View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Publications at Bielefeld University

A Competitive Mechanism for Self-Organized
Learning of Sensorimotor Mappings

Nikolas J. Hemion
Emergentist Semantics
CoR-Lab
Bielefeld University
Email: nhemion@cor-lab.uni-bielefeld.de

Abstract—How can a robot learn sensorimotor knowledge in
a developmental way based on its own experiences solely? An
important step is the acquisition of a body-schema—Ilearning
about the physical behavior of its own body, and how incoming
sensory stimuli can be put in relation to the own body. In
this work, we study how a competitive learning mechanism,
which is related to the EM algorithm, can help to simplify the
learning problem. We demonstrate how a robot can learn the
way visual stimuli move as a consequence of the robots own
actions of moving its camera or moving its end-effector in front
of its camera. We show how the robot can discriminate stimuli
originating from these two kinds of actions and learn the position
of the end-effector in its visual input. Previous approaches have
relied on a preprocessing step to ‘“self-detect”, which we find is
not necessary. The robot acquires a set of sensorimotor estimates,
which could later be used, e.g. in visually guided reaching.

I. INTRODUCTION

A body-schema, originally introduced by Head and
Holmes [1], refers to the ability of organisms to organize
incoming sensory stimuli in a way that allows them to bring
the stimuli into relation to their own body. For example, a body
schema enables to use proprioceptive information to determine
the positions of the limbs. In many applications, robots also
require this ability to reason about the relation of their body to
stimuli originating from the environment, e.g. when planning
collision-free motion. Here, a body-schema is usually seen as a
model of the body of the robot, which is available to the robot
itself. In most existing robots, such a model is pre-specified
by the human designer. However, robots with pre-designed
internal models fail to adapt to changes applied to their body,
e.g. as a consequence of physical damage. Also, in complex
robotic setups, it can become difficult or even impossible to
design an accurate model of the body, which also gives a
motivation for the autonomous acquisition of a body-schema
by the robot.

Previous work on the learning of a body-schema in robotics
can be subdivided into explicit and implicit models (see [2] for
a recent review). In explicit models, the problem is reduced to
calibrating a set of parameters, such as the length of segments.
In many cases, this is the easier and more favorable solution
but it cannot be applied to all robotic setups. The problem of
learning an implicit model, which we also want to consider
in this work, can be seen as the more general case, where the

Frank Joublin
Honda Research Institute Europe GmbH
Email: Frank.Joublin@honda-ri.de

Katharina J. Rohlfing
Emergentist Semantics
CoR-Lab
Bielefeld University
Email: kjr@uni-bielefeld.de

model of the body is learned as a sensorimotor mapping. Here,
the robot is not given any prior information about the relation
between its effectors and sensors. Its task is to retrieve this
relationship from the information that is available to it, namely
the sensory inputs and the motor commands that it generates.

Most existing approaches to learning a body schema as
an implicit model use an illustrative setup with a robot arm
and a camera (fixed or movable) observing a visual scene
in which the robot’s own arm is also located. The body-
schema is learned by fitting a model onto training data using
standard machine learning techniques. For example, Metta et
al. considered the task of letting the robot learn to reach at
the point in space where it is looking with its cameras [3].
In their approach, the robot repeatedly first fixated a target
visual stimulus, then tried to reach it with its end-effector
and then, after performing the arm movement, fixated with
its cameras on the visual location of the end-effector. This
way, training data could be generated to acquire a “motor-
motor” map, associating camera postures with corresponding
arm postures. Consequently, the robot could learn to reach at
the location where it is looking.

Similarly, Gaskett and Cheng used a pair of a closed loop
controller, which was employed for visually guided reaching,
and an open loop controller, which could bring the end-
effector into the visual field of the robot, where the open-loop
controller was trained during operation using self-organizing
maps [4].

These works make two assumptions on the robot: On the
one hand, the robot is already able to detect the position of
its end-effector in its visual field (e.g. by giving it an easily
detectable color), and on the other hand, the robot relies on
an existing closed-loop controller for calibrating the arm and
camera posture space. In this work, we want to show how
a robot can learn the necessary mappings without relying on
these assumptions.

Several methods have been proposed to let the robot “self-
detect” its end-effector in the camera input other than using
an easily detectable color, mostly using some combination
of movement detection and temporal contingency estimation
between the sending of motor commands and the detec-
tion of movements. These can be prepended to the learning
system to provide the necessary input, i.e. the position of

https://core.ac.uk/display/18293891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. A visualization of the simulation that was used in the experiments.
The simulated robot is equipped with a 2DOF planar arm with a fixed shoulder
position and rotational joints in the shoulder and the elbow, and with a 2DOF
movable camera (indicated by the dashed rectangle as its field of view),
which could move horizontally and vertically in a plane parallel to the robots
workspace. Randomly placed objects compose the visual background.

the end-effector. For example, Stoytchev demonstrated how
the characteristic delay between sending a motor command
and observing change in the image can be estimated using
temporal contingencies [5]. Fitzpatrick and Arsenio proposed
to use a mechanism of correlating changes in arm postures
with changes in pixel values, while performing rhythmic
movements to locate the visual region of the end-effector in
the camera image [6]. Kemp and Edsinger [7] used mutual
information to estimate the amount to which the robot’s actions
had control over image patches of different appearances and
showed that their robot could learn the appearance of its end-
effector and that it was controllable. Gold and Scassellati
trained a graphical model to use probabilistic reasoning over
time to classify image regions as belonging to the robot or
being animate or inanimate “other” [8]. In contrast, we aim
at showing that it is not necessary to implement a separate self-
detection step into the learning process, and that the process
of learning the body-schema can self-organize.

II. SIMULATION

We used a simulated robot in our experiments, as depicted
in Figure 1. The robot possesses a two-degrees-of-freedom
(2DOF) planar arm and a movable camera, also with 2DOF.
It is assumed that the robot is equipped with controllers
that can stably drive its effectors (i.e. arm and camera) into
desired postures, specified as coordinates in the respective
motor spaces.

As sensory input the robot receives proprioceptive feedback
and visual input. The proprioceptive feedback provides the
robot with information on the current positions of the camera
and arm (in the same format as the desired postures that
are sent to the controllers, i.e. coordinates in the respective
motor spaces). The visual input provides the location of one
object in the robot’s visual field, as a coordinate in the image
frame. Note that several objects can be in the visual field
simultaneously. We assume some kind of attention mechanism
is working in the robot, by which one of the visible objects
is randomly selected to be attended. This can either be an
object (or salient region) in the visual background scene, or

TABLE I
LIST OF NOTATIONS

Sc C R? Camera motor space

Sa C R? Arm motor space

Sy C R2 Visual location space

Te € Se Proprioceptive feedback of the camera posture
Ue € Se Desired camera posture sent to controller

ZTa € Sa Proprioceptive feedback of the arm posture
Uq € Sa Desired arm posture sent to the arm controller
Ty € Sy Position of attended proto-object

the visual percept of the robot’s end-effector. They are not
treated any differently in the input, but are all subject to being
attended. More specifically, we simply generate a fixed number
of objects in the visual field of the robot and let the system
select one of them or the robot’s end-effector, all with equal
probability.

Thus, it is assumed that the vision problem is solved insofar
as it is abstracted from raw camera input to the coordinate
of the attended visual stimulus, which can either be in the
background or on the robot’s end-effector. In our simulation,
we only require that the robot is able to visually track a
stimulus while moving and to recognize, when the stimulus
has disappeared. This could be implemented for example by
using an optical flow based method, or by using a saliency-
based visual attention system based on proto-object descriptors
(e.g. [9]).When assuming that objects in the world only change
their appearance slowly (e.g. while being rotated), simply
performing a nearest neighbor search in the proto-object
feature space between frames should suffice, with a predefined
threshold for rejection.

In the remainder of this paper, we use mathematical nota-
tions to refer to the inputs and outputs of the robot. Table I is
an overview of the notations used for description.

A. Problem Statement

In a robotic setup as the one described above, the problem
of learning a body-schema can be described as follows. As the
robot should learn, how its actions directly influence the input
from its sensors, there are two contiguities to be learned:

1) Saccades — Movement of the camera causes the location
of visual stimuli to shift.

2) Camera-arm coordination — Movement of the arm
causes the visual perception of the end-effector to move.

Also, of course, simultaneous movement of both arm and
camera results in a superposition of the two changes. The
proprioceptive input resultant from the robot’s movements
does not have to be learned, as it is identical to the desired
postures sent to the controllers, plus some motor error, which
can be assumed to be small.

Given a static environment, the robot should thus learn a
mapping of the kind

f (xc(t)7U’C(t)7xa(t)7ua(t)7xv(t)) = xv(tc)u (1)

which governs how the position of a visual stimulus (end-
effector or environment) is changed as a consequence of an
action of the robot. ¢, > ¢ denotes the point in time when all
controllers of the robot have converged to their target positions.

An important point to note here is that the visual stimulus
input x, can either originate from a background object or
from the robot’s end-effector. Formally we can say that there
is a discrete latent variable, which indicates wether the robot
is attending its own end-effector or a part of the background
scene. This means that the robot has not yet learned about
the appearance of its end-effector or how to discriminate it
from other visual stimuli. The procedure presented in this work
could actually be used to also bootstrap the learning of the
appearance of the end-effector, but we do not consider this
here.

B. Training Data

The robot should only use training data which it can acquire
on its own. We let the robot perform random movements
(“motor babbling”) by consecutively generating random target
postures in the robot’s camera and arm motor spaces. Before
these are sent to the controller, we also let the system randomly
select one of the objects in the camera’s visual field to be
“attended”, i.e. tracked during the movement.

Thus, the training data that the robot generates is composed
of the state of the robot’s sensors and the motor targets before
the movement,

X' = {(2o(t), uc(t), xa(t), ua(t), w,(t)) 2)
and the state of the robot sensors after the movement,
Y= x,(t,). 3

As stated above, z.(t.) and x,(t.) are assumed to be
sufficiently close to wu.(t) and w,(t) respectively, since the
robot generates movements by specifying a target posture for
the controller, and thus these do not have to be learned by the
robot.

The training set is the set of all training samples (X!, V'),

S {S',t=1...T} (4)
(X' Yhy, t=1...T}. (5)

III. COMPUTATIONAL MODEL

Directly trying to learn an estimate of the function f (cf.
Equation 1) using the whole training set S is bound to produce
bad results, since the information of the latent variable is
missing: The system does not know a priori, when it is
looking at its own end-effector and when it is looking at
the background scene. However, the outcome x,(t.) of the
robots movement depends on this latent variable, and as a
consequence the data represents samples from two different
underlying functions in one space. Therefore, the system
requires some kind of mechanism to classify the training
samples, which is effectively why previous approaches have
used a self-detection mechanism, so that only examples of the

vision
input

»| saccade

N—p| system
> camera-arm
arm
controller

coordination system
@

camera
controller

L

Fig. 2. Schematic overview of the computational model.

one kind are being generated for the training (cf. Section I).
In contrast, we propose to let the system self-organize in
classifying the training samples, using a mechanism that is
functionally related to the well known EM algorithm [10].

Our computational model therefore consists of two systems
(see Figure 2), which should learn estimates of the mappings
between sensory inputs and motor commands. On the one
hand, the saccade system receives vision input and proprio-
ceptive feedback from the camera, and generates targets for
the camera controller. This system should enable the robot
to learn how it can control the positions of static objects
in its visual input by moving its camera and how to look
at a target visual stimulus. On the other hand, the camera-
arm coordination system additionally receives proprioceptive
feedback from the arm and also generates targets for the arm
controller. This system should learn how the visual perception
of the robot’s own end-effector can be controlled by the robot’s
motors (either camera or arm), and how to look at the position
of the own end-effector or to bring the end-effector to a target
visual location.

The two systems consist of estimates of forward mappings
f(-), which transform current sensory inputs and motor com-
mands into predicted sensory stimuli, and inverse mappings
g(+), which return the motor commands necessary to transform
a currently perceived situation into a goal situation, specified
by a desired sensory value. In the saccade system, the two
estimates

fsace (336<t)7 uc(t)7 Ty (t>) = Ty (tC) (6)

and
Gsace (Te(t), Ty (1), 2, (1)) = ue(t), (7

are estimated, where), is the desired visual location used for
the inverse mapping.

The camera-arm coordination system is composed of the
forward estimate

Jea (uc(t), Ua(t)) =Ty (tc)a (8)
and the two inverse estimates
Gea (c(t),25(1)) = ua(t), ©)

and

Jea (2a(t), 7,(1)) = uc(), (10)

where g%, generates an arm posture that will bring the end-
effector to a desired visual location z(t), given the camera
posture z.(t), and g<, generates a camera posture given a
desired visual location x7(t) and an arm posture x,(t).

A. Bootstrapping the Learning Process using Preliminary
Model Predictions

Similar to how the learning of a body-schema is related to
the question of which input signals are controllable by which
effectors, the problem of dividing up the training samples is
equivalent to the question of which samples are predictable by
which forward estimates. By having split up the input space
of f and only keeping those dimensions that are necessary to
compute the estimates (e.g. omitting the arm target u, in the
input for the estimate fs,..), we have projected the training
samples into lower-dimensional subspaces. This has the effect
that for example in the input space for the saccade system,
only the training samples belonging to the kind “looking at
the visual background” can be described as a function. All
other training samples are uncorrelated noise, as they depend
on omitted input dimensions: They are unpredictable on the
basis of this subspace.

To make this idea clearer, let us consider a simple ex-
ample in three dimensions (see Figure 3). Let fi1:R — R
and fo:R — R be two arbitrary functions. We generate
a training set by consecutively drawing two random inputs
z1, 22 € R from some distribution (e.g. uniformly distributed
in the interval [—5,5] in our example). We then compute y
based on a latent random variable either as y = fi(x1) or
as y = fa(x2) and combine the three values into a training
sample, (x1,%2,y). If we now omit one input by projecting
the training samples into a subspace, e.g. by only considering
the training samples as pairs (z1,y), all examples that were
generated by the function f5 are randomly distributed across
the input space. Only those examples that were generated by
f1 are samples from a function that can be learned.

We exploit this property of the data in the following way:
We train estimates for the two functions (e.g. using multi
layer perceptrons) and compute predictions of the target value
y for the whole training set for each of the estimates and
compute the squared error between the predicted and observed
values. We then update each estimate using only those training
samples, where the estimate produced the lowest error. These
two steps are then repeated for a given number of times or
until the mean squared error falls below a desired threshold.

Coming back to our robot scenario, we now want to
formalize this procedure. Let X! .., X!, Yi.. and Y be
the components of X! and Y, corresponding to the inputs
and outputs of the mappings fs.cc and f.,. For each training
sample S°, predictions are generated using the preliminary
estimates and compared to the actually observed data. For this
we use the squared error for the forward estimates in each of
the two systems, i.e. for s € {sacc, ca},
By = (Y] — fs(X0)*.

S

Y

Based on these error values we want to estimate, whether
the training sample S? is an observation of the kind repre-
sented by the saccade system (i.e. the robot looked at the
static background and moved its camera) or the camera-arm
coordination system (i.e. the robot looked at its end-effector
and moved its camera and/or its arm). For this, we introduce
the binary weighting scheme

t_
ut={

Thus, an example is only used for training an estimate if the
associated weight w! equals 1.

Figure 3(b)-(d) is a visualization of the first four iteration
steps of this mechanism for the simple three-dimensional
example.

1 if A r e {sacc,ca},r #s: Et < Et,

0 otherwise. 2)

B. Using the Learned Estimates

After the training, the robot could use the learned estimates
in a way related to employing a body-schema, e.g. for reaching
for a visually perceived target, in the following way: When
the robot’s camera is in some posture z. and the robot sees
an object at a position z, in its visual input space, these
values could be provided as input for the inverse estimate
g%, which would in turn provide the necessary arm motor
command to bring the end-effector to the position of the object.
The other way around, when the robot has its arm in some
configuration x, and should move its camera to a position
that brings the end-effector to a position z, in its camera
input, the inverse mapping g:, could be employed, yielding
the necessary camera motor command.

IV. SIMULATION RESULTS

To test the proposed mechanism, we used multilayer percep-
trons (MLPs) for estimating the forward and inverse mappings,
each with 15 neurons in one hidden layer. However, in
principle any regression method can be used.

We generated a training set S by letting the robot perform
random movements. Before each movement, four objects were
placed randomly in the visual scene observed by the robot’s
camera. On average, the robot thus had a 20% chance to look
at its own end-effector and an 80% chance to look at an object
belonging to the visual background scene.

We then iterated the training process outlined above 10
times. At each iteration step, we randomly drew 1000 training
samples from .S and used the estimates to generate predictions
for those samples. The samples were then assigned to the
saccade system and the camera-arm coordination system,
based on the rule defined in Equation 12. The assigned training
samples were further separated into a training set, a validation
set and a testing set, all three equally large. The training set
was used to train each MLP in the system using the Levenberg-
Marquardt algorithm for optimization, and using the validation
set to prevent over-fitting.

Figure 4(a) shows the development of the mean squared
errors computed for the forward estimates across the training

(c) iteration 2

(d) iteration 4

Fig. 3. (a) The two plots show an example training set where green circles correspond to one kind of observation and blue crosses correspond to another
kind of observation. The two plots represent projections of the training samples into two-dimensional subspaces, with a one-to-one correspondence of points
in the two plots. It can be seen that the green circles are random noise (with some non-trivial distribution in the vertical dimension) in the left plot, whereas
the blue crosses are random noise in the right plot. (b)-(d) Using the mechanism described in this work, the training of estimates for the two functions can
self-organize to associate the correct training samples for training the estimates. Blue dots represent training samples that are used to update the estimate, red
dots the remaining training samples that are discarded for the training of the estimate. Solid blue lines show the estimates, dashed lines represent the mean
squared error of the current estimate for the associated training samples. Initially, also wrong training samples are used for the training. However, the closer
the estimates approach the true functions, the better their prediction becomes, and thus the training input for the estimates has less and less noisy data.

& o0——— 5 100
= S . = o @
T 0.08p S - - - - b « 2 80F q
o o9
£ 02
© 0.06F b o9 60r 1
° S E
) c
s 0.04 o g 23 40F i
> T T - - = - - — =
2 0.02 1 SE 20f s
© ©
g 0 | = 0 I
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
iteration step iteration step
(a) (b)

Fig. 4. (a) The mean squared error of the forward estimates in the saccade system and the camera-arm coordination system. Solid lines show the development
of the mean squared error when the proposed mechanisms are employed. Dashed lines show the development of the error when training without using the
mechanisms. (b) The number of training examples that were assigned to the saccade system and the camera-arm coordination system. The true average

numbers of 80% and 20% are quickly approached.

iterations using the testing set. In the first iteration, both esti-
mates are trained using all training samples, resulting in a first
rough estimation of the underlying functions. In the following
iteration steps, both forward estimates quickly approach the
underlying true function, as the mean squared error drops
toward zero. In comparison, continuing to acquire training
examples and training both estimates using all observations
does not improve the performance at all: the mean squared
error in this case remains at the same level as after the first
iteration step.

Figure 4(b) plots the number of training examples that were
assigned to the two systems. It can be seen that initially
too many examples are used, but after only a few iterations,
the training process is able to provide the two systems with
approximately the correct number of training examples, i.e.
80% for the saccade system and 20% for the arm-camera
coordination system.

V. DISCUSSION

As we have shown in our simulation experiment, a robot
can learn about the way its effectors can influence its sensory
inputs as in a body-schema without the need to previously

apply a separate self-detection step. We have used a compet-
itive training mechanism, which is related to the idea of the
EM algorithm: The training set is partitioned based on the
performance of preliminary estimates, which are then updated
based on the partitioned training data.

We have proposed to project the training data into lower-
dimensional subspaces before using the predictions to separate
the examples. Applying the same mechanism by training
competing estimates in the whole input and output space
would also allow to accurately represent the training data.
However, the estimates would separate the input space in an
arbitrary manner, not capturing the true underlying separation.
We therefore propose that in a more complex scenario, in
which there are more than just two relationships to be learned,
the system should learn mappings on increasingly higher sub-
spaces. Our intuition is that the same competition that we have
show in this work to be helpful in discriminating two kinds
of data points could also help in learning higher-dimensional
problems by filtering out input that can be explained by lower
dimensional estimates, and thus reducing the amount of noise
in the training data for higher-dimensional estimates.

A. Relationship to the Concept of Schema

The idea of the mechanism that we have outlined, namely
using preliminary predictions of competing systems to separate
inputs, is to some degree congruent with a concept that was
originally formulated in Psychology, which is the schema.

The concept of schema is an approach to give an explanation
for the way that knowledge is organized in the human brain.
Schemata provide a framework in which experiences are stored
and abstracted to derive a definition of what is relevant, e.g.
important sensory information in a certain situation, relevant
next actions, or relevant properties of objects, etc. Even though
the concept of schema has been widely used across disciplines
for almost a century (e.g. [11], [12], [13]), definitions have still
not converged.

However, a central aspect of the concept of schema that
we want to highlight, is that knowledge is stored in a very
structured manner. The work of Minsky on frames [14], which
was very influential not only in the field of artificial intelli-
gence, captures this idea in schma-like symbolic structures to
implement knowledge in artificial systems.

More recent work on the topic is often focusing on giv-
ing embodied approaches for schemata. E.g. in psychology,
Barsalou gave a comprehensive account for human cognition
based on an embodied approach of acquiring and representing
knowledge in schema-like mental structures, which he called
“perceptual symbols” [15]. The accompanying concept of
image-schema is often used for giving an account for abstract
thought on the basis of embodied experiences (e.g. [16]).

In neuroscience, the concept of schema also has been used,
where correlates for the structure provided by schemata on a
conceptual level are sought for on a neural level [13], [17].
Often this is done in the context of discussing a grasp concept
and put in relation to the mirror neuron system [18], where
a grasp schema is described as connecting motor programs to
the sensory context relevant for the action.

One important property of the concept of schema, which we
see as to some degree congruent with the mechanism described
in this work, is the active nature of schemata as they are being
used in perception. Schemata are thought of as active elements
of the cognitive apparatus, which actively seek the information
which is relevant for them. For example, whenever we are
confronted with the image of a car, our past experience with
cars, organized in a car schema, becomes active and governs
the way we reason about the stimulus being presented to us
and puts it in relation to our experiences and knowledge [15].
For example, we will immediately know that we can use the
car for driving. Piaget called the ability to map new percepts
of objects onto existing schemata “assimilation” [12]. In more
technical terms, Rumelhart [19] therefore described schemata
as “recognition devices whose processing is aimed at the
evaluation of their goodness of fit to the data being processed
(p. 169).”

If schemata are seen as structural elements associating
information in a framework for knowledge, and these structural

elements dynamically compete in explaining the input that
is presented to the cognitive system, then we can conclude

that this competition could aid the system in organizing the
information, at least on the level of low complexity as in our
simulation experiments. When interpreted from a schema theo-
rists point of view, our results can be seen as an instance where
the assimilation property of schemata helps in organizing and
learning about incoming information.

ACKNOWLEDGMENT

Nikolas J. Hemion gratefully acknowledges the financial
support from Honda Research Institute Europe.

REFERENCES

[1] H. Head and G. Holmes, “Sensory disturbances from cerebral lesions,”
Brain, vol. 34, no. 2-3, pp. 102-254, 1911.

[2] M. Hoffmann, H. Marques, A. Arieta, H. Sumioka, M. Lungarella, and
R. Pfeifer, “Body schema in robotics: A review,” IEEE Transactions on
Autonomous Mental Development, vol. 2, no. 4, pp. 304-324, 2010.

[3] G. Metta, G. Sandini, and J. Konczak, “A developmental approach to
visually-guided reaching in artificial systems,” Neural Networks, vol. 12,
no. 10, pp. 1413-1427, Dec. 1999.

[4] C. Gaskett and G. Cheng, “Online learning of a motor map for humanoid
robot reaching,” in Proc. of the 2nd Int. Conference on Computational
Intelligence, Robotics and Autonomous Systems, 2003.

[5] A. Stoytchev, “Self-detection in robots: A method based on detecting
temporal contingencies,” Robotica, vol. 29, pp. 1-21, 2011.

[6] P. Fitzpatrick and A. Arsenio, “Feel the beat: using cross-modal rhythm
to integrate perception of objects, others, and self,” in Proc. of the 4th
Int. Workshop on Epigenetic Robotics. Genoa, Italy: Lund University
Cognitive Studies, 2004.

[7] C. C. Kemp and A. Edsinger, “What can I control? a framework for
robot self-discovery,” in Proc. of the 6th Int. Conference on Epigenetic
Robotics, Paris, France, 2006.

[8] K. Gold and B. Scassellati, “Using probabilistic reasoning over time to
self-recognize,” Robotics and Autonomous Systems, vol. 57, no. 4, pp.
384-392, 2009.

[9] M. Wischnewski, A. Belardinelli, W. X. Schneider, and J. J. Steil,

“Where to look next? combining static and dynamic proto-objects in

a TVA-based model of visual attention,” Cognitive Computation, vol. 2,

no. 4, pp. 326-343, 2010.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

from incomplete data via the EM algorithm,” Journal of the Royal

Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1-38,

1977.

F. C. Bartlett, Remembering. Oxford, England: Oxford University Press,

1932.

J. Piaget, Biology and knowledge: an essay on the relations between

organic regulations and cognitive processes. Chicago: University of

Chicago Press, 1971.

M. A. Arbib, “Schema theory,” in The handbook of brain theory and

neural networks. Cambridge, Mass.: MIT Press, 1998, pp. 993-998.

M. Minsky, “A framework for representing knowledge,” in The Psy-

chology of Computer Vision, P. H. Winston, Ed. New York [u.a.]:

McGraw-Hill, 1975, pp. 211-277.

L. W. Barsalou, “Perceptual symbol systems,” Behavioral and Brain

Sciences, vol. 22, no. 4, pp. 577-660, 1999.

J. M. Mandler, “Perceptual and conceptual processes in infancy,” Journal

of Cognition and Development, vol. 1, no. 1, pp. 3-36, 2000.

V. Gallese and G. Lakoff, “The brain’s concepts: the role of the sensory-

motor system in conceptual knowledge,” Cognitive Neuropsychology,

vol. 22, no. 3, pp. 455-479, 2005.

M. A. Arbib, “From Monkey-Like action recognition to human lan-

guage: An evolutionary framework for neurolinguistics,” Behavioral and

Brain Sciences, vol. 28, no. 2, pp. 105-124, 2005.

D. E. Rumelhart, “Schemata and the cognitive system,” in Handbook

of social cognition. Lawrence Erlbaum Associates, 1984, vol. 1, pp.

161-188.

(10]

(1]

[12]

[13]

(14]

[15]
[16]

[17]

[18]

[19]

