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ABSTRACT 

 

 
 

Background: Endocardial voltage mapping (EVM) identifies low-voltage right ventricular 

(RV) areas, which may represent the electroanatomic scar substrate of life-threatening 

tachyarrhythmias. We prospectively assessed the prognostic value of EVM in a consecutive 

series of patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC).  

 

Methods: We studied 69 consecutive ARVC patients [47 males; median age 35 years(28-

45)] who underwent electrophysiological study and both bipolar and unipolar EVM. The 

extent of confluent bipolar (<1.5mV) and unipolar (<6.0mV) low-voltage electrograms was 

estimated using the CARTO-incorporated area calculation software.  

 

Results: Fifty-three patients (77%) showed ≥1 RV electroanatomic scars with an estimated 

burden of bipolar vs unipolar low-voltage areas of 24.8% (7.2-31.5) and 64.8% (39.8-95.3), 

respectively (P=0.009). In the remaining patients with normal bipolar-EVM (n=16;23%), the 

use of unipolar EVM unmasked ≥1 region of low-voltage electrogram affecting 26.2% (11.6-

38.2) of RV wall. During a median follow-up of 41 (28-56) months, 19(27.5%) patients 

experienced arrhythmic events, such as sudden death (n=1), appropriate ICD interventions 

(n=7), or sustained ventricular tachycardia (n=11). Univariate predictors of arrhythmic 

outcome included previous cardiac arrest or syncope (HR=3.4; 95%CI:1.4-8.8; P=0.03) and 

extent of bipolar low-voltage areas (HR=1.7 per 5%; 95%CI=1.5-2; P<0.001), while the only 

independent predictor was the bipolar low-voltage electrogram burden (HR=1.6 per 5%; 

95% CI:1.2-1.9; P<0.001). Patients with normal bipolar-EVM had an uneventful clinical 

course.  
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Conclusions: The extent of bipolar RV endocardial low-voltage area was a powerful 

predictor of arrhythmic outcome in ARVC, independently of history and RV 

dilatation/dysfunction. A normal bipolar-EVM characterized a low-risk subgroup of ARVC 

patients. 
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RIASSUNTO 

 

 

Introduzione: Il mappaggio elettroanatomico mediante sistema CARTO permette di identificare e 

quantificare aree di basso voltaggio del ventricolo destro che corrispondono a cicatrici 

elettroanatomiche, substrato di aritmie ventricolari pericolose per la vita.   

Lo scopo dello studio era di valutare, in modo prospettico, il valore prognostico del mappaggio 

elettroanatomico in una coorte di pazienti affetti da Cardiomiopatia Aritmogena del Ventricolo 

Destro. 

 

Materiali e Metodi: La popolazione di studio includeva 69 pazienti (47maschi; età mediana 35 

anni; 28-35) affetti da Cardiomiopatia Aritmogena del Ventricolo Destro. Tutti i pazienti sono stati 

sottoposti ad un completo work up clinico che includeva: elettrocardiogramma, ecocardiografia, 

cateterismo cardiaco, studio elettrofisiologico e mappaggio elettroanatomico del ventricolo destro, 

utilizzando sia mappe bipolari sia unipolari. L’estensione degli elettrogrammi confluenti di basso 

voltaggio bipolari (<1.5 mV) e unipolari (<6.0 mV) è stata stimata usando un software incorporato 

nel sistema CARTO.  

 

Risultati: In cinquantatre pazienti (77%) è stata riscontrata ≥1 regione cicatriziale a carico del 

ventricolo destro con una percentuale stimata di aree di basso voltaggio bipolari e unipolari 

rispettivamente di 24.8% (7.2-31.5) e 64.8 (39.8-95.3), rispettivamente (P=0.009). In tutti pazienti 

con una normale mappa bipolare (n= 16; 23%) l’utilizzo del mappaggio unipolare ha identificato ≥1 

regione con elettrogrammi di basso voltaggio che interessava il 26.2% (11.6-38.2) del ventricolo 

destro. Durante un follow-up di 41 (28-56) mesi 19 (27.5%) pazienti subirono eventi aritmici 

maggiori, quali morte improvvisa (n=1), intervento appropriato dell’ICD (n=7), o tachicardia 

ventricolare sostenuta (n=11). All’analisi univariata i predittori dell’outcome aritmico includevano: 
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sincope (HR=3.4; 95%CI: 1.4-8.8; P=0.03), e l’estensione delle aree di basso voltaggio bipolare 

(HR=1.7 per 5%; 95%CI: 1.5-2; P<0.001). All’analisi multivariata, l’unico predittore indipendente 

risultava l’estensione delle aree di basso voltaggio al mappaggio bipolare (HR=1.6 per 5%;95% 

CI:1.2-1.9; P<0.001). Tutti i pazienti con un mappaggio bipolare normale presentavano un decorso 

clinico privo di eventi aritmici.  

 

Conclusioni: l’estensione delle aree endocardiche di basso voltaggio nel ventricolo destro risulta 

essere un potente predittore di eventi aritmici maligni nella Cardiomiopatia Aritmogena del 

Ventricolo Destro indipendentemente dalla storia clinica e dalla dilatazione/disfunzione del 

ventricolo destro. La presenza di un normale mappaggio elettroanatomico bipolare rapprestanta un 

sottogruppo di pazienti affetti da Cardiomiopatia Aritmogena del Ventricolo Destro a basso rischio 

aritmico.  
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General Aspects of Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) 

 

History  

 

 In 1736 Giovanni Maria Lancisi published in Naples the book De Motu Cordis et 

Aneurysmatibus (1). In Chapter V of the book entitled De Hereditaria ad Cordis Aneurysmata 

Constitutione: De Cordis Prolapsu (On the Hereditary Predisposition to Cardiac Aneurysms: 

Cardiac Prolapse), he reported some examples of such morbid entities and described the history of a 

family with disease recurrence in four generations, all featuring signs and symptoms that were in 

keeping with what nowadays we call Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) 

including: palpitations, dilatation and aneurysms of the right ventricle (RV), heart failure, and 

sudden death (Figure 1).  

 

 

Figure 1. The book by Giovanni Maria Lancisi published in Naples in 1736. (From Thiene G. Arrhythmogenic 

Cardiomyopathy. Cardiac Electrophysiology clinics 2011 p. 180)  
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 The first recent pathologic description was made by Laennec, as reported in his bibliography 

by Saintignon in 1904. (2) In Middlemarch, published in 1871 by George Eliot, the protagonist Dr 

Lydgate, talking to his patient, says “you are suffering from what is called fatty degeneration of the 

heart, a disease which was first described by Laennec… it is my duty to tell you that death from the 

disease is often sudden..” (3). In 1905 Sir William Osler reported a case of a nearly 40-year-old 

man who died suddenly while climbing a hill. (4) Postmortem disclosed a biventricular myocardial 

atrophy, with a thinning and translucency of the ventricular free walls, which Osler immortalized 

with the name “parchment heart.”  

 In 1950 Segall reviewed the specimen and republished the case with unequivocal drawings 

showing paper-thin walls (Figure 2) (5).  

 In 1952 Uhl at the Johns Hopkins Hospital in Baltimore published a case of congenital 

malformation of the heart characterized by total absence of myocardium of the RV in an 8-month-

old female infant who died of congestive heart failure and with no arrhythmias at 

electrocardiography (ECG) (6). The description of the heart at autopsy reads (Figure 3): “Externally 

the heart appears greatly enlarged. almost the entire dilated chamber (RV) was occupied by a large 

laminated mural thrombosis which adhered firmly to the endocardium along the anterior wall of 

the ventricle. Examination of the cut edge of the ventricle wall revealed it to be paper-thin with no 

myocardium visible…In the RV wall epicardium and endocardium lie adjacent to each other with 

no intervening cardiac muscle…no fibro-fatty tissue in the RV free wall was observed”. 

 In 1961 and 1965 Sergio Dalla Volta first published cases under the name of 

“auricularization of the RV pressure” to emphasize the behavior of the RV chamber without an 

effective systolic contraction, with the blood being pushed to the pulmonary artery mainly due to 

the right atrial systole. (7,8) Although the patients presented also with ventricular arrhythmias, 

Dalla Volta pointed more to the hemodynamic features rather than to the arrhythmogenicity of the 

RV. One of the original patients reported by Dalla Volta underwent cardiac transplantation 30 years 

later in 1995 at the age of 65 because of congestive RV failure. The left ventricle (LV) was normal, 
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whereas the RV was hugely dilated with diffuse paper-thin free wall and complete disappearance of 

the myocardium (Figure 4). (9) At the same University of Padua in 1972, the pathologist Vito 

Terribile performed the autopsy of a woman with a history of palpitations and congestive heart 

failure, who died of pulmonary embolism. The heart showed an extreme dilatation, mural 

thrombosis, and “adipositas cordis” of the RV, and the LV myocardium exhibited areas of 

“myocardiosclerosis,” all structural findings in keeping with ARVC.(10) Interest on the arrhythmic 

aspects of the disease was attracted by Guy Fontaine from Paris in the 1970s with the report of 

nonischemic ventricular tachyarrhythmias with left bundle branch block  (LBBB) morphology 

originating from the RV.(11) In 1982, Frank Marcus from the University of Arizona, named  the 

manifestation of primary RV disease as “RV dysplasia” because the histology of the myocardial 

specimens, resected at surgery for removal of arrhythmic foci, showed anomalous histologic 

features of the RV myocardium consisting of fibro-fatty tissue, which were believed to be the 

consequence of an embryonic maldevelopment (12). 

 

Figure 2. The drawings of the “parchment heart” of Osler, with paper-thin walls of both ventricles. (From Thiene G. 

Arrhythmogenic Cardiomyopathy. Cardiac Electrophysiology clinics 2011 p. 180)  
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Figure 3. The original picture of the Uhl’s anomaly. (From Thiene G. Arrhythmogenic Cardiomyopathy. Cardiac 

Electrophysiolohy clinics 2011 p. 180)  
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Figure 4. The heart at cardiac transplantation of one of the patients published by Dalla Volta in 1964. Note the huge 

dilatation of the right ventricle, both at gross and in vitro magnetic resonance, with paper-thin RV free wall. (From 

Thiene G. Arrhythmogenic Cardiomyopathy. Cardiac Electrophysiolohy clinics 2011 p. 182)  

 

 

By observing the presence of aneurysms in the inflow, apex, and outflow of RV, the investigators 

coined the term “triangle of dysplasia,” a pathognomonic landmark of the disease.  

 Andrea Nava in Padua, by analyzing the study of families with sudden death and autopsy 

evidence of ARVC from Piazzola sul Brenta (a small village close to Padua in the Veneto Region), 

discovered the heredofamilial nature of the disease, a monogenic disorder with a Mendelian 

autosomal dominant transmission.(13,14)  

 Gaetano Thiene proved the risk of sudden cardiac death (SCD) as first manifestation of the 

disease by the postmortem study of a series of young victims, in the setting of a project supported 

by the Veneto Region. (15,16) The first observation concerned a young doctor, formerly cycle 
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champion, who died suddenly on a tennis court during a hot afternoon of May 1979. Fifteen 

minutes after the starting of the game he stopped, took his pulse, walked back to the border of the 

tennis court, and suddenly fainted. In his diary, written on October 4, 1978, during preparation of 

the Internal Medicine examination, the phrase “ventricular tachycardia of left bundle branch block 

morphology” was found, which retrospectively can refer to his own ECG. His girlfriend related that 

on that day he had suffered palpitations and did an ECG. It took years to understand that the 

explanation of cardiac arrest and ventricular fibrillation (VF) was the fibro-fatty tissue that had been 

observed at autopsy in the RV free wall and at apex of the LV, and not conduction system 

abnormalities as first hypothesized. 

 In 1988 a group of Greek doctors, observed a cardiac malignant disease in Naxos in the 

setting of cardiocutaneous syndrome, consisting of ARVC, palmoplantar keratosis, and woolly hair, 

called “Naxos disease”. (17) The Greek group postulated that those patients might belong to 

families descended from Venetians, who had landed in Naxos in 1207.  

 Domenico Corrado demonstrated that ARVC was the leading cause of SCD among athletes, 

differing from the United States where hypertrophic cardiomyopathy ranked first. (18) 

 In 1994 an international task force headed by Bill McKenna put forward the diagnostic 

criteria, based on family history of ARVC and/or sudden death, ECG 

depolarization/conduction/repolarisation abnormalities, arrhythmias of RV origin, global and/or 

regional dysfunction and structural alterations of the RV, and fibro-fatty replacement of the RV 

myocardium at pathologic analysis.(19) In the absence of a single gold standard, the diagnosis was 

achieved by major or minor criteria (2 major, or 1 major and 3 minor, or 4 minor). A revision of the 

diagnostic criteria was recently accomplished by introducing quantitative other than qualitative 

diagnostic parameters, including cardiac magnetic resonance and genetic testing. (20)  

 Regarding the treatment, the prevention of SCD is now feasible with the introduction of 

implantable cardioverterdefibrillator (ICD) devices. Implantable defibrillator is the most logical 

therapeutic strategy for patients with ARVC, whose natural history is primarily characterized by the 
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risk of arrhythmic cardiac arrest. Several studies on either secondary or primary prevention have 

provided significant insights for therapy-based risk stratification of ARVC patients, leading to 

identification of clinical and electrophysiologic markers that may predict the appropriate shock 

against life-threatening ventricular arrhythmias. (21,22).  

 Other fascinating contributions came from pathobiology and genetics. Cristina Basso, on 

studying a large series of heart specimens, disclosed that ARVC/ is not a congenital heart disorder, 

rather, it is a genetically determined myocardial dystrophy with acquired cell death occurring with 

time, mostly during adolescence. (23) 

 Based on genetic observations, ARVC is a genetically determined cardiomyopathies, caused 

by mutations in desmosomal genes. (24-27) Genotype-phenotype correlations, performed by 

Barbara Bauce, disclosed that the desmoplakin variant of the disease featured extensive LV 

ventricular involvement so as to suggest that the disease, being biventricular, should be better called 

Arrhythmogenic cardiomyopathy (AC). (28) Predominant LV and biventricular involvement was 

confirmed by contrast-enhanced cardiac magnetic resonance in genotyped ARVC patients. (29)  

 Electron microscopy studies, performed by Cristina Basso in genotyped patients with ARVC, 

revealed abnormalities of the desmosomes. Desmosomes appeared less numerous, short, pale, and 

fragmented, suggesting that disruption of intercalated discs was the final common pathway of a 

genetically determined, progressive cell death.(30) The discovery of the defective genes, although 

limited to 50% of affected families, opened new avenues. Genetic screening, for early diagnosis and 

detection of healthy carriers as well as reassurance of noncarriers, entails a tremendous impact on 

primary prevention of arrhythmic complications and lifestyle, by including disqualification of sport 

activity and genetic counseling for disease recurrence in siblings and offspring, alongside the 

dilemma of procreation. (31) 

 European and American teams continue to be committed in the study of the disease. At the 

turn of the last millennium, following a series of meetings of experts from both sides of the Atlantic, 

it became evident that the expertise of scientists and clinicians should merge into an “army” for the 
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fight against the calamity of sudden death due to ARVC. An International Registry was considered 

mandatory to collect study material and concentrate efforts on this rare disorder. (32,33) Two teams 

were created, one in Europe coordinated by Gaetano Thiene and one in North America coordinated 

by Frank Marcus. The two projects started by using a similar database and sharing some Core Labs. 

The method was somewhat different: the European Registry enrolled patients who were previously 

diagnosed as well as new entries, (33) whereas the North American Registry enrolled only newly 

diagnosed patients. (34)  
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Pathogenesis and Pathophysiology  

 

Pathology 

 

 The original systematic description of morphologic abnormalities of ARVC dates back to 

1988, when Thiene and colleagues (15) investigated a series of juvenile sudden deaths that occurred 

in the northeast of Italy, thus recognizing that the disease is a major cause of cardiac arrest in the 

young. Sincethen, the pathologic diagnosis of ARVC has been traditionally based on gross and 

histologic evidence of transmural myocardial loss with fibrofatty replacement of the RV free wall, 

extending from the epicardium toward the endocardium. RV aneurysms, whether single or multiple, 

located in the so-called triangle of dysplasia (ie,inflow, apex, and outflow tract) are considered a 

pathognomonic feature of ARVC, although not necessarily present in all cases. (23) Hearts with 

end-stage disease and congestive heart failure consistently showed a higher prevalence of 

biventricular involvement, usually with multiple aneurysms and a parchmentlike appearance of the 

free wall. (23, 35) However, all the morphologic features mentioned earlier refer to the classic 

ARVC picture. Recently, it has been shown that the disease can have a phenotypic spectrum much 

wider than previously believed, with grossly normal hearts at one end, in whom only a careful 

histopathology investigation can reveal ARVC features in 1 or both ventricles, and hearts with 

massive RV, with or without LV involvement, at the opposite end (Figure 1). The wide variability 

in reported pathologic features mostly depends on the selection bias (ie, whether the cases come 

from referral centers for arrhythmias/sudden death or for heart failure/cardiac transplantation). 

Transmural fibrofatty myocardial replacement of the RV free wall has always been considered the 

conditio sine qua non for pathologic diagnosis of ARVC, which might explain why several cases 

with early segmental RV involvement (ie, not yet full thickness deepening from epicardium to 

endocardium) or those with predominant or isolated LV disease, usually without wall thinning and 

aneurysm formation, escape the diagnosis. (36) The existence of cases with biventricular 
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involvement or predominantly either LV or RV should suggest the use of the more comprehensive 

term Arrythmogenic cardiomyopathy. Histologic examination reveals islands of surviving myocytes 

interspersed with fibrous and fatty tissue. (23,35,36) Clusters of myocytes may be seen dying at 

histology, providing evidence of the acquired nature of myocardial atrophy, and are frequently 

associated with inflammatory infiltrates, which probably plays a major role in triggering 

lifethreatening arrhythmias (Figure 2). (37) 

 

 

Figure 1. ARVC in a 26-year-old athlete who died suddenly. (A) Anterior view of the RV outflow tract, which appears 

mildly dilated. (B) Cross section of the heart showing the absence of RV free wall aneurysms: note the spotty 

involvement of the posterior right ventricular free wall. (C) Histology of the RV outflow tract; note the regional loss of 

myocardium with fibrofatty replacement. (D) Histology of the posterior RV free wall; note the fibrofatty replacement of 

the myocardium in the absence of wall thinning. (Modified from Basso C, Thiene G, Corrado D, et al. Arrhythmogenic 

right ventricular cardiomyopathy: dysplasia, dystrophy or myocarditis? Circulation 1996;94:983–91) 

 

Rather than being a continuous process, disease progression may occur during periodic bursts of an 

otherwise stable disease that can be clinically silent in most patients but sometimes may be 

characterized by life-threatening arrhythmic exacerbation. Environmental factors, such as exercise 

or inflammation, may facilitate disease onset and progression. Fatty infiltration of the RV per se is 
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not a sufficient morphologic hallmark of ARVC. (38) A certain amount of intramyocardial fat is 

present in the RV anterolateral and apical region even in the normal heart, and increases with age 

and body size. Moreover, ARVC is distinct from adipositas cordis. (39) Presence of replacement-

type fibrosis and myocyte degenerative changes are essential to provide a clear-cut diagnosis, 

besides remarkable fat replacement. Transvenous endomyocardial biopsy may be of help in the 

diagnostic work-up for an in vivo tissue characterization through histologic evidence of fibrofatty 

myocardial replacement. (19,40,41) Samples should be retrieved from the RV free wall, because the 

fibrofatty replacement is herein usually transmural and thus detectable from the endocardial 

approach, whereas the ventricular septum is usually spared. A residual amount of myocardium 

(<60%), caused by fibrous or fibrofatty replacement, has been proved to have a high diagnostic 

accuracy and is now considered a major criterion for ARVC diagnosis (Figure 3). (19,20,41) 

Moreover, endomyocardial biopsy is essential to rule out the so-called ARVC phenocopies, such as 

myocarditis, sarcoidosis, or idiopathic RV outflow tract tachycardia, particularly when dealing with 

probands with a sporadic ARVC form. 

 

 

Figure 2. Histologic features of ARVC. (A) Residual myocytes entrapped within fibrous and fatty tissue. (B) 

Adipogenesis in areas of myocyte injury. (C) Inflammatory infiltrates within fibrofatty areas. (D) Myocyte contraction 

band necrosis. 
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Figure 3. Diagnostic endomyocardial biopsy in ARVC (major criterion); each of the 3 biopsy samples shows a 

significant amount Q10 of myocardial atrophy, with less than 60% of the surface area having fibrous and fibrofatty 

replacement. (From Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular 

cardiomyopathy/ dysplasia: proposed modification of the task force criteria. Circulation 2010;121:1533–41) 

 

Genetic Background: A disease of the Desmosome 

 Despite the early recognition in the 1980s of the heredofamilial character of the disease in at 

least 50% of cases, (14, 42,43) the first ARVC-causing gene (plakoglobin) was identified only in 

2000, (43) in the recessive cardiocutaneous syndrome called Naxos disease. Soon after, a 

recessivemutation of desmoplakin was found to cause another cardiocutaneous syndrome (Carvajal 

disease), characterized by biventricular involvement. (44,45) Desmoplakin was the first defective 

gene to be associatedwith autosomal dominant ARVC by Rampazzo and colleagues (46) in 2002. 

Subsequently, a variety of mutations in plakophilin-2, desmoglein-2, and desmocollin-2 genes have 

been found, (47-49) and plakoglobin has been reported even in dominant forms. (50) More recently, 

the gene coding for desmin has been identifiedasa novel ARVC gene, (51) and should be included 

in themolecular genetic screening of patients with ARVC. Thus, with the exception of a few other 

genes unrelated to cell adhesion complex, such as ryanodine 2 receptor, the transforming growth 

factor b3, and the transmembrane protein encoding genes,(52-54) the most common disease genes 

encode for desmosomal proteins, and double or compound heterozygosity is commonly 

reported.(55-57) This consistent type of protein alteration supports the concept of a final common 

pathway of genetically determined cardiomyopathies, ARVC being deemed to be a desmosomal 

disease, hypertrophic cardiomyopathy a sarcomeric disease, and dilated cardiomyopathy a 
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cytoskeletal disease (Figure 4). (24) For these reasons, morphologic and molecular studies of 

intercellular junctions became a major issue both in humans and experimental pathology. 

Ultrastructural investigation of endomyocardial biopsies in gene-positive patients with ARVC 

revealed intercalated disk remodeling with desmosomal abnormalities. In particular, the number of 

desmosomes was significantly lower, the desmosomal gap widened, and desmosomal length higher 

in ARVC than in controls. Moreover, abnormally located desmosomes were identified in most cases, 

often with pale internal plaques. Later, immunohistochemical and molecular studies of intercellular 

junction proteins showed plakoglobin redistribution from intercellular junctions to other locations 

within the cell in Naxos disease and Carvajal syndrome. (58,59) These data provided the first 

evidence that a mutation in a single desmosomal protein may disrupt the subcellular distribution of 

another intercellular junction protein that is not genetically altered. More recently, Asimaki and 

colleagues (60) found that, in nearly every case of ARVC, the signal for the intracellular linker 

protein, plakoglobin, is diminished at intercalated disks and seems to be specific for ARVC (Figure 

5). From these findings, the investigators suggested that the evaluation of abnormal localization of 

desmosomal proteins by immunohistochemistry analysis on endomyocardial biopsy samples 

represents a promising test for ARVC diagnosis. Redistribution of plakoglobin from junctions to 

intracellular pools could be part of a final common pathway in disease pathogenesis and impaired 

mechanical coupling might account for abnormal electrical coupling by gap junction remodeling. 

Immunohistochemical and electron microscopy studies in Naxos disease revealed reduced 

localization of mutant plakoglobin to cell-cell junctions, diminished expression of the gap junction 

protein connexin-43 (Cx43), and a decreased number and size of gap junctions. In Carvajal 

syndrome, immunoreactive signals for both desmoplakin and plakoglobin were markedly 

diminished at intercalated disks, as were signals for desmin and connexin-43. (58,59) More recently, 

similar changes in the various intercalated disk proteins were observed in the classic form of ARVC 

without cardiocutaneous manifestations caused by plakophilin-2 mutations. 46 These preliminary 

findings suggest that gap junction remodeling might provide an alternative mechanism for 
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conduction delay and RV electrical instability, which may result in potentially fatal arrhythmias 

before fibrofatty myocardial replacement occurs at histology. However, largescale clinicopathologic 

series, including patients without ARVC, are needed before using this test in the routine diagnostic 

work-up. 

 

 

Figure 4. Transmission electron microscopy of the desmosome at intercalated disc (boxed area) and schematic 

representation of the intracellular and intercellular components of the desmosomal plaque. Three separate families of 

proteins assemble to form desmosome: desmosomal cadherins (desmoglein and desmocollin), armadillo proteins 

(plakoglobin and plakophilin) and plakins (desmoplakin). The desmosomal cadherins present with extracellular 

domains that play a pivotal role in cell adhesion, whereas the intracellular domains interact with the armadillo proteins. 

Among the latter, plakophilin binds to the N-terminal domain of desmoplakin and the C terminal of desmoplakin 

anchors desmin intermediate filaments. IF, intermediate filaments; PM, cytoplasmic membrane. (From Basso C, 

Corrado D, Marcus FI, et al. Arrhythmogenic right ventricular cardiomyopathy. Lancet 2009;373:1289–300) 
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Figure 5. Immunoreactive plakoglobin signal and histologic features in a sudden death victim from familial ARVC 

caused by a mutant desmoplakin gene. (A) Family pedigree of the ARVC family and identified mutation (S299R) in 

exon 7 of desmoplakin gene. (B) Immunohistochemical analysis of human myocardial samples of the proband from 

patients who died suddenly at the age of 15 years shows a marked reduction in immunoreactive signal levels for 

plakoglobin but normal signal levels for the nondesmosomal adhesion molecule N-cadherin. (C) Histology of the 

ventricular myocardium showing ongoing myocardial atrophy with early fibrofatty replacement. (From Corrado D, 

Basso C, Pilichou K, et al. Molecular biology and the clinical management of arrhythmo-Q11 genic right ventricular 

cardiomyopathy/dysplasia. Heart 2011;97:530-9). 
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Etiopathogenetic Theories 

 To explain the loss of the ventricular myocardium being substituted by fibrous and fatty 

tissue, several etiopathogenetic theories have been put forward.(23,26) The original concept was 

that of a congenital abnormality (dysplasia, aplasia, or hypoplasia) characterized by 

maldevelopment of the RV myocardium. Confusion in the literature about ARVC has been created 

by the misuse of the term Uhl anomaly, which was described as an almost total absence of the 

myocardium of the RV in a 7-month-old infant, with the epicardium applied directly to 

endocardium in the absence of intervening fat. (6) In contrast, in ARVC there is always fat and 

fibrous tissue with residual myocytes between the epicardial and endocardial layers. Additional 

features in differential diagnosis include the lack of family history, heart failure as clinical picture, 

infrequency of arrhythmias, and a significantly earlier age of presentation, usually in childhood, for 

Uhl anomaly. In ARVC, myocardial atrophy is the consequence of cell death occurring after birth, 

usually during childhood, and is progressive with time, as distinct from Uhl disease, a congenital 

heart defect in which the RV myocardium fails to develop at the embryonic stage. As for the 

inflammatory theory, it has been a matter of debate whether the inflammatory cells are a reaction to 

cell death or the consequence of infective or immune mechanisms. (23,26) Cardiotropic viruses, 

such as adenovirus, hepatitis C virus, and parvovirus B19, have been reported in the myocardium of 

some patients with ARVC, and they have been proposed as possible causal agents, thus supporting 

an infective pathogenesis. (61,62) However, the viral agent might be just an innocent bystander or 

play a secondary, but still important, role. According to the latter hypothesis, the genetically 

dystrophic myocardium could favor viral settlement (superimposed myocarditis), leading to 

progression or the precipitation of the disease phenotype. Similar pathologic features of 

inflammation have been described in spontaneous animal models of ARVC, with a clinical picture 

dominated by right heart failure and ventricular arrhythmias at risk of sudden death. Moreover, 

recent evidence of massive inflammatory cell infiltrates following acute myocyte necrosis in the 

early stages of the disease onset in ARVC transgenic animal models supports the reactive nature of 
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myocarditis. (63) To explain the fibrofatty phenomenon, a transdifferentiation theory has been put 

forward, according to which cardiomyocytes transform into fibrocytes and/or adipocytes.52 

However, this theory is questionable because of the limited dedifferentiation capabilities of adult 

cardiomyocytes. The most likely etiopathogenetic theory remains the dystrophic theory (myocardial 

dystrophy), which was postulated before the discovery of the disease-causing genes. (23,26) The 

idea came from the observation of the similarities of histopathologic features of ARVC and of 

skeletal muscle dystrophies (such as Duchenne or Becker), that is, a progressive and acquired 

muscular atrophy with replacement by exuberant fatty and fibrous tissue. Thus, in ARVC, 

cardiomyocyte death, either by apoptosis or necrosis, could account for a genetically determined 

progressive loss of the ventricular myocardium.(64,65) The discovery of the first disease gene 

(plakoglobin) made it possible to identify additional genes in the autosomal dominant variants of 

ARVC (ie, desmoplakin, plakophilin-2, desmoglein-2, and desmocollin-2). (23,26) According to 

the widely accepted defective desmosome hypothesis, genetically determined disruption of 

desmosomal integrity is the key factor leading to the development of ARVC. Although 

desmosomes are traditionally considered specialized structures that provide mechanical attachment 

between cells, they are emerging as mediators of intracellular and intercellular signal transduction 

pathways. (66-68) Some desmosomal proteins fulfill roles both as structural proteins in cell-cell 

adhesion junctions and as signaling molecules in pathways mediated by Wnt ligands. Evidence is 

increasing that mutations in desmosomal proteins can perturb the normal balance of critical proteins 

in junctions and the cytosol, which, in turn, could alter gene expression by circumventing normal 

Wnt signaling pathways. Moreover, there is increasing evidence that components of the desmosome 

are essential for the proper function and distribution of the gap junction protein Cx43, supporting 

the notion of a molecular crosstalk between desmosomal and gap junction proteins. (69,70)  

 Transgenic animal models recapitulating the ARVC phenotype have recently been 

developed. Atransgenic mouse with cardiac-restricted overexpression of the C-terminal mutant 

(R2834H) desmoplakin has been shown to develop increased cardiomyocyte apoptosis, myocardial 
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fibrosis, and lipid accumulation as well as biventricular dilatation/dysfunction. (71) The mutant 

mice displayed aberrant intermediate (desmin) filament localization at intercalated discs. 

Interruption of desmoplakindesmin interactions might lead to desmosome instability, with reduced 

resistance to mechanical stress, as supported by the ultrastructural evidence of intercalated disc 

remodeling with widened gaps. This reduced resistance in turn leads to abnormal localization of 

other cell-cell adhesion molecules and changes in gap junction components. Data from Garcia-Gras 

and colleagues (72) on cardiac desmoplakin-deficient mice suggest an alternative molecular 

mechanism of disease that implicates inhibition of the canonical Wnt/bcateninsignaling through 

Tcf/Lef transcription factors in the pathogenesis of ARVC. In this study, cardiac-specific loss of the 

desmosomal protein desmoplakin was sufficient to cause nuclear translocation of plakoglobin, 

increased expression of adipogenic and fibrogenic genes, and the development of an ARVC-like 

phenotype consisting of myocardial fibrofatty infiltration, cavity enlargement, and ventricular 

arrhythmias. This evidence for potential Wnt/b-catenin signaling defects implicates a role of cell 

adhesion proteins not only as passive players in providing mechanical attachment between cells, but 

as regulators in cardiac development, in myocyte differentiation, and in the maintenance of the 

myocardial architecture. Another study on heterozygous plakoglobindeficient mice showed that 

mutant animals had increased RV volume, reduced RV function, and more frequent and severe 

ventricular tachycardia of RV origin. In this animal model, endurance training accelerated the 

development of RV dysfunction and arrhythmias. However, the clinical phenotype of this 

heterozygous plakoglobin-deficient mutant mouse showed only limited similarity to the human 

forms of ARVC, because none of themutantmice were found to have myocardial fibrofatty 

replacement, and only inconsistent RV dilation was noted. Further insights into the pathobiologic 

mechanisms involved in ARVC (onset and progression) are provided by the study of a transgenic 

mouse model (Tg-NS) with cardiac overexpression of desmoglein-2 gene mutation N271S.51 

Transgenic mice reproduced the clinical features of ARVC, including spontaneous ventricular 
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arrhythmias, cardiac dysfunction, biventricular dilatation with aneurysms, and sudden death at 

young age. Investigation of transgenic lines with different levels of transgene expression attested to 

a dose-dependent dominant-negative effect of the mutation. The study showed for the first time that 

myocyte necrosis is the key initiator of myocardial injury. Myocyte necrosis was the first 

manifestation of disease in all Tg-NS hearts studied. Electron microscopic evaluation in Tg-NS/H 

mice between 2 and 3 weeks old showed disruption of the sarcolemma, disgregation of 

myofilaments and other cytoplasmic elements, and mitochondrial swelling, all ultrastructural 

features consistent with cardiomyocyte necrosis. Myocardial cell death subsequently triggers an 

inflammatory response and massive calcification within the myocardium, followed later by injury 

repair with fibrous tissue replacement and aneurysm formation. 
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Clinical Presentation and Diagnosis  

 

Clinical Presentation 

 

 Arrhythmogenic RV cardiomyopathy/Dysplasia is a heart muscle disorder characterized by 

progressive myocyte degeneration with fibrous or fibrofatty replacement, resulting in 

intraventricular conduction abnormalities and reentrant ventricular arrhythmias occasionally leading 

to sudden death. (23,26) The incidence of disease in the general population ranges from 1:5000 up 

to 1:2000. (23,26) 

 During disease evolution 3 phases of clinical expression have been observed: the early 

subclinical phase with concealed structural abnormalities (“concealed disease”), the clinical phase in 

which the established structural criteria are fulfilled (“overt disease”), and the advanced disease phase 

with severe structural progression (“end-stage disease”). 

Concealed Disease 

 Individuals with concealed disease are often asymptomatic but may nonetheless be at risk of 

sudden cardiac death. Functional/structural alterations are subtle or absent on conventional imaging. 

However, 12-lead resting electrocardiography (ECG) and signal-averaged ECG may reveal minor 

abnormalities. Asymptomatic ventricular extrasystoles in excess of 200 may be recorded on 24-h 

ambulatory ECG. Delayed-enhancement imaging in cardiac magnetic resonance might be 

informative, particularly in early LV involvement. (73) The clinician usually is confronted with the 

concealed type of disease while evaluating members of affected families. (14,42) The disease onset 

and expression at early concealed phase have been studied in children omozygous for recessive JUP 

mutation (Naxos disease). In these individuals, woolly hair and palmoplantar keratoderma appear 

from infancy, with the cardiomyopathy presenting full penetrance by adolescence. (74) These 

cutaneous manifestations enable identification of children who are going on to develop ARVC. It 

was observed that frequent ventricular extrasystoles and depolarization abnormalities preceded any 
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structural alteration. In a 7-year-old child with Naxos disease presenting this early 

electrical/arrhythmic phenotype, detailed postmortem evaluation by experts, following a noncardiac 

death, failed to reveal any macroscopic or histologic cardiac abnormality. (58) However, 

immunohistology of the heart revealed that mutant plakoglobin failed to localize at intercellular 

junctions. Connexin-43 was significantly reduced in both right and left ventricles with reduced 

number and size of gap junctions, leading to the hypothesis that abnormalities in the mechanical 

junctions may modify the function of electrical coupling and cause intraventricular conduction 

defects and reentrant ventricular arrhythmias before the development of pathologic myocardial 

changes. (58) In another 15-year-old boy from Italy, a carrier of dominant DSP mutation who died 

suddenly, resting ECG shortly before death showed minor nondiagnostic abnormalities.(28) Post 

mortem, a subepicardial band of acute-subacute myocyte necrosis with granulation tissue and 

fibrous and fatty tissue repair was revealed on the posterolateral wall of the left ventricle. It has 

been suggested that myocardial destruction with fibrofatty replacement may be episodic rather than 

gradual and continuous. (28) Delayed-enhancement imaging in cardiac magnetic resonance might 

be informative in this case. (73) Therefore, it is of practical significance that individuals with signs 

suggesting concealed ARVC are followed up serially by 12-lead, signal-averaged, and 24-h 

ambulatory ECG and, potentially, cardiac magnetic resonance with late-enhancement imaging. This 

follow-up is most important for familial disease in which family members, particularly the carriers 

of pathogenic mutations, are at risk of disease development. In the concealed phase of ARVC, 

differential diagnosis from benign ventricular extrasystoles and acute/subacute myocarditis is 

important and should be based on characteristics of arrhythmia, ECG abnormalities, cardiac 

magnetic resonance with late enhancement,family history, and molecular genetic results.   

Overt Disease 

 Individuals with overt disease present with symptomatic arrhythmias, and RV 

morphologic/functional abnormalities are readily discernible by conventional imaging. (35,75,76) 

The disease usually presents between the second and fifth decade of life. The initial event is usually 
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syncope or sustained palpitation, while sudden death may be the first manifestation of the disease. 

Chest pain with elevated myocardial enzymes has been reported in some cases. At the time of event, 

12-lead ECG may reveal sustained ventricular tachycardia of LBBB morphology. All symptomatic 

patients exhibit diagnostic findings on 12-lead ECG and 2-dimensional echocardiography applying 

the established riteria.43,45 Event-free survival is almost 60% at the beginning of the fifth decade 

of life. 

End-Stage Disease 

 Heart disease progresses over time, involving the right or mostly both ventricles. Structural 

progression detected by serial echocardiography is usually associated with severe potentially lethal 

ventricular arrhythmias. Close follow-up of patients with recessive ARVC revealed that disease 

evolution follows a stepwise progression. (77) In each step an arrhythmic storm precedes 

morphologic/functional deterioration of the right and LV. In cases with grossly diffuse RV 

ventricular involvement and right atrial dilatation, atrial fibrillation and paroxysmal atrial 

tachycardia have been observed. (77) Symptoms of heart failure, with fatigue, gastrointestinal 

disorders, hepatomegaly, and ascites, appear in the final stages when the right or both ventricles are 

severely affected. (78) ARVC is one f the rare heart disorders causing heart failure without 

pulmonary hypertension. Arrhythmic activity is almost totally suppressed at the end stages of 

evolution. Cardiac sarcoidosis mimics clinical presentation of ARVC with respect to arrhythmic, 

electrocardiographic, and structural findings. It should be considered in cases with biventricular 

involvement in the absence of family history, and differential diagnosis is based mainly on 

histologic findings. When ARVC involves both ventricles severely or there is predominantly left 

ventricular involvement, it is difficult to differentiate clinically from dilated cardiomyopathy. 

Arrhythmogenicity exceeding the degree of structural profile and family history of right-dominant 

disease support ARVC diagnosis. Endomyocardial biopsy and molecular genetic investigation 

further assist in establishing disease diagnosis.  
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Twelve-lead Electrocardiogram  

 

 Activation Delay (Depolarization) Findings  

 Activation delay due to cellular uncoupling and altered tissue architecture by fibrofatty 

alteration is often visible on the ECG. In the original descriptions and 1994 TFC, typical 

manifestations are epsilon waves and widening of the QRS complex (>110 ms) in leads V1 to V3. 

(19) Epsilon waves and localized QRS prolongation are major criteria of the 1994 TFC. Epsilon 

wave was defined as a distinct deflection after the end of the QRS complex, that is, after the QRS 

complex had returned to the isoelectric line. (79) In the new TFC the epsilon wave remained as a 

major criterion, but the widening of the QRS complex was deleted. This widening may give rise to 

confusion, because discrimination from right bundle branch block (RBBB) may be difficult. 

Although the epsilon wave is highly specific for ARVC, sensitivity is low. Peters and Trummel (80) 

determined increased precordial QRS ratio by (V11V21V3)/(V41V51V6) > 1.2 to solve the 

problem of discrimination with RBBB. However, this criterion was found in only 35% of patients 

with proven ARVC. Nasir and colleagues (80) reported the delayed S-wave upstroke, defined from 

the nadir of the S wave up to the isoelectric line in V1–3, of 55 milliseconds or more to be a 

sensitive criterion representing activation delay. The authors’ group (81) introduced prolonged 

terminal activation duration (TAD). TAD is defined as the longest value in V1–3, from the nadir of 

the S wave to the end of all depolarization deflections, thereby including not only the S-wave 

upstroke but also late fractionated signals and epsilon waves. Thus, total activation delay was 

conveyed by this new parameter. The difference between S-wave upstroke and TAD is clearly 

visible. TAD was considered prolonged if 55 milliseconds or more, and only applicable in the 

absence of complete RBBB. The authors applied the same value as determined for prolonged 

Swave upstroke by Nasir and colleagues (80) because it proved to be a cutoff point with high 

specificity in the authors’ study as well. Prolonged TAD appeared to be the most sensitive 

activation delay criterion. It was recorded in 30 of 42 ARVC patients (71%), whereas the criterion 
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of only prolonged S wave was identified in only 52% of these patients. Prolonged TAD was not 

identified in 26 of 27 patients with idiopathic VT.  

 

Repolarization Findings 

 Abnormalities in repolarization in patients with ARVC are visible as inverted T-waves. In 

the 1994 TFC, inverted (negative) T-waves in V1–3 or beyond were considered as a minor criterion 

for ARVC diagnosis in the absence of RBBB, and only if the patient was older than 12 years. 

Because of the high specificity for ARVC, this criterion was upgraded to a major criterion in the 

new TFC, for individuals older than 14 years and in the absence of complete RBBB. In the authors’ 

series of 42 ARVC patients, this criterion was observed in 28 patients (67%) and in none of the 

patients with idiopathic VT. (81) Thus, sensitivity and specificity are similar to prolonged TAD. In 

the new TFC, two additional criteria were included as minor criteria: 1. Inverted T-waves only in 

leads V1 and V2 in individuals older than 14 years and in the absence of complete RBBB.34 This 

criterion was identified in 4 of the authors’ 42 patients (10%). Inverted T-waves in leads 1–4 in 

individuals older than 14 years in the presence of RBBB. (20) This criterion was added  because 

RBBB may be attributable to local activation delay, and a negative T-wave in V4 and beyond is 

very unlikely in classic RBBB.  

 

Twelve-lead Electrocardiogram during Ventricular Tachycardia  

 Type and number of VT morphologies reflect location and extension of the disease process. 

In the absence of severe LV and septal structural disease, a VT with LBBB morphology (dominant 

negativity in V1) means a site of origin in the RV. This is the reason why ARVC is associated with 

monomorphic VT with LBBB morphology. Idiopathic VT originating from the RV outflow tract 

typically shows LBBB morphology with an inferior (vertical) axis. By contrast, in ARVC, affected 

areas are also found in other parts of the RV including the so-called triangle of dysplasia.1 

Consequently, VTs originating from these areas can show LBBB morphology with a nonvertical 



31 

 

axis as well. The authors evaluated the occurrence of LBBB VT with a superior axis, arbitrarily 

defined from -30°to -150° (81) This morphology was recorded in 27 of 42 patients (64%) with 

ARVC/D diagnosed according to the 1994 TFC. None of the 27 patients with idiopathic VT had 

this morphology. Thus, this criterion had a similar specificity and sensitivity to that of prolonged 

TAD. In accordance with the authors’ definition, recording of a VT with LBBB morphology and 

superior axis, defined as negative or indeterminate QRS in leads II, III, and aVF, and positive in 

lead aVL, became a major criterion in the new TFC. A VT with LBBB morphology and inferior 

axis remained a minor criterion. The number of premature ventricular complexes on Holter 

recording required for counting as a minor criterion decreased to 500 per 24 hours. Because of the 

variable extension of the disease process in ARVC, the number of different VT morphologies may 

vary as well. Thus, multiple VT morphologies may be recorded in a single patient. The number of 

different VTs in ARVC patients was quantified and compared with data from a control group after 8 

years of follow-up. (80) Multiple VT morphologies were recorded in 27 of 42 ARVC/D patients 

(64%), whereas the control group with idiopathic VT had only a single morphology. This study 

confirmed that occurrence of multiple VT morphologies is the rule rather than the exception in 

ARVC patients. In the case of only a single VT morphology occurring spontaneously, programmed 

electrical stimulation (PES) contributed significantly to yield multiple morphologies. In total, 10 

additional ARVC patients or in total 88% fulfilled the multiple VT morphology criterion. (80) 

Because of significant overlap with the superior axis criterion, the number of VT morphologies was 

not used in the new TFC.  

 

Cardiovascular Imaging  

 

 At early stages, the disease involves subepicardial/mediomural layers of myocardium in 

certain regions of RV free wall as the outflow tract, apex, and posterodiaphragmatic wall, called the 

“triangle of dysplasia.” At this stage structural/functional alterations may not be detectable by 
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conventional imaging. Therefore, the disease cannot be excluded in the absence of 

structural/functional abnormalities on imaging in young individuals with characteristics for ARVC 

ventricular arrhythmias or positive family history. Alternatively, late enhancement in cardiac 

magnetic resonance might reveal subepicardial/mid-myocardial distribution, suggesting fibrous 

substitution in these areas. Late enhancement has proved to be informative for early LV 

involvement, whereas analogous characterization of RV myocardium has proved difficult because 

of the thin wall of the RV and possible confusion with fat. (82,83) All patients with overt disease 

present these regional wall motion abnormalities at the “triangle of dysplasia” on 2-dimensional 

echocardiography, cardiac magnetic resonance, or angiography. Regional hypokinesia may be 

prone to overinterpretation, leading to falsepositive results, and were excluded from the revised 

diagnostic criteria. Morphologic abnormalities consisting of trabecular derangement, 

hyperreflective moderator band, and sacculations have been also observed. With disease 

progression, the RV becomes globally dilated. RV outflow tract dilatation on 2-dimensional 

echocardiography (end-diastolic diameter ≥32 mm on parasternal long-axis view) showed 

sensitivity of 75% and specificity of 95% in large series of ARVC probands. (20) On cardiac 

magnetic resonance it shows RV end-diastolic volume of 110 mL/m2 or more for males and 100 

mL/m2 or more for females, and ejection fraction of 40% or greater. (20) Since the initial 

descriptions of the disease, LV involvement has been increasingly reported and related to adverse 

prognosis. (84)  

 

Diagnostic Criteria 

 

 Multiple criteria are needed to diagnose ARVC/D because there is no single criterion that is 

sufficiently specific to reliably establish the diagnosis. Thus, there is no “gold standard.”1 In about 

50% of patients, a desmosomal genetic abnormality can be identified. However, even if a 

desmosomal abnormality is present, it does not indicate that the individual is or will be affected 
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because the penetrance is so variable. In the early stages the disease may be difficult to differentiate 

from normal, and in the advanced stage the diagnosis may be obvious. Even so, several diseases 

such as cardiac sarcoidosis can mimic the clinical presentation of ARVC. (85) Usually the patient 

will come to medical attention for evaluation of palpitations, due to premature ventricular beats 

(PVBs) or nonsustained ventricular tachycardia. (26) Other clinical presentations are sustained 

ventricular tachycardia, syncope, or resuscitated sudden death. Evaluation may be requested 

because of ARVC in a family member. Uncommonly, the patient can present with right heart failure 

with or without ventricular arrhythmias. Then the differential diagnosis includes congenital or 

acquired heart disease that primarily affects the right heart such as atrial septal defect, Ebstein 

anomaly and congenital or acquired tricuspid regurgitation, primary pulmonary hypertension, or 

pulmonary hypertension secondary to pulmonary emboli. Recognition of the disease has now been 

extended to patients with desmosomal abnormalities who present with primarily left or biventricular 

involvement associated with ventricular arrhythmias. This possibility raises the question of whether 

the disease should be called “arrhythmogenic cardiomyopathy” rather than “arrhythmogenic RV 

cardiomyopathy.” The original description of the clinical profile of 24 patients with this disease was 

based on experience with patients in the more advanced stage of the disease, generally unresponsive 

to antiarrhythmic drugs, who were referred to a tertiary care electrophysiology center for treatment 

of recurrent ventricular tachycardia. Twenty-one of the 24 patients had electrocardiograms (ECGs) 

with T-wave inversion in V1 to V4. Nine patients had incomplete right bundle branch block (RBBB) 

and one patient had complete RBBB. Postexcitation or epsilon waves were present in 7 patients. By 

echocardiogram, the right ventricle/left ventricle ratio was increased in all patients. The LV size and 

contractility was normal in all but one patient. As is common with many newly diagnosed diseases, 

the index cases with severe disease are followed by those with lesser severity of thedisease as well 

as variations from the original description. In a recent study of 108 newly diagnosed patients with 

ARVC, only 30 of 95 (32%) patients had T-wave inversion beyond V3. Epsilon waves were present 

in 1 of 95 ECGs, severe wall motion abnormalities by 2-dimensional (2-D) echocardiogram in 44 of 
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93 (47%), and markedly reduced global RV function in 24 of 85 (28%). (86) The observation that 

there were patients with ARVC who had fewer and less severe clinical features of the disease was 

soon recognized after the first clinical profile was published in 1982. It became evident that the 

disease can be exceedingly difficult to diagnose, particularly in those with minimal structural and/or 

functional alterations of the RV. This corollary led to the formation of a Task Force that in 1994 

proposed major and minor criteria to aid in the diagnosis. (19) This report achieved the goal of 

standardizing diagnostic criteria. With time and experience, it became evident that these criteria 

lack diagnostic sensitivity. Therefore, a second Task Force was assembled in 2007 to modify these 

criteria, and the revised criteria have recently been published. Several modifications, particularly 

those relating to the ECG, deserve emphasis because the 12-lead ECGcan alert the physician to 

strongly suspect this diagnosis. For example, in the 1994 guidelines, ventricular tachycardia with 

LBBB configuration was considered a minor criterion. It has become evident that patients who have 

ventricular arrhythmias arising from the RV can be further categorized as those who have LBBB 

with an inferior axis versus LBBB with a superior axis. In those with LBBB and inferior axis (QRS 

positive in leads 2, 3, and aVF, and negative in lead aVL), the differential diagnosis is that of RV 

outflow tract tachycardia (RVOT), a relatively benign condition, and ARVC, which may have a 

serious prognosis. Patients with this configuration of ventricular arrhythmia who have T-wave 

inversion in leads V1 to V3 on the standard 12-lead ECG are more likely to have ARVC  than 

benign idiopathic RVOT. Morin and colleagues11 recently reported that in patients with ventricular 

tachycardia of LBBB and inferior QRS axis, there were 35 of 94 (37%) patients with AC who had 

T-wave inversion in V1 to V3, but only 5 of 121 (4%) patients with idiopathic RVOT tachycardia 

had this ECG finding. Patients who have ventricular ectopy not originating from the RVOT, 

characterized by LBBB configuration with a superior QRS axis (negative QRS in leads 2, 3, and 

aVF, and positive in lead aVL) are more likely to have RV cardiomyopathy. This information is 

reflected in the revised criteria that categorize ventricular arrhythmias of LBBB configuration with 

an inferior QRS as a minor criterion while grading those with superior superior axis as a major 
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criterion. Also, T-wave inversion in leads V1, V2, V3 or beyond is now listed as a major ECG 

criterion rather than minor. In addition, T-wave inversion beyond V3 in the presence of RBBB is 

listed as a new minor criterion, because this finding is uncommon in patients with RBBB who do 

not have ARVC.12 A new ECG finding considered to be a minor criterion is slurring and delay of 

the upslope of the QRS complex in V1, V2, or V3 caused by prolonged depolarization in the RV. 

This criterion is defined as “terminal activation duration of QRS ≥55 msecs measured from the 

nadir of the S wave to the end of the QRS, including R prime in V1, V2, or V3 in the absence of 

complete RBBB.” The definition of an abnormal signal-averaged ECG has been changed in the 

modified criteria. In the previous criteria, the standard interpretation of an abnormal ECG was 2 of 

the 3 abnormal measurements of late potentials. It has been found that there is similar sensitivity 

and specificity with any one of the three measurements; the filtered QRS duration (fQRS ≥114 

milliseconds), duration of terminal QRS less than 40 mV (low-amplitude signal ≥38 milliseconds), 

or the root mean squared voltage of the terminal 40 milliseconds (root mean square ≤20 mV). The 

presence of only one abnormal parameter in the absence of QRS duration of 110 milliseconds or 

more on the standard ECG is now a minor criterion for late potentials in the modified Task Force 

criteria. There were no criteria for the diagnosis of ARVC by magnetic resonance imaging (MRI) in 

the 1994 guidelines because there was little diagnostic experience with this imaging modality at that 

time. Quantitative parameters are also provided for abnormal criteria by echocardiography, and 

methods to analyze RV angiograms for volume and wall motion abnormalities are now available. In 

the 1994 Task Force criteria patients with moderate to severe decrease in LV function were 

excluded. This restriction has been eliminated in the modified criteria because it is clear that 

patients with desmosomal abnormalities can present with predominant left or biventricular 

involvement. Documentation of familial involvement has been clarified. There is also recognition of 

the relatively newly discovered genetic abnormalities. The presence of a pathogenic mutation 

probably associated with ARVC in the proband or family members under evaluation is now 

recognized as a major criterion. The new criteria include modified diagnostic terminology. Patients 
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formerly were classified as affected or not affected, based on meeting Task Force criteria. It is now 

realized that this sharp division should be changed because there are patients who almost meet the 

criteria and are thought to be affected. Some of these patientshave a desmosomal abnormality. The 

new terminology for diagnosis consists of definite: 2 major criteria, or 1 major and 2 minor criteria, 

or 4 minor criteria from different categories; borderline: 1 major and 1 minor, or 3 minor criteria 

from different categories; possible: 1 major or 2 minor criteria from different categories. The 

revised criteria were applied post hoc to 108 newly diagnosed probands enrolled in the 

Multidisciplinary Study of Right Ventricular Dysplasia, a study supported by the National Institutes 

of Health. Not including genetic results, of the 28 probands classified as borderline (met some but 

not all of the original Task Force criteria—ie, 1 major and 1 minor or 3 minor), 16 were reclassified 

by the new criteria as affected, 5 remained borderline, and 7 were classified as “possible ARVC.” 

Of 7 probands previously classified as unaffected, 4 became “possible,” 1 became affected, and 2 

became borderline. Therefore, the major effect of the revised criteria is to increase the sensitivity of 

the classification, primarily in probands previously classified as borderline. The sensitivity of the 

revised criteria is not perfect. For example, 9 of 28 probands classified as borderline by original 

criteria have gene variants consistent with ARVC. When genetic abnormalities were not included, 

the proposed criteria classified 4 as affected, 3 as borderline, and 2 as possible. Including the 

proposed genetic criteria resulted in all 9 being classified as affected, by including genetic 

abnormalities. It has been observed that family members of probands may have the disease but with 

reduced penetrance. Family members may have some clinical manifestations of ARVC and/or the 

genetic abnormality, but do not meet the new Task Force criteria for probands. Therefore, 

guidelines have been proposed for family members and have been adopted as part of the modified 

Task Force criteria. (20) According to these recommendations, in the context of proven ARVC in a 

first-degree relative, the diagnosis of familial ARVC is based on the documentation of one of the 

following in a family member: 1) T-wave inversion in right precordial leads, V1, V2, and V3 in 

individuals older than 14 years; 2) Late potentials by signal-averaged ECG; 3) Ventricular 
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tachycardia of LBBB morphology on ECG, Holter monitor, or during exercise testing, or >200 

premature ventricular contractions (PVCs) in 24 hours; 4) Mild global dilatation and/or reduction in 

RV ejection fraction with normal left ventricle or mild segmental dilatation of the RV; 5) Regional 

RV hypokinesis. 
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Risk Stratification and Prevention of Sudden Cardiac Death  

 

 

Natural History  

 

 Based on clinicopathologic and follow-up studies, 4 clinical phases of the disease have been 

identified: (1) the concealed form is the subclinical and asymptomatic phase, which is characterized 

by subtle structural abnormalities. In this disease stage, SCD might occur as the first disease 

manifestation in previously asymptomatic young people, mostly during physical exercise or 

competitive sports activity. (15,87) Early/minor disease expression is usually observed in family 

members who are identified during family screening. The electrocardiograph (ECG) may either be 

normal or show right precordial repolarization abnormalities with no, or only regional, RV wall 

motion abnormalities. Differential diagnosis with idiopathic RV outflow tract tachycardia is often 

not achieved by means of conventional clinical testing and may depend on demonstration of 

underlying fibrofatty replacement of RV myocardium by endomyocardial biopsy, (41) RV delayed 

enhancement by contrast-enhanced cardiac magnetic resonance (CMR),(82) The overt arrhythmic 

form is the classic clinical presentation. Ventricular arrhythmias dominate the clinical scenario in 

the form of frequent premature ventricular beats, short runs of VT, or sustained monomorphic VT, 

with a LBBB morphology. Such arrhythmias may provoke syncope, especially during physical 

exercise, and may degenerate into VF leading to cardiac arrest. Common ECG abnormalities consist 

of T-wave inversion and prolongation of QRS interval (>110 milliseconds) in the precordial leads 

that explore the RV (ie, V1–V2/V3). The spectrum of RV morphofunctional alterations ranges from 

global dilatation/dysfunction to regional wall motion abnormalities and diastolic bulging typically 

localized in the triangle of dysplasia. The LV and the septum are usually involved to a lesser extent, 

whereas biventricular or left-dominant variants of disease have been reported. (29) Ventricular 

structural abnormalities are clearly detected by current imaging techniques such as 

echocardiography, angiography, and CMR.  



39 

 

 In patients experiencing severe arrhythmic symptoms/events, implantable cardioverter 

defibrillator (ICD) has proved to represent a life-saving therapy. RV failure caused by progressive 

loss of myocardium with severe RV dilatation and systolic dysfunction, in the presence of preserved 

LV function (or mild dysfunction). Biventricular heart failure with significant LV involvement, 

which mimics dilated cardiomyopathy of other causes with progressive heart failure and related 

complications, such as atrial fibrillation, thromboembolic events, and malignant tachyarrhythmias, 

(35) requiring anticoagulation therapy, ICD, and, in the most severe cases, cardiac transplantation. 

(35) More recent studies on genotype-phenotype correlations have shown common and early LV 

involvement in carriers of desmoplakin mutations (Figure 1). (55) In contrast with the original idea 

of an almost exclusive RV involvement, 3 distinct ARVC/D phenotypes are currently recognized: 

the RV phenotype, either isolated or associated with mild LV involvement; the left dominant 

phenotype, with early and prominent LV manifestations; and the biventricular phenotype, 

characterized by equal involvement of both ventricles. Therefore, the old view that LV involvement 

occurs secondarily in advanced disease has evolved into the current perspective that ARVC is a 

genetically determined myocardial disease affecting the whole heart. 

 

Incidence of SCD and Heart Failure 

 The mortality of patients with ARVC is currently estimated to be around 1% per year. Most 

deaths are related to life-threatening ventricular arrhythmias that may occur at any time during the 

disease course. Progressive ventricular dysfunction leading to heart failure and embolic stroke may 

cause death in a smaller proportion of patients.1 The overall incidence of SCD caused by VF varies 

between 0.1% and 3% per year in adults with diagnosed and treated ARVC, although it is unknown 

and expected to be higher in adolescents and young adults, in whom the disease is clinically silent 

until sudden and unexpected arrhythmic cardiac arrest occurs. (78) Nava and colleagues 

(42)observed a lower mortality among family members during a mean follow-up of 8.5 years 

(0.08% per year) compared with ARVC probands. Hulot and colleagues (78) reported the long-term 
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natural history of 130 patients with ARVC who were referred to a tertiary center and followed for 

8.1 (±7.8) years. There were 21 deaths, which accounted for an annual mortality of 3% caused by 

either progressive heart failure in approximately twothirds of patients or SCD in one-third of 

patients. 

 

 

Figure 1. Clinical findings of index case (IV,5) and pedigree of family #137 with DSP-related ARVC. (A) Twelve-lead 

ECG with low QRS voltages in frontal leads and T wave inversion in inferior and precordial leads. (B) Two-

dimensional echocardiogram showing a  iventricular involvement. (C) Family’s pedigree: arrow indicates the index case; 

+ and - denote the presence or absence of a desmosomal gene mutation. (Modified from Bauce B, Nava A, Beffagna G, 

et al. Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular 

cardiomyopathy/dysplasia. Heart Rhythm 2010;7:25, 26). 

 

Risk Stratification  

 SCD in patients with ARVC is often an unpredictable event that occurs without alarming 

symptoms.This explains why there has been a trend toward indiscriminate ICD implantation once 

the disease was diagnosed, without an appropriate risk stratification. In recent years, several studies 

have tried to identify the clinical variable associated with an unfavorable arrhythmic course. The 

available data based on autopsy series or observational clinical investigations suggest that the most 
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powerful predictors of SCD and worse outcome in ARVC include prior cardiac arrest caused by VF, 

unexplained syncope, VT (either sustained or nonsustained), exposure to intense physical 

exercise,severe RV/LV dysfunction, and young age at the time of diagnosis (Box 1).(21,22,88) 

 

Cardiac Arrest and Malignant Tachyarrhythmias 

 In patients with ARVC, VF, and monomorphic VT are arrhythmic manifestations caused by 

different pathobiologic mechanisms that occur in different disease phases. Corrado and colleagues 

(21) reported that prior cardiac arrest caused by VF and hemodynamically instable VT are 

independent risk factors for life-saving ICD interventions in a large series of patients with ARVC. 

However, patients implanted because of VT without hemodynamic compromise had a statistically 

significant better outcome, with a negligible incidence of VF episodes during follow-up. These 

findings are in agreement with the current perspective that VF occurs in younger affected patients 

with progressive disease during active phases of myocyte death, whereas hemodynamically well-

tolerated monomorphic VT is caused by a reentry mechanism around a stable myocardial scar as the 

result of a healing process that occurs in a later stage of the disease course. Resuscitated VF is a 

poor prognostic factor. In the series reported by of Canu and colleagues, (89) a prior history of 

aborted SCD from VF was documented in 2 of the 3 patients who died suddenly. 

 

Syncope 

 The importance of syncope as a risk factor for SCD in ARVC was first reported by Marcus 

and colleagues (90) and was later confirmed by other groups. Turrini and colleagues (91) reported 

that syncope was an independent predictor of SCD with a sensitivity of 40% and a specificity of 

90%. Syncope has been proved to be the strongest predictor of appropriate and life-saving device 

interventions in patients with ARVC who received an ICD for primary prevention (DARVIN II). 

(21) The 9% annual incidence of appropriate device discharges among patients with prior syncope 

is comparable with that observed in patients who underwent device implantation because of a 
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history of cardiac arrest or sustained VT. Young individuals with genetic cardiomyopathies and/or 

ion channel disorders may suffer from vasovagal or, more widely, nonarrhythmic syncope, which 

makes differential diagnosis difficult and its prognostic value elusive. For instance, in patients with 

hypertrophic cardiomyopathy, several nonarrhythmic mechanisms, such as reflex-mediated change 

in vascular tone or heart rate, LV outflow tract obstruction, and supraventricular tachyarrhythmia, 

may cause syncope. In patients with ARVC, most episodes of syncope are secondary to ventricular 

tachyarrhythmias and associated with a poor prognosis similarly to sustained VT or VF. (21) 

 

Sport Activity 

 ARVC shows a propensity for life-threatening ventricular arrhythmias during physical 

exercise, and participation in competitive athletics has been associated with an increased risk for 

SCD. (15,87,92) Identification of affected athletes by preparticipation screening has proved to result 

in a substantial reduction of mortality of young competitive athletes. In addition, physical sport 

activity has been implicated as a factor promoting acceleration of the disease progression. There is 

experimental evidence that in heterozygous plakoglobin deficient mice, endurance training 

accelerated the development of RV dysfunction and arrhythmias. (93) It has been suggested that 

impairment of myocyte cell-to-cell adhesion may lead to tissue and organ fragility that is sufficient 

to promote myocyte death, especially in conditions of mechanical stress, such as those occurring 

during competitive sports activity. As a corollary, asymptomatic and healthy gene carriers should be 

advised to refrain from practicing significant physical exercise, not only for reducing the risk of 

ventricular arrhythmias but also to prevent disease worsening. Whether prophylactic b-blocker 

therapy further lowers the rate of arrhythmic complications and slows down disease progression 

remains to be proved.  
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Clinical Findings 

ECG and morphofunctional abnormalities 

 Right precordial QRS prolongation, QRS dispersion, and late potentials (LPs) on signal-

averaged ECG (SAECG) have been significantly associated with an increase of the arrhythmic risk 

in patients with ARVC. These ECG abnormalities reflect a right intraventricular conduction defect 

caused by the fibrofatty replacement of the RV free wall, which may predispose to life-threatening 

ventricular arrhythmias. Localized prolongation of QRS complex in V1 to V3 to more than 110 

milliseconds has a sensitivity of 55% and a specificity of 100% for the diagnosis of the disease. (79) 

QRS prolongation, in the form of incomplete right bundle branch block (RBBB) or, more often, 

nonspecific conduction defect, is usually caused by an intraventricular myocardial delay (parietal 

block). Septal incomplete or complete RBBB may occasionally be the result of marked RV 

dilatation/dysfunction affecting the specialized right bundle branch (septal block). Right precordial 

QRS prolongation correlates with the arrhythmic risk, as shown by the study of Turrini and 

colleagues (91) in which patients who died suddenly showed a significant greater QRS prolongation 

(125 milliseconds) in V1 to V2/V3 compared with living patients with ARVC with or without VT 

(QRS duration 5 113 milliseconds and 106 milliseconds, respectively). Turrini and colleagues (91) 

showed that QRS dispersion of more than 40 milliseconds was the strongest independent predictor 

of SCD in ARVC, with a sensitivity of 90% and a specificity of 77% (Figure 2). In patients with 

ischemic heart disease, LPs on SAECG have been shown to be a noninvasive marker for areas of 

slow ventricular conduction, which is a prerequisite for reentrant arrhythmias. The predictive value 

of SAECG in this particular subgroup was low: only 44% of subjects with LPs had arrhythmias, 

whereas 76% of those with arrhythmias had abnormal SAECG. (Figure 3). (94) 
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Figure 2. Distribution of QRS dispersions in 3 ARVC groups: group I is composed of 20 patients who died suddenly, 

group II of 20 patients with sustained VT, and group III of 20 patients with no sustained ventricular tachycardia. Mean 

values are indicated by horizontal lines. (Modified from Turrini P, Corrado D, Basso C, et al. Dispersion of ventricular 

depolarization-repolarization: a non invasive marker for risk stratification in arrhythmogenic right ventricular 

cardiomyopathy. Circulation 2001;103:3078). 

 

 

Figure 3. Signal-averaged ECG and endomyocardial biopsy findings in a patient with ARVC with sustained VT and 

reduced RVEF (49%). (A) Positive LPs at 40-Hz filter (fQRS 5 136 milliseconds, LAS 5 77 milliseconds, RMS 5 2 

mV). (B) Severe replacement-type myocardial fibrosis (blue stain). (Modified from Turrini P, Angelini A, Thiene G, et 

al. Late potentials and ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 

1999;83:1218). 

 

RV Dysfunction and LV Involvement 

 A ventricular dilatation/dysfunction is a well established clinical marker of a worse 

prognosis. In the study by Hulot and colleagues (78) on the long-term follow-up of 130 patients 
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with ARVC, right heart failure and LV dysfunction were identified as independent risk factors 

predicting cardiovascular death. Several ICD studies indicated extensive RV dysfunction as an 

independent risk factor for appropriate device discharges. (21,22) 

 

Inducibility at Programmed Ventricular Stimulation 

 The electrophysiologic study with programmed ventricular stimulation (PVS) seems to be of 

limited value in identifying patients with ARVC at risk of lethal ventricular arrhythmias because of 

a low predictive accuracy. The results of DARVIN studies show that the incidence of appropriate 

and lifesaving ICD discharges did not differ among patients who were and were not inducible at 

PVS, regardless of their indication for ICD implant. (21,22) Moreover, the type of ventricular 

tachyarrhythmia inducible at the time of electrophysiologic study did not seem to predict the 

occurrence of VF during the follow-up. These findings are in agreement with the limitation of 

electrophysiologic studies for arrhythmic risk stratification of other nonischemic heart disease such 

as hypertrophic and dilated cardiomyopathy. In the study of Wichter and colleagues, (95) 

inducibility of VT or VF in a preimplant electrophysiologic study of ARVC patients with previous 

history of cardiac arrest or sustained VT showed just a trend toward statistical significance for 

subsequent appropriate device interventions. The available data do not support the routine use of 

PVS for assessing the risk of SCD in patients with ARVC, neither among patients surviving an 

episode of VF/VT nor among those who are asymptomatic without spontaneous clinical 

tachyarrhythmias.  

 

ICD Therapy-based Risk Stratification 

 Implantable defibrillator is the most logical therapeutic strategy for patients with ARVC, 

whose natural history is primarily characterized by the risk of arrhythmic cardiac arrest. Several 

studies on either secondary or primary prevention have provided significant insights for therapy-

based risk stratification of ARVC patients, leading to identification of clinical and 
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electrophysiologic markers that may predict the appropriate shock against life-threatening 

ventricular arrhythmias. (21,22,95) The DARVIN 1 study (21) yielded the following predictors of 

appropriate ICD interventions on potentially lethal arrhythmic events: prior cardiac arrest, VT with 

hemodynamic compromise, LV involvement, and younger age. There is general agreement that 

patients who survive an episode of VF or sustained VT benefit most from ICD implantation because 

of their high incidence of malignant arrhythmia recurrences.(21,22) The life-saving role of 

prophylactic ICD therapy in patients with ARVC with no previous history of sustained 

tachyarrhythmias or cardiac arrest is less clear. The DARVIN 2 study (22) showed that patients who 

received an ICD because of a prior syncope had an incidence of appropriate, life-saving 

interventions triggered by either VF or ventricular flutter (Vfl) that was similar to that of patients 

with a history of aborted SCD/poorly tolerated sustained VT. However, asymptomatic patients had 

a favorable long-term outcome, regardless of familial SCD and electrophysiologic study findings. 

(21,22) These results are particularly relevant for clinical management of the growing cohort of 

asymptomatic ARVC relatives and healthy gene carriers who are identified by cascade family 

screening. Demonstration of nonsustained VT on 24-hour Holter monitoring and/or exercise testing 

in asymptomatic patients confers an increased risk of developing VT during the follow-up, although 

it did not significantly predict the occurrence of potentially lethal VF. It remains to be determined 

whether, in the absence of syncope or significant ventricular arrhythmias, severe dilatation and/or 

dysfunction of RV, LV, or both, as well as early onset structurally severe disease (age<35 years), 

are related to adverse arrhythmic outcome and therefore require prophylactic ICD. 

 

Implantable Cardioverter Defibrillator  

 

 There is definitive clinical evidence that the implantable defibrillator (ICD) is the most 

effective therapy for both primary and secondary prevention of SCD in patients with coronary 

artery disease. However, there are few available data on efficacy and safety of such a treatment in 
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patients with nonischemic cardiomyopathies, mostly because of the relatively low disease 

prevalence and the relatively low event rate in affected patients. ARVC has become an emerging 

indication for ICD implantation because its natural history is more strongly related to ventricular 

electrical instability, which can precipitate SCD mostly in young people, whereas heart failure is 

uncommon and occurs later during the disease course as a result of RV disease progression and LV 

involvement. In the past, indications for ICD implantation in ARVC were empiric and based widely 

on the experience gained by different centers using analogies with coronary artery disease.8 

Because clinical variables predicting clinical outcome were undetermined, there was a tendency to 

implant an ICD once the disease was diagnosed, regardless of risk stratification. Although ICD 

confers optimal protection against SCD, economic costs, quality of life concerns including 

psychological repercussions, risk for inappropriate shocks, and device-related complications argue 

strongly against indiscriminate device implantation. In this article the authors review the studies that 

have become available in the last decade on the efficacy and safety of ICD therapy in patients with 

ARVC. Particular reference is reserved for DARVIN (Defibrillator in Arrhythmogenic Right 

Ventricular Cardiomyopathy International Study) studies which have addressed the clinical impact 

of ICD therapy in changing the natural history of ARVC in a large patient population treated for 

both secondary and primary prevention of SCD. 

 

DARVIN Studies  
 

 The DARVIN studies I and II were observational, multicenter investigations aimed to 

determine the efficacy and safety of ICD therapy in a large patient population with ARVC at high 

risk for SCD. (21,22) In both studies the survival benefit of the ICD was evaluated by comparing 

the actual patient survival rate with projected freedom of ventricular  fibrillation/flutter (VF/Vfl) 

(Figure 1). These arrhythmias were used as surrogate for aborted SCD, based on the assumption 

that in all likelihood they would have been fatal without termination by the device. The end point 
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was reached by device interrogation and review of intracardiac  stored electrocardiograms (ECGs) 

regarding ICD interventions in response to VF/Vfl during follow-up. 

 

 
 
Figure 1. Stored intracardiac ventricular electrocardiogram from ARVC patients who received ICD therapy. (A) 

Spontaneous onset of ventricular fibrillation is automatically terminated by a defibrillation shock, which immediately 

restores sinus rhythm. (B) Ventricular flutter at a ventricular rate of 280 beats/min, which begins abruptly after 5 beats 

of sinus rhythm. The ICD discharges appropriately and restores sinus rhythm. Arrows indicate tracings are continuous. 

DARVIN I 

 

 The DARVIN I study population consisted of 132 ARVC patients (93 males, 39 females; 

mean age 40±15 years) who were recruited at 22 institutions in North Italy and at one in the United 

States. (21) Most of the patients (  80%) received an ICD implant because of a history of either 

cardiac arrest or sustained ventricular tachycardia (“secondary prevention”). During a mean follow-

up of 39±25 months, there were 3 deaths: one sudden, one due to infective endocarditis, and one 

due to congestive heart failure. Over the study period, 48% of patients (64 of 132) had at least one 

appropriate ICD intervention, 12% had inappropriate interventions, and 16% had ICD-related 

complications. Fifty-three of the 64 patients (83%) were receiving antiarrhythmic drugs at the time 

of the first appropriate discharges, mostly consisting of sotalol and b-blockers (alone or in 

association with amiodarone). The analysis of intracardiac ECG data stored by the ICD showed that 

32 of 132 patients (24%) experienced VF/Vfl that in all likelihood would have been fatal in the 
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absence of the device. The VF/Vfl-free survival rate was 72% at 36 months compared with the 

actual patient survival of 98% (Figure 2A). Younger age, a history of cardiac arrest or 

hemodynamically unstable ventricular tachycardia, and LV involvement were independent clinical 

predictors of VF/Vfl. It is noteworthy that the ICD therapy did not improve survival in those 

patients implanted because of hemodynamically stable ventricular tachycardia, who had a 

significantly lower incidence of VF/Vfl over the follow-up (Figure 2B). Programmed ventricular 

stimulation (PVS) was not helpful in risk assessment of patients. More than 50% of inducible 

patients did not experience ICD therapy, while a similar proportion of noninducible patients had 

appropriate intervention during the 3.3-year follow-up period. This finding is in agreement with the 

limitation of electrophysiological study for arrhythmic risk stratification of other nonischemic heart 

diseases such as hypertrophic and dilated cardiomyopathy.Precise data on the efficacy of ICD in 

comparison with antiarrhythmic therapy could not be derived from this nonrandomized study. 

However, the majority of appropriate interventions and 53% of shocks on VF/Vfl occurred despite 

concomitant antiarrhythmic therapy with b-blockers and/or class III antiarrhythmic drugs. This 

finding highlights that the protection provided by ICD against SCD may be considerably superior. 

However, DARVIN I study included high-risk ARVC patients, not comparable with most patients 

with the disease who can be either not treated or treated effectively with antiarrhythmic drugs 

because of the low arrhythmic risk. 



50 

 

 

Figure 2. DARVIN I study. (A) Kaplan-Meier analysis of actual patient survival (upper line) compared with survival 

free of VF/Vfl (dashed line) that in all likelihood would have been fatal in the absence of the ICD. The divergence 

between the lines reflects the estimated mortality reduction by ICD therapy of 24% at 3 years of follow-up. (B) Kaplan-

Meier curves of freedom from ICD interventions on VF/Vfl for different patient subgroups stratified for clinical 

presentation. Patients who received an ICD because of sustained ventricular tachycardia without hemodynamic 

compromise had a significantly lower incidence of VF/Vfl during the follow-up. (Modified from Corrado D, Leoni L, 

Link MS, et al. Implantable cardioverter defibrillator therapy for prevention of sudden death in patients with 

arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 2003;108:3087, 3088). 

 

 

 

 



51 

 

DARVIN II 

 This international multicenter study included 106 consecutive patients (62 men and 44 

women; mean age 35.6±18 years), with ARVC and no prior VF or sustained ventricular tachycardia 

(VT), who received a prophylactic ICD because of one or more arrhythmic risk factors such as 

syncope, asymptomatic nonsustained VT, familial sudden death, and inducibility at PVS.(22) 

During a mean follow-up of 58±35 months (4.8 years) after ICD implantation, no death occurred. 

Of the 106 study patients, 25 (24%) had appropriate ICD interventions, 20 (19%) had inappropriate 

ICD interventions, and 18 (17%) had device-related complications. In 17 of 25 patients, the 

arrhythmia triggering ICD discharge was VF/Vfl that may have been fatal without termination by 

the device. The annual rate of potentially “life-saving” shocks against VF/Vfl was 3%. At 48 

months, the actual patient survival rate was 100% compared with the VF/Vfl-free survival rate of 

77%. The Kaplan-Meier analysis of the incidence of ICD interventions that were triggered by 

VF/Vfl suggested a significant improvement in survival through the follow-up period, with an 

actual total patient survival rate of 100% compared with a 77% Vf/Vfl survival rate at 48 months, 

and an estimated benefit of ICD implantation of 23% (Figure 3). The strongest predictor of an 

increased arrhythmic risk in the DARVIN II study population was a history of syncope. Syncope 

was the only independent predictor of any appropriate ICD interventions (hazard ratio [HR] 5 2.94) 

and shock therapy on VF/Vfl (HR 5 3.16) (Fig. 4). Patients with prior syncope had a fourfold risk 

for subsequent episodes of potentially fatal VF/Vfl (annual rate 5 9%). Asymptomatic patients with 

nonsustained VT presented a trend toward an increased arrhythmic risk. These patients had an 

overall rate of appropriate ICD intervention of 3.7% per year and a rate of appropriate ICD 

intervention against VF/Vfl of 1.48% per year. Asymptomatic ARVC patients who received an ICD 

because of a family history of sudden death did not experience any appropriate ICD interventions 

over the follow-up. This finding is in agreement with those of previous studies showing that the 

majority of affected ARVC relatives are likely to have a benign course and a that a sizable 

proportion of healthy gene carriers will not develop clinically significant disease owing to reduced 
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disease penetrance. As in the DARVIN I study, programmed ventricular stimulation had limited 

accuracy in predicting appropriate ICD interventions. In the DARVIN II study the positive 

predictive value of PVS was 30% for any appropriate ICD interventions and 35% for potentially 

life-saving shock against VF/Vfl. On the other hand, a negative PVS did not indicate better 

prognosis because approximately one-third of noninducible patients experienced appropriate 

ICD interventions, and approximately one-fourth experienced shock on potentially lethal 

arrhythmic events. 

 

Figure 3. DARVIN II study. (A) Kaplan-Meier analysis of cumulative survival from any appropriate ICD interventions. 

(B) Kaplan-Meier analysis of survival free of VF/Vfl compared with actual patient survival. The estimated mortality 

reduction at 48 months of follow-up is 23% (ie, the difference between the actual patient survival rate of 100% and 

VF/Vfl-free survival rate of 77%). (Modified from Corrado D et al.Circulation 2010;122:1147). 
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Figure 4. DARVIN II study. Kaplan-Meier analysis of freedom from any appropriate ICD interventions (A) and shock 

therapies on VF/Vfl (B), stratified by syncope. 

 

 

Safety of ICD Therapy  

 Concerns have been raised on the safety of ICD therapy in ARVC patients because of the 

risk of perforation due to the lead implantation into a thin RV free wall, as well as on the difficulty 

in obtaining and maintaining adequate sensing and pacing thresholds at implantation and during 
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follow-up, due to the progressive loss of the RV myocardium. The referenced series of ARVC 

patients undergoing ICD implantation did not report any lead perforation. However, a more difficult 

and timeconsuming ventricular lead positioning to obtain adequate R-wave sensing and pacing 

thresholds, because of the RV myocardial atrophy with ensuing reduced electrical activity, has been 

reported. The study of Wichter and colleagues (95) demonstrated a high rate of device-related 

complications over a long-term follow-up. Thirty-seven of 60 patients (62%) had a total of 53 

serious adverse events, 10 occurring during the perioperative phase and 43 during the follow-up. 

There were 31 leadrelated adverse events in 21 patients (35%); insulation failure/oversensing in 10, 

undersensing in 8, lead fracture in 5, lead dislodgment in 2, lead thrombosis in 2, and subcutaneous 

lead fracture in 1. Surgical revision or implantation of an additional pace/sense lead wase required 

in 26 of 31 lead-related complications (84%). This high rate of lead-related adverse events may be 

explained by the peculiar ARVC pathobiology that leads to progressive loss of myocardium with 

fibrofatty replacement, also affecting the site of RV lead implantation. In this regard, Corrado and 

colleagues (21,22) reported that approximately 4% of ARVC patients required an additional septal 

lead owing to loss of ventricular sensing/pacing functions at the apical RV free wall during a 

follow-up of 3.3 years. Therefore, particular attention should be paid to progressive loss of R-wave 

sensing amplitude over time, which may not only compromise adequate device function but may 

also indicate disease progression. The use of b-blockers and dual-chamber detection algorithms, 

which improve discrimination of ventricular from supraventricular arrhythmias, have been reported 

to reduce the number of inappropriate interventions in young ARVC patients. However, limitation 

of the number of implanted leads may be a favourable approach, mostly in the young patient 

subgroup, because of the substantial incidence of lead failure over time (cumulatively 37% at 7 

years in the Wichter study (95), which includes not only compromise in pacing/sensing or 

defibrillation function by the mechanisms previously described but also mechanical lead 

complications (lead insulation failure or fracture) which, in turn, may contribute to inappropriate or 

inadequate ICD discharges. 
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Indication for ICD Implantation  

 The available data demonstrate that ICD therapy improves long-term prognosis and survival 

when applied to ARVC patients at high risk for SCD. Although ICD confers optimal protection 

against sudden death, the significant rate of inappropriate interventions and complications, as well 

as the psychological repercussions mostly in the younger age group, strongly suggest the need to 

accurately stratify the patient arrhythmic risk before device implantation. Figure 5 shows the 

pyramid of arrhythmic risk stratification and the current indications to ICD implantation in ARVC 

patients, based on the annual rate of appropriate ICD interventions against life-threatening 

ventricular arrhythmias (ie, episodes of VF/Vfl) derived from observational studies. The best 

candidates for ICD therapy are patients with prior cardiac arrest and those with VT with 

hemodynamically unstable VT (ie, associated with syncope or shock); syncope that remains 

unexplained after exclusion of noncardiac causes and vasovagal mechanisms is also considered a 

valuable predictor of sudden death and represents an indication for ICD implantation per se. In this 

high-risk group of patients, the rate of appropriate ICD intervention against life-threatening 

ventricular tachyarrhythmias (that in all likelihood would  have been fatal in the absence of shock 

therapy) is approximately 8% to 10% per year and the estimated mortality reduction at 36 months of 

follow-up ranges from 24% to 35%. (21,22,27) By contrast, ICD implantation for primary 

prevention in the general ARVC/D population seems to be unjustified. As indicated by the 

DARVIN II study on prophylactic device implantation in ARVC patients with no sustained VT or 

VF, asymptomatic probands and relatives do not benefit from ICD therapy, regardless of familial 

sudden death or inducibility at PVS.12 This patient cohort carries a low arrhythmic risk over a long-

term follow-up (ICD intervention rate <1 per year), in addition to a significant rate of device-related 

complications and inappropriate discharges. Patients with welltolerated sustained VT or 

nonsustained VT on Holter or exercise testing have an intermediate arrhythmic risk (ICD 

intervention rate w1%–2% per year). In this patient subgroup, the decision for ICD implantation 

needs to be individualized; antiarrhythmic drug therapy (including b-blockers) and/or catheter 
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ablation seem to be a reasonable first-line therapy. In the absence of syncope or significant 

ventricular arrhythmias, whether severe dilatation and/or dysfunction of right ventricle, LV, or both, 

as well as early onset structurally severe disease (age <35 years) require prophylactic ICD remains 

to be determined.  

 

 

Figure 5. Pyramid of arrhythmic risk stratification and current indications to ICD implantation in ARVC patients, based 

on the annual rate of appropriate ICD interventions against life-threatening ventricular arrhythmias (ie, episodes of 

VF/Vfl) derived from observational studies. PVS, programmed ventricular stimulation; SD, sudden death. (Modified 

from Corrado D, Basso C, Pilichou K, et al. Molecular biology and the clinical management of arrhythmogenic right 

ventricular cardiomyopathy/dysplasia. Heart 2011;97:537). 

 

 

 

 

 

 

 



57 

 

Catheter Ablation of Ventricular Tachycardia  

 

 Catheter ablation for scar-related VT in the postinfarction setting has become an established 

and effective therapy. The fact that the pathologic and electrophysiologic substrate for VT is 

uniquely subendocardial in this setting and the development of surgical subendocardial resection as 

a treatment that could be emulated percutaneously contributed to the modern evolution of VT 

ablation in ischemic cardiomyopathy. In other contexts, including nonischemic dilated 

cardiomyopathy and ARVC, the substrate for VT has been more difficult to locate, define, and 

ablate. In ARVC, the only available surgical therapy, RV disconnection, could not provide 

definitive information regarding the mechanism of VT in these patients, and the current 

understanding of this fact has been derived largely from studies in the electrophysiology laboratory. 

 

Ventricular Tachycardia in ARVC 

 Reentrant mechanisms underlie the overwhelming majority of VT in ARVC, although focal 

ventricular arrhythmias can occur early in the course of the disease. (96) Given that most ARVC-

related VTs arise from the free wall of the RV, most VTs display a LBBB configuration with poor 

R-wave progression in the precordial leads. An RBBB VT morphology can be created as a result of 

direct LV involvement with the disease process associated with basal LV substrate abnormalities 

and RBBB VTs with positive R waves across all or most of the precordial leads. Monomorphic VT 

with an LBBB configuration generally has a late precordial transition after V4 reflecting the 

frequent RV free wall origin, with spread of activation away from the anterior RV and precordial 

leads toward the posterior LV. RV septal VT exits typically display an earlier precordial transition. 

Given the usual attitude of the RV and its typical axis in the thoracic cavity, leads I and aVR are 

useful in identifying likely exit sites. Basal sites of origin are characterized by positive forces in 

lead I, and more apical sites, being closer to the left side, are isoelectric or negative in lead I. 

Inferior exit sites in the RV display a positive vector in lead aVR, usually with a superior axis. 
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Close attention should also be paid to the QRS morphology during VT as demonstrated in the 

precordial lead V2 and inferior leads. QS complexes in these respective leads strongly suggest an 

epicardial exit from the mid RV free wall or inferior RV wall, respectively. Other characteristics of 

VT in ARVC are its inducibility with programmed electrical stimulation, multiple morphologies 

including those with a superiorly directed frontal plane axis, potential termination with overdrive 

pacing, and ability to be entrained with manifest or concealed fusion. These features strongly 

suggest a reentrant mechanism and argue against a focal VT mechanism.  

 The common underlying factor in all cardiomyopathies, ventricular scarring, promotes 

reentry in at least 2 ways: first, by creating anatomic and functional barriers favoring the 

development of unidirectional conduction block and second, by altering cell-cell coupling, leading 

to slowed conduction. The cause, nature, and distribution of the scarring process is unique in ARVC, 

with genetically determined desmosomopathy leading to widespread myocyte apoptosis, confluent 

replacement of the lost myocardium with fibrofatty tissue, and a RV free wall preponderance of this 

process, progressing inwards from the epicardium. However, the electrophysiological consequences 

are similar to other cardiomyopathic processes, with a generalized milieu of slow and discontinuous 

electrical propagation that predisposes to the development of often very large macro-reentrant VT 

circuits. The footprints of this abnormal substrate are well recognized and can be detected with 

catheter recordings of bipolar electrograms. Electrical activation through normal RV myocardium 

was defined in patients with no structural heart disease with the use of the CARTO electroanatomic 

mapping system  and the Navistar catheter (Biosense Webster, Diamond Bar, CA, USA), which has 

a 4-mm distal tip electrode, a 2-mm ring electrode, and a 1-mm interelectrode distance. Normal RV 

endocardium is characterized by bipolar signals displaying 3 or fewer deflections from baseline, 

with peak-to-peak amplitude greater than 1.5 mV, (97) whereas areas of bipolar voltage less than 

0.5 mV correspond to dense scar. (97)The definition of normal epicardial electrogram parameters is 

confounded by the presence of epicardial fat, which may have an insulating effect and attenuate 

signal amplitude. However, it has been established when sampling signals more than 1 cm away 
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from the defined large epicardial coronary vessels that more than 95% of bipolar electrograms 

overlying the RV have an amplitude of greater than 1.0 mV. (97) The precision of this 

determination is increased by incorporating electrogram morphology as well as voltage into 

consideration of the extent of the epicardial substrate. Normal ventricular electrogram morphology, 

as well as having fewer than 4 deflections from baseline, is characterized by sharp intrinsic 

deflections corresponding to rapidly progressing activation wavefronts, with total duration less than 

70 ms.Electrical conduction through isolated surviving bundles of myocytes enmeshed within areas 

of dense fibrosis is slow and serpiginous, which is reflected in long-duration, low-amplitude 

fractionated potentials. When these bundles form isolated regions deep within confluent scar areas, 

local activation can occur much later than it occurs in the surrounding areas, resulting in isolated 

potentials (IPs) being recorded after the far field potential following an intervening isoelectric line. 

Given the large, confluent scars seen in patients with ARVC, these IPs can occur well into the T-

wave or beyond, in which case they aresometimes referred to as very late potentials (VLPs). The 

prevalence and distribution of these scar-related electrograms, in addition to the bipolar signal 

amplitude, are important in defining the abnormal electrical substrate in ARVC/D, especially on the 

epicardium. In some cases, networks ofVLPs have been defined by sinus rhythm activation 

mapping (Figure 1) that mark the location of putative conducting channels anatomically constrained 

by dense fibrosis. These channels may form critical protected diastolic isthmuses during VT as has 

been demonstrated in the postinfarct context.16 Ablation of VLPs at the entrance of these channels 

can result in disappearance of the entire network of channels when the scar is remapped, strongly 

suggesting that these potentials are all linked by common conducting fibers. The electroanatomic 

substrate defined as discussed has been shown to correspond to regions of myocardial loss and 

replacement with fibrofatty tissue. 
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Figure 1. Sequential pattern of isolated late potential activation in arrhythmogenic RV dysplasia scar. Activation 

mapping of sinus rhythm epicardial isolated late potentials is shown. These networks of late potentials show patterns of 

linking such as those displayed here. The sequential pattern suggests that, when VT isthmuses sites are shown by 

entrainment to correspond to the sequential IP sites, the barriers of such VT circuits are largely anatomically determined 

by scar architecture. When IPs are arranged in such networks, significantly less ablation may need to be performed to 

eliminate them.  

  

 In keeping with the general pattern of perivalvular abnormalities seen in nonischemic 

cardiomyopathies, the endocardial distribution of electroanatomic scar (confluent areas of bipolar 

low voltage <1.5 mV) in patients with VT in the setting of ARVC has been shown to extend from 

the tricuspid valve, the pulmonary valve, or from both over the RV free wall (Figure 2). (97-101) 

This substrate distribution has been shown to correspond to the location of VT circuits. In a 

significant minority of patients with ARVC presenting with VT, LV involvement is also seen.  

 Garcia and colleagues (102) showed that most patients have a far more extensive 

electroanatomic substrate for VT here than they do on the RV endocardium (Figure 3). Preliminary 

data suggest that it may be possible to identify patients with this more-marked epicardial VT 

substrate by examining the unipolar endocardial voltage maps, as unipolar electrogram amplitude, 
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with its larger field of view, may be influenced by scar lying opposite to the endocardial recording 

surface (Figure 4). (103) 

 

 

Figure 2. Endocardial electroanatomic substrate in ARVC. Typical distribution of endocardial RV low-voltage 

substrate in ARVC/D with periannular involvement.   

 

 Although the temporal progression of the disease process has long been considered 

inexorable and led to pessimistic views on the efficacy of catheter ablation, it is clear that this is not 

the case in many patients (Figure 5). Riley and colleagues (104) have performed detailed serial 

electroanatomic mapping in 9 patients who showed no change in their low-voltage, abnormal 

electrogram substrate over a mean of 5 years. This important study suggests that aggressive efforts 

at VT control should not be abandoned based on an assumption that disease progression will 

inevitably lead to future VT recurrence.  
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Figure 3. Fig. 6. Endocardial and epicardial VT substrate in ARVC. Electroanatomic substrate maps of a patient with 

ARVC/D and 8 inducible LBBB morphology VTs. Panel A displays the endocardial chamber geometry in the 

anteroposterior projection showing largely preserved endocardial voltages. The epicardial substrate map in panel B 

shows an extensive region of fractionated low-voltage potentials (bipolar peak-to-peak signal amplitude <1.0 mV as 

reflected in the different color scale) involving the inferior and mid RV free wall and extending from the periannular 

region to the apex. Seven of this patient’s VTs were mapped and ablated successfully on the epicardium (from Garcia 

FC, et al. Circulation 2009;120(5):366–75). 

 

 

Figure 4. Unipolar endocardial low voltage as a marker of epicardial scar. Three substrate maps from a patient with 

ARVC are shown. Normal endocardial bipolar voltage is seen; however, there are widespread endocardial unipolar low-

voltage zones, and these  correlated with the extent and distribution of the bipolar epicardial substrate (from Polin G et 

al. Heart Rhythm 2009;6:S118). 
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Figure 5. Lack of progression of substrate in an patient with ARVC after 4 years. The endocardial substrate maps 

acquired 4 years apart in this patient show no significant progression in the size of the low-voltage zone. (Riley MP et al. 

Heart Rhythm 2008;5:S74). 

 

 

Pharmacologic Therapy 

 

 Antiarrhythmic dug therapy (AD) is the first line treatment for well tolerated and not life-

threatening ventricular arrhythmias in ARVC patients with low risk of sudden death. Prospective 

and randomized studies on AD in ARVC are not available. Patients are usually treated empirically 

by beta-blokers, class I (flecainide, propafenone) or class III (sotalol and amiodarone) Ads. 

Assessment of  specific AD efficacy by follow-up studies is difficult because ARVC patients tend 

to have multiple arrhythmic events over time and drugs are often changed. The available evidence 

suggests that sotalol and amiodarone (alone or in combination wth beta-blockers) are the most 

effective Ads with a relatively low proarrhythmic risk, although their ability to prevent SCD 
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remains to be proven. Corrado et al. (21,22) analyzed the outcome of 132 ARVC patients (93 males, 

39 females, aged 40±15 years) who received an ICD, capable of storing  intracardiac 

electrocardiograms. Of 132 patients, 104 (79%) received concomitant AD therapy which consisted 

of sotalol (36%), amiodarone alone (8%), or in combination with beta-blockers (13%), beta-

blockers (20%), and flecainide (2%). During a follow-up of 39±25 months, 64 of 132 patients (48%) 

had appropriate ICD interventions; 53 of these 64 patients  (83%) were taking AD therapy at the 

time of first ICD intervention, compared with 51 of 68 (75%) with no or inappropriate interventions 

(p=NS). In addition, the incidence of VF/Vfl, which in all likelihood would have been fatal in the 

absence of the ICD, did not differ between patients who did an did not receive AD therapy (27% vs 

18%; p= NS) nor between patients treated with different AD, regardless of clinical presentation.  

These findings strongly suggest that the majority of life-saving ICD interventions in high risk 

patients occurred despite concomitant ADs and support the concept that AD therapy does not confer 

an adequate protection against SCD.  

 The largest series of pharmacologic therapy in ARVC is from Germany, first published in 

1992 (105) and updated (106) in 2005. In the initial series, 81 patients with highly suspected or 

confirmed ARVC and nonsustained  or sustained VT underwent a standardized electrophysiologic 

evaluation. Patients were brought to the electrophysiologic laboratory in an antiarrhythmic drug–

free state, and programmed ventricular stimulation was performed. VT was inducible in 42 of these 

individuals and not inducible in 39. In the inducible group, the clinical arrhythmias was sustained 

VT in 93%, whereas 8% presented with nonsustained VT. In the noninducible group, only 20% 

presented with sustained VT, whereas 80% had nonsustained VT. After the initial ventricular 

stimulation, an antiarrhythmic agent was administered. Each group underwent serial antiarrhythmic 

drug testing composed of serial electrophysiologic studies in the inducible group and long-term 

cardiac monitoring in the noninducible group. Immediate efficacy was found in most patients, and 

they were discharged given the drug effective in preventing VT. Long-term follow-up was also 

reported with the end point of clinical tachycardia. 
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 In the 42 inducible patients who underwent 174 drug tests, sotalol had the highest efficacy.  

In 26 of 38 patients given sotalol, the ventricular arrhythmia was not inducible for a success rate of 

68%. Combinations of class I AD and sotalol  had an efficacy of 20% (2 of 10). Combinations of 

class I and amiodarone had a success rate of 50% (2 of 4). Class Ia/b (1 of 18) and class Ic (3 of 25) 

were rarely effective. b-Blockers alone had no efficacy (0 of 7). Amiodarone alone had a success  

rate of only 15% (2 of 13). Similar results were observed in the noninducible group, with sotalol 

being effective in 83% of patients (29 of 35) and amiodarone in 25% (1 of 4). Class Ia/b (0 of 16) 

and class Ic (4 of 23) were rarely effective. However, b-blockers were effective in 30% (2 of 7) of 

patients. In the inducible group, 31 patients were discharged on pharmacologic therapy, including 

25 with sotalol alone or sotalol in combination with type 1 AD. In a long-term follow-up of 34 

months, there were no sudden deaths in the inducible group. Of 31 patients discharged on 

pharmacologic therapy, 3 (10%) had nonfatal recurrences of VT. In the noninducible tachycardia 

group, 33 of 39 patients were discharged on pharmacologic management, including 24 with sotalol. 

In a follow-up of 14 months, there were no sudden deaths, and 4 of 33 patients discharged on  

antiarrhythmic drugs had nonfatal relapses of VT. In studies in patients with coronary disease, 

tested sotalol was also efficacious, and there have been little published data that untested sotalol in 

any disease state prevents arrhythmias.1 This group updated their experience in 2005, with 191 

patients and 608 drug tests.3 Sotalol at Q10 a dosage of 320–40 mg/d was the most effective drug 

resulting in a 68% overall efficacy. Combinations highly efficacious. Class I AD were efficacious 

only in a minority of patients (18%). In a small subset of patients thought to have triggered activity 

or autonomic abnormal automaticity, verapamil and b-blockers had efficacy rates of 44% and 25%; 

however, they were not likely to be successful in reentrant tachycardias. In long-term follow-up of 

this group of patients, those who had success with drug testing generally did well, with a much 

lower recurrence rate on a drug that was effective, versus those in whom no effective drug could be 

found.  
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 Recently Marcus et al. (107) examined the efficacy of empiric Ads in a rigorously 

characterized cohort of ARVC patients. Of 108 patients in this registry, 95 had implantable 

defibrillators. This study was a prospectively enrolled cohort, and pharmacologic therapy, including 

b-blockers, antiarrhythmic drugs, and Q11 ICDs,was left to the discretion of the treating physician. 

Fifty-eight patients (61%) received betaadrenergic blocking agents, including atenolol, metoprolol, 

bisoprolol, and carvedilol. In a mean follow-up of 480 days, there were 235 clinically relevant 

ventricular arrhythmias observed in 32 patients. There was no clinically significant benefit of 

preventing VT or ventricular fibrillation with beta-blockade when compared with participants not 

taking antiarrhythmic drugs or b-blockers. However, there was a trend in the reduction in ICD 

shocks, although this result did not reach statistical significance. Atenolol potentially showed the 

greatest benefit in this study, although there were too few patients on the individual b-blockers class 

II to draw too many conclusions from this subanalysis. Thirty-eight patients were treated with 

sotalol, with a mean dose of 240 mg/d. In a mean of 644 days, the hazard ratios either showed no 

effect or favored a detrimental effect of sotalol with regards to any clinically relevant arrhythmia, 

any ICD shock, first clinically relevant arrhythmia, and first ICD shock. However, the mean 

tachycardia cycle length of those with VT was significantly greater in those taking sotalol (311 vs 

292 ms). Patients who received the upper quartile dose of sotalol (≥320 mg/d) had a worse outcome 

compared with individuals not in the upper quartile of sotalol.4 Finally, in this study, 10 patients 

given amiodarone were followed up for a median of 545 days. When taking amiodarone, patients 

had a 75% lower risk of any clinically relevant ventricular arrhythmia compared with all other 

patients. However, this study, as well as others on antiarrhythmic drugs and b-blockers in patients 

with ARVC, should be interpreted with caution because clinical indications for b-blockers, sotalol, 

and amiodarone were present and it is likely that there was a selection bias that influenced outcomes. 

This selection bias could explain the worsened results with sotalol but not the reduction in 

arrhythmias with amiodarone. In addition, amiodarone is widely considered the most efficacious 

antiarrhythmic drug in other disease states.  
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 The current data indicate that asymptomatic ARVC patients do not  require any prophylactic 

treatment. The should be followed-up on a regular basis by non-invasive cardiac evaluations for 

early identification of warning symptoms and demonstrations of disease progression or ventricular 

arrhythmias. Importantly, asymptomatic and healthy gene carriers should be prudently advised to 

refrain from participating in physical exercise and sport activity, which are associated with an 

increased risk of ventricular arrhythmias and disease worsening. Whether prophylactic beta-

blockers therapy may reduce the rate of ARVC progression and arrhythmic complications in 

asymptomatic patients and gene carriers remains to be proven.  

 In patients with RV or biventricular heart failure, treatment consists of diuretics, angiotensin 

converting enzyme (ACE) inhibitors and digitalis, as well as anticoagulants. 

 

Preparticipation Athletic Screening 

 

Sudden Cardiac Death  and Sports 

 Arrhythmogenic right ventricular cardiomyopathy/dysplasia is an inherited heart muscle 

disease characterized pathologically RV fibrofatty myocardial replacement and clinically by 

ventricular electric instability, which may lead to cardiac arrest from VF, mostly in young people 

and athletes. (15,18,35) ARVC shows a propensity for life-threatening ventricular arrhythmias 

during physical exercise, and participation in competitive athletics has been associated with an 

increased risk for sudden cardiac death (SCD). (108-116) In addition, physical sport activity has 

been implicated as a factor promoting acceleration of disease progression. Identification of affected 

athletes by preparticipation screening has proved to result in mortality reduction during sports 

activity. (108-116) This article examines the role of ARVC in causing SCD in young competitive 

athletes and addresses prevention strategy based on identification of affected athletes at 

preparticipation screening. 



68 

 

 Although sudden death during sport is a rare event, it has a devastating effect on the 

community because it occurs in apparently healthy individuals and assumes great visibility through 

the news media because of the high public profile of competitive athletes. The frequency of sudden 

death in young athletes during organized competitive sports varies in the different series reported in 

the literature. A retrospective analysis in the United States has estimated the prevalence of fatal 

events in high school and college athletes (aged 12–24 years) to be less than 1 in 100,000 per year, 

whereas a prospective populationbased study in Italy reported a 3 times greater incidence among 

competitive athletes aged 12 to 35 years. (108-116). The vast majority of athletes who die suddenly 

have underlying structural heart diseases, which provide a substrate for VF. SCD is usually the 

result of an interaction between transient acute abnormalities (trigger) and structural 

cardiovascularabnormalities (substrate). Triggers of SCD in young competitive athletes include 

exerciserelated sympathetic stimulation, abrupt hemodynamic changes, and acute myocardial 

ischemia leading to life-threatening ventricular arrhythmias. The causes of SCD reflect the age of 

the participants. Although atherosclerotic coronary artery disease accounts for the vast majority of 

fatalities in adults (aged ≥35 years),  (108-116) in younger athletes there is a broad spectrum of 

cardiovascular substrates (including congenital and inherited heart disorders) (Box 1). 

Cardiomyopathies have been consistently implicated as the leading cause of sports-related cardiac 

arrest in the young, with hypertrophic cardiomyopathy accounting for more than onethird of fatal 

cases in the United States and ARVC for approximately one-fourth in the Veneto region of Italy. 

 The incidence of sudden death from ARVC in athletes was estimated to be 0.5 per 100,000 

persons per year (Figure 1). Sudden death victims with ARVC were all men with a mean age of 

22.6±4 years. (111) postmortem, the hallmark lesion of the disease was the transmural replacement 

of the RV myocardium by fibrofatty tissue. Hearts demonstrated massive regional or diffuse 

fibrofatty infiltration, parchmentlike translucence of the RV free wall, nd mild to moderate RV 

dilatation, together with aneurysmal dilatations of the posterobasal, apical, and outflow tract regions. 

These RV pathologic features allowed differential diagnosis with training-induced RV adaptation 
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(athlete’s heart), usually consisting of global RV enlargement without regional 

dilatation/dysfunction. Histologically, fibrofatty infiltration is usually associated with focal 

myocardial necrosis and patchy inflammatory infiltrates. Fibrofatty scar and aneurysms are 

potential sources of life-threatening ventricular arrhythmias. The histopathologic arrangement of the 

surviving myocardium embedded in the replacing fibrofatty tissue may lead to inhomogeneous 

intraventricular conduction predisposing to reentrant mechanisms. Life-threatening ventricular 

arrhythmias may occur either during the hot phase of myocyte death as abrupt VF or later in the 

form of scar-related macroreentrant ventricular tachycardia. (21) The risk of sudden death from 

ARVC has been estimated to be 5.4 times greater during competitive sports than during sedentary 

activity (Figure 1). Several reasons may explain such a propensity of ARVC to precipitate effort-

dependent sudden cardiac arrest. Physical exercise acutely increases the RV afterload and causes 

cavity enlargement, which in turn may elicit ventricular arrhythmias by stretching the diseased RV 

myocardium.  

 Although ARVC has been demonstrated to be the leading cause of SCD in athletes of 

Veneto, Italy, previous studies in the United States showed a higher prevalence of other pathologic 

substrates such as hypertrophic cardiomyopathy, anomalous coronary arteries, and myocarditis. 

(108-116) This discrepancy may be explained by several factors. There have been no previous 

investigations, such as the Juvenile Sudden Death Research Project in the Veneto region of Italy, 

that have prospectively investigated a consecutive series of sudden death in young people occurring 

in a well-defined geographic area with a homogeneous ethnic group. (108-116), the previously 

reported causes in the United States may have been influenced by the unavoidable limitations in 

patient selection because of retrospective analysis. Moreover, in other large studies, the autopsies 

were usually performed by different examiners, including local pathologists and medical examiners. 

In the Italian study, to obtain a higher level of confidence in the results, morphologic examination 

of all hearts was performed according to a standard protocol by the same group of experienced 

cardiovascular pathologists. ARVC is rarely associated with cardiomegaly and usually spares the 
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left ventricle so that affected hearts may be erroneously diagnosed as normal hearts. (15,18,35) 

Therefore, several cases of SCD in young people and athletes, in which the routine pathologic 

examination discloses a normal heart, may, in fact, be due to an unrecognized ARVC. The high 

incidence of ARVC in Veneto may be because of a genetic factor in the population of the 

northeastern Italy, although ARVC can no longer be considered as a peculiar Venetian disease 

because there is growing evidence that it is ubiquitous, it is still largely underdiagnosed both 

clinically and at postmortem investigation, and it accounts for significant arrhythmic morbidity and 

mortality worldwide. (15,18,35) 

  

Clinical Profile of Athletes Dying Suddenly from ARVC 

 Early identification of athletes with ARVC plays a crucial role in the prevention of SCD 

during sport. The most frequent clinical manifestations of the disease consist of 

electrocardiographic (ECG) depolarization/repolarization changesmostly localized to right 

precordial leads, global and/or regional morphologic and functional alterations of the RV, and 

arrhythmias of RV origin (Figure 2). (15,18,35) The disease should be suspected even in 

asymptomatic individuals on the basis of ECG abnormalities and ventricular arrhythmias. (15,18,35) 

Ultimately, the diagnosis relies on visualization of morphofunctional RV abnormalities by imaging 

techniques (such as echocardiography, angiography, and cardiac magnetic resonance) and, in 

selected cases, by histopathologic demonstration of fibrofatty substitution at endomyocardial biopsy. 

(26,27)  
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Figure 1. Incidence and relative risk (RR) of sudden death from major cardiovascular causes among young athletes and 

non athletes. ARVC, arrhythmogenic RV cardiomyopathy/dysplasia; CAD, coronary artery disease; CCA, congenital 

coronary artery anomalies; MVP, mitral valve prolapse. (Modified from Corrado D et al. J Am Coll Cardiol  

2003;42:1961). 

 

 

Figure 2. ECG and echocardiographic findings in an asymptomatic athlete diagnosed with ARVC. The athlete was 

referred for further evaluation because of ECG abnormalities found at preparticipation evaluation, which consisted of 

inverted T-waves in the inferior and anteroseptal leads and low QRS voltages in the peripheral leads (A). ARVC was 

suspected at echocardiographic examination, showing mild RV dilatation, basal and apical wall motion abnormalities 

with diastolic bulging of the RV inflow tract, and trabecular disarrangement. (B) The RV long-axis view. (C) The 4-

chamber view. Final diagnosis was achieved by cardiac magnetic resonance (not shown). (Modified from Corrado D et 

al. Sports and heart disease. In: Camm J, Luscher TF, Serruys PW, editors. The ESC textbook of cardiovascular 

medicine. New York: Oxford University Press; 2009. p. 1215–37). 
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Preparticipation Screening and Prevention of SCD  

 For more than 20 years, a systematic preparticipation screening (PPS), based on 12-lead 

ECG, in addition to history and physical examination, has been the practice in Italy. (108-118) This 

screening strategy has been proved to be effective in the identification of athletes with previously 

undiagnosed hypertrophic cardiomyopathy, thanks to the high sensitivity (up to 95%) of 12-lead 

ECG for suspicion/detection of this condition in otherwise asymptomatic athletes. Moreover, during 

long-term follow-up, no deaths were recorded among these disqualified athletes with hypertrophic 

cardiomyopathy, suggesting that restriction from competition may reduce the risk of sudden death. 

 A time trend analysis of the incidence of SCD in young competitive athletes aged 12 to 35 

years in the Veneto region of Italy between 1979 and 2004 has provided compelling evidence that 

ECG screening is a lifesaving strategy. (87) The long term effect of the Italian screening program 

on prevention of SCD in athletes was assessed by comparing temporal trends in SCD among 

screened athletes and unscreened nonathletes. The assessed intervals were prescreening (1979–

1981), early screening (1982–1992), and late screening (1993–2004). The analysis demonstrated a 

sharp decline of SCD in athletes after the introduction of the nationwide screening program in 1982 

(Figure 3). There were 55 cases of SCD in screened athletes (1.9 deaths per 100,000 person-years) 

and 265 deaths in unscreened nonathletes (0.79 deaths per 100,000 person-years). The annual 

incidence of SCD in athletes decreased by 89%, from 3.6 per 100,000 person-years during the 

prescreening period to 0.4 per 100,000 person-years during the late screening period. By 

comparison, the incidence of SCD in the unscreened nonathletic population of the same age did not 

change significantly over that time. Most of the mortality reduction was attributable to fewer deaths 

from hypertrophic cardiomyopathy and ARVC (Figure 4). A parallel analysis of the causes of 

disqualifications from competitive sports at the Center for Sports Medicine in the Padua country 

area showed that the proportion of athletes identified and disqualified for cardiomyopathies doubled 

from the early to the late screening period. This observation indicates that mortality reduction was a 
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reflection of a lower incidence of SCD from cardiomyopathies, as a result of increasing 

identification over time of affected athletes at preparticipation screening.  

 

 

Figure 3. Annual incidence rates of SCD per 100,000 person-years among screened competitive athletes and 

unscreened nonathletes aged 12 to 35 years in Veneto, Italy, from 1979 to 2004. (Modified from Corrado D et al. 

JAMA 2006;296:1596). 

 

 

 

Figure 4. Average annual incidence rates of SCD from ARVC among young competitive athletes of the Veneto, Italy, 

before and after implementation of systematic preparticipation screening. Death rates from AC declined from 0.90 per 

100,000 person-years in the prescreening period (1979–1981) to 0.15 per 100,000 in the late screening period (1993–

2004) (relative risk, 0.16; 95% confidence interval, 0.03–1.41;P 5 .02). 
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Electrocardiographic T-Wave Inversion and Prevalence of Cardiomyopathy 

 

 ECG changes are common in athletes and usually reflect the structural and electric 

remodeling of the heart as an adaptation to regular physical exercise (athlete’s heart). However, T-

wave inversion may be the expression of an underlying heart disease capable of causing SCD 

during sports. (119-122). 

 

T-Wave Inversion 

 

 The presence of T-wave inversion beyond lead V1 is a typical ARVC feature with a 

sensitivity of 87% among patients fulfilling the International Task Force criteria.(20) Because early 

clinical manifestation of ARVC usually occurs after puberty, the persistence of right precordial T-

wave inversion (beyond V1) in the postpubertal age raises the problem of a differential diagnosis 

between a benign juvenile pattern of repolarisation and a developing ARVC. This is particularly 

important in young competitive athletes. The concern arises as to the specificity of the juvenile T-

wave pattern for ARVC because it has been reported to occur in a sizeable proportion of healthy 

children. It is unclear what the prevalence of the juvenile T-wave pattern is in a child who has a 

normal heart and how often the persistence of the juvenile pattern of repolarization is associated 

with a cardiomyopathy. The traditional idea that ST-T–wave abnormalities are more common in 

trained athletes than in a sedentary population may be explained by the high prevalence of early 

repolarization changes in the athlete’s heart, with J-point–ST segment elevation often followed by a 

terminal negative T-wave, which simulates T-wave inversion. (123) 

 Recently, Migliore et al (124) reported that the prevalence of T-wave is 5.7% in a large 

cohort of 2765 children and was localized in the right precordial leads in 4.7%. This relatively 

greater prevalence of T-wave abnormalities is explained by the expected higher rate of 

physiological right precordial T-wave inversion in our study population, which included a sizeable 

proportion of prepubertal children. In this study the prevalence of right precordial T-wave inversion 

decreased significantly with increasing age (8.4% in those <14 years of age compared with 1.7% of 
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children ≥14 years of age), complete pubertal development, and greater BMI. Incomplete pubertal 

development was the only independent predictor of right precordial T-wave inversion. Moreover, in 

the large series of children reported by Migliore et al, T-wave inversion in the inferior-lateral leads 

is an uncommon finding, not exceeding 1% (0.9% in inferior leads and 0.1% in lateral leads). This 

low prevalence of T-wave inversion in inferolateral leads was similar to that (1.5%) previously 

reported by Papadakis et al. (122) Unlike right precordial T-wave inversion, Migliore et al. did not 

find any correlation between inferolateral T-wave inversion and sex, age, anthropometric 

characteristic, and pubertal development (124). 

 

T-Wave Inversion and Cardiomyopathy 

 In the Papadakis et al (122) study, the prevalence of right precordial T-wave inversion 

beyond V2 in athletes ≥16 years of age was 0.1%, and despite intensive cardiovascular evaluation, 

no athletes were diagnosed with cardiomyopathy. Migliore et al (124) confirmed and extended these 

previous observations by showing that T-wave inversion in children with complete pubertal 

development, although uncommon, may reflect an early cardiomyopathy. Indeed, a cardiomyopathy 

was diagnosed in 4 children with T-wave inversion: ARVC in 3 with T-wave inversion in the right 

precordial leads and HCM in 1 with T-wave inversion in the lateral leads (Figure 5,6,7). The 

discrepancy between the previous and present studies may be explained by the differences in the 

study population and study design. Migliore et al included a larger cohort of 2765 children who had 

a greater likelihood to be affected by cardiomyopathies, the estimated prevalences of which in the 

general population are 1:500 for HCM and 1:2000 for ARVC. Although the role of genetic factors 

in the population of the Veneto region of Italy cannot be excluded, the relatively high prevalence of 

ARVC in the Migliore’s study is reasonably explained by the use of revised International Task 

Force criteria for ARVC diagnosis, which have increased the sensitivity for early/minor ARVC 

variants, as indicated by the identification of 2 borderline ARVC cases that would have been missed 

by the old International Task Force criteria.43 Migliore et al (124) reported a relatively low 
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prevalence of HCM in our study population of children with a mean age of  14 years. This may be 

explained by the fact that HCM is an inherited heart muscle disease with phenotypic manifestations 

that are age dependent and occur during adolescence in association with accelerated body growth, 

with morphological expression usually completed during young adulthood when physical maturity 

is achieved. Therefore, screening of children is expected to have a low sensitivity for the detection 

of HCM, which usually develops during a later period of life. 

 

Figure 5. Prevalence and distribution of T-wave inversion and underlying cardiomyopathy in the overall study 

population. *Male individual 14 years of age with a complete pubertal development. †One female individual 15 years of 

age and 1 male individual 17 years of age, both with complete pubertal development. ‡Male individual 15 years of age 

with complete pubertal development. (Modified from Migliore et al. Circulation 2012;125:529-538). 
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Figure 6. ECG and echocardiographic findings in a 14-year-old male soccer player with arrhythmogenic right 

ventricular ardiomyopathy. A, ECG shows T-wave inversion in right precordial leads (V1–V2). B, Echocardiographic 

examination reveals RV dilatation (RV outflow tract [RVOT] diameter of 39 mm on end-diastolic parasternal short-axis 

view) and RV dysfunction (akinesia of RVOT and posterobasal, subtricuspid regions; not shown). (Modified from 

Migliore et al. Circulation 2012;125:529-538). 

 

 

Figure 7. ECG and echocardiographic findings in a 15-year-old male soccer player with hypertrophic cardiomyopathy. 

A, ECG shows T-wave inversion in lateral leads (I and aVL) and pathological Q wave (duration _25% of the height of 

the ensuing R wave) in inferior leads (III and aVF). B, Echocardiogram shows an asymmetrical left ventricular 

hypertrophy with a maximal septal thickness of 31 mm. VS indicates ventricular septum; LV, left ventricle; LA, left 

atrium; and AO, aorta. (Modified from Migliore et al. Circulation 2012;125:529-538). 
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Implications for Preparticipation Screening 

 Migliore et al showed that echocardiographic evaluation of children with persistence of T-

wave inversion beyond puberty on PPS allowed identification of ARVC and HCM, which are 

recognized leading causes of SCD in young competitive athletes. (124) These results have 

significant implications for PPS, clinical diagnosis, and risk stratification for the prevention of SCD. 

According Migliore et al findings, echocardiographic study to exclude an underlying 

cardiomyopathy is warranted for athletes with postpubertal persistence of T-wave inversion in ≥2 

contiguous leads on resting ECG regardless of age. In the Migliore’s study (124), PPS led to 

identification of additional ECG-detectable cardiovascular diseases capable of causing SCD such as 

Wolf-Parkinson-White syndrome, long- and short-QT syndrome, and Brugada syndrome. These 

conditions have been implicated in most SCDs occurring without postmortem evidence of structural 

heart abnormalities.46 Unlike cardiomyopathies, most cardiac ion channel disorders have been 

discovered only recently, so diagnosis at PPS is being increased over time, and its impact on 

mortality will be assessed in the near future.  

 The ECG is traditionally considered a nonspecific and non–cost-effective tool for 

cardiovascular evaluation of athletes because of the presumed high level of false-positive results. 

This concept was based on a few studies of small and selected series of highly trained athletes from 

a limited number of sports disciplines. In the Migliore’s study, among 2765 children undergoing 

PPS, 229 (8%) were referred for additional testing because of positive findings such as positive 

medical history, abnormal physical examination, or ECG abnormalities. Further clinical workup led 

to the identification of heart diseases in 33 children (1.2%). Hence, the estimated percentage of false 

positives (ie, athletes with abnormal PPS findings in the absence of heart disease) was 7%. These 

figures are in keeping with those from a previous prospective Italian study of 42 386 athletes 

undergoing PPS, which reported a 9% prevalence of athletes with positive findings requiring further 

examination and a 2% prevalence of total cardiovascular disorders ( 7% of false-positive results). 

(87) It is noteworthy that if we had not further investigated athletes with right precordial T-wave 



79 

 

inversion owing to incomplete pubertal development, the proportion of false-positives would have 

been reduced to 3.3% without altering the screening power for detection of cardiomyopathies and 

thus resulting in a more favourable screening cost-effectiveness.  
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Introduction: Electroanatomic Voltage Mapping 

 

Introduction 

 

The finding that significant loss of myocardium results in the recording of low-amplitude, 

fractionated endocardial electrograms has been well established in patients with post-infarction LV 

scar by intraoperative mapping, conventional endocardial mapping, and 3-D  electroanatomic 

mapping technique.  Similar findings have been reported in patients with ARVC,  in whom 3-D 

electroanatomic voltage mapping by CARTO may differentiate RV scar  regions from healthy 

myocardium. (125-133) 

The hallmark pathologic lesion of ARVC is a transmural loss of the myocardium with 

replacement by fibrofatty tissue of the RV free wall reaching the endocardium. The myocardial 

atrophy accounts for variable degree of RV wall thinning, with areas so thin as to appear completely 

devoid of muscle at transillumination.  3-D electroanatomic voltage mapping has the ability to 

identify areas of myocardial atrophy and fibrofatty substitution by recording and spacially 

associating low-amplitude electrograms to generate three-dimensional electroanatomic map of the 

RV chamber. The technique has the potential to accurately identify the presence, location and extent 

of the pathologic substrate of ARVC by demonstration of  low-voltage regions, i.e. electroanatomic 

scars (132,133). In ARVC patients, RV electroanatomic scars have been demonstrated to 

correspond to areas of myocardial depletion and correlate with  the histopathologic finding of 

myocyte loss and fibrofatty replacement at routine EMB, with samples obtained  at the junction  

between the ventricular septum and the anterior right ventricular free wall. (132)   

Furthermore, by assessing the electrical (rather than the mechanical) consequences of loss of 

RV myocardium voltage mapping may obviate limitations in RV wall motion analysis by traditional 

imaging techniques such as echocardiography and angiography and may increase sensitivity for 

detecting otherwise concealed ARVC myocardial lesions. (132-133) 
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Methods and Equipment 

Three-dimensional electroanatomic voltage mapping technique is performed  using the 

CARTO system (Biosense-Webster) (125-133). In brief, the magnetic mapping system includes a 

magnetic sensor in the catheter tip that can be localized in 3D space using the ultralow magnetic 

field generators placed under the fluoroscopic table. A 7F Navi-Star catheter, with a 4-mm distal tip 

electrode and a 2-mm ring electrode with an interelectrode distance of 1 mm, is introduced into the 

RV under fluoroscopic guidance and used as the mapping/ablation catheter during sinus rhythm. 

The catheter is placed at  multiple sites on the endocardial surface to record bipolar and/or unipolar 

electrograms from RV inflow, anterior free wall, apex and outflow. Bipolar electrogram signals are 

analyzed with regard to amplitude, duration, relation to the surface QRS, and presence of multiple 

components. Complete endocardial maps are obtained in all patients to ensure reconstruction of a 3-

D geometry of the RV chamber and to identify regions of scar or abnormal myocardium. Regions 

showing low-amplitude electrograms  are mapped with greater point density to delineate the extent 

and borders of  “electroanatomic scar” areas. Bipolar voltage reference for normal and abnormal 

myocardium are based on values previously validated in both intraoperative and catheter mapping 

studies (125-133).  Electroanatomic scar” area is defined as an area ≥ 1 cm squared including at 

least 3 adjacent points with bipolar signal amplitude <0.5 mV (25). The color display for depicting 

normal and abnormal voltage myocardium ranges from “red” representing  “electroanatomic scar 

tissue” (amplitude <0.5 mV) to “purple” representing “electroanatomic normal tissue” (amplitude 

1.5 mV).  Intermediate colors represent the “electroanatomic border zone” (signal amplitudes 

between 0.5 and 1.5 mV)  (Figure 1).  
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Figure 1. Abnormal 3D electroanatomic RV voltage map in both anteroposterior (A and B) and bottom (C) views, with 

examples of electric signals sampled from within norma> and low-amplitude RV areas in the same patient with ARVC. 

Voltages are color coded according to corresponding color bars: purple represents signal amplitudes >1.5 mV 

(electroanatomic normal myocardium); red, <0.5 mV (electroanatomic scar tissue); and the range between purple and 

red, 0.5 to 1.5 mV (electroanatomic border zone). As indicated by the catheter tip (arrows), normal voltage electrogram 

sampled from the anterolateral region is sharp, biphasic deflection with large amplitude and short duration (A). By 

comparison, low-voltage electrograms recorded from anterior and inferobasal regions are fragmented with prolonged 

duration and late activation. 

 

Clinical results in ARVC  

 

A preliminary study by Boulos et al. (131) reported on a series of  7 patients with ARVC,  in 

whom electroanatomic voltage mapping accurately identified RV “dysplastic”  regions (24).  The 

authors found a concordance between voltage mapping results and echocardiographic or cardiac 

magnetic resonance findings in all studied patients. 

Corrado et al. (132) tested the hypothesis that characterization of the RV wall by 

electroanatomic voltage mapping increases the accuracy for diagnosing ARVC in a consecutive 

series of patients fulfilling non-invasive Task Force criteria (Figure 2). Thirty-one consecutive 

patients (22 males and 9 females, aged 30.87 years) who fulfilled the criteria of the Task Force of 

the European Society of Cardiology and International Society and Federation of Cardiology 

(ESC/ISFC) for ARVC diagnosis after “non-invasive” clinical evaluation, underwent further 

“invasive” study including RV electroanatomic voltage mapping and EMB to validate the 
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diagnosis. Multiple RV endocardial, bipolar  electrograms (17523) were sampled during sinus 

rhythm. Twenty patients (Group A, 65%) had an abnormal RV electroanatomic voltage mapping 

showing  one or more areas (mean 2.250.7) with low voltage values (bipolar electrogram 

amplitude <0.5 mV), surrounded by a border zone (0.5-1.5 mV) which merged into normal 

myocardium (>1.5 mV). Low voltage electrograms appeared fractionated with significantly 

prolonged duration and delayed activation. In 11 patients (Group B, 35%) electroanatomic voltage 

mapping was normal, with preserved electrogram voltage (4.4±0.7 mV) and duration (37.2±0.9 ms) 

throughout the RV. Low-voltage areas  in patients form Group A corresponded to 

echocardiographic/angiographic  RV wall motion abnormalities and were significantly associated 

with myocyte loss and fibrofatty replacement at EMB (p<0.0001) and familial ARVC (p<0.0001). 

Patients from Group B had a sporadic disease  and histopatologic evidence of inflammatory 

cardiomyopathy (p<0.0001). During the time interval from onset of symptoms to the invasive study 

(mean 3.4 years), 11 patients (55%) with electroanatomic low-voltage regions received an ICD due 

to life-threatening ventricular arrhythmias, whereas all but one patient with normal voltage map 

remained stable on antiarrhythmic drug therapy (p=0.02). These results indicate that 3-D 

electroanatomic voltage mapping may enhance accuracy for diagnosing ARVC by demostrating  

low-voltage areas, which are associated with fibrofatty myocardial replacement,   and  by 

identifying a subset of patients who fulfil ESC/ISFC Task Force diagnostic criteria, but show  a 

preserved electrogram voltage. This subset appears to have  an inflammatory cardiomyopathy 

mimicking ARVC and a better arrhythmic outcome. 
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Figure 2. Noninvasive and invasive findings in a representative patient with abnormal RV electroanatomic voltage map. 

A, Twelve-lead ECG showing inverted T waves from V1 to V4 and a premature ventricular beat with a left bundle 

branch block/superior axis morphology. B, Two-dimensional echocardiographic apical view showing severe RV 

dilatation. C, Right anterior oblique view of RV bipolar voltage map showing low-voltage values (red indicates <0.5 

mV) in anteroinfundibular, inferobasal, and apical regions. D, EMB sample showing massive myocardial atrophy and 

fibrofatty replacement (trichrome; magnification x6). E, Close-up showing residual myocytes entrapped within fibrous 

and fatty tissue (trichrome; magnification x40) (From Corrado et al. Circulation. 2005;111:3042-3050). 

 

Pathophysiologic and Clinical Implications 

 

 The study by Corrado et al. demonstrated that electroanatomic low-amplitude areas were 

significantly associated with the histopathologic finding of myocyte loss and fibrofatty replacement 

at EMB, thus confirming that RV loss of voltage reflects the replacement of action potential-

generating myocardial tissue with electrically silent fibrofatty tissue (132) Moreover, there was a 

concordance between the presence and location of  RV low voltage areas identified by 

electroanatomic map and akinetic/dyskinetic regions detected by echocardiography and/or 

angiography. The low-amplitude electrogram values were distinctively recorded in the RV free 

wall, predominantly  involving the anterolateral, infundibular and inferobasal regions, and spared 

the interventricular septum. Such a specific distribution is similar to that observed at autopsy in 

hearts of patients who died from ARVC, in whom most severe RV myocardial atrophy and wall 

aneurysms are found predominantly in the  anteroinfundibular free wall and underneath the 

tricuspid valve.  
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Abnormal vs normal  voltage mapping 

The majority of  ARVC patients with an abnormal electroanatomic voltage mapping 

reported by Corrado et al. had a familial form of disease (132). This finding is in keeping with the 

genetic background of the disease which has been demonstrated in over 50% of ARVC patients, 

with either autosomal, or less frequently recessive, pattern of inheritance and  age-related and 

variable penetrance. In the study of Corrado et al. (132) 35% of patients who fulfilled the Task 

Force diagnostic criteria for ARVC by non-invasive evaluation, showed neither evidence of 

electroanatomic  low-voltage regions nor of fibrofatty replacement at EMB. Comparison of 

mapping results and clinical patient characteristics in this study suggests that the finding of normal 

RV voltage values characterizes a distinct subgroup of patients with a peculiar etiopathogenetic, 

clinical and prognostic profile. Patients with normal and abnormal electroanatomic voltage mapping 

did not differ with regard to mean age and mean time interval between symptoms onset and time of  

electroanatomic evaluation. Moreover, extent of precordial ECG repolarization changes and 

severity of morphofunctional abnormalities such as global or segmental right ventricular 

dilatation/dysfunction, RV wall motion abnormalities and  LV involvement, which were detected by 

echocardiography/ angiography, were similar in both subgroups of patients.  These findings argue 

against the possibility that failure to detect electroanatomic RV low-voltage areas reflects early 

stages or minor variants of ARVC. 

Of note, our results differ from those of other studies in which all patients with suspect 

ARVC had a positive voltage mapping (125-133). This discrepancy may be explained by different 

study populations with different prevalence of inflammatory cardiomyopathy as well as by non 

comparable study design and diagnostic algorithms, with histopathologic data provided only by our 

investigation.   
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Differential diagnosis between ARVC and Idiopathic Ventricular Tachycardia 

Idiopathic RVOT tachycardia refers to nonfamilial tachycardias, either paroxysmal or 

repetitive monomorphic, with a left bundle branch block and inferior axis QRS pattern that are 

characteristically triggered by physical exercise or by catecholamine infusion in young individulas  

without clinically detectable structural heart disease.  Although RVOT tachycardia is considered 

benign and non progressive entity, it may cause syncope and, rarely, sudden cardiac death.   These 

malignant events are most likely explained by the clinical overlap between idiopathic RVOT 

tachycardia and early and/or segmental ARVC. Ventricular tachycardia associated with ARVC/D 

may be localized to the outflow tract thus mimicking idiopathic RVOT tachycardia. Therefore, 

discrimination
 
between the two entities  is mandatory for prognostic and therapeutic reasons.  

Clinical diagnosis of ARVC includes demonstration of morphofunctional abnormalities of 

the RV by imaging techniques. However, differential diagnosis from idiopathic RVOT tachycardia 

may be challenging, especially in patients with ARVC at its early stage or in its minor variant which 

is characterized by clinically subtle structural and functional RV abnormalities. Although 

conventional imaging modalities including echocardiography and contrast angiography appear to be 

accurate in detecting RV structural and functional abnormalities in overt forms of ARVC, they are 

less sensitive in detecting subtle lesions.   

Two recent studies tested whether RV voltage mapping can help to  differentiate between 

idiopathic RVOT tachycardia and ARVC due to its ability to identify and characterize 

electroanatomic scar in patients with ARVC.  

 Boulos et al. (131) compared electroanatomic findings in patients with an ultimate 

diagnosis of idiopathic RVOT tachycardia with those in patients who had established ARVC. They 

found that mapping results were in concordance with previous clinical diagnosis, by showing 

normal voltages in the idiopathic RVOT tachycardia group and abnormal low-amplitude areas in 
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ARVC patients. However, in the investigation a histologic study to  validate the clinical diagnosis 

by EMB was not done. 

Corrado et al. (133) examined whether 3-D electroanatomic voltage mapping enhances 

accuracy to detect early/minor ARVC in patients presenting with RVOT tachycardia and an 

apparently normal heart. The study population consisted of 27 consecutive patients (15 males and 

12 females, age 33.9±8 years) with recurrent RVOT tachycardia and no echocardiographic evidence 

of RV dilatation/dysfunction, who were referred for characterization of the ventricular tachycardia 

(VT) substrate and catheter ablation. All patients underwent detailed invasive-study including 

activation and voltage mapping and EMB for histological study. Voltage mapping was normal in 20 

of 27 patients (74%, Group A), with electrogram voltage > 1.5 mV throughout the RV. The other 7 

patients (26%, Group B), showed one or more (2±1.4) electroanatomic scar areas (bipolar voltage 

<0.5 mV) that correlated with histopathologic evidence of fibrofatty myocardial replacement at 

EMB (p<0.0001). Independent predictors of scar were right precordial QRS prolongation (p<0.001) 

and VT inducibility at programmed ventricular stimulation (p <0.01). The major finding of this 

study is that an early/ minor form of ARVC may present clinically as RVOT tachycardia in the 

absence of RV dilatation/dysfunction, thus mimicking idiopathic RVOT tachycardia. Three-D 

electroanatomic voltage mapping is able to identify such subclinical ARVC variants by  detecting 

RV electroanatomic scars that correlate with diagnostic histopathologic features of the disease 

(Figure 3).  

A significant clinical implication of this study is that 3-D electroanatomic voltage mapping 

of the RV enhances accuracy for distinguishing patients with idiopathic RVOT tachycardia from 

those with an underlying subtle ARVC. The technique detected electroanatomic RV scars in 

approximately one forth of patients with RVOT tachycardia, who had a normal RV size and 

function by customary imaging studies. The majority of patients with abnormal voltage mapping 

had electroanatomic scars confined to infundibular or anteroinfundibular free wall regions; only 2 

patients had multiregional RV scars also involving remote regions of the so called “triangle of 
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dysplasia” such as the inferobasal or apical free wall areas. It is noteworthy that septal regions 

showed normal voltage amplitudes in all patients, according to the pathologic experience that the 

septum is usually not involved in ARVC. These segmental RV lesions with predominant 

involvement of the RVOT could explain why there were no significant changes in overall RV 

volume and ejection fraction. This is in keeping with previous studies showing that  some patients 

with segmental ARVC particularly localized to the infundibulum, may have normal angiographic 

RV volumes and preserved RV function, either global or regional.  Electroanatomic voltage 

mapping by assessing the electrical rather than the mechanical effects of RV myocardium obviated 

limitations in the analysis of localized RVOT dilatation/dysfunction and increased the sensitivity for 

detecting otherwise concealed ARVC myocardial substrate. It is noteworthy  that electroanatomic 

scar  in patients with RVOT tachycardia  correlated with the EMB histopathologic finding of 

myocyte loss and fibrofatty replacement. This is in agreement with previous study of voltage 

mapping in patients with ARVC showing that areas of low-amplitude electrograms reflect the 

abnormal electrical activity of diseased RV myocardium and supports the conclusion that RVOT 

tachycardia occurred  in the context of ARVC cardiomyopathic changes. (132-133) 

 

      

Figure 3. (A) Right anterior oblique view of the right ventricular (RV) bipolar voltage map showing preserved bipolar 

voltages values (purple indicates >1.5 mV) throughout the RV. (B) Endomyocardial biopsy sample showing normal 

myocardium (Heidenhain trichrome x40). (C) 12-lead electrocardiogram during clinicallysustained ventricular 

tachycardia 170 beats/min, with a left bundle branch block/inferior axis morphology (from Corrado et al Am Coll 

Cardiol 2008;51:731–9). 
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Electroanatomic Voltage Mapping-guided catheter ablation 

 Intraoperative studies of patients with ischemic heart disease have shown that 

circumferential
 
ablation of ventricular scar and/or ablation connecting scar to an anatomic boundary 

is a successful therapy for ventricular tachycardia (125-133). This substrate-based ablation approach 

eliminates scar-related exit sites and/or isthmuses of the ventricular tachycardia reentry circuit. In 

patients with ARVC, fibrofatty replacement of RV myocardium creates scar regions that are 

regarded as the arrhythmogenic disease substrate.  The histopathologic arrangement of the surviving 

myocardium embedded in the replacing fibrofatty tissue may lead to inhomogeneous 

intraventricular conduction predisposing to reentrant mechanisms. Hence, ventricular tachycardia in 

ARVC is the result of a scar-related macro-reentry circuit, similarly to that observed in post-

myocardial infarction setting. This explains why RV voltage mapping-guided catheter ablation is 

successful in patients with ARVC. By using voltage
 
mapping to identify RV low-voltage regions in 

patients with ARVC,
 
both Marchlinski et al.(98)  and  Verma et al. (100) were able to create 

substrate-based RV linear ablation lesions connecting or encircling electroanatomic scars. Both 

studies
 
showed that the technique is associated with a high rate of short-term

 
success in patients 

with ARVC, although recurrences of ventricular tachycardia are common, most likely because 

ARVC is a progressive disease and new regions of fibrofatty scar develop
 
over time and create new 

ventricular tachycardia circuits.  

 The main objective of management of  patients with ARVC is to prevent arrhythmic sudden 

death. However, there are no prospective and controlled
 
studies assessing clinical markers which 

can predict the occurrence
 
of life threatening ventricular arrhythmias. It has been established

 
that 

sudden death may be the first manifestation of the disease in previously asymptomatic young 

subjects and athletes.
 
Therefore, all identified or suspected patients are at risk of

 
sudden death even 

in the absence of symptoms or ventricular arrhythmias.
 
The most challenging clinical dilemma is 

not whether to treat
 
patients who already experienced malignant ventricular arrhythmias

 
(secondary 
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prevention), but to consider prophylactic treatment
 
in patients with no or only minor symptoms in 

whom the disease
 
has been diagnosed during family screening or by chance (primary

 
prevention). 

Furthermore, ARVC is a progressive disease and the
 
patient's risk of sudden death may increase 

with
 
time. The risk profile which emerges from retrospective analysis of clinical and pathologic 

series, including fatal cases, is characterized
 
by young age, participation in competitive sport 

activity, malignant familial background,
 
extensive right ventricular disease with reduced ejection 

fraction and LV involvement, syncope, and prior episodes cardiac arrest due to ventricular 

tachycardia/fibrillation. The baseline clinical study
 
for assessment of the risk of sudden death 

consists of non-invasive
 
routine clinical study including detailed clinical history (mostly

 
addressing 

familial background and previous syncope), 12 lead
 
ECG, 24 hour Holter monitoring, exercise 

stress testing, and signal
 

averaged ECG. Invasive risk stratification traditionally relies on 

electrophysiologic study, although the predictive value of ventricular tachycardia/fibrillation 

inducibility by programmed ventricular stimulation has  not been demonstrated. Characterization of 

the RV wall by electroanatomic voltage mapping is an additional invasive technique with the 

potential to refine risk stratification of  ARVC/D patients, given that identification of scar lesions 

may predict a worse clinical outcome. 

 In this regard, Corrado et al. (132) reported that the subset of ARVC patients with abnormal 

electroanatomic voltage mapping  had a worse arrhythmic outcome. During a  mean 3.4 year 

clinical interval, 55% of ARVC patients with electroanatomic evidence of low-voltage areas 

required an ICD implantation due to serious arrhythmic complications, whereas all but one ARVC 

patient with preserved myocardial voltage values remained stable on antiarrhythmic therapy.  

A more recent study from the Padua group (133) showed that the short-term success of 

catheter ablation of RVOT tachycardia did not differ between patients with normal and those with 

abnormal RV voltage mapping (85% vs 89%). Despite initial success, however, more than 40% of 

patients with RVOT tachycardia and underlying RV electroanatomic scar experienced relapse of 
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life-threatening ventricular tachycardia (leading to syncope in 2 and aborted sudden death in one), 

compared with none of patients with successful ventricular tachycardia ablation and normal voltage 

mapping.  This is in agreement with previous studies showing a good acute success rate of catheter 

ablation of right ventricular tachycardia, either idiopathic or associated with  ARVC, although in 

patients with ARVC ventricular tachycardia recurrences are commonly observed (up to 60% of
 
the 

cases) and may lead to sudden arrhythmic death. The discrepancy
 
between the good acute results 

and the unfavourable long term outcome has been explained by the progressive
 
nature of the 

underlying disease which predisposes to the occurrence
 
of new and malignant arrhythmogenic 

substrates over time. These findings indicate that the subset of patients with RVOT tachycardia and 

electroanatomic evidence of RV scar may have a worse outcome because of the structural and 

electrically instable underlying substrate. Whether electroanatomic voltage mapping may refine 

arrhythmic risk assessement needs to be confirmed by larger prospective studies. 

Invasive electrophysiologic study with programmed ventricular stimulation has been 

performed in patients with ARVC for diagnostic, therapeutic and prognostic purposes. The major
 

aims of electrophysiologic study are: (i) to assess the disease's
 
arrhythmogenic potential by 

induction of ventricular tachycardia/fibrillation during the basic
 

pacing protocol or during 

isoproterenol infusion; (ii) to evaluate haemodynamic
 
consequences of sustained ventricular 

tachycardia and its propensity to degenerate
 
into ventricular fibrillation; (iii) to examine the 

predictive role of inducible ventricular tachycardia/fibrillation for subsequent arrhythmic cardiac 

arrest; and (iiii) to establish the susceptibility of ventricular tachycardia to be interrupted
 
by 

antitachycardia stimulation, and its reinducibility in view
 
of serial electropharmacologic studies, 

catheter ablation, or implantation of an ICD. The results of recent studies raised concerns on the 

programmed ventricular stimulation predictive value for risk stratification of patients with ARVC. 
 

Corrado et al. (21,22) evaluated the prognostic role of programmed ventricular stimulation in a 

large series of patients undergoing ICD implantation for prevention of arrhythmic sudden death. Of 
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98 patients who were inducible at programmed ventricular
 
stimulation, 50 (51%) did not experience 

ICD therapy during
 
the follow-up, whereas 7 (54%) of 13 noninducible patients had appropriate

  

ICD interventions. Overall, the positive predictive value of
 
programmed ventricular stimulation was 

49%, the negative predictive
 
value was 54%, and the test accuracy was 49%. Moreover, the 

incidence
 
of appropriate ICD discharge did not differ between patients

 
who were or were not 

inducible at programmed ventricular stimulation,
 
regardless of clinical presentation. Finally, the 

type of ventricular
 
tachyarrhythmia inducible at the time of electrophysiological

 
study did not 

predict the occurrence of ventricular fibrillation/flutter
 
during follow-up. The results of this  study  

indicate that the electrophysiological
 
study is of limited value in identifying patients at risk of lethal 

ventricular arrhythmias because of  a low predictive accuracy (approximately 50% of both false-

positive and false-negative
 

results). This finding is in agreement with the limitation of 
 

electrophysiological study for arrhythmic risk stratification of other non
 
ischemic heart disease such 

as hypertrophic and  dilated cardiomyopathy.  

 

Electroanatomical Voltage Mapping Versus Contrast-Enhanced Cardiac Magnetic Resonance   

 

 Endocardial voltage mapping (EVM) is an invasive technique that has been proved to 

accurately characterize the presence, location, and extent of RV scars in ARVC by demonstration of 

low-voltage regions, so-called electroanatomical scars (EAS). (125-133) A significant correlation 

between RV EAS and fibrofatty myocardial replacement was demonstrated by endomyocardial 

biopsy (EMB). Moreover, EVM has been clinically validated in the electrophysiological laboratory, 

where it is used for both mapping of substrate and catheter ablation of RV ventricular tachycardia 

(VT). (125-133) However, because EVM is an invasive procedure and requires a cardiac 

catheterization, it cannot be proposed as a routine imaging study of ventricular scar in ARVC 

patients. 
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 Contrast-enhanced cardiac magnetic resonance (CE-CMR) with delayed contrast 

enhancement (DCE) sequences using gadolinium is an emerging technique that has the potential to 

detect ventricular scar in different pathological settings, including ARVC. Compared with EVM, 

CE-CMR offers the advantage of being noninvasive and identifying LV scars distinct from RV 

scars. 

 Recently, Perazzolo Marra et al. (84) compared endocardial voltage mapping (EVM) and 

contrast-enhanced cardiac magnetic resonance (CE-CMR) for imaging scar lesions in ARVC 

patients. The study population included 23 ARVC/D patients who underwent both RV-EVM and 

CE-CMR. In 21 (91%) of 23 ARVC patients, RV EVM was abnormal, with a total of 45 

electroanatomical scars (EAS): 17 (38%) in the inferobasal region, 12 (26.6%) in the anterolateral 

region, 8 (17.7%) in the RV outflow tract (RVOT), and 8 (17.7%) in the apex. RV delayed contrast 

enhancement (DCE) was found in 9 (39%) of 23 patients, with a total of 23 RV DCE scars: 4 

(17.4%) in the inferobasal region, 9 (39.1%) in the anterolateral region, 4 (17.4%) in the RVOT, 

and 6 (26.1%) in the apex. There was a mismatch in 24 RV scars, with  22 EAS not confirmed by 

DCE and 2 DCE scars (both in the RVOT) undetected by EVM. In 9 (75%) of 12 patients with 

abnormal RV EVM/normal RV DCE, ≥1 DCEs were identified in the LV. Overall, ventricular DCE 

was detected in 78% of patients. The authors concluded that CE-CMR is less sensitive than EVM in 

identifying RV scar lesions. Moreover, the high prevalence of LV DCE confirms the frequent 

biventricular involvement and indicates the diagnostic relevance of LV scar detection by CE-CMR.  

 

Electroanatomical Scar in ARVC 

 Electroanatomical voltage mapping has identified areas of myocardial loss by recording and 

spatially associating lowamplitude electrograms to generate a 3D electroanatomica ventricular map. 

(125-133) In ARVC patients, RV EAS have been demonstrated to correlate with the histopathologic 

finding of myocardial atrophy and fibrofatty replacement at EMB. (132-133) EVM assesses the 

electric consequences of loss of RV myocardium, rather than the mechanical dysfunction, either 
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regional or global, traditionally seen by echocardiography and angiography. EVM was reported to 

enhance the accuracy of differential diagnosis between ARVC and acquired inflammatory 

cardiomyopathy or idiopathic RVOT tachycardia. 

 Perazzolo Marra et al (84) reported that RV EAS are identified by EVM in most ARVC 

patients. The high prevalence of RV low-voltage areas may be explained by the clinical and 

electrophysiological characteristics of patients who were probands with an overt disease phenotype, 

including VT, either sustained or nonsustained. Regional distribution of RV scars, with 

predominant involvement of the anterolateral and inferobasal RV regions, resembled that observed 

in autopsy heart specimens of patients who died suddenly from ARVC in whom the most severe 

atrophy and wall aneurysms were characteristically localized in the anteroinfundibular wall and 

underneath the tricuspid valve. 

 

Contrast-enhanced Cardiac Magnetic Resonance findings in ARVC 

 Typical ARVC/D features on CMR consist of RV dilatation/dysfunction, wall motion 

abnormalities, diastolic bulging, and thinning of the RV free wall. Moreover, CMR has the unique 

ability to detect intramyocardial fatty deposition, which may be differentiated by the adjacent 

myocardium, because of its brighter signal, with the spin-echo technique. (84) Although CMR 

provides an accurate quantitative analysis of RV volumes, a significant interobserver variability in 

the interpretation of qualitative findings and segmental contraction analysis of the RV free wall has 

been reported. CMR has been implicated in overdiagnosis of ARVC based on the low specificity of 

qualitative findings, such as increased intramyocardial fat and wall thinning. Tandri et al (82) first 

reported RV DCE in 8 (67%) of 12 of patients with ARVC and demonstrated its relation to 

inducibility of sustained monomorphic VT at electrophysiological testing and fibrofatty myocardial 

changes at EMB. Perazzolo Marra et al (84) confirmed a low prevalence (39%) of RV DCE in 

patients with clinical ARVC. Moreover, by specifically comparing EVM with CE-CMR for RV 

scar visualization, they found a significant mismatch between the 2 techniques (for imaging RV 
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lesions), with fewer RV scars detected by RV-DCE compared with RV-EVM. The 19 EAS not 

confirmed by the DCE mostly affected the anterolateral and inferobasal RV regions. Previous 

reports comparing EVM with CMR findings in ARVC found a topographical relationship between 

low-voltage areas and RV dyskinesia/dilation. Because all our patients had clinically overt disease 

with significant RV dilatation/dysfunction, the low yield of RV DCE cannot be ascribed to 

early/minor disease forms but, more probably, can be explained by the low resolution of current 

CMR for the RV free wall and by the protocol design, with inversion time set to null LV 

myocardium and inversion recovery sequence not fat suppressed. The RV free wall is up to 4-mm 

thick and the motion artifacts often result in poor quality/spectral resolution to quantify RV wall 

thickness accurately. In addition, transmural myocardial atrophy and fibrofatty replacement in 

ARVC patients may lead to further RV free wall thinning (<2 mm) with a suboptimal contrast/noise 

ratio between normal and scar tissue. The inversion time required for optimal nulling of the 

myocardium probably differs between RV and LV, making inaccurate simultaneous examination of 

both ventricles with DCE imaging. In addition, fat and fibrosis give the same signal on CE-CMR 

and partial volume effects make it difficult to distinguish the 2 different tissues, mostly in a thinned 

wall. In addition to the limitations due to wall thinning and motion artifacts, the spatial resolution of 

CE-CMR is good for detecting large confluent areas of scarring, which are observed in diffuse 

disease variants, whereas it may fail in detecting an epicardial or focal RV scar. On the basis of 

pathological and CMR studies fibrofatty myocardial replacement in ARVC usually involves large 

epicardial/midmural areas but reaches focally the RV endocardial layer, according to a “reversed” 

iceberg-like lesion model with a larger base on the epicardium and a thinner apex on the 

endocardium. The size of scar lesions reaching the endocardium may decline below the resolution 

power of CE-CMR, thus explaining the finding of the apparently normal RV wall. The findings of 

RVOT scars by CE-CMR, undetected by EVM in 2 patients, may be interpreted as false positive. 

As an alternative explanation, this finding may suggest limited EVM power for detection of scar 
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lesions in this area. Because in our study EVM was limited to the endocardial side of the RV free 

wall, this may have underestimated or missed some nontransmural scar lesions. 

 Recent studies suggest a key role of late gadolinium enhancement for detection and 

morphological characterization of an LV myocardial fibrofatty scar in ARVC. (73)  

 

Clinical Implications  

 The results of the study by Perazzolo Marra et al (84) confirm that EVM allows an accurate 

identification of RV EAS in patients with a clinical diagnosis of ARVC and support its clinical use 

for substratebased mapping and catheter ablation of RV tachycardia and for imaging-guided EMB. 

 EVM has been successfully used for catheter ablation of LV VT arising from a postinfarct 

scar, thanks to the ability of CMR to identified nontransmural LV scars and infarct gray zones 

undetectable by EVM. (132-133)  Currently available DCE-CMR visualize RV scars 

unsatisfactorily, limiting its usefulness for characterizing ARVC myocardial substrate and guiding 

interventional procedures, such as RV VT catheter ablation and imaging-guided RV EMB. The high 

prevalence of LV involvement in our cohort of ARVC patients is in keeping with the perspective of 

biventricular disease and indicates the diagnostic relevance of LV scar detection by CE-CMR. 

 Despite the different accuracy of the 2 techniques for identification of a ventricular scar, 

CMR and EVM should not be considered alternative imaging tools in ARVC patients; rather, they 

should be used synergistically to combine their strategic diagnostic and prognostic information, 

mostly regarding quantitative evaluation of RV function and assessment of arrhythmogenic 

myocardial substrate.  
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Representative cases of concordance between endocardial voltage mapping (EVM) and contrast-enhanced cardiac 

magnetic resonance (CE-CMR). A, Anteroposterior view of the right ventricular (RV) EVM showing a large 

electroanatomical scar (EAS) involving almost completely the RV free wall. B, Fourchamber view of CE-CMR 

showing the widespread RV delayed contrast enhancement (DCE) and the septal involvement (white arrows). C, Right 

anterior oblique view of EVM showing EASs (red indicates <0.5 mV) in the RV inferobasal region and outflow tract. D, 

Basal short-axis view of CE-CMR showing DCE in the RV inferobasal wall and outflow tract (white arrows); DCE also 

involves the subepicardial layer of the inferior left ventricular (LV) free wall and the septum (white asterisks). (From 

Perazzolo Marra et al. Circ Arrhythm Electrophysiol 2012;5:91-100). 

 

 

Representative cases of discordance between endocardial voltage mapping (EVM) and contrast-enhanced cardiac 

magnetic resonance (CE-CMR). A, Lateral view of the right ventricular (RV) EVM showing electroanatomical scar 

(EAS) in the RV inferobasal region and outflow tract. B and C, Basal short- and long-axis views of CE-CMR sequences 

showing no signs of delayed contrast enhancement (DCE) in the RV free wall. Subepicardial DCE is visible in the 

inferior and inferoseptal regions of the left ventricle (LV;white arrows). D, Lateral view of EVM showing a large EAS 

affecting the inferobasal, anterolateral, and, partly, RV outflow tract region. E and F, Basal short- and long-axis views 

of CE-CMR showing neither RV nor LV DCE (From Perazzolo Marra et al. Circ Arrhythm Electrophysiol 2012;5:91-

100). 
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Representative example of endocardial voltage mapping (EVM) and contrast-enhanced cardiac magnetic resonance 

(CECMR) in a healthy control subject. A, Right anterior oblique view of the EVM showing preserved bipolar voltage 

values (purple indicates>1.5 mV) throughout the right ventricle (RV). Orange dots indicate the site of His bundle 

electrogram recording. In the same subject,there is no evidence of RV and left ventricular (LV) delayed contrast 

enhancement (DCE) on T1 inversion recovery postcontrast sequences, in both right-sided 2-chamber (B) and mid short-

axis (C) views (From Perazzolo Marra et al. Circ Arrhythm Electrophysiol 2012;5:91-100). 
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AIM OF THE STUDY  

 

 ARVC is an inherited heart muscle disease whose natural history is essentially related to 

ventricular electrical instability which may lead to SCD, mostly in young people and athletes. Risk 

stratification of affected patients is mandatory for implementing therapeutic strategies aimed to 

prevent SCD. Current treatment strategies suggest the implantation of an implantable  cardioverter 

defibrillator (ICD) in symptomatic ARVC patients with prior cardiac arrest due to ventricular 

fibrillation (VF), history of syncopal episodes, and sustained ventricular tachycardia (VT); in 

contrast, the role of  prophylactic ICD therapy in asymptomatic patients or relatives presenting 

traditional risk factors such as family history of SCD, severe right ventricular (RV) dysfunction, and 

inducibility at programmed ventricular stimulation (PVS) remains controversial. (21,22). 

The assessment of mechanical consequences of myocardial fibrofatty scar has been 

traditionally based on imaging techniques such as echocardiography and angiography. Among the 

techniques now available for direct imaging of ventricular myocardial lesion, endocardial voltage 

mapping (EVM) is an emerging tool which has the ability to accurately identify and quantify RV 

regions with low-amplitude electrical signals, i.e. electroanatomic scar areas, which reflect 

myocardial replaced tissue (125-133). Although the technique has been demonstrated to enhance 

the accuracy for diagnosing ARVC, its value for arrhythmic risk stratification remains to be 

established.  

Hence this study was designed to prospectively evaluate the prognostic value of RV-EVM in 

a cohort of ARVC/D patients during a long-term follow-up.  
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METHODS 

 

Study population 

The study population included 69 consecutive patients [47 males; median age 35 years ( 28-

45)] with ARVC who were referred at the Division of Cardiology of the University of Padova, Italy 

for risk stratification. 

All patients underwent detailed cardiac evaluation including family history, physical 

examination, 12-lead-electrocardiogram (ECG) recording, signal-averaged ECG; 24-hour Holter 

monitoring, exercise stress testing, echocardiography and cardiac catheterization including RV and 

left ventricular (LV) cineangiography in the right and left anterior oblique view and coronary 

angiography.  

All patients met the International Task Force (ITF) criteria (two major criteria or one major 

criterion plus two major criteria or 4 minor criteria) for diagnosis of definite ARVC. Diagnosis was 

established according to the original ITF criteria (19) and confirmed using the recently revised 

criteria. (20) 

All patients underwent intracardiac electrophysiologic study with programmed ventricular 

stimulation (PVS) for assessing VT/VF inducibility and high density EVM for imaging and 

quantification of abnormal RV-EVM.  

The study was approved by the institutional review board, and all patients gave their 

informed consent. 

 

Electrophysiological study 

 All antiarrhythmic drugs were discontinued 5 half-lives (6 weeks for amiodarone) before the 

electrophysiological study. Programmed ventricular stimulation protocol included 3 drive cycle 

lengths (600, 500, and 400 ms) and 3 ventricular extrastimuli while pacing from 2 RV sites (apex 
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and outflow tract). Programmed ventricular stimulation was considered positive if either a VF or 

sustained ventricular tachycardia (VT), i.e., one that lasted ≥30 seconds or required termination 

because of hemodynamic compromise, was induced. Programmed ventricular stimulation was 

repeated after intravenous isoproterenol infusion in those patients with effort induced non sustained 

VT (16 of 53, 26%). 

 

Electroanatomic voltage mapping 

At the time of electrophysiologic study, all patients underwent detailed EVM by the 

CARTO system (Biosense-Webster) during sinus rhythm, as previously reported (125-133). A 7-F 

Navi-Star (Biosense-Webster) catheter, with a 4-mm distal tip electrode and a 2-mm ring electrode 

with an interelectrode distance of 1 mm, was introduced into the RV under fluoroscopic guidance 

and used as the mapping/ablation catheter. The catheter was placed at multiple sites on the 

endocardial surface of RV free wall [infero-basal, antero-lateral free wall, apex, and RV outflow 

tract (RVOT)] and septum to reconstructed the 3D-geometry of the RV chamber. Bipolar 

electrogram signals (filtered at 10 to 400 Hz and displayed at 100 mm/s speeds on the CARTO 

system) and unipolar signals (filtered at 1 to 240 Hz and displayed at 100 mm/s speeds on the 

CARTO system) were recorded and analyzed simultaneously with regard to amplitude, duration, 

relation to the surface QRS, and presence of multiple components.   

Duration of an endocardial bipolar electrogram was measured as the time from the earliest 

electrical activity to the artefact produced by the decay of the amplified filtered signal (132-133). 

Bipolar signals were recorded between the distal electrode pair, unipolar signals between the 

distal tip of the ablation catheter (cathode) and the Wilson central terminal.  

In our study the following tools were used to avoid false low-voltage recordings: 1) 

adequate catheter contact was confirmed by concordant catheter tip motion with the cardiac 

silhouettes on fluoroscopy; 2)  a recording was accepted and integrated into the map when the 

variability in cycle length, local activation time stability, and maximum beat-to-beat difference of 
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the location of the catheter (automatically detected by the CARTO system) were <2%, <3 ms, and 

<4 mm, respectively (these parameters, combined with the stability of the impedance reading, were 

used to exclude low amplitude signals due to poor endocardial catheter contact); 3) in the presence 

of a low voltage area, at least 3 additional points were acquired in the same area to confirm the 

reproducibility of the voltage measurement (132-133). Particular attention was paid to validate the 

acquisition of endocardial points from the RV inferobasal region, because of the recognized risk of 

poor tissue contact in this area. Because of the potential high mapping error and to avoid 

overestimation of low-voltage RV areas due to inclusion of normal annular fibrous tissue, the 

immediate perivalvular areas (i.e. within 1.5 cm of the valvular locations on  post-processing 

measurement) were excluded in the analysis of endocardial low voltages. 

Values of normal RV endocardial voltages were established by RV-EVM in 6 reference 

patients without structural heart disease, who underwent electrophysiological study for evaluation 

of supraventricular tachycardia. RV septal endocardial sites (23±5) were excluded and only RV 

free-wall electrogram recordings (207±16 points sampled), either bipolar or unipolar, were analyzed. 

Normal bipolar electrograms were sharp with ≤3 rapid deflections; the mean electrogram duration 

was 34.8±1.2 ms and the mean amplitude 5.3±0.9 mV, with 95% of all electrogram signals <66 ms 

and >1.47 mV.  

In addition, we analyzed the amplitude of unipolar electrograms which was 10.3±0.6 mV 

with 95% of all unipolar signals recorded having an amplitude >5.96 mV.  

Then in the present study the reference values used to define normal RV electrogram 

amplitude was set at 1.5 mV for bipolar signals and 6.0 mV for unipolar signals, which were the 

values above which 95% of all bipolar and unipolar electrogram voltages from the endocardium of 

normal RVs were included.  

We considered normal bipolar electrocardiograms those with sharp and ≤3 spikes,  

amplitude >1.5 mV and duration ≤70 ms. We defined as  fragmented electrograms  those  

characterized by multiple deflections (>3) amplitude ≤1.5 mV and duration >70 ms. 
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Normal amplitude electrograms (bipolar >1.5 mV and unipolar >6.0 mV) were represented in the 

electroanatomic CARTO map by the color purple, whereas low-amplitude signals were represented 

by non-purple range of colors. Color red indicated “dense scar” which was arbitrarily defined as 

bipolar signal amplitude <0.5 mV and unipolar signal amplitude <3.5 mV, according to previously 

reported criteria (132-133). An EVM was considered abnormal in the presence of a single or 

multiple RV low voltage areas ≥1 cm
2 

including at least 3 adjacent points with a bipolar signal 

amplitude <1.5 mV and an unipolar signal amplitude <6.0 mV. 

Complete endocardial maps were obtained in all patients to ensure reconstruction of a 3-

dimensional geometry of the RV chamber and to identify areas of abnormal electrograms in the RV 

free wall. The septum was excluded from the analysis (Figure 1). Regions showing low-amplitude 

signals were mapped with greater point density to delineate the extent and borders of endocardium 

electroanatomic scar areas.  

The extent of low-voltage areas was estimated by using a CARTO-incorporated area 

calculation software (CARTO, Biosense Webster Inc, Diamond Bar, CA) and was expressed both 

as total RV area and percentage of RV area, excluding tricuspid and pulmonary valvular annuli.  

 

 

Follow-up 

The follow-up data were obtained prospectively during regular outpatient visits at 6 to 12-

months intervals. Routine ICD interrogation and ECG recordings at the time of symptoms were 

used to document the occurrence of spontaneous VT during follow-up. The study outcome was the 

index combined end point of major arrhythmic events such as sudden death (SD), cardiac arrest due 

to VF, sustained VT or appropriate ICD intervention. Sudden death was defined as any natural 

death occurring instantaneously or within one hour from symptoms onset.  

Sustained VT was defined as tachycardia originating in the ventricle with rate >100 

beats/minute and lasting >30 seconds or requiring an intervention for termination. Appropriate ICD 
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intervention was defined as a device shock or antitachycardia overdrive pacing delivered in 

response to a ventricular tachyarrhythmia and documented by stored intracardiac ECG data. 

Ventricular fibrillation and VT were defined as a ventricular tachyarrhythmia with a cycle length ≤ 

240 ms or > 240 ms respectively. Implantable cardioverter defibrillator were routinely programmed 

to include a monitoring zone that identified VT with a rate >160 bpm. 

 
 

Statistical analysis 
 

Results are summarized as mean ± standard deviation (SD) or  median with 25%-75%-iles  

for normally distributed and skewed variables, respectively. Normal distribution was assessed using 

Shapiro-Wilk test. Categorical differences between groups were evaluated by the χ
2
 test of the 

Fisher exact test as appropriate. Paired and unpaired  t-tests were used to compare normally 

distributed continuous variables respectively obtained from the same patient and different patients; 

paired and unpaired Rank Sum test were used for skewed continuous variables. 

Kaplan-Meier analysis was used to estimate the survival distributions of the index combined 

end point and to show the difference in survival between patients with normal vs abnormal bipolar-

EVM and positive vs negative PVS. Start of follow-up was defined as the date of the initial EVM. 

Patients were censored at the time of their first event or the time of their last clinical follow-up. The 

mean event rate per year was evaluated by the number of events occurring during the follow-up 

divided by the number of patients multiplied by the average duration of follow-up. 

The independent correlation of traditional clinical predictors of arrhythmic risk in ARVC with the 

index combined end-point during follow up was determined by means of univariate and 

multivariable Cox regression analysis. Variables with a P value <0.15) were integrated into 

multivariable analysis using Cox proportional-hazard models to estimate the Hazard ratio (HR) and 

to identify independent predictors of major arrhythmic events. The Cox model was used to calculate 

the relation between amount of  RV low-voltage areas and hazard ratios. Hazard ratios (HR) and 

confidence intervals (CI) are presented both in univariate and multivariable analysis. The c-statistic 
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method was used to estimate the best cut-off value of bipolar low-voltage area to discriminate 

between patients with and those without major arrhythmic events during follow-up. A value of 

P<0.05 was considered significant. Statistics were analyzed with SPSS version 17 (SPSS Inc, 

Chicago, Ill). 

 

RESULTS 

 

Clinical characteristics 

 Baseline clinical characteristics and instrumental findings are summarized in Tables 1. The 

study population included 69 consecutive patients [47 men; median age 35 years (28-45)]. Twenty-

eight patients (40%) had a family history of ARVC (N=12, 17%) or premature (<35 years) sudden 

death  (N=16, 23%). Twenty-two (32%) patients had a history of cardiac arrest or syncope. 

Ventricular tachycardias were documented in 53 (76%) patients and included sustained VT (N=9, 

13%) or non-sustained VT (N=44, 63%). There were 15 morphologies of sustained VT, all with a 

left bundle branch pattern, with a superior axis in 8, inferior axis in 4, and undetermined axis in 3. 

Right ventricular dilatation/dysfunction were observed at echocardiography/angiography in all 

patients. Multiregional wall motion abnormalities (akinesia, diskinesia or bulging involving ≥2 RV 

regions) were found in 25 (36%) patients. Thirty-four (49%) patients were inducible at programmed 

ventricular stimulation to either sustained monomorphic VT (N=23) or VF (N=11). Among 8 

noninducible patients, 2 experienced exercise induced arrhythmic events during follow-up. 

At enrolment, 57 (82%) patients with VT or frequent premature ventricular beats were empirically 

treated with antiarrhythmic drug therapy which consisted of sotalol (N=22), amiodarone either 

alone (N=9) or in combination with beta blockers (N=14), beta blockers (N=7) and flecainide (N= 

5). 
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Electroanatomic voltage mapping 

Endocardial voltage mapping was successfully acquired during sinus rhythm in all patients, 

with a mean number of sites sampled of 195±22.  

 

Bipolar EVM 

An abnormal bipolar RV-EVM was recorded in 53 (77%) patients. Patients with and without 

evidence of abnormal bipolar-EVM had similar baseline clinical characteristics, except for 

multiregional RV wall motion abnormalities which was significantly more prevalent in the 

abnormal bipolar-EVM group. In patients with an abnormal bipolar-EVM the median RV low-

voltage area was 39.1 cm
2 

(13.2-67.8) with a median percent RV area of 24.8 % (7.2-31.5) (Figure 

2). The involved RV regions were infero-basal in 49 (71%) patients, antero-lateral in 28 (40%), 

RVOT in 25 (36%) and apex in 15 (22%) (Figure 1).  

Mean bipolar amplitude of local electrograms recorded from within RV electroanatomic scar 

areas was significantly lower than that sampled from unaffected RV areas (0.38±0.11 versus 

5.2±0.6mV); P<0.001). Similarly, bipolar electrograms from low-voltage areas had a longer mean 

duration (78.9±18 versus 33.5±7.8ms;P<0.001) and more often extended beyond the offset of the 

surface QRS (64% vs 7%;P<0.001), compared with electrograms sampled from regions with 

preserved electrogram voltage (Figure 3). Fragmented bipolar electrograms (i.e. signals with > 3 

deflections, amplitude ≤1.5mV and duration >70ms) were recorded in 47 of 53 (88%) patients  with 

an abnormal bipolar-EVM. 

In 16 patients (23%), EVM was normal, with preserved bipolar endocardial electrogram 

amplitude (4.8±1.3mV) and duration (35.3±0.8ms) (Figure 2). 

 

Unipolar  EVM 

In the 53 patients (77%) with abnormal bipolar-EVM, unipolar-EVM recorded significantly 

more extensive RV electroanatomic scar involvement with a median RV low-voltage area of 68.5 
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cm
2
 (22.9-98.7) and median percent RV area of 64.8 % (39.8-95.3) compared with low-voltages 

obtained by bipolar-EVM (P<0.009) (Figure 2). 

In all 16 patients (23%) with normal bipolar-EVM, the use of unipolar-EVM technique 

unmasked ≥1 regions of low-voltage unipolar electrogram abnormality 37.3 cm
2
 (12.1-48.9); 

26.2 % (11.6-38.2) (Figure 2). 

 

Follow-up 

During a median follow-up of 41 (28-56) months, 19 patients (27.5%) reached the 

composite arrhythmic end point, with a 6.7% annual rate of major arrhythmic events. Eleven 

patients (16%) had an episode of sustained VT, 7 (10%) experienced ≥1 appropriate ICD 

interventions, either against VF (N=4) or VT (N=3), and one (1.4%) died suddenly. Among the 4 

patients who experienced VF, one underwent orthotopic heart transplantation because of intractable 

recurrent VF storms (Figure 4). 

Table 2 shows the clinical characteristics of patients with or without major arrhythmic 

events during follow-up. Patients who experienced arrhythmic events significantly more often had a 

history of cardiac arrest or syncope (73% vs 16%; P=0.001), and abnormal bipolar-EVM (100% vs 

68%;P=0.003).  

Figure 5A shows Kaplan-Meier analysis of survival from the index combined end point of 

sustained VT,  appropriate ICD intervention and SCD for the overall population, stratified by 

bipolar-EVM findings. Overall, the annual event rate was 11.4%/year in patients with an abnormal 

bipolar-EVM and 0%/year with a normal bipolar-EVM (logrank: P=0.02). 

 

Electrophysiologic study 

Overall, the annual event rate was 6.1%/year in patients who were inducible at PVS and 

7.1%/year in those who were noninducible (logrank: P=0.46) (Figure 5B). Of 34 patients who were 

inducible at PVS, 23 (68%) did not experience major arrhythmic events during the follow-up 
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(i.e.false positives), whereas 8 of 35 (23%) noninducible patients had malignant events (i.e. false 

negatives).  The type of ventricular tachyarrhythmia which was inducible at the time of PVS (either 

VT or VF)  did not predict either the presence of bipolar electroanatomic scar or the occurrence of 

arrhythmic events during follow-up. Patients with and without events during follow-up had a 

similar prevalence of RV fragmented bipolar electrograms (79% vs 64%). 

   

Predictors of events 

Univariate and multivariable analysis for predictors of adverse events during follow-up are 

listed in Table 3. Univariate predictors of events were a previous history of cardiac arrest or 

syncope and extent of abnormal bipolar-EVM. The overall arrhythmic risk increased with 

percentage of abnormal bipolar-EVM (HR 1.7 per 5% abnormal EVM increase, 95% CI:1.5-2.0; 

P<0.001) (Figure 6). At multivariable analysis the amount of abnormal bipolar-EVM was an 

indipendent predictor of events (HR 1.6 per 5% increase of abnormal-EVM percentage, 95% CI 

1.2-1.9; P<0.001). The amount of abnormal bipolar-EVM was a predictor of events (HR 1.4 per 5% 

increase of abnormal bipolar-EVM percentage, 95% CI 1.1-1.9; P=0.004) even in the subgroup of 

55 patients without previous sustained VT (n=9) and prior cardiac arrest (n=5). According to c-

statistic, the best cut-off value for abnormal bipolar-EVM % area was 27.8% (c=0.74).  
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DISCUSSION 

 

The present study was designed to evaluate the value of the presence and extent of RV 

electroanatomic scar areas for predicting arrhythmic outcome in  a consecutive series of ARVC 

patients. The major study findings were that: 1) abnormal bipolar-EVM was of independent 

prognostic significance, with the arrhythmic risk being proportional with the increased extent of RV 

low-voltage areas; 2) abnormal bipolar-EVM appeared to be superior in predicting major 

arrhythmic events over a long-term follow-up to classic clinical risk factors such as clinical history, 

arrhythmic background and ventricular dilatation/dysfunction; and 3) a normal bipolar RV-EVM 

characterized a low-risk subgroup of ARVC patients.  

These study results suggest that EVM should supplement the traditional intracardiac 

electrophysiologic studies for prognostic evaluation of ARVC patients.  

 

Diagnostic utility of EVM 

 Endocardial voltage mapping has the ability to identify areas of scar tissue by recording and 

spatially associating low amplitude electrograms to generate a 3-D electroanatomic ventricular map 

(125-133). The technique has been clinically validated in electrophysiological labs where it is 

increasingly used for substrate-based mapping and catheter ablation of scar-related VT, in either 

ischemic or non ischemic cardiomyopathies (125-133). In ARVC patients, RV bipolar low-voltage 

areas was demonstrated to correlate with the histopathologic finding of fibrofatty myocardial 

replacement at endomyocardial biopsy (132-133). Previous studies showed that EVM provides 

additional value for ARVC diagnosis (125-133). EVM has been recently  reported to be 

significantly more sensitive than contrast-enhancement-cardiac magnetic resonance to identify RV 

scar lesion (132-133).  
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In the present study, an abnormal bipolar-EVM was demonstrated in the majority of ARVC 

patients, confirming data from previous studies (125-133). Regional distribution of bipolar low-

voltage regions, with predominant involvement of the antero-lateral and infero-basal RV regions, 

resembled that observed in autopsy hearts of ARVC patients who died suddenly or underwent  heart 

transplant, in whom the most severe atrophy and wall aneurysms were characteristically localized in 

the antero-infundibular wall and underneath the tricuspid valve.   

 

Prognostic value of abnormal EVM 

The available data based on autopsy series or observational clinical investigations suggest 

that predictors of SCD in ARVC patients include the young age at the time of diagnosis, previous 

cardiac arrest or syncope, VT, severe RV/LV dysfunction and inducibility at PVS (21,22). Our 

previous retrospective analysis of clinical history of ARVC patients undergoing EVM, suggested 

that demonstration of bipolar low-voltage areas may be associated with a greater arrhythmic risk in 

ARVC patients (132). We previously found that during the time interval from onset of symptoms to 

the invasive study, 55% of patients with evidence of abnormal bipolar-EVM required an ICD 

because they experienced malignant ventricular tachyarrhythmias, whereas all but one patient with 

preserved myocardial voltage values remained stable on antiarrhythmic therapy (132). The present 

study confirms and extends such previous observations by showing that an abnormal-EVM 

identifies patients at increased risk of major arrhythmic events during a prospective long-term 

follow-up. We found that the amount of abnormal bipolar-EVM was of independent prognostic 

significance, with the arrhythmic risk being proportional with the increased amount of abnormal 

bipolar-EVM. At univariate Cox regression analysis, an abnormal bipolar-EVM was a significant 

predictor for the composite arrhythmic end point, yielding an HR of  1.7 for every 5% increase in 

abnormal-EVM; the other variable that was found to predict adverse arrhythmic outcome included 

history of cardiac arrest or syncope (HR=3.4). However, the extent of abnormal-EVM appeared to 

be superior to classic clinical risk factors, because at multivariable analysis it remained the only 
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independent predictor of malignant arrhythmic outcome in our  patients population (HR=1.6 per 

5%). It is noteworthy that according to the c-statistic method based on survival data, 27.8% 

abnormal bipolar low-voltage area was the best cut-off value to discriminate between patients with 

and without major arrhythmic adverse events during follow-up. 

 

Arrhythmogenic substrate  

 

Unlike traditional imaging techniques such as echocardiography and ventriculography which 

disclose RV mechanical dysfunction (either regional or global) caused by fibro-fatty myocardial 

replacement, EVM has the ability to accurately identify and quantify low-amplitude RV regions 

which represent the electrical consequences of RV scar lesions (125-133).  

Ventricular tachyarrhythmias in ARVC are frequently the result of a scar-related macro-reentry 

circuit, similar to that observed in the post-myocardial infarction setting (134-135). Voltage 

mapping-guided catheter ablation of VT by linear radiofrequency lesions connecting or 

encircling electroanatomic scar areas has proven to successfully interrupt the arrhythmic 

reentry circuit in ARVC patients (125-133). In the majority of patients with an abnormal 

bipolar-EVM we recorded fragmented bipolar electrograms (i.e. > 3deflections, amplitude ≤1.5 mV 

and duration >70 ms) from within the electroanatomic RV low-voltage. As shown by previous 

studies on scar-related electrical activity in either ischemic or non ischemic heart disease, these 

electrographic abnormalities are the  result of complex anisotropic propagation of the electrical 

wave-front through scar tissue which predisposes to the genesis of re-entrant ventricular 

tachyarrhythmias. Accordingly, we found that EVM provided prognostic value additional to 

traditional imaging techniques such as echocardiography and angiography, because demonstration 

of an electroanatomic scar area implies that the RV lesion acts as an arrhythmogenetically active 

myocardial substrate. This explains why the presence and amount of electroanatomic scar areas 

were stronger predictors of adverse arrhythmic outcome than traditional hemodynamic RV 

parameters such as RV dilatation/dysfunction.  
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Prognostic value of normal EVM 

Failure to detect endocardial low-voltage areas in about one fourth of our patients fulfilling 

ITF criteria for ARVC remains to be explained. It is relevant that in our study unipolar-EVM 

unmasked the presence of large regions of confluent abnormal unipolar electrograms  in patients 

with a normal bipolar-EVM as well as identified a greater amount of  low-amplitude electrogram 

area in those with an abnormal bipolar-EVM. The most likely explanation for the discordant 

unipolar and bipolar-EVM is that fibro-fatty scar involvement of outer RV wall layers (i.e. epi- and 

mid-myocardium) is detected better with unipolar mapping technique (103,136). Indeed, because 

the wave front of RV fibrofatty myocardial replacement in ARVC progresses from the epicardium 

to the endocardium, scar tissue in non-advanced ARVC may be confined to epicardial/midmural 

layers, sparing (or reaching focally) the endocardial region (23,26). In our study, voltage mapping 

was limited to the endocardial side of the RV free wall and may have underestimated or missed 

non-transmural low-voltage areas. Previous studies showed that unipolar EVM recording may 

accurately predict the location and extent of epicardial electroanatomic scar involvement as 

evidenced by direct epicardial bipolar voltage mapping (103,136). Polin et al. validated the use of 

unipolar-EVM to identify confluent areas of signals with an amplitude <5.5mV as a strategy for 

approximating the degree and location of epicardial bipolar voltage abnormality in ARVC patients 

with only limited endocardial bipolar voltage changes (103). It has been  suggested that  unipolar-

EVM provide a larger “antenna” than bipolar-EVM to detect fibro-fatty substrate involvement of 

epi- and mid-myocardium which is commonly present in ARVC patients.  

It is noteworthy that in our ARVC study population major arrhythmic events occurred 

exclusively in the group of patients with RV electroanatomic scar involvement on bipolar-EVM 

(Figure 3). Specifically, ARVC patients with a preserved bipolar voltages through the RV had an 
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uneventful arrhythmic outcome, regardless of the amount of low amplitude electrocardiogram areas 

evidenced by unipolar-EVM.  

 

 

 

 

Voltage mapping-enhanced electrophysiologic study 

 

 

The results of this study confirm previous data showing that traditional electrophysiological
 

study is of limited value for risk stratification of ARVC patients (21,22). We found that the positive 

predictive value of PVS for major arrhythmic events was only 32%. On the other hand, a negative 

PVS could not indicate better prognosis because approximately one fourth of noninducible patients 

experienced malignant events. 

By contrast, Bhosale et. al (137) reported that non-sustained VT and inducibility at PVS 

were significant predictors of appropriate discharges in ARVC patients who received an ICD for 

primary prevention. The discrepancy between our study findings and those reported by Bhonsale 

may be related to differences in patient  populations, which in the latter study also included subjects 

with a probable (non definite) ARVC diagnosis, and to different arrhythmic study end-points (i.e. 

composite arrhythmic end-point versus appropriate ICD intervention alone). 

The addition of EVM to traditional intracardiac electrophysiologic study provides 

significant added value for arrhythmic risk assessment. Although recording of low-voltage, 

polyphasic, and abnormally wide scar-related electrograms do not necessarily require the use of 

electromagnetic mapping techniques, the ability of RV-EVM to generate a three-dimensional 

reconstruction of RV electroanatomic scar regions by spatially associating the abnormal local 

electrograms offers the potential not only to determine the presence but also to quantify the  amount 

of RV myocardial tissue replaced by scar tissue, which was the most powerful predictor of adverse 

arrhythmic outcome in our study. 
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At variance with our results, Santangeli et. al (138) found that fragmented electrograms were 

the only variable independently associated with arrhythmic events during follow-up in a series of  

32 patients with ARVC undergoing bipolar-EVM, while the extent of electroanatomic scar was not 

predictive of outcome. The discrepancy between study results may be explained by a different 

abnormal bipolar signals definition and the different patient populations, with the Santangeli’s study  

including a highly selected group of ARVC patients, all showing an abnormal bipolar-EVM and 

receiving  a prophylactic ICD because of  inducible sustained monomorphic VT. 

 

Study Limitations 

 Although the study cohort was relatively large for ARVC, a small number of patients and 

outcomes were analyzed, linked predominantly to relatively low disease prevalence and low event 

rate. The small number of events limits both the power to detect associations and the ability to 

control completely for all potential confounders in the multivariable models. Nonetheless, we 

believe that our study results and statistical analysis indicate important trends that are of clinical 

relevance for arrhythmic risk stratification and management of ARVC patients. Further studies with 

larger number of patients and longer follow-up are needed to confirm the value of bipolar-EVM for 

predicting long-term clinical outcome of ARVC patients. 

 The different rate of ICD implantation (54% of patients with an abnormal bipolar-EVM 

versus 12% of those with normal bipolar-EVM) may represent a study bias with regard to 

arrhythmia detection. However, ICD were routinely programmed to include a monitoring zone that 

identified VT with a rate >160 bpm;  this lessens the potential limitation of not homogeneous 

distribution of ICD, because slower, asymptomatic VTs  remained equally undetected in both 

patient subgroups, regardless of  ICD monitoring. 
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CONCLUSIONS 

 

In conclusion, the results of the present study indicate that RV-EVM has an important 

prognostic value in ARVC patients and that the arrhythmic risk is related to regional extent of RV 

scar lesions. RV-EVM should supplement the traditional intracardiac electrophysiologic studies for 

characterization of the arrhythmic substrate and risk stratification of patients with ARVC/D. 
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TABLES 

 

Table 1.Clinical characteristics of overall sample and according to results of bipolar-EVM. 

 

* multiregional WMA=akinesia, diskinesia or bulging in ≥2 RV regions 

Categorical variables are presented as number of patients (%). Continuous values are expressed as median with 25% 

and 75%-iles. ARVC=arrhythmogenic right ventricular cardiomyopathy; EDV=end diastolic volume; EF=ejection 

fraction; FAC=fractional area change; LV=left ventricle; PVS=programmed ventricular stimulation; RV=right 

ventricle; SAECG=signal averaged electrocardiogram; SD=standard deviation; VT=ventricular tachycardia; 

WMA=wall motion abnormalities. 

 Overall 

sample 

N = 69 

Abnormal 

bipolar-EVM 

N = 53 (77%) 

Normal 

bipolar-EVM 

N = 16 (23%) 

 

P 

Age (yrs)  35 (28-45) 36 (28-46) 34 (28-44) 0.42 

Sex (male) 47 (68) 36 (68) 11 (69) 1.00 

Family history of sudden death (<35 years) 

Family history of ARVC 

16 (23) 

12 (17) 

15 (28) 

11 (20) 

1(6) 

1(6) 

0.12 

0.34 

History of cardiac arrest or syncope 

Right precordial T-wave inversion (V1-V3) 

Positive SAECG 

Premature Ventricular Beats > 1000/24 hours 

Non-sustained VT 

Sustained VT 

22 (32) 

49 (71) 

34 (49) 

59 (85) 

44 (63) 

 9 (13)  

20 (37) 

41 (77) 

29 (54) 

45 (85) 

33 (62) 

8 (15) 

 2 (12) 

8 (50) 

5 (31) 

15 (94) 

11 (69) 

1 (6) 

0.07 

0.04 

0.13 

0.72 

0.81 

0.72 

RVEDV (ml/m2) 

RVFAC (%) 

LVEDV (ml/m2) 

LVEF (%) 

Multiregional RV-WMA* 

80 (63-97) 

40 (38-41) 

46 (55-75) 

50 (45-60) 

25 (36) 

82 (65-99) 

40 (28-30) 

65 (55-77) 

50 (46-60) 

22 (41) 

77 (58-90) 

40 (28-31) 

55 (55-65) 

49 (43-58) 

3 (19) 

0.09 

0.82 

0.94 

0.26 

 0.01 

Inducibility at PVS 

        - VT 

        - VF 

34 (49) 

28 (41) 

6 (9) 

26 (49) 

22 (42) 

4 (8) 

8 (50) 

6 (38) 

2 (13) 

1.00 

0.93 

0.91 

ICD implantation 31 (44) 29 (54) 2 (12) 0.004 
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Table 2. Characteristics of patients with and without arrhythmic events during follow-up. 

 Events 

N=19 (28%) 

No events 

N=50 (72%) 

 Age (yrs)  34 (23-42) 37 (28-47)  

 Sex (male) 14 (74) 36 (72) 

 Family history of sudden death (<35 years) 6 (32) 10 (20%) 

 History of cardiac arrest or syncope 14 (73) 8 (16) 

 Non-sustained VT 10 (53) 34 (68) 

 Sustained VT 6 (32) 6 (12) 

 RVEVD (ml/m2) 80 (55-103)   80 (64-96)  

 RVFAC (%) 39 (40-41) 39 (38-40)  

 LVEVD (ml/m2)    59 (54-71)    65 (55-80) 

 LVEF (%) 50 (45-58)  50 (45-60) 

 Fragmented bipolar electrograms 15 (79) 32 (64) 

 Inducibility at PVS 

- VT 

- VF 

Antiarrhythmic drug therapy 

11 (58) 

9 (47) 

2 (11) 

15 (79) 

23 (46) 

19 (38) 

4 (8) 

42 (84) 

Abnormal bipolar-EVM 19 (100) 34 (68) 

Abnormal unipolar-EVM 19 (100) 50 (100) 

 

Categorical variables are presented as number of  patients (%). Continuous values are expressed as 

median with 25% and 75%-iles. 

Abbreviations as in Table 1. 
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Table 3. Predictors of arrhythmic events during follow-up. 

 

 Univariate analysis Multivariable analysis 

 HR CI P HR CI P 

Age 1.0 1.0-1.0 0.73    

Sex (male) 1.1 0.4-3.3 0.78    

Family history of sudden death  1.1 0.4-3.0 0.88    

History of cardiac arrest or syncope 3.4 1.4-8.8 0.03 2.4 0.8-6,2 0.11 

Non-sustained VT 1.8 0.3-5.7 0.72    

Sustained VT 1.1 0.4-2.5 0.90    

RVEVD (ml/m2) 1.1 0.9-1.3 0.81    

RVFAC (%) 1.0 0.9-1.1 0.52    

LVEVD (ml/m2) 0.9 0.9-1.0 1.0    

LVEF (%) 1.0 0.9-1.1 0.96    

Fragmented bipolar electrograms  1.2 0.7-3.1 0.32    

Inducibility at PVS 1.4 0.5-5.0 0.44    

Antiarrhythmic drug therapy       0.9 0.3-3.4 0.84    

Abnormal bipolar-EVM† 1.7 1.5-2.0 <0.001 1.6 1.2-1.9 <0.001 

Abnormal unipolar-EVM† 1.3 0.6-4.3 0.31    

 

† HR per 5% interval 

Abbreviations as in Table 1. 
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Figure 1. The involved right ventricular regions at bipolar-EVM. (From Migliore et al. Circulation: 

Arrhythmia and Electrophysiology 2012. In press) 
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Figure 2.  Representative bipolar and unipolar RV-EVM from 2 ARVC patients. 

- Patient #16: right anterior oblique view of  RV bipolar-EVM showing preserved bipolar voltages 

values  (A); right anterior oblique view of RV unipolar-EVM from the same patient unmasking the 

presence of a significant  electroanatomic scar (B).  

- Patient #47: compared with right anterior oblique view of bipolar RV-EVM (C), unipolar RV-

EVM (D) reveals a greater burden of low-voltage electrogram area involving the RVOT, infero-

basal and apex regions.  

(From Migliore et al. Circulation: Arrhythmia and Electrophysiology 2012. In press) 
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Figure 3 

 

Figure 3. Surface ECG (top) and bipolar intracardiac electrocardiograms (bottom) sampled from 

within normal (A) and low-amplitude (B) RV area in the same ARVC patient. Normal voltage 

electrogram is characterized by a sharp, biphasic deflection with large amplitude and short duration 

(A). By comparison, electrogram recorded from low-voltage areas (i.e. electroanatomic scar) are 

fragmented with late activation and prolonged duration beyond the QRS complex.  

(From Migliore et al. Circulation: Arrhythmia and Electrophysiology 2012. In press) 
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Figure 4. Clinico-pathologic correlation between bipolar-EVM and histopathologic findings 

in a 18-year old ARVC patient who underwent heart transplantation because of refractory 

VF storms. (A) Antero-posterior view of  bipolar-EVM featuring a large RV electroanatomic 

scar involving the antero-lateral, RVOT  and infero-basal regions. (B) Histology of the 

antero-lateral right ventricular free wall from the native heart coming from transplantation. 

Panoramic histological section of RV anterior wall (Top) shows the massive and transmural 

fibro-fatty replacement of the atrophic myocardium  (Heidenhain trichrome stain ). Close-up 

of the boxed area details residual myocytes (red) which are embedded within fibrous (blu) 

and fatty tissue (white) (Heidenhain trichrome stain ) (bottom)  . End=endocardial side; 

Epi=epicardial side; MB=moderator band. 

(From Migliore et al. Circulation: Arrhythmia and Electrophysiology 2012. In press) 

 

 



124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Kaplan-Meier analysis of freedom from adverse events stratified by the presence of 

abnormal bipolar-EVM (A) and programmed ventricular stimulation (PVS) findings (B). 

(From Migliore et al. Circulation: Arrhythmia and Electrophysiology 2012. In press) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Predicted probability of reaching the combined arrhythmic end point at 1, 2, and 3 years 

on the basis of the extent of abnormal bipolar-EVM.  

(From Migliore et al. Circulation: Arrhythmia and Electrophysiology 2012. In press) 
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