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AbstratToday massively parallel DNA sequening platforms are beome widelyavailable, reduing the osts and the time of DNA sequening.Next Generation Sequeners (NGSs) allow to obtain large amount of dataand they open new perspetives in �elds like genomi and medial researh.One of the most promising appliation in medial researh and in diagnostiis the exome sequening,a spei� targeted re-sequening of the known exons.There are two advantage in sequening the exome:
• The human exome is the 1% of the total genome (about 30Mbp) andit is so possible to obtain high overage with low osts.
• Several variations in exome ause diseases.These two features make the exome sequening very interesting and inreas-ingly used by sientists. There are several strategies for exome sequeningbut, we onsidered Illumina and SOLiD approahes.In details, we analyzed 6 patients a�eted by arrhythomogeni ardiomy-opathy. Geneti variations in these patients were already haraterized withSanger tehnologies so we ould ompare di�erent variant detetions algo-rithm with SOLiD reads and with Illumina reads.Results on�rmed the key role of overage in deteting variants.
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Abstrat - ITALIANOAttualmente le tenologie di sequenziamento massivo del DNA sono di-ventate ampiamente disponibili e hanno ridotto sia i osti he i tempi disequenziamento.I sequenziatori di nuova generazione (NGS) permettono di ottenere grossemoli di dati e hanno aperto nuove prospettive nel ampo della genomia edella riera media.Tra le appliazioni più promettenti nel ampo della riera media e delladiagnostia spia il sequenziamento dell'esoma de�nibile ome uno spei�otargeted resequening degli esoni noti. Ci sono due vantaggi nel sequenziarel'esoma:
• L'esoma umano è ira l'1% del totale del genoma (ira 30 Mbp) perui è possibile ottenere alte operture on osti ridotti.
• Mutazioni a livello esonio sono alla base di molte patologie.Queste aratteristihe rendono il sequenziamento dell'esoma molto interes-sante e sempre più utilizzato dagli studiosi. Esistono molte strategie per ilsequenziamento dell'esoma, ma in questa tesi verranno onsiderati gli approitramite Illumina e SOLiD. Nel dettaglio verranno analizzati 6 pazienti af-fetti da ardiomiopatia aritmogenia. Le varianti generihe in questi pazientisono già state aratterizzate on tenologia Sanger e si vogliono ompararediversi algoritmi di riera delle varianti on le sequenze Illumina e SOLiD.I risultati onfermano l'importanza del overage di sequenza.
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IntrodutionIn this PHD thesis, I take into onsideration a spei� appliation of NextGeneration Sequeners (NGSs): the human exome resequening. Sequeningan exome (spei�ally the human exome) was unthinkable few years ago but,today it is only one of the appliations of NGSs.Untill NGS, in the genomi �eld the problems were to obtain su�ient datareduing the osts and time: sequening an eukaryoti genome ould takeseveral years and lot of sientist e�orts. Currently, the same goal an beobtained in few weeks with a biologist, a bioinformatis, and a Next Gener-ation Sequener.In this senario, it ould seem that NGSs solve the major part of problems ofthe -omis sienes. But this is not true. NGSs solved the problem of "howto obtain the data" but they do not solve the problem of "how to manageand analyse the data".NGSs hanged the role of bioinformati that is beame a fundamental �g-ure in every laboratory whih has or have had data from NGSs. The ma-jor problems today are omputational power, informatis spae and apablebioinformatis.In this thesis the �rst 2 hapters are general onsideration about NGSs andtheir prinipal appliations. Chapters 3 is a deepening in exome resequen-ing. Chapter 4 and 5 are bioinformatial deeping in aligning and SNP alling.Chapter 6 is the appliation of exome resequening on the arrhythomogeniardiomyopathy both for diagnosti and researh. I onsidered 6 patients,already haraterized with Sanger tehnology, and I investigated about thedi�erent algorithms.The aim of this PHD thesis is to understand the limits and the apability ofexome sequening to identify SNPs and INDELs. I analyzed di�erent sam-ples with di�erent overages and in one ase with di�erent tehnologies. Inthis senario, I ould understand when a variant an be onsidered reliableor not, that is very important for using the exome sequening in diagnostiand in researh �elds.
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Chapter 1Next Generation Sequening
Contents1.1 Introdution . . . . . . . . . . . . . . . . . . . . . 31.2 Rohe 454 sequener . . . . . . . . . . . . . . . . 31.3 Illumina HiSeq sequener . . . . . . . . . . . . . 41.4 Applied Biosystem SOLiD sequener . . . . . . . 51.5 Other Sequeners . . . . . . . . . . . . . . . . . . 61.6 NGS impat on geneti researh . . . . . . . . . 61.1 IntrodutionWith Next Generation Sequening (NGS), we onsider all sequene teh-nologies where:

• Baterial loning phase is by-passed.
• Sequening is performed at the same time over all DNA fragmentsThese two improvements allowed to redue time and osts of sequening andan inreasingly number of laboratories has today aess to sequening teh-nologies.The bottle-nek is still the data analyses[14℄ baause the large amount ofdata produed by NGS is di�ult to manage and analyze.1.2 Rohe 454 sequener454 was the �rst next generation system ommerialized by Rohe. Thissequener is based on pyrosequening tehnology[1℄ that depends on the de-tetion of pyrophosphate released during nuleotide inorporation.
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Figure 1.1: 454 Pyrosequening work�ow[44℄The DNA is fragmented with physial methods and spei�al adaptors wereligated to the end. The DNA is aptured by beads and then it is ampli�edwith an emulsion PCR. Beads are then deposited on a piotiter plate (PTP)with all neessary sequening enzymes.Sequener let �ow one of dNTP in a ontrolled series and the pyrophosphate,released by an inorporation, beome substrate of sulfurylase, luiferase andluiferin and there is emission of light[33℄.The order of nuleotides allow to know the sequene of the reads, and thelight intensity the number of inorporated nuleotides.The read length of Rohe 454 is now around 600/800 bases and the through-put is around 1 Gbp[2℄ but, 454 throughput is less than the SOLiD or IL-LUMINA one, so 454 is not used for exome resequening. Costs should betoo high.The most outstanding advantage of Rohe is its speed and the reads length.One run takes 24 hours and the reads have a length similar to Sanger teh-nology ones.1.3 Illumina HiSeq sequenerIllumina sequeners are based on sequening by synthesis (very similar toSanger tehnology). The DNA is broken is small fragment (around 400/600bases), ligated to spei� adaptors and, then plaed in a partiular �owellwith �xed primers. On the �owell the DNA is ampli�ed by bridge ampli�-ation to reate lusters of lonal moleules.Sequening is performed by synthesis adding nuleotides ontaining �uores-
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Figure 1.2: Illumina work�ow[44℄ent dye; the signal is aptured by a CCD amera.There are several versions of Illumina sequener, for example HiSeq 1000 pro-dues 300 Gbp per run in 8 days[3℄. The reads are from 50 to 150 nuleotidesdepending on sequener version and sequening kit used.1.4 Applied Biosystem SOLiD sequenerSOLiD is aronym of Sequening by Oligo Ligation Detetion and itssequening method is based on ligation. The sequener adopts the tehnologyof two-base sequening based on ligation sequening.DNA is ampli�ed by emulsion PCR (similar to 454) and then it is plaedon �owell. Sequening is performed by adding 8 base-probe ligation whihontains ligation site (the �rst base), leavage site (the �fth base), and 4di�erent �uoresent dyes (linked to the last base)[44℄. Every �uoresentdyes represents 2 bases.Whit SOLiD tehnology every base is sequened two times and the outputis in olor spae format. Color spae is di�erent from base spae (Illumina,454 and Sanger output) and it needs of dediated software.SOLiD throughput is similar to Illumina one and reads length varies from35 to 75 base pairs.
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Figure 1.3: SOLiD work�ow[44℄1.5 Other SequenersBeyond the three sequeners 454, Illumina and SOLiD, there are othernext generation sequeners that start to be establish in the NGS market.Among them, Ion Proton and Ion Torrent (both of Applied Biosystem) arethe most known. Both sequeners use a sequening strategy similar to 454,but they do not measure the light intensity of pyrophosphate but the H+variation.1.6 NGS impat on geneti researhNew sequeners allowed to obtain large amount of data in very few time.Costs are also redued (see �gure 1.4), so, muh more sientists than in thepast, have today aess to genomi or transriptomi data. The problemtoday is not obtain the data but it is the manegment of these data and theirproessing. One run of SOLiD or ILLUMINA an produe up to 300 Gbpand their proessing an double or triple the data.To manage this data it is neessary to have lusters of hard disk and, anal-ysis an be performed only if it is available big omputers, or lusters, witha large number of CPU and lot of RAM.These problems are often underestimated and sientists have di�ult to an-alyze their data for their researhes.All these troubles an be solved buying hardware or using louds system suh



1.6. NGS IMPACT ON GENETIC RESEARCH 7Sequener Readlength throughput Sequeningmethod OutputFormat454 up to 800bp up to 1Gbp Pyrosequening s� formatIllumina from 50 to150 bp up to 300Gbp Sequening bysinthesis fastq for-matSOLiD from 35 to75 up to 200Gbp Sequening byligation olor spaeformatTable 1.1: Table of prinipal NGSs and their output

Figure 1.4: Costs of sequening per base against timeas Amazon (http://aws.amazon.om/e2/) but this is only a partial solutionbeause these data have to be sent to the remote omputer and net transfersan be a real bottle-nek: transferring an Illumina run an take up to 10 or20 days.At the same time, having hardware is not always the solution. In fat, bioin-formati apabilities are obligatory to perform the analysis.In this senario, the bioinformati beame a �gure very important in everylaboratories whih manage NGS experiments.
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Chapter 2NGS Appliations
Contents2.1 Introdution . . . . . . . . . . . . . . . . . . . . . 92.2 DeNovo Sequening . . . . . . . . . . . . . . . . . 92.3 Resequening . . . . . . . . . . . . . . . . . . . . . 102.4 RNA-Seq and DeNovo transriptomi sequening 112.5 Metagenomis . . . . . . . . . . . . . . . . . . . . 112.1 IntrodutionNGSs opened new perspetive in genomi researh. Often the uniquelimit is the osts. Currently NGSs are used for:

• DeNovo Sequening
• Resequening
• RNA-seq and DeNovo transriptomi sequening
• MetagenomisTheorially all the NGSs ould be used for these appliations but, oftenthe hoise is taken onsidering: osts, bioinformati analysis, read lengthsand read quality.2.2 DeNovo SequeningThe term "DeNovo Sequening" is often onfuse with "DeNovo sequeneassembly". Even if these two terms seem synonyms, they are very di�erent.NGSs allow today to perform the "DeNovo Sequening" with low osts (thanthe past) and with redued time, but the "DeNovo sequene assembly" re-mains a hallenging tasks. DeNovo Sequening is the proess with whih we



10 CHAPTER 2. NGS APPLICATIONSobtain a series of read that potentially over all the genome of an organism.Generally a DeNovo sequening is measured by overage:
AV G_Coverage =

(

Sequenced_bases

Genome_Size

)

Where AVG_Coverage is the average overage, Sequened_bases are thenumber of bases obtained by sequening and Genome_Size is the size of se-quened genome in bases."De Novo Sequening assembly" is the proess whereby we merge togetherindividual sequene reads to form long ontiguos sequenes (ontig) sharingthe same nuleotide sequene reads were derived[43℄. De Novo Sequeningassembly is a hallenge and, urrently there is not a single algorithm or soft-ware that perform this tasks. The assembly results are linked to the overageof the sequening, the lenght of reads and, the genomi struture of the an-alyzed organism.[43℄. Among the software used for assembly the most knoware: Newbler[4℄, ABYSS[30℄, CLC[5℄, SOAPdenovo[23℄, and Velvet[35℄.Generally, for a De Novo sequening it is requested a overage from 30Xto 50X overage. Currently these overages an be obtained with low oststhanks to NGSs. The most used sequeners for this aim are 454 and ILLU-MINA.2.3 ResequeningResequening is very similar to DeNovo Sequening but, the genome ofthe analyzed organism is known. The sope of a resequening is to �ndvariations that an be linked to partiular phenotypes. Resequening anbe done over all genome or only in seleted regions (amplions, targetedresequening and exomes)[44℄. In all ases the overage is the key of theexperiments; mutation disovery generally needs a 20X overage, but studiesin amplions for tumor haraterization need very high overage suh us1000X or 5000X.In a resequening projet, the �rst operation to do is to map the reads againstthe referene admitting mismathes and gaps. Currently there are lots ofsoftware to map the reads and the most used are: PASS[18℄, BOWTIE[41℄,Newbler[4℄, Soap[23℄, BWA[38℄ and CLC[5℄.Output of these programs is an alignment, and the standard output is theSAM/BAM format[6℄.These output �le are input for SNP alling softwares. Chapter 4 and hapter5 are a deepening of alignments and SNP allers.



2.4. RNA-SEQ AND DENOVO TRANSCRIPTOMIC SEQUENCING 112.4 RNA-Seq and DeNovo transriptomi sequen-ingRNA-Seq is a reently developed approah to transriptome pro�ling thatuses NGS tehnologies. Studies using this method have already altered theview of the extent and omplexity of eukaryoti transriptomes[47℄. RNA-Seq is generally performed by Illumina or SOLiD and it is requested a refer-ene (genome or transriptome) where aligning the reads against.One reads have been obtained, the �rst task of data analysis is to map theshort reads from RNA-Seq to the referene genome the same software viewedin Resequening Chapter. The alignment is very important and not trivial,outputs need to be then analyzed with dediated statistial tools. The majorproblems of the RNA-Seq alignment are:
• reads that math multiple loations.
• gap openings for splied alignments.Despite the problems desribed above, the advantages of RNA-Seq have en-abled to generate an unpreedented global view of the transriptome and itsorganization.454 is generally not used for RNA-Seq but, it is prefered for De Novo tran-sript assembly. Thanks to the long reads of 454 it is possible to identifytransritps of non model speies. The best software to assembly transrip-tome is Newbler[4℄.Often, for novel organism where the genome sequene is not known, 454 andRNA-Seq are ombined to obtain the transriptional pro�le and the tran-sriptional di�erees in di�erent ondition or tissue of the new organism.2.5 MetagenomisThe term Metagenomis is very ambiguous beause lots of di�erents ex-periment an be lassi�ed like metagenomis. All ases Metagenomis is toolfor studying the diversity and metaboli potential of environmental mirobes,whose bulk is as yet non-ultivable[32℄. In this senario we an perform sev-eral di�erent experiments foused on the haraterisation of bateria or fungiin a sample, and all them metagenomis.One of the most used tehnique for haraterizing the baterial diversity of asample is the 16S (for fungi ITS) amplion analysis. In this ase, it is used aset of primers for amplifying the variable 16S region. There are several toolsto ompute this data: CLOTU[7℄, MOTHUR[8℄ and QIIME[9℄.
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Chapter 3Exome Resequening
Contents3.1 Introdution . . . . . . . . . . . . . . . . . . . . . 133.2 Why sequening the human exome? . . . . . . . 133.3 Capture Methods . . . . . . . . . . . . . . . . . . 143.3.1 Illumina exome enrihment kit . . . . . . . . . . . 153.3.2 SOLiD exome enrihment kit . . . . . . . . . . . . 153.3.3 Comparison of exome enrihment kits . . . . . . . 153.4 Appliation of Exome sequening . . . . . . . . . 163.4.1 Medial Field . . . . . . . . . . . . . . . . . . . . . 173.4.2 Human Evolution . . . . . . . . . . . . . . . . . . . 173.4.3 Biologial Field . . . . . . . . . . . . . . . . . . . . 173.1 IntrodutionExome resequening is a speial appliation of the targeted resequeningand has beome a powerful new approah for identifying genes that underlieMendelian disorders[16℄[26℄. The exome an be de�ned as the sum of alloding sequening regions (CDS).3.2 Why sequening the human exome?Despite human exome is only a small part of the entire genome, it on-tains all the information of the genes and several diseases are related tovariations on genes[15℄.We an onsider three points to give an answer to the question "Why se-quening the human exome":

• Positional loning studies foused on protein-oding sequenes haveproved to be highly suessful at identifying variants for monogenidiseases[45℄.
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Figure 3.1: Exome Capturing methods: A - Solid-phase. B - Liquid-phase.[20℄
• Many Mendelian disorders are aused by disruption of protein-odingsequenes[31℄.
• A large fration of variant suh as missense or nonsense single-basesubstitutions or small insertion�deletions (indels) in gene oding se-quene are predited to have funtional onsequenes and/or to bedeleterious[22℄.3.3 Capture MethodsThere are 2 prinipal methods for apturing the exome: Solid-phase hi-bridization and Liquid-phase hibridization[20℄.Solid-phase hibridization utilize probes omplementary to sequenes of inter-est �xed to a solid support (miroarray or �lters). The non-targeted regionsare washed out and the regions of interest remains on the support.Liquid-phase hibridization, at ontrary, uses biotinylated probes and the re-gions of interest are then reovered with magneti streptavidin beads. Figure3.1 shows the two prinipal methods for apturing the exome. Currently themost used method is the Liquid-phase hibridization.Commerial kits now target, at a minimum, all of the RefSeq olletionand an inreasingly large number of hypothetial proteins. Nevertheless, allexisting targets have limitations. First, the knowledge of all truly protein-
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Figure 3.2: Exome Capturing work�ow[15℄oding exons in the genome is still inomplete, so urrent apture probes anonly target exons that have been identi�ed so far. Seond, the e�ieny ofapture probes varies onsiderably, and some sequenes fail to be targeted byapture probe design altogether[15℄. In this thesis I take into onsiderationonly two ommerial kits: the SOLiD and the Illumina kits.The work�ow for the exome enrihment is showed on �gure 3.2.3.3.1 Illumina exome enrihment kitIllumina exome enrihment kit is alled TruSeq Exome Enrihment Kit.It is based on hybrid seletion(Fig.3.1),and allows to selet 201071 di�erentregions for a total of 62 Mbp and 20846 genes. The probes apture alsoUntraslated Regions (UTRs).3.3.2 SOLiD exome enrihment kitSOLiD exome enrihment kit is alled New Target Enrihment Kit. It isbased on hybrid seletion (Fig.3.1), the kit allows to selet 195282 di�erentregions. This kit overs 37 Mbp and 19911 genes.3.3.3 Comparison of exome enrihment kitsThe SOLiD and the ILLUMINA kit are di�erent beause of they overin many ases di�erent regions. More preisely:
• Overlapping regions are 186048 bp.
• 33 Mbp are in ommon



16 CHAPTER 3. EXOME RESEQUENCINGSample % Reads on target % Reads on target +500 PlatformI2 55,7% 72,1% ILLUMINAI4 56,6% 74,3% ILLUMINAI5 53,6% 69.4% ILLUMINAI6 48,4% 61,8% ILLUMINAI7 48,6% 62,6% ILLUMINAI12 55,2% 73,1% ILLUMINATable 3.1: Perentage of reads on target in the six patients we analysedexome with Illumina tehnology.
• ILLUMINA has 29 Mbp exlusive and SOLiD 4Mbp
• The extra regions of ILLUMINA kit are generally UTRsThese di�erenes show also that the de�nition of exome is not globally a-epted.Another important thing to take into onsideration is that these kits apturenot only the targeted regions but, often we an �nd mithoondrial DNA andregions �anking the target:
• Mithoondrial DNA (we found over all samples with high overage) isvery usefull to hek the sample before and after sequening to avoiderrors (sample exhange). In fat we an sequene the hypervariableregions (HVR1 and HVR2) before the enrihment and then hekingthem after the sequening with NGS. If they are equal we an be surethat there is no sample exhange.
• Flanking regions are also very important. Several mutations an be onthese region and they an have damaging e�ets.In the table 3.1 are reported the perentage of reads aligned against thetarget regions and against the target regions plus 500 bp (at 3' and 5') ofthe six patients we analysed the exome with ILLUMINA tehnology.

3.4 Appliation of Exome sequeningHuman Exome sequening has several appliation both in diagnosti andin reseah �elds. We an �nd 3 prinipal appliations [20℄:
• Medial �eld
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• Human Evolution
• Biologial �eld3.4.1 Medial FieldIn the medial �eld, human exome sequening �nds a lot of applia-tions. Several disease are assoiated with DNA variations in exomi re-gions (mendelian diseases or other well haraterized diseases)and exomeresequening an be used for diagnosti purpuses. For example Ng et al[25℄sequened 12 human exome from patients with Freeman-Sheldon disease thatis a rare syndrome lassi�ed like dominantly inherited rare Mendelian disor-der. In the study, researhers were able to �nd the variations ausative ofthe disease.Many other studies was performed for mendelian diseases (autosomal re-essive ataxia[19℄, papillorenal syndrome[29℄) and, in several ases humanexome resequening allowed to �nd the ausative mutations.These studies demostrated that exome resequening an be used for diag-nostis purpuses and in this thesis I investigated about the appliation ofexome resequening for the diagnosis of arrhythmogeni ardiomyopathy.At the same time it is very important to onsider that having the exomemeans also to have lots of data that an be useful for future studies. Infat whith exome resequening we have a photo of all the variations of anindividual that an be useful for researh purpuses. For example if we are in-vestigating about an unknown disease we an analyse all the anditated mu-tations �ltered with ommon mutations from unrelated patients sequenedfor other reasons.3.4.2 Human EvolutionLike spei�ed in the last subsetion, having the exome of an individualmeans to have a photo of all variants of this individual. These allow toperform omparisons beetween di�erent persons from di�erent populationsand extrat andidates mutations that an explain the di�erent phenotypes.A similar study has been performed by Yi et al[34℄, where it was omparedexomes from high-altitude and low-altitude populations to identify possibledi�erenes in allele frequenies that an explain di�erent adaptations.In this study, there were found a disrete number of genes possible andidatedfor the high altitude adaptation.3.4.3 Biologial FieldCopy number variations (CNVs) and genomi strutural variations arelarge variations that have been onsidered in the last few years. CNVs are



18 CHAPTER 3. EXOME RESEQUENCINGinsertions, deletions or dupliations of genes or other regions of the genomewhile, genomi strutural variations are generally inversions or transloationsof piees of genome.Both variations are in some ases linked to diseases and they an be detetedalso by exome sequening[21℄[42℄.



Chapter 4Alignment
Contents4.1 Introdution . . . . . . . . . . . . . . . . . . . . . 194.2 Mapping strategies . . . . . . . . . . . . . . . . . 204.2.1 PASS . . . . . . . . . . . . . . . . . . . . . . . . . 214.2.2 BOWTIE . . . . . . . . . . . . . . . . . . . . . . . 214.2.3 BWA . . . . . . . . . . . . . . . . . . . . . . . . . 214.2.4 CLC . . . . . . . . . . . . . . . . . . . . . . . . . . 214.3 Mapper Evaluation . . . . . . . . . . . . . . . . . 224.1 IntrodutionThe �rst step after the sequening of an exome is the alignment. We areonsidering the human exome so the alignment have to be performed againstthe human genome. There are several software to align short reads againsta referene but in every ase we have to align admitting mismathes andindels. Even if it may be seem a simple task, align short reads is not trivial,there are several software available based on di�erent algorithms.Mapping results in�uene the results of SNP Calling software, so it is veryimportant to hoose a good aligner with the best parameters.Mapping the reads against a referene means �nding the position of thesequened piee of genome on the referene taking into onsiderations se-quening errors and variations.There are two major problems when we onsider the mapping and the NGSoutput: the �rst problem is the amount of data and the time neessary toalign; the seond one is the reads that seem to have multiple solutions[17℄.Both problems are very important and they an be onneted.Align billions of reads an be very time onsuming and urrently algorithmstried to be as faster as possible. The problem of multiple mapping reads isonneted to the read length and it is important to onsider 2 properties of



20 CHAPTER 4. ALIGNMENTa mapped reads:
• The best hit.
• The unique hit.The best hit is the best position of the reads onto the genome indipendentlyby the number of mismathes or indels. Generally, every alignment has asore and the best hit is the alignment with the best sore. Sometimes, aread an have multiple best hit, so we an map this read in di�erent positionand we don't known what is the real position of this read onto the genome.When a reads has only one best hist, it is alled unique best hit. Read lenghtis strily orrelated to the unique best hit, short reads tend to have severalbest hit only for statistial questions.To understand the relation between read lenght and unique hit, we have toonsider that a read with length N has N4 possible ombinations (we have4 nuleotides).If N is equal to 10, the possible ombinations are 10000, so the probability of�nd our string is 1/10000. The human genome is 3Gbp and we an alulatethe number of 10 length strings: it is 3000000000 - 10 + 1, so we expet atleast 300000 strings equal to our one. (We onsider the human genome likea random string omposed by 4 letters).If N inrease, the probabilty of �nd the same string derease. This is true ifthe human genome is a random string, but this not the ase of genomes. Inaddition, genomes have repetitive regions of di�erent lengths that inreasethe probability to �nd multiple hits for short reads.The di�erent algorithms used for mapping short reads an hoose 3 di�erentsolutions for multiple hit:
• Ignore the multiple hits.
• Consider only a part of all the hits.
• Consider all the hits.The last solution an inrease markedly the proessing time for mapping.4.2 Mapping strategiesSeveral algorithms had been developped to map reads against a referene;the goal is always �nd the real position of the reads onto the referene limitingproessing time and hardware equipments. In all ases the prinipal problemsare the reads lengths and the number of reads to align.The most used software are bases on indexing strategies: some softwareprefers to index the reads, other ones prefer to index the referene. Indexingan take several time and an reate large �les used then for the alignments.In this thesis I take into onsideration 5 di�erent software:



4.2. MAPPING STRATEGIES 21
• Pass.
• Bowtie.
• Bfast.
• CLC.I don't talk about the alignment algorithms, but, I onsider only the prinipalharaterystis of the mapping software.4.2.1 PASSPass[18℄ is a mapping software developped at CRIBI (University of Padua).PASS an align short reads in bases spae (Illumina) and in olor spae(SOLiD), and it uses a very fast algorithm based on genome indexing. PASSuses short words for plaing the reads on the genome and then re�nes thealignment using a sort of Smith-Watermann algorithm. In my projet PASSwas used to align SOLiD data.4.2.2 BOWTIEBowtie[41℄ is based on Burrow-Wheeler transform. Bowtie is very fastbut it takes several time to onstrut the indexes (on the genomes). Anotheradvantage of BOWTIE is the hardware request: BOWTIE an align againstthe human genome using a laptop, it requires few Giga of RAM. In the thesisBOWTIE had been used to align ILLUMINA reads.4.2.3 BWABWA (Burrows-Wheeler Aligner)[37℄[36℄ is an e�ient program that alignsshort sequenes against a long referene sequene suh as the human genome.It implements two algorithms, bwa-short and bwa-sw. The former works forquery sequenes shorter than 200bp and the latter for longer sequenes upto around 100kbp. Both algorithms do gapped alignment. BWA needs toindex the referene and this operation an take several time. Like BOWTIEit is based on Burrow-Wheeler transform.4.2.4 CLCCLC[10℄ is a ommerial suite that o�er several tools for genomis andtransriptomis analyses.CLC mapper is based on a seeding approah. The algorithm iterates overinput reads and maps eah read individually by applying the following pro-edure: seeding sequenes of 30 nuleotides eah are sampled from eah third



22 CHAPTER 4. ALIGNMENTposition of the input read. These seeds are looked up in the index and re-sulting andidate alignment loations are examined using a banded SmithWaterman.4.3 Mapper EvaluationIt is very di�ult to evaluate the results of a mapper beause we an takeinto onsideration di�erent parameters. The best way should be to have aset of reads with known position and with known mismathes.In my PHD thesis, I take into onsideration real data so it is not known thereal position of eah read. So, the evaluations has been made taking intoonsideration the number of aligned reads. Results are report in the hapter6. For all software I used default parameters.



Chapter 5SNP Caller
Contents5.1 Introdution . . . . . . . . . . . . . . . . . . . . . 235.1.1 GATK:Genome Analysis ToolKit . . . . . . . . . . 235.1.2 CLC Probabilisti Variant Caller . . . . . . . . . . 255.1 IntrodutionSNP Callers are a series of tools that extrat variants from an alignment.The problems, in SNP Callers, are the high error rate of the base alling andthe errors in alignments. Under suh irumstanes, aurate SNP allingare di�ult and there is often onsiderable unertainty assoiated with theresult[28℄.The problem of error rate assoiated to the NGSs an be by-passed withhigh overage; the alignment problems otherwise an be solved only using agood mapper.In this PHD thesis I take into onsideration 2 SNP Caller: CLC VariantProbabilisti aller and GATK[24℄.5.1.1 GATK:Genome Analysis ToolKitGATK is a suite designed to enable rapid development of e�ient androbust analysis tools for next-generation DNA sequeners. This is the mostused tools and one of the most itated.GATK inludes a series of analysis for variant alling and it aepts a BAM�le in input.There are several work�ow for GATK; in this thesis I used the work�owdesribed in �gure 5.1.



24 CHAPTER 5. SNP CALLER

Figure 5.1: GATK Work�owRealigner Target Creator and RealignmentWith this tool, GATK suite performs a realignment of some intervalsusing Smith-Watermann algorithm[46℄. To speed up this operation, GATKin a �rst phase �nd the andidate regions analysing the BAM �le; then onlythese regions are realigned using Smith-Waterman.The idea is to minimize the number of mismathes espeially in those regionswhere there are indels. In general, a large perent of regions requiring loalrealignment are due to the presene of an insertion or deletion in the individ-ual's genome with respet to the referene genome. Suh alignment artifatsresult in many bases mismathing the referene near the misalignment, whihare easily mistaken as SNPs.Quality RealibrationIn this phase, GATK performs a orretion of the quality sore of thereads in the BAM �le. To realibrate the quality sore, GATK analyse threeparameters:
• The reported quality sore.
• The position of the nuleotide in the reads.
• The preeding and urrent nuleotide.



5.1. INTRODUCTION 25Using these 3 parameters, GATK is able to orret the quality sore of thebases.SNP CallingAfter BAM orretion, GATK an perform the SNP alling. GATK is de-signed also for multiple samples using a Bayesian genotype likelihood modelto estimate simultaneously the most likely genotypes and allele frequeny ina population of N samples.SNP alling is performed observing mismathes and indels in the alignment�le and taking into onsideration the overage, the frequeny of the varia-tions and the strand of the aligned reads.At the same time GATK gives a sore for eah variant alled (Variant Real-ibration and Variant Filtration). Eah variant has also a sort of omment tobetter indentifying problemati result (suh as low overage or strand biasthat an reate artifats).5.1.2 CLC Probabilisti Variant CallerCLC Probabilisti Variant Caller[11℄ is a tool of the ommerial CLCsuite. Probabilisti Variant Caller has been designed for alling variantsin haploid (bateria), diploid (human) and polyploid genomes (aner orplants). The tool is very simple to use and it take as input a CLC align-ments �le. The alignment an be performed using CLC or using also othermapper, the result BAM �le an be uploaded in CLC Workspae.The CLC Variant Caller algorithm ombines a Maximum Likelyhood ap-proah with a Bayesian model to all the variants and to give to eah one asore that represent the probability of the variant.More preisely it is �rst alulated a prior probability using only thealignment. The starting parameters are shown in �gure 5.2.These parameters are updated using an Expeted Maximization approah.At the same time it is alulated an error probability taking into onsider-ation also the quality sore of the aligned reads, and for eah quality soreit is alulated a di�erent error probability table.After the prior and the error probability have been estimated the VariantCaller give in output the most probable allele for eah position.CLC output is a table of variants with several parameters like overage,forward/reverse reads and probability of the variant.
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Figure 5.2: Initial probability of CLC Variant Caller



Chapter 6ArrhythomogeniCardiomyopathy
Contents6.1 Introdution . . . . . . . . . . . . . . . . . . . . . 276.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 276.2.1 Mapping Results . . . . . . . . . . . . . . . . . . . 276.2.2 SNP Caller Results - Illumina Data . . . . . . . . 306.2.3 SNP Caller Results - SOLiD Data . . . . . . . . . 326.2.4 SNP Analyses . . . . . . . . . . . . . . . . . . . . . 336.2.5 Disussion . . . . . . . . . . . . . . . . . . . . . . . 346.1 IntrodutionArrhythmogeni right ventriular ardiomyopathy (ARVC) is an inher-ited myoardial disease assoiated with signi�ant genotype and phenotypeheterogeneity. The strutural features of ARVC onsist of progressive �bro-fatty replaement of myoytes and, linially, the disease has been assoiatedwith ventriular arrhythmias at risk of sudden ardia death[27℄.In my thesys I take into onsideration 6 patients with ARCV disease alreadyharaterized with Sanger. The exome of the 6 patientshas been enrihedand sequened using Illumina and SOLiD strategy.6.2 Results6.2.1 Mapping ResultsAfter sequening, reads were aligned against the human genome usingCLC, PASS, BOWTIE and BWA using default parameters. BOWTIE andBWA required a preliminary indexing of the referene that take several hours.



28 CHAPTER 6. ARRHYTHOMOGENIC CARDIOMYOPATHYSample Number of reads Tehnology2 17.250.274 ILLUMINA6S 49.719.032 SOLID4 81.382.994 ILLUMINA5 70.603.922 ILLUMINA6 48.166.720 ILLUMINA7 52.233.528 ILLUMINA12 33.786.456 ILLUMINATable 6.1: Number of reads sequened per sample.Sample # of Reads PASS CLC BOWTIE BWA2 17.250.274 75,97% 87,18% 81,81% 86,89%6S 49.719.032 67,18% 75,61% - -6 48.166.720 80,64% 86,75% 62,19% 76,90%12 33.786.456 83,88% 86,75% 86,01% 93,91%Table 6.2: % of reads aligned with PASS, CLC, BOWTIE and BWA.CLC and PASS did not required this indexing.The fastest software was CLC followed by BWA, BOWTIE and PASS. Forall the software I take into onsideration the number of unique aligned readsadmitting 2 mismathes and gaps. For SOLiD reads I used only PASS, CLCand BFAST [12℄[40℄[39℄ (BFASTA uses an algorythm vary similar to PASS).The sequening of six patients produed di�erent number of reads and for thesoftware evaluation I onsidered only the 3 patients with the lowest numberof reads. This hoise has been made for minimize the proessing time for thealignments. In the table 6.1 there is reported the number of reads produedby the sequeners.The samples hosen for the mapper evaluation was the samples 12, 2 and 6for Illumina and the sample 6S for SOLiD. In the table 6.2 are reported theresults obtained with the 4 mappers.Table 6.2 shows that the mapper with the higher number of unique best hitis CLC; so, we hoose CLC like prinipal software for the alignments. CLCis also the simpliest software to use thanks to its graphial interfae.In table 6.3, there are showed the results of the alignments of all samplesand the average overage of the exome. Like spei�ed in Chapter 3, Illumina



6.2. RESULTS 29Sample # of Reads % aligned (unique) Avg Exome Coverage2 17.250.274 87,18% 9,24X6S 49.719.032 75,61% 40,01X4 81.382.994 84,79% 51,65X5 70.603.922 85,32% 41,53X6 48.166.720 86,75% 25,07X7 52.233.528 85,91% 27,36X12 33.786.456 86,75% 20,04XTable 6.3: % of reads aligned with CLC over all samples.Sample Tehnology % reads on target % referene not overed % referene over 20X4 ILLUMINA 56,6% 3,96% 81,03%5 ILLUMINA 53,6% 3,73% 75,08%7 ILLUMINA 48,62% 4,84% 53,52%6 ILLUMINA 48,24% 5,76% 48,35%12 ILLUMINA 55,21% 7,83% 38,65%2 ILLUMINA 55,76% 22,14% 11,07%6S SOLiD 70,11% 9,56% 60,27%Table 6.4: Table with overage data of 6 patients. Reads has been alignedwith CLC.and SOLiD have di�erent kits. The average overage is alulated like:
total_nucleotide_aligned_on_the_exome

total_nucleotide_of_the_exomeExome sequening is a targeted resequening, and beyond the average over-age there are other parameters that have to be onsidered for understandingthe di�erenes in the sample. These parameters are reported in table 6.4.Reads on target are all the reads that maps on the exome. With illuminakit, we have the 50% of reads that maps on the target while, with SOLiDkit we had the 70%. If we onsider the targeted regions plus 500 bp in 5'and in 3', the perentage of reads on target inrease of 20%. These on�rmthat also these regions are overed and we an onsider also the variationsalulated for these extra-regions. Like expeted the other data in table 6.4(% referene not overed and % of referene over 20X ) are strily relatedto the average overage of the samples. I reported also the perentage ofreferene over 20X overage beause, like explained later, at this overagewe have the best result for variation alling.



30 CHAPTER 6. ARRHYTHOMOGENIC CARDIOMYOPATHYSample Gene Chr Position Sanger GATK CLC CASAVA4 DSG2 18 29104698 C/T C/T C/T C/T4 DSG2 18 29125854 A/G A/G A/G A/G4 DSG2 18 29126670 T/C Not found T/C Not found4 DSP 6 7542149 -/A Not found -/A Not found4 DSP 6 7563983 G G G G4 DSP 6 7572262 G G G G4 DSP 6 7572026 A/T A/T A/T Not found4 DSP 6 7576527 A A A A4 DSP 6 7584617 C/T C/T C/T C/T4 DSP 6 7585967 A A A A5 PKP2 12 32948970 GT/A Not found A Not found5 PKP2 12 32945721 C/A C/A C/A Not found5 PKP2 12 32945769 C/G C/G C/G Not found5 DSG2 18 28666526 +TAA +TTAA +TAA Not found5 DSP 6 7567970 T T T Not found5 DSP 6 7572026 A A A Not found5 DSP 6 7559633 A A A Not found5 JUP 17 39914070 A/C A/C A/C Not found5 JUP 17 39913645 A/G A/G A/G Not foundTable 6.5: Table with Variant of Samples 4 and 5. There is reported theSanger result and the output of CLC, GATK and CASAVA.6.2.2 SNP Caller Results - Illumina DataAfter alignments we performed the SNP Calling. SNP Callers take asinput BAM �les that are the binary format of SAM, the standard alignmentoutput. We onsidered GATK and CLC Variant Probabilisti aller.GATK required lots of step to produe the output and the pipeline took alsolots of time (more or less one day per sample).To evaluate the variant allers I foused my attention on the best samples,the samples 4 and 5 that are the ones with the highest overage for Illuminasequening. For SOLiD sequene I used the sample 6S that was the uniqueavaliable.Sample 4 and 5 was analyzed using GATK, CLC and CASAVA. CASAVA isthe standard suite for Illumina data analyses and performs alignment (withELAND) and SNP/DIP Calling. Software evaluation was performed on-sidering a series of known variant previously haraterized using SANGERTehnology. For eah variant we heked the SANGER sequene quality andwe heked the presene in the variant aller outputs.



6.2. RESULTS 31Sample Gene Chr Position Exome position Coverage4 DSG2 18 29104698 IN 644 DSG2 18 29125854 IN 924 DSG2 18 29126670 IN 624 DSP 6 7542149 IN 94 DSP 6 7563983 IN 674 DSP 6 7572262 IN 394 DSP 6 7572026 OUT 324 DSP 6 7576527 IN 364 DSP 6 7584617 IN 744 DSP 6 7585967 IN 375 PKP2 12 32948970 OUT 85 PKP2 12 32945721 OUT 175 PKP2 12 32945769 OUT 105 DSG2 18 28666526 OUT 185 DSP 6 7567970 OUT 145 DSP 6 7572026 OUT 145 DSP 6 7559633 IN 55 JUP 17 39914070 OUT 125 JUP 17 39913645 OUT 30Table 6.6: Positions of variants respet the enrihed regionsTable 6.5 shows the results. In this table CASAVA seems to be the worstsoftware but we have to onsider that CASAVA extrats variants limited tothe enrihed regions. Lot of the position reported for samples 4 and 5 areout of the enrihed regions (see table 6.6). CASAVA was disarded for itsinability to �nd variants out of enrihed regions.At ontrary, GATK and CLC are able to detet variants in all overed re-gions even if these regions are out of the exome.The performanes of GATKand CLC are very similar but observing the table 6.5 we an see that GATKhad some di�ulties in detet indels (indel -/A in position 7542149 hromo-some 6 for the sample 4 and indel -/TAA in position 28666526 hromosome18 for the sample 5). The unique problem with CLC is the variant in posi-tion 32948970 hromosome 12 in the sample 5: here CLC alled a variant inomozygosis but SANGER sequenes found the same variant in eterozygosis.For better understanding this results I take into onsideration also the ov-erage. Like reported in table 6.6 this variation has a low overage (8X).These results suggested that the most reliable software is CLC Variant Prob-abilisti Detetor and I analyzed all the other samples with CLC. In the table6.7 are reported the results.



32 CHAPTER 6. ARRHYTHOMOGENIC CARDIOMYOPATHYSample Average Coverage # of variant from Sanger # of variant orret from CLC4 51,65X 10 105 41,53X 10 96 25,07X 9 77 27,36X 10 102 9,24X 12 512 20,04X 9 6Table 6.7: Number of variants found by Sanger ompared with the CLCoutput

Figure 6.1: % of orret outputs of CLC divided by overageAnalysing these data, it is lear that there is a strily relationship among theoverage and the performane of the SNP aller, but the average overagean be only an approximate parameter. More interesting is the relationamong the result of CLC and the overage of every variant. In the �gure 6.1I onsidered all the variants indipendently from the sample; I divided theoverage in 5 lass and I onsidered the orreted predition of CLC againstthe total of variants. Observing the �gure 6.1, it appears that the minimumoverage for having reliable results is 20X. The total results divided persample are reported in the supplementary materials.6.2.3 SNP Caller Results - SOLiD DataFor the SOLiD data, we had only one sample (6S) and it is very di�ultto extrat some statistis having only one sample. For SOLiD data I take



6.2. RESULTS 33Position Chr SANGER CLC PASS/GATK BFAST/GATK32974422 12 G/- G/- NotFound NotFound7558318 6 T/C T/C T/C T/C7578819 6 G G/A G G7578823 6 A A/G A A7584617 6 C/T C/T C/T C/T7585967 6 C NotFound NotFound C28673760 18 No Coverage No Coverage No Coverage No Coverage28672067 18 T/C T/C T/C T/CTable 6.8: Results of SOLiD DataAlgorithm Total variants found Variants annotated with dbSNPCLC 115.681 52.283BFAST/GATK 48.097 42.213PASS/GATK 79.478 51.970Table 6.9: Results of Variant Caller on SOLiD Datainto onsideration CLC and GATK.CLC was used starting from CLC mapping, while GATK was used startingfrom aligments obtained with PASS and BFAST[12℄[40℄[39℄.Results are reported in table 6.8. Unlike with Illumina Data, CLC doesnot perfom very well, probably olor spae is more omplex to align andspeialized software like PASS and BFAST perform better.It is important to onsider that 50% of known variants are out of the enrihedregions and one has no overage. The total number of variants alled by thethree elaborations of sample 6S are reported in table 6.9.The three algoritms found 34.305 ommon variants.These data are very di�ult to interpretate. Theoretially within the samesample we should obtain same data. Probably olor spae is very di�ult totrait and the result an vary.6.2.4 SNP AnalysesThe table 6.10 reports the total number of variants alled by CLC andthe variants that are known aording to DBSNP[13℄. I onsidered only thesamples sequened with Illumina.



34 CHAPTER 6. ARRHYTHOMOGENIC CARDIOMYOPATHYSample Total Number of Variants Variants with DBSNP ode2 99.600 54.6484 286.124 165.9485 320.178 159.8536 254.541 124.6287 276.340 134.96812 195.672 110.996Table 6.10: Total number of Variant per sample and total number of knownvariants aording to DBSNPThe 50% of alled variants are known with a DBSNP ode and the numberof variant is strily orrelated to the overage: samples with higher overagehave more variants alled; probably the number of false positive inreasewith the overage. The six samples share 30.028 variants and 18.374 areknown in DBSNP.Sample 6 and 6S are the same sample sequened with Illumina(6) and SOLiD(6S).Comparing the variants alled with CLC we see that they shared 47.957variants (Sample 6S has 115.681 variants alled using CLC variant aller).Pratially all variants found by BFAST and GATK are in ommon with thePASS/GATK and the CLC ones.6.2.5 DisussionCurrently, exome sequening is one of the most hallenge approah usedto haraterize human disease. Results depends on two fator: the mappingand the snp alling algorithms. Moreover results of mapping in�uene thesnp alling results. We saw that hanging alignment algorithm, hange alsothe output of snp aller. The most di�ult task is to understand the realposition of a read on the referene taking into onsideration sequening er-rors and real di�erenes. On the other hand, SNP aller must to be ableto onsider di�erent level of overage and di�erenes in the quality of readsto right assign a variation in a partiular oordinate of the referene. Atthe moment there is not a standard approah to alulate the variants of anexome sequening, but, in this thesis I observed that CLC suite perform bet-ter than the other pipelines using illumina data. With SOLiD data CLC donot perform very well, GATK, using PASS or BFAST alignments, perfomedbetter.GATK had problems in deletion/insertion reognization.CLC performs very well when the overage is >20X. Observing the table6.4 we an say that the minumun average overage for having a reliable snpalling result is at least 70X. At this average overage we have at least the80/90% of the exome overed with at least 20 indipendent reads and theresults are very robust.



6.2. RESULTS 35Additionally, CLC is very simple to use and it an be used also by biologiststhat do not have bioinformatis ompetenes. It is very fast and an be runon laptop omputer.Using the Sanger sequenes I tried also to alulate false positive and falsenegative. I analysed 7.989 nuleotides and I found only 2 false negative re-sults. Observing the overage I saw that the 2 false negative results is underthe 20X overage (the �rst is 8X, and the seond is 1X), and the rest ofnuleotides has very high overage. These data on�m the key role of theoverage in the snp alling results. In the 7.989 nuleotides analized I don't�nd any false positive results. These don't means that there aren't falsepositive, I belive that false posivite are present and that these false positiveare strily orrelated to the overage.Filtering the data by overage, the number of variants derease drastially(see table 7.7 in supplementary data); probably also the number of falsepositive derease.
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Chapter 7Supplementary Material

Sample Position Chr SANGER CLC Coverage4 29104698 18 C/T C/T 644 29125854 18 A/G A/G 924 29126670 18 C/T C/T 624 7542149 6 -/A -/A 94 7563983 6 G G 674 7572262 6 G G 394 7572026 6 T/A T/A 324 7576527 6 A A 364 7584617 6 C/T C/T 744 7585967 6 C C 37Table 7.1: Illumina Sample 4 Results37



38 CHAPTER 7. SUPPLEMENTARY MATERIALSample Position Chr SANGER CLC Coverage5 32948970 � 71 12 T/AC AC 85 32945721 12 C/A C/A 175 32945769 12 G/C G/C 105 28666526 18 -/TAA -/TAA 155 7567970 6 T T 145 7572026 6 A A 145 7559633 6 A A 55 39914070 17 G/T G/T 125 39913645 17 T/C T/C 30Table 7.2: Illumina Sample 5 ResultsSample Position Chr SANGER CLC Coverage6 32974422 12 G/- G/- 186 7558318 6 T/C NotFound 116 7578819 6 G G 106 7578823 6 A A 106 7584617 6 C/T C/T 286 7585967 6 C C 106 28673760 18 G/A NotFound 16 28672067 18 T/C T/C 12Table 7.3: Illumina Sample 6 ResultsSample Position Chr SANGER CLC Coverage7 7567970 6 C/T C/T 87 7572262 6 A/G A/G 207 7572026 6 T/A T/A 117 7578189 6 G/A G/A 287 7578816 6 G G 157 7578823 6 A A 127 29104714 18 A/G A/G 377 39913645 17 T/C T/C 117 39912145 17 A/T A/T 107 39911771 17 G/A G/A 347 7585967 6 C C 20Table 7.4: Illumina Sample 7 Results



39Sample Position Chr SANGER CLC Coverage2 7542149 6 A/+A No Coverage 02 7563983 6 G G 52 7565227 6 A/T No Coverage 02 7576527 6 G/A NotFound 72 7584617 6 T/C T/C 72 28649057 18 G NotFound 22 32994007 12 G/- NotFound 32 32977104 12 -/A -/A 52 29104553 18 T/C T/C 102 29104569 18 A/G A/G 11Table 7.5: Illumina Sample 2 Results
Sample Position Chr SANGER CLC Coverage12 33030802 12 A/G NotFound 412 30049475 12 G/A No Coverage 012 32949029 12 G G 1112 33021819 12 C NotFound 212 28669496 18 C C 812 7563983 6 G G 2512 7572262 6 G G 1512 7576527 6 A A 1312 7584617 6 C/T C/T 31Table 7.6: Illumina Sample 12 Results
Sample Number of variants with overage > 20X Total Number of variants2 22.009 99.6004 140.088 289.1245 127.290 320.1786 78.117 254.5417 84.979 276.34012 57.555 195.672Table 7.7: Variants with a overage higher than 20X
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