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Abstract

Ultraluminous X-ray sources (ULXs) are a class of extragalactic, off nuclear and point-like

sources with isotropic X-ray luminosities higher than 1039 erg s−1. They are supposed to

be accreting Black Hole binaries systems but the accretion mechanisms at the basis of their

extremely high X-ray luminosity are still matter of debate.

We carried out a detailed spectral analysis of all the available XMM-Newton observa-

tions of two ULXs in NGC 1313, adopting a common model based on a multicolor disc

plus a comptonizing component. We were able to describe the spectral evolution of the

two sources within such a common framework. Furthermore, we investigated the chemical

abundances of their local environments making use of both EPIC and RGS data. The

results appear to indicate sub-solar metallicity for both sources.

The possible existence of two spectral states in NGC 1313 X-1 and X-2 suggested to

look for similar behaviours also in other ULXs. We then studied a larger sample of sources,

including IC 342 X-1, NGC 5204 X-1, NGC 5408 X-1, Holmberg IX X-1, Holmberg II

X-1, NGC 55 ULX1 and NGC 253 X-1. These sources were selected because they have a

luminosity ≥ 2.0 · 1039 erg s−1, are nearby, have one long observation and at least three

other observations. The high quality observations provide at least 10000 counts in the

EPIC instruments allowing us to constrain the curvature at high energy and to perform
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an analysis of the abundances of the material along the line of sight. We found that,

in most of the spectra of the sources of our sample, the high energy component has a

low temperature and is optically thick. However, because of the poor quality of some

observations, the spectral fits are sometimes affected by a degeneracy between the spectral

parameters and the roll-over of the spectrum at high energy is not easy to detect. For these

reasons, similarly to what has been done for low counting statistics spectra of Galactic X-ray

binaries (XRBs), we adopted the method of the hardness ratios that has also the advantage

to allow us to study the spectral variability in a way completely independent of the spectral

models. This analysis suggests the existence of possible characteristic evolutionary patterns

on the color-color and intensity-color diagrams linking at least two different spectral states.

This behaviour can be explained in terms of a non-standard accretion disc in which the

increment of the accretion rate produces outflows that become more and more important

at the highest luminosities.

We tested the scenario of the ejection of a wind jointly analyzing the spectral and timing

properties of the source NGC 55 ULX1 which shows a puzzling flux variability. In fact, fast

drops in the flux are observed on time scales of minutes to hours that may be produced

by optically thick blobs of matter that from time to time encounter our line of sight. We

compared its variability properties with those of a Galactic accreting systems, EXO 0748-

676, which is powered by a neutron star and is a known dipping source. We characterised

the nature of the variability observed in the power density spectrum and, in particular, we

checked the presence of a linear relation between the Root Mean Square (RMS) variability

and the flux in several energy bands. We found that, in EXO 0748-676, the predominance

of an (ionised) absorber strongly affects the RMS-flux relation which may anticorrelate

when the absorption lines are unsaturated. On the other hand, no further variability is

introduced when they are saturated and the variability is dominated by the accretion flow.

In this case the source shows a positive correlation between RMS and flux. Since we found
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an anticorrelation in NGC ULX1, we suggest that at the highest flux levels, massive and

unsaturated turbulent outflows are ejected.

Finally, persistent ULXs, as those discussed above, do not allow us an easy compari-

son with the behaviour of Galactic XRBs. Transient ULXs are much more promising in

this respect as they span different accretion regimes. Till now, only a handful of transient

ULXs has been discovered and the link between them and the persistent sources is still

unclear. We monitored the evolution of a new ULX (XMMU J004243.6+41251) discov-

ered in January, 2012 in M31 by XMM-Newton. Its outburst showed that, at maximum

luminosity, it entered in the ULX regime. It was then extensively followed by Swift during

the flux decay. The source has experienced a fast rise in flux after discovery during which

the XMM-Newton spectra changed from a powerlaw-like to a disk-like shape in the Swift

spectra, suggesting a transition between the canonical low/hard and high/soft states. Its

luminosity remained fairly constant for at least 40 days and then it faded below 1038 erg

s−1. During the decay the disc emission softened and the temperature decreased from

∼ 0.9 keV to ∼ 0.5 keV. An optical follow-up and the UVOT images failed to provide

evidence of a counterpart down to 22 mag in the optical band and to 23−24 mag in the

near Ultraviolet. We compared the properties of XMMU J004243.6+412519 with those of

other known ULXs and Galactic black hole transients, finding more similarities with the

latter.
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Abstract

Le Ultraluminous X-ray sources (ULXs) sono una classe di sorgenti extragalattiche, lontane

dal nucleo della galassia ospite e puntiformi, con una luminosità isotropica maggiore di 1039

erg s−1. Si pensa siano buchi neri in accrescimento in sistemi binari ma i meccanismi di

accrescimento alla base della loro estrema luminosità X sono ancora lontani dall’essere

totalmente compresi.

In questo lavoro è stata svolta una dettagliata analisi spettrale di tutte le osservazioni

disponibili di XMM-Newton di due ULXs in NGC 1313, adottando un modello comune

basato su un disco multicolore più una componente di comptonizzazione. Noi siamo stati

capaci di descrivere l’evoluzione spettrale delle due sorgenti all’interno di tale scenario. In-

oltre, è stato possibile determinare le abbondanze chimiche dei loro ambienti locali facendo

uso sia di dati EPIC che di dati RGS. I risultati sembrano indicare metallicità sub-solare

per entrambe le sorgenti.

La possibile esistenza di due stati spettrali in NGC 1313 X-1 e X-1 hanno suggerito di

cercare comportamenti simili anche in altre ULXs. Per questo motivo, un campione più

vasto di sorgenti, il quale include IC 342 X-1, NGC 5204 X-1, NGC 5408 X-1, Holmberg IX

X-1, Holmberg II X-1, NGC 55 ULX1 e NGC 253 X-1, è stato studiato. Queste sorgenti

sono state selezionate poichè la loro luminosità è ≥ 2.0 · 1039 erg s−1, sono sorgenti vicine
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e posseggono un’osservazione lunga e almeno altre tre ulteriori osservazioni. L’alta qualità

delle osservazioni fornisce almeno 10000 conteggi nello strumento EPIC, consentendoci di

determinare con più precisione la curvatura ad alta energia e di svolgere un’analisi delle

abbondanze del materiale presente lungo la linea di vista. È stato trovato che, nella maggior

parte degli spettri delle sorgenti del nostro campione, la componente ad alta energia mostra

una bassa temperatura ed è otticamente spessa. Ad ogni modo, a causa della bassa qualità

di alcune osservazioni, i fit spettrali sono a volte influenzati da una degenerazione fra i

parametri spettrali e la curvatura ad alta energia dello spettro non è facilmente individuata.

Per queste ragioni, in modo simile a ciò che è stato ampiamente fatto per gli spettri di

sorgenti binarie Galattiche di raggi X, abbiamo adottato il metodo degli hardness ratios

che hanno anche il vantaggio di consentirci di studiare la variabilità spettrale in un modo

completamente indipendente dal modello spettrale. Questa analisi suggerisce l’esistenza di

un possibile caratteristico cammino evolutivo sui diagrammi colore-colore and intensità-

colore collegando almeno due differenti stati spettrali. Questo comportamento può essere

spiegato in termini di un disco di accrescimento non standard in cui l’aumento del tasso

di accrescimento produce fuoriuscite di materiale che diventano via via più importanti alle

più alte luminosità.

Lo scenario di emissione di vento è stato ulteriormente studiato analizzando le proprietà

spettrali e temporali della sorgente NGC 55 ULX1 che mostra un’enigmatica variabilità nel

flusso. Infatti, rapide diminuzioni del flusso emesso sono osservate su tempi scala di minuti

od ore che potrebbero essere prodotti da nuvole di materiale otticamente spesso che di tanto

in tanto entrano all’interno della nostra linea di vista, oscurando le regioni centrali della

sorgente. È stata fatta un’analisi comparativa fra le proprietà della sua variabilità con quelle

di un sistema Galattico in accrescimento, EXO 0748-676, conosciuto per ospitare una stella

di neutroni e per essere una sorgente con “dips”. Abbiamo caratterizzato la natura della

variabilità osservata negli spettri di potenza e, in particolare, abbiamo testato la presenza
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di una relazione lineare tra la variabilità quadratica media (RMS) e il flusso in diverse

bande di energia. È stato trovato che, in EXO 0748-676, la predominanza di un mezzo

assorbente (ionizzato) influenza fortemente la relazione fra RMS e flusso che potrebbero

anti-correlare qualora le linee in assorbimento fossero non sature. D’altra parte, nessuna

variabilità ulteriore è introdotta quando esse sono sature e la variabilità è dominata dal

flusso d’accrescimento. In questo caso la sorgente mostra una correlazione positiva tra

flusso ed RMS. Poichè noi abbiamo individuato un’anti-correlazione in NGC 55 ULX1,

proponiamo che ai livelli di flusso più alti, imponenti venti, non saturi e turbolenti, siano

eiettati.

Infine, ULX persistenti come quelle discusse sopra, non consentono una facile compara-

zione con il comportameno delle sorgenti binarie Galattiche. ULX transienti sono molto

più promettenti sotto questo punto di vista poichè esse attraversano differenti regimi di

accrescimento. Fino ad ora, solo una manciata di ULX transienti sono state scoperte e la

connessione tra loro e le sorgenti persistenti è ancora poco chiara. Noi abbiamo monitorato

l’evoluzione di una nuova ULX (XMMU J004243.6+41251) scoperta nel Gennaio 2012 nella

galassia M31 da XMM-Newton. La sua accensione ha mostrato che, alla luminosità di picco,

la sorgente è entrata nel regime ULX. È stata poi ampiamente seguita da Swift durante la

sua fase di decadimento in flusso. La sorgente ha sperimentato un veloce incremento del

flusso dopo la sua scoperta, durante il quale gli spettri ottenuti da XMM-Newton si sono

evoluti da un semplice andamento a legge di potenza fino ad una forma tipica per un disco

d’accrescimento in tutti gli spettri Swift, suggerendo una transizione tra gli stati canonici

low/hard and high/soft. La sua luminosità è rimasta abbastanza costante per almeno 40

giorni, per poi scendere al di sotto di 1038 erg s−1. Durante il decadimento, l’emissione del

disco è diventata più soft e la temperatura è diminuita da ∼ 0.9 keV fino a ∼ 0.5 keV. Un

follow-up ottico e immagini UVOT non sono riuscite a fornire evidenze di una controparte

fino a 22 mag in banda ottica e fino a 23−24 mag nel vicino Ultravioletto. Noi abbiamo

9



comparato le proprietà di XMMU J004243.6+41251 con quelle di altre ULX transienti e

buchi neri Galattici, trovando più similitudini con le ultime.
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Chapter 1
Introduction to Ultra Luminous X-ray

sources

Ultra Luminous X-ray sources (ULXs) are a peculiar class of extragalactic, point like and

off-nuclear X-ray sources with isotropic luminosity higher than 1039 erg s−1 and up to

1041−42 erg s−1. Although they were discovered more than 30 years ago and nowadays more

than 450 ULXs are known and catalogued (e.g. Roberts & Warwick 2000; Colbert & Ptak

2002; Swartz et al. 2004; Liu & Bregman 2005; Walton et al. 2011; Swartz et al. 2011), their

nature is still matter of debate and their observational properties are still puzzling. Few

ULXs are now known to be supernova remnants interacting with the interstellar medium

(Immler et al., 2007) while a larger fraction (∼ 25%) of them are identified as background

Active Galactic Nuclei (AGN) (Swartz et al. 2004; Foschini et al. 2002b, Masetti et al.

2003; Wong et al. 2008). The contamination is lower in spiral galaxies (∼ 15% of the total

number of ULXs) than in elliptical galaxies (∼ 44%; Swartz et al. 2011 ). In general ULXs

are detached from the nucleus of their host galaxies, excluding the possibility of association

with supermassive Black Holes (BHs).

Einstein was the first X-ray satellite to reveal the existence of X-ray sources in external

galaxies (Long & van Speybroeck 1983; Helfand & Becker 1984; Fabbiano 1989; Stocke
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1. INTRODUCTION TO ULTRA LUMINOUS X-RAY SOURCES

et al. 1991). The brightest sources showed isotropic X-ray luminosities > 1039 erg s−1,

higher than those of X-ray binaries in our Galaxy. Initially, these sources were named in

several ways, as extraluminous, superluminous or intermediate X-ray sources. The name

Ultraluminous X-ray sources (ULXs) was introduced for the first time by the Japanese

ASCA team. The imaging and sensitivity capabilities of Einstein were considerable at

that time but not sufficient to resolve groups of sources in compact and dense star forming

extragalactic regions and to study the long-term variability of their X-ray fluxes. Many

ULXs were confused with background AGNs or supernovae. Only with the advent of

ROSAT was it possible to make order between the different objects and resolve the emission

of groups of sources. Moreover, with ROSAT it was possible to compile the first catalogues

of ULXs (i.e. Colbert & Mushotzky 1999, Roberts & Warwick 2000, Colbert & Ptak 2002).

It became soon clear that most of them were not associated to supernovae since they were

often persistent sources. Thanks to the Japanese mission ASCA, the first physical models

were applied to the spectra of ULXs showing that several of them could be well fitted by

a single thermal component with a temperature of ∼ 1− 2 keV (Makishima et al., 2000).

Such high disc temperatures were explained in terms of highly spinning stellar mass BHs.

In such a case, the inner disc radius can be 6 times smaller than that of a non-rotating

BH, making the inner disc temperature higher (Makishima et al., 2000). Another proposed

scenario was that the emission is produced by an advection dominated disc (slim disc)

whose temperature is higher than a standard disc (Mizuno et al., 2001; Ebisawa et al.,

2003). In some cases, the data were good enough to describe the spectra also with the

combination of two components, usually a cold thermal disc and a power-law.

The high luminosities of ULXs can be explained assuming bigger BH masses or consid-

ering beaming effects and/or super-Eddington accretion. A combination of the two latter

effects may, in principle, account for ULXs with luminosities up to 1040 erg s−1. For solar

abundance, the three effects can be taken into account using the following expressions:
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L ≈ 1.3 · 1038

b
ṁ

(
M

M�

)
erg s−1, (1.1)

L ≈ 1.3 · 1038

b
ṁ

(
1 +

3

5
ln ṁ

)(
M

M�

)
erg s−1 (1.2)

in which b is the beaming factor (b = Ω/4π where Ω is the solid angle of the emitted flux

and ṁ is the average accretion rate normalized to the Eddington accretion rate (Ṁ/ṀEdd).

The first equation applies to standard discs (Shakura & Sunyaev, 1973) and is valid only

for ṁ ≤ 1 while the second equation applies at super-Eddington accretion rates for 1 ≤

ṁ ≤ 100 (Poutanen et al., 2007).

• Strong beaming (1/b � 1) - In a large number of objects like Blazars or Galactic

binary systems strong beaming is observed in the form of relativistic jets originat-

ing from the central regions. The observed flux is mainly produced by synchrotron

emission from relativistic electrons. This scenario was proposed to explain also the

emission of ULXs (Körding et al., 2002). However, it is strongly disfavoured. First

of all, only few ULXs have shown radio counterparts or fast X-ray variability typical

of beamed emission. Secondly, Davis & Mushotzky (2004) showed that in such a

scenario for every ULX at 1040 erg s−1 there should be ∼ 30 sources at 1039 erg s−1.

This is in strong contrast with the luminosity functions estimated by Swartz et al.

(2004) and Walton et al. (2011) in which for each source at 1040 erg s−1 only ∼ 5−10

sources at 1039 erg s−1 are found within 100 Mpc. Finally, a number of ULXs is

surrounded by optical nebulae (e.g. Pakull & Mirioni 2002, Kaaret et al. 2004) which

are illuminated by a quasi-isotropic flux of 1039 erg s−1.

• Beaming - Super-Eddington accretion (1/b ≥ 10, ṁ � 1) - It was suggested that,

when accretion rates higher than the Eddington limit are reached, the inner regions

3



1. INTRODUCTION TO ULTRA LUMINOUS X-RAY SOURCES

of the disc can start to expel matter inside the spherization radius. This is the region

in which the disc becomes geometrically thick and the its structure is no longer

described by that of a standard disc (e.g. Poutanen et al. 2007; King 2009). In these

conditions, an equatorial outflow that channels the high energy photons emitted in

the inner regions may originate. Luminosities up to 1040 erg s−1, for a 10-20 M� BH

may be explained considering accretion rates ∼ 10÷30 times the Eddington limit and

mild beaming effects (King et al., 2001; King, 2009). Recently Ohsuga & Mineshige

(2007) and Ohsuga et al. (2009) carried out magneto-hydrodynamical simulations

showing that at accretion rates ∼ 5 times higher than the Eddington limit the disc

can reach ULX luminosities.

However, Begelman (2002); Begelman et al. (2006) suggested that high accretion

rates in pressure-dominated discs modify how the system releases the energy, trapping

it inside bubbles. Another example of modified accretion disc structure is the two-

phase super-Eddington, radiatively efficient disc model proposed by Socrates & Davis

(2006). In these cases, beaming is not significant.

• Isotropic Eddington luminosity (1/b ∼ 1, LEdd ∼ 1) - BHs with masses bigger than

stellar-mass BHs, but smaller than ∼ 100 M� (which is the upper limit of the BHs

formed by massive stars, e.g. Belczynski et al. 2010) can explain luminosities up to

1040 erg s−1 or even higher in presence of some beaming (Zampieri & Roberts, 2009;

Mapelli et al., 2009). Only the most luminous sources well above 1040 erg s−1 (or

Hyperluminous sources, HLXs) are difficult to explain in any of the aforementioned

scenarios and are then good candidates for being powered by Intermediate Mass BHs

(IMBHs). Remarkable examples of such sources are ESO243-49 HLX-1, M82 X-1

and the source 2XMM J134404.1-271410 (if confirmed) in the galaxy IC 4320 (Farrell

et al. 2009; Feng et al. 2010; Sutton et al. 2012 and reference therein).
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• Isotropic sub-Eddington luminosity (1/b ∼ 1, ṁ < 1) - This is the standard scenario

in which ULXs are similar to BH binary systems of our Galaxy. This woud require

the presence of an IMBH. In such a case, canonical spectral state transitions similar

to those in the Galactic BHs should be observed but, with the exception of a handful

of sources (e.g. ESO243-49 HLX-1, Servillat et al. 2011), this is usually not the case.

1.1 Intermediate mass, stellar mass or massive stellar Black

Holes

The general aspects regarding the formation of stellar-mass BHs in stars are reasonably

well understood. They are believed to form through fallback after a supernova explosion

from stars with initial masses above ∼ 25 M�. At the end of the life of these stars, the

inner core collapses and bounces, forming a proto-neutron star and producing a shock wave

that starts to propagate through the stellar envelope (e.g. Arnett, 1996).

If the convective pressure induced by neutrino reheating below the shock overcomes

the ram pressure of the infalling stellar envelope, the supernova explosion is inevitable and

most of the stellar envelope is ejected (e.g. José & Iliadis, 2011). However during and after

the explosion, the inner layers of the star can have a velocity below the escape velocity

of the proto-neutron star and start to fall onto it. If the infalling matter brings the core

mass over the Chandrasekar limit, a BH will form with a mass in the range ∼ 5− 20 M�

(e.g Heger & Woosley, 2002; Heger et al., 2003). This is the expected formation path for

stellar-mass BHs at solar metallicity, like those in Galactic BH X-ray binaries. If the BHs in

ULXs form in this way and are then of a similar size, they have to be significantly beamed

and accreting at largely super-Eddington rates to account for their (apparent) isotropic

luminosity.

Indeed the ULXs for a long time appeared to be the best candidates for a new class of

5



1. INTRODUCTION TO ULTRA LUMINOUS X-RAY SOURCES

IMBHs as their high luminosities can be easily explained assuming a large BH mass. Since

IMBHs cannot form in the same way as stellar mass BHs (sMBH), three alternative scenar-

ios were proposed. In compact and dense star clusters, because of dynamical interactions,

very massive stars sink towards the center and undergo mergers and runaway collisions

on timescales of ≤ 106 years. Numerical simulations have shown that in such conditions,

a super-massive star (800-3000 M�) may form that can then collapses to an IMBH (e.g.

Portegies Zwart & McMillan 2002; Portegies Zwart et al. 2004). Another scenario involves

wandering seeds of sMBHs inside compact and massive globular clusters. Such BHs may

effectively merge because of dynamical interaction (Miller & Hamilton, 2002) or grow in

mass up to a hundred times, capturing the gas expelled by the first generation of cluster

stars during the red-giant phase (Vesperini et al., 2010). Finally, another scenario entails

the evolution of very massive stars in the metal poor early Universe.Indeed, it is generally

believed that the most massive stars (∼ 100− 300 M�) at solar metallicity do not collapse

into BHs since the electron-positron pairs instability leads to the complete disruption of

the star. However, at very low metallicity, stars with ≥ 260 M� (helium core of ∼ 130

M�) may exist and form IMBHs through direct collapse (Heger & Woosley, 2002; Heger

et al., 2003). Therefore Population III stars, which are expected to be metal-free, are good

candidates to be the progenitors of IMBHs (Madau & Rees, 2001) since their initial mass

could exceed several hundreds solar masses.

As discussed in Zampieri & Roberts (2009), the existence of IMBHs is not required to

explain the large majority of the ULX population. In fact, a combination of slightly super-

Eddington accretion and beaming effects may explain the bulk of the ULX population up

1040 erg s−1 with compact objects smaller than IMBHs, but more massive than “standard”

sMBH. Such BHs may originate from the direct collapse of massive stars (above ∼ 40

M�) formed in low metallicity environments (∼ 0.1 Z�; Zampieri & Roberts 2009; Mapelli

et al. 2009, 2010). In these stars the collapse into a BH occurs without a supernova
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explosion becuase the convective pressure below the shock is smaller than the ram pressure

of the infalling stellar envelope (Fryer, 1999), in contrast to sMBH in which there may be

rapid fallback after the ejection of the outer layers of the star. This is a consequence of

the decreased efficiency of mass loss in low metallicity environments, that leads to more

massive envelopes at the end of the star life. These massive stellar BHs (MsBHs) are in

the range ∼ 40-100 M� (Belczynski et al., 2010).

1.2 X-ray spectral properties

The advent of XMM-Newton and CHANDRA, the two high spectral resolution X-ray mis-

sions launched by ESA and NASA respectively, led to a dramatic improvement of the

quality of the X-ray spectra of ULXs and to a better understanding of their time variabil-

ity on short timescales. The spatial resolution of the detectors onboard these two satellites

confirmed also the non-nuclear nature of the ULXs, definitely ruling out in the large major-

ity of the cases an identification with a low luminosity AGN. The data and, in particular,

X-ray spectra provided by such telescopes are the best available and yielded a substantial

contribution to the physical understanding of ULXs.

Most of the observations were focussed on bright objects (fX ≥ 10−12 erg s−1 cm−2)

in the local universe (within ∼ 10 Mpc). Their spectra show a wide variety of properties

that in general appear not to correlate with the total luminosity. Even though they can

be well described by canonical models as power-laws or multicolor discs, their physical

interpretation poses several questions about the properties of the BHs and of their accretion

regimes.

In general, the X-ray spectra of ULXs are powerlaw-like, often with high energy cur-

vature (above 2-3 keV) and a soft excess (at ∼ 0.2 − 0.4 keV). The powerlaw-like sources

show a wide range of photon indexes between 1 and 3, but usually centered around 1.7-2
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1. INTRODUCTION TO ULTRA LUMINOUS X-RAY SOURCES

(Swartz et al. 2004; Winter et al. 2006; Berghea et al. 2008; Sutton et al. 2012). Berghea

et al. (2008) found that the sources with the steeper photon index are harder at higher

luminosities (Lx > 1040 erg s−1). If the power-law spectrum corresponds to the hard state

of Galactic BHs, the inferred BH mass is ≈ 103 M�. An indication of such a state is the

presence of radio jets which are commonly observed in AGNs and X-ray binaries (XRBs).

IC 342 X-1 shows compact radio emission. Assuming that this emission come from a jet

in the hard state and using the fundamental plane of accreting BHs (Merloni et al., 2003),

Cseh et al. (2012) estimated a BH mass of 1.2− 13.6 · 103 M�.

Several proposals have been put forward to explain the low-hard state of XRBs (that

may possibly apply also to those ULXs that show a similar spectral and timing behavior),

such as an advection dominated flow (Esin et al. 1997), a luminous hot accretion flow

(Yuan, 2001), a combination of synchroton and inverse Compton emission at the basis

of a jet (Markoff et al. 2001) and a hot corona above the accretion disc (Liang & Price

1977). If ULXs are powered by sub-Eddington accretion onto IMBHs, they should show

a similar spectral evolution from a low/hard to a high/soft spectral state, as Galactic X-

ray binary systems (hysteresis cycle). Till now only one source, ESO 243-49 HLX-1 (e.g.

Farrell et al. 2010; Servillat et al. 2011; Webb et al. 2012), has shown the clearest lines

of evidence of XRB spectral states. For this and other reasons (including the detection

of transient compact radio emission; Webb et al. 2012), this source is indeed considered a

good candidate for an IMBH.

On the other hand, a large number of sources can be well modelled by the combination of

a soft component (described by a multicolor black body disc below 2 keV) and a power-law.

In low counting statistic XMM-Newton spectra, the temperature of the soft component is

significantly lower than that observed in Galactic BH binary systems. Such temperatures

are mainly in the range 0.1 − 0.4 keV (e.g. Fabian & Ward 1993; Miller et al. 2003,

2004; Roberts et al. 2004; Feng & Kaaret 2005) and, since the disc temperature (and
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normalization) scale with the BH mass, this was considered as evidence for the existence

of IMBHs of 103 − 104 M�.

When high quality XMM-Newton observations (∼ 100 ks) started to become available,

people realized that the spectral properties of ULXs are in fact markedly different from

those of Galactic XRBs. In particular, Gonçalves & Soria (2006) questioned the interpre-

tation of the soft component in terms of a cold disc since they proved that the temperature

of such a component is strongly dependent on the energy range in which the power-law

component fits the spectrum. In the same year, Stobbart et al. (2006) analyzed a sample

of ULXs showing that most of them present a degeneracy between the two components, the

power-law and the disc. In fact in some sources the power-law component could equally

well fit the high as well as the low energy part of the spectra: however, as the power-law

is expected to be inverse Compton scattering by an optically thin corona of seed photons

from the disc, if the power-law fits the low energy part of the spectrum, the seed photons

are hotter than the corona, making this model physically inconsistent. However, the ULXs

of the sample of Stobbart et al. (2006) could be well described also by a combination of two

blackbody components, which was an important indication of the existence of curvature at

high energy never observed in the Galactic systems accreting at sub-Eddington rates. The

curvature or roll-over is presented at energies of 3-5 keV in most of the spectra (although

in some cases the detection was marginal) and points towards an intrinsically different

accretion mechanism. Such a roll-over can be well fitted by a comptonization component,

characterised by an optical thickness larger than one and a low electron temperature. This

component is interpreted as an optically thick corona atop the inner regions of the disc.

The increasing number of observations of ULXs that became available in the last years

favoured a deep investigation of their spectral state transitions. Even though flux variability

is a common property of ULXs, they are usually persistent sources. The spectral transitions

of some sources like NGC 1313 X-1 and X-2 (see Feng & Kaaret 2006), modeled with a
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1. INTRODUCTION TO ULTRA LUMINOUS X-RAY SOURCES

cold disc plus a power-law, show similarities with the canonical states of Galactic XRBs:

at high luminosity X-1 seems to enter into a very high state but never in the high/soft

state; on the other hand the X-ray spectrum of X-2 may appear more similar to a low/hard

state in many observations but a different slope is found at higher fluxes. IC 342 X-1 and

X-2 are the first two ULXs in which transitions from a low/hard to a high/soft spectral

state were reported (Kubota et al., 2001). However, the behaviour of the soft component

is puzzling: in fact, although in IC 342 X-2 there is a Ldisc ∝ T 4
disc correlation typical

of a standard accretion disc, IC 342 X-1 shows an anticorrelation (Feng & Kaaret, 2009)

between the disc temperature and the total luminosity. An anticorrelation of the form

Ldisc ∝ T−3.5disc , was observed also in other sources and may indicate an increment of the

visible inner disc radius (and hence a decrement of its temperature) when the luminosity

increases (Kajava & Poutanen, 2009). In this case, the soft component may be the emission

from the photosphere of a wind (whose radius increases with luminosity, Poutanen et al.,

2007; Soria, 2007). We note, however, that such conclusions depend on the model (power-

law) adopted to describe the high energy X-ray spectrum. As found by Stobbart et al.

(2006) and later by Gladstone et al. (2009) there is an almost ubiquitous roll-over between

3 and 5 keV in high quality XMM-Newton observations and hence the spectral variability

needs to be properly reconsidered on the basis of more adequate spectral models.

Finally, we briefly mention also the supersoft ULXs that emit mostly at energies below

2 keV, in contrast with the bulk of the ULX population for which the flux peaks above

this energy. Their spectral shapes can be well fitted by a single, cold disc component with

temperatures of tens to hundreds of eV, making them a different class of ULXs. The fluxes

of a certain number of supersoft ULXs showed large variations without changes in the

temperature of the soft component. Amongst them, we recall M81 ULX1 (Swartz et al.

2002; Liu 2008), Antennae X-13 (Fabbiano et al. 2003), NGC 247 ULX1 (Jin et al. 2011),

NGC 4631 X-1 (Carpano et al. 2007; Soria & Ghosh 2009) and M101 ULX1 (Pence et al.
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2001; Kong & Di Stefano 2005; Mukai et al. 2005). Some of these sources displayed also dips

and periodic obscuration which may be due to orbital motion. They show also short-term

variability on timescales of ∼ 100 s which excludes an association with AGNs. Finally, the

changes in the luminosity without corresponding variations in the temperature of the soft

component, excludes accretion via standard disc around an IMBH. It has been suggested

that some supersoft ULXs are white dwarfs in super-Eddington outbursts and/or white

dwarfs with beamed emission (e.g Di Stefano et al., 2010).

1.3 Super Eddington accretion

In this section we summarise two of the proposed explanations for the roll-over and the

soft excess observed in high quality spectra of several ULXs.

1.3.1 Slim disc

Accretion at or above the Eddington limit can be described in terms of an advection

dominated disc or slim disc (Abramowicz et al. 1988, Watarai et al. 2001; Ebisawa et al.

2003). This accretion disc does not show the same properties of the standard accretion

disc of Shakura & Sunyaev since it is geometrically thick (H/R ∼ 1, where H and R

are the scale height and radial coordinate, respectively) and the transport of energy via

advection dominates over the radiative cooling. As a consequence, the radial profile of the

disc temperature changes from T ∼ R3/4 (standard disc) to T ∼ R1/2. A simplified spectral

model for a slim disc is the p-free model in which the index of the temperature profile is

free to vary while the spectrum emitted from each annulus is a blackbody at the local gas

temperature. Some sources are satisfactorily described by this model with values of the p

index of ∼ 0.5, consistent with the expected emission of a slim disc (for example NGC 1313

X-2, NGC 5204 X-1, IC 342 X-1; see e.g. Vierdayanti et al. 2006; Gladstone et al. 2009).

11



1. INTRODUCTION TO ULTRA LUMINOUS X-RAY SOURCES

This suggests that ULXs may be stellar or massive stellar BHs accreting marginally above

the Eddington limit.

However, this model may fail from a theoretical and observational point of view and

in fact the temperatures inferred for some ULX spectra are too high (see Gladstone et al.

2009). Moreover, numerical simulations clearly showed that warm outflows are expected to

set in at supercritical regimes (Ohsuga & Mineshige 2007; Ohsuga et al. 2009), obscuring

the emission of the underlying disc.

1.3.2 Ultra Luminous State

A roll-over at energies of 2 − 5 KeV is usually not observed in Galactic XRBs, in which

spectral curvature is seen at energies of tens to hundreds keV. Gladstone et al. (2009)

suggested that the rollover detected in ULX spectra may be produced by an optically thick

and warm corona atop the inner regions of the disc. Therefore, the soft component found

in these objects are representative of the outer part of the disc, i.e. the region which is not

covered by the corona. Gladstone et al. (2009) fitted the spectra of a sample of ULXs using

the same model adopted to describe the coupling between disc and corona in the very high

state of Galactic BH binary systems (Svensson & Zdziarski 1994; Done & Kubota 2006),

and found that the coronae of ULXs are rather compact. This model accounts for the

exchange of energy between the accretion disc and the corona and allows one to estimate

what would be the temperature of the disc without the thermal coupling with the corona.

The disc temperatures inferred by the model are consistent with accretion onto sMBHs or

MsBHs. Furthermore, Gladstone et al. (2009) identified a spectral sequence in their sample

of ULXs in which the soft component becomes progressively more important as the total

luminosity increases.

This effect was associated to the onset of an optically thick wind whose photosphere

produces the soft component observed at the upper end of the Gladstone et al. (2009)
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sequence, supporting again the picture of super-Eddington accretion. Since this spectral

state appears to occur only in ULXs and never in Galactic XRBs, Gladstone et al. (2009)

called it the Ultraluminous state.

1.4 Short-term Variability

Although the physical understanding of the rapid variability of Galactic XRBs is still matter

of debate, however it is a powerful tool to classify their spectral states (e.g. Belloni 2010).

Also the properties of the short-term variability of ULXs are still poorly understood. In

fact, sources with similar X-ray spectra may show different temporal variability. Heil et al.

(2009) analyzed the Power Density Spectra (PDS) of a sample of 16 bright ULXs and found

that, irrespectively of their X-ray spectra, there are two groups of sources: a smaller group

displays a well defined variability at about the same level while in the other the variability

is almost absent. This behaviour appears different from that of Galactic XRBs, in which

the variability is usually observed in the low/hard state while the absence of variability is

a distinctive property of the high/soft state (e.g. Belloni 2010).

In particular, only in a handful of ULXs, QPOs were found in the PDS: M82 X-1, NGC

5408 X-1 and M82 X42.3+59. The first identification of a QPO in M82 X-1 at a frequency of

54 mHz was obtained with RXTE and XMM-Newton (Strohmayer & Mushotzky 2003). By

means of a joint analysis of CHANDRA and XMM-Newton observations, Feng & Kaaret

(2007) were able to confirm that the QPO is indeed produced by the ULX X-1. In a

following XMM-Newton observation the QPO centroid frequency was different (114 mHz;

(Dewangan et al. 2006; Mucciarelli et al. 2006). Variations in the QPO frequency from ∼ 50

to ∼ 170 mHz, with a possible 1:2:3 ratio, and were observed in RXTE data (Mucciarelli

et al. 2006).

The QPO in NGC 5408 X-1 was discovered in a XMM-Netwon observation by Strohmayer
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1. INTRODUCTION TO ULTRA LUMINOUS X-RAY SOURCES

et al. (2007). It had a centroid frequency of ∼ 20 mHz and was associated to a band-limited

noise with a break in the PDS at 2.5 mHz (also detected by Soria et al. 2004). In sub-

sequent XMM-Newton observations, the QPO was detected at 10 mHz while the spectral

shape of the source was varied. Strohmayer et al. (2007) reported that the QPO frequency

scales with the disc flux and the power-law photon index. On the basis of these spectral

and temporal properties they suggested that the QPO frequency could be similar to the

type C QPOs observed in Galactic BH binaries (Casella et al., 2005). Assuming that the

QPO frequency is inversely proportional to the BH mass, NGC 5408 X-1 may host a BH of

600-5000 M�. However, Middleton et al. (2011) challenged this conclusion claiming that,

at variance with Galactic BH binaries, the low frequency break is not proportional to the

centroid frequency. They further suggested that the high level of variability is associated

to extrinsic variability of the Comptonizing medium and produced by optically thick blobs

of matter ejected by the inner regions of the disc. In addition, they proposed that this

QPO may be associated to the Ultra-low frequency QPO observed from time to time in

the Galactic source GRS 1915+105. We note finally tha, this is the first source in which a

positive trend between Root Mean Square (RMS) variability and flux was reported (Heil

et al. 2012).

M82 X42.3+59 (Matsumoto et al. 2001) showed a broad low frequency QPO at ∼ 3−4

mHz, observed only when the source is more luminous than ∼ 1040 erg s−1 (Feng et al.

2010). The properties of the QPOs are consistent with those of a type A or B QPO.

Finally a tentative identification of a QPO at 3 mHz was reported also in NGC 6946

X-1, which is the ULX with the highest short-term variability (fractional RMS variability

of ∼ 60% over the frequency band 1− 100 mHz; Rao et al. 2010).

QPO frequencies have been used to try to estimate BH masses in ULXs using a variety

of methods. One of these approaches has made use of the so called “variability plane” of

Galactic BH binaries and AGNs. The variability plane is defined by the BH mass, the
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accretion rate and the low frequency break in the PDS. The latter cannot be detected by

XMM-Newton but it can be inferred from the observed QPO frequency, assuming it is a

type C. Using this approach Casella et al. (2008) found that the BH masses of M82 X-1

and NGC 5408 X-1 were ∼ 95− 1300 M� and ∼ 115− 1300 M�, respectively.

The problem with using timing properties of ULXs to directly infer masses is that it

remains to date unclear how exactly these quantities are related. All the estimates are

based upon tentative identifications of the timing features and the use of scaling laws that

are known to hold only for a limited number of objects, and are therefore highly uncertain

(Zampieri & Roberts, 2009). In addition, low values of the QPO frequency in ULXs may

not be necessarily a clue of larger BH masses but simply reflect the fact that they originate

in the observable outer disc (i.e. the part not covered by the optically thick corona; Soria

2007).

1.5 Stellar environment and emission nebulae

A number of ULXs are associated to stellar optical counterparts and for some of them the

spectral type is known (e.g. Liu et al. 2002; Kaaret et al. 2004; Mucciarelli et al. 2005,

2007; Soria et al. 2005; Tao et al. 2011). The counterparts appear almost ubiquitously

hosted in young stellar environments (e.g. Pakull et al. 2006; Liu et al. 2007). However,

a few ULXs appear to be associated to older stellar populations (Roberts et al., 2008)

and at least one possible later-type stellar counterpart is now known (IC 342 X-1; Feng

& Kaaret 2008), although its spectral classification may be affected by significant galactic

and extra-galactic reddening (Grisé et al., 2008). The identification of ULX optical coun-

terparts makes possible, in principle, to measure the mass function of the system, that will

provide direct constraints on the BH masses of individual sources. Attempts were made to

determine radial velocity shifts in the spectral lines of NGC 1313 X-2 (Pakull et al. 2006),
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but the claimed detections are highly uncertain. A recent Gemini spectroscopy campaign

conducted on two ULXs failed to reveal regular modulations. Although radial velocity vari-

ations are observed, they are not sinusoidal (Roberts et al., 2011). Determining the orbital

period in the optical band appears comparatively easier, although the expected amplitude

of the modulation is small and contamination from X-ray irradiation is significant, mak-

ing such measurements feasible only with Hubble Space Telescope (HST ) or from ground

with optimal seeing conditions for the brightest counterparts. Only one measurement for

NGC 1313 X-2 has been reported to date (Liu et al., 2009), which is however uncertain

(Impiombato et al., 2011; Zampieri et al., 2012). Although the precise identification of a

single object is not possible, the stellar environment of ULXs can still provide interesting

constraints on the properties of ULX binary systems. Several ULXs are located in groups

or clusters of OB stars. Isochrone fitting of the cluster colour-magnitude diagram has

been attempted and provides cluster ages of tens of millions of years, although there is

some disagreement among different authors (Pakull et al. 2006; Ramsey et al. 2006; Liu

et al. 2007; Grisé et al. 2008). Comparison of stellar evolutionary tracks of ULXs with the

photometric properties of their optical counterparts on the colour-magnitude diagram may

also be used to constrain the masses of their donor stars (e.g. Madhusudhan et al. 2006;

Patruno & Zampieri 2008a). Population synthesis calculations show that the mass-transfer

rates needed to supply the majority of the ULX binaries can be attained over a significant

fraction of the life time of the systems for both stellar-mass and intermediate-mass BHs

(Madhusudhan et al., 2008, and references therein).

In addition, several ULXs are found in very extended optical emission nebulae, that

may provide important information on the energetics and lifetime of these systems (e.g.

Pakull & Mirioni 2002; Abolmasov et al. 2007; Kaaret et al. 2010; Figure 1.1). From the He

II λ4686 line it is possible to determine the source flux since the line “counts” the photons

in the energy range 54-200 eV (Pakull & Angebault 1986). This value is then compared
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3

gions. These sources need to be tackled with infrared in-
strumentation, and we note that IR follow-up work on the
ULX in M 82 has revealed a young compact star cluster
at the position of the enigmatic most luminous ULX in
this starburst galaxy (see Ebisuzaki et al. 2001).

The optical observations were carried out during sev-
eral runs between 1999 and 2001 at ESO NTT, CFHT,
and using the Carelec spectrograph on the OHP 1.93m
telescope. Of particular importance for the project was the
possibility of the ESO Multi-Mode Instrument (EMMI),
and the MOS and OSIS instruments at CFHT to quickly
switch between direct imaging and spectroscopy. Thus we
could obtain spectral information of any photometrically
selected target in the same night. Standard filters included
B, R and Hα bands, which allowed to obtain colors and
net emission-line images. Reduction of the data and the
production of color images was done using the MIDAS
image processing software.

Table 1. Some of the ULX in nearby galaxies for which we
have obtained (interesting) optical observations. The des-
ignations of individual sources refer to the respective dis-
covery papers. The following abbreviations are used: neb.
= diffuse Hα emission centered on X-ray source; bub. =
bubble-like nebula; H II = source within larger Hα emis-
sion complex; * = possible stellar counterpart detected

Galaxy ULX nature

NGC 1313 X-1; X-2 (X-3) neb; bub.; (SN)
IC 342 X-1; X-2 neb.; ?
Ho II X-1 XIN

Ho IX X-1 bub. *
M 81 X-6 neb.

IC 2574 X-1 Hii *
NGC 4559 X-1; X-7 ?; Hii *
NGC 4631 H7 Hii
NGC 4861 X-1; X-2 Hii; Hii
NGC 5204 X-1 bub. *
NGC 7793 P13 neb.

4. Nebulæ around ULX

In this section we present some of the newly detected neb-
ulæ, report on their optical spectra (if available), and com-
ment on their possible nature. The images show continu-
um (R band) subtracted Hα emission in yellow, B and R
band images in blue and red, respectively. North is up,
and East is to the left.

4.1. IC 342 X-1

This nearby spiral (d=4.5Mpc) harbours two variable non-
nuclear ULX that Kubota et al. (2001) have shown to fol-

Figure 2. The area of the ULX IC 342 X-1. The error circe
includes the brightest part of the Tooth nebula which has
strong low-excitation forbidden emission lines.

low soft/hard X-ray spectral transitions that are believed
to be characteristic for black hole candidates.

Positional information comes from the ROSAT HRI
observations by Bregman, Cox & Tomisaka (1993). Figure
2 shows at the position of IC 342 X-1 a relatively isolated
tooth-shaped nebula. The Tooth nebula has a diameter of
220 pc and its spectrum shows extreme SNR-like emission
line ratios: [S II]/Hα = 1.2 and [O I]λ6300/Hα=0.4 (see
Sect. 5).

4.2. Holmberg IX X-1

This a close dwarf companion to the large spiral M 81,
which explains that the X-ray source Holmberg IX X-1
is also known as M 81 X-9. At this position Miller (1995)
noted the presence of the shell-like nebula LH 9/10 and
proposed a possible (multiple) SNR nature, although he
also noted that the diameter of 250 pc appeared to be
rather large. However, analysing archival X-ray data from
20 years, LaParola et al. (2001) could show that the X-ray
emission is highly variable with spectral changes reminis-
cent of of black hole candidates.

Figure 3 shows the Hα emitting nebula LH 9/10 to
have a strikingly similar morphology to the radio images of
barrel-shaped bilateral SNR (Gaensler 1998). The bright-
est object in the small group of blue stars noted by Miller
(1995) has B∼22.1 mag and could be a early type main
sequence star. Our spectra confirm the high [S II]/Hα

and [O I]λ6300/Hα ratios reported by Miller (1995), but
also show a more normal Balmer decrement Hα/Hβ rather
than the curious value ∼1.6 reported in that paper.
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Figure 3. The barrel shaped nebula LH 9/10 surrounding
M 81 X-9 in the dwarf galaxy companion Holmberg IX.
The HRI error circle includes a small group of faint blue
stellar objects which are likely to be associated with the
variable X-ray source.

4.3. NGC 5204 X-1

Roberts et al. (2001) have recently described Chandra and
ground based optical observations of the ULX in the Mag-
ellanic type galaxy NGC 5204. They proposed a compar-
atively bright V=19.7 mag stellar object to be the opti-
cal counterpart, but on the basis of an HST image the
same authors (Roberts et al. 2002) now find several more,
fainter stellar images which could also be associated with
the X-ray source. Our multicolor images shown in Figure 4
reveal that the B=21.9 mag star located on the eastern rim
of the error circle has very blue colors and should thus be
considered a prime candidate.

Perhaps more interesting is our discovery of a Hα emit-
ting bubble with a diameter of some 360 pc. The ring is
much larger then the ”cavity” in the ionized gas reported
by Roberts et al. (2001). Note that the field of view of their
field spectrograph was slightly smaller than the diameter
of the bubble.

4.4. NGC 4559 X-7, X-10 and IC 2574

NGC 4559 is another galaxy in common with the work
of Roberts et al. (2002) reported at this conference. A
previous ROSAT PSPC study was published by Vogler,
Pietsch & Bertoldi (1997), and we use their source desig-

Figure 4. The area around the ULX in NGC 5204 con-
tains many H ii regions (one of them being the galactic
nucleus) and a striking ring-like structure centered on the
X-ray source. The position obtained from ROSAT HRI
data perfectly matches the more precise Chandra position.

nation here. Source X-7 is NGC 4559 X-1 in Roberts et al.
(2002) and is X-10 the central object.

Our analysis of unpublished ROSAT HRI observations
including positional adjustements described in section 3
clearly shows that X-10 is not coincident with the nucleus,
providing yet another nearby ULX for further study. X-7 is
located in an isolated H ii region complex in the outskirts
of the galaxy, although not coincident with any of the
bright nebula. Possible counterparts are three faint blue
stars at the position of the X-ray source.

The nebular/X-ray source morphology is strikingly sim-
ilar to the giant H ii region complex in the M 81 group
dwarf galaxy IC 2574, where the strong X-ray emission
had been ascribed to extended hot plasma in an expanding
supergiant shell (Walter et al. 1998). However, inspection
of the public Chandra image reveals that the emission is
pointlike, and our images reveal that the source is coinci-
dent with one of the stars in the OB association.

4.5. NGC 1313 X-1 and X-2

Since the pioneering Einstein observations of NGC 1313
and other nearby galaxies (Fabbiano & Trinchieri 1987)
this nearby (4.5 Mpc distance) southern spiral has at-
tracted much attention from X-ray observers. It harbours
three ULX (Colbert et al. 1995, Colbert & Mushotzky
1999, Schlegel et al. 2000), one of them (X-3) is the recent
peculiar supernova SN 1978K. The brightest source (X-1)
is close to, but nevertheless clearly detached from the op-
tical nucleus, and finally the outlying source X-2 lies at a
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Figure 6. Hα image (upper) of the H II region HSK 70 in
the dwarf galaxy Holmberg II with the 5′′ radius HRI er-
ror circle superimposed. The shape resembles that of an
X-Rayed Foot where the emission is strongest in the Heel.
The lower image is a 5′′ wide broad-slit spectrum (i.e. es-
sentially slit-less; the dispersion is in the N-S direction and
the spectral resolution is essentially determined by the see-
ing of 0.′′8) which provides monochromatic images of the
narrow nebular emission lines in the area. Note the pres-
ence of strong HeIIλ4686 emission which is confined to
the Heel.

LMC X-1 (c.f. Sect. 2) Holmberg II X-1 is ∼30× more lu-
minous, both in X-rays and in He IIλ4686 emission.

Finally, in order illustrate the structure of the XIN we
display in Fig. 8 various emission line intensities and the
continum as a function of position along a 1.′′5 wide long-
slit orientated E-W and centered on the Heel of the Foot.
We see that the maximum of the λ4686 emission more

Figure 7. Narrow-slit optical spectrum of the Heel taken at
OHP. The HeIIλ4686 lines reaches 0.16 of the Hβ flux.
Also note the unusually strong forbidden neutral oxygen
line [O I]λ6300/Hα ∼0.03.

or less coincides with the peak of the Balmer emission
and with a non-resolved, B=20.6 mag continuum source.
However, closer inspection reveals that the He IIλ4686/Hβ

ratio (not shown here) clearly peaks towards the East of
the line maxima. On the other hand, the [O I]λ6300 in-
tensity distribution is clearly shifted towards the ”Toes”.
In Section 5 we will argue that this is just what one would
expect for the case that the nebula is density bounded in
the eastern direction.

5. Remnants, winds and XIN

The discovery of nebula around a significant fraction of
ULX undoubtedly provides clues to their formation and
to their mass-loss history, either though explosive events
or by stellar winds or jets. ULX NGC 1313 X-2 will serve
as an example for what can be deduced from the optical
observations. Assuming that the 400 pc diameter nebula
is the remnant of a supernova-like event which created
the compact star we can use the well-known relations of

Figure 1.1: The tooth nebula surrounding IC 342 X-1 (top-left - the X-ray error circe

includes the brightest part of the Tooth nebula), NGC 5204 X-1 (top-right) and the foot

nebula of Holmberg II X-1 (bottom); images taken from Pakull & Mirioni (2002).
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1. INTRODUCTION TO ULTRA LUMINOUS X-RAY SOURCES

with the source flux inferred at energies > 0.3 keV in the XMM-Newton and CHANDRA

data. With this method, some sources (NGC 5408 X-1, Holmberg II X-1) showed evidence

of almost isotropic source emission (e.g. Kaaret & Corbel 2009), suggesting accretion onto

massive stellar BHs.

The ULX nebulae have characteristic diameters of ∼ 200 − 400 pc, radial velocities

of 100 − 200 km s−1, and kinematic ages of 0.5 − 1 Myr (e.g Roberts et al. 2003; Grisé

et al. 2006a; Pakull & Grisé 2008; Kaaret et al. 2010). Their properties are different from

those of typical SN remnants. Some of them may be powered by continuos emission of

material from outflows or jets (Pakull et al. 2006; Pakull & Grisé 2008). Furthermore,

radio counterparts to a few of these nebulae have also been reported (Miller et al. 2005;

Lang et al. 2007).
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Chapter 2
The sample and the spectral models

It is well known that Galactic BH XRB (BHB) transients show a typical evolutionary

path on the hardness-intensity diagram, the hysteresis cycle (e.g. Belloni, 2010). During

these outbursts, the sources experience several spectral transitions usually characterised

in terms of two spectral components, a standard disc and a power-law tail. Each spectral

state (high/soft, low/hard, very high state, etc.) is characterised by specific spectral and

timing properties. If ULXs were in an accretion regime similar to those of Galactic BHB

systems, we should observe similar spectral and temporal properties: however ULX systems

show rather peculiar spectral changes, often different from source to source. In any case,

if the Galactic sources follow an ordered path on the hardness-intensity diagram, it is not

so unlikely that also ULXs may do something comparable.

Detailed spectral analyses were carried out by several authors on significant number of

ULXs showing that the major part of their spectral variability could be well modeled by

a soft component plus a power-law/comptonizing corona (see amongst the others Feng &

Kaaret 2006, 2009; Vierdayanti et al. 2010; Kajava & Poutanen 2009). However, hints of

a spectral curvature at high energy were noticed by Stobbart et al. (2006), and, later on,

Gladstone et al. (2009) suggested it was almost ubiquitous in the highest quality ULX spec-
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2. THE SAMPLE AND THE SPECTRAL MODELS

tra and only limitations in the exposure times may hide its presence. They suggested that

the curvature is a characteristic feature of a new spectral state, the Ultraluminous state,

and found a likely spectral sequence (Fig. 8 of their paper) in which the soft component

becomes more important when the luminosity increases. This is probably produced by

strong outflows from the disc as expected at high accretion rates (Poutanen et al., 2007).

The spectra show also a hard component which may be an optically thick corona coupled

to the inner regions of the accretion disc or the disc itself (see Section 1.3.2). It seems

reasonable to study the spectral variations of ULXs adopting such a model for all the ob-

servations even if in several low quality spectra the curvature is not statistically detectable.

This allows to have a consistent spectral comparison between poor quality and high quality

observations and a more reliable physical interpretation of the spectral properties than a

simple power-law.

The aim of this work is to investigate the spectral properties of the ULXs in order to

increase our understanding on the behaviour of the accretion flow in these “anomalous”

X-ray sources and, possibly, put constraints on the scenarios proposed to explain them.

Here we focus our attention mainly on XMM-Newton data, paying particular attention to

those observations with high counting statistics. Our goal is to characterise the spectral

variability of ULXs and to check the consistency of the spectral models on the basis of the

variability patterns of their parameters. Considering the relevance of the metallicity for

one of the proposed scenarios for the formation of ULXs, we also put a significant effort

in using X-ray spectroscopy to investigate the chemical abundance in the environment of

ULXs.
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2.1. Selection criteria

2.1 Selection criteria

The location of ULXs in external galaxies makes their observation intrinsically harder

than that of Galactic sources. Indeed, although their fluxes are 10-100 times brighter than

Galactic BHBs, their distances do not allow to obtain spectra of comparable quality in a few

ks of observation because the counting statistics is severely limited. On the other hand, in

most cases the foreground absorption is low, because our line of sight intersects only a small

fraction of the Galactic disc and then the obscuration of the interstellar medium affects

only marginally the observations. In addition, the extragalactic position of ULXs allows

us to better constrain their distances than the sources in the Galaxy. Till now, the best

observations are mostly provided by the XMM-Newton, CHANDRA and Swift satellites

since they have the sensitivity to collect conspicuous number of counts from extragalactic

sources.

The highest quality XMM-Newton observations have shown that the ULX emission

is characterised by properties not commonly observed in the Galactic BHBs accreting at

sub-Eddington rates. In particular, as already mentioned, a roll-over or a curvature at

high energy, usually at 3-5 keV (Stobbart et al., 2006), is typically seen in bright persistent

ULXs which cannot be observed with poor quality observations. Stobbart et al. (2006)

developed a method to identify such a curvature, from fits of the spectra in the 2-10 keV

energy band. They adopted an unabsorbed power-law and a broken power-law, and if the

latter model is statistically more significant in the selected energy range, they conclude

that there is evidence of curvature. In addition, Gladstone et al. (2009) found that such a

curvature can be clearly seen in the XMM-Newton EPIC instruments only if a total of at

least ∼ 10000 counts are collected, providing a spectrum with at least ∼ 500 independent

spectral bins.

Since the observed count rates of the closest ULXs in the EPIC-pn detector are in
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2. THE SAMPLE AND THE SPECTRAL MODELS

the range ∼ 0.1 − 1.5 count s−1, only long exposure times of ∼ 50 − 100 ks (at least

for the faintest sources) can provide the necessary amount of total counts. As mentioned

above, we studied the spectral evolution of the curvature during time adopting a common

spectral model, i.e a multicolor blackbody disc plus a comptonizing component, for both

the shortest and the longest XMM-Newton observations because it appears particularly

suitable to describe the shape of ULX spectra.

However, some ULX spectra appear to be properly described also by a slim disc and,

whenever appropriate, in this work we will investigate if the evolution of the spectral

parameters of this model provides a physically consistent scenario for the sources of our

sample.

It is important to note also that the physical interpretation obtained from the spectral

models must be consistent with the temporal properties. Indeed, Middleton et al. (2011,

2012) showed that the analysis of the temporal variability of ULXs as a function of energy

can be a powerful tool in order to discriminate among different spectral models, providing

further support to the need of long exposure observations with high counting statistics.

The same is true for the analysis of the chemical abundances. Indeed, Winter et al.

(2006) pointed out that with the counting statistics achieved in the longest observations,

it is possible to clearly detect the K-shell edges of Oxygen and Iron. In particular, they

proved that these two chemical elements can be detected only if a XMM-Newton observation

collects at least 5000 and 40000 counts in the EPIC instrument for the Oxygen and Iron

edges, respectively.

Therefore, in order to study systematically the spectral variability and, at the same

time, the chemical abundances of ULXs, we selected a sample of sources that have long

XMM-Newton observations. We made use of the ULX catalogues of Liu & Bregman (2005)

and Walton et al. (2011) and selected sources with luminosity ≥ 2 · 1039 erg s−1, nearby

(no more than 20 Mpc away), having one long observation (∼ 20 to ∼ 100 ks) and at least
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2.2. Properties of the sources and their host galaxies

three other observations. The list of sources may not be fully representative of the ULX

properties but these criteria allow us to sample a rather large range of luminosities.

We note that in the two aforementioned catalogues there is a large number of sources

that only partially satisfy these requirements. For example, sources with more than 4

observations may not have in any of them the necessary amount of total counts in order

to statistically constrain the spectral curvature. Therefore they were excluded from our

sample.

We selected nine sources, two in the galaxy NGC 1313 and one in the galaxies NGC

55, NGC 5204, IC 342, NGC 5408, Holmberg II, Holmberg IX and NGC 253. In the next

section we will describe briefly their properties and those of their host galaxies.

2.2 Properties of the sources and their host galaxies

• NGC 1313 is a late-type barred spiral galaxy with an irregular shape, classified by

de Vaucouleurs et al. (1992) as SBd. It is a nearby galaxy in the local Universe, at

a distance of 3.7 Mpc (Tully & Fisher, 1988). It hosts several star forming regions,

mainly concentrated in the spiral arms and in particular in the southern spiral arm.

Multi-wavelength observations of the central regions of the galaxy indicate the possi-

ble presence of an active nucleus or a luminous nuclear starburst. This galaxy hosts

three ULXs (X-1, X-2 and X-3) and one of them is a known supernova (X-3 or SN

1978K) interacting with the circumstellar medium. X-1 and X-2 were observed many

times by ROSAT (e.g. Colbert & Ptak 2002) and ASCA (e.g. Colbert & Mushotzky

1999), showing variability in their X-ray fluxes. NGC 1313 X-1 is located close to the

nucleus (at about 50′′) while NGC 1313 X-2 is placed at the outskirts of the galaxy

(at about 6’).

– NGC 1313 X-1 is one of the most luminous nearby ULXs with a luminosity
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2. THE SAMPLE AND THE SPECTRAL MODELS

of ∼ 1040 erg s−1. It shows flux variability up to a factor of 3. It was observed

many times by XMM-Newton and was originally used as a proof of the existence

of IMBHs (Miller et al., 2003) because its low counting statistics spectra can be

well described by a power-law plus a cold disc with a temperature of ∼ 0.2 keV.

X-1 is surrounded by a Hα nebula with a diameter of about 250 pc and a more

extended region of ∼ 800 pc with an Oxygen line emission (Oλ6300/Hα > 0.1).

The latter region seems to indicate the presence of ionised gas with a temperature

of 104 K (Pakull & Mirioni, 2002).

– NGC 1313 X-2 is slightly less luminous than the companion ULX (∼ 5 · 1039

erg s−1) but has bigger flux variations up to a factor of 5. Zampieri et al.

(2004) identified a potential optical counterpart for this source. Follow-up in-

vestigations found that the bluer of the two objects inside the error circle had

an absolute magnitude (corrected for extinction) of MB = −4.5 mag, color

(B − V )0 = −0.15 mag and (V − I)0 = −0.16 mag (Mucciarelli et al. 2007;

Grisé et al. 2008). Pakull et al. (2006) showed that the optical spectrum of this

object contains a He II 4686A emission line, suggestive of X-ray reprocessing.

The colors of this star are consistent with those of a B spectral type star, as

found also for several other ULXs with optical counterparts (e.g. Liu et al. 2002;

Soria et al. 2005). A possible periodicity flux of 6.12 ± 0.16 days was found in

the B band light curve (Liu et al. 2009; Impiombato et al. 2011; Zampieri &

Patruno 2011; Zampieri et al. 2012) that may be possibly related to the orbital

modulation of the system. In addition, the source is surrounded by a bubble

nebula with a diameter of 400 pc, confirming that the source is associated to

the host galaxy (Pakull & Mirioni, 2002; Zampieri et al., 2004). The nebula is

expanding inside the interstellar medium at a speed of ∼ 80 km s−1 estimated
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2.2. Properties of the sources and their host galaxies

from the emission lines of S II and O I and has a kinematic age of about 1 Myr.

• NGC 55 is a Magellanic type galaxy, SB(s)m type, viewed almost edge-on with an

inclination angle of ∼ 80°, at a distance of 1.78 Mpc (Karachentsev et al., 2003)). It is

one of the members of the Sculptor group and it hosts only one ULX. NGC 55 ULX1

is coincident with one of the biggest radio emission regions of the galaxy, therefore

it seems more likely associated to it (Read et al., 1997). This particular object was

observed for the first time by ROSAT and it is located ∼ 7′ to the east of the main

bar complex of the galaxy. It is one of the closest ULXs in the local universe with a

luminosity of ∼ 1− 2 · 1039 erg s−1 and has intriguing temporal properties that show

strong decrements in the flux on timescale of minutes/hours. Stobbart et al. (2004)

related these decrements to dipping phases that become more important at higher

energy. Heil et al. (2009) found a strong variability in the PDS but no further analysis

have been done in terms of energy dependence of the variability. In the same year,

in the spectral sequence of Gladstone et al. (2009), the spectrum of NGC 55 ULX1

showed the most extreme wind-dominated regime although its luminosity was lower

than other ULXs of the sequence. This conclusion was supported by the position of

the source in the galaxy, ULX1 is almost buried inside NGC 55.

• NGC 5204 is a Magellanic type galaxy classified as SA(s)m and is a member of

the M101 group. It hosts an X-ray source located at 17.3” from the nucleus (403

pc, see Colbert & Mushotzky 1999). This is the only ULX in the galaxy and it

was observed for the first time by EINSTEIN (Fabbiano et al., 1992) and later on by

ROSAT. Several CHANDRA and XMM-Newton observations were obtained, showing

flux variations up to a factor of five on a time-scale of few-days but with no evidence

of flux variability on timescales less than an hour (Roberts et al. 2005, 2006). Its

luminosity, assuming a distance of 4.5 Mpc (Stobbart et al., 2006), is ∼ 7 · 1039 erg
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2. THE SAMPLE AND THE SPECTRAL MODELS

s−1, making this source a genuine ULX. A Hα emitting bubble, firstly reported by

Roberts et al. (2001), with a diameter of ∼ 400 pc, is centered around the X-ray

source (Pakull & Mirioni, 2002). However the relation of the nebula with the ULX

is still controversial because of inconsistencies in the determination of the extinction

(see Tao et al. 2011).

Roberts et al. (2001) found a bright stellar counterpart (mV = 19.7 mag) which was

then resolved in HST images (Goad et al. 2002). Pakull & Mirioni (2002) proposed

a mB = 21.9 mag star as a major candidate for the optical counterpart. Finally,

aligning CHANDRA and HST images, Liu et al. (2004) identified a single optical

counterpart with colors consistent with those of a B0 Ib star.

• IC 342 is a nearby starburst spiral galaxy of the type SAB(rs)cd in the Maffei group

as classified by de Vaucouleurs et al. (1992). This galaxy hosts two ULXs (X-1 and

X-2) which have shown spectral transitions noticed for the first time in ASCA data

(Kubota et al., 2002) and subsequently in XMM-Newton data (Feng & Kaaret, 2009).

Such spectral changes are reminiscent of the high/soft - low/hard state transitions.

In our work we focused our attention only on X-1, located ∼ 5′ away from the center

of the galaxy (Bregman et al., 1993). The luminosity of X-1 has varied of at least a

factor of 2 in the last 10 years, largely exceeding the luminosity of 1040 erg s−1. The

source is located inside a bubble, called the tooth-bubble (Pakull & Mirioni 2002)

because of its peculiar shape. It has a diameter of ∼ 110 pc and shows Supernova

remnant-like emission line ratios S[II]/H = 1.2 and [OI]6300/H = 0.4. Roberts

et al. (2003) found that the energy needed to form the nebula was at least 2-3 times

larger than the mean explosion energy of most supernovae. The nebula shows two

very bright regions in the [O III] λ5007 emission line which may be an indication of

X-ray reprocessed emission.
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2.2. Properties of the sources and their host galaxies

• Holmberg II is an irregular dwarf galaxy (Im) of the M81 group (Karachentsev

et al., 2003), at a distance of 4.5 Mpc. There are no indications of interactions

with the closest galaxies Kar 52 and UGC 4483, so it can be definitely considered as

an isolated system. The galaxy is characterised by having a very gas-rich reservoir

(Puche et al. 1992; Stewart et al. 2000; Bureau & Carignan 2002) and a mass of

∼ 6 ·109 M�. It hosts 31 X-ray sources with luminosities higher than 1037 erg s−1 but

only one of them can be considered a true ULX source (X-1 hereafter). X-1 reached

a luminosity of 4 ·1040 erg s−1 making it one of the most luminous ULX and certainly

the most luminous of our sample. Its flux varied up to an order of magnitude (Zezas

et al. 1999; Miyaji et al. 2001; Goad et al. 2006; Grisé et al. 2010; Caballero-Garćıa

& Fabian 2010) but it seems that its spectral states are not directly correlated with

its luminosity (see for example Grisé et al. 2010 and reference therein). The source is

embedded in an ionised nebula (the foot nebula, Pakull & Mirioni 2003; Kaaret et al.

2004; Lehmann et al. 2005; Miller et al. 2005) with a luminosity in the He II 4686

emission line of ∼ 3 · 1036 erg s−1. Its degree of ionization strongly suggests that the

nebula is photoionised by an isotropic flux corresponding to a luminosity of at least

4 · 1039 erg s−1. In addition, it shows diffuse radio emission, probably optically thin

synchrotron emission (see Feng & Soria 2011 and references therein).

• NGC 5408 is a dwarf irregular galaxy of the IB(s)m type as determined by de

Vaucouleurs et al. (1992), at a distance of 4.8 Mpc (Karachentsev et al., 2003).

It hosts one of the most powerful ULX, characterised by a dominant soft X-ray

spectral component. A tentative periodicity of 115 days was found by Strohmayer &

Mushotzky (2009) in a Swift monitoring campaign of the source. This was initially

interpreted as an orbital period or super-orbital periodicity (Foster et al., 2010), but

its existence has been recently questioned (Albert Kong, private communication).
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NGC 5408 X-1 displays significant short-term variability and has a QPO at 10-20 mHz

(Strohmayer et al. 2007; Strohmayer & Mushotzky 2009) whose nature is still unclear.

Its properties may be consistent with a type C QPO. In particular, its frequency

suggests the possibility that NGC 5408 X-1 may host an IMBH (see Section 1.4).

However, the type-C QPO association was questioned by Middleton et al. (2011),

arguing that the frequency break in the power spectrum is not proportional to the

frequency of the QPO. In addition, the X-ray spectrum shows a significant soft excess

that dominates the total flux and the fractional variability reaches values up to ∼ 40%

at high energy, suggesting that the soft component may be referred to a massive and

turbulent outflow ejected by the accretion disc. This scenario is quite different from

the standard accretion regime of Galactic BH binaries in which Type-C QPOs are

detected. However, the existence of an IMBH in NGC 5408 X-1 is still debated (e.g.

Dheeraj & Strohmayer, 2012). We note also that NGC 5408 X-1 is the first ULX in

which a RMS-flux relation was observed. The correlation is strong in the energy range

0.3 − 1 keV while it is poorly constrained between 1 and 10 keV (Heil & Vaughan,

2010).

The source is associated to a photoionised nebula which is probably isotropically

illuminated. The inferred ionizing luminosity is 3.0 · 1039 erg s−1 (see Lang et al.

2007; Kaaret & Corbel 2009).

• NGC 253 is a barred spiral galaxy of the Sculptor group characterised by an intense

nuclear starburst activity. With the exception of the nuclear regions where strong

and extended infrared and radio emission was found, the rest of the galaxy does

not display peculiar properties (Read et al., 1997). It is located ∼ 3.1 Mpc away

and it shows diffuse X-ray emission and a number of X-ray sources, included three

ULXs (X-1, X-2 and X-3). In this work we focus our analysis on X-1 because the
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2.2. Properties of the sources and their host galaxies

diffuse emission around this source is less significant than that around the other two.

NGC 253 X-1 is a transient source observed for the first time by ROSAT during

an outburst in 1991. It has shown high variability in the X-ray luminosity up to a

factor of 500, reaching a value of ∼ 2 · 1039 erg s−1. XMM-Newton observed it at

luminosities consistent with those of Galactic BHBs (few 1038 erg s−1) and also in the

Ultraluminous regime (> 1039 erg s−1). The first, short XMM-Newton observation

provided poor quality spectra which were described by a simple bremsstrahlung with

a temperature of 1.74 keV (Bauer & Pietsch 2005). However the subsequent higher

quality XMM-Newton observations were modelled with a multicolor black body disc

with an average temperature around 1.3 keV (Kajava & Poutanen 2009). The disc

temperature follows the L ∝ T 4 relation, typical of a standard accretion disc, when

the source has a luminosity lower than 1039 erg s−1 but then it shifts towards lower

temperatures at higher luminosities, showing a behaviour similar to that observed

in the spectra of XTE J1550-564 when it is in the very high state (Kubota & Done

2004).

• Holmberg IX is an irregular dwarf galaxy of the M81 group (Holmberg et al., 1974)

at a distance of about 3.6 Mpc (Freedman et al. 1994). It may be the result of a

tidal interaction between the galaxies M81, M82 and NGC 3077 (Sabbi et al. 2008).

It hosts one ULX, Ho IX X-1, whose luminosity is ∼ 1040 erg s−1 in the 0.3-10 keV

energy band. It is located 2′ in the north direction of the center of the galaxy and ∼ 1′

outside the stellar envelope of the galaxy. The source is placed into a loose cluster

(mV ∼ 22.6) with an age ≤ 20 Myr (Grisé et al., 2011) and in a region in which the

star formation is low. It is surrounded by an ionised shell-like nebula (Miller, 1995;

Grisé et al., 2006b, 2011), with a diameter of 250 pc. The properties of the optical

counterpart, the UV emission and the existence of a broad He II 4686 emission line
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identified in the optical spectrum of the ULX, suggest reprocessing from the accretion

disc (Grisé et al., 2011). It has been shown that its luminosity increases with the

power-law photon index (if the spectra are fitted with a single power-law model),

meaning that the observed spectrum softens as the luminosity increases (Kajava &

Poutanen, 2009). The source is highly variable (La Parola et al. 2001) up to a factor of

14 and has shown spectral transitions from a low/hard to a high/soft state. However,

using recent Swift and XMM-Newton observations, Vierdayanti et al. (2010) showed

that such transitions appear more complex than previously thought. Kaaret & Feng

(2009) found a possible periodicity of ∼ 56 days in Swift data that, however, was not

confirmed by Kong et al. (2010).

2.3 Adopted spectral models

In this section we summarize the properties and main physical parameters of the models

used to analise the X-ray spectra of the ULXs of our sample. We work in the XSPEC

environment and describe the soft component adopting a multicolor blackbody disc, i.e

diskbb or diskpn. Some spectra can be well described introducing a slim disc component that

we approximate using the simplified diskpbb model. Finally, the high energy component is

described by the comptt, EQPAIR, nthcomp and DKBBFTH models.

• The diskbb model (see e.g. Mitsuda et al. 1984; Makishima et al. 1986) represents

an approximation of the spectrum emitted by a standard accretion disc (Shakura &

Sunyaev, 1973). It is obtained from the sum of the fluxes of all the annuli of the

disc assuming that each of them emits as a blackbody. It shows differences from the

standard disc in particular in the adopted temperature profile, in which the viscous

torque at the inner boundary of the disc is not set to zero. For the Shakura & Sunyaev

disc, the temperature profile is:
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2.3. Adopted spectral models

T (r) =

(
3GMṀ

8πσR3
in

)1/4

·
(

r

Rin

)−3/4 1−
(
Rin

r

)1/2
1/4

(2.1)

where M is the BH mass, Ṁ is the accretion rate, r is the radial coordinate, Rin is the

inner disc radius, G is the gravitational constant and σ is the Thompson cross-section.

Instead in the diskbb model, it is modified as:

T (r) =

(
3GMṀ

8πσR3
in,BB

)1/4

·
(

r

Rin,BB

)−3/4
= Tin ·

(
r

Rin,BB

)−3/4
(2.2)

where Rin,BB is the inner radius of the multicolor blackbody disc and Tin is the

temperature at Rin,BB. The true inner disc radius is related to that of the diskbb

model by the expression Rin,BB = 2.6 ·Rin (Kubota et al., 1998).

The local emission in each annulus is assumed to be a blackbody which is a good

approximation only if the disc is entirely optically thick to true emission-absorption

and if the radiative properties of the atmosphere of the disc are not taken into account.

The effects of radiative transfer at the surface of the disc can be estimated introducing

a hardening factor, f, defined as the ratio of the colour to the effective temperature1

(e.g. Shimura & Takahara 1995).

The emitted spectrum can be evaluated adopting the expression:

Lν = 4πD2Fν = 8π2 cos θ

∫ Rout

Rin

Iν(T )rdr (2.3)

where D is the distance to the observer, θ is the inclination angle under which the disc

is seen, Rin and Rout are the inner and outer radius of the disc, respectively, and Iν(T )

1The colour temperature is defined as the temperature of the Planckian that best fits the emitted

spectrum while the effective temperature is defined as Teff = (F/σSB)1/4, where F and σSB are the

emitted flux per unit disc area and the Stephan-Boltzmann constant, respectively.
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2. THE SAMPLE AND THE SPECTRAL MODELS

is the specific intensity (in case of Local Termodinamic Equilibrium Iν(T ) = Bν(T ),

which is the Planck function).

Finally we note that this model does not take into account the special and general

relativistic effects that influence the emission of each single annulus because the

matter is in rapid rotation inside a strong gravitational field. In fact, if relativistic

effects are considered, the X-ray spectrum is correctly reproduced assuming that the

inner radius of the diskbb model is Rin,BB = 19.2 − 25 Rg (Lorenzin & Zampieri,

2009).

The diskbb model has two parameters: the inner disc temperature Tin (measured in

keV) and the normalization, N, defined as:

N =
(Rin/km)

(D/10 kpc)
· cos θ. (2.4)

• diskpbb: this model was introduced in order to test if sufficiently far out from the

inner radius the temperature profile of the accretion disc follows that of a standard

disc (Mineshige et al. 1994; Hirano et al. 1995; Watarai et al. 2000; Kubota & Done

2004; Kubota et al. 2005). A flattening of the temperature profile is expected if

cooling becomes inefficient so that part of the accretion energy released at a given

radius may be advected inward. Also in the diskpbb model the radiation emitted from

each annulus is a blackbody, but the temperature profile is T (r) = Tin(r/Rin)−p,

where p is a positive parameter. For a standard disc, p = 0.75 (see Eq. 2.1) whereas,

for a slim disc, p = 0.55.

The parameters of the diskpbb model are the inner temperature of disc Tin, the p-

index and the normalization of the disc N (see Eq. 2.4).

• comptt: this model describes the Comptonization of an input spectrum of soft
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2.3. Adopted spectral models

photons into a hot plasma (Titarchuk, 1994). It includes relativistic effects related

to the motion of the electrons and the photons are allowed to have up-scattering and

down-scattering. The input spectrum is described by a Wien law. The model is valid

both in optically thin and optically thick regimes and the plasma temperature may

range between 2-500 keV. However, it is not valid for low optical depths and low

temperatures or high optical depths and large temperatures.

The model depends in total on 6 parameters:

– Redshift of the source;

– Temperature of the soft photons input in keV;

– Temperature of the electrons in the plasma (keV);

– Optical depth of the plasma;

– Geometry of the system: it is possible to choose between negative and positive

values. If the value is higher than 1 the geometry is supposed to be spherical

while for values ≤ 1 the geometry is that of a disc. In general this parameter

must be frozen.

– The normalization;

• nthcomp: developed by Zdziarski et al. (1996) and extended by Życki et al. (1999)

this model provides an improved description of thermal comptonization. The high

energy roll-over of the emergent spectrum is described in terms of the electron tem-

perature and the model takes into account also the soft energy roll-over below the

characteristic seed photon energy.

The seed photons spectrum can be a blackbody or multicolor blackbody disc, the

latter possibility being more consistent with the scenario of accretion via a disc.

The optical depth is not a parameter in this model but it can be evaluated by a
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2. THE SAMPLE AND THE SPECTRAL MODELS

combination of the electron temperature and the low energy asymptotic photon index

of the power-law, which describes the part of the spectrum between the low and high

temperature roll-over, as:

Γthcomp =

{
9

4
+

1

[(kTe/mec2)τ(1 + τ/3)]

}1/2

− 1

2
(2.5)

The model depends in total on 6 parameters:

– The asymptotic photon index at low energies;

– The electron temperature (keV);

– The temperature of the seed photons distribution in keV;

– The properties of the input distribution, i.e. blackbody or disc blackbody;

– The redshift of the source;

– The normalization;

For the high counting statistics spectra of some sources, we adopted more advanced

models for the high energy component (EQPAIR and DKBBFTH ) with an improvement

in the estimation of the physical parameters. However, for the great majority of the obser-

vations the counting statistics is not sufficient to apply them. For the sake of completeness

we summarise their properties below.

• EQPAIR is a comptonization model developed by Paolo Coppi2 including a hybrid

thermal/not thermal electron population. Since the non thermal effects are assumed

to be negligible in ULXs, we used a simplified version, Eqtherm, in which also the

photon-photon pair production is removed. This model works also in the regime

in which the electrons are marginally relativistic and takes into account reflection

2http://www.astro.yale.edu/coppi/EQPAIR/eqpap4.ps
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effects.

The free parameters of the model are listed below:

– lh/ls: the ratio of the power supplied to the accelerated electrons in the source

to the luminosity of soft photons injected into the source region;

– lbb: the value of the soft photon compactness. This parameters is important for

the photon-photon pair production and cooling processes for the electrons/pairs;

– kTbb: it determines the soft photon distribution; for positive values, the distri-

bution is that of a diskbb and, for negative values, is that of the diskpn. This

temperature is defined in keV;

– lnt/lh: the fraction of the total power supplied to energetic particles that goes

into accelerating non-thermal particles; if this ratio is 1, the regime is of pure

non-thermal particle acceleration, while if it is equal to 0 the power is used to

heat up the region of the thermal particles;

– τp: Thomson scattering optical depth;

– R: radius of the spherical scattering region evaluated in centimeter;

• DKBBFTH: developed by Done & Kubota (2006), this model makes use of the

disc-corona coupling model of Svensson & Zdziarski (1994); assuming that the major

part of the mass-accretion rate is carried by the disc, this model considers that a

fraction f of the accretion energy is exchanged with the corona and dissipated by it.

In this model the disc temperature is a function of (1− f). The relevant parameters

are:

– kTdisc: the true temperature of the underlying disc for f = 0. The inner disc

temperature used in making the model is (1− f)1/4 · Tdisc ; the temperature is

defined in keV;
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2. THE SAMPLE AND THE SPECTRAL MODELS

– rc: this parameter represents the transition radius between the disc and the

coupled disc-corona region; it is defined in units of the gravitational radius Rg;

– Γ: the asymptotic photon index of the nthcomp model;

– kTe: temperature of the electrons in the corona measured in keV;

2.4 XMM-Newton data reduction

In this section we present the general treatment for the extraction of the XMM-Newton

data. We adopted the standard software Science Analysis System (SAS) which is composed

by tasks, scripts and libraries, suitable for this kind of analysis.

The results of this analysis are presented in the following chapters. We considered all

the available XMM-Newton observations of the sources NGC 1313 X-1 and X-2, IC 342

X-1, NGC 253 X-1, NGC 5204 X-1, NGC 5408 X-1, Ho IX X-1, Ho II X-1 and NGC 55

ULX1 and adopted the standard procedure suggested by the official website.

NGC 1313 X-1 and X-2 data were reduced using v9.0.0 of SAS and EPIC-MOS and

EPIC-pn spectra were extracted selecting the good time intervals (GTI) with a background

count rate not higher than 0.45 count s−1 in the energy range 10−12 keV. For the remaining

sources we reduced the data using v11.0.0 of SAS and EPIC-MOS and EPIC-pn spectra

were extracted selecting GTI with a background count rate not higher than 0.7 count

s−1 in the 10 − 12 keV energy range. In general, we removed from the analysis all the

observations in which the sources were on or too close CCD gaps. We discarded also some

observations of NGC 1313 X-1, X-2 and NGC 253 X-1 taken in the year 2000 because the

calibration before December 2000 may be incomplete. In the first available observation of

NGC 253 X-1 the source is on the CCD gap but a dithering applied to the pointing reduces

its influence. We then included it in the analysis. Finally, some other observations were

excluded as they were empty or too affected by background flare contamination.
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2.4. XMM-Newton data reduction

In order to exclude the events at the CCD edge and the bad pixels, the parameter FLAG

was set to zero. Spectra were extracted from events with PATTERN ≤ 4 for EPIC-pn

(which allows for single and double pixel events) and PATTERN ≤ 12 for EPIC-MOS

(which allows for single, double, triple and quadruple pixel events). In the extraction of

spectra and lightcurves, we used 35” circular extraction regions for NGC 1313 X-1 and IC

342 X-1 and 30′′ circular extraction regions for NGC 1313 X-2, NGC 253 X-1, Ho II X-1,

Ho IX X-1 and NGC 5408 X-1. For the background we chose a 65” circular extraction

region usually on the same CCD chip where the source is located. However, NGC 5204 X-1

was often very close to the CCD gap, therefore the extraction region was different from

observation to observation. In general, we used circular extraction regions of 24”− 31” for

the source and 65” for the background, respectively.

Another exception was NGC 55 ULX1. For the first and second observation, we used

52” circular extraction regions for the source and background, respectively, for consistency

with Stobbart et al. (2004), while in the third observation the source is close to the CCD

gap and, to minimize its influence, 40” extraction regions were chosen. In the second

observation, NGC 55 ULX1 was on the EPIC-pn CCD gap and strongly off-axis (∼ 12’)

and, therefore, particular care was taken in analyzing it.

All the EPIC spectra were grouped with 25 counts per channel, except for the third

observation of NGC 55 ULX1 in which we applied a rebinning factor of 3 in order to avoid

oversampling the data.

RGS spectra were extracted using the rgsproc task with the option spectrumbinning=lambda.

In this way it turns out to be possible to combine the spectra of different observations.

All the spectral fits were performed using XSPEC v.12.5.1. To improve the counting

statistics, whenever possible, we fitted the EPIC-pn and EPIC-MOS spectra simultane-

ously. EPIC spectral fits were performed in the 0.3 − 10.0 keV energy range, while RGS

fits were limited at most at 0.3− 2.2 keV energy range. For each instrument, a multiplica-
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tive constant was introduced to account for possible residual differences in the instrument

calibrations. The constant of the EPIC-pn data set was fixed equal to 1, while the other

two are allowed to vary. In general, the differences among the three instruments are not

higher than 10%.

In Chapter 5 we compare the properties of NGC 55 ULX1 with a Galactic source, EXO

0748-676. We extracted two observations of this source taken in 2003 and 2005. The 2003

observation was taken in small-window mode but it was affected by pile-up. Applying

the standard correction procedure1, we excised the core of the PSF selecting an annular

region of 8.5” for the inner radius and 35” for the outer radius. A similar region close to

the source was chosen for the background. The observation of 2005 was in Timing mode,

making pile-up effects negligible. In this case, we selected a rectangular region between

RAWX=[20,56] for the source and RAWX=[1,7] for the background.

2.5 Overview

In the next chapters, we will study the spectral and temporal properties of the sources of

our sample trying to describe them within a common picture that may account for the

manifold properties of ULXs. We first surmise the possible existence of spectral states in

NGC 1313 X-1 and X-2 on the basis of diskbb+comptt spectral fits. The spectral properties

of these two sources are then looked for in all the other sources of the sample, investigating

also how the temporal properties are connected with the spectral states. A complementary

color analysis is also presented and used to characterise the spectral evolution of ULXs. We

tested that the soft component and the variability may be the imprint of strong outflows

and we tested these predictions on the closest source of our sample, NGC 55 ULX1, that

shows very intriguing features in the lightcurve. In the last chapter, we present a study

1http://xmm.esa.int/sas/current/documentation/threads/epatplot.shtml
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2.5. Overview

of the recently discovered transient ULX in M31, finding that it is consistent with the

properties of a soft X-ray transients hosting a stellar mass BH.
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Chapter 3
X-ray spectral states and metallicity in the

ULXs NGC 1313 X-1 and X-2

3.1 Introduction

In order to increase our understanding of ULXs and shed light on the mechanism at the

origin of their powerful emission, it is crucial to investigate the evolution of their accretion

flow through the variability of their X-ray spectra. In this chapter we present a systematic

analysis of the X-ray spectra of two ULXs in the galaxy NGC 1313, using three years of

XMM-Newton observations. NGC 1313 has been observed several times over the years by

XMM-Newton and a sufficient number of X-ray spectra are now available to attempt a

characterization of the spectral variability of the sources hosted in it.

Feng & Kaaret (2006) fitted a sequence of 12 XMM-Newton observations of X-1 and

X-2 with a power-law plus multicolor disc blackbody model and found an anti-correlation

between the luminosity and the inner temperature of the diskbb component. For this reason

they concluded that such component does not originate in a standard accretion disc. The

optical and X-ray variability of X-2 was also investigated by Mucciarelli et al. (2007) to

constrain the properties of the donor star and the binary system. They found that the
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2

Table 3.1: Log of the observations.

No. Obs ID Date Expa Instr. (X-1)b Instr. (X-2)b Net counts(X-1) Net counts(X-2)

(ks)

1 0150280101 11/25/2003 1 M1/M2 M1/M2/pn 651, 637 578, 643, 734

2 0150280301 12/21/2003 7.4 pn M1/M2/pn 7648 2960, 2874, 6304

3 0150280401 12/23/2003 3.2 pn M1/M2/pn 2223 2215, 2151, 3030

4 0150280501 12/25/2003 1.7 pn M1/M2/pn 484 1379, 1378, 904

5 0150280601 01/08/2004 6.5 pn M1/M2/pn 5524 2714, 1694, 1690

6 0150281101 01/16/2004 2.7 M1/M2/pn M1/M2/pn 1770, 1993, 2366 887, 713, 1013

7 0205230201 05/01/2004 7.8c M1/M2 M1/M2 1310, 1489 700, 783

8 0205230301 06/05/2004 8.7 M1/M2/pn M1/M2/pn 5446, 5151, 8685 3800, 3798, 819

9 0205230401 08/23/2004 3.8 M1/M2/pn M1/M2/pn 2397, 2643, 2323 1252, 1316, 1173

10 0205230501 11/23/2004 12.5 M1/M2 M1/M2/pn 3013, 3179 1523, 1594, 4164

11 0205230601 02/07/2005 9.0 M1/M2/pn M1/M2/pn 5025, 2435, 2187 3702,3697, 8224

12 0301860101 03/06/2006 17.2 pn M1/M2/pn 3980 4043, 4374, 11426

13 0405090101 10/16/2006 78.6 M1/M2/pn pn 24277, 25141, 58116 53271

a GTI of EPIC-pn
b pn = EPIC-pn camera; M1/M2 = EPIC-MOS1/MOS2 camera
c GTI of EPIC-MOS

power-law component hardens as the flux increases, opposite to what usually shown by

Galactic BH XRBs.

Another crucial issue related to ULX formation are the properties of the environment

in which ULXs are embedded. Claims regarding the correlation of ULXs with low metal-

licity environments have been recently reported. Swartz et al. (2008) and Walton et al.

(2011) found that within the Local Volume the specific ULX frequency decreases with host

galaxy mass above ∼ 108.5M�, meaning that smaller, lower metallicity systems have more

ULXs per unit mass than larger galaxies. Mapelli et al. (2009) and Zampieri & Roberts

(2009) suggested that at least a fraction of ULXs may be powered by massive stellar BHs

formed from the direct collapse of low-metallicity massive stars. Using binary synthesis

calculations, Linden et al. (2010) proposed another interpretation, in which the number,

the lifetime and (to a less extent) the luminosity of high mass XRBs are enhanced at

low metallicities. Only few measurements of the metallicity in the ULX environment are

available, and results are not conclusive (see e.g. Zampieri & Roberts 2009 and references
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3.2. Preliminary X-ray spectral fits

therein). While optical observations provide probably the best means to perform such mea-

surements, also the abundances inferred from the detection of K-shell photoionization edges

of intermediate mass or heavy elements in the X-ray absorption spectrum of ULXs can be

a viable tool, if high signal-to-noise spectra are available. This was already attempted by

Winter et al. (2007) for a sample of 14 ULXs with XMM-Newton spectra, obtaining values

that match the solar abundance, but no further investigation, especially using the high

resolution RGS spectra, has been attempted since then.

In this Chapter we try to characterise the spectral variability of X-1 and X-2 using all the

available XMM-Newton data. We will try to constrain also the metallicity of the absorbing

gas towards X-1 and X-2 using the RGS and EPIC spectra of the longest observation, and

stacking together all the RGS observations.

3.2 Preliminary X-ray spectral fits

We analyzed 14 out of the 17 (since three observations were affected by high flares con-

tamination) XMM-Newton observations of X-1 and X-2. For X-1 the off-axis angle is quite

similar for most of the observations (∼ 5’−8’ for all but one observation in which it is

∼1’). For X-2, 10 observations have off-axis angles that differ no more than 1’, while the

remaining three show a more significant variation. However, their spectra do not seem to

present any peculiarity possibly associated to variations in the fraction of encircled energy.

We adopted an absorbed Comptonization (EQPAIR or comptt model in XSPEC) plus a

multicolor blackbody disc component, when needed. The latter was added if a single comp-

tonization model was not statistically adequate to reproduce the spectrum or if the column

density converged towards values significantly lower than the average. The interstellar

absorption was modelled with the tbabs model in XSPEC. We fixed the Galaxy column

density, along the line of sight, at 0.39 · 1021 cm−2 (Dickey & Lockman, 1990) and added
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2

a free absorption component to model local absorption near the source. We found that

the X-1 column density is significantly variable during time and goes from a minimum of

1.1 · 1021 cm−2 to a maximum value of about 3.0 · 1021 cm−2 for both comptt and EQPAIR

models. On the other hand, 12 out of 14 observations of X-2 have values of the column

density clustering around 1.4 · 1021 cm−2. The other two observations have NH = 0.3 · 1021

cm−2 and NH = 0.5 · 1021 cm−2. If we fix the column density of these two observations

equal to 1.4 · 1021 cm−2, the spectral parameters remain essentially unchanged.

3.2.1 Comptt

The best fitting parameters of the corona for X-1 and X-2, obtained modelling Comp-

tonization with comptt, are reported in Figure 3.1 (see also Table 3.2). All errors are at

the 90% confidence level for one interesting parameter. The position of the observations

of X-1 on the kTcor − τ plot does not appear to show a clear correlation with the presence

or absence of a soft component. The temperature of the soft component is in the range

0.21 − 0.35 keV. On the other hand X-2 appears to show a well defined behaviour in the

kTcor − τ plane that, apart from a single observation, is correlated with the presence of a

diskbb component. The temperature of this component lies in the range 0.25 − 0.38 keV.

When the soft component is present, the corona temperature is low (≤ 2 kev) and the

optical depth is high (τ ≥ 7). When the soft component is not needed, Tcor ∼ 3 keV and

τ ∼ 5.

The spectra in these two different states are shown in Figure 3.2. The only ‘anoma-

lous’ observation without a soft component located in the region of high τ− low kTcor in

Figure 3.1 (bottom) is one of the two with low NH mentioned above. However, fixing the

column density equal to 1.4 · 1021 cm−2 and adding a soft component, the fit of this ob-

servation is statistically equivalent to that obtained applying only the comptt model (with

the NH fixed at 1.4 · 1021 cm−2). Moreover we found that the normalization of the soft
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2
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Figure 3.1: Optical depth versus temperature of the corona for the X-ray spectral fits of

X-1 (top) and X-2 (bottom) with a diskbb+comptt model.

46



3.2. Preliminary X-ray spectral fits

component is comparable to that obtained from the other spectra that show the presence

of a disc. Therefore, it is unclear if this observation is really anomalous or if there is not

sufficient statistics at low energies to pinpoint the soft component.

Letting aside this observation, when the disc component is present the total luminosity

of X-2 may vary significantly, reaching ∼ 8 · 1039 erg s−1. However, at low luminosity

the source appears to show spectra with and without a soft component, likely reflecting

the lack of one-to-one correspondence between spectral shape and luminosity observed in

Galactic BH binaries.
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Figure 3.2: X-ray spectra of X-2 for a low luminosity state without disc (red) [τ = 3.4 and kTcor = 4.6]

and a high luminosity state with disc (black) [τ = 11.5 and kTcor = 1.4].

Figure 3.3 shows the light curves of X-1 and X-2 computed from the best fitting

diskbb+comptt models (a distance of 3.7 Mpc was assumed; Tully & Fisher 1988). On

average, X-1 has a luminosity (∼ 1040 erg s−1), higher than that of X-2 (∼ 5 ·1039 erg s−1).

Variability of a factor ∼ 3 and ∼ 5 is observed for X-1 and X-2, respectively.

We further investigated the behaviour of the soft component in both sources. X-1
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2
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Figure 3.3: Top: X-ray light curve of X-1 (top) and X-2 (bottom). Unabsorbed luminosities

evaluated in the 0.3-10 keV energy band.

48



3.2. Preliminary X-ray spectral fits
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Figure 3.4: Inner disc temperature vs disc luminosity for X-2. The solid line is the best fit obtained with

a power-law (see text). All the (unabsorbed) luminosities are evaluated in the 0.3-10 KeV energy band.

shows the disc component only in 5 observations while X-2 in 9 observations. In X-1 the

luminosity of the soft component is ∼ 1039 erg s−1 and it represents a significant part of the

total flux. There is essentially no correlation between the luminosity of the disc component

and the inner disc temperature. The same holds true also for the total luminosity. On the

other hand, for X-2 the luminosity of the soft component is only a small fraction of the

total luminosity and the disc luminosity (Ldisc) appears to show a power-law correlation

with the inner temperature (Tin): Ldisc ∝ T 5.3±1.1
in (see Figure 3.4). In this fit we neglected

the observation with kTcor = 1.7 keV and τ = 10 because it has a very low statistics and

the disc parameters inferred from it are not well constrained.
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2
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3.3. Preliminary discussion

3.2.2 Eqtherm

The EQPAIR model allows for a ‘hybrid’ (thermal and non-thermal) plasma and computes

the resulting comptonized spectrum without assuming that the electrons are non relativis-

tic. The seed photons may have a disc or blackbody spectral distribution. For ULXs,

non-thermal processes are not likely to be important, so we decided to adopt a simplified

version of EQPAIR, dubbed eqtherm, that neglects them. The results obtained modelling

Comptonization with the eqtherm model are similar to those obtained with the comptt

model for both sources (see Table 3.3). The soft component is needed in 5 spectra for X-1

and 7 for X-2. Also in this case X-2 displays a dependence of the disc luminosity on the

disc inner temperature, that follows the relation Ldisc ∝ T 2.1±0.5
in .

3.3 Preliminary discussion

The analysis of all the XMM-Newton observations shows that the spectra of X-1 and X-2

can be well reproduced by a Comptonization model plus a soft component. X-2 appears to

show a well defined spectral behaviour in the optical depth (τ) versus corona temperature

(Tcor) plane that, apart possibly for one observation, correlates with the presence of a soft

component.

As already suggested by Gladstone et al. (2009), it is likely that X-1 and X-2 are in

different regimes. X-1 shows higher average isotropic luminosity (∼ 1040 erg s−1) and

smaller variability during the six years of observation. From time to time it shows the

presence of a soft component that emits a significant fraction of the total flux and does not

correlate with the disc temperature. As Gladstone et al. (2009) proposed, X-1 could be

in the Ultraluminous regime, accreting at super-Eddington rates and launching powerful

winds from the disc/corona (Poutanen et al. 2007). The accretion disc may be there, but

covered by the wind/corona, while the soft component may actually represent emission
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2

from the wind itself.

On the other hand, X-2 could be in a different regime, in which the average accretion

rate is at around the Eddington limit. The disc may be still partly visible. This hypoth-

esis is enforced by the correlation that we found between the disc luminosity and inner

temperature, consistent with that of a standard disc (L ∝ T 4) when adopting the comptt

model. The correlation disappears using a simple power-law to describe the spectrum of

the corona, as found by Feng & Kaaret (2006), because it does not take into account the

spectral curvature at high energies. The corona may become more expanded in the low-

luminosity no-disc state, when it covers the entire disc and no disc component is visible

in the spectrum. Clearly, as the corona is always optically thick, it is not possible to use

the disc parameters for estimating the BH mass. We found also that for X-2 the corona

temperature decreases and the optical depth increases as the total luminosity goes up, in

agreement with the recent analysis of Vierdayanti et al. (2010) for Ho IX X-1, although

such a relation was questioned by Kong et al. (2010). So X-2 could be in a state similar to

that of Ho IX X-1, with the corona becoming progressively mass loaded as the luminosity

increases (Gladstone et al., 2009).

3.4 Comptonization plus multicolor blackbody disc

Although several of our observations show acceptable fits using only the comptt component,

in some cases adding the diskbb component leads to a significant improvement in the fit.

Therefore, in order to perform a comparison within the framework of a unique spectral

model, here we assume the diskbb+comptt as reference model for all the observations and

check its consistency on the basis of the variability patterns of its spectral parameters.

The results of the spectral fits with the diskbb+comptt model for the 13 XMM-Newton

observations of X-1 and X-2 are reported in Table 3.4.
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3.4. Comptonization plus multicolor blackbody disc
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2

We tied the temperature of the disc (Tdisc) to that of the seed photons (T0) for comp-

tonization. We will comment on this choice at the end of this Section. The reported errors

are at the 90% confidence level for one interesting parameter. We note that there are

often several local minima with close values of the χ2, sometimes with evidence for both

a strong/warm and a weak/cool (or no) disc. After a careful inspection of the χ2 surface,

we found the absolute minima for each observation reported in Table 3.4. However, one

should be aware that the actual uncertainty on the disc parameters caused by the topology

of the χ2 surface may be a few times larger than the formal error reported in the Table.

We tried to adopt also more physical models, such as the eqtherm (Coppi, 2000) and the

DKBBFTH (Done & Kubota, 2006). We found that the counting statistics of most of the

spectra is inadequate to constrain the parameters of eqtherm and DKBBFTH (see also

below).

The longest observation of X-1 has a short segment of ∼ 3.5 ks within the first 13 ks

that shows some intrinsic variability (a slight systematic hardening at high energies) and

was then removed from the analysis. We note also that observation #1 has a very low

value of NH compared to the other observations and a low counting statistics. It converges

towards a local minimum with a very strong disc component and with parameters unlike

those of all the other spectra. For this reason, we excluded it from the following analysis.

Figure 3.5 shows a plot of the optical depth τ versus the temperature of the corona kTcor

obtained from the best fits of both sources. There appears to be well defined locii in the

kTcor − τ plane, indicating the existence of a somewhat ordered behaviour in the spectral

variability of the corona. The spectra of X-2 populate two distinct regions characterised

by very large optical depths (τ > 10) and low temperatures (kTcor ∼ 1.5 keV), on one side,

and smaller optical depths (τ < 8) and a range of temperatures (kTcor ∼ 1.5− 6 keV), on

the other side. In both cases the corona turns out to be optically thick. In the following

we refer to these two regions as “very-thick” and “thick” corona states, respectively.
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3.4. Comptonization plus multicolor blackbody disc
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Figure 3.5: Optical depth τ versus temperature of the corona kTcor for the X-ray spectral

fits of X-1 (top) and X-2 (bottom) with a diskbb+comptt model. Observations that have

a very thick corona are represented with black triangles while observations with a thick

corona are represented as red squares.
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2

X-1 may also be interpreted within the same framework. However, the clustering of the

observations in the kTcor − τ plane of X-1 is not so well defined and the region with high

optical depths is populated by only two observations. Furthermore, although not included

in Figure 3.5 because of the low counting statistics, our interpretation is not consistent with

the spectral parameters inferred from observation #1. So, present data are not sufficient

to establish whether X-1 has indeed a bimodal behaviour similar to that shown by X-2

or the changes in the optical depth should be interpreted in a different way (e.g. as due

to different variability patterns or accretion geometries; Feng & Kaaret 2006; Dewangan

et al. 2010). In the following we will continue to distinguish between the observations of

X-1 with a very thick corona (τ > 10) and a thick corona (τ < 8), being aware that they

may represent physically different states with respect to those of X-2.

An example of the spectral shapes when the two sources are in different positions on the

kTcor − τ plane is shown in Figure 3.6. Again there are analogies and differences between

X-1 and X-2. In both cases the spectra for very high coronal depths are bell-shaped, with a

clear turn-over at > 3− 4 keV (e.g. Stobbart et al. 2006), whereas the spectra in the low-τ

region are steeper and do not show strong evidence of curvature at high energies. Only for

X-2 the two spectral states appear to correlate with total luminosity, the very-thick corona

state being more luminous (see Figure 3.7). In X-1 there is no significant dependence of

the spectral shape on LX . This is evident also from the behaviour of the spectra shown

in Figure 3.6. While for X-2 the thick corona spectra stay always below those in the very

thick corona state, for X-1 there is a sort of crossing/pivoting point of the observed spectra

(see also Kajava & Poutanen 2009) at ∼ 2 keV. Therefore, the total counts in the thick

corona state of X-2 are clearly smaller than those in the very thick corona state, while in

X-1 the deficit of photons observed at low energies in spectra with larger optical depths is

compensated by the excess of photons at high energies.

For both sources, we estimated the fractional variability amplitude (Fvar) which is a
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3.4. Comptonization plus multicolor blackbody disc
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Figure 3.6: X-ray spectra (energy×photons) of X-1 (top) and X-2 (bottom) for observations

that have a very thick corona (black) and a thick corona (red). In both cases the comparison

is between observations #9 (red) and #12 (black), respectively.
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2
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Figure 3.7: Optical depth τ versus unabsorbed total luminosity (in the 0.3-10 keV range)

for X-2. The black points represent the very thick corona state while the red crosses are

the thick corona state.
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3.4. Comptonization plus multicolor blackbody disc

Table 3.5: Fractional variability of NGC 1313 X-1 and X-2.

X-1 X-2

Energy banda counts s−1 Fvar(per cent)b counts s−1 Fvar(per cent)b

Obs.1 0.2-10 keV − − 0.82± 0.04 0.17c,e

Obs.2 0.2-10 keV 2.08± 0.03 4.0± 2 0.99± 0.01 7.0± 2

Obs.3 0.2-10 keV 2.01± 0.04 9.1c,e 1.11± 0.02 4± 3e

Obs.4 0.2-10 keV 2.0± 0.1 18± 6c,e 0.653± 0.04 28c,e

Obs.5 0.2-10 keV 1.53± 0.03 11c 0.49± 0.01 6.0± 3

Obs.6 0.2-10 keV 1.62± 0.04 12.1c 0.44± 0.02 14± 6

Obs.7 0.2-10 keV − − − −
Obs.8 0.2-10 keV 2.36± 0.02 4.0± 2 1.16± 0.01 7.1c

Obs.9 0.2-10 keV 0.97± 0.03 14.8c 0.34± 0.01 14± 5

Obs.10 0.2-10 keV − − 0.377± 0.006 6± 3

Obs.11 0.2-10 keV 1.05± 0.02 9.4c 1.06± 0.01 7.8c

Obs.12 0.2-10 keV 1.29± 0.03 13± 4 1.05± 0.02 8c

Obs.13 0.2-10 keV 0.841± 0.004d 1± 3d 0.978± 0.005 9.8± 0.7

a The adopted energy band is for a direct comparison with Dewangan et al. (2010). b Calculated from the

background subtracted EPIC-pn light curve, with 200 s time bins. c 3 σ upper limit. d Fractional variability

computed for the whole observation, including the short segment of 3.5 ks that we left out from the spectral

analysis. e Number of useful bins lower than 20.

measure of the variance of the source over the Poissonian noise normalized to the average

count-rate (Edelson et al. 2002; Vaughan et al. 2003). The fractional variability can be

used to study the energy dependence of the short-term variability and it is a powerful tool

in order to characterise the properties of the spectral components. The X-ray fractional

variability shows that both sources present a variability of ∼ 6−14%, which may be slightly

higher when the coronae are thicker (see Table 3.5). This strengthens the analogies between

the behaviours of the two sources.

Figure 3.8 shows the light curves of X-1 and X-2 computed from the best fitting

diskbb+comptt model (a distance of 3.7 Mpc was assumed; Tully & Fisher 1988). On

average, X-1 has a luminosity (∼ 1040 erg s−1) higher than that of X-2 (∼ 5 × 1039 erg
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2

s−1).

We further investigated the behaviour of the soft component in both sources. The discs

are soft or warm, with temperatures of ∼ 0.2 − 0.5 keV for X-1 and ∼ 0.2 − 0.6 keV for

X-2. Three spectra of X-1 are consistent with zero normalization (or absence) of the soft

component. In eight observations the luminosity of the soft component is ∼ 1039 erg s−1

and it represents a significant fraction of the total flux (> 30%). Excluding the spectral fits

that return zero normalization of the soft component, there is no evidence of correlation

or anti-correlation between the disc (or total) luminosity and the inner disc temperature.

In X-2 the luminosity of the soft component is a significant fraction (> 30%) of the total

luminosity in six observations. Two observations have normalization consistent with zero.

Excluding them, the disc luminosity appears to show a weak power-law correlation with

the inner temperature, Ldisc ∝ T 1.2±0.3
disc . However, the correlation is uncertain, as the two

observations that substantiate it (those with higher kTdisc) have also rather shallow minima

in χ2, admitting both a strong/warm and a weak/cool disc fit with close values of the χ2.

No correlation is found using the total luminosity.

3.4.1 Effects of varying the ratio of seed photons temperature to the disc

temperature

The comptonizing coronae of the comptt model turn out to be optically thick. This poses

a problem, as in these physical conditions the disc underneath the corona is masked by it.

Therefore, the temperature of the disc component refers to the outer visible part of the

disc, while the temperature of the seed photons T0 is not necessarily equal to Tdisc. For

this reason, Gladstone et al. (2009) adopted the DKBBFTH model in which the corona

is assumed to cover the inner disc. We tried to apply the same model to our spectral

sequence, but found that it converges to plausible physical values of the parameters only

for the highest quality spectra. We then tried to repeat our analysis with the diskbb+comptt
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3.4. Comptonization plus multicolor blackbody disc
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Figure 3.8: X-ray unabsorbed luminosity evaluated in the 0.3-10 keV energy band (a dis-

tance of 3.7 Mpc was assumed; Tully & Fisher 1988) for all the XMM-Newton observations

of X-1 (top) and X-2 (bottom). Observations with a very thick corona are represented with

black triangles while observations with thick corona are represented as red squares. All the

(unabsorbed) luminosities are evaluated in the 0.3-10 keV energy band.
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2

model and disconnecting the two temperatures, but this leads to difficulties in finding a

global minimum (see also the analysis of NGC 5204 X-1 in Feng & Kaaret 2009). Finally,

we decided to test our results tying the two temperatures with a fixed proportionality

constant.

If the corona is optically thick and is absorbing a constant fraction f of the accretion

power, the actual inner disc temperature T
′
1 is lower than the inner temperature of the

disc in absence of the corona T1, as T
′
1 = T1(1 − f)1/4 (e.g. Gladstone et al. 2009). If R1

and RT are the inner disc radius and the truncation radius of the corona respectively, from

the relation T (R) ≈ T1(R/R1)
−3/4, valid for a disc in absence of the corona, we obtain

T1 ≈ TT (RT /R1)
3/4. Thus, we have T

′
1 ≈ TT (RT /R1)

3/4(1−f)1/4. Assuming that f < 90%

and that the corona is compact (RT < 4R1), the inner disc temperature T
′
1, which is also

the seed photons temperature, is larger than the temperature of the outer visible disc TT ,

and 1 < T
′
1/TT = T0/Tdisc < 2.5. We then attempted to perform some additional fits with

two fixed values (1.5, 2) of the ratio δ = T0/Tdisc as representative of this situation.

We found that the spectral fits with a diskbb+comptt model and δ = 1.5, 2 are statis-

tically acceptable and the coronae are still optically thick, with the inferred optical depth

weakly depending on T0/Tdisc. The parameters of the corona change by no more than

∼ 60%, with typical variations of < 20− 30%. However, the dependence of spectral states

on the total luminosity that characterises the behaviour of X-2 for equal temperatures is

lost. For X-1, the temperature of the disc continues not to correlate with the luminos-

ity, as found for equal temperatures. For X-2, varying δ the very-thick state becomes

less populated, as some observations previously in that state move to the thick corona

state. For δ = 1.5 there is a weak correlation between disc luminosity and temperature

(Ldisc ∝ T 1.4±0.4
in ), while if δ = 2 the correlation disappears. At variance with the correla-

tion found for equal temperatures, the correlation for δ = 1.5 is not critically dependent

only on two observations.
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3.5. Chemical abundance estimates

These results do not change significantly for slightly more extended coronae. On the

other hand, if the corona is very extended and optically thick, the value of δ may become so

large that the disc component falls essentially outside the XMM-Newton bandpass (unless

the disc-corona coupling is very strong). In these conditions some spectra are no longer

well fitted by the model.

However, these assumptions may fail if the soft component is actually the emission of

an outflow ejected by the disc. In these conditions the soft photons do not seed the corona,

which is fed by photons from the underlying disc, making the existence of a relation between

the two temperatures unlikely.

3.5 Chemical abundance estimates

We analyzed the EPIC-pn and RGS data of all the XMM-Newton observations of X-1 and

X-2 in an attempt to use them for determining the chemical abundances in the local source

environment. Following Winter et al. (2007), for the EPIC-pn 5000 and 40000 counts are

necessary to observe the Oxygen K-shell and Iron L-shell absorption edges at 0.538 keV

and 0.851 keV, respectively. Observation #13 has ∼ 58000 (53000) EPIC-pn counts for X-1

(X-2), and hence we can perform a chemical abundance analysis on the EPIC-pn spectrum

similar to that presented in Winter et al. (2007). In the spectral fits the tbabs absorption

model is replaced with tbvarabs that allows to vary the chemical abundances (and grain

composition). We set alternatively the abundance of Oxygen or Iron to zero. The spectrum

was then fitted with the EPIC continuum model in Table 3.4 (keeping all parameters, but

normalizations, fixed) plus an absorption edge, that accounts for the observed absorption

feature. The parameters of the edge are then used to compute the abundance.

Using this approach, we found that the O and Fe abundances inferred from the EPIC-pn

spectrum of X-1 are consistent with a sub-solar metallicity environment (Z ∼ 0.6Z� from
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3. SPECTRAL STATES OF NGC 1313 X-1 AND X-2

Table 3.6: Abundances inferred from the Oxygen K-shell photoionization edge (0.538 keV)

from the X-ray spectral fits of NGC 1313 X-1 and X-2.

NGC 1313 X-1

τa 12 + log(O/H)b

RGS (observation 13) 0.75+0.29
−0.25 8.7+0.1

−0.2
EPIC (observation 13) 0.750.03−0.03 8.72+0.02

−0.02
RGS (stacked) 0.53+0.26

−0.23 8.7+0.3
−0.2

NGC 1313 X-2

τa 12 + log(O/H)

EPIC (observation 13) 0.46+0.05
−0.04 8.64+0.06

−0.05

a Absorption depth at the threshold energy.
b For the solar abundance we assume 12 + log(O/H) = 8.92.

the O edge; Table 3.6). The χ2 of the fit with the absorption edge is 1488 for 1423 d.o.f.,

while that without the edge is 1759 for 1424 dof. For X-2 we find a subsolar abundance

for Oxygen (Z ∼ 0.5Z�; see again Table 3.6) and an Iron abundance consistent with zero.

The fits returns χ2 = 839 (857 dof) with the O edge and χ2 = 953 (858 dof) without it.

We tried to analyze also the RGS data of X-1 and X-2 using the same technique. As the

sources are faint, the RGS net count rate is quite low (∼ 1.5× 10−2 count s−1). Therefore,

only the last observation (observation #13, 122 ks) reached a reasonable counting statistics

in the RGS for the brightest ULX (X-1), while no useful analysis could be performed on

X-2. We tentatively identified two features in absorption in the RGS spectrum of X-1,

associated to O I (0.535 keV) and Fe I (0.709 keV). There may be also two other lines in

emission at the characteristic energy of O VIII Kα (0.653 keV) and Si Kα (1.748 keV),

but their significance is very low. From the Oxygen edge we found an abundance below

solar (Z ∼ 0.6Z�) for the absorbing material towards X-1 (see Table 3.6), although the

statistical improvement obtained including the absorption edge is small.

We tried to improve the analysis stacking together the RGS spectra in such a way

to increase the counting statistics. We used only the RGS1 spectra, because our best
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3.6. Discussion

diagnostic is the Oxygen K-shell photoionization edge at 0.538 keV and the response of

the RGS2 has some problems precisely in this energy range (0.5-0.6 keV). The stacked

spectra of X-2 have not enough counting statistics for a meaningful analysis. For X-1, we

combined spectra together using the rgscombine command, that appropriately accounts for

the response matrices and backgrounds of the different observations. We had to exclude

several observations (#2, 3, 4, 5, 6, 7, 11, 12) that caused technical problems in the processing

with XSPEC. Observation #1 was also excluded for the reason explained in the previous

Section. The final combined RGS spectrum of X-1 has a total exposure time of 168 ks and

∼ 2861 net counts. We fitted it with a diskbb+comptt model with parameters fixed and

equal to the mean values obtained from the EPIC spectral fits of X-1, setting the Oxygen

abundance to zero and adding an absorption edge (Figure 3.9). We found that the Oxygen

abundance is again sub-solar (Table 3.6) although we cannot claim the existence of the

Oxygen edge only from RGS data. In fact, the χ2 of the best fit with the absorption edge

is 139 for 103 d.o.f., while that without the edge is 146 for 104 dof. The difference is small

and hence the detection is marginal. In addition, the actual abundance is rather sensitive

to the temperature of the soft component and its uncertainty becomes large if kTdisc is

included in the spectral fit.

3.6 Discussion

The analysis of all the XMM-Newton observations shows that the spectra of X-1 and X-2

can be well reproduced by a Comptonization model plus a soft disc component in which the

coronae are always optically thick. Both sources appear to show a well defined behaviour in

the optical depth (τ) versus corona temperature (kTcor) plane. For X-2 we clearly identified

two states that characterise the spectral variability and appear to have also different short

term variability properties: a “very-thick” (possibly more variable) corona state in which
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Figure 3.9: Stacked RGS1 spectrum of X-1, along with its best fitting model (see text for

details).

τ > 10 and kTcor ∼ 1.5 keV, and a “thick-corona” state in which τ < 8 and kTcor ∼ 1.5− 6

keV. We note that a morphological classification in terms of a harder brighter state and

a softer dimmer state, based on a single power-law fit, has already been proposed for X-2

Feng & Kaaret (2006). Here we offer a physical explanation of these two states in terms of

varying parameters of an optically thick corona. The behaviour of X-1 may be interpreted

within the same framework but, with presently available data, the observed changes in the

coronal optical depth could be explained also in a different way (e.g. as due to different

variability patterns or accretion geometries; Feng & Kaaret 2006; Dewangan et al. 2010).

For X-2, which is on average less luminous than X-1, the two spectral states of the

corona appear to correlate with luminosity. The optical depth of the corona increases as

the total luminosity goes up, as expected if the corona responds rapidly to an increment in

the instantaneous accretion rate. The behaviour of the disc component is also different in

the two sources. While in X-1 the luminosity and temperature of this component do not
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correlate, for X-2 we find that Ldisc ∝ T 1.2±0.3
disc . However, as already mentioned, this result

is uncertain as the two spectra that substantiate the correlation admit both a strong/warm

and a weak/cool disc fit with close values of the χ2.

A spectral analysis based on the assumption that the seed photon temperature (T0)

is equal to the disc temperature (Tdisc) has some inconsistencies because, if the corona is

optically thick, the innermost part of the accretion disc is actually not visible and, hence,

it is not necessarily true that T0 = Tdisc. For this reason, we repeated our analysis with the

diskbb+comptt model tying the two temperatures with a proportionality constant, that was

fixed assuming a compact corona energetically coupled to the disc (disconnecting the two

temperatures leads to difficulties in finding a global minimum because of the low counting

statistics of several observations). We find changes in the corona parameters of < 60%, with

typical variations of < 20− 30%. However, the dependence of spectral states on the total

luminosity that characterises the behaviour of X-2 for equal temperatures is lost. While

for X-1 the temperature of the disc continues not to correlate with the luminosity, for X-2

the correlation persists up to values of T0/Tdisc < 1.5, consistent with strong disc-corona

coupling (f ∼ 90%).

We emphasize that the model adopted in the present investigation is not entirely phys-

ically consistent. Besides the issues of the relation between T0 and Tdisc that we tried to

address as described above, there may be other caveats, such as the input photons not being

a mono-temperature Wien distribution (as assumed in comptt), or the disc structure being

different from a standard one at high accretion rates, or the origin and precise location of

the thick corona/wind being unknown. However, our purpose was not to adopt the most

physically consistent spectral model for ULXs, which does not exists yet, but a simplified

one that can reflect the underlying physics and can be tested on the basis of the observed

spectral variability patterns, limited by the current data quality.

A full explanation of the observed spectral variability patterns of X-1 and X-2 is beyond
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the scope of the present investigation and appears not easy. Here we simply propose some

interpretations within the framework of recent work on the subject (e.g. Feng & Kaaret

2009; Gladstone et al. 2009; Dewangan et al. 2010; Vierdayanti et al. 2010). X-1 shows

higher average isotropic luminosity (∼ 1040 erg s−1) and smaller variability. The different

spectral shapes do not correlate with luminosity, and the temperature and luminosity of

the soft component do not vary together. These findings are consistent with X-1 being in

the Ultraluminous regime (Gladstone et al., 2009), accreting at super-Eddington rates and

launching powerful winds from a disc embedded in an optically thick corona. The accretion

disc may be there, but in a different physical regime and covered by a wind/corona, while

the soft component may actually represent emission from the wind itself. The probable

larger X-ray fractional variability observed when the wind/corona is optically thicker may

be consistent with increasing obscuration of the source caused by the turbulent wind itself

at higher accretion rates (Middleton et al., 2011).

As far as X-2 is concerned, it behaves in a way similar to X-1 on the τ -kTcor plane and

also the fractional X-ray variability of the two sources appears to be comparable. Hence the

corona may be in a similar physical state. Again, this may be consistent with the picture

in which we are seeing the two sources under a high inclination angle and the temporal

variability may be produced by blobs in the wind that intersect our line of sight to the

hottest central regions of the source (Middleton et al., 2011). However, as noted above, X-2

has a lower average luminosity and, for T0 < 1.5Tdisc, it shows a weak correlation between

the luminosity and inner temperature of the disc component. This may be interpreted

as X-2 being in a less extreme regime, in which the average accretion rate is at around

or slightly above the Eddington limit. The soft spectral component may then physically

represent a true accretion disc which is partly visible and has a characteristic temperature

in the range 0.2-0.6 keV. Clearly, some time-dependent interaction between the disc and

the corona is likely to occur (e.g. a slight expansion on a dynamical timescale of the
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corona as the accretion rate increases) and may be responsible for the observed slope of the

temperature-luminosity relation (Ldisc ∝ T 1.2
disc), which is different from that of a standard

disc with fixed inner radius (Ldisc ∝ T 4
disc). Clearly, as the corona is always optically thick,

it is not possible to use the disc parameters for estimating the BH mass.

We note that the disc temperature-luminosity correlation in X-2 disappears using a

simple power-law to describe the spectrum of the corona, as found by Feng & Kaaret

(2006) (and by Feng & Kaaret 2009 for IC 342 X-1), probably because the power-law

does not take into account the spectral curvature at high energies. The correlation of the

optical depth of the corona with luminosity that we found for X-2 (assuming T0 = Tdisc)

is in agreement with the results obtained for Ho IX X-1 by Vierdayanti et al. (2010).

However, Kong et al. (2010) argued against the statistical significance of this correlation

in Ho IX X-1. Also IC 342 X-1 shows some hint of an increase in the coronal depth as the

X-ray luminosity increases (Feng & Kaaret, 2009). These similarities in spectral variability

patterns appear to be consistent with the proximity of these three ULXs in the spectral

sequence proposed by Gladstone et al. (2009).

We used the RGS high spectral resolution to attempt an estimate of the metallicities

of the local environments of X-1 and X-2. Because of the low signal-to-noise ratio, only

the last, longest observation of X-1 could be used. The analysis was performed also on the

EPIC spectrum. The metallicity in the X-1 environment is consistent with being below

solar. The last EPIC spectrum of X-2 was also analyzed with the same method and suggests

sub-solar metallicity. In an attempt to increase the significance of our results we also stacked

together the RGS spectra of some observations of X-1 and performed measurements of the

metallicity on the stacked spectrum. Also in this case the Oxygen abundance turns out to

be below solar, although it is rather sensitive to the temperature of the soft component.

Our estimates are in agreement with the abundance measurements from HII regions in

NGC 1313 that give values that are all sub-solar (Pilyugin 2001; Hadfield & Crowther
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2007; Ripamonti et al. 2011), but are smaller than the slightly supersolar metallicity of the

X-1 environment found by Winter et al. (2007). The difference with the latter Authors

may be due to the fact that we analyzed an observation with higher counting statistics and

adopted a different spectral model.

For these reasons, the acquisition of new, high quality spectra through a dedicated

X-ray monitoring programme is definitely needed.
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Chapter 4
ULXs: a deeper insight into their X-ray

spectral evolution

4.1 Introduction

The existence of spectral state transitions in NGC 1313 X-1 and X-2 led us to further

investigate if other ULXs can display a similar behaviour. In this chapter we focus on

the other sources listed in Chapter 2.1. We continue to adopt as reference model the

diskbb+comptt, trying to find a global picture into which we can describe the properties

of the ULXs of our sample. In several low counting statistics observations the parameters

of the spectral fits are sometimes degenerate or not so well constrained. Therefore, we

tried to study the spectral evolution of our sample of ULXs using also a more model-

independent approach, that of the hardness ratios. We suggest that a possible variability

pattern may be identified on the hardness-intensity diagram and we tried to explain its

physical origin on the basis of the results of the spectral analysis. We complemented this

study with an analysis of the temporal properties of the source of our sample because, as

for Galactic XRBs, they can be used to characterise their spectral states. Throughout this

and the following chapters the distances of the ULX host galaxies adopted to compute their
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luminosity are those reported in Chapter 2.

4.2 Analysis

A detailed description of the data reduction and analysis has been reported in Section 2.4.

Here we give only a few additional information specific to this Chapter.

4.2.1 Spectral analysis

We carried out a complete spectral analysis on all the available XMM-Newton observations

of the sources IC 342 X-1, NGC 253 X-1, NGC 5204 X-1, NGC 5408 X-1, Ho IX X-1 and

Ho II X-1 (see Table 4.1). We made use also of the XMM-Newton observations of NGC 55

ULX1 which will be discussed in detail in Chapter 5.

Only 6 observations of NGC 5408 X-1 and 2 of Ho II X-1 were excluded from the

analysis because the quality of the data was strongly limited by solar flares or the event list

was empty. Two absorption components (tbabs in XSPEC) were always considered: one

fixed at the Galactic column density along the direction of the source and another variable

for the local absorption.

We note that, as for NGC 1313 X-1 and X-2, the spectral fits of some sources often

have several local minima with close values of the χ2, sometimes with evidence for both a

strong/warm and a weak/cool (or no) disc. After a careful inspection of the χ2 surface, we

selected the absolute minima for each observation reported in the tables of this chapter.

However, one should be aware that the actual uncertainty on the spectral parameters

caused by the topology of the χ2 surface may be a few times larger than the formal error

reported in the tables.

4.2.2 Temporal analysis

For each source we computed the fractional variability amplitude (Fvar) from background
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Table 4.1: Log of the observations of the ULXs analyzed in this chapter.

No. Obs. ID Date Expa Instr. (X-1)b EPIC-pn Net counts Off-axis angle

(ks) count s−1

IC 342 X-1

1 0093640901 2001-02-11 4.826 pn 0.37 1768,1194,1164 5.084’

2 0206890101 2004-02-20 17.060 pn/M1/M2 0.42 7153,3366,3323 2.493’

3 0206890201 2004-08-17 14.360 pn/M1/M2 0.90 12946,7791,8162 4.271’

4 0206890401 2005-02-10 5.918 pn/M1/M2 1.157 68473911,4469 2.627’

NGC 253 X-1

1 0110900101 2000-12-13 10.97 pn/M1/M2 0.105 1154,802, 893 4.565’

2 0152020101 2003-06-19 61.37 pn/M1/M2 0.271 16625,6978,7201 5.304’

3 0304851101 2005-02-10 10.93 pn/M1/M2 0.097 1057,727,694 3.128’

4 0304850901 2006-01-02 8.815 pn/M1/M2 0.141 1241,458,488 3.137’

5 0304851001 2006-01-06 8.754 pn/M1/M2 0.155 1359,530,549 3.167’

6 0304851201 2006-01-09 15.96 pn/M1/M2 0.158 2525,994,965 3.186’

7 0304851301 2006-01-11 4.338 pn/M1/M2 0.162 703,338,373 3.224’

NGC 5204 X-1

1 0142770101 2003-01-06 15.33 pn/M1/M2 0.6236 9560,3121,3211 1.135’

2 0142770301 2003-04-25 4.020 pn/M1/M2 0.862 3465,1903,1868 1.121’

3 0150650301 2003-05-01 5.262 pn/M1/M2 1.018 5357,2213,2327 1.296’

4 0405690101 2006-11-15 10.050 pn/M1/M2 1.228 12600,7752,7752 1.097’

5 0405690201 2006-11-19 31.250 pn/M1/M2 1.031 32219,11791,11957 1.080’

6 0405690501 2006-11-25 22.420 pn/M1/M2 0.7745 17364,6906,7174 1.132’

NGC 5408 X-1

1 0112290501 2001-07-31 3.680 pn/M1/M2 1.441 5303,2530,2642 1.255’

2 0112290601 2001-08-08 4.504 pn/M1/M2 1.337 6023,2024,2140 1.265’

3 0112290701 2001-08-24 7.498 (MOS1) M1/M2 1.018 (MOS1) 2405,2482 1.226’

4 0112291201 2003-01-27 2.793 pn/M1/M2 1.228 2354,920,935 0.990’

5 0302900101 2006-01-13 92.540 pn/M1/M2 1.031 94298,25437,25331 1.094’

6 0500750101 2008-01-13 46.090 pn/M1/M2 0.7745 43753,18471,17782 1.069’

7 0653380201 2010-07-17 92.680 pn/M1/M2 1.137 26034,33154,105377 1.112’

8 0653380301 2010-07-19 96.860 pn/M1/M2 1.113 30145,30188,107805 1.116’

9 0653380401 2011-01-26 87.380 pn/M1/M2 1.061 29307,29126,92710 1.116’

10 0653380501 2011-01-28 88.510 pn/M1/M2 1.024 27952,27822,90634 1.119’

Ho II X-1

1 0112520601 2002-04-10 4.638 pn/M1/M2 3.054 14164, 8316, 8886 1.127’

2 0112520701 2002-04-16 3.772 pn/M1/M2 2.751 10377, 4796, 4994 1.105’

3 0112520901 2002-09-18 4.325 pn/M1/M2 0.8154 3527, 1317, 1434 1.113’

4 0200470101 2004-04-15 40.75 pn/M1/M2 3.056 124532, 49487, 50578 1.135’

5 0561580401 2010-03-26 23.19 pn/M1/M2 1.238 28709, 14098, 13993 1.135’

Ho IX X-1

1 0112521001 2002-04-10 7.045 pn/M1/M2 1.895 13350 1.105’

2 0112521101 2002-04-16 7644 pn/M1/M2 2.173 16610 1.125’

3 0200980101 2004-09-26 83.17 pn/M1/M2 1.495 124339 1.130’

4 0657801601 2011-04-17 0.964 pn/M1/M2 0.76 733 7.404’

5 0657801801 2011-09-26 7.4 pn/M1/M2 2.477 13830 5.286’

6 0657802001 2011-03-24 3.2 pn/M1/M2 1.369 4381 7.319’

7 0657802201 2011-11-23 13.1 pn/M1/M2 2.211 28964 5.209’

a GTI of EPIC-pn; b pn = EPIC-pn camera; M1/M2 = EPIC-MOS1/MOS2 camera;
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subtracted lightcurves in several energy bands: 0.3-10 keV, 0.3-2.0 keV and 2.0-10 keV. In

addition, for the observations in which the counting statistics is adequate, we evaluated also

the fractional variability spectrum selecting background subtracted EPIC-pn lightcurves

in the energy ranges 0.3-0.5, 0.5-0.7, 0.7-1.0, 1.0-1.3, 1.3-1.6, 1.6-2.1, 2.1-4.0, 4.0-10 keV.

4.3 Spectral fits

4.3.1 IC 342 X-1

According to the work of Gladstone et al. (2009), this source is the most disc-like in our

sample. Therefore, we initially tried to describe its spectral properties using a slim disc

model (diskpbb in XSPEC). We set the Galactic absorption to 3.1 · 1020 cm−2 (Dickey &

Lockman 1990).

Apart from the longest observation (#3), the others can be described by an advection

dominated disc with a p-index of ∼ 0.55 and a disc temperature in the range ∼ 2.5 − 4

keV. However, the temperature of the disc is rather high and it decreases when the total

luminosity increases, the opposite of what is expected in such a scenario. Indeed if the

luminosity increases, the disc should become more advection dominated and its temperature

should raise. Hence this behaviour is not physically plausible and we can reject this spectral

model as a coherent description of the source.

We then tried with our reference two component model, diskbb+comptt. The results

of the spectral fits are reported in Table 4.2. We note that sometimes a certain degener-

acy between a cold and a warm disc solution was found (see also Stobbart et al. 2006).

Gladstone et al. (2009) associated the high energy component of IC 342 X-1 to a compact

corona coupled to the inner regions of the disc and, indeed, the former is always optically

thick and cold (kTcor ∼ 1.8− 2 keV and τ ∼ 8− 11, see Table 4.2 and Figure 4.1). In fact,

although the X-ray spectra of IC 342 X-1 may be well described also by a single comptt
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model (Feng & Kaaret, 2009; Gladstone et al., 2009), the parameters of the corona are

similar both introducing a soft component and without introducing it.

In the previous chapter, we defined these spectral parameters as indication of the very

thick state that was heavily populated by NGC 1313 X-2 (Pintore & Zampieri, 2012).

In this state the optical depth follows a correlation with the luminosity (see Figure 4.1-

bottom-right). IC 342 X-1 is therefore another source with similar spectral properties. On

the other hand, using a diskbb+power-law spectral model, Feng & Kaaret (2009) found that

the source stays preferentially in two “spectral states” defined as high/soft and low/hard. A

similar behaviour may be seen also using our reference spectral model although the corona

remains always very thick. In addition, the variability of the source in the 0.3-10 keV band

is usually ≤ 10% (when the statistics is sufficient to have good constraints; see Table 4.3).

We conclude that it is unlikely that the two spectral states may be associated to the

canonical states observed in Galactic BHBs. Indeed in the low/hard state, the variability

should be higher than 10%, not consistent with what observed in the corresponding low

flux state of IC 342 X-1.

We note that the total luminosity of IC 342 X-1 has shown variations up to a factor

of 3, from 5.2 · 1039 erg s−1 to 1.4 · 1040 erg s−1 (assuming a distance of 3.3 Mpc, Saha

et al. 2002; see Figure 4.1-top-right). Interestingly, the flux of the soft component becomes

progressively more important as the total luminosity increases (see Figure 4.2). At low

luminosities the soft component carries ∼ 25% of the total flux in the 0.3-10 keV energy

range and this value increases to ∼ 40% at the highest luminosities. In addition, there is

a correlation between the temperature and the luminosity of the disc component (Ldisc ∝

T 1.0±0.1
disc ), and the temperature of the disc component and the total luminosity (LX ∝

T 1.3±0.1
disc ; see Figure 4.1-bottom-left).

The four observations have different temporal properties: as already mentioned above,

the first three have short-term variability around ∼ 10% in both the soft and hard band
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Figure 4.1: IC 342 X-1: top-left : optical depth τ versus temperature of the corona kTcor
(diskbb+comptt model); top-right : unabsorbed total luminosity in the 0.3-10 keV; bottom-

left : unabsorbed luminosity vs temperature of the soft (disc) component in the 0.3-10 keV

band; bottom-right : optical depth vs unabsorbed luminosity in the 0.3-10 keV band.
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Figure 4.2: IC 342 X-1: comparison of all EPIC-pn spectra of IC 342 X-1 fitted with a

diskbb+comptt model; folded (top) and unfolded (E2f(E); bottom) spectra. For display

purposes, the spectra are rebinned at 10σ.
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Table 4.3: Fractional variability of IC 342 X-1.
0093640901 0206890101

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 0.49 ± 0.01 13b 1.09 ± 0.01 7 ± 2

0.3-2 keV 0.248 ± 0.009 19b 0.548 ± 0.009 13b

2.0-10 keV 0.252 ± 0.009 18b 0.550 ± 0.009 8 ± 3

0206890201 0206890401

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 0.561 ± 0.007 6 ± 2 1.43 ± 0.02 21 ± 2

0.3-2 keV 0.294 ± 0.005 2 ± 13 0.67 ± 0.01 12 ± 3

2.0-10 keV 0.276 ± 0.005 8 ± 3 0.77 ± 0.02 29 ± 2

a Calculated from the background subtracted EPIC-pn light curves, with 200 s time bins.
b Upper limit at 3σ

and they are consistent with a constant level of variability. Instead in the last one the

variability is stronger and more variability is seen at higher energies (∼12% at 0.3 − 2.0

keV against ∼ 29% at 2.0 − 10.0 keV, see Table 4.3) but it is probably produced by a

significant drop in flux occurring during the observation.

As suggested in Winter et al. (2007), only EPIC-pn spectra with more than 5000 counts

can be used to detect the Oxygen K-shell edge and IC 342 X-1 has at least 3 observations

which reached the requested statistics. We fitted these observations using the best fit

diskbb+comptt model, setting the Oxygen abundance at 0 and fitting again after adding a

multiplicative edge component at 0.538 keV. This model gives an improvement in the fit

with respect to a simple diskbb+comptt model. For example, in observation #2, ∆χ2 =

154.24 for 1 additional dof. The abundance computed with this model is in the range

8.65-8.75 dex, consistent with sub-solar. We searched also for Iron K-shell features but

found no evidence for them.

4.3.2 NGC 253 X-1

A single comptt model fits all the observations of this source but, in the spectrum with

the highest counting statistics (#2), adding a disc component improves significantly the fit
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(χ2/dof = 854.226/810 against χ2/dof=869.72/811). Furthermore, when this spectrum

is fitted with a single comptt, the local NH assumes a value close to 0 that seems rather

unreasonable if compared with the average value attained in the other observations.

Often, the spectral fits of ULXs show a degeneracy between a cold and a warm disc

solution when fitted with a diskbb plus a power-law (see Barnard 2010 and references therein

for more details). We found a similar degeneracy using our reference model. In Table 4.4

and Figure 4.3, we show the best fits obtained adopting the absorbed diskbb+comptt,

including the observation of January 2006 (Obs.Id. 0304851301) which is unpublished. We

fixed the Galactic extinction at 1.3 · 1020 cm−2 (Dickey & Lockman, 1990).

The spectral analysis shows that, even if the temperature of the soft component spans a

larger range of values (from 0.1 to 0.8 keV), the high energy component is always optically

thick and cold (see Figure 4.4-top-left). The temperature of the corona is in the range

1− 2.5 keV while the optical depth hardly becomes lower than 10 and it does not correlate

with the flux (see Figure 4.4-top-right, bottom). The source occupies both the very thick

and thick regions of the τ − kTcor plane, but it stays most of the time in the former.

We estimated the chemical abundance in the local environment of NGC 253 X-1 from

the Oxygen K-shell edge using the same procedure previously described. We used the

longest observation (#2) as it provides the best counting statistics, adopting the best fit

diskbb+comptt model. From the depth of the edge we found that the metallicity of its

local environment is 8.8+0.09
−0.14 dex that is consistent within 3σ with the value of the solar

metallicity we are assuming (8.92 dex).

We studied also the short-term variability of NGC 253 X-1, trying to understand which

spectral component is driving it. As shown in table 4.5, the RMS fractional variability

in the highest quality observation is ∼ 20% in the 0.3 − 10 keV energy band and there

are indications that it is higher at high energy. However the error bars are large and the

differences between the two bands remain below 3σ. The high variability allows us to
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Figure 4.3: NGC 253 X-1: comparison of all EPIC-pn spectra of NGC 253 X-1 fitted with

a diskbb+comptt model; folded (top) and unfolded (E2f(E); bottom) spectra. For display

purposes, the spectra are rebinned at 10σ.
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Figure 4.4: NGC 253 X-1:top-left : optical depth τ versus temperature of the corona kTcor
(diskbb+comptt model); top-right : unabsorbed total luminosity in the 0.3-10 keV; bottom:

optical depth vs unabsorbed luminosity evaluated in the range 0.3-10 keV.
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Table 4.5: Fractional variability of NGC 253 X-1.

0110900101 0152020101 0304851101

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 0.146 ± 0.007 40b 0.408 ± 0.004 28 ± 1 0.148 ± 0.006 27b

0.3-2 keV 0.132 ± 0.006 39b 0.416 ± 0.004 28 ± 1 0.121 ± 0.006 40b

2.0-10 keV 0.066 ± 0.007 96b 0.137 ± 0.003 22 ± 3 0.070 ± 0.005 65b

0304850901 0304851001 0304851201

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 0.180 ± 0.006 11 ± 5 0.199 ± 0.006 5 ± 8 0.205 ± 0.005 18b

0.3-2 keV 0.137 ± 0.005 23b 0.152 ± 0.005 21b 157 ± 0.004 20b

2.0-10 keV 0.077 ± 0.005 48b 0.082 ± 0.005 46b 0.077 ± 0.003 41b

0304851301

Energy band counts s−1 Fvar(per cent)a

0.3-10 keV 0.209 ± 0.009 28b

0.3-2 keV 0.157 ± 0.008 31b

2.0-10 keV 0.085 ± 0.007 54b

a Calculated from the background subtracted EPIC-pn light curves, with 200 s time bins.
b Upper limit at 3σ

exclude a canonical soft state for which the variability is less than 10%. These values may

be more consistent with a very high state. We studied the RMS spectrum in the highest

quality observations (#2, 4) in which the counting statistics is adequate. In figure 4.5,

we can see that the variability is consistent with a constant within 3σ and may thus be

produced by a single spectral component.

We tested also a modified single component disc model, the slim disc, suitable to de-

scribe the advection dominated regime that may set in at slightly super-Eddington rates.

We fitted the data using the simplified model diskpbb in XSPEC. Notably all the spectra

can be well described by this model (see Table 4.6). Although the fits are generally sta-

tistically acceptable, we found one observations (#3) in which the column density pegged

at 0 indicating that the absorption was anomalously low. The variation of the p value

with the total unabsorbed 0.3-10 keV luminosity and with the disc temperature kTdisc is

shown in Figure 4.6-top and 4.6-bottom, respectively. There is a tendency for the p-index

to decrease with increasing disc temperature and luminosity. Therefore, we suggest that
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Figure 4.5: NGC 253 X-1: RMS fractional variability spectrum evaluated on background

subtracted EPIC-pn lightcurves of observation 0152020101, sampled with time bins of 200

s.

Table 4.6: Best fitting spectral parameters of NGC 253 X-1 obtained with the absorbed

diskpbb model.
NGC 253 X-1

No. Date NH
a pb kTdisc

c LX [0.3-10 keV] d χ2/dof

(1021 cm2) (keV) (1038 erg s−1)

1 2000-12-13 0.7+0.2
−0.2 0.625+0.01

−0.01 1.60+0.02
−0.02 15+2

−2 52.02/57

2 2003-06-19 1.46+0.04
−0.04 0.588+0.001

−0.001 1.521+0.004
−0.004 27+1

−1 856.21/812

3 2005-02-10 0+0.2
−0 0.703+0.01

−0.01 1.42+0.02
−0.02 10+1

−1 75.88/75

4 2006-01-02 1.2+0.2
−0.2 0.581+0.003

−0.003 1.98+0.02
−0.02 13+2

−9 88.97/85

5 2006-01-06 0.4+0.1
−0.1 0.652+0.01

−0.01 1.25+0.01
−0.01 7.0+0.7

−0.6 90/93

6 2006-01-09 1.0+0.1
−0.1 0.620+0.003

−0.003 1.66+0.01
−0.01 13.0+1

−1 174.94/163

7 2006-01-11 0.9+0.2
−0.2 0.635+0.01

−0.01 1.59+0.02
−0.02 13.0+2

−2 44.38/47

a Column density; b exponent of the radial dependence of the disc temperature; c disc temperature; d

unabsorbed total X-ray luminosity in the 0.3 -10 keV range;
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a slim disc may provide a reasonable description of the behaviour of NGC 253 X-1, which

appears to marginally enter the ULX regime. In fact, at low fluxes, the spectrum may also

be well described in terms of a canonical soft state and modeled by a diskbb (Kajava &

Poutanen, 2009). This source may then be marginally entering the ULX regime only at

high luminosity and may not be able to produce powerful outflows.

4.3.3 NGC 5204 X-1

The spectral properties of NGC 5204 X-1 have been analysed in several papers (Roberts

et al. 2005; Stobbart et al. 2006; Kajava & Poutanen 2009; Feng & Kaaret 2009; Gladstone

et al. 2009). It was observed six times by XMM-Newton and its spectra can be well fitted

by a power-law plus a cold disc (∼ 0.2− 0.3 keV). The X-ray flux variability that does not

exceed a factor of 2-3. Amongst the sources of this sample, it is the only one that does not

show strong evidence for curvature at high energy. Following Stobbart et al. (2006), we

fitted the 2− 10 keV energy band with a power-law or a broken power-law. We found that

only in the first observation a broken power-law is favourite with respect to a simple power-

law (∆χ2 = 29.76 for 2 additional d.o.f.) while in the remaining we do not find statistical

evidence of it, (although this may be due to the low counting statistics). Feng & Kaaret

(2009) fitted all the six XMM-Newton observations using a power-law or a comptt model,

plus a diskbb component, and found that the diskbb+power-law model provides the best fit.

There is a correlation between the temperature of the disc and the total luminosity. This

is consistent with that of a standard disc, but is not observed adopting a diskbb+comptt

model (see Feng & Kaaret 2009 for a more detailed discussion). The ratio of the fluxes of

the disc and the power-law component seems consistent with the very-high state of Galactic

BHB. However, from a temporal analysis on the highest quality XMM-Newton observation,

Heil et al. (2009) found that the variability is consistent with zero, the opposite of what is

expected for the very-high state.
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Figure 4.7: NGC5204 X-1: comparison of all EPIC-pn spectra of NGC5204 X-1 fitted with

a diskbb+comptt model; folded (top) and unfolded (E2f(E); bottom) spectra. For display

purposes, the spectra are rebinned at 10σ.
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Figure 4.8: NGC 5204 X-1: top-left : optical depth τ versus temperature of the corona

kTcor (diskbb+comptt model); top-right : unabsorbed total luminosity in the 0.3-10 keV;

bottom-left : unabsorbed luminosity vs temperature of the soft (disc) component in the

0.3-10 keV band vs the temperature of the soft component; bottom-right : optical depth vs

unabsorbed luminosity in the 0.3-10 keV band.
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Table 4.8: Fractional variability of NGC 5204 X-1.

0142770101 0142770301 0150650301

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 0.667 ± 0.008 5 ± 2 0.92 ± 0.02 13b 1.09 ± 0.02 12b

0.3-2 keV 0.557 ± 0.007 5 ± 2 0.79 ± 0.02 14b 0.95 ± 0.02 14b

2.0-10 keV 0.121 ± 0.003 24b 0.146 ± 0.008 37b 0.147 ± 0.008 34b

0405690101 0405690201 0405690501

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 1.37 ± 0.02 8b 1.118 ± 0.007 2b 0.839 ± 0.007 7b

0.3-2 keV 1.20 ± 0.02 9b 0.975 ± 0.006 5 ± 1 0.714 ± 0.006 7b

2.0-10 keV 0.176 ± 0.007 26b 0.154 ± 0.003 14b 0.135 ± 0.003 19b

a Calculated from the background subtracted EPIC-pn light curves, with 200 s time bins.
b Upper limit at 3σ

Using a single comptt model, in 5 out of 6 observations the column density pegged at 0.

Hence, as for the other sources of the sample, we analyzed all the data of NGC 5204 X-1

with an absorbed comptonization model plus a soft component. The Galactic absorption

was fixed at 1.39 · 1020 cm−2 (Dickey & Lockman 1990). Results of the spectral fits are

shown in Table 4.7 and Figure 4.7. Luminosity of the source shows only limited variability

(less than a factor of 2, Figure 4.8-top-right) and the disc temperature varies in the range

0.2-0.3 keV; the flux of this component is a consistent percentage of the total flux (25-40%)

in the 0.3− 10 keV energy band; the corona is always optically thick, usually with τ < 9,

and has a low temperature (∼ 1 − 6 keV; see Figure 4.8-top-left). Only two observations

(#1,3), which have the lowest luminosity, are (marginally) located in the very thick state,

while all the others are in the thick state. In addition, the optical depth and the total

luminosity may be slightly anticorrelated, but there is no statistical significant evidence for

it (Figure 4.8-bottom-right). We note also that the disc temperature and the unabsorbed

disc luminosity are weakly correlated (Ldisc ∝ T 0.9±0.5
disc ; Figure 4.8-bottom-left) even if the

points are fairly scattered and the statistical significance is poor.

We tried also the diskpbb model. This is generally acceptable apart from the highest

quality observation (#5). Therefore, it is most likely that the observations which are
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4. ULX: X-RAY SPECTRAL EVOLUTION

described by this model are actually well fitted only because of their low counting statistics.

Notably, the short-time variability of NGC 5204 X-1 is almost suppressed in all the

observations (less than 10%, see Table 4.8), with no significant differences between the

hard and soft energy band. This result may be consistent with the emission from a single

spectral component.

Finally, we highlight that even in the highest quality observation it is not possible to

determine the metallicity in the local environment of NGC 5204 X-1 from the Oxygen edge,

because the fits turn out to be rather insensitive to variations of the chemical abundances.

4.3.4 NGC 5408 X-1

The luminosity of NGC 5408 X-1 varies less than a factor of 2, showing significant stability

during the ten years of observation. In the highest quality observation (#8) a broken power-

law is always favoured to a simple power-law (χ2/dof = 504.58/459 against χ2/dof =

539.15/461), showing an energy break at ∼ 3 − 5 keV. A simple comptt model is rejected

in most of the observations. However, adding a soft component improves significantly the

fitting statistics. We described all the spectra with an absorbed diskbb+comptt model,

fixing the Galactic absorption at 5.67 · 1020 cm−2 (Dickey & Lockman 1990). The results

of the spectral fits are summarized in Table 4.9 and Figure 4.9.

The high energy component is usually cold (∼ 1−2 keV) and optically thick (∼ 5−6). Its

parameters do not display a relation with the luminosity, which however does not vary more

than a factor of ∼ 1.5 (Figure 4.10-top-right, bottom-right). The source is almost always

found in the thick state. On the other hand, observation #2 shows a certain degeneracy in

the parameters of the corona that appears to be warm (84 keV) and marginally optically

thin (τ ∼ 0.9), even if the improvement over a cool corona (fixing the temperature at 1.5

keV) is only marginal (∆χ2 = 7). For this reason, we removed this observation from the

plot τ − kTcor (Figure 4.10).
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Figure 4.9: NGC 5408 X-1: comparison of all EPIC-pn spectra of NGC5408 X-1 fitted with

a diskbb+comptt model; folded (top) and unfolded (E2f(E); bottom) spectra. For display

purposes, the spectra are rebinned at 20σ.

94



4.3. Spectral fits

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.82 -0.8 -0.78 -0.76 -0.74 -0.72 -0.7

Lo
g 

(L
di

sc
)

Log (kTdisc)

Ldisc

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 1  1.2  1.4  1.6  1.8  2  2.2
kTcor (keV)

 0

 2

 4

 6

 8

 10

 12

 52000  52500  53000  53500  54000  54500  55000  55500

L X
 (

10
39

 e
rg

 s
-1

)

Time (MJD)

 0

 2

 4

 6

 8

 10

 2  4  6  8  10  12
LX (1039 erg s-1)

Figure 4.10: NGC 5408 X-1: top-left : optical depth τ versus temperature of the corona

kTcor (diskbb+comptt model); top-right : unabsorbed total luminosity in the 0.3-10 keV;

bottom-left : unabsorbed luminosity vs temperature of the soft (disc) component in the

0.3-10 keV band; bottom-right : optical depth vs unabsorbed luminosity in the 0.3-10 keV

band.
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Table 4.10: Fractional variability of NGC 5408 X-1. Observation #3 is not listed as no

EPIC-pn data are available.

0112290501 0112290601 0112291201c

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 1.44 ± 0.03 17 ± 2 1.41 ± 0.02 5 ± 2 − −
0.3-2 keV 1.37 ± 0.02 16 ± 2 1.34 ± 0.02 5 ± 2 − −
2.0-10 keV 0.094 ± 0.007 46b 0.091 ± 0.006 37b − −

0302900101 0500750101 0653380201

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 1.07 ± 0.004 8.8 ± 0.5 1.000 ± 0.006 12.9 ± 0.7 1.200 ± 0.004 7.0 ± 0.5

0.3-2 keV 0.995 ± 0.004 8.1 ± 0.5 0.924 ± 0.006 11.3 ± 0.8 1.110 ± 0.004 6.9 ± 0.5

2.0-10 keV 0.094 ± 0.002 24b 0.102 ± 0.002 25b 0.111 ± 0.002 20b

0653380301 0653380401 0653380501

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 1.182 ± 0.004 6.8 ± 0.4 1.123 ± 0.004 7.7 ± 0.5 1.084 ± 0.004 9.0 ± 0.5

0.3-2 keV 1.091 ± 0.004 6.8 ± 0.5 1.038 ± 0.004 6.9 ± 0.5 0.997 ± 0.004 7.9 ± 0.5

2.0-10 keV 0.109 ± 0.001 18b 0.105 ± 0.002 21b 0.107 ± 0.002 19b

a Calculated from the background subtracted EPIC-pn light curves, with 200 s time bins;
b Upper limit at 3σ;
c Number of time bins lower than 20, too low to apply the Gaussian statistics;

The soft component is generally centered around 0.17 keV and it does not show pro-

nounced changes during time. This component usually accounts for more than 50% of the

total flux in the 0.3−10 keV energy band, with an interesting disc temperature-luminosity

correlation (Ldisc ∝ T 1.8±0.8
disc , see Figure 4.10-bottom-left). This result was obtained tying

together the temperature of the disc and that of the seed photons, which may be question-

able in these physical conditions. In fact, using a diskbb+power-law, the disc temperature

goes as L−3.5X (Kajava & Poutanen, 2009), suggesting the emission from a wind (see Chap-

ter 1). Moreover, the fractional variability seems to be higher at higher energies although

the statistics does not allow us to have constraints on the high energy component (only

3σ upper limits; see Table 4.10). If confirmed this behaviour may indicate that a clumpy

wind is intersecting our line of sight to the central regions of the source, enforcing the

conclusion of Middleton et al. (2011). Furthermore, in the highest quality observations,

an underlying plasma component (APEC in XSPEC) with a temperature of ∼ 0.9 keV
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4.3. Spectral fits

leads to a significant improvement in the fit. This emission can be produced either by the

contamination of the diffuse emission in the host galaxy or directly from the environment

around the source as a result of the wind emission at very large radii.

We estimated the metallicity of the local environment analyzing the highest quality

observations (#5,7,8,9 and 10) since they can provide enough total counts to detect the

Oxygen and Iron K-shell edges. No evidence of a Iron edge was found. Adding a multi-

plicative Oxygen edge component to the best fit diskbb+comptt model (providing particular

attention to remove the APEC component which may affect our estimates) and adopting

the procedure discussed in the previous chapter leads to a statistically acceptable fit (e.g.

in observation #8, χ2/dof = 1296.17/1030 against χ2/dof = 1267.82/1029). We estimate

that the metallicity is [O/H] = 8.6− 8.7 dex and thus consistent with being sub-solar.

4.3.5 Ho II X-1

Ho II X-1 has been observed 5 times by XMM-Newton, displaying flux variability up to a

factor of 4-5 (see Feng & Kaaret 2009). In Gladstone et al. (2009), Ho II X-1 is interpreted

as one of the most extreme ULXs in which massive outflows are the origin of the important

emission in the soft band. It represents the most luminous source of our sample together

with NGC 5408 X-1. In the last observation (#5), the source transits from a high to a low

flux regime with a decrement of ∼ 50% (Kajava et al. 2012). This makes the fractional

variability really high in comparison with the other observations in which, indeed, the mean

fractional RMS value is ≤ 5%, as in NGC 5204 X-1. The fractional variability seems more

pronounced at high energy even if we can place only 3σ upper limits due to the limited

statistics (see Table 4.11).

We checked for the presence of curvature at high energy, finding marginal evidence

of a break in two (#4,5) out of 5 observations (∆χ2 = 22.34 and ∆χ2 = 18.67 for 2

additional d.o.f., respectively). We chose to describe all the spectra with the reference
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4. ULX: X-RAY SPECTRAL EVOLUTION

Table 4.11: Fractional variability of Ho II X-1.

0112520601 0112520701 0112520901

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 3.37 ± 0.03 3 ± 1 3.1 ± 0.1 21b 0.88 ± 0.02 2 ± 6

0.3-2 keV 2.97 ± 0.03 4 ± 1 2.6 ± 0.1 25b 0.81 ± 0.02 2 ± 7

2.0-10 keV 0.40 ± 0.01 14b 0.43 ± 0.02 22b 0.090 ± 0.006 40b

0200470101 0561580401

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 3.39 ± 0.01 2.6 ± 0.9 1.33 ± 0.01 21.4 ± 0.7

0.3-2 keV 2.98 ± 0.01 3.7 ± 0.8 1.201 ± 0.009 21.5 ± 0.8

2.0-10 keV 0.423 ± 0.005 13b 0.143 ± 0.003 18b

a Calculated from the background subtracted EPIC-pn light curves, with 200 s time bins.
b Upper limit at 3σ

model diskbb+comptt, again assuming that the seed photons temperature is equal to the

inner disc temperature and fixing the local absorption at 3.4·1020 cm−2 (Dickey & Lockman,

1990). Results and spectral fits are shown in Table 4.12 and Figure 4.11.

The luminosity of Ho II X-1 varies up to a factor of 4 (Figure 4.12-top-right) but the

temperature of the disc component does not show pronounced changes, being centered

around 0.19 keV. The significance of the disc component is slightly dependent on the

total luminosity. Indeed it contributes almost 40-45% of the total flux when the source

is in a low luminosity state and becomes less predominant when the luminosity increases

(∼ 25%). The luminosity of the disc is proportional to its temperature according to the

relation Ldisc ∝ T 3.6±1.4
disc , although the uncertainties is high (Figure 4.12-bottom-left). It

may be reminiscent of the standard disc relation if Ho II X-1 is hosting a IMBH accreting

at sub-Eddington regime although we note again that the adopted model has some physical

caveats.

The high energy component is always optically thick and cold with parameters similar

to those already found for the other sources of this sample (Figure 4.12-top-left). The

source stays predominantly in the thick state. In addition, the temperature of the high
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Figure 4.11: Ho II X-1: comparison of all EPIC-pn spectra of Ho II X-1 fitted with a

diskbb+comptt model; folded (top) and unfolded (E2f(E); bottom) spectra. For display

purposes, the spectra are rebinned at 15σ.
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Figure 4.12: Ho II X-1: (top-left) optical depth τ versus temperature of the corona kTcor
(diskbb+comptt model); top-right : unabsorbed total luminosity in the 0.3-10 keV; bottom-

left : unabsorbed luminosity vs temperature of the soft (disc) component in the 0.3-10 keV

band; bottom-right : optical depth vs unabsorbed luminosity in the 0.3-10 keV band.
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4. ULX: X-RAY SPECTRAL EVOLUTION

energy component varies with the luminosity, as found by Kajava et al. (2012). They

explained this behaviour within the framework of a slim disc model with an accretion rate

only slightly above the Eddington limit. However, we have also tried to fit the spectra of Ho

II X-1 with the diskpbb model but this model is rejected in all the observations, suggesting

a more complex accretion regime. Notably the optical depth seems to decrease with the

total luminosity, following the same trend found in NGC 5204 X-1 (Figure 4.12-bottom-

right). Hence, these two sources may be pretty similar since their spectral and variability

properties are consistent and the different luminosities may be explained in part in terms

of the different mass of the compact object.

Finally, from the O K-shell edge, we estimated an abundance of ∼ 8.8 ± 0.1 dex from

the highest counting statistics observation (#5). This value is only marginally sub solar.

4.3.6 Holmberg IX X-1

Holmberg IX X-1 (Ho IX X-1) showed lines of evidence of a spectral curvature in 3 obser-

vations (#3, 5 and 7) out of a total of 7 XMM-Newton observations. In all the observations

but #3, a single comptt model can be a good description of the data. Also the diskpbb

model is able to fit all the spectra (except observation #3), obtaining statistically accept-

able results. However, we note that the disc temperatures are unreasonably high, from

∼ 3.5 keV up to ∼ 7.5 keV. Hence we do not consider this model as a good physical

description of the Ho II X-1.

As for the other sources, we adopt the diskbb+comptt model as reference. In Table 4.13

and Figure 4.13 we show the best fits obtained with this model. The high energy component

appears always optically thick (∼ 6.5−9) and cold (∼ 1.9−3 keV, see Figure 4.14, top-left),

and in general it represents the most important fraction of the total emission. As NGC 1313

X-2, this source populates convincingly both the thick and very thick states. Although the

luminosity varies up to a factor of 3 (Figure 4.14, top-right), we note that the temperature
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Figure 4.13: Ho IX X-1: comparison of all EPIC-pn spectra of Ho IX X-1 fitted with a

diskbb+comptt model; folded (top) and unfolded (E2f(E); bottom) spectra. For display

purposes, the spectra are rebinned at 15σ.
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4.3. Spectral fits

and optical depth of the corona do not correlate with the luminosity (Figure 4.15 and

Figure 4.14, bottom-right). Also the temperature of the soft component does not seem to

vary markedly with the luminosity (see Figure 4.14, bottom-left).

Finally, we mention that the highest quality observation (#3) cannot be statistically

well described by any of the adopted models (comptt, diskbb+comptt and diskpbb model).

We note the presence of spectral features which should be further investigated.

The temporal properties of Ho IX X-1 are consistent with low variability, as already

found by Heil et al. (2009). However, observation #7, in which Ho IX X-1 has the high-

est luminosity, shows clear evidence of a substantially higher fractional variability at high

energy, supporting the hypothesis that this may be caused by two different spectral com-

ponents. Such a variability may be produced by turbulences in a wind if the scale height

of the wind increase with the luminosity, so that its edge may intersect our line of sight. In

all the lower luminosity observations, the wind may be out of our line of sight, as proposed

by Walton et al. (2012).

Finally, we estimated the chemical abundance in the local environment of Ho IX X-1,

using the two highest counting statistics observations (#3, 7). It turns out to be ∼ 8.7±0.1

dex and consistent with being sub solar.
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Figure 4.14: Ho IX X-1: top-left : optical depth τ versus temperature of the corona kTcor
(diskbb+comptt model); top-right : unabsorbed total luminosity in the 0.3-10 keV; bottom-

left : unabsorbed luminosity vs temperature of the soft (disc) component in the 0.3-10 keV

band; bottom-right : optical depth vs unabsorbed luminosity in the 0.3-10 keV band.
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Figure 4.15: Ho IX X-1: temperature of the corona vs unabsorbed luminosity in the range

0.3-10 keV.

Table 4.14: Fractional variability of Ho IX X-1.

0112521001 0112521101 0200980101

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 2.15 ± 0.02 1 ± 3 2.50 ± 0.02 5b 1.709 ± 0.006 2 ± 1

0.3-2 keV 1.55 ± 0.02 4 ± 2 1.78 ± 0.02 6b 1.185 ± 0.005 5b

2.0-10 keV 0.62 ± 0.01 12b 0.72 ± 0.01 10b 0.537 ± 0.004 2 ± 3

0657801601c 0657801801 0657802001c

Energy band counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a counts s−1 Fvar(per cent)a

0.3-10 keV 5.0 ± 0.1 10 ± 3 3.68 ± 0.05 8b 2.37 ± 0.04 9b

0.3-2 keV 2.6 ± 0.1 21 ± 4 2.56 ± 0.04 12b 1.68 ± 0.03 4 ± 3

2.0-10 keV 1.48 ± 0.07 21b 1.16 ± 0.03 23 ± 3 0.74 ± 0.02 15b

0657802201

Energy band counts s−1 Fvar(per cent)a

0.3-10 keV 4.77 ± 0.03 5.8 ± 0.9

0.3-2 keV 3.25 ± 0.03 4 ± 1

2.0-10 keV 1.56 ± 0.02 14 ± 2

a Calculated from the background subtracted EPIC-pn light curves, with 200 s time bins.
b Upper limit at 3σ.
c Number of time bins lower than 20.
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4. ULX: X-RAY SPECTRAL EVOLUTION

4.4 Colors

We have shown that almost all the spectra of the ULXs of our sample can be described by

a combination of a Comptonization model and a soft component. The spectral parameters

span different ranges but, if interpreted face value, indicate similar physical conditions, such

as an optically thick warm corona and a cold disc. However, the counting statistics of the

observations often does not allow us to find stable spectral fits because of the degeneracy

of some spectral parameters. We tried to overcome this difficulty using a complementary

approach based on the hardness ratios.

The method of the hardness ratios or color diagrams has been successfully adopted in

the past to study the behaviour of XRBs and, more in general, of X-ray source (Maccacaro

et al., 2004). Extensive monitoring of some Galactic BH binaries with Rossi-XTE led to the

discovery of a common evolutionary path in the hardness-intensity diagram, the hysteresis

cycle, that all the BH binary systems accreting at sub-Eddington rates appear to follow

(see for example Remillard & McClintock 2006; Belloni 2010). This cycle describes how the

X-ray spectrum changes with the source count rate. The hardness ratio is usually defined

as (B2 − B1)/(B2 + B1), in which B1 and B2 are the total counts in two given energy

bands. This technique is very powerful for low counting statistics data and appears then

particularly suitable for many observations of ULXs. In this section we will reanalyze all

the observations using this approach.

Since different instruments give different colors, only EPIC-pn data are used and, for

every observation in which EPIC-pn data are available, we selected three energy bands:

0.3−1 keV, 1−3 keV and 3−10 keV, defined as Soft (S), Medium (M) and Hard (H) band,

respectively. This choice is not the standard one adopted for XMM-Newton catalogues or

surveys (e.g. the 2XMMi DR3 or the M31 Deep XMM-Newton Survey X-Ray Source

Catalog), but it provides an adequate sampling of the spectral regions in which the soft
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4.4. Colors

  

Group 2

Group 1

Figure 4.16: Color-color diagram (in terms of the S, H and M bands defined in the text) for

the sources of our sample. Group 1 and Group 2 are marked with pink and green ellipses,

respectively.

excess, spectral pivoting (see Kajava & Poutanen 2009; Pintore & Zampieri 2012) and/or

the comptonizing component are usually contributing. In each energy band of interest, we

added the counts of every good channel of the spectrum and subtracted the total counts

of the corresponding background channels, properly scaled for the extraction areas.

Figure 4.16 shows a color-color diagram in which the y-axis is defined as the ratio

between the counts in the hard and medium energy band (H/M ) and the x-axis as the ratio

between the soft and medium band (S/M ). The sources are placed along a hypothetical

curve starting from IC 342 X-1 and ending with NGC 5408 X-1. At least two groups of

observations can be distinguished, labeled as 1 and 2 for simplicity. Group 1 is composed

by the observations of NGC 1313 X-1, X-2, Holmberg IX X-1 and NGC 253 X-1 and we

suggest it can be split into two sub-groups (1a, 1b): group 1a contains almost all the
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4. ULX: X-RAY SPECTRAL EVOLUTION

observations of NGC 253 X-1, Ho IX X-1 and the very thick state observations of NGC

1313 X-2, while group 1b is populated by almost all the observations of NGC 1313 X-1

and those of the thick state of NGC 1313 X-2. Group 2 contains NGC 5204 X-1, NGC

5408 X-1 and Ho II X-1 that show similar H/M ratios (about 0.1-0.2). NGC 5204 X-1

shows variations in the ratio H/M up to a factor of 3, while S/M stays nearly constant

indicating either that the high energy component is significantly variable or that the soft

and medium band vary together. On the other hand, NGC 5408 X-1 shows the opposite

behaviour in which the S/M ratio is modulated up to a factor of 2-3, while H/M is almost

constant meaning that either the soft component has the largest changes or the medium

and soft component have similar variability.

Only NGC 55 ULX1 (see the following chapter for a detailed discussion about it) and

IC 342 X-1 are detached from these two groups of sources. We know that, in terms of

spectral parameters, IC 342 X-1 shows similarities with the very thick state of NGC 1313

X-2. On the other hand, IC 342 X-1 has the largest NH of the whole sample and hence

its position on the color-color diagram is strongly affected by absorption at soft energies

which distorts the hardness ratios. To test this, we chose the best diskbb+comptt fit of the

longest observation of NGC 1313 X-2 (see previous chapter) and changed the value of NH

setting it equal to 6 · 1021 cm−2, consistent with the mean value of IC 342 X-1, and leaving

the other parameters unchanged. Then we simulated a fake spectrum and evaluated its

colors: as expected it fills the location occupied by the observations of IC 342 X-1, i.e.

H/S ∼ 0.5 and S/M ∼ 0.1.

To better understand what are the effects of variations in the column density and

normalization of the soft component on the position of the sources on the color-color

diagram, we adopted the approach outlined below. We select two observations of NGC 1313

X-2, one in the very thick state (group 1b, Obs.ID 0405090101) and one in the thick state

(group 1b, Obs.ID 0205230401), and one of Ho II X-1 (group 2, Obs.ID 0200470101). We
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Figure 4.17: Color-color diagrams for the sources of our sample, with the tracks computed

from fake spectra with varying column density and normalization of the soft component

(as explained in the text). NH decreases going from left to right while the normalization

from right to left. NH goes from 1020 cm−2 up to 6.4 · 1021 cm−2.
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4. ULX: X-RAY SPECTRAL EVOLUTION

then changed the values of the column density or the normalization of the soft component

and simulated a fake spectrum and finally computing its colors. We find that the main

parameter driving the observed changes of position of NGC 1313 X-2 from the very thick

to the thick state is likely to be the normalization of the soft component (see Figure 4.17-

top-left), with some contribution from variations (a decrease) in NH .

Likewise, group 1b and group 2 can be related mostly considering variations in NH or

in the normalization of the soft component. In fact, the track of the fake spectra of NGC

1313 X-2 and that of the thick state of Ho II X-1 show that the groups can be directly

connected, through a decrement in NH or an increment in the normalization (Figure 4.17-

top-right,bottom). This is consistent with the scenario proposed by Gladstone et al. (2009)

in which the soft component becomes more and more significant along a certain spectral

sequence which here appears to correspond to the path 1a-1b-2. This path seems then

driven mostly by changes in the importance of the soft component. Similar conclusions

based on a detailed spectral analysis of a different sample of sources have been reached also

by Sutton et al. (2012).

In order to better understand what part of the energy spectrum drives the observed

variations in the color-color diagram, we attempted a finer sampling of the energy bands,

using the intervals 0.3-0.7, 0.7-2.0, 2.0-4.0 and 4.0-10 keV (for simplicity we label them

1, 2, 3 and 4, respectively) and we re-evaluated the hardness ratios as (B2−B1)/(B2 +B1).

With this choice in the energy bands 3 and 4 the effects of NH are essentially negligible.

Figure 4.18, shows a color-color (top) and a hardness-intensity (bottom) diagram ob-

tained using the hardness ratios defined by the energy bands reported above. The total

absorbed count rates of each source are rescaled to a distance of 1 Mpc. The color-color

plot shows even more clearly the two groups of sources previously identified, characterized

by values of the color 2− 1/2 + 1 above or below ∼ 0.4.

We suggest that the ULXs follow a path on the hardness-intensity plane: low luminosity
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Figure 4.18: Color-color (top) and hardness-intensity (bottom) diagrams obtained using

the hardness ratios defined by the energy bands 1, 2, 3 and 4 (see text).
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Figure 4.19: Hardness-intensity diagrams rebinned in terms of count rate to better clarify

the evolutionary pattern.

sources (as NGC 253 X-1 and NGC 1313 X-2) show a tendency to harden as the count

rate increases (determined by the development of a bell-shaped spectrum with a flattening

below 5 keV and a pronounced curvature above this energy; see previous chapter) up to

the position of the very thick state of NGC 1313 X-2, IC 342 X-1 and some very thick

observations of Ho IX X-1. At even higher count rates, NGC 5204 X-1 and NGC 5408

X-1 show an opposite behaviour, becoming “softer” when their flux increases. To better

clarify this pattern, we rebinned the observations in count rate and averaged the color of

the observations in each bin. As NGC 55 ULX1 is clearly outside the region occupied

by the other sources and Ho II X-1 is possibly a misplaced group 1 source, they are not

included in this plot. The resulting plot is shown in Figure 4.19. The two main groups

that we identified previously are still observed but, on this diagram, the situation appears

clearer. A certain degeneracy is present in groups 1a and 1b, which is here removed.
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4.5. Discussion

The only sources that do not appear to conform to this picture are Ho II X-1 and NGC

55 ULX1. Ho II X-1 stays in group 2 but it shows a variability pattern reminiscent of

group 1. We argue that Ho II X-1 is powered by a BH with a mass larger than that of the

BHs in group 1, which implies a higher value of the luminosity at comparable accretion

rates. On the other hand, NGC 55 ULX1 may be a source of group 2 but seen from a high

inclination, and highy absorbed. This affects its luminosity and consequently its position

on the hardness-intensity diagram.

Assuming indeed that the black hole masses are roughly similar (except possibly for

Ho II X-1), the physical parameter that drives the variability along the sequence may be

the accretion rate. In particular we suggest that there is a turning point after which the

accretion mechanism changes and the spectral evolution turns character. From the plots,

we estimate that the count rate of the turning point is ∼ 10 counts s−1, assuming a distance

of 1 Mpc.

4.5 Discussion

We have shown that although a common spectral model can be used to describe the spectral

properties of ULXs, the sources show a different spectral evolution. It is possible to describe

such an evolution in terms of variations in a soft component and a hardness ratio at high

energies. Changes in the soft component could be intrinsic (mostly normalization) and/or

caused by variations in the column density to the source.

Because the soft component does not show the characteristic correlation between tem-

perature and luminosity expected for a standard accretion disc, it is more likely that such a

component is associated to strong and extended outflows which, at the high accretion rates

expected for these sources, may set in and cover a large part of the outer regions of the

disc; the expelled material expands and cools above the outer disc until it becomes neutral

115



4. ULX: X-RAY SPECTRAL EVOLUTION

and optically thin. The wind could have two different phases, an inner emitting optically

thick region and an outer optically thin absorbing region (see Figure 4.20). In our scenario,

the cold outer region of the wind may be responsible for the different absorption levels we

observe in the sources of our sample. If the inclination angle to the source is small, our line

of sight passes through the colder regions of the outflow and we should observe a higher

column density with significant absorption of the soft component. On the other hand, the

high energy component may be either a bare disc or a comptonized disc coupled to an

optically thick corona above its inner regions (see Middleton et al. 2011).

We note that the short-term variability of these sources spans the range ∼ 5− 20% in

the 0.3− 10 keV energy band and in most cases it seems higher at high energy. Middleton

et al. (2011) proposed that the high values of variability may be due to turbulences in the

wind along our line of sight if it intersects its outer edge, making the variability observed

at high energy extrinsic to this component. Hence high levels of variability can be seen

only when the line of sight encounters wandering blobs of optically thick matter. An

intrinsic variability related to turbulences in the accretion flow itself may also be present

and may explain the low level of RMS variability that is often observed and does not

appear to correlate with the count rate or the spectral parameters. A combination of this

two effects may be at work in the sources with high variability. In addition, if the direction

of propagation of the wind is far from our line of sight we may see signatures of the optically

thin phase in emission. Some evidence of this may possibly be found in NGC 5408 X-1

that seem to display improvements in the spectral fits when a plasma component is added.

In the sources of group 1, the outflow is also present but not copious enough to remove

sufficient energy from the inner regions, which appear hotter when the accretion rate and

the total flux increase. When the accretion rate increases further radiative forces become

strong enough to blow out a larger amount of material from the disc. A fraction of internal

energy in the disc is then converted in kinetic energy to power the outflow, which explains
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4.5. Discussion

Figure 4.20: A schematic representation of the geometry of the inflow/outflow in a ULX.

The yellow/red area is the accretion disc, the gray region is the optically thin phase of the

wind while the orange area represents the region in which the wind is ejected and produces

the soft emission. Finally, the blue area is the innermost region of the disc possibly coupled

to an optically thick corona.

the inversion of the trend of the hardness ratio with the total count rate. We suggest that

the turning point is at ∼ 10 count s−1 assuming a distance of 1 Mpc. Only NGC 1313

X-1 and possibly Ho IX X-1 and NGC 1313 X-2 seem to switch between the two accretion

regimes. In addition a certain dispersion in the vertical direction in the hardness-intensity

diagram may be caused by differences in the amount of absorption (inclination) and/or

differences in the BH mass.

Thus, a combination of accretion rate, inclination angle and mass of the BH can explain

the X-ray spectral evolution of ULXs. It is possible that most absorbed sources are seen

from the largest inclination angles. We remind that the absorption component to which

we refer here, is intrinsic, as the Galactic absorption in the direction of the sources has

been separately taken into account. IC 342 X-1 could be the most inclined source of the

sample. Instead, for NGC 1313 X-2 the inclination can be slightly smaller but the cold

absorber is also along the line of sight. We can try to explain the evolutionary path from

the thick to the very thick spectral state in group 1 within this scenario. As the accretion
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rate increases, the wind and the corona become progressively more mass loaded and part

of the disc internal energy goes into the wind, reducing the temperature of the corona.

The temporal variability tends to be higher in the very thick state, because of either a

more pronounced intrinsic activity of the corona at higher accretion rates or the increasing

obscuration caused by the turbulent wind.

On the other hand, sources in group 2 show on average a smaller NH and hence we

probably see them at relatively small inclinations. This is probably caused by the small

statistics of our sample more than by selection effects. In fact, in this respect, we suggest

that NGC 55 ULX1 may be a group 2 source seen at a much larger inclination angle

although part of the obscuration may be caused by the host galaxy, as it is placed almost

edge-on.

In group 2, the soft component becomes more extended, increasing the total luminosity.

In addition, when the sources are observed from low inclination angles, the scatter of the

high energy photons by the funnel of the outflow makes the luminosity higher (Poutanen

et al. 2007) .

NGC 1313 X-1 and possibly Ho IX X-1 seem to fill the gap between group 1 and 2.

Indeed they show the same absorption level and variability of the hard component of NGC

1313 X-2.
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Chapter 5
Investigating the variability of ULX1 in

NGC 55

5.1 Introduction

As previously mentioned, the soft component may be the emission of a massive outflow

ejected by the inner regions of the disc. Amongst the sources of our sample, NGC 55 ULX1

seems to present the most puzzling behaviour in terms of position on the hardness-intensity

diagram. It may have properties which we are not observing in the other sources and thanks

to its proximity we can have high quality data to investigate them. Since the source presents

strong energy dependent “dips” in the lightcurve on timescales of minutes to hours which

dominate the variability (see Section 2.2), we suggest that they are produced by turbulences

in the outflow and the source is possibly seen from a high inclination angle. NGC 55 ULX1

is therefore an ideal candidate to explore the properties of extrinsic variability probably

associated with large scale height winds from a super-critical inflow.

In this chapter we analyse how the obscuring material affects the emission along the

line of sight. To obtain testable predictions for ULXs, we compare the spectral/temporal

properties of NGC 55 ULX1 with those of EXO 0748-676, a well understood dipping, low
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mass X-ray binary (LMXB), where material residing in the outer disc obscures our view to

the inner regions (White & Swank 1982; White et al. 1995; Homan et al. 1999; Dı́az Trigo

et al. 2006; Cottam et al. 2002).

In the previous chapter, we showed that in poor quality data a degeneracy affects the

spectral parameters, and we by-passed this issue adopting the hardness ratio analysis. It

is therefore clear that, neither a spectral nor a timing analysis alone can unambiguously

determine the physical nature of ULXs, however a combined approach on high quality

data allows model degeneracies to be resolved. How such an approach might allow us

to understand the distorting effects of extrinsic variability, inferred to be present in high

luminosity/wind-dominated ULXs, is of particular importance. Contrarily to the previous

chapters, here we adopted a more complex analysis to investigate both the spectral and

temporal properties of NGC ULX1. Regarding the spectral analysis, we still describe the

spectra using the combination of a diskbb and comptonizing models (nthcomp) but we add

an ionised absorber component. In fact, if we expect that part of the central emission is

absorbed by a warm and ionised optically thick medium which constitutes the wind, we

should detect absorption features in the spectra. The detection of these features is difficult

in poor quality data but NGC 55 ULX1 provides high counting statistics, hence allowing

us to have reliable constraints on this warm component. We used the XSTAR model

which offers an adequate description of the physical conditions of photoionised gases and

their corresponding spectra, modelling the effect of a spherical gas shell surrounding the

central source of ionizing radiation and evaluating how the shell absorbs and reprocesses

part of this radiation. The model allows us to calculate the column density, the ionizing

parameter and the redshift of the warm absorber. It is important to note that XSTAR is

usually adopted for modeling of narrow absorption features

In addition, the temporal analysis can be far more complex than a simple study of

the RMS variability in different energy bands. In this analysis we are helped by the high
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Table 5.1: Log of the observations of EXO 0748-676 and NGC 55 ULX1.
No. Source Obs ID Date Expa Instr.b Net counts

(ks)

1 EXO 0748-676 0160761301 12/11/2003 62 pn 913968

2 EXO 0748-676 0212480501 27/04/2005 53 pn 12670416

1 NGC 55 ULX1 0028740201 14/11/2001 27.2 M1/M2/pn 13555, 12695, 37427

2 NGC 55 ULX1 0028740101 15/11/2001 24.5 M1/M2/pn 7455, 8210, 16355

3 NGC 55 ULX1 0655050101 24/05/2010 102 M1/M2/pn 26992, 26838, 83548

a GTI of EPIC-pn; bM1,M2= EPIC-MOS1, EPIC MOS2 camera; pn = EPIC-pn camera

counting statistics and we can perform a deep complete temporal investigation that involves

time lag and covariance spectra. These particular tests cannot be done on the majority of

ULXs, hence NGC 55 ULX1 is one of the best laboratory to understand the properties of

super-Eddington accretion sources.

5.2 EXO 0748-676

5.2.1 X-ray spectra

As the X-ray spectrum of the first observation is well studied, we restrict our discussion to

that of previous analyses. Cottam et al. (2002) investigated the presence and redshift of

atomic absorption features (mainly Fe XXVI and Fe XXV) in the spectra of 28 X-ray bursts

in order to constrain the NS equation of state. Unsurprisingly these features, associated

with photospheric emission at the surface of the NS, were no longer observed during the

steady, albeit dipping emission (Dı́az Trigo et al. 2006).

The time-averaged spectrum of the 2003 observation can be well described by a hard (Γ

= 1.57± 0.05) power-law and a hot disc black body (kTdisc∼1.9 keV) with strong, ionised

atomic features in emission (associated to O VII and Ne IX at 0.57 keV and 0.92 keV) and

absorption.

As the dips are not thought to be due to drops in the accretion rate, it is expected that
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changes in the continuum should not be observed between dips and persistent spectra.

Indeed when the same continuum model is applied to spectra extracted at different count

rates in the dips, the main differences are due to changes in the column density of the

ionised absorber (from 3.5 · 1022 to 15.5 · 1022 cm−2) and a corresponding drop in the

ionization parameter (from 2.45 ± 0.02 to 2.26 ± 0.03, see Table 7 in Dı́az Trigo et al.

2006). This strongly implies that an absorbing medium, associated with the source, is

obscuring the intrinsic emission during the dip phases. The implication of strong ionised

absorption edges (O VIII and Ne X) and well constrained turbulent velocity broadening of

these narrow features in both the dip and persistent phases, is that the source is constantly

‘saturated’, i.e. the line width does not change for a change in column density but increases

with velocity broadening. This in turn implies that the source is constantly “dipping”, a

picture supported by the ionisation parameter being relatively low and the low luminosity

of the source compared to others with similar orbital periods. This has led to the reasonable

conclusion that the source is viewed at a high inclination angle and the obscuring medium

is somewhat clumpy in nature (Dı́az Trigo et al. 2006).

The X-ray spectrum of the second observation has not been studied and so we present

this here for the first time. We used the EPIC-pn 0.3-10 keV energy band light curve to

define the persistent spectrum, extracted at a count rate of 300-370 count s−1, and the

dip1, dip2, dip3 and dip4 spectra, extracted for count rates in the ranges 280-300, 250-280,

220-250 and < 220 counts s−1, respectively. For consistency with the analysis of Dı́az Trigo

et al. (2006), we removed the eclipsing intervals of the source both from the spectral and

temporal analysis and we adopted a similar approach for the spectral analysis.

Since the dips are thought to originate from obscuration by a clumpy medium, we do

not expect variations in the continuum. Hence all of the spectra were fitted simultaneously,

adopting an absorbed multicolor black body disc (diskbb in XSPEC, Mitsuda et al. 1984,)

and comptonization medium (nthcomp in XSPEC, Zdziarski et al. 1996), leaving their
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normalizations free to vary independently. The disc temperature is lower than in the

previous observation (∼ 0.91 keV) and the high energy component is described by a cold

medium (kTcor =2.8 keV) with a hard photon index of ∼ 1.9. However this model provides

a statistically poor fit to the data (χ2
ν > 2) and a careful inspection of the residuals shows

the presence of several features in absorption and emission. In order to model them, we

introduce a warm absorber (Xstar in XSPEC) which can vary independently between the

spectra. The fit quality is now strongly improved (χ2
ν ∼ 1.3 or χ2/dof = 10876.65/8395)

but some strong features are still present in the residuals: three absorption lines at 6.69

keV (possible associated to Fe XXV), 1.07 keV (possibly a Fe XXII line) and 1.45 keV

(associated to Al line) and two emitting features at ∼ 2.2 keV (possible associated with

Si XIII) and 2.82 keV (perhaps associated to S XV). Gaussian models were introduced to

describe them improving the fit to χ2/dof = 8789.89/8366.

In Table 5.2 the results of the spectral fitting are shown. We found that the column

density of the warm absorber seems to show a positive trend (from 0.05 · 1022 to 1.5 · 1022

cm−2) when the count rate of the source decreases, with a slight variation of the column

density of the neutral absorber. These values are lower than those obtained by Dı́az Trigo

et al. (2006) but we point out that the source is now more luminous and the absorption

may have decreased or the absorber has become more ionised between the two observations.

The comparison of the lightcurves across the two epochs appears to support this scenario;

the low points of the dips may confirm it, because the bottom of the dips of the 2005

observation are consistent with the count rate of the “persistent” intervals of the 2003

observation (Figure 5.1). On the other hand, the ionization level decreases (from ∼ 2.5 to

∼ 1.5) when the count rate drops, with values consistent with those inferred by Dı́az Trigo

et al. (2006). The blueshift of the warm absorber may indicate an outflow from the disc.

However, the shift velocities have no clear trend with the depth of the dips and most of

them are consistent with a blueshift of ∼ 0.07−0.2 c, which may be too high for a Galactic
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Table 5.2: Best fitting spectral parameters of EXO 0748-676 obtained with an absorbed

diskbb+nthcomp model. The error bars are evaluated at 90% confidence level.

Parameter Component

kTdisc (keV)a diskbb 0.91+0.01
−0.01

kT0 (keV)b Nthcomp 0.104+0.02
−0.02

kTcor (keV)c Nthcomp 2.8+1
−1

Γd Nthcomp 1.89+0.01
−0.01

Persistent Dip 1 Dip 2 Dip 3 Dip 4

nH (1021 cm−2) 1.25+0.02
−0.02 1.25+0.02

−0.02 1.16+0.01
−0.02 0.888+0.004

−0.02 1.18+0.006
−0.02

nabsH (1021 cm−2)e Xstar 0.50+0.1
−0.1 1.94+0.08

−0.2 4.4+0.1
−0.4 3.2+0.3

−0.3 15.1+0.2
−0.1

log(ξ) ( erg cm s−1)f Xstar 1.42+0.06
−0.05 2.46+0.02

−0.04 2.35+0.01
−0.05 1.47+0.06

−0.08 2.03+0.07
−0.04

ze Xstar -0.202+0.004
−0.003 -0.075+0.003

−0.004 -0.073+0.002
−0.005 -0.138+0.004

−0.005 -0.073+0.009
−0.004

a Column density; a Inner disc temperature; b The seed photons temperature; c Temperature of the

electrons in the corona; d Photon index; e Column density of the warm absorber ; f Ionization parameter

of the warm absorber; g Redshift of the warm absorber.

source; this will be tested in a further analysis.

Finally, the 2005 observation strongly suggests that the observed dips are mainly pro-

duced by absorption of an ionised medium which intersects our line of sight towards the

central regions of the source. However, compared to the other observation, the source

is now brighter, showing narrower dips and a more long lasting persistent emission. In

conclusion, we note that the column density of the ionised absorber during the persistent

emission is low (∼ 5 · 1020 cm−2) suggesting that the source is not continuously dipping as

in the previous observation.

RGS

Due to its relative proximity we have very high quality RGS spectra for EXO 0748-676,

which allow us to investigate the presence and nature of features in both the dip and

‘persistent’ intervals at a higher energy resolution than that obtained via the EPIC CCD
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Figure 5.1: Combined EPIC-MOS and EPIC-pn background subtracted X-ray lightcurves

of EXO 0748-676 of the first and second observation (top, bottom) sampled with time bin

of 20 s. The lightcurves are obtained in the energy band 0.3-10 keV.
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spectra alone.

We defined the dip intervals by selecting periods in which the total count rate was

lower than 78 counts s−1 and ∼ 280 counts s−1 for the first and second observations,

respectively. We then evaluated the spectra in the 0.3 − 2.2 keV energy band using the

line-finding algorithm of Page et al. (2003) where a line is deemed significant for ∆χ2 > 9.

As expected, the dip spectra contain several significant features. In the first observation

we find an emission line (∆χ2=22) at 21.8 Å (∼0.57 keV) that could be associated with O

VII, as seen in the CCD spectrum (although we note that this is only in the first arm as

the second arm has an energy gap spanning this region) and an absorption line (∆χ2=10)

at 11.8 Å (∼1.05 keV) with a probable association with Fe XXII or Ne K edge. We note

the lack of emission line at ∼0.92 keV, suggesting that the feature is too broad to be well

resolved by the algorithm.

In the second observation, we find a slew of absorption features at 0.527 ± 0.001 keV

(∆χ2=26, probable association with O I Kα), 0.545± 0.001 keV (∆χ2=10, probable asso-

ciation with O VII), 1.055±0.001 keV (∆χ2=21, probable association with Mn XXII or Fe

XXII), and 1.284±0.002 keV (∆χ2=26, possible associated to Mg). Unlike the dip spectra,

we do not find evidence for any absorption or emission features in the persistent spectra

from either observation − consistent with a highly ionised absorber in the first observation

and a direct line of sight to the intrinsic emission in the second or a highly ionised absorber

which leaves no imprint in the spectrum, although from the spectral analysis of EPIC-pn

data the latter scenario is more unlikely.

5.2.2 Power Density Spectra

We can investigate the frequency dependent variability of the emission by obtaining the

power density spectrum (PDS), in units of fractional Root Mean Squared (RMS) variability.

The PDS is the stochastic realisation of an underlying variability process and, for X-ray
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binaries, is usually well constrained due to the high data quality yelding excellent sampling

and low statistical (white) noise. If the PDS shows changes over time, then this process is

deemed to be non-stationary (see Vaughan et al. 2003 for a full discussion) and indicates

a change in the accretion properties. On the other hand, should variability be introduced

to the PDS via extrinsic means (such as obscuration by material in the outer disc or wind)

then the accretion flow may not have changed but the PDS may not be stationary. The

PDS can usually be described by band limited noise approximated by a power-law shape

of the form Pν ∝ ν−α, with alpha breaking from 0 to ∼ −1 at low frequencies and ∼ −1

to ∼ −2 at high frequencies (e.g. Wijnands & van der Klis 1999). In addition, there are

several observational effects that can distort the shape of the PDS including the effects of

variability outside of the sampling range (red noise leak) and the presence of quasi-periodic

oscillations (QPOs) at both low and high frequencies. We note that, although QPOs have

been claimed to be present in Rossi X-ray Timing Explorer data of EXO 0748-676 in the

range 0.58 - 2.44 Hz by Homan et al. (1999), this is above our highest sampled (Nyquist)

frequency and will have little effect on the continuum shape.

We extract the PDS from the full lightcurves of EXO 0748-676, binned on 1 second. We

model the PDS using a Bayesian maximum likelihood algorithm (Vaughan, 2010) which

allows to test the presence of bends/breaks to be tested as well as providing a robust

description of the power-law index.

For the first and second observations we obtain best-fitting indices of 1.22±0.01 (across

the 0.01 mHz − 0.1 Hz bandpass with ∼ 42000 frequency bins) and 1.51±0.02 (across

the same frequency bandpass with ∼ 48000 frequency bins). In neither case does a model

with a broken power law provide a better quality fit (as parametrised by the LRT statistic:

Vaughan 2010). As we do not detect the presence of a break we cannot rule out red noise

leak from frequencies below the observable bandpass.

However we note that the second observation is affected by some type 1 bursts which
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can modify the power spectral density, so we remove them from the lightcurves. This

produces gaps in the lightcurves that reduces the available continuum intervals. We decide

to fill the gaps adding a fake count rate which is obtained by a linear interpolation between

the count rate pre-gap and that post-gap (e.g. González-Mart́ın & Vaughan, 2012). Since

the gaps are narrow we can be confident that this method will not strongly affect the final

PDS.

We can crudely see how the properties of the PDS are affected by the dips by excluding

them from the lightcurve and obtaining the PDS for the longest continuous segment. We

stress that as the frequency bandpass is smaller than that obtained from the full observa-

tion, the difference in PDS shape only provides an indication rather than a quantitative

measure of the distorting effects of the dips.

For the first observation this is not strictly possible as the source is believed to be

constantly dipped. However, we exclude the obvious drops in flux associated with neutral

absorption and obtain a best-fitting single power-law description across the 0.2 mHz − 0.1

Hz bandpass (with ∼ 1060 frequency bins) with an index of 0.97±0.18. Although the index

appears flatter, it is consistent with being the same as the PDS with the neutral dips (with

the previously discussed caveats).

In the second observation we obtain a PDS across the 2 mHz − 0.1 Hz bandpass (with

∼ 300 frequency bins) with a best-fitting single power-law index of 0.75±0.30. This implies

that the PDS shape is flatter but the error bars are less constrained and, although the

counting statistics is low, it is consistent with the shape without dips. It can be interpreted

as if the dips are still marginally affecting the persistent emission.
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5.2.3 Flux dependent variability

The integrated PDS is the variance of the light curve across the frequency and energy range

over which it is sampled. This variability is usually described in terms of the standard

deviation (RMS or σ in the text) as a fraction of the mean count rate (Fvar) which is a

very useful measure when making a comparison across multiple objects. The RMS has

been shown to scale with flux in a linear manner, ubiquitous for accretion onto compact

objects (Uttley & McHardy 2001; Gleissner et al. 2004; Uttley et al. 2005; Gandhi 2009;

Uttley et al. 2011; Scaringi et al. 2012). Such a relation cannot be generated by random

shot noise models and instead requires the power to be a result of radially propagating flux

(Lyubarskii, 1997). The most comprehensive analysis of the relations seen from BH XRBs

(Heil et al., 2012) observes flat-to-positive slopes with an offset from zero intercept probably

due to absorption effects. To first order, absorption should also flatten the slope of the

relation (although the situation may be complicated by physical changes in ionisation and

covering fraction). If the variability is dominated by absorption effects we would therefore

expect a negative slope in the RMS-flux relation. In order to test for an RMS-flux relation,

the PDS in each flux bin must be stationary thereby ensuring that the same process is

being sampled (see Vaughan et al. 2003; Heil et al. 2012). This can be achieved by taking

the ratio of the PDS between the bins of the RMS-flux relation and verifying that this is

consistent with unity (via a chi-squared test).

The RMS-flux relation in XRBs or AGNs has been observed on short to long timescales

(e.g. Uttley et al., 2005), meaning that it is produced by a propagating flux, explaining

its ubiquitous existence in the accreting sources. Therefore, we test the RMS-flux relation

choosing to sample low and high frequency ranges. The high frequency range is defined on

the timescale 1s-40s while the low frequency range on the timescale 40s-1000s. In this way,

we can test on what timescales the absorption component is dominating the variability.
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In addition, we remove the intervals in which type I burst are observed as they introduce

further variability at high fluxes.

For the first and the second observation of EXO 0748-676 we extracted EPIC-pn

lightcurves across the energy ranges 0.3-2.0 keV and 2-10 keV in order to investigate the

effect of absorption on the spectrum versus the hard emission which may be less affected

as the absorption is energy-dependent and, for low ionization, it should be predominant

in the soft band. In fact, several absorption features were found in the soft band of both

observations rather than in the hard band. For each segment of the lightcurve, we deter-

mine the RMS value in the timing domain. Since its value is expected to scatter around a

mean value following a gaussian distribution, we average the RMS on a number of segments

which will not usually be less than 20, unless the number of total segments is small; in

which case we average on at least 10 segments. We then fit these averages, using least

squares, with linear trends. In Figure 5.2 we show the distribution of the RMS and flux

of the first observation on the high (left) and low (right) frequency domain for the soft

0.3− 2.0 keV (top) and hard 2.0− 10 keV (bottom) bands. We note that where we expect

low contribution from the absorption the RMS and flux correlate or the slope is flat. This

happens in the hard energy band on both timescales. On the other hand, in the soft band

we have two different slopes below and above ∼ 20 − 30 count s−1. In fact in the high

frequency range, the RMS increases with flux (σ=0.32 ± 0.04 〈F 〉 + 0.9 ± 0.8, where 〈F 〉

is the flux) and it becomes flat above the mentioned count rate. The low flux correlation

slope is consistent with that of the hard band, σ=0.26 ± 0.04 〈F 〉 -1.0 ± 0.8. This may

suggest that although the source in this observation is continuosly dipping, the absorption

effects may be negligible on these timescales. However, at lower frequency, the RMS still

correlates with the flux up to ∼ 25 count s−1 (σ=0.43 ± 0.07 〈F 〉 + 0.8 ± 0.9) but then

the slope becomes negative (σ=-0.20 ± 0.03 〈F 〉 + 15 ± 1). The positive slope is still

consistent with that of the hard band suggesting that we are observing the same process,
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Figure 5.2: σ-flux relation sampling the EPIC-pn data on the timescales of 1s-40s (left)

and 40s-1000s (right) for the first observation of EXO 0748-676 in the 0.3-2.0 keV (top)

and 2.0-10 keV (bottom) energy range, respectively. The solid green and blue lines are the

best fit linear relations.
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Figure 5.3: σ-flux relation sampling the EPIC-pn data on the timescales of 1s-40s (left)

and 40s-1000s (right) for the second observation of EXO 0748-676 in the 0.3-2.0 keV (top)

and 2.0-10 keV (bottom) energy range, respectively. The solid green line is the best fit

linear relations.
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i.e. the accretion flow. Therefore, since the source is continuosly dipping, we can explain

the inversion of the slope in terms of a different behaviour of the ionised absorber. We

propose that at low fluxes, the absorber is saturated (as found by Dı́az Trigo et al. 2006)

and it does not introduce additional variability since its obscuration is no longer dependent

on the column density. Therefore we are only observing the intrinsic variability of the

accretion flow. However, at higher fluxes, it may be unsaturated, making its variability

effect on long time scales predominant on the intrinsic variability.

We tested this idea in the second observation in which we expect a more ionised or un-

saturated absorber during the dips and no absorption effects during the persistent intervals.

Then, we should obtain results consistent with the previous ones. In Figure 5.3, we present

the distribution of the RMS and flux of the second observation in the high (left) and low

(right) frequency domains for 0.3 − 2.0 keV (top) and 2.0 − 10 keV (bottom). As we can

see, in the soft band and on both timescales, there is evidence of a linear anti-correlation

below ∼ 210 count s−1 (σ=-0.26 ± 0.02 〈F 〉 + 59 ± 4 and σ=-0.31 ± 0.03 〈F 〉 + 73 ± 7)

and above this threshold the RMS is flat or with a slight indication of positive slope. The

slopes are consistent with the anticorrelation found in the other observation, suggesting

that the absorber shows similar properties. The result points toward the scenario of a clear

line of sight to the central regions of the source at the highest fluxes and an unsaturated

absorber during the lowest flux intervals. In addition, in the hard band, the RMS slope

is flat as we do not expect that the absorption is highly contributing on this energy range

although it may slightly change the slope of the relation.

In conclusion, we suggest that in the first observation the source is indeed continuosly

dipping and the absorber is saturated except at high fluxes in which we observe the effects

of an unsaturated medium on low frequency timescales. In the second observation, the

source may present an unsaturated absorber during the dips phases but at high fluxes the

source is no longer obscured or only marginally affected by absorption.
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5.2.4 Lag and Covariance spectra

Since we found a significant contribution from an ionised absorber to the averaged spectra

and a negative linear correlation between short-term RMS variability and flux, we try to

find further evidence of the variability produced by an absorbing medium which obscures

the central regions of the source. For this reason, we check for significant time lags between

the energy ranges 0.3 − 2.0 keV and 2.0 − 10 keV, since in the first band we found the

most important indications of absorption. The time delay (or lag) between two different

energy bands is defined as the phase of their average cross correlation function. Previous

studies have found out that the time lags in accreting BHs are dependent on frequency and

energy (e.g. Nowak et al. 1999; McHardy et al. 2007; Zoghbi & Fabian 2011). The time

lag properties of the source could be a useful tool to obtain a simple description of the

obscuration mechanisms. Since the obscuring medium is closer to us and its energy supply

is given by the central high energy emission, under the hypothesis that the obscuration

is always present even if self-shielded/stratified, the hard emission should lead the soft

energy absorption on long timescales. Hereafter, we evaluate the time lag following the

standard convention in which a positive delay indicates that the hard energy band lags

the soft energy band. It is important to stress that the cross correlation function must be

averaged on a number of segments when handling data affected by the Poissonian noise.

Indeed, the Poissonian noise adds a random component to the cross-spectrum (see Nowak

et al. 1999) that could be reduced averaging on several independent measurements of the

cross-spectrum. The error bars are estimated following Equation 16 in Nowak et al. (1999)

which takes into account the contribution of the random noise.

We sample the lightcurves in the energy range 0.3− 2.0 and 2.0− 10 keV with different

time bins of 1, 20 and 100 seconds and we investigate several frequency ranges. In none

of the cases we find any robust trend of the frequency distribution of the lags. Indeed, in
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both observations of EXO 0748-676, all of the points are consistent with zero delay within

3σ error bars. Actually, if the wind has a multi-phase nature, it will introduce multiple

lags on the analysed timescales and this could make it harder to interpret the time lags.

Even though the time lag analysis does not offer any additional contribution, we can

further investigate the variability from its energy distribution. Here we present a study of

the the covariance spectra (e.g. Wilkinson & Uttley 2009; Middleton et al. 2011). This

method cross-correlates narrow energy bands with a reference band which works as a filter

to select the correlation. It reduces the effect of the Poisson noise, and thus reduces the

error bars. Normalising the covariance for the expected variance of the reference band,

we obtain a covariance spectrum in detector counts. This spectrum can be folded with

a suitable binned response matrix. However, we note that the covariance spectrum is

dependent on the coherence between the reference band and each energy band. In the limit

of coherence equal to 1, the covariance spectrum is consistent with the RMS spectrum but

with smaller error bars (e.g. Revnivtsev et al., 1999).

Using EPIC-pn data, we extract the covariance spectra of the two observations of EXO

0748-676 on the timescale ∆T = 20s− Tobs, including dips. We choose as reference bands

the energy intervals 1.0−1.6 keV and 1.3−2.1 keV, respectively, as they provided the most

constrained RMS values. In order to avoid correlated Poisson noise, we remove from the

reference bands the energy bands of interest. Furthermore we compare the RMS spectra

with the covariance spectra in order to check if the reference bands are well-correlated (i.e.

high coherence) with each energy band. We find that in both observations the RMS and

covariance spectra are consistent within 3σ error bars.

Fig 5.4 shows the corresponding covariance spectra of the two observations in which we

unfolded the continuum with a power-law of photon index of 0. The highest variability is

found at energies of ∼ 2.0−4 keV and ∼ 1.3−3 keV for the first and the second observation,

respectively. In particular, the variability increases with the energy but above ∼ 3 or ∼ 5
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Figure 5.4: Covariance spectra of the two observations − first (top) and second (bottom) −
of EXO 0748-676, unfolded with a power-law with photon index of 0. In both observations,

the variability shows a clear peak at ∼ 2− 3 keV.
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keV it becomes weaker, and it drops up to a factor of ∼ 10 in the second observation. This

clearly supports the energy dependence of the variability as found in the previous section.

5.3 Predictions for wind induced variability in ULXs

The physical nature of the obscuring material in dipping LMXBs is distinctly different to

that in ULXs where the wind is predicted to originate at the sonic point of the photosphere

(Dotan & Shaviv, 2011). However, we can manipulate the spectral-timing characteristics

of EXO 0748-676 to accommodate a more highly ionised absorber that is probably more

extended and will demonstrate some measure of self-shielding/stratification.

In the case of ULX winds we would not expect a large imprint at lower energies where

the absorption opacity for moderately ionised material is low unless there is a spread of

ionisation parameters (in e.g. a stratified wind). As both continuum components in ULXs

are expected to be stable on observational timescales, we predict that, at energies where

absorption dominates, the RMS-flux relation should be negative. At other energies there

should be a flat to positive relation, although this will be of low statistical significance (as

the intrinsic variability is low).

Characteristic timescales present in the lag spectra may indicate the light travel time

to the absorber (as the properties of the absorbing material change upon illumination)

although these may again be heavily distorted by stratification/self-shielding.

Should the variability originate from obscuration, i.e. such a high column density that

there is no observed reprocessing, merely a drop in flux, then the spectrum of the variability

should resemble that of the continuum component the material is blocking. Should the

column be lower such that there is reprocessing, the spectrum of the variability should

instead resemble the absorption features.
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5.4 NGC 55 ULX1

5.4.1 X-ray Spectra

As already found by Stobbart et al. (2004), NGC 55 ULX1 shows high levels of variability

on short timescales. In the first two XMM-Newton observations the count rate of the source

undergoes decrements of a factor ∼ 3−4 on timescale of few minutes, leading the hypothesis

that such variations are produced by optically thick blobs of matter that partially and

occasionally obscures the central regions of the source. The “dips” of NGC 55 ULX1 do

not show a definite periodicity that could be associated to the orbital motion. However the

emission is not completely obscured as the source still remains in the Ultraluminous regime.

Therefore such effect could be owing to a very thick medium obscuring or absorbing only

part of the central emission. However, the third XMM-Newton observation seems extremely

intriguing because dips have disappeared and the source experiences a long period (∼ 120

ks) in a low flux regime (see Figure 5.5). Under the hypothesis of a stellar mass BH accreting

at super-Eddington rate, it is reasonable that the absorption is almost completely due to

a turbulent wind thrown out by the accretion disc. If this hypothesis is correct, we should

find imprints of the wind/obscuring medium in the spectral and temporal properties of the

source in a version similar but not equal of the absorber that we already found for EXO

0748-676.

As shown in Table 5.3, the averaged spectrum of the first/second observations can

be adequately fitted by an absorbed diskbb+nthcomp model (χ2/dof = 897.83/839 and

χ2/dof = 705.39/689). The high energy component is cold (kTcor = 0.84/0.98 keV) and

optically thick (the optical depth is not a parameter of the fit but can be evaluated by the

combination of the electron temperature kTe and the photon index Γ, see equation 2.5 in

Section 2.3) and the soft component is cold (∼ 0.23/0.20 keV), as observed in the ULXs

of our sample and other ULX sources (e.g. Miller et al. 2003; Stobbart et al. 2006; Feng
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5.4. NGC 55 ULX1

& Kaaret 2006, 2009; Gladstone et al. 2009; Vierdayanti et al. 2010; Pintore & Zampieri

2011, Middleton et al. 2011b). From the residuals, in the first observation only, an excess

in emission is observed at 1 keV with a probable association to Fe XXI. We note that

adding a gaussian component to the best fit model gives an improvement of ∆χ2=42.16

for 3 d.o.f., in which the energy of the line is 1.00 (±0.02) keV with an equivalent width

(EW) of 0.014 keV.

On the other hand, the third observation cannot be fitted using this model (Figure 5.6,

bottom) but a more careful analysis allows us to find indications of some features. In order

to model the features in absorption, we add an ionised absorber (XSTAR). The best fit

parameters are reported in Table 5.3. However, three emission features are still present

in the spectrum at ∼ 0.91 ± 0.01 (possibly associated to Ne IX), ∼ 2.01 ± 0.04 (possibly

associated to Si XIV) and ∼ 4.21 ± 0.06 keV (which nature is still unclear). We describe

them adopting a gaussian component which results in a marginal detection.

From a direct comparison between the results of the three observations, the spectral

properties of the source seem to change with time. First of all, the (absorbed) luminosity

has changed almost by a factor of 3, suggesting or a significant drop in the accretion rate

or an increment of the absorption between us and the central region of the source. In

particular, the longest observation is modeled by an optically thick corona with a lower

temperature than in the first and second observations. Notably, the temperature of the

disc component does not display a strong variation but the soft emission becomes more

important when the total luminosity decreases (∼ 70% of the total luminosity in the longest

observation). If the soft component is due to the wind emission, this could be an indication

of an increase of its size during time, with a subsequent increment of the absorption. In

addition, during the longest observation the low flux may be explained or in terms of an

important absorbing medium, or of an intrinsic drop of the accretion rate.

In the light of this results, we follow a similar analysis to that adopted for EXO 0748-
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Figure 5.6: (top-left, top-right): unfolded EPIC-pn(black) and EPIC-MOS (red and green)

spectra from the first observation (in the persistent and dip phase) and the third observation

(bottom) of NGC 55 ULX1; all of the spectra were analyzed in the 0.3-10 keV and were

rebinned for display purpose only.
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5.4. NGC 55 ULX1

676, studying the spectral properties during the “obscured” intervals. Since for ULX1 we

do not have enough statistics to select several intervals of count rate, we select only one dip

spectrum. The spectrum is obtained by the averaged temporal intervals in which the count

rate of the combined EPIC-pn+EPIC-MOS lightcurve is lower than 3 counts s−1 (we used

this criterion hereafter). As shown in Tabel 5.3, the diskbb+nthcomp model well describes

the data − χ2/dof= 638.87/636 and χ2/dof= 186.34/173 for the dip (Figure 5.6, top-right)

and χ2/dof= 638.16/677 and χ2/dof= 694.65/644 for the persistent (Figure 5.6, top-left)

intervals of the first and second observations, respectively − with a cold disc component

and an optically thick comptonizing medium. More interestingly the temperature of the

corona in the dip phase is lower than in the persistent one (0.69/0.92 keV against 0.90/1.01

keV in the first and second observation, respectively), indicating a thicker medium in the

former state. A strong emission line is again found at 1.04 (±0.03) keV in the persistent

spectrum of the first observation and it could be associated to Ne X or Fe XX, with an

improvement of ∆χ2=25.29 for 3 d.o.f. and an EW of 0.017 keV. In the dip spectrum of

the same observation there is just marginal evidence of this additional emission feature

(∆χ2=12.99 for 3 additional d.o.f., EW= 0.011 keV). Also in this case the temperature of

the soft component does not dramatically change, but in the dip spectrum it represents

a big fraction of the total emission (e.g. ∼ 60% in the first observation). It is important

to mention that the neutral column density is higher at low luminosity. Therefore, the

spectral results give us strong indications that an optically thick medium is intersecting

our line of sight and that its physical properties are changing during time.

RGS

In the previous section we found evidence of absorption features in the spectra of NGC 55

ULX1. Therefore we tentatively try to analyse the RGS spectra of the two observations

in order to take advantage of the high spectral resolution of this instrument. In the first
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5. VARIABILITY OF NGC 55 ULX1

and second observation, the source was outside the field of view and no information can

be obtained for its high flux state. On the other hand, in the third observation the source

was too faint to find evidence of any features in the RGS spectra adopting the line-finding

algorithm of Page et al. (2003).

5.4.2 Flux dependent variability

The previous finding seems to slightly suggest that ULX1 could be affected by periods of

obscurations, so we may compare its temporal properties with those obtained for EXO

0748-676, in particular the negative dependence of RMS and flux. Similarly to the analysis

of EXO 0748-676, we study the RMS-flux relations on two timescales.

For the third observation of NGC 55 ULX1, we create 12 averaged EPIC-pn and EPIC-

MOS spectra on intervals of 10 ks. The spectra associated to every interval are subsequently

fitted simultaneously using an absorbed diskbb+nthcomp model. For each spectra we es-

timate the absorbed flux in the 0.3-10 keV band and we find that it spans an interval

of values between 1.27·10−12 erg s−1 cm−2 and 1.65·10−12 erg s−1 cm−2. The intervals

are then grouped in terms of flux in three bins in order to have a total of 40 ks in every

bin and the RMS variability is calculated from the lightcurves associated to these periods.

In Figure 5.7, we present the RMS-flux relation in the 0.3 − 10 keV range of the three

bins, fitting the points with a linear model. We selected two different timescales: 20s-400s

and 400s-Tobs. In the first timescale, we can obtain hints of a positive linear correlation

(σ = 0.17±0.03 〈F 〉+0.3±0.3). Interestingly, the relation is also seen in the other frequency

range (σ = 0.6± 0.1 〈F 〉+ 0.5± 0.1). Although the statistics is limited and the number of

bins is small, this result may suggest we are observing or the effects of the accretion flow or

a strong saturated absorption component which does not introduce additional variability

to the intrinsic one.

We check for a similar relation in the soft and hard bands, i.e. the energy bands 0.3−2.0
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Figure 5.7: σ-flux relation sampling the third NGC 55 ULX1 observation using EPIC-pn

data on timescales 20s-400s (top), and 400s-Tobs (bottom) in the energy range 0.3−10 keV;

best fit correlation (green): σ = 0.17±0.03 〈F 〉+ 0.3±0.3 and σ = 0.6±0.1 〈F 〉+ 0.5±0.1

(see text).
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Figure 5.8: σ-flux relation sampling the third NGC 55 ULX1 observation using EPIC-pn

data on timescales 20s-400s (top) and 400s-Tobs (bottom) in the energy range 0.5−1.6 keV;

best fit correlation (green): σ = 0.159±0.009 〈F 〉+0.002±0.007 and σ = 0.41±0.04 〈F 〉+
0.24± 0.03 (see text).
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and 2.0 − 10 keV, but also in inter-bands of the 0.3 − 2.0 keV range. We find evidence

of a linear relation in the 0.3 − 2.0 keV; however the most constrained linear RMS-flux

relation is obtained in the range 0.5 − 1.6 keV in which we found the main absorption

features in the time averaged spectrum. In this energy range, on the two timescales, we

have the following positive linear relations: σ = 0.159 ± 0.009 〈F 〉 + 0.002 ± 0.007 and

σ = 0.41± 0.04 〈F 〉+ 0.24± 0.03 for 20s-400s and 400s-Tobs, respectively (Figure 5.8) and

this further confirms the aforementioned scenario. On the other hand, in the 2 − 10 or

1.6 − 10 keV energy bands, because of the limited statistics, we obtain only upper limits

and no well-defined slope can be claimed. We note that co-adding the EPIC-pn and EPIC-

MOS data may improve the signal-to-noise ratio but in this particular case the results are

still consistent with the previous ones.

For the remaining observations of NGC 55 ULX1 in which the variation of the count

rate is wider, a slightly different and easier approach is adopted: we evaluate the fractional

RMS variability of a number of continuos segments of fixed length of the lightcurves in

the energy band of interest. The RMS points are randomly scattered by the stochastic

nature of the lightcurves around a mean value (see e.g. Van der Klis, 1989), therefore in

order to remove this effect, the continuous segments are grouped in terms of mean count

rate. In the first observation, we study the energy range 0.3 − 10 and 1 − 10 keV in

which there is the highest counting statistics, and on timescales of 20s-400s and 100s-Tobs.

In Figure 5.9 the RMS-flux relation in the 0.3 − 10 keV band in the two timescales is

shown. In this energy range, we find indication of a linear anticorrelation on the timescale

20s-400s (σ = 0.27 ± 0.05 〈F 〉 + 1.1 ± 0.1) and only marginally on the other timescale

(σ = −0.18 ± 0.09 〈F 〉 + 0.8 ± 0.2). We propose that such an anticorrelation is the effect

of an obscuring and unsaturated absorber which dominates the variability, as observed

in EXO 0748-676. This absorber shows its effects only on short timescales as for long

timescales its variability is diluted by the variability of the accretion flow.
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Figure 5.9: σ-flux relation sampling the first NGC 55 ULX1 observation using EPIC-pn

data on timescales 20s-400s (top) and 100s-Tobs (bottom) in the energy range 0.3− 10 keV;

best fit correlation (green): σ = 0.27±0.05 〈F 〉+1.1±0.1 and σ = −0.18±0.09 〈F 〉+0.8±0.2

(see text).
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Figure 5.10: σ-flux relation sampling the first NGC 55 ULX1 observation using EPIC-pn

data on timescales 20s-400s (top), and 100s-Tobs (bottom) in the energy range 1.0−10 keV;

best fit correlation (green) of the short and long timescales are σ = −0.18 ± 0.05 〈F 〉 +

0.58± 0.08 and σ = −0.104± 0.004 〈F 〉+ 0.381± 0.006, respectively (see text).
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Since from Stobbart et al. (2004) we know that the dips are energy dependent, we

expect to find more pieces of evidence of the anticorrelation in the high energy band as the

absorber may be less ionised and saturated than in the soft energy band. In Figure 5.10

the RMS-flux relation in the 1.0 − 10 keV band in the two timescales is shown. We note

that for short timescales (20s-400s) and long timescales (100s-Tobs) the anticorrelation is

observed (σ = −0.18± 0.05 〈F 〉+ 0.58± 0.08 and σ = −0.104± 0.004 〈F 〉+ 0.381± 0.006).

On the other hand, in the second observation we find only marginal evidence of anti-

correlation in the 1−10 keV energy band. Possibly the statistics is affected by the position

of the source in the EPIC-pn CCD gap. It is important to notice that we checked the

stationarity in each bin of the RMS-flux relations mentioned above, and the stationarity

was achieved for all the analysed bins. The PDS shapes, on the same timescales of the RMS

points, do not change within 3σ error bars in any of the observations, further supporting

the reliability of these results.

Therefore, our findings seem to suggest that in the first two observations the variability

is mainly driven by the absorption of a unsaturated medium while in the third observation

the source could have experienced either a real drop of the accretion rate or an increment

of the obscuration. In the second case, the obscuring medium may highly cover the source

and it may be saturated: in such a condition no further variability is introduced by the

absorber as it is no longer depending on the column density.

5.4.3 Lag and Covariance spectra

We study the time lags of NGC 55 ULX1 in order to make a connection with the previ-

ous RMS-flux relations and understand if they can be associated to the aforementioned

obscuring medium.

Here, we compare the time lag properties of all of the observations between the 0.3−2.0

and 2− 10 keV energy bands, computing the time delays on EPIC-pn data.
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Obs.ID: 0028740201

  

Obs.ID: 0028740201

  

Obs.ID: 0655050101

Figure 5.11: Time lag frequency distribution of NGC 55 ULX1 in the first observation with

dips (top) and without dips (center), and the third observation (bottom). The delay was

evaluated between the 0.3-2.0 and 2.0-10 keV energy bands, sampling the light curves with

∆T = 100s and averaging on segments of 3200 s, with the error bars evaluated at 1σ.
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Since this analysis is sensitive to counting statistics, in order to have small error bars,

we make use of the first and the third observation. We sample the lightcurves of both

observations with ∆T=100s and averaging 9 and 18 intervals of 3.2 ks, respectively. In this

way we can be confident that we are investigating the overlap of the timescales in which

the RMS-Flux relation was found. As shown in Figure 5.11 (top), in the first observation,

we find a positive lag at ∼ 0.0003 Hz with a value of 136±64 seconds even if it is consistent

with zero within 3σ error bars. Also the third observation shows a strong positive lag at a

slightly higher frequency (∼ 0.0006÷0.0007 Hz) and larger value (606±170 seconds). The

positive lag can be due to the intrinsic delay between the soft energy emission and the hard

emission of the accretion flow. On the other hand, a significant negative point at 0.002 Hz

with a value of 92± 16 seconds is found in the time lag frequency distribution of the third

observation. This could be associated to an optically thick medium that intersects our line

of sight, obscuring and reprocessing the high energy emission of the source. We suggest

that such an absorbing medium may be the coolest region/remnant of the wind ejection.

This scenario can be enforced by the emission line at ∼1 keV observed in the spectra of

both observations which may be emitted by the wind remnant. The remnant should be

fed during the high accretion rate phases in which the intensity of the wind is stronger, i.e.

during the first observation, but indications of it (or in other words, a negative delay) are

not observed and the time lag seems to be consistent with zero at all frequencies of our

interval. Actually, the dip phases can confuse the picture, introducing a random variability

that can mask the absorption effects. Although this reduces the counting statistics, in

Figure 5.11(center) we show the time lag frequency distribution of the first observation

removing the dip intervals. As expected, the shape of the time lag does not show the same

trend of that of the third observation (Figure 5.11-bottom) but we can find statistically

significant evidence of a negative point consistent in value and frequency position with

that observed in the third observation. This clearly indicates that the dips have affected
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the variability.

We further prove our assumptions with the analysis of the covariance spectra (excluding

the second observation as no clear timing indications were obtained in the previous sec-

tions). The covariance spectra of the observations of NGC 55 ULX1 are obtained adopting

the 0.7 − 1.3 keV interval as reference band for the first observation and 0.5 − 0.7 keV

for the third. We choose these energy ranges because in these intervals the RMS value

is well constrained. The spectra are extracted on the timescale ∆T = 700s − Tobs and

subsequently unfolded with a power-law with photon index of 0. In Figure 5.12, we show

the energy distribution of the variability: in the first observation (top) the peak of the

variability is between 1 − 10 keV, further suggesting, as for EXO 0748-676, that the high

energy component is more variable than the soft component. In fact, there is a clear trend

of an increase of the variability with the energy, in which the variability increases by a

factor of 10 from 0.3 keV to ∼ 2 keV.

On the other hand, this trend is not observed, on the same timescales, in the third

observation (Figure 5.12-bottom) in which the variability is consistent with a constant

within 3σ error bars. However we observe that the reference band has a high coherence with

each energy band only in the first observation (RMS and covariance points are consistent)

while in the third observation the coherence is low also adopting different reference bands.

Finally, since in the longest observation the RMS-flux correlation is positive, the spectral

parameters indicate a strong soft component and several features are present. These results

allow us to advance the hypothesis of a transition of the accretion regime between the first

two observations and the third one. In the next section we will discuss the implications

regarding the physical processes that can explain such a result for ULX1.
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Figure 5.12: Covariance spectra of two observations of NGC ULX1, unfolded with a single

power-law of photon index of 0. In the first observation (top), the variability peaks at

1− 10 keV while in the third (bottom) it is consistent with a constant within 3σ error bar

over the whole energy range.

154



5.5. Discussion

5.5 Discussion

NGC 55 ULX1 reveals intriguing spectral and temporal properties which are not commonly

found in other ULXs. The source was observed mainly in two different flux levels with a

drop of about a factor of 2. In the first two observations, the EPIC instruments detected

a mean count rate of ∼ 3 counts s−1 but with high variations up to a factor of three. As

noticed by Stobbart et al. (2004), deep decrements (dips) of the total count rate occur on

short timescales of minutes/hours and do not show periodical variability. They are more

likely associated to obscuring matter that intercepts our line of sight rather than quick

changes in the accretion rate. On the other hand in the low flux state, which is persistent

for at least 100 ks, the source reaches approximately ∼ 1.5 counts s−1 and the dips are no

longer clearly visible. The spectral properties indicate that a comptonization model plus

a multicolor black body disc can describe the source spectra. The latter component has

a temperature of ∼ 0.23 keV which changes with flux and, in particular, it reaches the

lowest value during the lowest flux levels. However the prominence of the soft component

anti-correlates with the temperature: indeed the lower is the flux (and the lower is the

temperature), the higher is the fraction of the total emission carried by the soft component,

ranging from ∼ 50% (during the dip phases) up to ∼ 70% (during the low flux state).

Instead the high energy component becomes optically thicker and cooler when the source is

in the low flux state. These spectral properties seem inconsistent with the scenario in which

the emission is due to an accretion disc coupled with a inner region compact corona. In

particular, in the longest observation, we found indications of an ionised medium interposed

between us and the inner region of the source which can partially obscure its central

emission. Signatures of this medium could also be present in the first two observations

but the high flux can hide them and only a marginal detection can be found. Some ULXs

have shown an anti-correlation between disc temperature and total luminosity and it was
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associated to emission of a wind. Also in this case we have pieces of evidence that this trend

is significant, even if this assumption is affected by some caveats regarding the adopted

model. Ejection of winds during jet-free accretion phases was observed in several Galactic

BH XRBs (Lee et al. 2002; Miller et al. 2004, 2006) indicating that it is a common feature in

their accretion processes. In particular the source GRS 1915+105, known to have accreted

above the Eddington limit, has shown the ejection of a massive wind (e.g. Neilsen & Lee

2009) during the softer X-ray phases. Furthermore, it was found that also NGC 5408 X-1

has shown indications of outflows (Middleton et al. 2011) and for this reason it is more likely

that the production of wind is a common mechanism also in the systems accreting above

the Eddington limit. As already found in NGC 5408 X-1, in the first two observations the

variability of NGC 55 ULX1 increases with the energy and it seems to be higher at 1− 10

keV where the ionised absorber may be important. Middleton et al. (2011) interpreted

this behaviour in terms of an extrinsic variability of the high energy component due to

turbulences in the wind which intersects our line of sight. The variability introduced by

an ionised absorber on the temporal properties was investigated using the source EXO

0748-676 and we found that the RMS and flux anti-correlate in the energy range in which

an absorber is not negligible. The clear roll-over observed in the RMS-flux relation of

the first observation suggests a transition between two different phases of the absorber.

In fact, at low fluxes, the absorber may be completely saturated and an increment of its

column density does not affect the equivalent width of the absorption lines, making its

effect negligible and allowing us to find the imprint of the intrinsic propagating variability

of the accretion flow. On the other hand, at higher fluxes, the situation is reversed and

the absorber may be unsaturated and it may strongly affect the variability. In the first

observation of NGC 55 ULX1, the RMS-flux relation is negative in the 1 − 10 keV band

and it could be interpreted as if a shield of unsaturated optically thick matter, obscuring

the high energy regions, carries the most important imprint on the variability.
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5.5. Discussion

At low flux in the third observation when the dip episodes have disappeared, the vari-

ability is almost suppressed. In addition, we found that in the 0.3 − 10 keV energy band

there is a linear correlation between RMS and flux, covering a wide range of timescales.

The correlation is observed on the same timescales even in the soft energy band, especially

at 0.5− 1.6 keV. The interpretation of such a RMS-flux correlation may be twofold: 1) in

the third observation the source may have experienced a real drop in the accretion rate

and the higher column density of the neutral absorber is mainly due to the cold remnant

of the wind, which is now less fed by the disc, yelding an almost negligible variability; 2)

the source is highly covered by an ionised and saturated absorber and only the intrinsic

variability of the accretion flow is seen.

Therefore, on the basis of these results, we suggest that in NGC 55 ULX1 the soft

emission is produced by a massive, optically thick and turbulent wind emitted by the

accretion disc. The wind drains part of the material from the accretion disc (first and

second observation) and the absorption is unsaturated. Consequently, the wind may also

or reduce the accretion rate (third observation) or highly obscure the inner regions and

become saturated. However, we note that the wind may also produce a drop in the energy

reservoir of the comptonizing component (that appears colder). We are possibly seeing the

source from a high inclination angle, close to the edge of the wind, and encountering both

an unsaturated, optically thick and quickly variable medium (in the first observation) and

a more saturated absorbing medium during the longest observation.

Our interpretation may also describe the properties of NGC 5408 X-1 which has shown a

positive RMS-flux relation, although it was proved that a turbulent absorber is encountering

our line of sight. In fact, in this source, the absorber may be fully saturated and not

introduce further variability in the soft energy band.

A common point for at least two observations of NGC 55 ULX1 is the presence of several

features in the spectra as a strong Fe XXI and Ne X or Fe XXII emission lines. In the
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first observation the feature at ∼ 1 keV is only marginally observed and it is statistically

significant only during the persistent regime. In the third observation, the continuum

emission is deeply reduced allowing us to observe the absorption features and the emission

features of Ne IX and Si XIV. The emission features may be due to reprocessed emission

from the colder regions of the wind which is expanding into the local environment.

The time lag analysis of NGC 55 ULX1 provides useful information regarding the

soft component and its obscuring/absorbing behaviour. In both the first and the third

observation, we found that, at the frequency of ∼ 0.002 Hz, the hard band leads the soft

band and the delay is surprisingly not changed between the two observations (if the dips

are removed since they confuse the picture because of their random variability). Indeed, in

the hypothesis of an obscuring material surrounding the source, the negative lag represents

the temporal distance between the source and the absorber. In case of accretion onto a 10

M� BH, we estimated this distance to be ∼ (1.9± 0.4) · 106 Rg.
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Chapter 6
Swift observations of the transient ULX

XMMU J004243.6+412519 in M31

6.1 Introduction

Despite the substantial body of work that has been done in the last decade, transient ULXs

still represent a poorly know population. Only few ULXs with transient behaviour have

been detected so far and only a handful of them have been studied in detail. Examples

of well-studied genuine ULX transients are CXOM31 J004253.1+411422 in M31 (hereafter

M31 ULX-1), CXOU 133705.1–295207 in M83 and CXOU J132518.2–430304 in NGC 5128

(Kaur et al. 2012; Soria et al. 2012; Sivakoff et al. 2008). In 2012 January a new X-

ray source with a luminosity of ∼1038 erg s−1 was discovered by XMM-Newton in M31

(XMMU J004243.6+412519; Henze et al. 2012b). Seven days after its discovery, it reached

a luminosity of ∼ 2 × 1039 erg s−1, which made it the second most luminous ULX in

M31 (Henze et al., 2012c). During the outburst the source was repeatedly observed by

Swift and other instruments. Here we present the analysis of the several Swift XRT and

UVOT observations performed between 2012 March and August with the aim to explore

the nature of this source. We also present the results of deep optical observations taken
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6. TRANSIENT ULX IN M31

on 2012 July 18 with the 1.8-m Copernico Telescope at Cima Ekar (Asiago, Italy) and the

analysis of serendipitous observations of the source region collected in recent years by Swift

and CHANDRA.

In Section 6.2 we describe the Swift observations used in our study and we present

the results of the spectral and timing analysis of the X-ray data in Section 6.3. In Sec-

tion 6.4 we report on the Swift/UVOT and Copernico optical and ultraviolet observations

of the source. In Section 6.5 we present the upper limits on the pre-outburst X-ray flux of

XMMU J004243.6+412519 obtained from our inspection of CHANDRA and Swift archival

observations. Discussion follows in Section 6.6.

6.2 Swift observations and data reduction

The Swift payload includes a wide-field instrument, the coded-mask gamma-ray Burst

Alert Telescope (BAT, Barthelmy et al. 2005), and two narrow-field instruments, the X-

Ray Telescope (XRT, Burrows et al. 2005) and the Ultra-Violet/Optical Telescope (UVOT,

Roming et al. 2005). In this work we made use of only the narrow-field instruments data.

The XRT uses a front-illuminated CCD detector sensitive to photons between 0.2 and

10 keV. Two main readout modes are available: photon counting (PC) and windowed

timing (WT). PC mode provides two dimensional imaging information and a 2.507-s time

resolution; in WT mode only one-dimensional imaging is preserved, achieving a time res-

olution of 1.766 ms. The UVOT is a 30-cm modified Ritchey-Chrétien reflector using a

microchannel-intensified CCD detector which operates in photon counting mode. A filter

wheel accommodates a set of optical and ultraviolet (UV) filters and the wavelength range

is 1700–6000 Å. The data were processed and filtered with standard procedures and quality

cuts1 using ftools tasks in the heasoft software package (v. 6.12) and the calibration

files in the 2012-02-06 caldb release.

1See http://Swift.gsfc.nasa.gov/docs/Swift/analysis/ for more details.

160



6.3. X-ray data analysis

Following the discovery of XMMU J004243.6+412519 (2012 January; Henze et al. 2012b),

the source was observed by Swift ten times in about three weeks, until it came out of vis-

ibility in 2012 March. At the end of 2012 May, XMMU J004243.6+412519 became visible

again for Swift and the monitoring was resumed with many further pointings, mostly off-

axis (see also Henze et al. 2012). Around mid 2012 August, the source flux became too

low for the typical sensitivity of a ∼2-ks XRT snapshot. For this reason, after the visibility

gap we consider only the sixteen observations taken up to 2012 September 01. A summary

of the observations used in this work is given in Table 6.1.

6.3 X-ray data analysis

We extracted the PC source events from a circle with a radius of 20 pixels (1 XRT pixel

corresponds to about 2,36 arcseconds) and the WT data from a 40 × 40 pixels box along

the image strip. To estimate the background, we extracted PC and WT events from

regions far from the position of XMMU J004243.6+412519. The ancillary response files

(arf) were generated with xrtmkarf, and they account for different extraction regions,

vignetting and point spread function corrections. We used the latest available spectral

redistribution matrix (rmf) in caldb. The spectral channels were grouped so as to have

bins with a minimum number of 20 photons. The spectral analysis was performed with the

XSPEC 12.7 fitting package (Arnaud, 1996); the abundances used are those of anders89

and photoelectric absorption cross-sections are from Balucinska-Church & McCammon

(1992).

Initially we focus our analysis on the 2012 February–March data (see Table 6.1). For

a preliminary look at the data, we fit all spectra simultaneously (in the 0.5–10 keV energy

range) with the hydrogen column density tied between all observations using a simple

power law (e.g. Henze et al. 2012c). While this simultaneous modelling yields a rather
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6. TRANSIENT ULX IN M31

Table 6.1: Swift observations used for this work.

Observation XRT UVOT Start / end time (UT) Exposure

mode filtera (YYYY-MM-DD hh-mm-ss) (ks)

00032286002 PC u 2012-02-19 00:47:34 2012-02-19 23:23:57 3.9

00032286003 PC u 2012-02-23 18:49:39 2012-02-23 22:13:56 3.3

00032286004 WT – 2012-02-24 13:54:21 2012-02-24 15:35:02 0.5

00032286005 WT uvw2 2012-02-28 04:50:00 2012-02-28 08:17:00 3.0

00032286009 WT uvw2 2012-03-02 03:02:59 2012-03-02 03:45:40 2.5

00032286006 PC u 2012-03-02 04:54:08 2012-03-02 14:58:57 6.3

00032286007 PC uvw2 2012-03-03 00:09:07 2012-03-03 16:37:58 7.1

00032286008 WT uvw2 2012-03-03 01:41:44 2012-03-03 06:57:00 2.7

00032286010 PC uvm2 2012-03-04 04:52:27 2012-03-04 21:21:57 4.3

00032286011 WT uvw2 2012-03-07 10:00:31 2012-03-07 12:01:00 3.1

00035336052 PC uvw1 2012-05-24 14:55:42 2012-05-24 21:36:56 4.3

00032286012 WT uvw1 2012-05-28 11:55:26 2012-05-28 15:37:59 4.1

00035336053 PC – 2012-06-01 18:28:39 2012-06-01 23:43:57 4.0

00035336054 PC uvw1 2012-06-09 06:20:09 2012-06-09 11:22:57 2.0

00035336055 PC – 2012-06-17 03:17:31 2012-06-17 08:14:56 2.1

00035336056 PC uvw1 2012-06-25 00:42:19 2012-06-25 18:40:57 1.9

00035336058 PC uvw1 2012-07-09 16:01:04 2012-07-09 19:30:55 1.1

00035336059 PC – 2012-07-11 06:36:01 2012-07-11 06:37:49 0.1

00035336060 PC uvw1 2012-07-15 11:37:32 2012-07-15 11:55:55 1.1

00035336061 PC uvw1 2012-07-19 02:11:18 2012-07-19 15:23:56 2.1

00035336062 PC uvw1 2012-07-27 18:33:47 2012-07-27 20:25:54 2.3

00035336063 PC – 2012-08-05 03:03:49 2012-08-05 11:19:53 2.0

00035336064 PC – 2012-08-12 11:32:21 2012-08-12 21:20:56 0.9

00035336065 PC uvw1 2012-08-20 21:29:05 2012-08-20 23:24:55 2.1

00035336066 PC uvw1 2012-08-28 13:49:33 2012-08-28 14:05:53 1.0

00035336067 PC uvw1 2012-09-01 13:58:43 2012-09-01 14:24:55 1.6

a u: central wavelength 3465 Å, FWHM 785 Å; uvw1: central

wavelength 2600 Å, FWHM 693 Å; uvm2: central wave-

length 2246 Å, FWHM 498 Å; uvw2: central wavelength

1928 Å, FWHM 657 Å.
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6.3. X-ray data analysis

high reduced χ2 of 1.37 for 553 degrees of freedom (dof), the test shows that, as can be

seen in Fig. 6.1, the spectra of XMMU J004243.6+412519 are all very similar in this set of

XRT observations (see also Henze et al. 2012a).

Thus, in order to achieve better statistics and higher signal-to-noise ratio, we merged

the data from all the observations and accumulated combined PC and WT spectra. In the

following, we concentrate on the PC total spectrum (24.9 ks, about 7900 counts, 99.4% of

which are attributable to XMMU J004243.6+412519), because of the intrinsically higher

signal-to-noise ratio of the PC data with respect to the WT ones. The combined spectrum

was fit adopting several phenomenological models frequently used in literature for ULXs

(e.g. Roberts 2007; Feng & Soria 2011): a diskbb, a power-law, a diskbb+power-

law, and a diskbb+comptt, all corrected for interstellar absorption. All these models

but the power law provide statistically good fits. However, the improvement given by the

combination of two models is not significant in comparison with a single diskbb model

(χ2
ν = 1.07 for 231 d.o.f. against, for instance, χ2

ν = 1.03 for 229 for the diskbb+power-

law). We also tried to fit more sophisticated Comptonization models (comptt and simpl

in XSPEC) to the data, but the count statistics of the spectrum is not sufficient to provide

good-enough constraints on the model parameters. Hence, it seems appropriate to describe

the pre-gap PC spectrum of XMMU J004243.6+412519 in terms of a simple diskbb model.

The best fitting parameters show that the disc is relatively hot (0.86± 0.02 keV) and the

luminosity is quite high (∼1.1×1039 erg s−1 for a distance of 780 kpc; Holland 1998; Stanek

& Garnavich 1998). The results are summarised in Table 6.2.

Similarly, for the second batch of data (collected starting from 2012 May; see Table 6.1)

we extracted a cumulative PC spectrum (23.7 ks, about 1600 counts, 99.2% of which are

attributable to XMMU J004243.6+412519). We tested the same single-component2 spectral

2Owing to the lower count statistics, this time we did not consider more complicated (two-component)

models.
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Figure 6.1: Simultaneous modelling of all the 2012 February–March PC and WT spectra

using an absorbed power-law model. Bottom panel: the residuals of the fit (in units of

standard deviations). Each color of this plot represents a specific observation.
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models reported in Table 6.2, obtaining the parameters shown in Table 6.3. In general,

they appear to have values of the column density consistent with those of the pre-gap state

and significantly lower fluxes/luminosities. In particular the post-gap average spectrum is

well described by a diskbb component with an (average) temperature (∼0.6 keV) smaller

than that of the pre-gap combined spectrum. In Fig. 6.2 we show the phabs*diskbb model

fit to the pre- and post-visibility gap combined PC spectra. The softening suggested by

the spectral parameters and Fig. 6.2 is apparent from the contour plots shown in Fig. 6.3.

In order to study the source flux evolution over time, we fit all the PC spectra from

the individual observations or from small groups of observations. When the source flux

dropped below 2×10−12 erg cm−2 s−1, around mid 2012 July, in order to accumulate suffi-

cient statistics for meaningful spectral fits, we combined data from a few contiguous obser-

vations; namely, we obtained a spectrum from observations 00035336058–61 and another

one from observations 00035336062–64. We fit all the spectra simultaneously adopting

the phabs*diskbb model with the hydrogen column density (which is consistent with a

single value in both the pre- and post-gap cumulative spectra) tied between observations

(χ2
ν = 1.10 for 676 dof). We plot the resulting long-term light curve and the inferred

temperatures kT in Fig. 6.4. We show both the absorbed and unabsorbed fluxes. As can

be seen from Fig. 6.4 the effect of the interstellar absorption is larger on the softer spectra

from the post-gap observations. Progressive spectral softening and flux decay are evident

during the post-gap observations. The flux decreased by a factor of ≈5 over ∼70 days (by a

factor of ≈10 over ∼150 days with respect to the pre-gap flux), while the disc temperature

changed from kT ∼ 0.7 keV to ∼0.4 keV.

Although, owing to the long visibility gap, the available data do not allow us to perform

an accurate modelling of the decay shape, we tried a number of simple models to fit the

light curve of XMMU J004243.6+412519. We fixed t = 0 at the time the source was

observed for the first time to exceed the ULX threshold (MJD 55947.51; Henze et al.
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Figure 6.2: Comparison of the pre- (black circles) and post-visibility gap (blue triangles)

cumulative PC spectra for the phabs*diskbb model (see Section 6.3 for details). Bottom

panel: the residuals of the fit (in units of standard deviations).
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Figure 6.3: Contour plots of temperature versus column density (adopting the

phabs*diskbb model) for the pre-gap (black/red/green upper contours) and post-gap

(blue/cyan/violet lower contours) PC data. The crosses indicate the best fits. Lines mark

1, 2 and 3σ confidence levels.
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2012c). An exponential function of the form F (t) = A exp(−t/τ) gives a rather poor fit

(χ2
ν = 11.58 for 10 dof). The best-fitting parameters for the observed (absorbed) flux are

A = (2.00± 0.05)× 10−11 erg cm−2 s−1 and e-folding time τ = (63.9± 1.3) d.

Among the other models tested, a broken-power-law model provides the better fits for

the evolution of both the absorbed (χ2
ν = 4.33 for 8 dof) and unabsorbed fluxes (χ2

ν = 3.65

for 8 dof). Assuming as t = 0 MJD 55947.51, for the observed flux, the break occurs at

(111.4± 6.4) d, when the index changes from α1 = −0.41± 0.18 to α1 = −4.03± 0.19; the

flux at the break time is (6.9 ± 1.5) × 10−12 erg cm−2 s−1. For the unabsorbed flux, the

best-fitting parameters are: α◦,1 = −0.26 ± 0.15, α◦,2 = −3.06 ± 0.19 and (104.5 ± 6.4) d

for the break epoch (with an unabsorbed flux of (1.1 ± 0.2) × 10−11 erg cm−2 s−1). The

steeper decay of the absorbed flux is due to the fact that the absorption affects the softer

(later) spectra more. We stress that the fit parameters depend on the assumed time origin.

The uncertainties introduced by making different (reasonable) assumptions can be larger

than the statistical errors reported here. For instance, assuming t = 0 at MJD 55942 (the

day after the discovery of the source at a luminosity of ≈ 2 × 1038 erg s−1; Henze et al.

2012b), we find for the observed flux: α′1 = −0.19± 0.12, α′2 = −4.18± 0.19, (110.3± 3.6)

d for the break epoch and flux at the break time of (8.8± 1.0)× 10−12 erg cm−2 s−1.

In the last observations (segments 00035336065, 00035336066 and 00035336067), XMMU

J004243.6+412 was not detected. The 3σ upper limits on the XRT count rate derived from

the deeper observations (6065 and 6067) are of ∼0.1 counts s−1 (0.3–10 keV, following Kraft

et al. 1991). Assuming the spectrum of the closest observations (6062–6064, kT ' 0.4 keV),

this corresponds to upper limits on the observed flux of ∼4 × 10−13 erg cm−2 s−1 and of

∼6× 1037 erg s−1 on the luminosity (for 780 kpc).

For the timing analysis we concentrate on the data in WT mode (total exposure: 16.0 ks;

see Table 6.1), since their time resolution of ∼1.7 ms (corresponding to a Nyquist frequency

of ∼280 Hz) makes it possible to search for fast time variability. For each observation we
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Figure 6.4: The top panel shows time evolutions of the absorbed (black circles) and unab-

sorbed (red triangles) fluxes in the 0.5–10 keV energy range for the phabs*diskbb model

(see Section 6.3 for details); the down-arrows indicate upper limits at the 3σ confidence

level. The broken-power-law models describing the decays are also plotted (black solid

line for the observed flux and red dashed line for the unabsorbed flux). Bottom panel:

evolution of the characteristic temperature of the diskbb model inferred from the spectral

fitting. We assumed as t = 0 the date the source was observed for the first time to exceed

the ULX threshold (Henze et al., 2012c).
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computed a power density spectrum (PDS) in the energy band 0.3–10 keV by using intervals

up to ∼925-s long and averaging the individual spectra for each observation. The PDS did

not reveal any significant variability from XMMU J004243.6+412519: neither broad-band

components nor narrow features were detected; no significant evolution of the PDS in time

could be detected as well.

To improve the statistics, we produced a single PDS averaging all the WT data. The

PDS was normalised according to Leahy et al. (1983), so that powers due to Poissonian

counting noise have an average value of 2. Since PDS created from data taken in WT

mode show a drop-off at high frequencies3 and since also the averaged PDS from all the

WT observations did not show any significant feature, we rebinned our data at a Nyquist

frequency of ∼17 Hz (rebin factor of 16) using data stretches 925-s long to obtain a new

average PDS. The PDS is well fit by a constant component equal to 2.286 ± 0.006 (reason-

ably describing the Poissonian noise) with a best-fitting χ2 = 169.56 for 152 dof. Hence

we conclude that no significant variability is detected from the source. It is not possible,

however, to exclude that the emission from the source has a certain level of variability

hidden by photon counting statistics or on time-scales not accessible to our data (≤10−4

Hz).

Apart from the flux decay on the scale of weeks, the emission from XMMU J004243.6+412

does not show signs of strong aperiodic variability either. There is only some evidence of

moderate variability on the 1-ks-scale, with a rms variance of (20± 5) percent in the WT

data. This is probably related to some level of variability of the local astrophysical back-

ground and could account for the fact that the Poissonian noise level observed in the PDS

is slightly higher than the expected value (2 with the Leahy normalisation). For the pre-

gap PC light curves (a similar analysis of the post-gap data is hampered by the low count

3This effect is mostly visible above ∼ 50 Hz and is related to the read-out method of the XRT detector,

see http://www.Swift.ac.uk/analysis/xrt.
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rates) the 3σ upper limits on the rms variability range from approximately 12 percent to

20 percent.

6.4 Optical and ultraviolet observations

The Swift/UVOT observed XMMU J004243.6+412519 simultaneously with the XRT. The

data were taken with the u, uvw1, uvm2 and uvw2 filters (see Table 6.1). The analysis was

performed on the individual and stacked (for each filter) images with the uvotsource task,

which calculates the magnitude through aperture photometry within a circular region (we

used a 3-arcsec radius) and applies specific corrections due to the detector characteristics.

No source was detected at the position of XMMU J004243.6+412519 in any of the

UVOT observations and filters, before or after the visibility gap. The 3σ limits before the

visibility gap are in the stacked images u > 23.2 mag (total exposure: 13.4 ks), uvm2 > 23.7

mag (total exposure: 5.6 ks) and uvw2 > 24.5 (total exposure: 18.2 ks). After the gap,

XMMU J004243.6+412519 was observed only with the uvw1 filter; the 3σ limit from the

stacked image is uvw1 > 24.4 (total exposure: 23.2 ks) All magnitudes are in the AB system

(Oke & Gunn, 1983); see Poole et al. (2008) for more details on the UVOT photometric

system and Breeveld et al. (2011) for the most updated zero-points and count rate to flux

conversion factors.

The above magnitudes have not been corrected for extinction. At the position of

XMMU J004243.6+412519, the total line-of-sight optical extinction estimated from back-

ground infrared emission is AV = 0.05 mag (Schlegel et al., 1998), while the X-ray fits,

adopting the relation NH = 1.79×1021AV cm−2 by Predehl & Schmitt (1995), yield higher

values in the range AV ≈ 1.7–5.0. Indicatively, AV = 1 mag corresponds to Au ' 1.8 mag,

Auvw1 ' 2.2 mag , Auvm2 ' 3.2 mag, and Auvw2 ' 2.8 mag (Fitzpatrick & Massa, 2007).

The field of XMMU J004243.6+412519 was also observed with the 1.8-m Copernico
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30"

Figure 6.5: V -band image of the field of XMMU J004243.6+412519 taken on 2012 July 18

at the 1.8-m Copernico Telescope at Cima Ekar in Asiago. North is up, East to the left. The

red circle (7′′, 2, 3σ) is centred on the CHANDRA position of XMMU J004243.6+412519

(Barnard et al., 2012).
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Telescope at Cima Ekar in Asiago (Italy) on 2012 July 18. Three images of 20 minutes

were taken in both the V and B band filters. The data were reduced following standard

prescriptions. After removal of the detector signature (bias and flat field corrections), the

images were astrometrically calibrated performing a polynomial interpolation starting from

the positions of the NOMAD star catalogue (Zacharias et al., 2005). The accuracy is 0′′, 2.

The three calibrated frames in each filter were then averaged and the resulting V band

image is shown in Fig. 6.5.

Instrumental magnitudes were measured on the images through the point-spread func-

tion (PSF) fitting technique. The photometric calibration was performed using reference

stars from the catalogue of M31 compiled by Magnier et al. (1992), homogeneously dis-

tributed around the source position. The internal accuracy of this calibration is 0.1 mag in

both bands. No source at the position of XMMU J004243.6+412519 was detected in any of

the two filters down to a limiting magnitude of 21.7 and 22.2 in the V and B band filters,

respectively (see Fig. 6.5). In fact, the background emission from M31 is highly variable

inside the error box, so that the actual limiting magnitude varies from 21.5 to 21.9 in V

and from 21.6 to 22.8 in B, depending on the position.

6.5 Pre outburst observations

As noted by Henze et al. (2012b,c), no source compatible with the position of XMMU J004243.6+412519

was listed in any X-ray catalogue. We have searched the XMM-Newton, CHANDRA, and

Swift public archives for possible previous bright states of XMMU J004243.6+412519 in

recent years, but the source was never detected. Since the XMM-Newton observations are

rather sparse, in the following we summarise only the upper limits obtained from the much

more intense coverage (from 1999 November to 2012 January) with CHANDRA and Swift.

175



6. TRANSIENT ULX IN M31

6.5.1 CHANDRA

The distribution of the 93 CHANDRA observations (from 1999 November 30 to 2011 Au-

gust 25) covering the field of XMMU J004243.6+412519 can be seen in Fig. 6.6; 54 observa-

tions were carried out with the HRC-I instrument (Murray et al., 2000), 39 with the ACIS

(I or S; Garmire et al. 2003). Typical exposures are for the HRC-I ∼1–5 ks in the 1999–2011

observations and ∼20 ks in the more recent ones, and ∼5 ks for the ACIS pointings; the

deepest upper limit (see Fig. 6.6) was obtained from a 38-ks ACIS-I observation carried

out on 2001 October 05 (obs. ID: 1575; MJD 52187).

For each observation, an upper limit on the count rate from XMMU J004243.6+412519

was computed using the ciao tool aprates and taking into account the point-spread

function fraction in the apertures within which the counts were extracted. In order to

convert limits on the count rates from the different detectors into upper limits on the

unabsorbed flux, we used the NASA/HEASARC pimms tool assuming a soft power-law

spectrum with photon index Γ ∼ 3 and absorption NH ∼ 7×1021 cm−2. The corresponding

upper limits on the luminosity (assuming a distance of 780 kpc) range from ∼6 × 1035 to

5× 1037 erg s−1 and are shown in Fig. 6.6.

6.5.2 Swift

In the period between 2006 September 01 and 2012 January 01, Swift serendipitously

imaged with the XRT (in PC mode) the position of XMMU J004243.6+412519 119 times

for a total exposure of ∼370 ks. The spread of the observations can be seen in Fig. 6.7

while the exposure time for each year is given in Table 6.4.

We examined each observation, but the source was never detected, nor it was detected in

the total and yearly total images. For each year and for the total data set, we computed 3σ

upper limits on the count rate (following Kraft et al. 1991). These upper limits (Table 6.4)

can be directly compared with the average (and fairly constant) PC rate observed in 2012
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Figure 6.6: CHANDRA 3σ upper limits on the 0.5–10 keV luminosity (for a distance of

780 kpc; Holland 1998; Stanek & Garnavich 1998).

Figure 6.7: Epochs of the Swift/XRT serendipitous observations of the position of

XMMU J004243.6+412519.
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Table 6.4: Pre-outburst upper limits from Swift/XRT serendipitous observations of the

position of XMMU J004243.6+412519.

Year Observations Total exposure Flux upper limita

(ks) (erg cm−2 s−1)

2006 2 9.9 3.5e-14

2007 19 58.3 1.3e-14

2008 23 65.3 8.0e-15

2009 28 86.2 9.8e-15

2010 27 98.5 1.1e-14

2011 19 47.9 2.3e-14

2012 1 4.1 8.7e-14

2006–2012 119 369.5 5.6e-15

a At a confidence level of 3σ.

February–March, (0.370 ± 0.007) counts s−1. In particular, the last Swift observation

performed before the discovery of XMMU J004243.6+412519 (obs. ID: 00035336051; 2012

January 01) yields an upper limit of 2.5× 10−3 counts s−1, implying for the source a flux

increase of 150 or more during 2012 January/February.

6.6 Discussion: spectral states in transient ULXs

XMMU J004243.6+412519 is a transient X-ray source in M31 that, at its maximum, reached

luminosity in the ULX range. Undetected in all previous X-ray observations, in February

2012 it suddenly started to show powerful X-ray emission. After reaching the maximum,

the source luminosity remained fairly constant at ≥1039 erg s−1 for at least ∼40 days, then

it faded below ≈1038 erg s−1 in the following ∼200 days. The decay, accompanied by a

spectral softening, can be described by a broken power-law with a break time of ≈100 days.

No broad components nor narrow features (in the form of quasi-periodic oscillations) were

detected in the power density spectra up to ∼280 Hz. We searched also for optical and

near-UV emission from XMMU J004243.6+412519, but no no source was detected at its
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position down to a sensitivity limit of ∼22 in the V and B bands, and of 23–24 in the near

UV.

In the following, we discuss the properties of XMMU J004243.6+412519 only in the

context of an accreting black hole in M31. The large absorption column and the lack of

an optical counterpart exclude a foreground object. In terms of a background object, the

best candidates are an active galactic nucleus or a tidal disruption event. However, no

active galactic nucleus has been observed to vary in X-rays by more than two orders of

magnitude, while a tidal disruption event is ruled out by the flux evolution, that does not

follow the characteristic decay of such events (Burrows et al., 2011).

Our spectral analysis of the Swift PC data showed that the energy spectrum of XMMU

J004243.6+412 can be fit using a disc component, and that the combination of a disc

component and a power law that is commonly used to describe both the spectra of some

ULXs and of Galactic BH binaries is not statistically needed (see also Barnard et al. 2012).

However, because of the low counting statistics, we cannot definitely exclude the possibility

that a power-law tail is present at high energy. Indeed, in Figure 6.2, the residuals show

lines of evidence of a tail above 5 keV (adding a power-law, ∆χ2 = 10 for 2 additional d.o.f.,

Γ ∼ 1.75). Along its outburst XMMU J004243.6+412519 showed only moderate and slow

spectral changes in contrast with what is usually seen in transient BH binaries in outburst

(see e.g. Motta et al. 2009).

The transient ULXs observed so far appear to have rather different properties and

XMMU J004243.6+412519 is not an exception in this picture. The source presents simi-

larities with other transients, but it cannot be definitely associated to any of them.

M31 ULX-1 was observed to reach a peak luminosity of 5 × 1039 erg s−1 (Kaur et al.,

2012) followed by a decrement in flux with an e-folding time-scale of ∼40 days (Middleton

et al., 2012). A blue optical counterpart to M31 ULX-1 was detected during the outburst,

but not in quiescence, pointing towards emission from an irradiated accretion disc. This
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suggests a low mass companion star transferring matter via Roche lobe overflow. The

spectral properties of M31 ULX-1 are roughly described by a single disc component around

a 10-M� BH with a spin of a ∼ 0.4.4 On the other hand, contrarily to what we observed

in XMMU J004243.6+412519, the best description of the spectra is obtained with the

addition of a second component which represents an optically thick medium (namely a low

temperature corona described by a comptt) close to the BH. It can be associated to the

photosphere of a wind ejected by the inner regions of the disc, that is expected to set in

at super-Eddington accretion rate. Indeed, the softer component of the spectrum can be

also described by a slim disc model, indicating that advection may be important. The disc

component becomes more important when the total luminosity decreases, suggesting that

the wind unveils progressively the inner regions of disc when the accretion rate drops.

Also M83 ULX-1 (Soria et al., 2012) showed a long term evolution similar to XMMU

J004243.6+412 but, as in the case of M31 ULX-1, the energy spectrum is significantly

different from XMMU J004243.6+412519. Undetected (LX < 1036 erg s−1) before 2011,

M83 ULX-1 was discovered by CHANDRA and it was seen to reach a peak luminosity

comparable to that of M31 ULX-1 (∼4×1039 erg s−1). Its spectral properties are modelled

by a cold disc plus a power law without evidence of curvature at high energy, opposite to

what is commonly seen in ULXs. In addition, the source does not show hints of a decline of

the emission for at least 100 days after discovery and no spectral transitions were observed.

Again contrarily to XMMU J004243.6+412519, a blue optical counterpart is observed, but

only during the outburst, pointing to reprocessed emission from the outer accretion disc

and the companion star, a red giant or AGB star with mass M < 4 M� (Soria et al., 2012).

Finally, the ULX in NGC 5128, discovered by CHANDRA in the 2009, was observed

at a luminosity of (2–3) × 1039 erg s−1. The outburst lasted for at least 70 days, but the

4The dimensionless spin parameter a = cJ/(GM2), where J and M are the angular momentum and

mass of the black hole, respectively.
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source was no longer observed. It is an intriguing ULX because it experienced spectral

state variations between a very high state, dominated by a power law with a photon index

higher than 2.2, and a high/soft state, dominated by an accretion disc of ∼1 keV, consistent

with the behaviour of the Galactic BH XRBs (Sivakoff et al. 2008).

XMMU J004243.6+412519 may be hardly associated to the behaviour of the first two

transients, both in terms of spectral and timing properties. However, it may show similar-

ities with the ULX in NGC 5128 because a possible spectral transition between a low/hard

and a high/soft state may have occured. In fact, during the raising part of the outburst,

the spectrum of XMMU J004243.6+412519 can be well fitted by a single power-law model

(see ATel #3890), while at maximum luminosity and during the decay it is adequately

described by a disc component. In addition, the duration of the outburst of NGC 5128

ULX1 is consistent with that of the outburst of XMMU J004243.6+412519 .

One possible interpretation of the spectra-timing properties of XMMU J004243.6+412519

can be given by making an hypothesis on the nature of the source. If it is a stellar-mass

BH transient, we can assume that most of the outburst evolution of the source could not be

observed due to its distance from the observer. In this scenario, the source would be visible

from Earth only during its brightest phases, which for many BH transients (e.g. H 1743–

322, XTE J1650–754, GRO J1655–40) is encountered during the soft spectral states (Belloni

et al., 2011). In the soft states the energy spectrum is strongly dominated by a soft disc

component (that sometimes is the only component visible in the X-ray spectrum) while the

fast time variability is usually consistent with zero. These properties are consistent with

what we reported on XMMU J004243.6+412519. The duration of this high-luminosity

phase in a Galactic BH transient is variable depending on the source and on the proper-

ties of the single outburst. However, the average length of such periods (few months) is

absolutely consistent with the duration of the outburst of XMMU J004243.6+412519 (see

e.g. the case of the Galactic BH transients XTE J1550–754, Kubota & Done 2004 and
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GRO J1655–40, Motta et al. 2012).

Assuming that at maximum luminosity XMMU J004243.6+412519 was in a disc domi-

nated state and that it was radiating at a significant fraction of LEdd (say ∼0.6), the mass of

the BH would be ∼12 M�. For small inclinations (≤ 45◦), a similar value is obtained from

the normalisation of the disc component obtained from the fit of the combined pre-gap PC

spectrum. In fact, if we assume that the inner disc radius is truncated at 6 gravitational

radii (RinBB = 2.6Rin, where RinBB is the diskbb inner radius and Rin is the true inner

radius) and that the disc spectrum has a standard color correction factor, the BH mass is

defined as:

MBH

M�
= f2

67.5

b

(
D

1Mpc

)(
KBB

cos i

)1/2

(6.1)

where f assumes the value 1.7 (see eq. [2] in Zampieri & Roberts 2009; see also Loren-

zin & Zampieri 2009 and references therein). This is consistent with the hypothesis that

XMMU J004243.6+412519 could be indeed an accreting stellar-mass black-hole binary ob-

served in its soft state.

The upper limits in optical bands are sufficiently deep to place interesting constraints

on the donor mass. Assuming no extinction and a distance modulus of 24.47 mag for M31

(from the NASA/IPAC Extragalactic Database),5 the upper limit in the V band translates

into an upper limit on the absolute magnitude MV > −2.8. Taking binary evolution

effects and X-ray irradiation into account, a stellar-mass BH accreting through Roche lobe

overflow is consistent with this upper limit if the donor is a main sequence star of 8–10

M� or a giant of <8 M� (Patruno & Zampieri, 2010). In fact, for a donor below 5 M�,

the disc is no longer stable (Dubus et al., 1999; Patruno & Zampieri, 2008b), in agreement

with the transient nature of the source.

5See http://ned.ipac.caltech.edu/.
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Chapter 7
Conclusions

The main goal of this PhD thesis is to try to tidy up the manifold spectral variability

properties of ULXs. This was achieved through the detailed analysis of a selected sample

of ULXs. In this concluding section, we provide a summary of the results obtained through

the thesis and presented in the previous chapters. They are grouped in three subsections,

containing our main findings related to the characterization of ULX spectral states, to

the lines of evidence supporting the existence of winds, and to the investigation of the

behaviour of transient sources.

7.1 Spectral states

Modeling the spectra of the ULXs of our sample we have shown that a combination of a

multicolor blackbody disc plus a comptonization component can be used to obtain a sat-

isfactory description of the spectral behaviour of both poor and high quality observations.

Although in the poor quality data the fits are sometimes unstable, nevertheless it is possible

to use them to assess the overall spectral evolution of both components during time. This

allowed us to draw a phenomenological picture of the spectral variability of the sources of

our sample, finding that the high energy spectra can often be modelled with an optically
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thick (τ ≥ 2) and warm comptonizing medium, with a temperature usually in the range

0.5-9 keV. Furthermore, there is a possible evolutionary path on the kTcor − τ plane along

which the temperature of the corona decreases and the optical depth becomes higher.

ULXs seem to populate preferentially two regions on this plane, that correspond to

what we labeled as very thick and thick state; the very thick state is typically seen in the

high luminosity observations of NGC 1313 X-2, and in all the spectra of IC 342 X-1. In

this state, the optical depth correlates with the total luminosity. We suggest that, at the

presumably high accretion rates occurring in this state, a progressively larger amount of

material is injected from the inner disc regions into the corona/wind, which then appears

more and more optically thick as the luminosity and accretion rate increase. On the other

hand, Ho II X-1, NGC 5408 X-1, NGC 5204 X-1 and NGC 1313 X-1 do not enter (or

only marginally) in the very thick state and populate in most of the cases the thick state

in which a (weak) anticorrelation between optical depth and luminosity may be observed,

likely indicating a different accretion regime.

An important caveat concerning the interpretation of the soft component and its conse-

quence for the spectral analysis should be mentioned here. As typically assumed (especially

for low counting statistics spectra for which the convergence of the spectral fits is more

difficult), we set the temperature of the seed photons for Comptonization equal to that of

the soft component. However, if the corona/wind is optically thick, in principle we cannot

observe the underlying disc. Hence the usual assumption that the two temperature are

equal is not fully justified, unless the corona is very compact. Even more so if we assume

that the soft component is the emission of a wind. Its photons cannot be the seed of the

high energy component and then the two temperatures (that of the seed photons and of

the soft component) are not equal. Therefore this assumption may affect our analysis and

only a sequence of comparable high quality observations for each source can allow us to

play with the two temperatures (as shown in Section 3.4.1) and try to constrain them.
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To better characterise the spectral states, we analyzed also the short-term variability

of the ULXs of our sample. In some sources, the short-term variability at high energies

seems to be more pronounced than that at low energies. On the other hand, some sources

have small levels of variability both in the soft and in the high energy band. We interpret

the existence of significant variability as caused mainly by an extrinsic factor, like blobs of

matter that intersects our line of sight (Middleton et al., 2011). When the variability is

lower or absent, our line of sight probably does not intersect the turbulences of the wind

because the inclination is lower, and we see only the intrinsic variability related to the

accretion engine.

If the wind is the main source of absorbing gas and is mostly equatorial, the different

levels of absorption inferred from the spectral fits may also be related to the varying

inclination angle. Sources with high values of the local absorption are probable seen at

high inclination angles, i.e. IC 342 X-1, NGC 1313 X-1 and X-2, NGC 55 ULX1, while

sources with lower average value of the column density are probably observed at smaller

inclinations.

As the spectral parameters are sometimes degenerate or not so well constrained, we

tried to study the spectral evolution of our sample of ULXs using also the hardness ratios.

We suggest the existence of at least two groups of sources on the color-color and hardness-

intensity diagrams, possibly with different average luminosity. The sources of the first

group have an average count rate below ∼ 10 count s−1 in the EPIC-pn (assuming a

distance of 1 Mpc), are more significantly absorbed and their hard colors seem to correlate

with the count rate. On the other hand the sources of the second group have an average

count rate above ∼ 10 count s−1, are less absorbed and appear to show a possibly opposite

trend in which they become less hard as the count rate increases. We note also that the

color analysis supports the conclusion of Gladstone et al. (2009) that the soft component

becomes systematically more important as the luminosity increases.
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Assuming that the hard spectral component represents emission from the inner disc

(possibly Comptonized), the correlation hard color-count rate observed in group 1 is con-

sistent with our expectations. Indeed, as the accretion rate increases, more energy per unit

mass is released and hence the temperature becomes higher. On the other hand, the anti-

correlation hard color-count rate observed in group 2 may be an indication that an effective

mechanism that removes energy from the inner disc (as the accretion rate increases) is at

work. It is reasonable to think that this could be a strong outflow whose inner parts are

sufficiently dense to form a photosphere, originating the observed soft emission.

Only NGC 253 X-1 and NGC 55 ULX1 do not clearly fit into this picture. At low

luminosities the spectra of NGC 253 X-1 can be described by a standard disc, while a

single slim disc solution seems to be a suitable description of the states at Ltot ≥ 1039

erg s−1. We then suggest that NGC 253 X-1 could be a stellar mass BH accreting at

around Eddington and, occasionally, at slightly super-Eddington rates without the onset

of significant outflows. On the other hand, NGC 55 ULX1 appears quite faint and soft. Its

faintness is mostly caused by the strong intrinsic absorption to which it is subject. This

is a clue which may allow us to reconsider its position on the hardness-intensity diagram.

In fact, while the parameters of the high energy component inferred from the spectral fits

are consistent with a very thick state, the position of the source on the hardness-intensity

diagram is not. Indeed from the spectral parameters, we know that the soft component

contributes significantly to the total emission. Assuming to correct the position of NGC 55

ULX1 for absorption, it turns out to be essentially located close to the sources of group 2.

Therefore, it is likely to be one of those sources but possibly observed at larger inclination

angles.
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7.2 Wind

As mentioned above, the level of short-term variability at high energy found in a number of

observations can be explained in terms of obscuring material intersecting our line of sight

to the source. This has been interpreted as originating from a turbulent outflow or wind

(Middleton et al., 2011), which is expected to form at super-Eddington accretion rates

(Kajava & Poutanen, 2009). With the exception of NGC 253 X-1, all the other sources

show more variability at high energies at least in some observations and may then produce

from time to time turbulent outflows/winds.

Therefore if the outflows/winds are the cause of the absorption and the existence of

the soft component in the spectra of the sources in our sample, we suggest that they may

have two different phases: an ionised phase, close to the ejection regions, where the density

is sufficiently high that a photosphere may form, and another phase, in the outer regions,

where the gas is recombined. If our line of sight intersects the outer neutral and cool layers

of the wind, we may observe significant absorption. Clumpiness in the wind may induce

the observed variability.

The most direct comparison of this scenario can be done with the properties of the

obscuring medium seen in the dipping Galactic X-ray binaries. It is widely accepted that

the dips are episodes in which the central emission is obscured by material expelled from the

outer disc. For comparison, we then analyzed in detail the well-known dipping source EXO

0748-676, finding that the dips are associated to an increment in the column density and a

corresponding decrement in the ionization level (e.g. Dı́az Trigo et al. 2006). The intervals

in which the obscuration is significant are characterised by high short-term variability. In

addition we suggest that RMS and flux are anticorrelated when the absorber is unsaturated,

which is the opposite of what expected for non-dipping X-ray binaries in which only the

intrinsic accretion flow variability is observed.
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Amongst the whole sample, NGC 55 ULX1 is the only one to show a similar phe-

nomenology. Although its luminosity is only marginally above 1039 erg s−1, it has narrow

drops of minute/hours which can be compared to the dips observed in XRBs. In addition,

it shows also short-term variability, more pronounced at high energy, in at least two XMM-

Newton observations. In the first XMM-Newton observation we found an anticorrelation

between RMS and flux in the energy band which is mostly affected by the dips, between 1

and 10 keV. In the second observation, the statistics is not sufficient to draw any conclu-

sion. On the other hand, in the third observation, RMS and flux are correlated, meaning

that the variability is driven by the accretion flow. Finally, we note also that the column

density is larger when the flux is lower, suggesting that the observed flux decreases because

of obscuration. Since the dips do not seem to show long-term periodicities and they are

relatively short lived, they may be the effect of blobs of unsaturated matter that from time

to time obscure the central regions of the source. The low flux level detected in the third

observation may be due to a saturated remnant of the outflows which absorbs the central

emission but does not introduce any further level of variability to the intrinsic one.

In conclusion, we tried to insert the ULXs of our sample within a common framework.

Our results confirm that many ULXs may be accreting at or above Eddington. They can be

stellar mass or massive stellar BHs whose properties are determined by their BH masses,

accretion rates and viewing angles. Even if there are differences from source to source,

there is evidence for a characteristic spectral evolutionary sequence which deserve further

future investigations with higher quality observations.

7.3 Transient sources

As for Galactic BH binaries, a test-bed for investigating different accretion regimes in ULXs

are transient sources. Till now, only a handful of transient ULXs have been discovered,
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including XMMU J004243.6+412519 in M31.

Our multi-wavelength study of this source, based on data collected with Swift and

the 1.8-m Copernico Telescope at Cima Ekar in Asiago (Italy) provided some interesting

results. The source, undetected in all previous observations, suddenly turned on, showing

powerful X-ray emission with a luminosity of 1038 erg s−1 (assuming a distance of 780 kpc)

and it reached a luminosity higher than 1039 erg s−1 in the following weeks. The source

luminosity remained fairly constant for at least 40 days and then it faded below 1038 erg

s−1 in the following 200 days. From the phase of maximum onwards, the spectrum of

XMMU J004243.6+412519 could be well described by a multicolor disc blackbody model

which progressively softened during the decay (the temperature changed from 0.9 keV to

0.4 keV). The available observations suggest the existence of a BH of 12-15 M�, accreting

at 60% of the Eddington limit. Transient, low-luminosity ULXs may simply by BHs of this

size accreting at maximum close to the Eddington limit.

7.4 Some future perspectives

The work presented in this thesis shows that a lot needs still to be done in order to

characterize the X-ray spectral variability and, hence, the accretion regime of ULXs. We

are simply at the beginning of this path and are starting to have some understanding of it.

Future work in this area is definitely needed, collecting more high quality XMM-Newton,

Chandra and Swift observations of a larger sample of sources.

As long exposures (> 100 ks) with XMM-Newton and Chandra are difficult to obtain,

in order to improve the quality of the spectra, another possibility may be to stack all the

available observations of a single source in terms of flux. If important spectral changes (for

example variations in the column density of the neutral absorber) at comparable fluxes

do not occur, this method may be highly successful. This can be performed more easily
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with Swift which provides a large number of relatively short observations. With the high

counting statistics obtained in this way, it would possible to look for the imprints of the

wind in terms of absorption features, which till now have been elusive, and characterise

the short-term variability possibly introduced by them. We emphasize also that new X-

ray missions, as the recently launched NASA’s Nuclear Spectroscopic Telescope Array

(NuSTAR), will be able to provide high quality data on a larger energy band, allowing to

probe different spectral models.

Another very important future activity is to study in a systematic way the almost

unknown population of transient ULXs. Swift can be a good candidate instrument to

periodically observe some nearby galaxies in order to detect them. This approach follows

the successful root that has led to the recent discovery of the transient ULXs in M31.

Finally, it is of crucial importance to understand if the brightest ULXs, with luminosities

higher than few times 1040 erg s−1, can host IMBHs. The confirmation of the existence

of such BHs would definitely open new scenarios for the initial seeding and subsequent

growth of nuclear BHs in galaxies. The identification of very bright ULXs with more usual

XRB-like spectral transitions would be a crucial piece of information to pinpoint them.
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sarebbero sicuramente state recepite allo stesso modo se lui non fosse stato una persona

203



BIBLIOGRAPHY

incredibilmente umana e di grandi valori morali come poche se ne incontrano lungo la

propria vita. Quindi a lui va un enorme ringraziamento per tutto.

Un ringraziamento va anche a Padova e alle persone che ho incontrato grazie ad essa.

Io ero un piccolo sardo mai stato nel ”continente” se non per delle gite, che non aveva mai

vissuto fuori da casa sua neppure durante il periodo dell’Università e che si trovava immerso
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