missing data are filled 
by assuming that, at interval k, the deviation of each variable from the mean trajectory 
remains unchanged for the rest of the batch duration and is protracted until the end of the 
batch (Nomikos and MacGregor, 1995). Other missing data approaches can be used as an 
alternative (Arteaga and Ferrer, 2002; García-Muñoz et al., 2004). 

7.6.2.2 Scenario 3: process monitoring in plant B using MJY-PLS 
Multiway JY-PLS (MJ-YPLS) allows to use common variables as well as “other” variables 
(i.e. variables that are measured only in one plant). Furthermore, as in MPCA, it allows to 
consider also the dynamic characteristics of the batch process within each plant. 
The approach is the same described in Section 7.3.3.1 and represented in Figure 7.3. In this 
case, the joint-Y space of the model is formed by the common variable space. Therefore, with 
reference to Figure 7.3, matrix BiX′  built as in the MPCA case (Figure 7.22) corresponds to 
the joint-Y space. The two JY-PLS model regressor spaces are represented by the datasets of 
“other” variables, measured only in one of the plants (analogously to AX ′′  and B

kX ′′  in Figure 
7.3). For plant A, matrix A

AIX ′′  ( )[ ]KVI ⋅′′× AA  is considered, which includes the AI  batches 
available from plant A database AX  and the AV ′′  variables considered only in plant A. 
Similarly, matrix B

BiX ′′  ( )[ ]KVi ⋅′′× BB  is considered for plant B, which includes the Bi  batches 
available from plant B and the BV ′′  variables measured only in plant B. 
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The datasets are batch-wise unfolded (Nomikos and MacGregor, 1994) to generate the 
corresponding bi-dimensional matrices A

AIX ′′  and B
BiX ′′ . Before applying any analysis, the data 

in each matrix are pretreated according to the mean and the standard deviation values of the 
plant in which they are collected. 
The same procedure described in Section 7.3.3.1 applies in this case for monitoring. For each 
aligned sample k, measurements available from the running ( )1B +i -th batch are organized in 
vectors B

,1B ki +
′x  and B

,1B ki +
′′x , depending on whether the variables are common or not between the 

plants. The missing values in B
,1B ki +

′x  and B
,1B ki +

′′x  for instants from 1+k  to K are filled 
according to the same procedure described in the previous section. Vector B

,1B ki +
′′x , which 

includes the variables measure only in plant B, is projected and reconstructed through the 
model and used to predict the common variables vector B

,1Bˆ
ki +

′x  (Eqs.(7.3)-(7.4)). In this case 
the monitoring is performed both in the space of the common variables (the joint-Y space, as 
done in Scenario 3) and in the space of the variables measured only in plant B (as done in 
Scenario 5). As a consequence, in addition to the Hotelling’s 2

kT  statistic, two different 
squared prediction error statistics are calculated for each aligned sample k (

B
,1BSPE ki

k
+

′x
 and 

B
,1BSPE ki

k
+

′′x
), and the relevant monitoring charts are therefore considered. 

7.6.3 Results and discussion 

The results on the performance of the monitoring models in the transfer are reported using the 
same indices described in Section 7.3.4, namely the alarm rate in phase 1 and phase 2 of the 
fault and the time to detection. The same criterion for fault detection is used as well. Namely, 
an alarm is warned by the monitoring model at interval k when 41 =−∆  out of the last 5=∆  
consecutive samples from plant B lie outside the 95% confidence limit on one of the 
monitoring charts. 

7.6.3.1 Results for Scenario 2 (fault #1) 
An MPCA model to monitor the operation of plant B was built on 2 principal components, 
selected through cross-validation (Chapter 2, Section 2.1.1.2). Results in terms of alarm rate 
and of time to detection of the fault are presented in Figure 7.23; they refer to the case where 
fault #1 of Table 7.6 is presented to the model. The aim of the analysis is also to explore the 
influence of the number of batches available from plant A and plant B on the monitoring of 
plant B. For this reason, Figure 7.23 shows the performance of the transfer methodology 
assuming that an assigned number of normal plant B batches has already been completed and 
used to build the MPCA model. The results are parametric in the number of normal batches 
available from plant A.  
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Figure 7.23. Scenario 2: monitoring performance on a plant B batch affected by fault #1. 
Effect of the number of available plant A and plant B normal batches on (a) the alarm rate 
during phase 1, (b) the alarm rate during phase 2, and (c) the time to detection. 

Figures 7.23a and 7.23b show that the availability of some normal batches from plant A is 
highly beneficial to the monitoring of plant B if the proposed transfer methodology is 
employed. If no datasets pertaining to normal plant A batches are available (solid lines), the 
monitoring system requires several plant B batches to provide a satisfactory performance. In 
fact, about 13 plant B batches (i.e. about 3300 hours of operation) are needed to have a 
sufficiently low alarm rate during phase 1. Including even few batches from Plant A improves 
the monitoring performances. The more plant A batches are available, the fewer plant B 
batches are needed: twenty normal batches from plant A decrease to 4 the number of required 
normal plant B batches in order to obtain a good monitoring performance, with a time saving 
of about 2300 hours on experimentation. 
The time to detection (Figure 7.23c) shows that when some batches from Plant A are 
available for the transfer ( 13A >I ), the delay to warn the alarm asymptotically reaches the 
expected value of 41 =−∆  samples. Note that, when very few batches from Plant B are 
completed, the time to detection is small because false alarms are warned during phase 1 of 
the fault. 
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7.6.3.2 Results for Scenario 3 (fault #1) 
An MJY-PLS model to monitor the operation of plant B was built using 2 LVs, selected 
through cross-validation (Chapter 2, Section 2.1.3.2). Figure 7.24 reports the alarm rate 
calculated in phase 1 ad phase 2 and the time to detection for fault #1 of Table 7.6. Recall that 
the AR is generated after analysis of three monitoring charts: the Hotelling 2T  chart, the SPE 
chart in the space of the variables measured only in plant B, and the SPE chart in the joint-Y 
space. 
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Figure 7.24. Scenario 3: monitoring performance on a plant B batch affected by fault #1. 
Effect of the number of available plant A and plant B normal batches on (a) the alarma rate 
during phase 1, (b) the alarm rate during phase 2, and (c) the time to detection. 

Similar consideration on the value of using plant A batches can be drawn in Scenario 3 as 
were done in Scenario 2 (Figure 7.24a,b,c). In fact, the use of normal batches from plant A 
improves the monitoring performance. The performance of the monitoring model transfer 
especially improves in phase 1 (Figure 7.24a) as more batches are available from plant A. 
However, the MJY-PLS model seems to require slightly more normal batches from plant B to 
obtain the same performance achieved with MPCA for an assigned number of batches from 
Plant A. For example, assuming that 20 batches from plant A are available, a good monitoring 
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performance is achieved when at least 6 normal batches from Plant B are completed and 
included into the model through the proposed updating procedure. This can be explained 
considering that the inclusion in the joint-Y model of variables that are measured only in one 
plant adds an additional source of variability to be captured by the model. This variability is 
different from the variability in the common variables considered in the MPCA model of 
Scenario 3. 
Despite the (slight) superiority of the monitoring performance in transfer Scenario 2, transfer 
Scenario 3 can solve one of the major drawbacks of the use of MPCA in Scenario 2. In fact, if 
a fault manifests itself only on variables that are not common and the common variables are 
not correlated with the faulty variables, an MPCA model cannot detect the fault. Instead, 
transfer Scenario 3 can efficiently detect the effect of the fault in the space of the variables 
that are measured only in plant B, by exploiting the MJY-PLS model. 
To clarify this issue, consider fault #6, which is a sensor fault affecting only variable 7 
(measured only in Plant B) and does not leave any signature on other (possibly correlated) 
variables. Clearly, the fault cannot be detected by an MPCA monitoring model: Figure 7.25a 
shows that the alarm rate in phase 2 is unsatisfactorily small even when several normal 
batches from plant A and plant B are used. This is because the variable through which the 
fault is visible is not included in the model and does not affect any other measurement 
included in the model. On the other hand, an MJY-PLS model (transfer Scenario 3, Figure 
7.25b) is appropriate to monitor Plant B: few normal batches from Plant A together with 
about 10 normal batches from plant B are able to ensure the expected monitoring 
performance. 
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Figure 7.25. Alarm rate during phase 2 for the monitoring of fault #6 through: (a) transfer 
Scenario 2; (b) transfer Scenario 3. 

Note that the selection of variables to be included in the model and the partition between 
“common” and “other” variables can deeply affect the effectiveness of the transfer and the 
performance of the monitoring model. For this reason, some form of engineering knowledge 
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on the system under investigation is always needed to guide the selection and the partition of 
variables. 

7.6.3.3 Scenario 2 and Scenario 3 results for other faults 
The results reported in the previous subsections can be extended to the other faults considered 
in this study (Table 7.6). Table 7.7 shows the summary of the performances of the monitoring 
transfer in transfer Scenarios 2 and 3, in terms of alarm rates (AR) in phase 1 and phase 2, and 
time to detection (TD). To support the comparison, in both transfer scenarios the monitoring 
models models were built on 2 LVs, and it was assumed that 20 normal batches were 
available from Plant A and 10 normal batches were available from Plant B. Note that faults #1 
and #2, which are step-like, are detected very well: during phase 1 (normal operating 
conditions) a very small rate of alarms is warned, while the alarm rate in phase 2 is close to 
100%.  

Table 7.7. Comparison between the monitoring performance of transfer 
Scenarios 2 and 3 on several faults affecting batch plant B (alarm rates AR 
and times to detection are calculated for 20 batches available from Plant A 
and 10 batches available from Plant B). 

 MPCA transfer (Scenario 2) MJ-YPLS transfer (Scenario 3) 
Fault 
no. 

AR Phase 1 
(%) 

AR Phase 2 
(%) 

TD 
(samples) 

AR Phase 1 
(%) 

AR Phase 2 
(%) 

TD 
(samples) 

1 0.7 95.7 4 0 97.1 3 
2 0 97.1 3 0 95.7 4 
3 0 23.1 54 3.1 15.9 59 
4 14.1 76.8 1 14.1 24.6 53 
5 5.5 0 ∞ 3.9 1.4 64 
6 39.1 57.4 30 52.3 98.5 2 

 
With respect to the ramp-like faults #3, #4, and #5, the ramp determines larger delays in fault 
detection (high TD). This is due to the nature of the faults and to the fact that these faults are 
much less pronounced. Generally speaking, if the ramp slope is small, higher detection delays 
are expected. Large values of TD are generally coupled to lower alarms rates during phase 2, 
while the rate of alarms in phase 1 are acceptably small.  
It is important to highlight that in all cases the transfer is useful and improves the monitoring 
performance with respect to a monitoring model built on data of Plant B only. Furthermore, 
the transfer through Scenario 2 (MPCA) seems to be faster to adapt to the plant B process 
conditions than the one through Scenario 3 (MJY-PLS). 

7.7 Conclusions 
In this Chapter the issue of transferring a process monitoring model from a reference plant 
(plant A), where a large amount of normal operating conditions data is available, to a target 
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plant (plant B), where a limited amount of process data have been collected (e.g., because the 
plant operation has just been started) has been addressed. This would respond to the need of 
having the operation in plant B monitored as quickly as possible. 
A framework has been proposed according to which different model transfer scenarios can be 
considered depending on i) the available information (process data only or process data as 
well as process knowledge in the form of conservation laws), ii) the source where the data 
available for model design come from (plant A only or plant A as well as plant B), and iii) the 
nature of the measured process variables that are used for model design (only variables that 
are common between the plants or common variables as well as all other variables). 
Following this framework, five latent variable approaches to transfer a process monitoring 
model from plant A to plant B were proposed and illustrated in detail. Three of them were 
based on process data only, while the last two combined process data with fundamental 
knowledge which can be derived for example from conservation laws. 
The proposed model transfer procedures were tested on a benchmark problem related to the 
scale-up of the monitoring model for an industrial spray-drying process, where plant A is a 
pilot unit and plant B is a commercial production unit. 
Approaches based on process data were applied with the aim of studying the performances of 
the transfer in monitoring plant B, for a different number of NOC samples available from 
plant B and a different number of LVs used to build the model. The simplest proposed model 
transfer approach (Scenario 1) was a PCA one, where only plant A data related to common 
variables were used to monitor the plant B operation. The monitoring performances were fully 
satisfactory (the fault was detected soon after its appearance, and the numbers of false alarms 
and undetected faults were limited). Making the PCA model adaptive (Scenario 2) by 
incorporation of measurements incoming from plant B did not improve the monitoring 
performance significantly. Both PCA approaches seemed to work better when only few LVs 
were retained into the monitoring model. 
A JY-PLS approach was used in Scenario 3 in order to exploit not only measurements of 
process variables that were common between plants, but also all the other variables measured 
in each plant. This approach allowed to analyze the within-plant correlation (in each plant) 
jointly with the between-plant correlation, therefore exploiting the information provided by all 
the available measurement sensors. The monitoring performances were shown to be very 
good, with the further advantage that this modeling approach required fewer plant B normal 
operating condition data to design an effective monitoring model than the PCA approaches. 
The last two scenarios of the framework based the transfer on the combination of LVMs with 
fundamental engineering knowledge derived from a simple energy balance in terms of a new 
physically-meaningful variable that could be considered plant-independent. In these 
approaches, process monitoring was achieved using adaptive LVMs, namely PCA (Scenario 
4, if only the common variables that were measured in both plants were used to build the 
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monitoring model) or JY-PLS (Scenario 5, if both common as well as all other available 
measurements were used). The definition of a plant-independent variable was shown to be 
essential for the model transfer, because it helped in quantifying one driving force acting on 
both plants, allowing to match similar samples from different plants (Scenario 4) or to relate 
different plant data through the joint space generated by it (Scenario 5). Results showed that 
in both the scenarios robust and prompt fault detection performances were achieved, even 
when very few data were available from plant B. 
All the proposed scenarios were also compared on a common basis, using them as adaptive 
models for monitoring online the process in plant B. Results showed that in the considered 
case-study, the PCA-based approaches performed better than the JY-PLS approaches in terms 
of initially required plant B data to achieve satisfactory fault detection performances. 
Moreover, the use of the plant-independent variables was shown to improve the performances 
especially in the JY-PLS-based scenarios. 
The proposed framework was applied preliminarily for the transfer of the monitoring model 
in a batch process, dealing with the production of penicillin. In particular Scenario 2 and 
Scenario 3 were applied, using multiway PCA and JY-PLS in order to account for the batch 
dynamic features. The obtained preliminary results confirmed that considering data from 
batches run on a similar plant improved the monitoring performances of the model in the 
target plant, even if a very limited number of batches (5÷10) was available from the target 
plant. Further research has to be carried out in future to better understand the effect of the 
partition of variables in common and not common and to extend also Scenario 3 and Scenario 
4, considering fundamental knowledge, to batch process monitoring. 
Finally, some issues deserve special attention in any of the proposed approaches. The first one 
refers to the approaches in which the space of common variables is exploited to address the 
transfer. Because the fundamental driving forces of the process are the same in both plants, it 
is reasonable to assume that the process leaves nearly the same signature (i.e. correlation 
structure) on similar variables in each plant. In these cases, it is therefore assumed that the 
correlation structure between the common variables remains essentially the same between the 
plants. This assumption may be verified a priori by engineering judgment, evaluating the 
similarity between plants of different sites/scales. Furthermore the model diagnostics of the 
adaptive procedures ( 2T  and SPE) provide a metric to check the validity of the assumption 
itself during process monitoring. 
The second issue is related to data scaling. Although the correlation structure of common 
variables is nearly the same in both plants, the actual variability of each measured variable 
may be not the same in both plants (e.g. because of sensor type and location, process layout 
and actual operating conditions). Therefore, in order for the proposed approaches to work 
effectively, each variable should be autoscaled using the values of mean and standard 
deviation related to the plant in which the variable is measured. 
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A third issue concerns the scenarios which use plant-independent variables to relate different 
plant data. In the case study analyzed in this Chapter only one plant-independent variable 
representative of one of the different physical phenomena driving the process was used. It 
should be noted that using additional plant-independent variables (which might be more 
representative of the physics of the systems) may improve the transfer performance. 
Finally, note that since for the adaptive procedures, the monitoring performance depends on 
the tuning of some parameters (adaptation window size W, number of initially available plant 
B NOC samples), for the implementation of these tools, a-priori engineering knowledge on 
the system under study is needed to assign first-trial values for them. 
Despite the above-mentioned issues, the proposed model transfer strategies can provide a 
particularly valuable contribution to the practical implementation of QbD methodologies and 
continuous quality assurance programs in pharmaceutical product manufacturing, where 
limited data are usually available if new productions are being started. 
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Conclusions and future perspectives 

The introduction of the Quality-by-Design (QbD) philosophy in the pharmaceutical industry 
has opened the route towards the adoption of systematic tools in pharmaceutical development 
and manufacturing, with the aim of modernizing and improving the way pharmaceutical 
products are designed and produced. The aim of the QbD founding paradigms is to provide 
tools to improve the understanding pharmaceutical scientists have on their products and 
processes, in order to ensure a robust and tight control on the quality (in terms of physical 
properties, but especially of efficacy and safety) of the final drug products. 
From an engineering perspective, QbD can be seen as the attempt of introducing modeling 
principles in pharmaceutical development and manufacturing. This offers tremendous 
opportunities to the pharmaceutical industry, which can benefit from tools and methodologies 
that other industries have already experienced. At the same time, pharmaceutical productions 
are characterized by specific features, such as the product complexity, the low volume multi-
product (and mainly batch) productions and, above all, the regulatory oversight, that require 
dedicated tools to address the issues that may arise in such a diversified production 
environment. For this reason, there is the need to conceive methodologies that are suitable to 
fit the peculiar characteristics of the pharmaceutical industry, but, at the same time, general 
enough to be applied in a wide range of situations. 
Under this perspective, this Dissertation has proposed to use latent variable models (LVMs) to 
assist the practical implementation of QbD paradigms in pharmaceutical development and 
manufacturing. LVMs offer the important advantage that they can be efficiently used to 
analyze datasets of highly correlated variables that may come from developmental 
experiments, materials characterization, process operating conditions or historical products. 
In particular, this Dissertation has proposed some general methodologies based on LVMs to 
support researchers in the achievement of the three milestones on which the QbD initiative is 
founded: process understanding, product and process design, and process monitoring and 
control. Table 1 summarizes the main achievements of the Dissertation, with the indication of 
the considered application, data origin and reference to related papers that have been 
published, or are in press or in preparation. 
 
With respect to process understanding, in Chapter 3 a general strategy was proposed to 
apply LVMs in the development of continuous manufacturing systems. An industrial 
continuous tablet manufacturing line on a pilot scale was used as a test bed for the analysis. A 
general procedure based on three main steps was proposed: i) a data management step, ii) an 
exploratory analysis step, and iii) a comprehensive analysis step. 
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236 Table 1. Summary of the main achievements of this Dissertation, with the indication of the considered application, of the data origin 
and of the relevant references. 

Chapter Main achievement Application Data origin Reference 

Chapter 3 General procedure for the 
application of LVMs to 
support the development of 
continuous processes 

Continuous tablet 
manufacturing 
line  

Industrial Tomba, E., M. De Martin, P. Facco, J. Robertson, S. Zomer, F. Bezzo and M. Barolo. 
General approach to aid the development of continuous pharmaceutical processes using 
multivariate statistical modeling – An industrial case study. Int. J. Pharm., in press. DOI: 
10.1016/j.ijpharm.2013.01.018. 

Chapter 4 General framework to aid the 
design and manufacturing of 
new products through LVM 
inversion 
Procedure to design the target 
quality profile for a new 
product 

High shear wet-
granulation 
process 

Industrial Tomba, E., M. Barolo and S. García-Muñoz (2012). General framework for latent 
variable model inversion for the design and manufacturing of new products. Ind. Eng. 
Chem. Res., 51, 12886-12900. 
Tomba, E., S. García-Muñoz, P. Facco, F. Bezzo and M. Barolo (2012). A general 
framework for latent variable model inversion to support product and process design. 
Computer Aided Chemical Engineering 30, (I.D.L. Bogle and M. Fairweather, Eds.), 
Elsevier, Amsterdam (The Netherlands), p.512-516. 
Tomba, E., P. Facco, F. Bezzo and S. García-Muñoz (2012). Exploiting historical 
databases to design the target quality profile for a new product. Submitted to Ind. Eng. 
Chem. Res.. 

Chapter 5 LVM inversion for in-silico 
product formulation design 

Formulation for 
an API 

Industrial Tomba E., M. Barolo and S. García-Muñoz. In-silico product formulation design through 
latent variable model inversion. In preparation. 

Chapter 6 LVM inversion to support 
product transfer between 
different manufacturing plants 
Experimental demonstration of 
the existence of the null space 

Nanoparticle 
precipitation 

Laboratory Tomba E., N. Meneghetti, P. Facco, T. Zelenkova, D.L. Marchisio, A.A. Barresi, F. 
Bezzo and M. Barolo. Product transfer between different plants through latent variable 
model inversion. Submitted to AIChE J.. 
Meneghetti, N., E, Tomba, P. Facco, F. Lince, D.L. Marchisio, A.A. Barresi, F. Bezzo 
and M. Barolo. Supporting the transfer of products between different equipment through 
latent variable model inversion. Computer Aided Chemical Engineering, in press. 

Chapter 7 General framework to transfer 
process monitoring models 
between different plants 

Spray-drying 
process 

 

Penicillin 
fermentation 
process 

Industrial 
 
 
 
 

Simulated 

Tomba, E., P. Facco, F. Bezzo, S. García-Muñoz and M. Barolo (2012). Combining 
fundamental knowledge and latent variable techniques to transfer process monitoring 
models between plants. Chemom. Intell. Lab. Syst., 116, 67-77. 
Facco, P., E. Tomba, F. Bezzo, S. García-Muñoz and M. Barolo (2012). Transfer of 
process monitoring models between different plants using latent variable techniques. Ind. 
Eng. Chem. Res., 51, 7327-7339. 
Facco, P., M. Largoni, E. Tomba, F. Bezzo and M. Barolo. Transfer of process 
monitoring models between plants: batch systems. In preparation. 
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It was shown how the parameters of the LVMs could be interpreted from first principles, 
identifying the main driving forces acting on the system and ranking them according to their 
importance. This can be useful to support risk assessment in providing the rationale for a 
robust control strategy and to guide further experimentation from the early development 
phases. It was found that the route chosen to reduce the size of the active pharmaceutical 
ingredient (API) particles prior to granulation and the point at which the API was formulated 
were the most important driving forces. From the comprehensive analysis, it was shown how 
multi-block LVMs can help in identifying the most critical units in the process and the most 
critical variables within them. Furthermore, it was shown that these tools can be useful in 
identifying paths along which a process moves, depending on the selected process settings, 
thus providing a system to ensure that the operation follows the desired path. 
 
The effectiveness of the use of LVMs built on historical datasets in product and process 
design was demonstrated in Chapter 4, Chapter 5 and Chapter 6. In Chapter 4, a general 
framework to use latent variable regression model (LVRM) inversion to support the design of 
new products and of their manufacturing conditions was proposed. The aim of the proposed 
framework was to provide a general tool in which the most appropriate problem can be solved 
depending on the objectives and the constraints an user may have in the product/process 
design activity. 
Since multiple solutions may be obtained from the inversion, four possible optimization 
approaches were identified. The objective of the inversion was to estimate the best input 
conditions (in terms of raw material properties and process parameters) to achieve a desired 
quality for the output product. The framework was successfully applied to an industrial 
particle engineering problem for the design of the raw material properties in a high-shear wet 
granulation process, to obtain granules with specified quality characteristics. 
The null space concept, namely the space of the LVRM inversion solutions that correspond to 
the same desired set of output variables, was investigated. The null space definition has been 
shown to have many common features with the definition of the design space of a process 
given by the regulatory Agencies’ guidelines, and it has been demonstrated to be a useful tool 
for its preliminary identification. In order to have a measure of the reliability of the model 
inversion solution and of the null space solutions, a strategy based on a jackknife procedure 
was proposed to estimate their uncertainties. 
Some possible solutions were also presented to address specific issues related to LVRM 
inversion. In particular, a new statistic (P2) was introduced to select the number of LVs in a 
model suitable for inversion, in order to adequately describe the regressor dataset. 
Furthermore, since due to the model mismatch it is not guaranteed that model inversion 
provides a solution satisfying the desired properties for the final product, a strategy was 
proposed to exploit the historical data covariance structure in the selection of new desirable 
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product properties most suitable for model inversion. The proposed approaches exploited the 
model parameters and the constraints provided by the user for the product quality in order to 
estimate new product quality profiles for which the model mismatch was minimum. This 
helped the model inversion in achieving the desired product properties, since they could be 
assigned as hard constraints in the optimization problem. 
Chapter 5 provided an application of the framework proposed in Chapter 4 to address a 
pharmaceutical product formulation problem, in which the objective was to estimate the best 
excipient type and amount in order to obtain a blend of suitable properties for direct 
compression. The framework of Chapter 4 was then extended to consider constraints for the 
material selection and to account for the specific objectives a formulation problem may have 
(e.g., API dose maximization, minimization of the final tablet weight). This changed the 
model inversion problem into a mixed-integer nonlinear programming problem, for which a 
user-friendly interface was developed to allow formulators specifying the objectives and the 
constraints the formulation problem may have. The proposed methodology was tested on an 
industrial case study to design the formulation for a proprietary API. The in-silico designed 
formulations were then prepared and experimentally tested, providing results in agreement 
with the model predictions. 
In Chapter 6 an additional application of the proposed general LVRM inversion framework 
was considered. The case study dealt with a product transfer problem, in which the objective 
was to obtain nanoparticles of desired mean size through a solvent displacement process in a 
target device. The methodology exploited the historical data available from a source device 
and from the target one, but obtained under a slightly different experimental setup. A joint-Y 
PLS (JY-PLS) model was first used to relate data coming from different sources (plants and 
experimental setups). The JY-PLS model was then included in the inversion framework to 
determine the process conditions in the target plant that ensure the manufacturing of a product 
with desired particle size. Validation experiments confirmed the results obtained by 
simulation. The experiments also allowed to experimentally validate the null space concept, 
by showing that different combinations of process conditions ensured to manufacture 
products with the same desired mean particle size. 
 
The final section of the Dissertation proposed an application of LVMs for process 
monitoring and statistical process control of pharmaceutical operations. In particular, in 
Chapter 7 the problem of the transfer of models for process monitoring was studied. In this 
case, the problem was to ensure that the operation in a target plant was under statistical 
control since the first instants from its start-up, by exploiting the knowledge available (in 
terms of data) from other plants. A general framework was proposed on the use of LVMs to 
cope with this kind of problems. The framework identified five different scenarios, depending 
on the type of the available information to support the transfer (only process data or both 
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process data and fundamental knowledge), on the sources of the available data (only from the 
reference plant or both from the reference and the target plant) and on the process variables 
used for the model design (only common variables or both common and other variables). 
PCA and JY-PLS were used to model jointly the data available from the different plants, 
depending on whether only common variables (in the PCA case) or both common and other 
variables (in the JY-PLS case), were used to build the model. 
The proposed framework was tested on a model transfer problem related to the monitoring of 
an industrial spray-drying process, where the reference plant was a pilot unit while the target 
plant a commercial production unit. The monitoring performances were shown to be 
satisfactory for all the proposed scenarios. In particular, it was demonstrated that the transfer 
of information from the reference plant improved the monitoring performances of the model. 
The proposed methodologies were also extended, in a preliminary study, for batch process 
monitoring, considering a simulated fermentation process for penicillin production, in which 
plants of different scale and technology were simulated. Results on the monitoring 
performances demonstrated again that considering for the model design also data from 
batches carried out in the reference plant made the model more efficient in the detection of the 
simulated faults than in the case only data from the target plant were considered. 
 
In summary, it has been shown how LVMs can be employed in any phase of the product and 
process design activities under a QbD framework, from risk assessment, to the identification 
of the design space and of the control strategy for a process. 
The most important contribution of the LVM approaches proposed in this Dissertation for 
pharmaceutical product and process design and manufacturing is that they can optimally 
leverage historical data. These data may come from designed experiments or already 
developed products, and can guide the industrialization of a pharmaceutical product, starting 
from its design, going through the design of its manufacturing process, and up to the 
technology transfer from small-scale plants to large-scale plants for its mass production. The 
proposed tools allow guiding the experimentation from the first stages of the development of 
a new product, in order to streamline its design and reduce the time between the discovery of 
the API and the launch of the final product on the market. This can be crucial in the 
pharmaceutical industry, which is commonly characterized by long times between the 
approval of the active ingredient and the final drug mass production. Under the same 
perspective, burdensome activities, like the technology transfer between different plants, can 
be sped up, and the risk linked to possible drawbacks in the start-up of a large-scale 
production can be controlled better. This offers undeniable advantages in terms of time and 
resources saving, but also in a regulatory perspective, since the manufacturing process can be 
demonstrated to be understood and controlled since its conception. Therefore, thanks to their 
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transparency and scientifically-sound basis, these tools can completely fit in the regulatory 
framework. 
On the other hand, there are some limitations in the use of LVMs. Being them data-based 
models, they can only be reliable in the range of the historical data used to build the model. 
This can be a limit, since using the model for design can give sub-optimal solutions, being not 
ensured that other possible designs out of the historical data range are possible. Similarly, in 
monitoring applications the model can detect as faults normal operating conditions of the 
process that were not considered in the historical dataset. To this purpose, the model itself 
could be used to expand the knowledge space of the historical data, for example by allowing 
slight extrapolations in model inversion to suggest new experiments to perform. 
It must be also considered that all the methodologies used in this Dissertation were mainly 
linear. This can be a limit, especially for the model performances, if they are used to describe 
systems with a nonlinear behavior. In this case, appropriate data transformations or the 
nonlinear versions of the LVMs should be considered. 
 
The studies carried out in this Dissertation have opened further perspectives and issues, that 
could be considered in future research. One of the most interesting areas open to further 
investigation is the use of LVMs to guide product transfer between different plants. As 
shown in this Dissertation, this could be particularly useful to accelerate and improve process 
scale-up activities. Strategies should be conceived by combining advanced LVM tools with 
classical scale-up approaches, to improve the capabilities of LVMs in handling correlated 
variables with available mechanistic knowledge (e.g., dimensionless analysis). In Chapter 7 of 
this Dissertation, a preliminary study has been presented in the case of model transfer. The 
methodology could be further developed and applied to scale-up products (as in the case study 
proposed in Chapter 6) or to guide the design of the process operating conditions for large-
scale plants, based on small-scale plant data. 
Further research is needed to show how to use LVMs in the systematic identification of the 
design space of a process. In this Dissertation, it has been demonstrated that there is a link 
between the regulatory design space definition and the LVM null space concept. Strategies to 
properly define the design space limits (e.g., in the latent space of the model) and to 
communicate them are still missing. To this end, some feasibility analysis studies (Swaney 
and Grossman, 1985) have already been proposed for pharmaceutical processes, using data-
based models (Boukouvala et al., 2010; Boukouvala and Ierapetritou, 2012). It would be 
needed to extend these studies to LVMs, in order to show how the latent space of the model 
can be used to identify a design space and how it is affected by uncertainties. 
Additional studies are needed to demonstrate how advanced process control tools (e.g., model 
predictive control) could be applied to increase the efficiency and the robustness of 
pharmaceutical manufacturing processes. In the field of LVMs, some studies have already 
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been carried out by Flores-Cerillo and MacGregor (2003, 2004, 2005) for different industrial 
applications. These contributions could be extended and adapted for pharmaceutical process 
control. 
From a modeling point of view, a LVM methodology to jointly analyze the complex data 
structures the pharmaceutical development and manufacturing environments generate is still 
missing. This method should consider in a whole modeling framework raw materials 
databases, formulation databases, databases of process conditions referred to different unit 
operations and databases of product quality (preferably both on physical but also on efficacy 
and safety properties). This methodology could therefore describe different plant 
configurations and unit operations, from the API synthesis to the final product enhancement 
operations, and be used as a tool to support product and process design (e.g., through model 
inversion). 
Finally, it would be desirable that some benchmark problems be prepared for the scientific 
and industrial communities, where the practical implementation of the QbD paradigms could 
be addressed by using LVMs as well as other process systems engineering tools This would 
have the potential both to boost academic research on this topic and to make industrial 
practitioners more confident on the usefulness of these tools for their needs.  
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Appendix A 

On the interpretation of the latent 
variable model parameters 

This Appendix reports some details on the interpretation of the parameters of a latent variable 
model (LVM). In particular, some indications are provided on how to interpret the loading 
and score diagrams in order to get information from the data. The interpretation of the loading 
plots of the case study considered in Chapter 4 is used as an example. 

A.1 Interpretation of the score and loading plots 
PCA and PLS models (Chapter 2) are usually built on multivariate datasets to gain 
understanding on the system the data have been generated from. This can be achieved by 
analyzing the correlation between variables and the similarities between samples. The 
advantage in using LVMs to this purpose is due to the fact that the model structure is 
transparent and allows to interpret the correlation structure in a straightforward way. From the 
analysis of the model parameters, an interpretation on the mechanisms acting on the system 
can be drawn. 
For the purpose of a practical application of PCA and PLS, the analysis of the scores and of 
the loadings of the model is crucial. In general, this is done by considering plots of the scores 
and of the loadings, which can be reported in several ways. According to common practice 
(which is adhered to in this Dissertation), the scores are reported as scatter plots, in which the 
scores on a PC (or on a LV indifferently) are reported versus the scores on another PC. This is 
usually done for the scores on the first LVs found by the model, because they explain most 
part of the variability in the data. Bi-dimensional plots are usually used as they are easier to 
visualize than three-dimensional ones. Figure A.1b reports an example of a score plot. 
Loadings are usually reported as bar plots or as scatter plots. In the first case (which is the 
way used in this Dissertation) a bar plot of the loadings of the original variables on each PC is 
reported, as in Figure A.1a. In the second case, as in score plots, the loadings of the variables 
on a PC are plotted versus the loadings of the same variables on a different PC. This is a 
useful way to summarize in a single plot more exhaustive information on variable correlation. 
In general, loading plots are useful for two important reasons: i) understanding which are the 
variables related to the data variability and which are not; ii) understanding if there are 
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correlations among the variables. Recalling the meaning of loadings in PCA and weights in 
PLS (Chapter 2, Section 2.1.1 and Section 2.1.2), a measured variable which shows a high 
loading or weight has a significant importance on the related PC/LV, thus being responsible 
of a significant part of the variability in the data. Therefore, loadings in PCA and weights in 
PLS help in identifying the “most important” variables for the system under study, and to rank 
them by importance order. If this information is combined with physical knowledge on the 
system, one can obtain additional physical insights on the system under investigation, by 
understanding which are the driving forces linked to physical phenomena that drive the 
system. When two variables have similar loadings on a PC, they are said to be correlated. If 
the loading absolute values are similar but the values are opposite, they are said to be 
inversely related (or anti-correlated). This means that it is expected that, considering the data 
used to build the model, an increase in one variable results in a decrease of the other variable. 
Figure A.1a gives an example of this occurrence. For example, in the top bar plot it can be 
clearly seen that variable x1 and variable x3 are the most significant variables on this direction, 
and they are inversely related as their loadings are opposite. Differently, on the second bar 
plot (which refers to PC2), x3 has the highest loading and looks inversely related to x1 and x2, 
which have a lower importance. Note that the PCA loadings and the PLS weights on each 
PC/LV are independent. Therefore, the information obtained from the analysis of one latent 
component is not contrasting with the other ones, but it simply provides a different type of 
information (namely, it identifies a different driving force for the process). 
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Figure A.1. Example of (a) loading bar plots and (b) score plot for a model with 2 PCs. 

Score plots as the one reported in Figure A.1b are useful to identify similarities between 
samples. This means that samples with similar characteristics fall in the same region of the 
score plot. Moreover, the pattern observed in a score plot reflects the correlation structure 
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identified by the variable loadings. For example, in Figure A.1b three main clusters can be 
observed along PC1. Samples are therefore grouped according to their similarities or 
differences in the variables that have the highest loading on PC1. By analyzing the loading 
plot, one can identify which these variables are (x1 and x3 in this case). Therefore, samples 
having a high positive score on PC1 will have higher x3 values and lower x1 values on 
average, because x3 has a positive loading on PC1 whereas x1 has a negative one. The 
situation is opposite in the case of samples with negative PC1 scores. A similar analysis can 
be done also for the other PCs. 
Finally, note that in the PLS case it is more useful to analyze jointly the model weights with 
the loadings of Y  (Q  loadings). This analysis allows to identify cross-correlations among 
variables (i.e., how the regressors are related with the responses), which is of particular 
interest considering that PLS is a regression model built to predict the responses from the 
inputs. 

A.1.1 Interpretation of the loading plots for the wet granulation case study 

This Section reports the interpretation of the Q  loadings plots reported in Figure 4.7 (Chapter 
4) for the PLS model built to relate the raw materials characteristics with the granule 
properties (Section 4.3.1, high-shear wet granulation case study,). 
LV1, which accounts for ~32 % of the total variance in Y ( Y2R , Table 4.4), is mainly driven 
by the particle size distribution (PSD) variables, namely D[3,2] and D90/D10 (top plot of 
Figure 4.7). In particular, D[3,2] and D90/D10 are opposite, meaning that granulated 
materials in the database with high PSD (high D[3,2]) have usually narrower PSD (low 
D90/D10), compared to the mean of the data. This affects the percentage of oversize granules, 
which is directly correlated with D[3,2] and the difference in compactability compared to the 
raw material (∆Compactability). Namely, it is expected that products with high PSD mean, 
have larger percentages of oversize granules compared to materials with lower PSD mean, 
and this seems to slightly affect the compactability difference of the granulated product with 
the raw material, which is expected to be lower. 
LV2, which explains ~23 % of the total variance of the data, is affected mainly by the 
moisture content loss upon drying (LOD) of the materials after the granulation (second plot of 
Figure 4.7). From the analysis of the variable loadings it can be argued that materials having a 
higher loss of water upon drying are in general those whose granules are less grown and result 
in products with lower compactability properties compared to the raw materials 
(∆Compactability). 
LV3 (third plot of Figure 4.7) explains ~8 % of the total variance of the data and is mainly 
driven by the flow properties of the products (∆Flodex). In particular it appears that products 
which are more flowable than the corresponding raw materials are also those which have had 
higher growth ratio and LOD. This is somehow expected since one of the objectives of 
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granulation is that of increasing the flow properties of the processed materials, by enlarging 
their size. Moreover, moisture (inversely related to LOD) can act as a binding, making the 
granules more cohesive and thus less flowable (Emery et al., 2009). 
LV4 seems to be less significant than the other ones in explaining the systematic variability of 
Y, as reported in Table 4.4 ( %58.12 =YR ). This can be also noticed from the low value of the 
loadings in the last plot of Figure 4.7. 
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Appendix B 

Algorithmic notes 

In this Appendix some notes are provided on the main algorithms implemented to estimate the 
parameters of the latent variable models used in this Dissertation and described in Chapter 2. 

B.1 Principal component analysis (PCA) 
As shown in Chapter 2 (Section 2.1.1), given a dataset X  [ ]NI ×  of I samples and N 
variables, the parameters of a PCA model can be found through the eigenvector 
decomposition of matrix XXC T= . In this Dissertation, this has mostly been done using 
singular value decomposition (SVD; Meyer, 2000) or the nonlinear iterative partial least 
squares algorithm (NIPALS; Wold, 1966). 
The first method requires the estimation of C  and then would compute all the PCs of the 
system (as many as the variables in X ) at once.  
 

TUSVC =      . (B.1) 
 
In Eq.(B.1), UV =  and they include the eigenvectors of C , namely corresponding to the 
PCA loading matrix P . S  is the [ ]NN ×  diagonal matrix of the singular values, which 
coincides with the eigenvalues of C . The calculation of the C  matrix requires however that 
there are no missing data in the X  dataset. Given that real datasets are usually characterized 
by the presence of missing data, the NIPALS algorithm is usually preferred. 
The algorithm computes the scores and loadings of each PC in an iterative way, starting from 
PC1 and extracting each PC one at a time. As with SVD, PCs are found and ordered 
according to the amount of variance of the original dataset they capture. Starting from PC1, 
for each PC the algorithm calculates the scores and loadings vectors t  and p  from the X  
matrix. The outer product tp  is then subtracted from X  to give the residual matrix E : 

 
TtpXE −=  (B.2) 

 
E  is then used at the next iteration to extract the scores and loadings vectors for PC2. The 
algorithm can be summarized in the following steps (Geladi and Kowalski, 1986): 
1. consider a row vector ix  from X  and set ixt = . 
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2. Calculate Tp : 
 

tt
Xt

p T

T
T =      ; (B.3) 

 
3. Normalize Tp  to unit length. 
4. Calculate t : 

 

pp
Xpt T=      ; (B.4 

 
5. compare t  used in step 2. with t  calculated in step 4. If they are the same (their 

difference is less than an assigned tolerance), stop (the method has converged), else restart 
from step 2., with the last calculated t . 

6. If converged, calculate E  according to Eq.(B.2), and go back to step 1, by setting EX =  
to calculate the next PC. 

The algorithm iterates until the A PCs selected to build the PCA model have been determined. 
It is demonstrated that the parameters provided by the NIPALS algorithm are the same as the 
eigenvector solution problem of Eq.(2.4) (Chapter 2, Section 2.1.1) (Geladi and Kowalski, 
1986). Furthermore, it can feasibly handle datasets with missing data. 
Other approaches have been used to calculate the PCA loadings and scores based on 
optimization frameworks for parameter estimation. In these cases, the PCA loadings are found 
in order to minimize the sum of squared errors between the data matrix X  and the 
reconstructed matrix using the PCA model, which for one PC can be set as in Eq.(B.5): 

 

1   subject to
2
1min

T

2T

=

−

pp

tpX
F      , (B.5) 

 
being F

.  the Frobenius norm. To determine the PCs after the first through Eq.(B.5), the 
optimization problem should be applied in an iterative way, subject to the additional 
constraint that the loadings on different PCs are orthonormal. Otherwise, the minimization 
problem can be formulated in order to estimate simultaneously the A PCs selected to build the 
model: 
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In the optimization problem of Eq.(B.6) nix , , ait ,  and anp ,  are the elements of respectively 
matrix X , T  and P , while ',aaδ  is the Kronecker delta. The constraint set in Eq.(B.6) forces 
the loadings to be orthonormal, and the scores to be orthogonal and to have zero mean. The 
optimization can be solved through appropriate nonlinear programming problem algorithms, 
and allows to handle datasets with high percentages of missing data (López-Negrete de la 
Fuente et al., 2011). 

B.2 Projection to latent structures (PLS) 
Projection to latent structures (PLS) includes a class of algorithms that attempts to summarize 
the variation in a regressor matrix X  that is in some way predictive of a corresponding matrix 
Y  of response variables (Chapter 2, Section 2.1.2) (MacGregor et al., 1994). One of the most 
common algorithms to estimate the PLS model parameters is NIPALS (Wold, 1966; Wold et 
al., 1983), whose steps are summarized below and illustrated in Figure B.1 (MacGregor et al., 
1994). 
1. Set u  equal to any column of Y . 
2. Regress columns of X  on u  to get weights w :  

 

uu
Xuw T

T
T =      . (B.7) 

 
3. Normalize w  to unit length. 
4. Calculate the scores t : 

 

ww
Xwt T=      . (B.8) 

 
5. Regress the columns of Y  on t : 

 



Appendix B 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

250 

tt
Ytq T

T
T =      . (B.9) 

 
6. Calculate the new score vector for Y : 

 

qq
Yqu T=      . (B.10) 

 
7. Check convergence of u : if yes go to step 8; if no go to step 2. 
8. Calculate X  matrix loadings, by regressing columns of X  on t : 

 

tt
Xtp T

T
T =      . (B.11) 

 
9. Calculate residual matrices E  and F : 

 
TtpXE −=  (B.12) 
TtqYF −=  (B.13) 

 
10. To calculate the next set of latent vectors, restart from step 1, replacing X  and Y  by E  

and F  respectively. 
Eq.(B.7) and Eq.(B.9) allow to change place, allowing each dataset latent space to get 
information about the other. As in PCA, an important property is that the scores t  calculated 
on each LV are orthogonal to one another. Various interpretation of the PLS algorithm and its 
properties are discussed by Höskuldsson (1988). 
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Figure B.1. Schematic of a PLS algorithm iteration (adapted from MacGregor et al., 
1994). 
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B.2.1 Multi-block PLS 

As shown in Chapter 2 (Section 2.1.3.1), only the case of two regressor blocks AX  and BX  
and a single response variables block Y  is considered. The iteration sequence of the 
algorithm is reported below and represented in Figure B.2 (MacGregor et al., 1994): 
1. Set u  equal to any column of Y . 
2. Perform part of a PLS round on each of the blocks AX  and BX  to get Aw , At  and Bw , Bt  

as in steps 2 to 4 of the NIPALS algorithm described above for the PLS case (Eqs.(B.7)-
(B.8)). 

3. Collect all the score vectors At  and Bt  in the consensus (superblock) matrix MBT . 
4. Perform one round of PLS with MBT  as X  (steps 2 to 6 in the above-described NIPALS 

algorithm for PLS) to get a super-weights vector Sw  and a super-scores vector St , as well 
as a loading vector q  and a new score vector u  for the Y  matrix. 

5. Return to step 2 and iterate until convergence of u . 
6. Compute the loadings for each block:  

 

S
T
S

A
T
ST

A tt
Xtp =      . (B.14) 

S
T
S

B
T
ST

B tt
Xtp =      . (B.15) 

 
7. Compute the residual matrices for each block: 

 
T
ASAA ptXE −=  (B.16) 
T
BSBB ptXE −=  (B.17) 

T
SqtYF −=  (B.18) 

 
8. Calculate the next set of latent vectors by replacing AX , BX  and Y  by their residual 

matrices AE , BE  and F  and repeating from step 1. 
The algorithm implemented in this way allows to obtain orthogonal super scores St  on each 
LV, while the block scores At  (or Bt ) on different LVs are slightly correlated. Alternatively, 
one could formulate the algorithm to yield orthogonal block scores but nonorthogonal super 
scores. This can be achieved by performing the deflation step in the above-mentioned 
algorithm (steps 6-7) with the block scores At  and Bt  instead of the super scores St . 
However, it has been showed that by using the block score deflation method, some of the 
information in the X  datasets may be lost in the deflation step, possibly leading to poor 
performances for the model (Westerhuis et al., 1998). Furthremore, as already stated in 
Chapter 2 (Section 2.1.3.1), the multi-block PLS algorithm parameters can be obtained from 
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the standard PLS method (Figure B.1), if the appropriate data pretreatment is applied to the 
block matrices. 
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Figure B.2. Schematic of a multi-block PLS algorithm iteration (adapted from MacGregor 
et al., 1994). 

B.2.2 Joint-Y PLS 

As in the PLS and in the multi-block PLS cases, a modified version of the NIPALS algorithm 
has also been proposed for Joint-Y PLS (JY-PLS). The algorithm steps for an iteration are 
summarized below and represented in Figure B.3 in the case two regressor (i.e. sites) datasets 

AX  and BX  and two response variables datasets AY  and BY , forming the joint-Y matrix JY , 
are considered (García-Muñoz, 2004): 
1. Initialize Au  and Bu  with the first column of AY  and BY . 
2. Regress AX  and BX  onto Au  and Bu  to compute Aw  and Bw : 

 

A
T
A

A
T
AT

A uu
Xuw =  (B.19) 

B
T
B

B
T
BT

B uu
Xuw =      . (B.20) 

 
3. Normalize  Aw  and Bw  as: 

 

1
B

A
=

w

w
     . (B.21) 
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4. Regress AX  and BX  onto Aw  and Bw  to obtain At  and Bt : 

 

A
T
A

AA
A ww

wXt =  (B.22) 

B
T
B

BB
B ww

wXt =      . (B.23) 

 
5. Regress the joint-Y matrix onto the joint scores to obtain the joint loadings ( Jq ): 
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6. Regress AY  and BY  onto Jq  to re-compute Au  and Bu : 
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7. Check convergence with respect to the orginal values of Au  and Bu . If convergence fails, 

go back to step 2 with the new values of Au  and Bu , otherwise go to step 8. 
8. Calculate Ap  and Bp  for deflation: 

 

A
T
A

A
T
AT

A tt
Xtp =   (B.26) 

B
T
B

B
T
BT

B tt
Xtp =      . (B.27) 

 
9. Deflate AX  and BX , AY  and BY  and estimate the next component, going back to step 1. 

 
T
AAAA ptXX −=  (B.28) 

T
BBBB ptXX −=  (B.29) 
T
JAAA qtYY −=  (B.30) 

T
JBBB qtYY −=      . (B.31) 

 
The algorithm above is identical to the one previously described for the PLS model parameter 
estimation, with the exception of step 5, in which the joint loadings Jq  are computed with the 
joint score vector. This step allows to achieve the main goal of the methodology, which is to 
find the common plant defined by both AY  and BY , since both matrices are projected 
simultaneously onto the score space (García-Muñoz, 2004). 
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Figure B.3. Schematic of a Joint-Y PLS algorithm iteration (adapted from García-Muñoz, 
2004). 
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Appendix C 

Model inversion improvements 

This Appendix reports some notes on the latent variable regression model (LVRM) inversion 
framework presented in Chapter 4. In particular, a procedure is described to estimate 
uncertainties in the calculation of the null space and of the model inversion solution 
(Chapter4, Section 4.3.2). In the second part, a discussion is provided on the model to be used 
in the reconstruction of the desired product attribute profile for model inversion (Chapter4, 
Section 4.4.1). 

C.1 Calculation of the confidence limits for the null space and the 
optimization solution 

To calculate the confidence limits to account for the uncertainties in the estimation of the null 
space, a jackknife approach was applied (Duschesne and MacGregor, 2001). Let us define X  
and Y  as the regressor and the response variable datasets, DESy  as the desired product 
property set in which each property is fixed by the user, and t  as the vector of the projections 
of the model inversion solution NEWx̂ . At the generic iteration i, the procedure goes through 
the following steps: 
1. Remove the i-th row from both X  and Y , generating the new matrices )(iX  and )(iY . 
2. Estimate the PLS model between )(iX  and )(iY , keeping the same number A of LVs as in 

the PLS model built between X  and Y . 
3. Estimate the null space points following the procedure described by Jaeckle and 

MacGregor (2000a). 
4. Invert the PLS model to estimate the projections )(it  corresponding to the new input 

conditions )(NEW ˆ ix . 
Repeating this procedure for all the I samples contained in the original datasets gives in 
output a three-dimensional array NULLT  [ ]AIL ×× , being L the number of the null space 
considered points, and a matrix NEWT  [ ]AI ×  of the solutions from the I different model 
inversions. For the l-th point NULL

lt  [ ]1×A  of the null space the 95% confidence ellipsoid is 
formed by the points with coordinates NULLτ  [ ]1×A  which satisfy the ellipsoidal equation 
(Mardia et al., 1979): 
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( ) ( ) flll =−− − NULLNULL1TNULLNULL tτCtτ      , (C.1) 
 

where lC  is the [ ]AA×  covariance matrix calculated from matrix NULL
lT  [ ]AI ×  of the I 

different jackknife estimations of the l-th null space point, while c  can be approximated as: 
 

( )
( ) α,,

2 1
AIAF

AII
IAf −⋅

−⋅
−⋅

=      ; (C.2) 

 

α,, AIAF −  is the critical value of the F distribution with A and AI −  degrees of freedom at 
significance level α  ( 05.0=α  for the 95% confidence limits). 
To calculate the projections of the confidence ellipsoid in the bi-dimensional score diagrams 
it is considered that 2=A . The confidence ellipse for the l-th null space point in the null 
space can then be found solving the second order equation derived from (C.1): 

 
( ) ( ) ( ) ( ) ( ) fctccttct llll =⋅−++⋅−⋅−+⋅− 22

2NULL
,2

NULL
22112

NULL
,2

NULL
2

NULL
,1

NULL
111

2NULL
,1

NULL
1 ττττ    
 (C.3) 

 
being NULL

1τ  and NULL
2τ  the elements of NULLτ  (namely the coordinates of the ellipse points), 

NULL
,1 lt  and NULL

,2 lt  the elements of NULL
lt , while 11c , 12c , 21c  and 22c  the elements of the 

covariance matrix lC . 
The null space confidence limits represented by the red lines in Figure 4.3 (Chapter 4, Section 
4.3.2) are then formed by joining the points of the L 95% confidence ellipses at maximum 
distance from each null space point NULL

lt . 
The described procedure is applied also to estimate the 95% confidence ellipse for the 
optimization solution t̂  (blue dot ellipses in Figure 4.3 diagrams). In this case, the equation in 
(C.1) is modified accordingly: 

 
( ) ( ) f=−− − tτCtτ ˆˆ 1T

   , (C.4) 
 

where NULL
lt  is substituted with the optimal solution vector t̂ , while the covariance matrix C  

is estimated from the jackknife replications of the inversion solution included in NEWT . 

C.2 On the reconstruction of yDES through the model on Y 
The LVRM inversion relies on the assumption that DESy  adheres to the covariance structure 
of the response matrix Y . In the case equality constraints are specified for some of the 
elements in DESy , this assumption has to be checked, for example by considering the PCA 
model on Y , and comparing DESSPEy

 calculated through it with the SPE  of the historical 
samples in Y  (García-Muñoz et al., 2006). Indeed, the covariance structure described by the 
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PCA model on Y is not the same as the one described by the Q  loadings of the PLS model 
between X  and Y  (Chapter 2, Section 2.1.2). This means that if DESy  belongs to the space of 
the PCA model on Y (i.e. 0SPEPCA

DES =y
 according to the PCA model), it is not ensured that 

0SPEPLS
DES =y

 according to the PLS model.  
If DESy  is coplanar to the subspace mapped by the PCA model on Y  (or it is reconstructed 
through it), then the new product quality NEWŷ  corresponding to the model inversion solution 

NEWx  will differ from DESy  proportionally to the differences between P  (loadings from PCA 
on Y) and Q . These differences are fundamentally driven by the correlation between the 
latent spaces of X  and Y . In the best case, the greatest and significant, directions of 
variability in Y  will also be explained by X  resulting in a Q  matrix that is a rotated version 
of the PCA P  loadings. In such a case, reconstructing DESy  (or assessing its correlation) using 
the PCA P  or the Q  loadings should make no difference. One way the practitioner can 
determine this similarity (or lack of thereof) is by comparing the total residual sum of squares 
from the PCA model built on Y  with the residuals for the Y  space in the PLS model and 
performing a canonical correlation analysis (Mardia et al., 1979) between P  and Q . 
If DESy  belongs to the sub-space of the PLS model described by Q  (or it is reconstructed 
through it), than Qty =DES  can be set as an hard constraint in the model inversion problems, 
and the soft constraints on DESy  in the optimization problems disappear. This is the strategy 
followed in the approaches presented in Section 4.4 of Chapter 4. 
Considering the differences between the two modeling techniques, one could argue that it is 
best to choose (or reconstruct) DESy  using the PCA P  loadings to ensure that the complete 
correlation structure from the historical data is accounted for; one could also argue that given 
the ultimate objective (estimate NEWx ) it only makes sense to consider the covariance in Y  
that is correlated with X . 
Regardless of the methodology, the reconstruction of DESy  allows to discard the (possible) 
uncertainties in the quality variables, which are not easily identifiable and are not handled in 
the presented model inversion framework. 
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Appendix D 

Monitoring model transfer adaptive 
mechanisms 

This Appendix reports the details on the implementation of the adaptive monitoring transfer 
scenarios of the general framework described in Chapter 7 (Figure 7.1). In the first part, the 
description of the monitoring chart design for the adaptive JY-PLS model (transfer Scenario 3 
in Figure 7.1) is provided. In the second part, the modelling strategy and the adaptation 
mechanism implemented for transfer Scenario 4 and transfer Scenario 5 of the proposed 
framework are described. 

D.1 Monitoring chart design and interrogation procedures for the 
adaptive JY-PLS model 

To build the adaptive JY-PLS model (Chapter 7, Section 7.3.3.1) control charts, the 
confidence limits of T2 and SPE are calculated from the data for plant B: 

 
B*
kk TT =  (D.1) 

kk B,
* EE =      , (D.2) 

 
where B

kT  is the ( )[ ]Ak ×−1  matrix of the scores of the ( )1−k  samples available from plant 
B, while B

kE  is the matrix of the reconstruction errors of B
kY ′′  (Figure 7.3, Section 7.3.3.1). 

The limits of the Hotelling’s T2 and of the SPE statistics are calculated at each updating 
instant k using the available ( )1−k  samples from plant B, according to the same equations 
described in Chapter 2 (Section 2.1.4)Ä

The monitoring of plant B operating conditions is carried out by interrogating the JY-PLS 
model with the data incoming from this plant. The incoming data are projected onto the joint 
monitoring charts utilizing the procedure described in the following. 

. 

                                                 
Ä As an alternative, the control limits for T2 and SPE can be defined using both plant A data and plant B data, with 






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The Hotelling’s 2
kT  statistic for the incoming plant B data at updating instant k can be 

calculated as: 
 

B1TB2 ˆˆ
kkkT tΛt −=      , (D.3) 

 
where: 

 
[ ]( )Aλ,...,λ,λdiag 21=Λ      , (D.4) 

 
and Aλ,...,λ,λ 21  are the elements of: 

 
( )

1
diag *T*

−
=

n
TTλ      . (D.5) 

 
Similarly, the SPE statistic for the incoming data is determined by: 

 

∑
′′

=

=
V

v
vkk e

1

2B
,SPE      , (D.6) 

 
where is:  

 
B
,

B
,

B
, ˆ vkvkvk yye ′′−′′=    .  (D.7) 

 
It is worth remarking that the values of both 2

kT  and SPEk depend not only on the incoming 
plant B data, but also on the whole set of available plant A data. In fact, 2

kT  is determined by 
the projection of B

kx ′′  through *B
kW  (Eq.(7.3) in Section 7.3.3.1), which are the loadings 

describing the directions of maximum variability in the space of the regressor variables 
mostly correlated to the joint space of the common response variables through k,JQ . 
Furthermore, the value of SPEk is obtained as the difference between the actual value and the 
predicted value of the response variables (Eqs.(D.6)-(D.7)), where the predicted value 
depends on the joint space of common response variables (Eq.(7.4)) and on the correlation 
within a single plant (Eq.(7.3)). 

D.2 Adaptation mechanism for Scenario 4 and Scenario 5 of the 
monitoring model transfer framework 
A flow chart of the monitoring strategy and model adaptation mechanism is shown in Figure 
D.1. 
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Project sample j 
on the (k-1)-th 

model

YES

NO

Build a local monitoring model 
with the last W plant B samples 

+ relevant plant A data

Get a new sample
j ← j + 1

The local model is the 
new monitoring model

k ← k + 1

Fault warned

YES

YES

NO

NO

Update the (k-1)-th model with 
the in-control sample and 
relevant plant A samples

k ← k + 1

Build a monitoring model with the W 
plant B samples available initially + the 

selected plant A samples
j = 0; k = 1

  Last Φ values of T2 and 
SPE above the confidence 

limits?

T2 and SPE 
below the confidence limits?

  Last Φ values of T2 and 
SPE above the confidence 

limits?

 
Figure D.1. Simplified flow chart of the online monitoring strategy and model adaptation 
mechanism for Scenario 4 and Scenario 5 of the proposed framework for the transfer of 
monitoring models. 

The main steps for any new incoming plant B sample B
jx  are the following: 

1. preprocess† B
jx  on the current values of mean and standard deviation of the plant B samples 

available so far, and calculate the plant independent variable wtd; 
2. project B

jx  onto the space of the monitoring model designed at updating instant ( )1−k ; 
3. calculate the 2T  and SPE statistics for B

jx , and compare them to the confidence limits in 
the relevant control chart (Chapter 2, Section 2.1.4). If both of them are below the 
confidence limits, update the monitoring model using B

jx  and the relevant selected plant A 
samples, and go to step 1, otherwise go to step 4; 

4. if the last Φ samples are found as outliers in the T2 or in the SPE monitoring charts, go to 
step 5, otherwise go to step 1; 

5. build a local monitoring model for plant B based on the last W samples from plant B plus 
the plant A samples that can be selected from these plant B samples; 

6. if the last Φ samples are found as outliers in the T2 or SPE monitoring charts of the local 
model, a fault is detected, an alarm is warned and the procedure goes back to step 1‡

                                                 
† For the PCA model, the preprocessing operation is autoscaling. For the JY-PLS model, the preprocessing operations are 
those reported by García-Muñoz et al. (2005) (Chapter 2, Section 2.1.3.2). 

; 
otherwise the local monitoring model becomes the new plant B monitoring model and the 
procedure goes back to step 1. 

‡ To avoid adaptation to the fault, the possibility to build a local model is inhibited until a new NOC sample if found. This is 
not shown in Figure D.1 for clarity. 



 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

 
 



 

________________________________________________________________________ 
© 2013 Emanuele Tomba, University of Padova (Italy) 

Appendix E 

Details on the penicillin fermentation 
process 

This Appendix reports the details on the penicillin fermentation process analyzed in Chapter 7 
(Section 7.6). First, the description of the two simulated plants and of the inputs assigned to 
the simulator is provided. Then, details are given on the strategy used to synchronize the 
variable trajectories of different batches. 

E.1 Process simulations 
Data were obtained using the PenSim*

The initial values assigned to the variables in order to carry out a simulation are listed in 
Table E.1. The same table reports the average input values assigned for the simulations of 
plant A and plant B, and the maximum (common-cause) variability across batches due to 
input changes. The variability was generated by assigning a random Gaussian noise to the 
average input values. As can be seen from Table E.1, some initial values were maintained the 
same in both plants (substrate concentration; concentration of dissolved oxygen; pH; reactor 
temperature; pH setpoint; reactor temperature setpoint). Other initial values were assigned 
different average values in the different plants (biomass concentration; culture volume; carbon 
dioxide concentration; aeration rate; agitation power; substrate federate; substrate inlet 
temperature). Fluctuations were also introduced to some input variables (aeration rate; 
agitation power; substrate federate; pH setpoint; reactor temperature setpoint) throughout the 
process as pseudo-random binary signals (Birol et al., 2002). 

 simulator, which solves a detailed mechanistic model 
of differential-algebraic equations describing the biological behavior of the fermentation 
process. Overall, one hundred normal batches were simulated both for plant A and for plant 
B. 

A batch is terminated when the penicillin concentration attains an assigned target, that is 1.1 
g/L for plant A, and 0.74 g/L for plant B. Therefore, the actual batch length is not set a priori, 
and it can significantly change from batch to batch depending on the actual values of the 
inputs. Typical time trajectories of the penicillin concentration for some batches in plant A 
                                                 
* http://simulator.iit.edu/web/pensim/index.html 
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and plant B are shown in Figure E.1. Across the entire set of simulated batches, the length of 
plant A batches ranges between 250 h and 320 h, and the length of plant B batches ranges 
between 200 h and 315 h. The sampling time for the process measured variables (including 
the initial penicillin concentration shown below) was set to 0.5 h. 

Table E.1. Initial values of the variables for the simulation of the fed-batch 
process for the production of penicillin: average value and maximum 
variability for Plant A and Plant B. 

 Plant A Plant B 

Variables Average 
Maximum 
variability 

Average 
Maximum 
variability 

Substrate concentration (g/L) 15 ±2.5 15 ±2.5 
Concentration of dissolved oxygen (mmol/L) 1.16 0 1.16 0 
Biomass concentration (g/L) 0.05 ±0.025 0.15 ±0.025 
Initial penicillin concentration (g/L) 0 0 0 0 
Culture volume (L) 105 ±2.5 195 ±2.5 
Carbon dioxide concentration (mmol/L) 0.65 ±0.0625 0.85 ±0.0625 
pH 5 ±0.25 5 ±0.25 
Reactor temperature (K) 299 ±0.25 299 ±0.25 
Initial generated heat (kcal) 0 0 0 0 
Aeration rate (L/h) 4 ±0.25 8 ±0.25 
Agitation power (W) 20 0 40 0 
Substrate feed rate (L/h) 0.037 ±0.00125 0.042 ±0.00125 
Substrate inlet temperature (K) 296.5 ±0.125 297.5 ±0.125 
pH setpoint 5 0 5 0 
Reactor temperature setpoint (K) 298 0 298 0 
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Figure E.1. Typical time profiles of the fermentation product quality (penicillin 
concentration) for Plant A and Plant B.  
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E.2 Variable trajectories alignment 
As mentioned earlier, the batch length changes within a plant due to (normal) variations in the 
input conditions. Therefore, the measured variable trajectories need to be synchronized before 
proceeding with a multivariate statistical analysis. 
The indicator variable approach (Nomikos and MacGregor, 1995b) was used to synchronize 
the time trajectories. According to this approach, a monotonically-changing measured 
variable can be selected as the indicator variable and used to align the batches, being this 
variable an index of the percentage of batch completion. For the process under investigation, 
two different indicator variables were selected, one for each operating stage (García-Muñoz et 
al., 2003): in the first (batch) stage, the substrate concentration was used as the indicator 
variable, whereas in the second (fed-batch) stage the penicillin concentration was used. These 
variables are appropriate indicator variables not only because they are monotonic, but also 
because they have fixed initial and final values. Namely, the substrate concentration during 
stage one was scanned by evenly partitioning its time trajectory into 25 levels, from the initial 
value of 12 g/L to the final value of 0.56 g/L (i.e., the end of stage 1); the penicillin 
concentration was scanned by evenly partitioning its time trajectory into 175 levels, from the 
initial value of 0.18 g/L to the target value of 1.1 g/L in Plant A, and to the target value of 
0.74 g/L in Plant B. As a result, after synchronization the batches are not monitored in the 
domain of time, but in the domain of the percent of batch completion. 
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