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1. Thesis structure and goals 

Geometry is a fundamental part of mathematical learning. Since ancient time the study of 

geometry was considered as one of the most important subjects in school. In the arcade of the famous 

school of Athens, where Plato taught, it was written that entry was not permitted to people who did not 

know geometry. In the Renaissance period, geometry was part of the 'quadrivium', which was 

considered a needed work preparatory for a serious study of philosophy. Nevertheless, despite 

geometry is one of the main areas of mathematical learning, the cognitive processes underlying 

geometry-related academic achievement have not been studied in detail. 

The present dissertation has three important aims. First, to investigate the relationship between 

various aspects of geometry and visuospatial working memory (VSWM). Second, to investigate 

whether the children with nonverbal learning disabilities (NLD) symptoms present difficulties in 

various aspects of geometry. Third, to investigate the relationship between various aspect of geometry, 

working memory (WM) and intelligence (g).  

In the second chapter, a general overview of the relationship between geometry, WM and g is 

provided. Since geometry concerns the study of the space, it requires a particular involvement of spatial 

abilities. Thus, WM, and in particular VSWM should be crucially involved. In addition, solving 

geometrical problems requires to reason and to determine a solution among various alternatives. Thus, 

g should be crucially involved in solving geometrical problems.  

In the third chapter, the relationship between academic achievement in geometry, intuitive 

geometry (i.e., a part of geometry, which seems to be independent from the culture), and VSWM will 

be examined. Two studies will be presented.  

In the first study, the involvement of VSWM in intuitive geometry and in school performance in 

geometry at secondary school was tested. A total of 166 pupils were administered: (1) six VSWM 
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tasks, comprising simple storage and complex span tasks; (2) the intuitive geometry task devised by 

Dehaene, Izard, Pica, and Spelke (2006), which distinguishes between core, presumably independent 

form the culture, and culturally-mediated principles of geometry; and (3) a task measuring academic 

achievement in geometry.  

In the second study, VSWM and intuitive geometry were examined in two groups aged 11 13; 

one with children displaying symptoms of NLD, and the other, a control group without learning 

disabilities. The two groups were matched for general verbal abilities, age, gender, and socioeconomic 

level. The children were presented with simple storage and complex-span tasks involving VSWM and 

with the intuitive geometry task devised by Dehaene and colleagues (Dehaene et al., 2006).  

In the fourth chapter, we report a study on the relationship between geometry, WM, and 

intelligence aimed to determine the model of WM which provided the best fit to the data and to 

examine the strength of the relations between WM and intelligence (part I) and the relationship 

between geometry (intuitive geometry and geometrical achievement), WM and g testing several models 

(part II).  

In the last chapter a general overview of the important theoretical and applied implications of 

the three studies will be discussed. The limits of the present dissertation and possible future researches 

will also be outlined. 
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2. Cognitive processes involved in geometrical cognition  

Geometry, one of the oldest sciences, concerns the study of size, shape, length, relative position 

of figures and the properties of space. Despite representing one of the major areas of mathematical 

learning, the cognitive processes that are involved in geometry and those that affect academic 

achievement have not been studied in detail. In particular, two aspects are crucially involved in 

geometrical learning: working memory and intelligence.  

2.1. Working memory 

A first conceptualization of working memory was proposed by Baddeley and Hitch (1974). In 

the Baddeley and Hitch model, the central executive is the component responsible for controlling 

resources and monitoring information processing across informational domains. Moreover, storage of 

information is provided by two domain-specific slave systems: the phonological loop, which provides 

temporary storage of verbal information, and the visuospatial sketchpad, specialized in the maintenance 

and manipulation of visual and spatial representations. Further specifications of the model (Baddeley, 

2000; Cornoldi & Vecchi, 2003) have maintained the distinction between central modality-independent 

and specific verbal and visuospatial components. Moreover, Cornoldi and Vecchi (2000, 2003) 

proposed a distinction between two continua. In the horizontal continuum, tasks are processes distinct 

for modality. In the vertical continuum, tasks are distinct depending on the involvement of the 

attentional control. Thus, there are tasks which are mainly passive (in which only recall of information 

is required) and active (in which processing and manipulation of the stimuli is required).  

Other authors have argued that there is no difference between short-term memory (STM) and 

WM, proposing an unique model of WM. In fact, the possibility that WM and STM can reflect 

different or unique factors is still debated (e.g., Colom, Rebollo, Abad, & Shih, 2006). Indeed, it has 
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been argued that STM storage and not cognitive control account for the relationship between WM and 

intelligence (e.g., Colom et al., 2006). 

Alternatively, a modality dependent model postulates that WM is supported by two separate 

pools of domain-specific resources for verbal and visuospatial information (e.g., Shah & Miyake, 

1996). In this model, each domain is independently capable of manipulating and keeping information 

active. Research involving adult participants supports this distinction (Friedman & Miyake, 2000).  

On the contrary, a single-resource framework proposed that WM is a unitary system by nature 

(Cowan, 2001). This model postulates a unitary system involved principally in attentional control. 

Cowan defines WM as a limited-capacity attentional focus, which operates across areas of activated 

long-term memory. According to this model, long-term memory can be seen in three components: the 

larger portion that has relatively low activation at any particular point in time, a subset that is currently 

activated as a consequence of ongoing cognitive activities and perceptual experience, and a smaller 

subset of the activated portion that is the focus of attention and conscious awareness. 

A similar account, a domain-general model, suggests that working memory capacity is limited 

by controlled attention. The Engle and collaborators model (e.g., Engle, Tuholski, Laughlin, & 

Conway, 1999), similarly to Cowan's model, conceive of the contents of stores as temporarily activated 

representations in long-term memory, as links to existing representations in long-term memory (Engle, 

2010). Thus, in this model there is no distinction between modality (e.g., verbal and spatial), but only 

between STM (independently from the modality), and WM (which is dependent on control-of-attention 

capacity). This model is consistent to the Cornoldi and Vecchi model (2003). In fact, the distinction 

between STM and WM is well represented by the distinction of the tasks along the vertical continuum. 

2.1.1. Working memory and geometry 

Academic achievement in geometry is considered one of the most important areas of 

mathematical learning, and it is linked to a student's future academic and professional success 
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(Verstijnen, Van Leeuwen, Goldschmidt, Hamel, & Hennessey, 1998). Pupils attending secondary 

schools must be able to utilize concepts, definitions, theorems, etc., and have the ability to apply this 

knowledge when solving problems that are typically presented in language form. It therefore is 

important to examine whether differences in intuitive geometry and other underlying cognitive 

mechanisms may have a crucial role in predicting school achievement in geometry.  

The WM system, in which specific storage components (i.e., the 'slave' systems) sub-serve a 

central component responsible for controlling information processing (Baddeley, 1986), could be 

involved in geometry. A large body of research has shown that WM predicts success in school-related 

tasks, such as reading comprehension (Daneman & Carpenter, 1980), mathematical achievement (Bull, 

Espy, & Wiebe, 2008; Fürst & Hitch, 2000; Geary, Klosterman, & Adrales, 1990; Hitch, 1978; 

Passolunghi, Mammarella, & Altoè, 2008) and arithmetical problem-solving (Passolunghi, Cornoldi, & 

De Liberto, 1999; Passolunghi & Siegel, 2001, 2004). More specifically, the WM component involved 

in retaining and processing visuospatial information (VSWM) appears to be involved a children's 

ability to count (Kyttälä, Aunio, Lehto, Van Luit, & Hautamäki, 2003), performance in multi-digit 

operations (Heathcote, 1994), nonverbal problem-solving (Rasmussen & Bisanz, 2005) and 

mathematical achievement (Bull et al., 2008; Jarvis & Gathercole, 2003; Maybery & Do, 2003).  

Moreover, VSWM can predicts a person's success in geometry-related activities. To give an 

example, the capacity to hold and manipulate visuospatial information has been shown to specifically 

predict success in architecture and engineering (Verstijnen et al., 1998). This makes VSWM the prime 

candidate for seeking cognitive mechanisms supporting both intuitive geometry, which is supposed to 

be independent from culture, and school achievement in geometry, though the latter will be associated 

with many other variables influencing mathematical achievement in school (e.g., language, calculation, 

problem-solving, motivation, meta-cognition, etc.; Aydın & Ubuz, 2010). In addition, considering the 
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sub-components of VSWM will make it possible to understand which components of VSWM are 

related to intuitive geometry and achievement in geometry. 

2.2. Intelligence 

A general conceptualization of intelligence is: a general mental capacity that involve the ability 

to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn 

from experience (Gottfredson, 1997, p. 13). The importance of intelligence relies on the fact that it 

predicts important outcomes like occupational (Schmidt & Hunter, 2004), and academic attainment 

(Alloway & Alloway, 2010). In addition, the modern workplace runs largely on the cognitive abilities 

of the workforce (Hunt & Madhyastha, 2012).  

Spearman first conceptualized the notion of general intelligence. Spearman observed that 

different tasks were typically related to each other. Thus, he hypothesized that the common factor in 

with each task represented a general factor (g; Spearman, 1904). On the contrary, the specific variance 

not common between factors was due to specific factors (s), but differently from g, they were not 

common to all measures (Spearman, 1927). This hypothesis was strongly criticized by Thurstone who 

believed in the existence of primary mental abilities rather than a unique specific factor (Thurstone, 

1938). For this reason, the battle between unique and multiple intelligence' supporters began and 

continues until now. 

Similarly to Thurstone, Guiford was convinced of the existence of multiple intelligences. In his 

previous formulation, the 'structure of intellect' was composed by 120 independent abilities (Guilford, 

1967). He later expanded these abilities to 150 (Guilford, 1985). Guilford was sharply criticized by 

Arthur Jensen who claimed that Guilford's results were weak (Jensen, 1998). Despite whether or not 

Guilford's results were correct, it should be noted that if one ability was too few, then 120 were too 

many (Kaufman, 2009). 
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The theoretical battle between the unique and multiple conceptualization of intelligence 

continues. Vernon (1950) was the first to conceptualize a hierarchical intelligence model. At the top of 

this hierarchy Vernon posed the Spearman's general factor; and below g were several specific group 

factors (Vernon, 1950). Because Vernon's theory accounted for a general factor and group factors, it 

was seen as a reconciliation between Spearman's two factors theory and Thurstone's primary mental 

abilities theory. 

Further progress was represented by the Cattell and Horn's Gf-Gc theory. Cattell and Horn first 

propose the two types of intelligence: Gf and Gc (fluid and crystallized intelligence respectively; e.g., 

Horn & Cattell, 1966). Gf refers to solving problems, which are new to the person. On the contrary, Gc 

refers to solving problem, which are familiar to the person.  

John B. Carroll, taking advantage of the Gf-Gc distinction, theorized a three strata theory. 

Carroll (1993) reached the conclusion that the structure of intelligence consists of three strata: narrow 

(first stratum), broad (second stratum) and general (third stratum). This theory is hierarchical, like 

Vernon's model, and includes Gf and Gc like Cattell-Horn model.  

An useful synthesis is represented by the CHC model. The CHC model (Cattell-Horn-Carroll) 

includes both Cattell-Horn and Carroll models. This approach poses in the second stratum fluid 

intelligence (Gf), crystallized intelligence (Gc) as well as quantitative reasoning (Gq), reading and 

writing ability (Grw), short-term memory (Gsm), long-term storage and retrieval (Glr), visual 

processing (Gv), auditory processing (Ga), processing speed (Gs). Moreover, this model has over 

seventy abilities in the third stratum and just one abilities in the first stratum (g). The CHC model is 

now considered one of the psychometric model of intelligence. However, this model has some 

limitations. First, the CHC model does not consider working memory. In fact, the WM criterion studies 

suggest WM may be a significant causal factor working behind the scenes when complex cognitive 
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performance is required (e.g., Gf or g) (McGrew, 2009). Second, the classical CHC model should be 

compared to other models like the Cattell–Horn extended Gf–Gc theory, or g-VPR model. 

Recently the g-VPR model was proposed (Johnson & Bouchard, 2005 In this model, there are 

four strata: 1) the g factor on the top; 2) three factors just below g (i.e.; verbal perceptual and rotation); 

3) below the second stratum, a stratum with verbal, scholastic, fluency, number, content memory, 

perceptual speed, spatial, and image rotation; 4) a broad stratum. This model have received a great 

interest and fits better compare to the classical CHC model and Vernon's hierarchical model (Johnson 

& Bouchard, 2005; Johnson, Nijenhuis, & Bouchard, 2008). 

2.2.1. Intelligence and geometry 

Intelligence and academic achievement are distinct constructs and specific cognitive factors are 

important to explain specific aspects of achievement. The relationship is also supported by empirical 

evidence: Studies have found a good correlation between achievement tests and the g-factor (Frey & 

Detterman, 2004). In fact, solving mathematical problems, and in particular geometrical problems, 

requires problem solving and therefore intelligence.  

Geometrical problems typically require to determine a solution to a problem and this capacity is 

related to higher-order control (Clements & Battista, 1992). For this reason, it is very interesting to 

study the relationship between WM (and the particular visuospatial domain), intelligence, and 

achievement in geometry. In fact, intelligence, and in particular visuospatial abilities, are very 

important in geometrical achievement.  

2.3. Aims of the present dissertation 

The present dissertations has three important aims, i.e. investigate: i) the relationship between 

various aspects of geometry and VSWM; ii) whether NLD children presents deficits in various aspects 

of geometry; iii) the relationship between various aspect of geometry WM and intelligence.  
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3. Geometry and visuospatial working memory 

In this chapter, the relationship between geometry and working memory will be outlined. Two 

studies will be discussed. The first study describes the relationship between visuospatial working 

memory (VSWM), intuitive geometry and geometrical achievement in secondary school. The second 

study, describes the relationship between VSWM, intuitive geometry and geometrical achievement in 

children with nonverbal disabilities children. 

3.1. Study 1: Visuospatial Working Memory in Intuitive and in Academic Achievement 

Geometry 

3.1.1. Study 1 Introduction 

Although geometry is one of the main areas of mathematical learning, along with calculation 

and arithmetical problem-solving, the cognitive processes underlying geometry-related academic 

achievement have not been studied in detail. The psychological aspects of geometry have received 

attention from both developmental psychologists (e.g., Piaget, 1960; Piaget & Inhelder, 1967) and 

educational psychologists (Clements & Battista, 1992; Clements, 2003, 2004; Crowley, 1987; Owens 

& Outhred, 2006; van Hiele, 1986). As regards the underlying cognitive mechanisms, the involvement 

of spatial abilities and imagery in geometry has also been analyzed (Bishop, 1980; Brown & Presmeg, 

1993; Piaget & Inhelder, 1967) but, to the best of our knowledge, no research has attempted to 

investigate the role of visuospatial working memory (VSWM) in geometry. The present study tried to 

fill this gap by examining the involvement of different components of VSWM in the learning of 

various aspects of geometry. 
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3.1.1.1. Geometry at school and the intuitive (core and culturally-mediated) principles of 

geometry 

The intuitive knowledge of geometry has been examined in a number of studies. For example, 

Rosch (1975) showed that, when people in a Stone-Age culture with no explicit education in geometry 

were asked to choose the “best examples” of a set of shapes (i.e., a group of quadrilaterals and near-

quadrilaterals), they usually selected a square and a circle, even when the set contained variants closely 

resembling them (for instance, the set containing squares also included square-like shapes that were 

open, or had curved sides, or contained non-right angles), suggesting that people have a preference for 

closed symmetrical shapes (Bornstein, Ferdinandsen, & Gross, 1981).  

In the same vein, Dehaene et al. (2006) devised a test to analyze the intuitive comprehension of 

certain basic concepts of geometry. Their test was based on a series of arrays of six images, each 

representing an intuitive concept of geometry: five images fitted the target concept (i.e., they were 

correct), while one contradicted it. Participants included Amazon Indians and North Americans who 

were asked, each in their own language, to point to the “ugly” image. The results revealed that: 

a. core intuitions of geometry can be identified, since the Amazon Indian group 

succeeded remarkably well with concepts of topology (e.g., connectedness), Euclidean 

geometry (e.g., lines, points, parallelism, and right angles) and geometrical figures (e.g., 

squares, triangles, and circles). Dehaene et al. (2006) consequently considered these concepts 

as the core principles (CP) of geometry;  

b. adults who had received no schooling in geometry and young children (from 

both geographical groups) revealed a similar competence in these CP of geometry, i.e. the 

Amazonian children's performance did not differ from that of the American children. The 

American adults performed significantly better in all the tests, however, going to show that 

cultural differences emerge when it comes to non-core principles of geometry. To be more 
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precise, the group of Amazon Indian adults performed poorly (on a level comparable with the 

North American and Amazonian children) in items assessing geometrical transformations, 

when participants had to use concepts such as translations, symmetries, and rotations. The 

authors concluded that all of these items entail a mental transformation from one shape into 

another and might thus require culturally-mediated principles (CMP) of geometry.  

 

Spelke, Lee, and Izard recently suggested (2010) that knowledge of geometry is founded on at 

least two distinct, core cognitive systems; the first is used to represent the shapes of large-scale 

navigable surface layouts, the second represents small-scale movable forms and objects. Empirical 

evidence of this latter system emerged from developmental studies showing that infants are sensitive to 

variations in angle (Schwartz, Day, & Cohen, 1979; Slater, Mattock, Brown, & Bremner, 1991) and 

length (Newcombe, Huttenlocher, & Learmonth, 1999). The system for representing small-scale 

movable forms and objects would therefore capture abstract geometrical information representing the 

shapes of objects that vary in length and angle, but not direction. The system fails to distinguish a form 

from its mirror image, for instance, and it reveals qualitative continuities during the course of human 

development (Izard & Spelke, 2009), as well as across cultures (Dehaene et al., 2006).  

In sum, these studies have shown that some aspects of geometry are 'intuitive': (1) primitive 

(Rosch, 1975), (2) very early developed (Spelke et al., 2010), (3) not dependent by culture and formal 

instruction (Dehaene et al, 2006). Moreover, Dehaene and colleagues (2006) have shown that is 

possible to assess experimentally intuitive geometry. Although, they did not explore the relationship 

between intuitive aspects and other aspects, which are independent from culture or schooling (i.e., 

working memory or intelligence), or aspects dependent on formal instruction (i.e., achievement in 

geometry). 
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3.1.1.2. The organization of VSWM 

It has been demonstrated that the VSWM system is not unitary. Many studies (see Logie, 1995) 

have supported a distinction between the visual and spatial subcomponents of VSWM, the former 

referring to the recall of shapes and/or textures, the latter to the recall of spatial locations and 

sequences. An alternative approach-that is less widely acknowledged, but has recently received 

support-(Cornoldi & Vecchi, 2003; Cornoldi, De Beni, & Mammarella, 2008; Mammarella et al., 2006; 

Mammarella, Borella, Pastore, & Pazzaglia, 2012; Pazzaglia & Cornoldi, 1999)-distinguishes between 

visual WM tasks that involve memorizing shapes, textures and colors, spatial sequential tasks requiring 

the recall of a sequence of spatial locations, and spatial simultaneous tasks demanding the recall of an 

array of simultaneously-presented locations. It has also been suggested that a distinction should be 

drawn between many different types of WM process based not only on the format/content of the 

information, but also on the degree of controlled attention involved. This latter distinction has been 

described in many ways, e.g. by differentiating between simple storage and complex span tasks 

(Unsworth & Engle, 2005), or between passive processes (as in simple storage tasks) and active 

processes (as in complex span tasks) (Cornoldi & Vecchi, 2003), where the former involve retaining 

information that has not been modified after encoding, while the latter require some transformation and 

manipulation of the information and presumably correlate more closely with an individual's degree of 

success in geometrical tasks requiring the manipulation of visual information.  

3.1.1.3. Study design 

The present study was designed primarily to seek any relationships between VSWM, intuitive 

geometry, and academic achievement in geometry among secondary school students. Second, we 

aimed to investigate whether different components of VSWM relate differently to CP and CMP of 

geometry, as defined by Dehaene et al. (2006). To do so, we administered both the intuitive geometry 

task (Dehaene et al., 2006) and the MT advanced battery, a standardized test assessing achievement in 
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geometry (Cornoldi, Pra Baldi et al., 2010) devised for secondary school students, which includes items 

of the type contained in the PISA tests (OECD, 2007). We chose to test secondary school students 

because the PISA tests are only administered to this age group, and because these students will have 

presumably nearly completed their learning of the cultural and educational aspects of geometry, since 

any further education may well contain no geometry (in Italy at least, where this study was carried out). 

To assess VSWM, we used three simple storage tasks (one visual, one spatial-sequential, and 

one spatial-simultaneous) and three complex span tasks. The distinction between simple storage and 

complex VSWM tasks was particularly crucial for the purposes of this study because performance in 

geometry is related not simply to maintenance, but also to the manipulation of information; complex 

span tasks could therefore provide important information, while the contribution of simple storage tasks 

could prove less relevant. 

Our study thus examined the involvement of VSWM in intuitive geometry and sought to 

ascertain whether both VSWM and intuitive geometry affect academic achievement in geometry. 

Judging from previous evidence, intuitive geometry concepts can be divided into CP and CMP 

(Dehaene et al., 2006; Spelke, et al., 2010). We examined whether students' achievement in geometry 

was supported by both CP and CMP of geometry, as well as by VSWM. We also investigated whether 

the CMP of geometry (the learning of which is mediated by experience) require the support of VSWM.  

The pattern of relationships was examined using path analysis models in successive steps to 

compare the adequacy of different models in describing the relationships between variables.  

3.1.2. Method 

3.1.2.1. Participants 

The study involved 166 students (125 boys and 41 girls) in their last two years at secondary 

school (mean age=17.84; SD=.74) in northern Italy. The mean age of participants in 12
th

 grade was 
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17.35 (SD=.73) and for those in 13
th

 grade it was 18.03 (SD=.65). Participants were attending schools 

where geometry had an important role, i.e. secondary schools that focused on science or specialized in 

land surveying, or technical and industrial colleges. 

3.1.2.2. Materials and procedures 

Participants were tested in two phases, i.e. a group session in the classroom lasting 

approximately 20 minutes, and an individual session approximately one hour long in a quiet room away 

from the classroom.  

During the first phase, we administered a school achievement test (the geometry items in the 

MT advanced battery) to the whole class (Cornoldi, Pra Baldi et al., 2010). In the second phase, we 

administered the following tasks on an individual basis: the intuitive geometry task (Dehaene et al., 

2006) and six VSWM tasks in the following fixed order: (1) simultaneous dot matrix task; (2) dot 

matrix task; (3) nonsense shapes task; (4) visual pattern test, active version; (5) sequential dot matrix 

task; and (6) jigsaw puzzle task. 

Measures of geometry 

Test on achievement in geometry. The MT advanced geometry task is a paper-and-pencil test 

that includes the six multiple-choice questions from the MT advanced battery (Cornoldi, Pra Baldi et 

al., 2010) concerning school-based geometry education. This battery was developed on the basis of the 

PISA tasks (OECD, 2007) and was designed for use in comparing individual performance with typical 

school standards in Italy. Participants were asked to solve a series of geometrical problems (see an 

example in Figure 3.1) and the mean percentage of the correct answers was considered. All the students 

in the class took about 20 minutes to complete the test.  

 



17 

 

 

 

Figure 3.1 Example of the academic achievement task 

 

Intuitive geometry task. The intuitive geometry task (Dehaene et al., 2006) was programmed 

using E-Prime 1.1 software, and the items were randomly presented on a computer. Participants were 

presented with forty-three items split into seven concepts: topology, Euclidean geometry, geometrical 

figures, symmetrical figures, chiral figures, metric properties, and geometrical transformation. At the 

beginning of the procedure, a masking screen appeared for 2000 ms before the randomly presented 

stimuli appeared (see Appendix). Each stimulus remained on the screen until the participant had given 

a response. The items consisted of an array of six simultaneously-presented images, five of which 

instantiated a given concept, while one image violated it. For each item, participants were asked to 

identify the odd one out (which appeared in a random position among the other five images).  

Three different scores were calculated: one was the total mean percentage of correct responses; 

the second (as in Dehaene et al, 2006) was a score representing the CP of geometry (i.e. the mean 

percentages of correct answers for images relating to topology, Euclidean geometry, and geometrical 
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figures, for a total of 21 items); and the third was a score representing the CMP of geometry (i.e., the 

mean percentages of correct answers for images relating to symmetrical figures, chiral figures, metric 

properties, and geometrical transformation, for a total of 22 items). Figure 3.2 shows some examples of 

the concepts presented. 

 

 

 

Figure 3.2 Examples of the intuitive geometry task 

 

VSWM measures 

Participants were presented with six tests (4 computerized, 2 paper-and-pencil); five of them are 

part of an Italian standardized VSWM test battery (Mammarella, Toso, Pazzaglia, & Cornoldi, 2008), 

while the dot matrix test was derived from Miyake, Friedman, Rettinger, Shah, and Hegarty (2001). 

Three tests were passive, simple storage tasks, and three were active, complex span tasks. The simple 

storage tasks were classifiable as visual (the nonsense shapes task), spatial-sequential (the sequential 

dot matrix task), or spatial-simultaneous (the simultaneous dot matrix task) (Mammarella, Pazzaglia, & 

Cornoldi, 2008; Pazzaglia & Cornoldi, 1999). The complex span tasks were the jigsaw puzzle task 

(adapted from Vecchi & Richardson, 2000), the dot matrix task (drawn from Miyake et al., 2001), and 
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active version of the visual pattern test (VPTA, derived from Della Sala, Gray, Baddeley, & Wilson, 

1997). Examples of these materials are shown in Figure 3.3. 

The six tests were administered adopting a self-terminating procedure (starting with the easiest, 

the tests became increasingly complex and participants continued as long as they were able to solve at 

least two of three problems for a given level). For scoring purposes, items on the second level of 

difficulty scored 2, on the third level they scored 3, and so on. The final scores corresponded to the sum 

of the last three correct responses. For instance, a participant who solved two problems on the fourth 

level and one on the fifth scored 4+4+5 = 13 (see Mammarella, Toso et al., 2008; Mammarella, 

Lucangeli, & Cornoldi, 2010). Before administering each task, participants were given two practice 

trials with feedback. The tests were administered during a single individual session in a quiet room at 

the students' school.  

For the simple storage tasks, participants had to decide whether a set of figures/locations was 

the same as, or different from a previously-presented set: after a first stimulus had been shown, either 

the same stimulus or one in which just one element had changed appeared, followed by a screen 

containing two letters, U (uguale=same) and D (diverso=different), and participants responded by 

pressing one of the two keys on the keyboard. The complex span tasks involved not only recognizing 

but also processing the information presented. 
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Figure 3.3 Examples of the materials used to assess visuospatial working memory. 

 

3.1.3. Results 

Descriptive statistics for each test are presented in Table 3.1. The scores are expressed as the 

percentages of correct responses for geometrical measures, while for VSWM they are given by the sum 

of the three highest levels of difficulty reached by the subject. Table 3.1 also shows the test reliabilities. 
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Table 3.1  

Descriptive statistics and reliability 

Tasks Reliability M SD Skewness Kurtosis 

Geometry 
MT advanced geometry task* .66 66.77 21.98 -.41 -.53 

Intuitive geometry task .65 86.41 7.32 -.71  .46 

Simple storage tasks 

Nonsense shapes .89 13.55 6.00 -.08 -.74 

Sequential dot matrix .91 18.75 4.51 -1.12  1.77 

Simultaneous dot matrix .90 21.20 4.80 -1,74  2.02 

Complex span tasks 

Jigsaw puzzle .84 26.65 4.20 -.90 -.88 

Dot matrix task .79 10.49 1.79 -2.02  4.49 

VPTA .89 24.66 4.64 -.68 -.33 

Note. * Dependent variable in percentage  

3.1.3.1. Model estimation.  

Path analysis models were computed with the LISREL 8.8 statistical package (Jöreskog & 

Sörbom, 1993). We used the fit indices recommended by Jöreskog and Sörbom (1993), such as the 

root-mean-square error of approximation (RMSEA), the non-normed fit index (NNFI), and the 

comparative fit index (CFI). Like Schreiber, Stage, King, Nora, and Barlow (2006; see also 

Schermelleh-Engel, Moosbrugger, & Müller, 2003), we considered substantively interpretive models 

with a non-significant chi-square, an RMSEA below .05, an NNFI above .97, and a CFI above .97 as a 

good fit.  

3.1.3.2. Preliminary analysis. 

Possible differences related to gender and school year were measured: for the former, only the 

effect of the dot matrix task (F[1,164]=8.93, p=.003, ηp
2
=.05) was significant (males did better than 

females); for the latter, only the effects of the MT advanced geometry task (F[1,164]=11.46, p=.001, 

ηp
2
=.65), and of the nonsense shapes (F[1,164]=5.81, p=.017, ηp

2
=.03) were significant (13

th
 graders 

performed better than 12
th

 graders in both cases). 
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3.1.3.3. Path analysis 

Normality was taken into consideration. Mardia's measure of relative multivariate kurtosis 

(MK) was obtained using PRELIS (Jöreskog & Sörbom, 1993). The MK was 1.09, which implies a 

non-significant departure from normality (−1.96 <z< 1.96; Mardia, 1970). 

For the purposes of our analysis, we considered the VSWM tasks as independent variables and 

the geometry achievement test (the MT advanced geometry task) as a dependent variable. We sought 

the best model first (models 1 to 4), considering only the total score for the intuitive geometry task as 

the mediator variable, then (models 5 and 6) we distinguished between the CP and CMP of geometry 

(as in Dehaene et al., 2006). 

 

Table3.2 

Correlation matrix for all measures  

Variables 1 2 3 4 5 6 7 8 9 10 

Achievement in geometry 

1. MT advanced geometry task 1          

Intuitive geometry 

2. Intuitive geometry      .35** 1         

3. Core principles of geometry     .24**     .54** 1        

4. Culturally-mediated principles 

of geometry 
    .32**     .96**     .30** 1       

Simple storage tasks 

5. Nonsense shapes .08 .13 .01 .15 1      

6. Sequential dot matrix  .07   .19* .00     .22** .06 1     

7. Simultaneous dot matrix .08 .13 .10 .12   .17* .11 1    

Complex span tasks 

8. Jigsaw puzzle     .22**     .26** .10     .27** .10 .08 .10 1   

9. Dot matrix .09   .17* .10   .16* .12   .17* .04 .09 1  

10. VPTA .14 .11 .11 .09 .03 .08 .14     .33**   0.16* 1 

Note. * p< .05, ** p< .01. 

 

We began our analysis by assessing the full model involving all the variables. Then we 

gradually deleted some of the variables, taking their weight and our hypotheses into account. The initial 

model thus involved the nonsense shapes, sequential dot matrix, simultaneous dot matrix, jigsaw puzzle 
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and dot matrix tasks, and the VPTA tests as independent variables. The total score for the intuitive 

geometry task served as the mediator and the MT geometry achievement task as the dependent 

variable. 

Path model 1 was saturated. The fit was completely adequate (Table 3.3, 3.4; Figure 3.4).  

In Path model 2, we deleted the direct effects of nonsense shapes, sequential dot matrix, 

simultaneous dot matrix, dot matrix tasks and VPTA on MT geometry achievement, since the 

relationships between these variables and MT geometry achievement were not significant. The fit 

indices of the model were perfect (Table 3.3), but the relationships between the nonsense shapes, 

simultaneous dot matrix and VPTA variables, and the intuitive geometry task were not significant 

(Table 3.4).  

In Path model 3, the nonsense shapes, simultaneous dot matrix and VPTA were deleted. The fit 

indices of the model were perfect (Table 3.3).  

In Path model 4, the dot matrix task and the non-significant correlation between the sequential 

dot matrix and jigsaw puzzle were deleted (Figure 3.4, Table 3.4). In this model, the sequential dot 

matrix and jigsaw puzzle, in conjunction with the mediation of the intuitive geometry task, predicted 

the MT geometry achievement; the intuitive geometry task and the jigsaw puzzle directly predicted MT 

geometry achievement. The resulting fit indices were excellent (Table 3.3). This model explained 14% 

of the MT geometry achievement variance. In Path model 4b, we attempted to delete the direct effect of 

the jigsaw puzzle on the MT geometry achievement task, but the fit indices became worse (Table 3.3). 

Since the model 4b was nested in the model 4a, we calculated the chi-square difference between the 

two models, χ
2

D(1)=4.11, p=.043 (right tail), finding the fit of the model 4a statistically better than that 

the model 4b. We therefore opted for the Path model 4a. 

In Path model 5a, CP and CMP of geometry were introduced as separate mediator variables 

(instead of single mediator variables of intuitive geometry). Based on the fit indices, this model was 
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unacceptable (Table 3.3). In Path model 5b, we introduced a direct path from CP to CMP of geometry 

and the fit indices improved significantly (Table 3.3), but the path from VSWM to CP, and the direct 

effect of CP on the MT advanced geometry task were poor.  

In Path model 6a, we considered CP as an independent variable, and we also deleted the non-

significant correlations between the independent variables (Figure 3.6). In this model, the CP, the 

sequential dot matrix, and the jigsaw puzzle, with the mediation of CMP of geometry, were able to 

predict MT geometry achievement; CP and CMP of geometry, and the jigsaw puzzle task also directly 

predicted MT geometry achievement (Table 3.4). The fit indices were very good (Table 3.3). This 

model explained 14% of the variance for the MT geometry achievement task. In Path model 6b, we 

attempted to delete the direct effect of the jigsaw puzzle task on the MT-advanced geometry task, and 

the fit indices were good. Nevertheless, since model 6b was nested in model 6b, we also calculated the 

chi-square difference between the two models; the chi-square was significant (χ
2

D[1]=4.05, p=.044 

[right tail]), showing that the fit for the model 6a was statistically better than for the model 6b. In Path 

model 6c, we tested a model including CP with a path on the sequential dot matrix and the jigsaw 

puzzle task with a path on the CMP of geometry with a path on the MT advanced geometry task, but 

the model did not converge. We consequently selected the Path model 6a.  

 

Table 3.3 

Values of selected fit statistics for path models 

Model χM
2
 dfM p RMSEA LL  UL  NNFI CFI 

1 0 0 1 0 0 0 1 1 

2 1.19 5 .95 0 0 .01 1.26 1 

3 0.15 2 .93 0 0 .01 1.21 1 

4a 0.005 2 1 0 0 0 1 1 

4b 4.12 3 .25 .04 0 .14 .95 .97 

5a 14.76 3 .002 .15 .08 .23 .37 .81 

5b 0.001 2 1 0 0 0 1 1 

6a 0.002 4 1 0 0 0 1 1 

6b 4.05 5 .54 0 0 .09 1.03 1 
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Figure 3.4 Conceptual diagram of path model 1 

 

Figure 3.5 Standardized solution of path model 4a. 

Figure 3.6 Standardized solution of path model 6a. 
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Table 3.4  

Direct and indirect effects predicting academic achievement in geometry, and regression weight. 

Dependent variable Independent variable Direct effect Indirect effect Total 

Path model 1 Β Z β Z R² 

MT advanced  

geometry task 

Intuitive geometry   .31   3.93
**

   

.15 

Nonsense shapes  .02  .33 .02    .96 

Sequential dot matrix -.01 -.17 .04  1.70
*
 

Simultaneous dot matrix  .02  .23 .02  1.02 

Jigsaw puzzle  .11 1.36 .07    2.33
**

 

Dot matrix   .01  .18 .03  1.39 

VPTA  .07  .89 .00 -0.10 

Path model 2 Β Z β Z R² 

MT advanced  

geometry task 

Intuitive geometry   .31   4.10
**

   

.14 

Nonsense shapes   .02  .96 

Sequential dot matrix   .04  1.71
*
 

Simultaneous dot matrix   .03 1.03 

Jigsaw puzzle  .13  1.76
*
 .07    2.37

**
 

Dot matrix   .04  1.39 

VPTA    .00 -0.10 

Path model 3 Β Z Β Z R² 

MT advanced  

geometry task 

Intuitive geometry   .31   4.16
**

   

.14 
Sequential dot matrix   .05   1.99

**
 

Jigsaw puzzle  .13 1.78
*
 .08   2.54

**
 

Dot matrix   .03 1.26 

Path model 4a Β Z Β Z R² 

MT advanced  

geometry task 

Intuitive geometry   .31   4.17
**

   

.14 Sequential dot matrix   .05   2.03
**

 

Jigsaw puzzle .13 1.79
*
 .08   2.61

**
 

Path model 5a Β Z Β Z R² 

MT advanced  

geometry task 

Core principles of geometry .15   2.06
** 

  

.13 

Culturally-mediated principles 

of geometry 
.24   3.20

**
   

Sequential dot matrix   .05 1.79
*
 

Jigsaw puzzle .14 1.83
* 

.08   2.57
**

 

Path model 6a Β Z β Z R² 

MT advanced  

geometry task 

Core principles of geometry .15   1.97
**

 .07   2.41
**

 

.14 

Culturally-mediated principles of 

geometry 
.24   3.06

**
   

Sequential dot matrix   .05   2.09
**

 

Jigsaw puzzle .14 1.83
*
 .05   2.18

**
 

Note. 
*
p <.05; 

**
 p<.01 (one tail) 
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3.1.4. Discussion 

In this study, we investigated the relationships between VSWM, intuitive geometry and 

academic achievement in geometry in secondary school students. 

In particular, we expected to find a relationship between VSWM and intuitive geometry, and we 

hypothesized that both intuitive geometry and VSWM could predict academic achievement in 

geometry. To investigate these issues, the total score obtained in the intuitive geometry task devised by 

Dehaene et al. (2006) was used as a mediator variable. The final path model showed that only two of 

the six VSWM tasks considered were significantly related to the intuitive geometry task, namely a 

complex span task (jigsaw puzzle) and a simple storage task assessing spatial-sequential memory 

(sequential dot matrix). Only the jigsaw puzzle task related directly to academic achievement in 

geometry (i.e., the score in the MT advanced geometry task), whereas the sequential dot matrix task 

indirectly predicted academic achievement in geometry.  

Our second hypothesis, based on the distinction made by Dehaene et al (2006) between the CP 

and CMP of geometry, was that VSWM could be more implicated in the acquired principles than in the 

CP of geometry, while both these aspects of intuitive geometry would be related to academic 

achievement in geometry. In the final path model, only the jigsaw puzzle task directly predicted 

academic achievement in geometry. More specifically, the VSWM tasks only related to CMP of 

geometry, while none of them related to the CP of geometry. Both the core principles and the 

culturally-mediated principles of geometry were related to academic achievement in geometry, but the 

latter CMP attributes had a stronger (β=.24) relationship with academic achievement than the CP of 

geometry (β=.15). Although the total variance in academic achievement in geometry explained by the 

model was not particularly high (producing a result consistent with the observation that many other 

variables can influence achievement in geometry; Aydin & Ubuz, 2010), the final model showed a very 

good fit and provided a picture of the relationship between VSWM, intuitive geometrical concepts, and 
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academic achievement in geometry that is plausible and consistent with our predictions. Our results 

confirm the existence of a relationship between VSWM and geometry, but introduce the novel finding 

that this relationship is not involved in all the tasks. Some VSWM tests did not correlate significantly 

with performance in geometry, showing for example that the ability to retain a shape or a pattern of 

locations is not crucial to success in geometrical tasks. The most powerful VSWM test for predicting 

performance in intuitive geometry tasks and academic achievement in geometry was the jigsaw puzzle, 

which requires that participants not only memorize but also manipulate visual information (Cornoldi & 

Vecchi, 2003). Its relationship with the CMP of geometry can be explained by the finding that the 

items used in the study by Dehaene et al (2006) in which the Amazon Indian adults failed involved 

geometrical transformations, with participants having to rotate, translate, or mentally manipulate one 

shape to convert it into another. In a more recent study comparing adults with children 4-10 years old, 

Izard and Spelke (2009) demonstrated that it is only after adolescence that young people are able to 

detect directional relationships, a skill requiring discrimination of mirror and rotated images. 

The jigsaw puzzle task not only supported CMP of geometry, but was also directly related to 

academic achievement in geometry. It is worth noting that the task we used to test academic 

achievement in geometry included items in which participants had to remember theorems or 

geometrical rules, as well as visualizing and manipulating visuospatial information to solve the 

geometrical problems. In contrast with the other two complex span tasks, which involved manipulating 

spatial locations, the jigsaw puzzle task seems the most suitable for representing operations that are 

also required in the task for testing academic achievement in geometry. 

The second VSWM task entered in the final path model was the sequential dot matrix task, 

which is believed to assess passive spatial-sequential processes (Cornoldi & Vecchi, 2003). It involves 

recognizing increasing numbers of locations presented one after the other. This task did not directly 

predict academic achievement in geometry, but it did appear to be related to the CMP of geometry. The 
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specific contribution of the test to the CMP of geometry could be due to the geometrical requirement 

involved in memorizing the exact sequence of successive visuospatial operations.  

It is worth noting that none of the VSWM tasks was related to the CP of geometry. This may be 

because the CP of geometry need no support from VSWM. The CP of geometry could develop without 

any need for either experience or other underlying cognitive structures, as in the case of other aspects 

of mathematics (Spelke & Kinzler, 2007; Spelke, 2004).  

A number of crucial issues would need to be considered in future research. For a start, only 

VSWM tasks were administered to the participants in our study, based on the assumption that VSWM 

processes might be stronger predictors of achievement in geometry than verbal WM processes. Further 

research should consider the role of verbal WM, however, given that formal education in geometry 

involves using verbal rules, formulas, theorems, and so on), as well as numerous other factors that 

presumably affect the acquisition of geometrical knowledge (Aydin & Ubuz, 2010), as indirectly 

demonstrated by the limited percentage of variance explained by our path models. In addition to 

VSWM, further studies should analyze the role of visuospatial abilities, such as spatial visualization 

and mental rotation skills in academic achievement in geometry. Finally, reasoning and fluid 

intelligence may also have a central role in accounting for a part of the variance affecting the 

acquisition of geometry. Second, our findings might be explained by our sample selection procedures 

and consequent choice of task for assessing academic achievement in geometry. As previously 

mentioned, we chose secondary school students because they have received the highest level of 

compulsory schooling in geometry, and we were thus able to study the role of both CP and CMP of 

geometry. It would be reasonable to expect different results when testing young children, for instance, 

when their cultural background and schooling would have a lower weight. Our students were also 

attending schools where geometry had an important role, so our findings cannot be generally applied to 

pupils at different types of school. Because the types of secondary school that we considered are 
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attended mainly by boys, our sample also contained more males than females, though the only 

significant effect of gender was found in the dot matrix task, which was not included in our final path 

models. This aspect may nonetheless be a limitation of our study. 

Finally, our findings also have educational and clinical implications. First of all, they can 

provide teachers and educators with information on which cognitive processes support students 

learning geometry. To give an example, knowing that complex VSWM tasks can directly predict 

academic achievement in geometry could help teachers to suggest activities that do not overshadow 

their students' VSWM capacity. Secondly, shedding light on the mechanisms influencing academic 

achievement could help us to understand why some students fail in geometry and how we can help 

them to cope with their difficulties. Thirdly, assessing visuospatial abilities in general, and VSWM in 

particular, could make it easier to identify children who might meet with difficulties in learning 

geometry later on. Consistently with these observations, research is underway to examine the cognitive 

deficits underlying difficulties in learning geometry. In particular, Mammarella, Giofrè, Ferrara and 

Cornoldi (2012) found that young children with poor visuospatial skills failed in both intuitive 

geometry and VSWM tasks; and Hannafin, Truxau, Vermillion and Liu (2008)found that students with 

weak spatial abilities performed worse than students with strong spatial abilities in terms of their 

academic achievement in geometry.  

In conclusion, our study shows that the academic achievement in geometry of secondary school 

students can be predicted: (1) indirectly by VSWM tasks, which support CMP of geometry; (2) directly 

by a complex VSWM task (the jigsaw puzzle task); and (3) by CP and CMP of geometry, the latter 

showing a stronger relationship with academic achievement than the former.  
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3.2. Study 2. Intuitive geometry and visuospatial working memory in children showing 

symptoms of nonverbal learning disabilities. 

3.2.1. Introduction 

Geometry has long been considered one of the most important forms of mathematical 

knowledge. Although geometry is included in all the mathematical curricula in the world, in ternational 

assessments report that many students present difficulties in learning geometry (OECD, 2007). Despite 

this, a cognitive profile of students with difficulties in learning geometry has never been studied. The 

present study offers a first contribution in this direction by examining a particular group of learning-

disabled children who were hypothesized to present difficulties in geometry. 

Learning disabilities occur in approximately 5% of school-age children (Lyon, 1996), and two 

major subtypes of learning disabilities have been described: children with linguistic disabilities and 

children with nonverbal learning disabilities (NLD) (Drummond, Ahmad, & Rourke, 2005). A 

nonverbal learning disability refers to a difficulty in processing visuospatial information or other types 

of nonverbal information. NLD was also described and labelled either as a dysfunction of the right 

hemisphere (Gross-Tsur, Shalev, Manor, & Amir, 1995; Nichelli & Venneri, 1995; Weintraub & 

Mesulam, 1983) or as a visuospatial learning disability (Cornoldi, Venneri, Marconato, Molin, & 

Montinari, 2003; Mammarella & Cornoldi, 2005a; 2005b). However, the formulation of an inclusive 

set of characteristics and classifications is still under debate (Roman, 1998; Spreen, 2011). Rourke 

(1989, 1995) elaborated a model on the NLD syndrome with extensive studies that demonstrated a 

specific pattern of neuropsychological assets and deficits. Briefly, this pattern includes bilateral tactile-

perceptual and coordination deficits, substantially deficient visuospatial abilities, deficits in novel 

problem solving and concept formation, poor arithmetic skills (Harnadek & Rourke, 1994; 

Mammarella et al., 2010), and strong word reading with poor reading comprehension of spatial 

descriptions (Mammarella et al., 2009). To this list, behavioural descriptions frequently added deficient 
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social perception and judgment, interaction verbosity of a repetitive nature, and problems in adapting to 

novel situations (Rourke & Tsatsanis, 2000).  

Although different criteria are used for diagnosing children with NLD, there is a general 

agreement (Solodow et al., 2006) that the main symptoms of NLD are the presence of a discrepancy 

between verbal and nonverbal IQ, visuospatial and motor coordination impairments, and school 

difficulties, in particular in the mathematical area. In a cross-country study comparing the 

characteristics of British and Italian children who had received a diagnosis of NLD, Cornoldi and 

collaborators (Cornoldi et al., 2003) validated a rapid screening measure for teacher identification of 

children with NLD symptoms, focusing on their visuospatial difficulties. Mathematical difficulties 

were considered as a typically associated symptom, but not as a defining feature of NLD. 

Another critical factor underlying the difficulties encountered by children with NLD seems to 

be related to visuospatial working memory (VSWM) deficits (Cornoldi, Dalla Vecchia, Tressoldi, & 

Vecchia, 1995; Cornoldi, Rigoni, Tressoldi, & Vio, 1999; Mammarella & Cornoldi, 2005a, 2005b). 

According to Logie (1995), VSWM is a specific working memory component, responsible for the 

maintenance and processing of visual (e.g., colour, shape, texture) and spatial (e.g., position of an 

object in space) information. VSWM has been specifically explored in children with NLD, and 

evidence showed that they are impaired in both simple storage (i.e., passive) and complex-span (i.e., 

active) tasks, but that different NLD children may present different specific weaknesses. Simple 

storage tasks refer to the retention of information that has not been modified after encoding, while 

complex-span tasks require transformation and manipulation of stored information. Regarding simple 

storage tasks, for example, Mammarella et al. (2006) observed, in a group of NLD children, a double 

dissociation between spatial-simultaneous tasks (those requiring them to recall spatial locations 

presented at the same time) and spatial-sequential tasks (those requiring them to recall spatial locations 

presented one after the other). Furthermore, a specific analysis of two NLD cases (Cornoldi, Rigoni, 
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Venneri, & Vecchi, 2000) offered evidence in favour of the dissociation between simple storage and 

complex-span tasks in VSWM. However, a series of studies revealed that children with NLD are 

usually more impaired on complex-span tasks requiring an active manipulation of stored information 

than on simple storage tasks (see, for example, Cornoldi et al., 1995, 1999). In sum, these results show 

that: (a) it is important to consider VSWM, in its different components, for identifying different 

subtypes of NLD, and (b) VSWM deficits might explain why NLD children fail in a range of activities 

(e.g., mathematics, drawing, spatial orientation, geometry, etc.) assumed to involve VSWM.  

Concerning the failures of NLD children in mathematical tasks, deep attention has been 

dedicated only to the case of calculation. For example, considering the relationship between VSWM 

and arithmetic in children with NLD, Venneri, Cornoldi, and Garuti (2003) compared children with 

NLD to controls in arithmetic calculations. Their results revealed that the group with NLD had more 

severe difficulties with written calculation, especially when borrowing and/or carrying were involved. 

The authors hypothesized that NLD children do not have a generalized problem with calculation per se; 

instead, their problems derive from dealing with specific processes, including VSWM, which governs 

calculation. In a further study, Mammarella et al. (2010) found that children with NLD performed 

significantly worse than did children with typical development in VSWM tasks and in arithmetic tasks 

associated with visuospatial processes, as, for example, carrying errors, partial calculation errors, and 

column confusions. Moreover, their results confirmed that an arithmetic difficulty may be associated 

with NLD, but also suggested that a VSWM difficulty may be primary in NLD. In fact, using VSWM 

tasks as covariates, differences in arithmetic skills disappeared, and a discriminant analysis showed that 

a VSWM task and not arithmetic performances was able to contribute to identification of NLD 

children. 

It is worth noting that in the psychology literature, the role of VSWM in arithmetic is still 

controversial: some studies have failed to find evidence for a role of VSWM components in mental 
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calculation (Logie, Gilhooly, & Wynn, 1994; Noël, Désert, Aubrun, & Seron, 2001), but others have 

demonstrated the involvement of VSWM in arithmetic (Bull et al., 2008; DeStefano & LeFevre, 2004; 

Holmes & Adams, 2006; Trbovich & LeFevre, 2003). The involvement of visuospatial abilities and 

VSWM in mathematics could be even greater in geometry than in calculation, and it could be 

emphasized in the case of NLD children. In fact, geometry requires by definition the treatment of 

spatial information of two- and three-dimensional patterns. However, to our knowledge, there are no 

systematic research studies analysing the relationship between geometry and VSWM in general, and in 

particular, in children with NLD. Furthermore, evidence is necessary to support the hypothesis that 

VSWM is critical in learning geometry. In fact, it has been suggested that success in geometrical tasks 

is not so critically related to spatial abilities as one would intuitively predict, as many other factors may 

be crucial, including verbalization, abstract reasoning, metacognition, motivation, and others (Aydin & 

Ubuz, 2010).  

An important point to be considered, when examining the relationship between geometry and 

underlying cognitive processes, is that geometry is a broad area with many facets. In fact, geometrical 

competence can involve both intuitive concepts, as well as aspects more associated with schooling. The 

concept of intuitive geometry has been recently introduced by Dehaene and collaborators (Dehaene et 

al., 2006). These authors investigated whether some principles of geometry can be considered as core 

culture-free concepts (see also Spelke et al., 2010) by examining the spontaneous geometrical 

knowledge of an Amazonian group that was not exposed to a geometrical instruction. Dehaene and 

colleagues (2006) hypothesised that people might possess primitive principles of geometry, similar to 

the case for numerical knowledge. In fact, in the numerical field, a growing number of studies have 

shown that infants seem to respond to the numerical properties of their visual world without the benefit 

of language acquisition (Koechlin, Naccache, Block, & Dehaene, 1999; Starkey & Cooper, 1980; 

Starkey, Spelke, & Gelman, 1990; Xu & Spelke, 2000). To look at the particular case of geometry, 
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Dehaene et al. (2006) compared Amazonian indigenes and American children/young adults in intuitive 

knowledge of geometry, and their results revealed that the Amazonian group succeeded remarkably 

well with the intuitive concepts of topology (e.g., connectedness), Euclidean geometry (e.g., line, point, 

parallelism, and right-angle), and geometrical figures (e.g., square, triangle, and circle). Dehaene and 

colleagues (2006) consequently considered these concepts as primitive core concepts of geometry. 

Furthermore, they found that the Amazonian adult group performed poorly in items assessing 

geometrical transformations, in which subjects have to use concepts like translations, symmetries, 

rotations. The authors concluded that these items all imply a mental transformation of one shape to 

another, and they might require culturally mediated, non-innate concepts of geometry. The first study 

showed that VSWM has a critical role in intuitive geometry and that both VSWM and intuitive 

geometry contribute to academic achievement in geometry. It is also suggested that VSWM is more 

critical in supporting the acquisition of culturally mediated concepts of geometry than in the acquisition 

of the primitive core ones.  

The present study was devoted to exploring the geometrical competencies and the role of 

VSWM in children displaying some symptom of NLD who were hypothesized to encounter difficulties 

in geometry. It should be noted that our NLD group had not received a clinical diagnosis, but was 

identified through a school screening. In particular, our NLD group displayed the most typical 

symptoms of NLD, both reported by their teachers through the Short Visuospatial (SVS) Questionnaire 

(Cornoldi et al., 2003), and recognised through two subtests (i.e., one spatial and one verbal) of the 

Primary Mental Ability (PMA) battery (Thurstone & Thurstone, 1963). Our screening did not use 

mathematical difficulties as a criterion for identifying children with NLD, thus avoiding the risk of a 

circularity of looking for mathematical difficulties in children identified on the basis of a mathematical 

difficulty. 
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The main aims of the current study were as follows: first, we wanted to examine whether the 

mathematical difficulties of NLD children could be extended to the case of intuitive geometry; second, 

we looked for further support for the presence of VSWM deficits of NLD children, mainly in complex-

span tasks; and third, we examined whether the hypothesized VSWM deficits are critical in explaining 

group differences in intuitive geometry, thus offering indirect evidence for the assumption that skill in 

geometry is supported by VSWM.  

To reach these aims, in the present study, different measures of VSWM and intuitive geometry 

were administered to the group of NLD children and to a control group matched for verbal general 

abilities, age, gender, and socioeconomic level. For VSWM, three simple storage tasks (visual, spatial-

sequential, spatial-simultaneous) and three complex-span tasks were used. The simple storage tasks 

were selected on the basis of the Cornoldi and Vecchi model (2003), distinguishing between visual, 

spatial-sequential, and spatial-simultaneous. The complex-span tasks were selected from the literature 

and chosen to ensure a variety of task types, mapping different processes. To examine geometry, we 

administered the intuitive geometry task (Dehaene et al., 2006). As already mentioned, this test 

involves trials assessing different concepts of geometry. This articulation offered the possibility of 

individuating the aspects where the specific visuospatial deficit of NLD could have a greater impact 

and, in contrast, the aspects where abstract reasoning, supported by language, could compensate for the 

visuospatial deficit.  

3.2.2. Method 

3.2.2.1. Participants  

The initial screening involved a sample of 278 children (143 M, 135 F) aged 11 to 13 years 

(mean=149.69 months; SD=10.61), with 99 children from sixth grade, 100 from seventh grade, and 79 

from eighth grade.  
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The identification of NLD children and the control group (CG) was carried out on the basis of 

difficulties detected by their teachers through the SVS Questionnaire (Cornoldi et al., 2003). General 

verbal and visuospatial abilities were evaluated using the Verbal Meaning and Spatial Relations 

subtests of the Primary Mental Ability Test (PMA, Thurstone & Thurstone, 1963), respectively. For all 

children, parental consent was obtained prior to testing. Children referred to as having a very low 

socioeconomic level were not included in the groups. 

The inclusion criteria of NLD children were the following: (a) visuospatial scores on the SVS 

Questionnaire lower than 20
th

 percentile; (b) scores lower than 2 SD in the Spatial Relations subtest of 

the PMA; and (c) average scores in the Verbal Meaning subtest of the PMA. In contrast, the inclusion 

criteria of the CG group were the following: (a) scores equal to or higher than 50
th

 percentile in the 

visuospatial score of the SVS Questionnaire; and (b) average performance in both PMA subtests 

(Spatial Relations and Verbal Meaning). 

Our sample was composed of 16 NLD children (9 M and 7 F), sixth-, seventh-, and eighth-

graders, aged between 11 and 13, and 16 control group (CG) children (9 M and 7 F) matched for age, 

schooling, gender, PMA Verbal Meaning subtest scores, and socioeconomic level as assessed by their 

teachers (Table 3.5).  
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Table3.5 

Characteristics of children showing symptoms of NLD and controls (CG): mean, standard deviations 

(SD), confidence intervals (CI 95%), and statistical analyses.  

 NLD (N=16) CG (N=16) Statistical Analyses 

 Mean (SD) CI 95% Mean (SD) CI 95% F(1,30) p η² 

  I.L. S.L.  I.L. S.L.    

Age (months) 146.25 (9.52) 141.18 152.32 146.06 (9.21) 141.15 150.97 .003 .955 .0001 

Svs Questionnaire          

Visuospatial score 22.81 (2.88) 21.28 24.35 33.38 (3.34) 31.59 35.16 91.64 .001 .75 

PMA           

Verbal meaning 13.81 (4.92) 11.19 16.43 13.88 (2.78) 12.39 15.36 .002 .965 .0001 

Spatial relations 2.75 (2.79) 1.26 4.24 15.06 (3.99) 12.94 17.19 102.22 .001 .77 

 

As shown in Table 3.5, the two groups did not differ significantly in terms of age or scores on 

the PMA Verbal Meaning subtest. As expected, the differences between groups were significant on the 

visuospatial scores of the SVS Questionnaire and on the PMA Spatial Relations subtest. Each child's 

socioeconomic level was estimated by teachers using a four-point scale (1=high socioeconomic level; 

2=medium-high; 3=medium-low; 4=very low), and the two groups did not differ in this estimation (U 

Mann-Whitney p=.37).  

3.2.2.2. Materials and Procedure 

Participants were tested in an individual session lasting approximately one hour in a quiet room 

outside the classroom. In order to avoid biasing of performance in any test through effects of practice 

or fatigue, test presentation order was counterbalanced according to a randomized Latin square. 

Children were presented with six VSWM tasks and the intuitive geometry task (Dehaene et al., 2006). 

Visuospatial working memory tasks. Participants were presented with six tasks (four 

computerized, two paper-and-pencil). Five of them were part of an Italian standardized VSWM test 
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battery (Mammarella, Toso, et al., 2008), while the dot matrix test was derived from Miyake, 

Friedman, Rettinger, Shah, and Hegarty (2001). Three tests were simple storage tasks (i.e., passive), 

while three were complex-span tasks (i.e., active). Moreover, the simple storage tasks were 

distinguished as visual, spatial-sequential, and spatial-simultaneous (Cornoldi & Vecchi, 2003; 

Mammarella, Pazzaglia, et al., 2008; Pazzaglia & Cornoldi, 1999). 

The six tests used a self-terminating procedure: they were administered starting with the 

simplest series and rose in complexity, and participants continued as long as they were able to solve at 

least two items out of three at a given level. For scoring, we used the absolute scoring method, because 

is the method predominantly used in child WM research (Hornung, Brunner, Reuter, & Martin, 2011). 

Moreover, items at the second level had a value of 2, at the third level a value of 3, and so on; final 

scores were the sum of the values for the three final correct responses (for example, if a participant 

successfully solved two items at the fourth level and one at the fifth, then the score was 4+4+5=13). 

Before administering each task, participants were given two practice trials with feedback.  

Simple storage tasks. In simple storage tasks, participants had to decide whether a series of 

figures/locations were the same as or different from the one previously presented: following a first 

stimulus presentation, either the same stimulus or one with a change of just one element was presented. 

This was followed by a response screen containing two letters, U (uguale=same) and D 

(diverso=different): participants had to respond by pressing one of two keys on the keyboard. 

The nonsense shapes task, involving passive visual working memory, was based on the 

presentation of nonsense figures varying from two to eight, according to the complexity level. At the 

beginning of each trial, a blank screen appeared for 1000 ms, followed by another blank screen for 500 

ms, and then the nonsense figures (3000 ms), followed by another blank screen for 500 ms. After 

presentation of a fixation point for 1500 ms, either the same series of figures or a series differing in one 

figure was presented for the recognition task. 
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The sequential dot matrix task involved passive spatial-sequential working memory. In this 

task, a gray screen was presented for 1000 ms followed by a 5x5 matrix shown to participants for 250 

ms. Immediately afterward, red dots appeared in various cells of the matrix one at a time for 1000 ms, 

followed by a 250-ms interval. The number of red dots varied from two to eight, according to the 

complexity level. After a delay of 500 ms after the last red dot appeared, a fixation point of 1000 ms, 

and another delay of 500 ms, the same sequence or one with one red dot in a different order was 

presented at the same rate. Participants had to decide whether the sequence of dots was the same as that 

just presented, or if there were a change in order. 

The simultaneous dot matrix task involved passive spatial-simultaneous working memory. The 

same display as that used in the sequential dot matrix task was used (5x5 matrices), but this time the 

red dots appeared simultaneously. In the test, participants had to decide if the new pattern of red dots 

was the same as that just presented, or whether one red dot appeared in a different location. After a 

blank screen of 1000 ms, a 5x5 matrix appeared on the screen for 500 ms, and then a variable number 

(two to eight, depending on the complexity level) of red dots appeared for 2500 ms, followed by 

another delay of 500 ms. After a fixation point of 1000 ms, the same arrangement of dots, or one with a 

red dot in a different location, was presented. 

Complex-span tasks.  

The jigsaw puzzle task (adapted from Vecchi & Richardson, 2000) tests the ability to 

manipulate a visual shape. It consists of a series of drawings derived by Snodgrass and Vanderwart 

(1980). Each drawing is fragmented into two to ten numbered pieces forming a puzzle. Drawings 

represent common, inanimate objects with a high value of familiarity and of image agreement. Each 

whole drawing is presented for 2000 ms, together with its verbal label, and is then removed. The 

material of each puzzle and the response sheet (a blank matrix with a number of cells corresponding to 

the number of pieces) are then displayed in front of the participant with the pieces set out in a non-
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ordered way. Puzzles have to be solved not by moving the pieces but by writing down or pointing to 

the corresponding number of each piece on a response sheet. The level of complexity is given by the 

number of pieces composing each puzzle (e.g., from 2 to 10). 

The dot matrix task (derived from Miyake et al., 2001) tests the ability to simultaneously 

process visuospatial information and maintain information in the visuospatial store. The test required 

participants to verify a matrix equation while simultaneously remembering a dot location in a 5x5 

matrix. Each trial contained a set of matrix equations to be verified, each followed by a 5x5 matrix 

containing one dot. In the matrix equation display, a simple addition or subtraction equation was 

presented. Participants were given 4500 ms to verify whether the sum (or subtraction) of two 

successively presented segments was correctly described by a third presented pattern. Immediately 

afterward, a 5x5 matrix containing a dot in one cell was automatically displayed on the screen for 1500 

ms. After a sequence of two to five equations and matrices, participants had to recall (in any order) 

which cells of the 5x5 matrix had contained dots (by clicking in the empty cells with the mouse). 

The visual pattern test, active version (VPTA) (derived from Della Sala et al., 1997) tests the 

ability to maintain simultaneously presented spatial information and make a simple transformation of it. 

Participants were presented with matrices created by filling half cells of a matrix for 3000 ms. The 

matrices increased in size from smallest (4 squares at first level, with 2 filled cells) to largest (20 

squares at final level with 10 filled cells). After the presentation phase, when participants memorized 

the filled squares, the initial stimulus was removed, and participants were presented with a blank test 

matrix on which they had to reproduce the pattern, filling in the cells corresponding to the positions in 

a row below the row filled in the presentation matrix (whose bottom row was always empty). For 

example, if in the presentation matrix the second square in the first row was filled, the participant had 

to fill in the second square in the second row. The level of complexity was defined as the number of 

filled cells in the matrix (2 to 10). 
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Intuitive geometry task.  

In the intuitive geometry task (Dehaene et al., 2006), items were randomly presented by a 

computer. At the beginning of the procedure, a masking screen appeared for 2000 ms, followed by the 

stimuli (randomly presented). Each stimulus remained on the screen until subjects gave a response. 

Items consisted of an array of six images, five of which instantiated the desired concept, while the 

remaining one violated it. For each stimulus, participants were asked to point to the odd-one-out see 

Appendix). 

Participants were presented with 43 items split into seven concepts: topology (for example, 

closed vs. open figures), Euclidean geometry (e.g., concepts of straight lines, parallel lines, etc.), 

geometrical figures (e.g., squares, triangles, and so on), symmetrical figures (for example, figures 

showing horizontal vs. vertical symmetrical axes), chiral figures (in which the odd-one-out was 

represented by a mirrored figure), metric properties (for example, the concept of equidistance), and 

geometrical transformation (e.g., translations and rotations of figures). 

Different scores were computed: first, the total mean percentage of correct responses, and 

second, the mean percentages of correct responses derived from the seven concepts of geometry. 

3.2.3. Results 

3.2.3.1. Differences in Intuitive Geometry and VSWM 

The mean scores obtained by the NLD and control group are presented in Table 3.6. Moreover, 

the mean percentages of correct responses of the two groups in the seven concepts of geometry are 

reported in Figure 3.7.  

A one-way ANOVAs comparing the two groups showed significant differences on the total 

score of geometry (F(1,30)=10.08, p=.003, Cohen's d=1.12). As the ranges of scores and of deviations 

were different for the different geometry subtests, we computed separate one-way ANOVAs. NLD 
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children performed significantly more poorly than did the CG in Euclidean geometry (F(1,30)=6.93, 

p=.013, Cohen's d=.93) and in geometrical transformation (F(1,30)=7.77, p=.009, Cohen's d=.99). No 

differences between groups were found in topology (F(1,30)=3.08, p=.09, Cohen's d=.62); geometrical 

figures (F(1,30)<1, Cohen's d=.26); symmetrical figures (F(1,30)<1, Cohen's d=.21); chiral figures 

(F(1,30)= 2.83, p=.10, Cohen's d=.59); and metric properties (F(1,30)=2.26, p=.14, Cohen's d=.53). 

For VSWM tasks, two multivariate analyses of variance (MANOVAs) were performed: the 

first, compared simple storage tasks (nonsense shapes, sequential dot matrix, and simultaneous dot 

matrix tasks) by group and the second complex-span tasks (jigsaw puzzle, dot matrix, and VPTA) by 

group. We chose to calculate two separate multivariate analyses of variance, since the two categories of 

tasks are clearly distinguishable (see for example, Cornoldi & Vecchi, 2003; Cowan, 2005; Miyake & 

Shah, 1999). We did not find a significant difference between groups in simple storage tasks 

(F(3,28)=.69, p=.41, 
2
=.02), while the comparison on complex-span tasks revealed a main effect of 

group (F(3,28)=5.70, p=.004, 
2
=.38). Univariate tests of significance showed that NLD children and 

CG scored significantly differently in all three of the tests: the jigsaw puzzle task (F(1,30)=6.11, 

p=.019, Cohen's d=.87), the dot matrix task (F(1,30)=10.09, p=.003, Cohen's d=1.12), and the VPTA 

(F(1,30)=11.14, p=.002, Cohen's d=1.18). 
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Table 3.6 

Reliability, maximum possible score, mean scores at the VSWM tasks and, mean total score for the 

intuitive geometry task (standard deviations in brackets)  

   NLD CG  

VSWM tasks Reliability Max Possible M (SD) M (SD) Cohen's d 

Simple storage tasks      

Nonsense shapes .83 24 11.5 (6.67) 13.31 (5.61) .29 

Sequential dot matrix .91 24 14.43 (6.58) 18.63 (3.09) .82 

Simultaneous dot matrix .90 24 17.19 (4.78) 19.06 (5.09) .38 

Complex span tasks      

Jigsaw puzzle  .84 30 11.25 (6.02) 16.25 (5.41) .87 

Dot matrix  .79 12 5.44 (3.61) 8.63 (1.75) 1.12, 

VPTA .89 30 8.06 (7.07) 15.13 (4.65) 1.18 

Intuitive geometry task   

Total score .65 100% 61.63 (12.07) 72.67 (6.92) 1.12 

Note. children showing symptoms of NLD; controls (CG). 

 

Figure 3.7 Mean percentages of correct responses on the seven concept of geometry in children 

showing symptoms of NLD and CG.  

Note. Error bars represent standard errors. 
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In order to analyse the relationship between VSWM and intuitive geometry, we decided to 

examine the effect of VSWM on the total score of intuitive geometry using ANCOVAs. Specifically, 

we compared the total score of intuitive geometry of the two groups with ANCOVAs, considering the 

complex-span tasks as covariates. Using both the dot matrix task and the VPTA as covariates, the 

difference between groups was no longer significant, respectively: F(1,28)=2.99, p=.09, (R²=.40) and 

F(1,28)=1.92, p=.18, (R =.33); whereas the difference was still significant using the jigsaw puzzle as 

covariate: F(1,28)=4.75, p=.038. 

3.2.3.2. Discriminant Function Analysis 

In order to find tasks with highest discriminative power in distinguishing between NLD 

children and CG, a discriminant analysis was performed to identify the variables most capable of 

making this distinction and to predict the probability of different participants belonging to each group. 

Before conducting the discriminant function analysis, issues related to sample size and multivariate 

normality were addressed (Tabachnick & Fidell, 2007). The criterion that the sample size of the 

smallest group should exceed the number of predictors was met. Group size was equal, ensuring 

multivariate normality. The discriminant function analysis was carried out with the stepwise method, 

using the six VSWM tasks and the total score of intuitive geometry. The tasks included in the analysis 

were the VPTA and the dot matrix task, for which Wilks' λ (Lambda) = .63, indicating that these were 

the variables best separating the two groups. The discriminant function analysis had a reliable 

association with children with NLD and CG: χ² (2)=13.32, p<.001. The VPTA and the dot matrix task 

were able to correctly classify into groups 68.8% of NLD children (i.e., 11/16) and 87.5% of CG 

children (i.e., 14/16).  
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3.2.4. Discussion 

The relationship between VSWM and intuitive geometry was analysed as a contribution to the 

study's main goal of examining difficulties in developing geometrical competence. This was 

approached by administering VSWM and intuitive geometry tasks to NLD children matched with 

controls for age, gender, verbal abilities, and socioeconomic level. As noted above, our NLD children 

showed most of the typical symptoms, but they had not been diagnosed as having nonverbal learning 

disability; thus, our results cannot be directly generalised to children with a clinical diagnosis of NLD.  

The first main result of the study was that the NLD children's difficulties in mathematics are 

extended also to the case of intuitive geometry. The result may seem rather obvious, as geometry has 

an evident visuospatial component and NLD are characterized by a visuospatial weakness, but 

previously this fact had never been documented. Furthermore, the geometrical failure of NLD children 

was differentiated; in fact, they performed significantly more poorly than did controls specifically in 

two subtests: Euclidean geometry and geometrical transformation.  

The subtest on Euclidean geometry seems to represent a core concept of geometry. According 

to Spelke et al. (2010), natural geometry is founded on at least two evolutionarily ancient and cross-

culturally universal cognitive systems that capture abstract information about the shape of the 

surrounding world: two core systems of geometry. The first represents the shapes of large-scale, 

navigable surface layouts, while the second represents small-scale, movable forms and objects. 

Empirical evidence regarding the origins of this latter system which also involves concepts of 

Euclidean geometry (e.g., line, point, parallelism, and right-angle) comes from developmental studies 

demonstrating that infants are sensitive to variations of angle (Schwartz et al., 1979; Slater et al., 1991) 

and length (Newcombe et al., 1999). This system therefore shows qualitative continuity not only over 

human development (Izard & Spelke, 2009) but also across cultures (Dehaene et al., 2006). It has to be 

noted that the Euclidean geometry subtest was relatively easy for all children, and that also NLD 
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children, despite performing significantly poorer than controls, obtained a high percentage of correct 

responses. For this reason, some caution is needed in interpreting this finding, and further research 

should examine whether this problem is more evident with younger NLD children. 

Geometrical transformation is the second subtest in which we observed significant differences 

between NLD children and controls. Different from the previous subtest, the performances of both 

groups were not particularly high, although they were both above the chance level (which is 

represented by the value of 16.6% as reported by Dehaene et al., 2006). The geometrical transformation 

subtest is considered by Dehaene and colleagues (2006) as involving a culturally mediated concept of 

geometry, since children have to individuate the odd-one-out among six images representing 

modifications based on translations, symmetries, rotations, and so on. In a recent study comparing 

adults and 4- to 10-year-olds, Izard and Spelke (2009) showed that, at all ages, children were able to 

detect angle and length relationships, but failed to detect directional relationships (i.e., requiring 

discrimination of rotated images) before adolescence. According to Spelke and colleagues (2010), the 

core systems of geometry are able to capture Euclidean distance and angle, but not geometrical 

transformation, and therefore fail to distinguish, for example, a shape from its mirror image. In our 

study the group differences were particularly small in the subtests involving geometrical figures, 

symmetrical figures, and metric properties, probably because NLD children could rely on their 

preserved linguistic skills. In particular, geometrical figures could be named and the odd-one-out could 

be rejected on the basis of the different verbal label. Similarly, the metric properties could also be 

found through a verbalisation process.  

In sum, our results suggest that NLD children experience particular difficulty with two specific 

aspects of intuitive geometry: the first represents a core principle of geometry, while the second is a 

culturally mediated concept necessary in order to perform geometrical transformations such as mental 

rotations.  
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Regarding the second main aim of our research (i.e., finding further support for a VSWM 

impairment in children with NLD), results revealed that NLD children performed significantly more 

poorly than did CG on complex-span tasks, but not on simple storage tasks. This result is in agreement 

with previous research (see for example, Cornoldi et al., 1995; Cornoldi et al., 1999; Mammarella & 

Cornoldi, 2005a). The crucial role of VSWM in children with NLD has been extensively demonstrated 

in the last thirty years, but the present results support the hypothesis that NLD children encounter 

difficulties in VSWM tasks, especially when information must not only be maintained, but also actively 

processed.  

Finally, our third main aim was to analyse whether, to some extent, a VSWM deficit might 

explain the failure of NLD children in intuitive geometry. This relationship was supported by the 

observation that NLD children actually presented both types of problems. Moreover, our covariance 

analyses showed that, when the contribution of two complex-span tasks was eliminated, the difference 

in the intuitive geometry score between groups also disappeared. Specifically, both the dot matrix task 

and the VPTA as covariates removed the differences between NLD children and controls in the 

intuitive geometry task. Mammarella and coworkers (Mammarella, Pazzaglia et al., 2008), in an 

attempt to classify visuospatial complex-span tasks, hypothesised that both the dot matrix task and the 

VPTA involve spatial working memory processes that are sequentially and simultaneously presented, 

respectively. Differently, the jigsaw puzzle task seems to involve, to a greater extent, visual working 

memory processing; in fact, participants have to make complex transformations of visual information. 

Our results thus confirmed that a spatial working memory difficulty may be primary in children with 

NLD, offering further support for the assumption that VSWM is critical for some aspects of 

mathematical cognition, such as intuitive geometry. Both Dehaene et al. (2006) and Giofrè, 

Mammarella, Ronconi, and Cornoldi (2013) suggested that intuitive geometry can be distinguished by 

core and culturally mediated concepts. Furthermore, Giofrè and coworkers (2013) showed that the role 
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of VSWM is critical in supporting culturally mediated concepts of geometry. However, in the current 

study, a differential pattern of difficulties between these two types of concepts of geometry did not 

emerge. The novel finding of the present study is then represented by the crucial role of spatial 

complex-span tasks in intuitive geometry. In fact, as already mentioned, using both the dot matrix task 

and the VPTA as covariates, the differences between NLD children and the controls in the intuitive 

geometry task disappeared. 

Taking up this point, our study concluded by exploring whether specific tasks contributed to the 

identification of NLD children. The discriminant function analysis demonstrated that the dot matrix 

task and the VPTA were the instruments most useful in this sense: using these VSWM tasks, 68.8% of 

the NLD children were correctly classified, confirming that, in general, assessment of VSWM is 

important for analysis of these children. Thus, results from the discriminant function analysis 

strengthened the hypothesis that VSWM difficulty is primary in explaining the performances of 

children at risk of NLD, and that failures in intuitive geometry are mediated by their impairment in 

spatial working memory tasks. However, it is worth noting that 31.2% of children with NLD were 

incorrectly classified, thus suggesting that some other variables could be crucial in the identification of 

children with NLD, such as, motor coordination, visuo-constructive and visuospatial abilities (Gross-

Tsur, et al., 1995; Rourke, 1995; Roman, 1998; Drummond, et al., 2005). Hence, further research is 

needed to confirm and extend the present results, to study many other factors, such as motivation and 

metacognition, that presumably affect the acquisition of geometrical knowledge (see, for example, 

Aydin & Ubuz, 2010) and to overcome the limitations of the present research.  

For example, a limitation of our study concerns the specific range of VSWM and geometry 

tasks that were assessed. In particular, the area of geometry is very large, and different aspects could be 

examined, also with reference to different ages and instructional requirements. Further research should 

also consider the role of other working memory components and spatial ability tasks. Moreover, the 
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small sample size tested in the current study suggest some caution in interpreting our findings. Despite 

these limitations, we think that the present study has the merit of opening a window on issues that were 

until now neglected specifically, the issue of children's having a learning difficulty related to the area 

of geometry and on their underlying cognitive mechanisms. 

In conclusion, our research demonstrates that, in general, children showing symptoms of NLD 

performed more poorly than did the CG on intuitive geometry and complex-span tasks involving 

VSWM and that two of the three complex-span tasks used in the current research are appropriate for 

identifying children with NLD. Furthermore, the fact that these two VSWM tasks accounted for group 

differences in the intuitive geometry task lends support to the hypothesis that VSWM is involved in 

geometry and that VSWM deficits in NLD children mediate their difficulties in intuitive geometry.  
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4. Geometry, working memory and intelligence 

In this chapter, we will extend expand the findings of our previous studies. In particular, we did 

not consider the important role of verbal working memory and intelligence (g). In fact, WM and g are 

closely related, but separable constructs. Thus, it is possible that including g in the analysis will results 

in an increment of the proportion of explained variance in geometrical achievement. Indeed, in the first 

study, the portion of the explained variance indicates that other factors may have a crucial role.  

For these reasons, we performed a third study in which we included geometry g and WM. In the 

first paragraph, we will focus on the relationship between g and WM. In the second paragraph, we will 

focus on the relationship between geometry, working memory and g.  

4.1. Study 3 part I. The Structure of Working Memory and Its Relation to Intelligence 

in children 

4.1.1. Study 3 part I introduction 

Working memory (WM) is a limited-capacity system that enables information to be stored 

temporarily and manipulated (Baddeley, 2000); it is involved in complex cognitive tasks such as 

reading comprehension (Borella, Carretti, & Pelegrina, 2010; Carretti, Borella, Cornoldi, & De Beni, 

2009; Daneman & Merikle, 1996) and arithmetical problem solving (Passolunghi & Mammarella, 

2010, 2011; Passolunghi & Pazzaglia, 2004). Intelligence is the ability to reason, plan, solve problems, 

think abstractly, understand complex ideas, learn quickly, and learn from experience (Gottfredson, 

1997, p. 13).  

Various models of WM have been suggested. In a tripartite model originally proposed by 

Baddeley and Hitch (1974), there is a central executive responsible for controlling the resources and 
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monitoring information-processing across informational domains. The storage of information is 

mediated by two domain-specific slave systems, i.e. the phonological loop (used for the temporary 

storage of verbal information), and the visuospatial sketchpad (specialized in retaining and 

manipulating visual and spatial representations). This model has met with a broad consensus 

(Baddeley, 2012), and further developments of the model (Baddeley, 2000; Cornoldi & Vecchi, 2003) 

have maintained the distinction between a central, modality-independent component and separate 

verbal and visuospatial components.  

Other authors have argued, however, that there is no difference between short-term memory 

(STM) and WM, and suggested a single model of WM. Whether WM and STM reflect the same or 

different factors is still debated (e.g., Colom et al., 2006), and some researchers claim that it is storage 

capacity (i.e., STM), not cognitive control, that accounts for the relationship between WM and 

intelligence (e.g., Colom et al., 2006). 

An alternative, modality-dependent model is based on the assumption that WM is supported by 

two separate sets of domain-specific resources for handling verbal and visuospatial information (e.g., 

Shah & Miyake, 1996), each of which would be independently capable of manipulating the information 

and keeping it active (i.e., readily accessible). Research on adults supports this distinction (Friedman & 

Miyake, 2000).  

A different approach, described using a domain-general model, suggests that WM capacity is 

limited by controlled attention. It has been argued that the residual variance in verbal WM reflects 

controlled processing, which is uniquely linked to general fluid intelligence (Engle et al., 1999). This 

model and the Baddeley and Hitch (1974) model share the same central component for coordinating 

ongoing information processing (called controlled attention and the central executive, respectively) and 

the storage of information in subsystems. Both models also envisage domain-specific storage 

components. The model developed by Engle et al. is also consistent with the concept postulated by 
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Cornoldi & Vecchi (2003) of a vertical continuum reflecting different degrees of attentional control 

(from a passive storage of information to its active processing and manipulation). 

Regarding the structure of WM in children, some authors (Engel De Abreu, Conway, & 

Gathercole, 2010) have supported a distinction between STM and WM (i.e., a modality-independent 

model), while Alloway and colleagues (Alloway, Gathercole, & Pickering, 2006) claimed that the 

tripartite model is the most appropriate across various age ranges.  

The relationship between WM and intelligence, in both adults and children, is still debated. 

Some studies indicate that WM and intelligence are closely-related but separable constructs (Engle et 

al., 1999). One meta-analysis showed a correlation of r=.48 between WM and intelligence (Ackerman, 

Beier, & Boyle, 2005), though the correlation between latent variables is typically higher, r=.72 (Kane, 

Hambrick, & Conway, 2005); this incomplete overlap suggests that these two constructs are not 

isomorphic (Conway, Kane, & Engle, 2003).  

Research on children has produced less robust evidence on the relationship between intelligence 

and WM. It has been argued that WM, not intelligence, is the best predictor of literacy and numeracy 

(Alloway & Alloway, 2010), and that child prodigies may have only a moderately high level of 

intelligence, but perform extremely well in WM (Ruthsatz & Urbach, 2012). These findings would 

indicate that WM and intelligence are dissociable, casting doubts on the relationship between 

intelligence and WM in children.  

Many studies on the relationship between STM, WM and intelligence in children have their 

limitations, however. For a start, they use only a single task (e.g., Raven) to assess intelligence, 

whereas performance in different measures (preferably having different formats) should be considered 

to reduce the specific effects of a given test and treat intelligence as a latent construct (Süß & 

Beauducel, 2005). Second, not all studies have distinguished between (verbal and spatial) STM and 

WM, making it impossible to compare the different models. Third, the absolute credit score has been 
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applied to WM tasks, which is fine in clinical settings, while the partial credit score is more reliable and 

appropriate in correlational studies (Conway et al., 2005).  

In the present study, we explored the nature of the relationship among STM, WM and 

intelligence in 4
th

- and 5
th

-graders, examining: i) different models of WM in children, using 

confirmatory factor analyses (CFA); ii) the relationship between WM and intelligence, and the strength 

of their association, using structural equation modeling (SEM).  

Our first aim was to use CFA to elucidate the structure of WM in children by comparing the 

following models: (1) a one-factor model that sees WM as a single construct; (2) a model 

distinguishing between a visuospatial and a verbal component, without distinguishing between STM 

and WM (the modality-dependent model; Shah & Miyake, 1996); (3) a two-factor model distinguishing 

between WM and STM, without distinguishing between content domains (the modality-independent 

model; Engle, et al., 1999); (4) a three-factor model (Baddeley's model; 1986), expanded to include a 

distinction between two STM components (verbal vs. spatial), and including a WM component too 

(i.e., a tripartite model). 

The second aim of our study was to test the relationship between WM and intelligence using a 

SEM approach. We examined whether STM and WM carry a similar weight, irrespective of the 

demands of the memory tasks administered, in terms of the processes and presentation format involved 

in predicting intelligence. Previous findings on this issue are unclear: some studies suggest that, when 

the variance that WM and STM have in common is controlled, only the residual WM factor reveals a 

significant link with intelligence (Engel De Abreu et al., 2010); other research indicates that the 

relationship between WM and intelligence is explained primarily by STM (Hornung et al., 2011). In 

addition, some authors have argued that both storage and executive processes in the WM system can 

independently predict intelligence (Tillman, Nyberg, & Bohlin, 2008), but well-controlled WM 

processes have a higher predictive power in typically-developing children than poorly-controlled STM 
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processes (Cornoldi, Giofrè, Calgaro, & Stupiggia, 2012). The inclusion of both verbal and visuospatial 

STM tasks in our study also gave us an opportunity to see whether the latter are more closely related to 

intelligence than the former, as Kane and coworkers suggested (Kane et al., 2004). 

4.1.2. Method 

4.1.2.1. Participants 

We collected data for 183 children, but 7 of them had extremely low scores on the Raven's 

Colored progressive matrices (below the 5
th

 percentile of the Italian norms, Belacchi, Scalisi, Cannoni, 

& Cornoldi, 2008) and were excluded from further analyses. A total of 176 typically-developing 

children (96 males, 80 females; Mage=9.27, SD=.719) in 4
th

 and 5
th

 grade at school were thus included 

in the final sample.  

4.1.2.2. Materials  

Intelligence tasks 

Colored progressive matrices (CPM; Raven, Raven, & Court, 1998). The children were asked 

to complete a geometrical figure by choosing the missing piece from among 6 possible solutions. The 

patterns gradually became more difficult. The test consisted of 36 items divided into three sets of 12 

(A, AB, and B). The score corresponded to the sum of correct answers.  

Primary mental ability, reasoning (PMA-R; Thurstone & Thurstone, 1965). This task assesses 

the ability to discover rules and apply them to verbal reasoning. It is a written test in which the children 

had to choose which word in a set of four was the odd one out, e.g. cow, dog, cat, cap (the answer is 

cap). There was only one correct answer. The test included 25 sets of words and children were allowed 

11 minutes to complete it. The score was the sum of the correct answers. 

Primary mental ability, verbal meaning (PMA-V; Thurstone & Thurstone, 1965). In this 

written test, the children had to choose a synonym for a given word from among four options, e.g. 
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small: (a) slow, (b) cold; (c) simple; (d) tiny (the answer is tiny). There was only one correct answer. 

The test included 30 items and had to be completed within 12 minutes. The score was the sum of the 

correct answers. 

Working memory tasks 

Simple span tasks (syllable span task, SSPAN; and digit span task, DSPAN). These tasks 

examined short-term memory abilities involving the passive storage and recall of information (Cornoldi 

& Vecchi, 2000; Swanson, 1993). Syllables/digits were presented verbally at a rate of 1 second per 

item, proceeding from the shortest series to the longest (from 2 to 6 items). There was no time limit for 

recalling the syllables or digits in the same, forward order. The score was the number of digits/syllables 

accurately recalled in the right order.  

Matrices span tasks (derived from Hornung et al., 2011). Short-term visuospatial storage 

capacity was assessed by means of two location span tasks. The children had to memorize and recall 

the positions of a blue cell that appeared briefly (for 1 second) in different positions on the screen. 

After a series of blue cells had been presented, the children used the mouse to click on the locations 

where they had seen a blue cell appear. The number of blue cells presented in each series ranged from 2 

to 6. There were two different conditions: in the first, the targets appeared and disappeared in a visible 

(4x4) grid in the center of the screen (matrices span task, grid [MSTG]); in the second, the targets 

appeared and disappeared on a plain black screen with no grid (matrices span task, no grid [MSTNG]). 

The score was the number of cells accurately reproduced in the right order.  

Categorization working memory span (CWMS; Borella, Carretti, & De Beni, 2008; De Beni, 

Palladino, Pazzaglia, & Cornoldi, 1998). The material consisted of a number of word lists containing 

four words of high-medium frequency. The word lists were organized into sets of word lists of different 

length (i.e., from two to five words to recall). The children were asked to read each word aloud and to 

press the space bar when there was an animal noun. After completing each set, they had to recall the 
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last word in each list, in the right order of presentation. The score was the number of accurately 

recalled words. 

Listening span test (LST; Daneman & Carpenter, 1980; Palladino, 2005). The children listened 

to sets of sentences arranged into sets of different length (containing from 2 to 5 sentences) and they 

had to say whether each sentence was true or false. After each set, the children had to recall the last 

word in each sentence, in the order in which they were presented. The score was the number of 

accurately recalled words.  

Visual pattern test, active (VPTA; Mammarella et al., 2006; Mammarella, Giofrè et al., 2012). 

This tests the ability to maintain and process spatial information simultaneously presented on a 

computer screen. Eighteen matrices, adapted from the Visual Pattern test (Della Sala et al., 1997), of 

increasing size (the smallest with 4 squares and 2 cells filled, the largest with 14 squares and 7 cells 

filled) contained a different number of cells to remember (from 2 to 7). After the matrices had been 

shown for 3 seconds, they disappeared and the children were presented with a blank test matrix on 

which they were asked to reproduce the pattern of the previously-seen cells by clicking in the cells 

corresponding to the same positions but one row lower down (the bottom row in the presentation 

matrix was always empty). The score was the number of accurately placed cells.  

4.1.2.3. Procedure 

The tasks were administered as part of a broad study on the relationship between cognitive 

structures and academic achievement.  

The children were tested in two phases, one involving a group session in their classroom that 

lasted approximately 1 hour, the other in individual sessions lasting approximately 90 minutes, in a 

quiet room away from the classroom.  

During the group session, the intelligence tests were administered in a fixed order (CPM, PMA-

V, PMA-R). At the individual sessions, the WM tasks were administered in the following fixed order: 
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(1) syllable span task; (2) matrix span task, grid; (3) visual pattern test, active; (4) categorization 

working memory span; (5) digit span task; (6) matrix span task, no-grid; (7) listening span task. At the 

individual sessions, all tasks were presented on a 15-inch laptop and were programmed using E-prime 2 

software. Each task began with two training trials, then the simplest level of the task, and their 

complexity gradually increased thereafter, using three trials for each level of complexity. The partial 

credit score was used for scoring purposes (see Conway et al., 2005). 

4.1.3. Results 

4.1.3.1. Statistical Analysis  

The assumption of multivariate normality and linearity was tested using the PRELIS package 

and all the CFA and SEM analyses were estimated with the LISREL 8.80 software (Jöreskog & 

Sörbom, 2002, 2006).  

No multivariate outliers were found (Mahalanobis distance; p < .001). The measure of relative 

multivariate kurtosis was 1.066. This value is considered relatively small, so the estimation method that 

we chose to use (maximum likelihood) is robust against several types of violation of the multivariate 

normality assumption (Bollen, 1989).  

Model fit was evaluated using various indices following the criteria suggested by Hu and 

Bentler (1999). In particular, a model was judged to have a good fit if it had: an insignificant χ
2
M 

goodness-of-fit statistic; a root mean square error of approximation (RMSEA) nearing .06; a 

standardized root mean square residual (SRMR) ≤ .08; a non-normed fit index (NNFI) and a 

comparative fit index (CFI) ≥ .96. The Akaike information criterion (AIC) was used to compare the fit 

of non-nested models. To take the children's different ages into account, a partial correlation analysis 

was conducted with age in months partialed out (Alloway et al., 2006). Partial correlations were used in 



59 

 

 

all the analyses. Descriptive statistics, correlations, and partial correlations with Cronbach's alphas are 

presented in Table 4.1.  

Table 4.1 

Correlations, means (M), standard deviations (SD), and reliabilities for the measures of g and WM. 

 1 2 3 4 5 6 7 8 9 10 

G           

1 CPM 1 .433 .432 .251 .127 .226 .309 .290 .313 .330 

2 PMA-R .449 1 .568 .258 .187 .359 .340 .381 .363 .178 

3 PMA-V .446 .615 1 .272 .240 .402 .485 .393 .387 .322 

WM           

4 SSPAN .261 .277 .291 1 .541 .390 .397 .249 .349 .241 

5 DSPAN .134 .197 .245 .543 1 .462 .386 .261 .315 .256 

6 MSTG .300 .395 .404 .258 .266 1 .544 .299 .266 .378 

7 MSTNG .332 .405 .435 .363 .321 .722 1 .292 .297 .291 

8 CWMS .324 .370 .505 .407 .391 .305 .323 1 .720 .372 

9 LST .247 .399 .446 .401 .464 .315 .302 .560 1 .288 

10 VPTA .335 .189 .322 .246 .259 .376 .295 .297 .382 1 

M 28.26 16.30 20.73 41.80 46.28 39.50 29.53 26.57 27.43 59.81 

SD 4.93 4.08 7.34 8.58 8.15 10.14 10.03 6.65 6.78 11.75 

Reliability .82 .78 .93 .69 .70 .83 .83 .77 .83 .91 

Note. Zero order correlation below and partial correlation (controlling for age) above the diagonal; all 

coefficients ≥.148 are significant at .05 level; CPM=colored progressive matrices; PMA-R=primary 

verbal abilities reasoning; PMA-V=primary mental abilities verbal; SSPAN=syllable span; 

DSPAN=number span; MSTG=matrix span task grid; MSTNG=matrix span task no-grid; 

CWMS=categorization working memory span; LST=listening span task; VPTA=visual pattern test 

active; Reliability=Cronbach's alpha  
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4.1.3.2. CFA models for WM  

Model 1 investigated a single WM factor in children (one-factor model; Figure 4.1); it provided 

a poor fit with the data (Table 4.2).  

Model 2 investigated two distinct verbal and spatial factors (modality-dependent model; Figure 

4.1), and provided a poor fit with the data (Table 4.2).  

Model 3 investigated two distinct STM and WM factors (modality-independent model; Figure 

4.1); and provided a poor fit with the data (Table 4.2).  

Model 4 tested two STM factors (verbal [-V], and visuospatial [-VS]) and one WM factor 

(tripartite model; Figure 4.1). It fitted well with the data and proved better than the other models, i.e. it 

had the best fit and a lower AIC (Table 4.2), suggesting that the structure of children's WM may be 

well represented by combining two STM components (one verbal and one spatial) with a WM 

component. 

 

Table 4.2 

Fit indices for different confirmatory factor analyses (WM) and SEM analysis (WM and g) 

Model χ
2

M
 (df) p RMSEA SRMR CFI NNFI AIC 

WM        

(1) 117.00 (14) <.001 .20 .10 .80 .70 141.33 

(2) 37.45(13) <.001 .11 .07 .95 .92 68.86 

(3) 92.88(13) <.001 .20 .12 .84 .74 136.95 

(4) 17.74(11) =.088 .06 .04 .98 .97 51.62 

WM and g        

(1) 40.88(29) =.070 .04 .04 .99 .98 89.90 

Note. χ2
M=Model chi-square, RMSEA=Root mean square error of approximation, SMSR=standardized 

root mean square residuals, CFI=comparative fit index, NNFI=non-normed fit index, AIC=Akaike 

Information Criterion. 
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Figure 4.1.    Conceptual diagrams for different WM models. 

Note. Fixed parameters are in gray. SSPAN=syllable span; DSPAN=number span; MSTG=matrix span 

task grid; MSTNG=matrix span task no-grid; CWMS=categorization working memory span; 

LST=listening span task; VPTA=visual pattern test active. STM-V=short term memory-verbal; STM-

VS= short term memory-visuospatial; WM=working memory. 
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4.1.3.3. SEM model for WM and intelligence.  

The next step was to use SEM to test the relationship between WM (our Model 4) and 

intelligence. We used STM-V, STM-VS, WM (correlated with one another) as exogenous, or 

independent factors, and g as the endogenous, or dependent factor (Figure 4.2). The overall fit of the 

model was very good, and 65% of the variance in g was predicted (Table 4.2). Notably, only STM-VS 

and WM were significantly related to g, while STM-V was not. 

 

 

Figure 4.2     SEM model for WM and g factor. 

Note. Path significant at .05 level are indicated by solid lines. Fixed parameters are in gray. The 

residual variance components (error variances) indicate the amount of unexplained variance (R
2
= 1 - 

error variance). CPM=colored progressive matrices; PMA-R=primary verbal abilities reasoning; PMA-

V=primary mental abilities verbal; SSPAN=syllable span task; DSPAN=number span task; 

MSTG=matrix span task grid; MSTNG=matrix span task no-grid; CWMS=categorization working 

memory span; LST=listening span task; VPTA=visual pattern test active; STM-V=short term 

memory-verbal; STM-VS= short term memory-visuospatial; WM=working memory; g=intelligence 
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4.1.4. Discussion 

The purpose of the present study was to investigate the relationship between WM and 

intelligence in children in 4
th

 and 5
th

 grade. In particular, we examined: i) whether children's WM could 

be seen as a single factor, or separated into different components; and ii) which WM component is 

more closely related to intelligence. Concerning the first issue, much of the research examining the 

structure of WM has been done within the framework of the Baddeley and Hitch model (1974; 

Baddeley, 1986). The main results of the present study indicate that our data fitted poorly with the one-

factor WM model, and with two-factor models distinguishing either between visuospatial and verbal 

components (see Shah & Miyake, 1996), or between STM and WM (e.g., Engle et al., 1999). Our 

findings revealed instead that children's WM can be separated into a WM component and two storage 

components relying on domain-specific, verbal and visuospatial resources.  

As for the second issue, we investigated whether different WM components predict intelligence 

equally well. We found STM-VS and WM significantly related to intelligence. This result is consistent 

with findings in adults and confirms that STM-VS (typically involving unfamiliar situations) predicts a 

unique portion of the variance not explained by active WM (Kane et al., 2004), whereas the verbal 

component of WM (typically involving more familiar material) is irrelevant. Our results also confirm 

that WM has a strong positive effect on the g factor (.82), while STM only accounts for a small part of 

g (Conway, Getz, & Engel De Abreu, 2011). Unlike previous research (e.g., Kane et al., 2004), our 

finding cannot be attributable to our g factor being biased towards spatial abilities because one of the 

three measures of intelligence used in our study was verbal (vocabulary) and another (reasoning) both 

involved language. The lack of a significant relationship between intelligence and verbal STM tasks 

seems to have two reasons: (i) the simple rote repetition of familiar material is scarcely related to fluid 

intelligence (Engle et al., 1999); and (ii) not only the Listening span test, but also one of the other two 

active tasks (i.e., the Categorization working memory span) relied on language. This meant that the 
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contribution of the verbal STM components on g disappeared when the influence of these two tasks 

was partialed out. 

The present study showed a strong relationship between WM and g. Unlike the picture seen in 

adults of a close relationship between WM and intelligence (e.g., Engle et al., 1999; Kane et al., 2004), 

only a moderate relationship between intelligence and WM had emerged in previous research on 

children (Engel De Abreu et al., 2010; Hornung et al., 2011), whereas WM and g shared a substantial 

portion of the variance (about 65%) in our sample. Our finding is similar to the situation observed in 

adults and is attributable to two features of our study: first, the partial credit score method maximizes 

the correlation among factors (Conway et al., 2005); and second, we used several tests (not just one) to 

measure each factor.  

Although it contains some insightful findings, the present study has some limitations. First, we 

considered only 4
th

 and 5
th

 graders and, although previous studies have suggested that the structure of 

WM remains much the same, whatever the age group considered (Alloway et al., 2006), our results 

cannot be generalized to samples of older or younger children. Future studies will be needed to address 

this issue in other age groups. Second, we did not consider developmental changes, although previous 

research has shown that verbal and visuospatial WM follow a different developmental trajectory 

(Gathercole, 1998), so the relationship between WM and g may change as a child develops.  

To sum up, the present study demonstrates that, in 4
th

- and 5
th

-grade children, the WM structure 

best fitting our data is characterized by a central component and two STM domain-specific storage 

components, devoted to retaining verbal information in one and spatial information in the other. As for 

the relationship between WM and intelligence, the WM component and STM-VS do significantly 

predict intelligence, while STM-V does not. Finally, our findings also suggest that WM is a 

fundamental part of intelligence. 
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4.2. Study 3 part II. Relationship between geometry, working memory and intelligence 

in children. 

4.2.1. Study 3 part II introduction 

Despite the fact that geometry is one of the main primary areas of mathematical learning, the 

cognitive processes underlying geometry-related, academic achievement have not been studied in 

depth. For example, the study of geometry requires the ability to manipulate and retain information in 

mind. For this reason, working memory (WM), and in particular, visuospatial working memory 

(VSWM), is crucially involved in the acquisition of geometrical skills (Giofrè et al., 2013; 

Mammarella, Giofrè, et al., 2012). Moreover, the study of geometry heavily relies on spatial abilities 

(Piaget, Inhelder, & Szeminska, 1960; Piaget & Inhelder, 1967). In addition, geometrical academic 

problems typically require one to discover a solution to a problem; this capacity seems to be related to 

reasoning skills (Clements & Battista, 1992). The present study tried to explore the involvement of 

WM and intelligence (g) in two different aspects of geometry, i.e., intuitive geometry and academic 

achievement in geometry. 

4.2.1.1. Intuitive Geometry and Academic Achievement Geometry 

Geometrical may be differentiated in two aspects: the first aspect depends on learning and 

education; the second aspect, includes abilities, which are suppose to be independent from the culture. 

In fact, geometry might represent a core knowledge, as suggested by Spelke, Lee and Izard, (2010). It 

has been argued that some principles of geometry are independent upon the culture (i.e., intuitive) 

(Dehaene et al., 2006). With 'intuitive' we mean aspects which are: (1) primitive (Rosch, 1975), (2) 

very early developed (Spelke et al., 2010), and (3) not dependent upon culture and formal instruction 

(Dehaene et al., 2006). Moreover, Dehaene et al. (2006) have shown that it is possible to assess 

experimentally intuitive geometry. They tested, Amazonian Indians, without any formal instruction in 
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geometry, and they discovered that: 1) Amazonian Indians succeeded in distinguishing some important 

geometrical aspect (e.g., right angles, parallelism); 2) performances in the intuitive geometry task of 

Amazonian Indians children and adults do not differ. The intuitive geometry task was also used to 

predict a significant portion of the variance in an academic achievement task (Giofrè et al., 2013), and 

to discriminate between children with nonverbal learning disabilities (who failed in spatial but not in 

verbal tasks) and with typical development (Mammarella, Giofrè et al., 2012). 

This idea of geometry as 'core concept', independent from culture, is not new. For example, 

Socrates demonstrates that a house slave (Meno), ignorant in geometry, was able to learn a complicated 

geometrical problem (Plato, 1977). In fact, Socrates claims that Meno 'spontaneously recovered' 

knowledge he knew from a past life without having been taught. However, was Meno able to solve the 

geometrical problem because geometry is innate or because he reasoned on the problem? In fact, it is 

possible that Amazonian Indians were capable to solving simple, geometrical problems because they 

somehow knew the solution, but also because they were reasoning on the alternatives. Both the 

hypotheses are, in fact, plausible. 

Conversely, academic achievement in geometry represents the student's ability to respond to the 

typical, geometry questions on the mathematical curriculum (Giofrè et al., 2013). It is considered one 

of the most important areas of mathematical learning, and it is linked to a student's future academic and 

professional success (Verstijnen et al., 1998). Academic achievement in geometry is related to a wide 

range of skills and it is related to high order cognitions (e.g., WM and g). Moreover, academic 

achievement in geometry is very important in STEM (science, technology, engineering, and 

mathematics) fields such as Engineering and in Mathematics. 
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4.2.1.2. Cognitive Processes Involved in Geometry: WM, and g  

Working Memory 

The WM system, in which specific storage components (i.e., the 'slave' systems) sub-serve a 

central component responsible for controlling information processing (Baddeley, 1986), could be 

involved in geometry. A tripartite model was initially proposed by Baddeley and Hitch (1974). In this 

model, the central executive is the component responsible for controlling resources and monitoring 

information processing across informational domains. Moreover, storage of information is mediated by 

two domain-specific slave systems: the phonological loop, which provides temporary storage of verbal 

information, and the visuospatial sketchpad, specializing in the maintenance and manipulation of visual 

and spatial representations. This model has received a large consensus (Baddeley, 2012) and further 

specifications of the model (Baddeley, 2000; Cornoldi & Vecchi, 2003) have maintained the distinction 

between central modality-independent and specific verbal and visuospatial components. WM has been 

described in many ways, differentiating for instance, between simple storage and complex span tasks 

(e.g., Unsworth & Engle, 2007), or between passive and active processes (involving simple storage and 

complex span tasks, respectively) (Cornoldi & Vecchi, 2003). 

A large body of research has shown that WM predicts success in school-related tasks, such as 

reading comprehension (Carretti et al., 2009), mathematical achievement (e.g., Geary et al., 1990; 

Passolunghi et al., 2008), approximate mental addition (Caviola, Mammarella, Cornoldi, & Lucangeli, 

2012), mathematical skills (Alloway & Passolunghi, 2011), and geometrical achievement (Giofrè et al., 

2013). 

More specifically, the WM component involved in retaining and processing visuospatial 

information appears to be involved in a child's ability to count (Kyttälä et al., 2003), to perform multi-

digit operations (Heathcote, 1994), nonverbal problem-solving (Rasmussen & Bisanz, 2005), in 
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mathematical achievement (Bull et al., 2008; Jarvis & Gathercole, 2003; Maybery & Do, 2003) and 

academic achievement in geometry (Giofrè et al., 2013). 

Intelligence  

Intelligence (g) involves the ability to reason, plan, solve problems, think abstractly, 

comprehend complex ideas, learn quickly, and learn from experience (Gottfredson, 1997 p. 13). 

Intelligence and academic achievement are considered highly related but separable (Kaufman, 

Reynolds, Liu, Kaufman, & McGrew, 2012) constructs. In fact, language, reasoning, working memory 

and attentional processes that underlie reading and mathematical operations also underlie intellectual 

functioning (Deary, Strand, Smith, & Fernandes, 2007; Hunt, 2011). The relationship is also supported 

by empirical evidence: studies have found a good correlation between achievement tests (such as SAT 

and ACT) and g-factor measures (Frey & Detterman, 2004; Koenig, Frey, & Detterman, 2008), and 

these results are consistent (typically correlations ranged between .6 and .7; Coyle & Pillow, 2008). 

Intriguingly, academic achievement in geometry represents a special case. In fact, academic 

achievement in geometry requires the ability to solve problems. Solving mathematical problems, and in 

particular, geometrical problems, require problem solving and therefore, intelligence (Cornoldi, Giofrè, 

& Martini, 2013). However, not only reasoning, but also spatial abilities should be involved; in many 

cases, children use spatial skills to solve the problem and to reach the solution (Piaget & Inhelder, 

1967). 

Spatial ability may be defined as the ability to generate, retain, retrieve, and transform well-

structured, visual images. Spatial abilities were crucial in Thurston's conceptualization of primary 

mental abilities (Thurstone & Thurstone, 1965). Moreover, Guilford (1967) included spatial abilities in 

his model of intelligence. In addition, Vernon's hierarchical model place spatial-visualization factors 

immediately below general ability (Vernon, 1950), and Carroll's three stratum theory place Gv (visuo-

spatial thinking) in the second stratum (Carroll, 1993). More recently, the g-VPR model postulates that 
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intelligence is highly related to the capacity of rotate stimuli (Johnson & Bouchard, 2005). In addition, 

spatial ability contributes to learning, the development of expertise, and securing advanced educational 

and occupational credentials in STEM (Lubinski, 2010). Finally, spatial abilities are closely related to 

visuospatial working memory (Miyake et al., 2001). For these reasons, we believe that solving 

geometrical problems require the contribution of g, and WM, in particular complex span tasks 

involving the visuospatial domain. 

4.2.1.3. Goals of the Present Paper 

In the present study, we explore the nature of the relationship among WM, g and geometry 

(intuitive and academic achievement in geometry) in children attending 4
th

 and 5
th

 grades. The main 

goals were: i) examine whether WM, g, and intuitive geometry predict a significant portion of 

academic achievement in geometry variance and to determine the model which best suits the data; ii) 

examine the contribution of g, WM, and intuitive geometry in explaining academic achievement in 

geometry variance and the strength of this association. 

Our primary goal was to determine the model with the best fit using SEM. Specifically, the 

following models were compared: (1) a model in which WM, intuitive geometry and intelligence are 

correlated exogenous variables (independent) and they are linked to academic achievement in 

geometry, which is the only endogenous variable (i.e., dependent variable); (2) a model considering 

intelligence as mediating the relationship between all the other factors and geometrical achievement in 

geometry; (3) a model close to the previous model but, in which intuitive geometry, as well as 

academic achievement in geometry, is considered as an endogenous variable. 

The hypothesis underling the first model is that WM, intelligence, and intuitive geometry might 

be independent factors correlated with each other and explaining a unique portion of the academic 

achievement in geometry variance. Another possibility is that WM does predict academic achievement 

only with the mediation of intelligence (tested in Model 2). In previous research, we found that an 
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active, visuospatial working memory task indirectly predicted academic achievement in geometry 

(Cornoldi & Vecchi, 2003). Thus, it is possible that active working memory and visuospatial short term 

memory tasks (STM-VS) are significantly related to g, which is, in turn related to academic 

achievement in geometry. Thus, g should mediate the relationship between WM and academic 

achievement in geometry. This is consistent with a large body of research indicating that only active 

working memory is related to high order cognition (Engle et al., 1999). In addition, recent results have 

shown that STM-VS predicts a unique portion of g variance (Kane et al., 2004). Finally, in Model 3 we 

tested if the intuitive geometry task is predicted by the g factor. In fact, in the intuitive geometry task 

developed by Dehaene (Dehaene et al., 2006) Amazonian Indians could have been able to determine 

the solution to geometrical concepts for several reasons, and one of these reason may be that they were 

reasoning on the tasks (more than knowing the right alternative). Thus, a part of the intuitive geometry 

variance may be related to g. 

4.2.2. Method 

4.2.2.1. Participants 

We collected data for 183 participants; seven children had extremely low score on colored 

progressive matrices (under the 5
th

 percentile of the Italian norms, Belacchi, Scalisi, Cannoni, & 

Cornoldi, 2008) and we decided to exclude these subjects from further analysis. A total of 176 typically 

developing children (96 male, Mage=9.27, SD=.719), attending the 4
th

 and the 5
th

 grades, were included 

in the final sample. 

4.2.2.2. Materials and procedure 

Participants were tested in two group sessions in the classroom that lasted approximately 1 

hour, and an individual, approximately 1.5 hours-long session in a quiet room, away from the 

classroom.  
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In the first group session, general cognitive ability tests were administered in the following 

fixed order (CPM, PMA-V, PMA-R). In the second group session, geometrical tasks were administered 

in the following fixed order (geometrical problems and geometrical questions). In the individual 

session, we administered first the intuitive geometry task and then working memory tasks (see Study 1 

for further details).  

Geometry 

Intuitive geometry task (I-GEO; Dehaene et al., 2006). Items consisting of an array of six 

images, five of which were instantiated the desired concept, while the remaining one violated it. For 

each stimulus, participants were asked to click on the odd-one-out (see Appendix). Items were 

randomly presented and remained on the screen until subjects gave a response. Participants were 

presented with 43 items, split into seven concepts: topology (e.g., closed vs. open figures), Euclidean 

geometry (concepts of straight lines, parallel lines etc.), geometrical figures (e.g., squares, triangles, 

and so on), symmetrical figures (e.g., figures showing horizontal vs. vertical symmetrical axes), chiral 

figures (in which the odd-one-out was represented by a mirrored figure), metric properties (e.g., the 

concept of equidistance), and geometrical transformation (e.g., translations and rotations of figures). 

Academic achievement tasks.  

Geometrical problems (GEO-P; Mammarella, Todeschini, & Englaro, 2012). In this test, 

children are required to solve nine geometrical problems. In particular, children had to calculate the 

area of complex figures, draw lines which are not perpendicular or parallel or solve complex 

geometrical problems. The test lasts approximately 40-45 minutes. 

Geometrical questions (GEO-Q; Mammarella, Todeschini et al., 2012). In this test, children are 

required to ask to eight geometrical questions. The questions were focused on important geometrical 

concepts or definitions (e.g., concave, segment, goniometer, and parallelogram). The test lasts 

approximately 10-15 minutes. 
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4.2.3. Results 

4.2.3.1. Statistical analysis  

The assumption of multivariate normality and linearity was evaluated with the PRELIS package 

and the models were estimated with the software LISREL 8.80 (Jöreskog & Sörbom, 2002; 2006).  

The measure of relative multivariate kurtosis was 1.04. This value is considered relatively 

small. Therefore, and the estimation method that we decided to use (Maximum Likelihood) is robust 

against several types of the violation of the multivariate normality assumption (Bollen, 1989). 

Covariance matrix was used (Kline, 2011). 

Model fit was evaluated by various indices following the criteria suggested by Hu and Bentler (1999). 

In particular, a model with: a non significant model chi-square goodness-of-fit statistic (χ
2

M); a root-

mean-square error of approximation (RMSEA) close to .06; a standardized root-mean-square residual 

(SRMR) ≤ .08; a non-normed fit index (NNFI) and a comparative fit index (CFI) ≥ .96 was considered 

to a have a good fit. In addition, the χ
2

M may not discriminate between good fitting models and poor 

fitting models (Kenny & McCoach, 2003). Thus, in case of a significant χ
2

M, we considered acceptable 

a model with relative chi-square/df ratio (χ
2
/df) < 2 (Tabachnick & Fidell, 2007). Moreover, the chi-

square difference (χ
2

D) and the Akaike Information Criterion (AIC) were used to compare the fit of 

respectively nested and non-nested models (Kline, 2011). Descriptive statistics, correlations and 

reliabilities are presented in Table 4.3. 
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Table 4.3 

Correlations, means (M), standard deviations (SD), and reliabilities for measures of g, and WM. 

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 

g 
             

1 CPM 1 
            

2 PMA-R .45 1 
           

3 PMA-V .45 .61 1 
          

WM 
             

4 SSPAN .26 .28 .29 1 
         

5 DSPAN .13 .20 .25 .54 1 
        

6 MSTG .30 .39 .40 .26 .27 1 
       

7 MSTNG .33 .41 .43 .36 .32 .72 1 
      

8 CWMS .32 .37 .51 .41 .39 .31 .32 1 
     

9 LST .25 .40 .45 .40 .46 .31 .30 .56 1 
    

10 VPTA .33 .19 .32 .25 .26 .38 .30 .30 .38 1 
   

Geometry 
             

11 GEO-P .30 .28 .15 .26 .22 .21 .17 .27 .29 .21 1 
  

12 GEO-Q .32 .25 .33 .26 .18 .10 .16 .25 .28 .26 .33 1 
 

13 I-GEO .43 .36 .42 .25 .21 .32 .38 .32 .21 .37 .24 .20 1 

M 28.26 16.30 20.73 41.80 46.28 39.50 29.53 26.57 27.43 59.81 5.82 4.09 25.87 

SD 4.93 4.08 7.34 8.58 8.15 10.14 10.03 6.65 6.78 11.75 3.47 1.82 6.13 

Reliability .82 .78 .93 .69 .70 .83 .83 .77 .83 .91 .59 .50 .81 

Note. Zero order correlation; all coefficients ≥.148 are significant at .05 level; CPM=colored 

progressive matrices; PMA-R=primary verbal abilities reasoning; PMA-V=primary mental abilities 

verbal; SSPAN=syllable span; DSPAN=number span; MSTG=matrix span task grid; MSTNG=matrix 

span task no-grid; CWMS=categorization working memory span; LST=listening span task; 

VPTA=visual pattern test active; GEO-P=geometrical problems; GEO-Q=geometrical questions; I-

GEO=intuitive geometry; Reliability=Cronbach's alpha. 
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4.2.3.2. SEM models 

Model 1. In this model we tested geometrical achievement (measured by geometrical problems 

and questions) as an endogenous variable (dependent) and all the other constructs as exogenous 

variables (i.e., STM-V, STM-VS, WM and I-GEO). Since, I-GEO has only one indicator, we fixed the 

error variance of the intuitive geometry task (IGT) to .19 (1-Reliabilty) (see Kline, 2011). The fit of the 

model was good (Table 4.4; Figure 4.3). Probably due to the high correlation between latent factors, all 

the paths from exogenous to the endogenous variables were not significant. Thus, we decided to 

consider other models.  

Model 2. Differently to Model 1 we considered g as mediating the relationship between 

working memory (i.e., STM-V, STM-VS, WM), intuitive geometry (I-GEO) and geometrical 

achievement (GEO-ach) (Figure 4.3). The fit of the model was good and the AIC was lower than model 

1 (Table 4.4). Thus this model was preferable compare to Model 1.  

Model 3a. In this model we considered intuitive geometry as an endogenous variable (i.e., 

dependent). The fit of the model was good and the AIC was lower than models 1 and 2. Thus, this 

model was preferred because more parsimonious compare to Model 1 and 2 (Figure 4.3; Table 4.4). 

Nevertheless, the path from intuitive geometry (I-GEO) to geometrical achievement (GEO-ach) was 

not-significant. For this reason, we attempted to eliminate the path. 

Model 3b. In this model we eliminated the path from intuitive geometry (I-GEO) to geometrical 

achievement (GEO-ach) (Figure 4.4). This model revealed a better fit compared to the others (i.e., 

lower AIC) (Table 4.4). In addition, since model 3b is nested to model 3a the chi-square difference 

between the two models was calculated (Table 2). We found a non-significant chi-square difference 

between the two models (χ
2

D(1)=0.01, p=.92), which indicates that model 3b is preferable, because 

more parsimonious. Thus, we retained model 3b (Figure 4.4). In this model the 42% of geometrical 
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achievement variance and 39% of the intuitive geometry variance was predicted by intelligence and 

WM (with the intelligence's mediation).  

 

Figure 4.3     Structural models of the relationship between WM, GCA and geometry. 

Note. Path significant at .05 level are indicated by solid lines. STM-V=verbal short term memory; 

STM-S=spatial short term memory; WM=working memory; I-GEO=intuitive geometry; g=general 

cognitive ability; GEO-ach=geometrical achievement.  
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Figure 4.4.     Measurement model of the relationship between WM, GCA and geometry. 

Note. Path significant at .05 level are indicated by solid lines and path in gray are fixed. Ns = not 

significant. STM-V=verbal short term memory; STM-S=spatial short term memory; WM=working 

memory; g=general cognitive ability; GEO-ach=geometrical achievement; I-GEO=intuitive geometry; 

IGT=intuitive geometry task. 

 

Table 4.4 

Fit indices 

Model χ
2
M

 (df) P χ
2/df RMSEA SRMR CFI NNFI AIC 

(1) 80.74 (51) .005 1.58 .06 .05 .98 .97 158.09 

(2) 89.90(55) .002 1.63 .06 .06 .98 .97 157.08 

(3a) 92.24(57) .002 1.61 .06 .06 .98 .97 156.31 

(3b) 92.25(58) .003 1.59 .05 .06 .98 .97 154.41 

Note. χ2
M=model chi-square, RMSEA=Root mean square error of approximation; GFI=goodness of fit 

index, CFI=comparative fit index, SMSR=standardized root mean square residuals, AIC=Akaike 

Information Criterion. 
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4.2.4. Discussion 

The main aims of the present study were, i) to examine the best model able to predict the 

relationship among WM, g, and intuitive geometry ; ii) to study the specific contribution of g, WM, and 

intuitive geometry in explaining academic achievement in geometry variance and the strength of this 

association. 

The distinction between intuitive geometry and academic achievement in geometry is supported 

by previous research findings (Clements, 2003, 2004; Dehaene et al. 2006; Izard & Spelke, 2009; 

Spelke, et al., 2010). The relationship between intuitive geometry, academic achievement in geometry 

and visuospatial working memory has been previously tested by Giofrè, et al. (2013) revealing that 

different VSWM were significantly related to intuitive geometry and academic achievement in 

geometry. Specifically, an active visuospatial task and STM-VS task predicted intuitive geometry, 

whereas only a STM-VS with the mediation of intuitive geometry predicted academic achievement.  

However, differently from Giofrè, et al. (2013), in the current research not only visuospatial but 

also verbal STM and WM tasks were presented. Moreover, given that formal education in geometry 

involves verbal rules, such as formulas and theorems, different measures of intelligence were collected 

in order to understand the role of other factors that presumably could affect the acquisition of 

geometrical knowledge (Aydin & Ubuz, 2010).  

Different models were carried out in order to study the relationship between WM, g, and 

geometry. In our final model we concluded that intuitive geometry did not mediate the relationship 

between WM and academic achievement in geometry, as previously observed in Giofrè et al. (2013). 

Instead, intuitive geometry test was highly related to intelligence and in particular to the Raven's 

Colored progressive matrices (which are arguably a good measure of fluid intelligence; e.g., Jensen, 

1998). On the basis of this result, we should hypothesize that some aspect of intuitive geometry are 

related to reasoning abilities. Indeed, the intuitive geometry test requires one to make use of basic 
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geometric concepts such as points, lines, parallelism, or right angles to detect the odd-one out in simple 

pictures (Dehaene et al., 2006) but solving these tasks also requires mentally manipulating the stimuli 

and, as well as reasoning on the alternatives. Thus, intuitive geometry, which is supposed to be 

independent from culture as suggested by Dehaene et al. (2006; see also Spelke, et al. 2010), share a 

large portion of the variance with g (which is also been found to largely independent from learning and 

education; e.g., Bouchard, 2004).  

In the present work, we found that WM and g explain a large portion of academic achievement 

in geometry variance. Nevertheless, the opposite can be argued, i.e. studying geometry may increase 

the ability to solve problems, which are needed in a complex society in which we live. In fact, national 

intelligence depends on cultural values, social structures, and economic resources (Hunt, 2012). In 

addition, national intelligence is highly dependent on environmental variables, such as education 

(Rindermann & Ceci, 2009). Thus, the study of geometry (e.g., trigonometry) is relevant because 

cognitive abilities are highly dependent on society's mental cognitive artifacts (which are ways of 

thinking that are used to reason about the phenomena; see Hunt, 2012).  

Our final model revealed that geometrical achievement in geometry is predicted by WM and g. 

A similar relationship has been observed between math achievement and WM (e.g., De Smedt et al., 

2009). In addition, the relationship between geometrical achievement in geometry, WM and g, extend 

previous results in which WM explained a small (14%) but significant portion of academic 

achievement in geometry variance (Giofrè et al., 2013). In fact, when the general factor is included in 

the model the explained variance increased up to the 42%. Furthermore, we found that only g has a 

direct effect on academic achievement variance. Moreover, WM and STM-VS (visuospatial short term 

memory) indirectly predicts a significant portion of academic achievement variance.  

Contrary to previous results, we did not find a direct path form a WM to academic achievement 

in geometry (Giofrè et al., 2013). It is worth noting that in Giofrè et al. (2013) students attending 
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secondary schools were tested, while in the current research children of the last years of primary school 

were examined. This finding can be attributable to the fact that our WM and g factor were highly 

related (they share the 65% of the variance). Thus, academic achievement variance may be explained 

from the shared g, WM variance. In fact, in our findings STM-VS and WM were significantly related 

to intelligence (see Study 3 part I). This result is coherent with findings obtained with adults 

participants and it confirms that STM-VS, typically involving unfamiliar situations, predicts a unique 

portion of variance not explained by active WM (Kane et al., 2004), whereas the verbal component of 

WM, typically involving less unusual material, is not relevant. Furthermore, our results confirm that 

WM has a strong positive effect on the g factor (.82) and STM only accounts for a small part (Conway 

et al., 2011). 

Geometry is included in all the mathematical curricula in the world, and in international 

assessments like PISA (OECD, 2010). It has been argued that PISA proficiency scores predict 

educational outcomes (Fischbach, Keller, Preckel, & Brunner, 2012) and that there is a positive effect 

of geometry education on the improvement of spatial intelligence (Gittler & Glück, 1998). For these 

reasons, academic achievement in geometry play a crucial role in the development of complex math 

skills needed in STEM disciplines. 

The present study, although it offers some insightful findings, has some limitations. First, we 

only tested children attending the final two years of primary school. Further studies are warranted to 

address this issue using other age groups. Second, our WM factor involved two verbal and only one 

visuospatial working memory tasks. Thus, it is possible that the presence of more than one VSWM task 

should either increase the portion of variance explained, or determine a direct link to academic 

achievement in geometry, without the mediation of g. Third, other spatial abilities may be related to 

geometry. In addition to verbal and visuospatial STM and WM tasks, further studies should analyze the 

role of visuospatial abilities, such as spatial visualization and mental rotation skills in academic 
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achievement in geometry. Finally, as suggested by Aydin and Ubuz, (2010) motivational and 

metacognitive factors could be associated with both intuitive geometry and school achievement in 

geometry and should be tested in further studies. 

In summary, this study showed how WM, g, and academic achievement in geometry are closely 

related and share a large portion of the variance. In other words, the success in geometry achievement 

is crucially related to other higher cognitive function, such as WM and g. Thus, it can be argued that 

improving academic achievement in geometry may result in an improvement in individual cognitive 

artifacts, which in turn may produce and increment in the society's mental cognitive artifacts which are 

needed in our complex society. 
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5. General Discussion 

5.1. Research overview  

Geometry is a fundamental part of the mathematical learning. The principal aim of the present 

dissertation was to investigate the relationship between geometry, WM, and intelligence in typical and 

atypical development. In fact, geometry, and in particular geometrical achievement, is highly related to 

higher order cognition, but this relationship was not investigated in detail. In the present dissertation, 

we found that a great portion of variance is shared between academic achievement in geometry, WM 

and intelligence. Thus, we provide an important insight on the processes involved in geometrical 

achievement.  

In the first study, we found a significant relationship between VSWM and academic 

achievement in geometry. This relationship was mediated by the intuitive geometry task (which 

measures core and culturally mediated aspects of geometry). We extended these results in the third 

study.  

In the third study, we considered geometry (intuitive and academic achievement in geometry), 

WM and the g factor. We found that a large portion of academic achievement in geometry variance is 

explained by WM with the mediation of the g factor; and that a large portion of intuitive geometry 

variance was explained by the g factor.  

In the second study, we focused on a sample of NLD children. Importantly we found that NLD 

children fail in geometrical task and that NLD children have difficulties on core and culturally 

mediated concepts of geometry.  
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5.2. Aims of the present dissertation 

5.2.1. Relationship between VSWM and geometry (Study 1) 

The first aim of the present dissertation was to investigate, in a secondary school sample, the 

relationship between various aspects of geometry and VSWM. In the first study, we found that VSWM, 

with the mediation of the intuitive geometry task, were significantly related to academic achievement 

in geometry. Both, core and culturally mediated principles of geometry were significantly related to 

academic achievement. Importantly, only the culturally mediated aspects of geometry mediated the 

relationship between VSWM tasks and academic achievement in geometry. In addition, one of the 

VSWM tasks was directly related to the academic achievement in geometry. Moreover, the model 

accounted for the 14% of the variance. For these reasons, we confirmed our hypothesis that VSWM is 

related to intuitive and academic achievement geometry. Nevertheless, due to the relatively small 

amounts of variance explained, we argued that other factors may be involved (e.g., intelligence).  

5.2.2. Nonverbal learning disabilities and geometry (Study 2) 

The second aim of the present dissertation, was to understand if children with NLD symptoms 

showed difficulties in intuitive and academic achievement geometry. In fact, we know that NLD 

children have difficulties in VSWM (Mammarella & Cornoldi, 2005a; 2005b). Thus, we hypothesized 

that they could also have deficits in geometry, which requires VSWM. In the second study, we 

administered the intuitive geometry task, various VSWM tasks and a task measuring academic 

achievement in geometry to children with NLD symptoms as well as a control group. We confirmed 

our hypotheses; in particular, we found that children with NLD symptoms fail in intuitive geometry 

task (in both core and culturally mediated concepts). Further, children with NLD symptoms have also 

difficulties in the academic achievement in geometry. To sum up, we confirmed that NLD children fail 

in geometry and that geometry is an important predictor of NLD symptoms. 
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5.2.3. Geometry, intelligence and working memory (Study 3) 

The third aim of the present dissertation was to investigate the relationship between geometry, 

WM and intelligence. In a first part, we considered several WM models and we found that the 

Baddeley and Hitch (1974) tripartite model provided the best fit to the data. In addition, we found that 

the relationship between WM and intelligence was extremely high (R
2
=.65). In a second part, we 

included geometry in the analysis. We found that geometrical achievement was indirectly predicted by 

WM (in particular WM and STM-VS) with the mediation of the g factor. Further, including the g factor 

in the analysis the relationship between intuitive and achievement in geometry was no longer 

significant. These findings, which extend the results obtained in the first study, show that intelligence 

explains a relevant portion of the academic achievement variance. Notably, the intuitive geometry task 

share a large portion of the variance with the g factor. These two aspects may be somehow related to 

each other. In fact, these two aspects are not considered to be entirely dependent from culture.  

5.3. Theoretical and applied implications 

Our findings also have theoretical and applied implications. First of all, they can provide 

teachers and educators with information on which cognitive processes support students learning 

geometry. Secondly, shedding light on the mechanisms influencing academic achievement could help 

us to understand why students sometimes fail in geometry and how we can help them to cope with 

these difficulties. Geometry has been central to the historical development of mathematics, and 

concepts such as abstraction generalization, deduction and proof are an important part of our scientific 

reasoning.  

In the first study, we found a relationship between VSWM and geometrical achievement. This 

finding has important theoretical implications. In fact, spatial abilities and geometry were previously 

studied (Bishop, 1980; Brown, & Presmeg, 1993; Piaget & Inhelder, 1967). But, the study was the first 
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to consider the important role of VSWM. We found that the 14% of the academic achievement 

variance was explained by VWSM with the mediation of intuitive geometry. The study also suggested 

that other factors may be important: one of these factors is intelligence.  

In fact, in the third study we found that geometry is highly related to intelligence, extending the 

findings from the first study. In particular, we explained a relevant portion of the academic 

achievement in geometry variance (R
2
=.42). This result shed light on the mechanisms influencing 

academic achievement helps us to understand why some students fail in geometry. In fact, geometry is 

highly related to reasoning and WM. This finding could help us in developing interventions aimed to 

help children cope with their difficulties in geometry. 

In the second study, we considered a sample with atypical development. Previous findings 

indicated that children with NLD performed significantly worse than did children with typical 

development in VSWM tasks and in arithmetic tasks associated with visuospatial processes 

(Mammarella et al., 2010). Since geometry is related to VSWM, we hypothesized that this group may 

also have difficulties in geometry. Hence, we found that children with NLD symptoms have specifics 

difficulties in geometry. This study has important clinical implication; in fact, geometrical tasks can be 

now used as predictors of NLD symptoms .  

5.4. Avenues for further studies and limitations 

Although the investigation of geometrical abilities is noteworthy as well as highly motivating 

for the several implications in practical field, the issue leaves open several other aspects that may be 

addressed in further research.  

First, we only considered VSWM as a measure of spatial abilities. For example, future research 

may focus on the relationship between large scale systems measures (such as spatial navigation tasks), 

and achievement in geometry. In fact, we found that the 42% of the variance in geometrical 
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achievement was explained by WM and g. Thus, a large portion of the variance remains unexplained. 

In fact, it has been argued that meta-cognitive factors are important in geometry (Aydın & Ubuz, 

2010). Further studies are needed to clarify the impact of metacognitive abilities in geometrical 

achievement. 

Second, the geometrical curriculum in many countries includes geometry but, unfortunately, 

often with insufficient results. In Italy, for example, there is a large difference in geometrical 

achievement between northern and southern Italian regions. In fact, northern regions performed well 

above international norms in geometry; conversely, southern regions performed poorly (see TIMSS 

2011 results; INVALSI, 2012). It has been argued, that differences in academic achievement tasks in 

Italy can be mainly attributable to genetic factors (Lynn, 2010, 2012). On the contrary, we believe that 

these differences are largely dependent on environmental factors (Cornoldi, Belacchi, Giofrè, Martini, 

& Tressoldi, 2010; Cornoldi et al., 2013). For this reason, we believe that compulsory education in 

geometry should be improved. Thus, it will be interesting to study whether academic achievement in 

geometry can be improved in poorer regions (such as, for example, southern Italy).  

Third, academic achievement in geometry might be improved with specific trainings. In fact, 

there is considerable empirical evidence that WM training can improve performance not only in WM-

related tests (e.g., Beck, Hanson, Puffenberger, Benninger, & Benniger, 2010; Mezzacappa & Buckner, 

2010) but also generalized to high order cognition such as reading comprehension or reasoning (e.g., 

Borella, Carretti, Riboldi, & De Beni, 2010; Carretti, Borella, Zavagnin, & De Beni, 2012). Hence, it 

will be interesting to understand whether a WM training, and in particular, a VSWM training, may be 

effective in improving the performance in geometrical achievement. For example, in the case of 

children with NLD, previous findings on single cases revealed that a VSWM training may also have an 

impact on their mathematical and geometrical difficulties (Mammarella, Coltri, Lucangeli, & Cornoldi, 

2009); however, these effects have never been studied with groups of children with this kind of 
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developmental disability. There is no evidence that trainings in geometry are effective in improving 

VSWM. In fact, only a positive effect of geometry education on the improvement of spatial abilities 

has been found (Gittler & Glück, 1998), but there is no evidence on improvement in VSWM. 

To conclude, since ancient times, geometry was considered an important part of mathematical 

learning. In fact, geometry is highly related to spatial abilities (Clements, 2003, 2004), working 

memory (Giofrè et al., 2013) and reasoning. We believe that geometrical achievement in geometry is 

related to higher order cognition and to the capacity to reason and solve problems. This ability, is 

crucial in our complex society and in STEM related fields (Lubinski, 2010). Thus, higher order 

cognition (Hunt, 2012) and consequently geometrical achievement, should have important socio-

economical implications in our post industrial complex society. 
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6. Appendix: The intuitive geometry task 
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Summary in Italian/Sommario 

Lo studio della geometria è una parte fondamentale dell’apprendimento matematico ed ha una 

storia antica. Basti pensare come, ai tempi i cui Platone insegnava, l’ingresso nella scuola di Atene era 

proibito a coloro che non conoscevano la geometria. La geometria, inoltre, in epoca rinascimentale, 

faceva parte del ‘quadrivium’, ed era considerata uno studio necessario per intraprendere gli studi di 

filosofia. A dispetto dell’importanza che la geometria ha avuto nel passato, i processi cognitivi che 

sono alla base della geometria non sono ancora stati studiati in maniera dettagliata. 

Il presente lavoro di tesi si propone tre obiettivi. Primo, indagare la relazione tra vari aspetti 

della geometria e la memoria di lavoro visuospaziale (VSWM). Secondo, verificare se ragazzi con 

sindrome non verbale (NLD) presentino difficoltà in vari aspetti della geometria. Terzo, investigare la 

relazione tra vari aspetti della geometria, la memoria di lavoro (WM) e l’intelligenza (g).  

Nel secondo capitolo, viene fornita una panoramica sulla relazione tra geometria, WM e g. Dato 

che la geometria riguarda lo studio dello spazio, essa richiede un coinvolgimento attivo delle abilità 

spaziali. La WM, ed in particolare la VSWM, inoltre, sono coinvolte in maniera attiva in compiti 

geometrici. Risolvere problemi geometrici, in aggiunta, richiede di ragionare sul problema e trovare 

una soluzione tra le tante alternative possibili. Per questa ragione, l’intelligenza (g), è coinvolta in 

maniera attiva nella soluzione di problemi geometrici.  

Nel terzo capitolo, viene discussa la relazione tra geometria intuitiva (quella parte della 

geometria che sembra essere indipendente dalla cultura), geometria scolastica (la geometria che viene 

insegnata a scuola) e la VSWM. Vengono presentati due studi. Nel primo studio, è stata svolta una 

ricerca su 166 ragazzi frequentanti gli ultimi due anni della scuola secondaria di secondo grado. Lo 

studio prevedeva la presentazione di: 1) sei prove di VSWM, .2) una prova di geometria intuitiva 

(suddivisa in due parti: riguardanti principi core e mediati dalla cultura) 3) una prova di geometria 
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scolastica. Dai risultati emerge come due prove di VSWM sono relate ad aspetti geometrici mediati 

dalla cultura i quali, insieme con principi ‘core’, che si pensa siano indipendenti dalla cultura, spiegano 

una porzione significativa di varianza delle prove di scolastica (14%). Nel secondo studio, la relazione 

tra VSWM e geometria (intuitiva e scolastica) è stata studiata considerando partecipanti con sintomi 

non verbali (NLD; i quali hanno problemi con prove spaziali, ma non con prove verbali). Lo studio ha 

preso in considerazione 16 partecipanti con NLD e 16 partecipanti appartenenti al gruppo di controllo. 

Dai risultati emerge come partecipanti con NLD cadano: i) in prove di geometria intuitiva (in aspetti 

‘core’ e mediati dalla cultura), ii) in prove di geometria scolastica. partecipanti con NLD, inoltre, 

cadono anche in prove di VSWM. I risultati della ‘discriminant function analysis’, infine, confermano 

come prove di VSWM e geometriche siano importanti nel discriminare sintomi di NLD.  

Nel quarto capitolo, viene discussa la relazione tra geometria, memoria di lavoro e intelligenza . 

Nella prima parte dello studio viene analizzata la relazione tra WM e il fattore g. In un primo momento 

sono stati valutati diversi modelli di WM e il modello tripartito di Baddeley e Hitch (1974) è risultato 

essere quello che meglio si approssima ai dati (miglior fit). In un secondo momento, abbiamo 

analizzato la relazione tra il modello tripartito e il fattore g. L’analisi dimostra come due componenti 

della memoria di lavoro (memoria a breve termine verbale e memoria di lavoro) spighino una porzione 

consistente della varianza di g (65%). Nella seconda parte dello studio, vengono confrontati vari 

modelli concorrenti sulla relazione tra vari aspetti della geometria (intuitiva e scolastica), WM e g. Il 

modello con il migliore adattamento ai dati mostra come WM, con la mediazione del fattore g, spieghi 

una quota significativa di varianza della geometria scolastica e della geometria intuitiva. In aggiunta, i 

risultati dimostrano come una quota significativa di varianza sia condivisa tra il fattore generale e la 

geometria intuitiva. 

Nel quinto capitolo, viene presentata una panoramica generale degli studi presentati. Vengono, 

inoltre, evidenziati i limiti degli studi e i possibili sviluppi per studi futuri.  


