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Abstract

In 1973, Nickles identified two senses in which the term ‘reduction’ is
used to describe the relationship between physical theories: namely, the
sense based on Nagel’s seminal account of reduction in the sciences, and the
sense that seeks to extract one physical theory as a mathematical limit of
another. These two approaches have since been the focus of most literature
on the subject, as evidenced by recent work of Batterman and Butterfield,
among others. In this paper, I discuss a third sense in which one physical
theory may be said to reduce to another. This approach, which I call ‘dynam-
ical systems (DS) reduction,’ concerns the reduction of individual models of
physical theories rather than the wholesale reduction of entire theories, and
specifically reduction between models that can be formulated as dynamical
systems. DS reduction is based on the requirement that there exist a func-
tion from the state space of the low-level (more encompassing) model to that
of the high-level (less encompassing) model that satisfies certain general con-
straints and thereby serves to identify quantities in the low-level model that
mimic the behavior of those in the high-level model - but typically only when
restricted to a certain domain of parameters and states within the low-level
model. I discuss the relationship of this account of reduction to the Nagelian
and limit-based accounts, arguing that it is distinct from both but exhibits
strong parallels with a particular version of Nagelian reduction, and that
the domain restrictions employed by the DS approach may, but need not,
be specified in a manner characteristic of the limit-based approach. Finally,
I consider some limitations of the account of reduction that I propose and
suggest ways in which it might be generalised. I offer a simple, idealised
example to illustrate application of this approach; a series of more realistic
case studies of DS reduction is presented in another paper.
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1 Introduction

Broadly speaking, ‘reduction’ in physics can be understood as a relationship
that obtains between two theories describing the same physical system or
class of systems, such that the success of one theory in describing the system
can be accounted for on the basis of the other, which is taken to be the more
encompassing and more accurate of the two descriptions. Probing further, we
can ask what it is specifically about the relationship between the two theories
that allows this subsumption to occur. Over the past 40 years, the literature
on reduction in physics has tended to revolve around two ways of addressing
this question, which were first distinguished by Nickles in his widely cited
1973 paper, ‘Two Concepts of Intertheoretic Reduction’: first, the concept of
reduction built around Nagel’s seminal account first spelled out in Chapter 11
of The Structure of Science, and second, the concept that regards reduction
as a matter of extracting one physical theory as a mathematical limit of
another.

In this paper, I elaborate a third sense in which one theory in physics
may be said to ‘reduce to’ another, one which I argue resolves some of the
vagueness that afflicts both the Nagelian and limit-based accounts. It is im-
portant to note from the outset that this account concerns the reduction of
individual models of physical theories, rather than the wholesale reduction of
entire theories, and moreover, that it applies specifically to the reduction of
models that can be formulated as dynamical systems - i.e., models that can
be specified by some mathematical state space and some deterministic rule
prescribing the time evolution of points in that space. Dynamical systems
theory, I claim, allows the formulation of particularly natural and simple con-
ditions for one dynamical systems model to reduce to another, and because
many theories in physics permit formulation of their models in terms of dy-
namical systems, provides a general mathematical framework for describing
a wide range of inter-theory relations in physics. For this reason, I call this
approach the ‘dynamical systems,’ or DS, approach to reduction. Insofar
as one is inclined to speak of theories rather than models being reduced on
this account, this occurs only piecemeal through the reduction of a theory’s
individual models.

In section 2, I briefly review the Nagelian and limit-based approaches to
reduction in physics and consider various precisifications of these approaches.
In section 3, I introduce the concept of a dynamical systems model and
discuss some of its applications in physics. In section 4, I give conditions for
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the reduction of dynamical systems models in physics and provide a simple
example to illustrate the application of these conditions. Section 5 reviews
work by a number of authors that has served in one some way to anticipate
or hint at the DS approach that I elaborate here. Section 6 provides a
comparison between DS and Nagelian reduction, highlighting both parallels
and differences. Section 7 comments on the role of limit-based results in DS
reduction. Section 8 discusses some limitations of the DS view and ways in
which it might be generalised. Section 9 is the conclusion.

2 Two Views of Reduction in Physics

In [26], Nickles distinguishes two uses of the term‘ reduction’ with regard
to inter-theory relations in physics, one common to the philosophical liter-
ature and the other common to the physics literature on the subject. The
‘philosopher’s’ sense of reduction takes a high-level (i.e. less encompassing,
less fundamental) theory Th to ‘reduce to’ a low-level (i.e., more encompass-
ing, more fundamental) theory Tl , while the ‘physicist’s’ sense takes Tl to
‘reduce to’ Th. So on the philosopher’s usage, Newtonian mechanics ‘reduces
to’ special relativity; on the physicist’s usage, special relativity ‘reduces to’
Newtonian mechanics; nevertheless, both usages presuppose that special rel-
ativity is the more accurate and more encompassing of the two theories, and
that it is the success of Newtonian mechanics that must be accounted for
on the basis of special relativity and not the other way around. Thus, the
difference between the two usages is to some extent a matter of convention
as to the direction in which ‘reduction’ is taken to go.

Yet the distinction between the two senses of reduction is not solely a
matter of convention. Once the conventions are made to agree, there re-
mains a substantive difference between the meaning of the term ‘reduction’
as it is most commonly employed in the physics literature and its meaning
as it is most commonly employed in the philosophy literature. The philoso-
pher’s notion is based on Nagel’s account of reduction in the sciences while
the physicist’s notion views reduction in physics essentially as a matter of
taking mathematical limits [25] 1. These two concepts of reduction, which

1Of course, one may question whether it is entirely appropriate or fair to identify one
sense of reduction as the physicist’s and the other as the philosopher’s. There are, after all,
instances of physicists employing what is effectively reduction in the philosopher’s sense
(arguably, textbook proofs of the Ideal Gas Law on the basis of statistical mechanics are
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Nickles identifies as reduction1 and reduction2, respectively, can be defined
as follows:

Nagelian Reduction: Th reduces1 to Tl iff the laws of Th can be
derived from those of Tl along with auxiliary assumptions (known
‘bridge laws’) linking terms in Th foreign to Tl with terms in Tl.

Limit-Based Reduction: Th reduces2 to Tl iff there exists some
set of parameters {εi} defined within Tl such that lim{εi→0} Tl =
Th. [26],[3] 2 3

For reasons that I discuss shortly, both of these definitions are problematic as
descriptions of actual inter-theory relations in physics and have been subject
to various refinements as a result.

Before moving on to discuss Nagelian and limit-based reduction in more
detail, I should note that there also exist other influential philosophical ac-
counts of reduction, such as Kim’s functionalist model and Hooker’s New
Wave model [18], [17]. The relation of these accounts particularly to the
Nagelian approach is a matter of some dispute; for example, Marras has
argued that Kim’s account is only superficially distinct from Nagel’s, and
Fazekas likewise has argued for a similar claim with regard to Hooker’s New
Wave model [23], [12]. Kim’s and Hooker’s accounts have been developed
primarily within the context of discussions about reduction of the mental to
the physical in philosophy of mind. Since it would take me too far afield to
see how, if at all, they can be applied to reductions in physics, I will focus
on the two approaches that Nickles discusses and that have been the main
focus of the literature on theory reduction specifically in physics.

2.1 Nagelian Reduction

According to the account of reduction that Nagel sets out in The Structure
of Science, reductions can be broadly classified into two categories: homoge-

examples of this [19]) and of philosophers employing reduction in the physicist’s sense (see,
for instance, [2]). Nevertheless, I will adhere to Nickles’ terminology.

2Note that if one has lim{εi→∞} Tl = Th, or lim{εi→a} Tl = Th where 0 < a < ∞, one
can always redefine the parameters {εi} so that each εi approaches 0.

3In Nickles’ original definition of reduction2, the sense of reduction is the inverse of
the one I give here, in that on Nickle’s definition the superseding theory T1 reduces2 to
the superseded theory T2, rather than vice versa as in the definition that I provide. As
discussed, this inversion merely reflects a difference of convention.
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neous and inhomogeneous. In the former, the theory to be reduced contains
no terms which are not contained in the reducing theory, while in the lat-
ter it does contain such terms. An example of a homogeneous reduction is
the reduction of Kepler’s theory of planetary motion to Newton’s Theory of
Gravitation, since Kepler’s theory employs only concepts such as distance,
time, and concepts derived from these, all of which are also contained in
Newton’s theory [9]. An example of a heterogeneous reduction is the reduc-
tion of thermodynamics, which employs the concept of temperature, to the
Newtonian mechanics of microscopic particles, which contains no reference
to temperature. Recognizing that ‘no term can appear in the conclusion of
a formal demonstration unless the term also appears in the premises,’ Nagel
asserts that in the case of an inhomogeneous reduction, additional assump-
tions connecting terms in the high-level theory (which Nagel refers to as the
‘secondary science’) with terms in the low-level theory (which Nagel calls the
‘primary science’) must be introduced. Thus, he proposes two formal condi-
tions - the condition of ‘connectability’ and the condition of ‘derivability’ -
that must be satisfied in order to effect an inhomogeneous reduction of the
higher- to the lower- level theory:

(1) Assumptions of some kind must be introduced which pos-
tulate suitable relations between whatever is signified by ‘A’ [a
term in the secondary science] and traits represented by theoret-
ical terms already present in the primary science. The nature
of such assumptions remains to be examined; but without pre-
judging the outcome of further discussion, it will be convenient
to refer to this condition as the ‘condition of connectability.’ (2)
With the help of these additional assumptions, all the laws of the
secondary science, including those containing the term ‘A,’ must
be logically derivable from the theoretical premises and their as-
sociated coordinating definitions in the primary discipline. Let
us call this the ‘condition of derivability.’ ([25], Ch. 11)

The additional premises furnished by the condition of connectability have
come to be known as ‘bridge laws,’ though occasionally are also referred to
as ‘bridge principles,’ ‘bridge rules,’ ‘coordinating definitions,’ and ‘reduction
functions.’ Their purpose is to link those terms in the high-level theory
that do not occur in the low-level theory with terms in the low-level theory
and thereby to facilitate derivation of the high-level theory’s laws from the
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low-level theory. The question as to the precise nature of these additional
assumptions - whether they are in fact ‘laws’ of nature in the same sense that,
say, Newton’s laws are, or whether they are mere ‘coordinating definitions’ -
remains a matter of controversy (see, for instance, [9] for further discussion of
this point). I will abide by common usage here and refer to these additional
assumptions as bridge laws, though the reader should not take this to entail
any commitment to the view that they are laws of nature.

The central example that Nagel employs to illustrate his account of re-
duction is the relation of the Ideal Gas Law (pV = nRT ), as understood in
the context of classical thermodynamics, to the laws of Newtonian mechanics
as applied to the microscopic constituents - hard sphere ‘molecules’ - of an
idealised gas. He notes that while the term ‘temperature’ had an accepted
meaning in the context of thermodynamics - given in terms of operational
procedures employing thermometers and other devices - the term makes no
appearance in the low-level theory, Newtonian mechanics. He then invokes a
strategy employed by physicists in deriving the Ideal Gas Law from Newton’s
Law: namely, to associate the thermodynamical term ‘temperature’ with a
quantity, average molecular kinetic energy, that is defined within the frame-
work Newtonian mechanics. More precisely, from Newton’s laws and certain
auxiliary assumptions concerning the position and velocity distributions of
the molecules in the gas (such as uniformity of the distribution in position
and isotropy in velocity), one can deduce that

pV =
2

3
N〈K.E.〉 (1)

where N is the number of molecules in the gas. Now the form of the Ideal
Gas Law in thermodynamics is

pV = nRT, (2)

where n = N
NA

(with NA Avogadro’s constant) is the number of moles in
the gas and R = NAkB (with kB Boltzmann’s constant) is the universal gas
constant. If one makes the additional assumption,

Bridge “Law” : T =
2

3

〈K.E.〉
kB

⇐⇒ 〈K.E.〉 =
3

2
kBT (3)

one can deduce (2) from (1). Equation (3) has come to serve as the primary
exemplar of a bridge law in Nagelian reduction.
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2.1.1 Nagel’s Account, Refined

Schaffner, one of the first to expand on Nagel’s account of reduction, observed
that Nagel’s account is, strictly speaking, too stringent since reductions in
practice rarely if ever yield derivations of the higher level theory Th, but
rather of some modified or corrected version T

′

h of Th that employs the same
vocabulary as Th. T

′

h is sometimes referred to as the ‘analogue theory’ of Th
and is required to be ‘strongly analogous’ to Th in the sense of approximating
it closely. According to Schaffner, bridge laws can then be understood as
enabling the derivation of T

′

h - rather than Th - from Tl [32], [33].
For example, a more precise treatment of the reduction just considered

would take into account the fact that equation (1) holds only approximately
(given the approximate nature of the assumptions concerning the distribution
of molecules in position and velocity):

Image Theory : pV ≈ 2

3
N〈K.E.〉. (4)

This relation, which is formulated in the language of the low-level theory,
is an example of what is sometimes called an ‘image theory,’ in the sense
that it provides an ‘image’ of laws in the high-level theory formulated in the
language of the low-level theory (Hooker also employs the notion of an ‘image
theory’ in his New Wave account of reduction). Equations (4) and (3) jointly
imply that

Analogue Theory : pV ≈ nRT, (5)

which is ‘strongly analogous’ to the Ideal Gas Law.

The refinement of Nagel’s account that I consider here, dubbed the Gen-
eralized Nagel-Schaffner (GNS) model by Dizadji-Bahmani, Frigg and Hart-
mann in (see [9]), consolidates both Schaffner’s and Nagel’s insights. On this
model, reduction can be understood as a three-step process, starting with
the basic ingredients of a low-level theory Tl, a high-level theory Th, and a
set of bridge laws:

1. Derive the image theory T ∗h for some restricted boundary or initial
conditions within the low level theory Tl, without employing bridge
laws.
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2. Use bridge laws to replace terms in T ∗h , which belong to the vocabulary
of the low level theory, with corresponding terms belonging to the high
level theory. This yields the analogue theory T ′h.

3. If T ′h is ‘strongly analogous’ to the high-level theory Th, the high-level
theory has been reduced to Tl. The ‘strong analogy’ relation is some-
times also characterised as ‘approximate equality,’ ‘close agreement,’ or
‘good approximation.’

Henceforth, when I speak of Nagelian reduction, I will construe it according
to the GNS model, unless explicitly stated otherwise. Moreover, note that
Nagel’s connectability condition on this refinement consists of two ‘connec-
tions’: first, the bridge laws that link the image theory T ∗h and the analogue
theory T

′

h, and second, the rather vaguely defined ‘strong analogy’ relation
that connects the analogue theory T

′

h to the high-level theory Th. In what,
precisely, does the approximate agreement typically used to characterise the
strong analogy relation consist? Specifically which quantities between these
two descriptions must approximately agree, and in what contexts? I argue
below that the DS approach to reduction that I develop in this paper exhibits
certain strong parallels with the GNS approach but also serves to resolve cer-
tain of its ambiguities, particularly relating to the notion of strong analogy
and the nature of the linkages that must be established between the concepts
of the reduced and reducing theories.

2.2 Limit-Based Reduction

Unlike Nagelian reduction, the notion of a limit-based approach to reduction,
as first explicitly identified by Nickles, seems to arise not from any clear-cut
statement of the general conditions for this kind of reduction to take place,
but rather from a plethora of highly suggestive mathematical results all of
which involve or somehow imply the use of mathematical limits, and also
from a certain manner of speaking that is often employed in talk about inter-
theory relations in physics, as exemplified by references to the ‘nonrelativistic
limit’ of special relativity, the ‘classical limit’ of quantum mechanics, the
‘thermodynamic limit’ of statistical mechanics, the ‘geometric optics limit’
of wave optics, and so on. Batterman, Butterfield, Rohrlich, Berry, Ehlers,
and Scheibe, among others, all have explored various facets of this approach
to reduction from a general philosophical and methodological point of view as
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well as in the context of particular case studies [7], [2], [30], [4], [11], [34], [35].
Talk of reduction in terms of limits also pervades discussion of inter-theory
relations in many physics textbooks and journals. Despite the popularity
of the limit-based approach to reduction, the vague and schematic relation
lim{εi→0} Tl = Th appears to be as close to a statement of general criteria for
limit-based reduction as has been given in the literature.

In this subsection, I will attempt to clarify the intended meaning of claims
that one theory is a limit, or limiting case, of another by proposing a series
of refinements to the definition given above that suggest general criteria for
limit-based reduction. But first it will prove instructive to consider partic-
ular examples of the sort of result that motivates the idea of a limit-based
approach to reduction in physics, of which there are many.

Perhaps the simplest and most widely known example of such a result is
given by the relativistic expressions for time dilation and length contraction
between inertial reference frames:

t′ =
1√

1− v2

c2

t

l′ =

√
1− v2

c2
l,

(6)

where t is the time between two events at the same location in some intertial
‘lab’ frame and t′ the time between these same events as measured from an
inertial frame moving with constant velocity v with respect to the lab frame,
and likewise l is the length of an object at rest in the lab frame and l′ its
length as measured from an inertial frame moving parallel to the line along
which l is measured with constant velocity v relative to the lab frame. From
these relations, it follows that

lim
c→∞

t′ = t

lim
c→∞

l′ = l
(7)

so that in the limit c→∞, time and length in the lab frame are equal, respec-
tively, to time and length in the moving frame, as is the case in Newtonian
mechanics.
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As another example of limiting relations between theories in physics, this
time concerning the quantum-classical correspondence, consider the quantum
mechanical equation of motion for the Wigner function (a representation of
the quantum state on phase space):

∂

∂t
W (q, p, t) =

2i

~
sin

(
~
2i
{◦, ◦}

)
(H,W ), (8)

where {H,W} is the classical Poisson bracket. From the expansion of the
Moyal bracket, 2i

~ sin
( ~
2i
{◦, ◦}

)
(H,W ) = {H,W}+ ~2

24
∂3V
∂q3

∂3W
∂p3

+O(~4) + ...,
it follows that

lim
~→0

2i

~
sin

(
~
2i
{H, ◦}

)
W = {H,W}, (9)

so that in the limit ~→ 0, we retrieve the relation

∂

∂t
W (q, p, t) = {H,W}, (10)

the classical Liouville equation for the evolution of a probability distribution
on phase space 4.

There are many examples throughout physics similar to the two just de-
scribed, where an equation of the form that occurs in one theory is retrieved
from an equation of another theory by means of some limiting process. On
the basis of results like these, classical mechanics is sometimes also charac-
terised as the limit as N →∞ of quantum mechanics, where N is the energy
quantum number, thermodynamics as the N → ∞ of statistical mechanics,
where N is now the number of degrees of freedom, and geometric optics as
the λ→ 0 limit of wave optics, where λ is wavelength.

The prevalence throughout physics of limiting relations like the ones just
described initially seems to make a compelling case for the notion that reduc-
tion in physics is essentially a matter of taking mathematical limits. But if
we are to countenance Nickles’ reduction2 as furnishing a bona fide set of cri-
teria for one physical theory to account for the success of another, we should
be able to state precisely what these criteria are, rather than allowing them
to remain implicit in the wide range of results that are taken to exemplify
this kind of reduction. If the limit-based approach to reduction is to be more
than a vague and merely suggestive manner of speaking about inter-theory

4This example is drawn from Chapter 3 of [39].
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relations in physics, it is necessary first to clarify what is meant generally
when one theory is characterised as a limit or limiting case of another, and
then to explain why this relation enables the low-level theory to incorporate
the successes of the high-level theory.

What, then, is meant by the claim that one theory is a limit or limiting
case of another? Let us start by considering an example before attempting to
give a general answer: what, for instance, is meant by the claim that classical
mechanics is the limit as ~ → 0 of quantum mechanics (which is taken to
encompass more than simply the result quoted above)? On the most naive
construal, one might interpret this as meaning that if one takes any quantity
or relation in quantum mechanics and considers its ~→ 0 limit, one retrieves
a corresponding quantity or relation in classical mechanics. Yet such a claim
would be obviously false in this case (as well as in other purported cases of
reduction2), for if one considers the ~→ 0 limit of Schrodinger’s equation,

i~
∂

∂t
ψ(x, t) = − ~2

2m
∇2ψ(x, t) + V (x)ψ(x, t). (11)

one obtains the non-sensical - and certainly not classical - result,

0 = V (x)ψ(x, t). (12)

So we need to be more precise about what we mean by ‘the ~ → 0 limit of
quantum mechanics’ (where quantum mechanics is a theory which we might
naturally regard as being embodied in some respects by the Schrodinger
equation) and more generally what is meant by limε→0 Tl, since taking the
limit of just any part of the low-level theory is unlikely to yield an element
of the high-level theory.

Another potential pitfall in interpreting the relation lim{εi→0} Tl = Th,
already noted widely by a number of authors, occurs in cases (such as those
discussed so far) where one of the parameters εi is taken to be a constant
of nature, as in the claims CM = lim~→0QM and NM = limc→∞ SR (read
CM: classical mechanics, QM: quantum mechanics, NM: Newtonian mechan-
ics, SR: special relativity). Reduction, however precisely it is to be defined,
requires that the domain of physical systems that the high-level theory de-
scribes well should be a subset of the domain of systems that the low-level
theory describes well, and that in the domain of the high-level theory, the
low-level theory provides a still more accurate approximation. So an account
of the reduction of the high-level theory to the low-level theory should fur-
nish a means of identifying that subset of theoretical descriptions within the
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low-level theory that approximately agree with the high-level theory in cases
where the high-level theory is approximately valid. Thus, it might seem nat-
ural at first to read the relation CM = lim~→0QM as implying that those
quantum systems which exhibit approximately classical behavior are those
for which ~ = 0 or for which ~ ‘approaches’ zero, or that those relativistic
systems which exhibit approximately Newtonian behavior are those for which
c = ∞ or for which c ‘approaches’ infiinity. But of course, all real physical
systems possess the same fixed values for c and ~, so the physical signifi-
cance of results that involve taking the limit ~ → 0 or c → ∞ is unclear.
Results that require us to posit values for ~ and c other than those possessed
by actual physical systems contribute an unhelpful layer of obscurity to the
analysis of inter-theory relations in physics in that they fail to clearly iden-
tify the domain of real physical systems, as characterised by the low-level
theory, for which the high-level theory provides an approximately accurate
description. These considerations suggest the following revision to Nickles’
reduction2:

Limit-Based Reduction (Second Pass): Th reduces2 to Tl iff
there exists some set of parameters {εi}, defined within Tl, and
which are not constants of nature, such that limεi→0 Tl = Th.

Given this restriction, in the NM/SR case we may replace the limit c → ∞
with the limit v → 0, where v is some appropriate velocity characterising the
system in question. With this revision, one retains the equality of times and
of lengths in different reference frames in the relevant limit. Likewise, with
regard to the CM/QM relation, a number of authors have tried to address
this concern by claiming that strictly speaking the proper limit to take is not
the ~ → 0 limit, but the limit ~

Scl
→ 0, or equivalently the limit Scl → ∞,

where Scl is some measure of the ‘typical classical action’ of the quantum
system in question. With this revised understanding of these limits, we now
have a hope of extracting some physical, rather than merely mathematical,
significance for them since the relevant parameter now involves a quantity
that varies from system to system rather than being the same for all systems.

Yet once we have made made this last refinement to reduction2 there re-
main still other potential pitfalls in the interpretation of the relation lim{εi→0} Tl =
Th. Consider the oft-cited result relating relativistic kinetic energy (γ−1)mc2

to Newtonian kinetic energy 1
2
mv2:
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(γ − 1)mc2 =
1

2
mv2 +

3

4
m
v4

c2
+ ... (13)

While it is true that the Newtonian kinetic energy approximates the rel-
ativistic kinetic energy when v << c, the limit of this expression as the
dimensionless parameter v → 0 (or as v

c
→ 0) is zero, not 1

2
mv2. More gen-

erally, limv→0 SR (or lim v
c
→0 SR), if we are to understand the limit in terms

of the mathematical notion of a limit, is a theory in which nothing moves,
not Newtonian mechanics. Thus, when interpreting claims that one theory
is a limit of another, in this and many other cases we must be careful not to
understand ‘limit’ literally to mean ‘limit’ in the mathematical sense.

There are also other important pitfalls that come with taking claims that
one theory is a limit of another literally to mean that one theory is a mathe-
matical limit of another. As Berry and Batterman have emphasised repeat-
edly, certain mathematical limits may fail to yield anything resembling the
high-level theory because they are singular. However, they do not interpret
this as a problem with the limit-based approach to reduction, but rather
take such singularities to signify a failure of reducibility between the theories
in question [2], [4]. As both Butterfield and Norton have observed, even in
cases where the relevant limit is not singular, it still may yield unrealistic
idealisations that do not correspond to any actual physical system, or may
fail to yield any idealisation at all, as in certain classical- and statistical-
mechanical examples where the number of degrees of freedom is taken to
infinity. In cases where the limit leads to unrealistic idealisations, Butter-
field suggests stopping ‘before’ the limit in order to facilitate application of
limit-based results to real physical systems. Norton is concerned to highlight
the distinction between approximation and idealisation, and argues that in
some cases where an infinite limit of well-behaved finite systems is taken, the
limit system may fail to provide an idealisation of any real physical system
[7], [28].

How are to we interpret the relation lim{εi→0} Tl = Th, if not literally as a
mathematical limit? Considering the example of Eq. (13), we might take the
lim{εi→0} simply to signify the requirement that we restrict the values of εi (in
this case v) to be ‘small.’ Such an interpretation is compatible with viewing
Th as a first- or higher-order approximation rather than as the mathematical
limit (which, in cases where the relevant function is continuous, is equal to
a zeroth-order approximation). These considerations suggest the following
further refinement of reduction2:
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Limit-Based Reduction (Third Pass): Th reduces2 to Tl iff
there exists some set of parameters {εi} defined within Tl which
are not constants of nature, such that when {εi} all are ‘small,’
Th approximates Tl.

Once we adopt this refinement of limit-based reduction, it is important to
keep in mind that reduction2 is no longer strictly speaking about taking limits
in the mathematical sense of the term, but about a certain way of specify-
ing a particular domain within the low-level theory. Yet there still remain
difficulties with this construal of reduction2 in that if {εi} are dimensionful
quantities, the question of whether their numerical values are ‘small’ will de-
pend on an arbitrary choice of units. For this reason, when specifying that a
dimensionful quantity is small, it is necessary to say small in comparison to
what. For example, it is meaningless to characterise the velocity v as small
unless one provides some other measure of velocity against which to compare
it; for instance, in the NM/SR case, we may insist that v << c. Likewise in
the CM/QM case we may insist that ~ << Scl. Equivalently, we may recast
these conditions by restricting the domain of an appropriate dimensionless
parameter εi so that εi << 1; for instance, v

c
<< 1, and ~

Scl
<< 1. On this

basis, we may propose one final revision to our definition of reduction2:

Limit-Based Reduction (Fourth Pass): Th reduces2 to Tl
iff there exists some set of dimensionless parameters {εi} defined
within Tl, which are not constants of nature, such that when
{εi << 1} for all i, Th approximates Tl.

Again, it is important to emphasise that imposing the restriction εi << 1
is not the same thing as taking the limit εi → 0. Henceforth, I shall con-
strue limit-based reduction, or reduction2, in the sense provided here. Note
moreover, that this concept of limit-based reduction includes cases where
the intended approximation is literally the mathematical limit or zeroth-
order approximation, though it is not restricted to such cases as a literal
interpretation of the limit is.

Yet it is also important to recognise the significant ambiguity that remains
in the definition of limit-based reduction just provided. In particular, the
meaning of the phrase ‘Th approximates Tl’ is still quite vague. How are we to
assess in any given case whether Th approximates Tl in the prescribed domain,
given that Th and Tl may be formulated in radically different conceptual
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and mathematical frameworks? Precisely which quantities in Tl and in Th
ought we to be comparing in order to judge whether one theory approximates
another? Simply restricting to the domain of Tl in which εi << 1 does not
of itself return Th or an approximation to Th; the resulting description is still
formulated in the mathematical and conceptual framework of Tl, not that
of Th. For example, if we examine the quantum commutator in the domain
of quantum theory where ~

Scl
<< 1, the resulting quantity is an operator

on Hilbert space, with no straightforward classical interpretation (it is not,
for instance, approximately equal to the classical Poisson bracket, which is
often cited as the classical counterpart to the commutator, since the Poisson
bracket is a function on classical phase space, not an operator on any Hilbert
space). Some means of translating between the framework of the high-level
theory and that of the low-level theory - akin to Nagel’s bridge laws - is
needed before we can judge whether one theory approximates the other in
the specified domain.

Acknowledging this observation, I could continue in the attempt to resolve
the various additional points of vagueness and ambiguity that afflict the limit-
based approach to reduction. At this point, though, one can reasonably
question whether the limit-based approach, in spite of its popularity, ever
existed as anything more than a vague intuition (as oppposed a well-defined
approach to reduction) given that we must do all the work of formulating
reduction2 ourselves in order to figure out precisely what is meant by it.
Rather than continue in the attempt to give a precise meaning to Nickles’
reduction2, I will simply state in the next two sections what I believe to
be an appropriate set of general criteria for characterising the relationship
between a wide range of physical theories, and specifically between models
of these theories.

In this subsection, I have highlighted a number of points of ambiguity in
the limit-based approach to reduction and argued that in many purported
instances of this type of reduction, a literal interpretation of the claim that
one theory is a limit of another - i.e., in terms of mathematical limits - is sim-
ply not viable. As a consequence, the general appropriateness of approaching
reduction in terms of limits, rather than in terms of domains - as one does
for instance when one imposes the restriction εi << 1 - should be called into
question. If, on the other hand, we choose to associate limit-based reduc-
tion with conditions of the form εi << 1 for some dimensionless parameters
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εi (though, again, the term ‘limit’ in this case is arguably more misleading
than descriptive), then this sort of of condition is naturally incorporated into
various applications of the dynamical systems (DS) approach to reduction
that I develop here, as I demonstrate in another paper where I consider nu-
merous case studies of DS reduction. All of this is not to say that limits
bear no relevance to reduction (for instance, they do play a useful role in the
discussion of the thermodynamic limit), but only that the centrality of their
role in reduction of physical theories has in places been both overstated and
not made sufficiently precise.

3 Dynamical Systems in Physics

Before laying out the conditions for dynamical systems reduction in the next
section, I briefly introduce the concept of a dynamical system and discuss its
relevance to physics, where it is has a very wide range of applicability.

3.1 Definition of a Dynamical System

A dynamical systems model M consists of a state space S and a dynamical
map D that prescribes the time evolution of states in S; for brevity, I will
writeM = (S,D). I assume here that S is endowed at least with the structure
of a differentiable manifold and a norm, and thatD is a differentiable function
both of x, the state in S, and of the time t such that for every t, D specifies
a one-to-one function from S onto itself, and such that D is the identity map
on S when t = 0:

D : R× S −→ S, (14)

x(t) = D(x0, t), (15)

x0 = D(x0, 0). (16)

The requirement that the dynamical map at fixed time be one-to-one ensures
that the dynamics are deterministic.

In most, and possibly all, cases of interest in physics, the dynamical map
for the model is associated with the set of solutions to some set of first-order
differential equations:
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dx

dt
= f(x, t), (17)

where f(x, t) is an arbitrary continuous function of the state x and of time
t. In many cases, there is no explicit time dependence in f , so f(x, t) = f(x)
(however, f may still depend on time indirectly through the time dependence
of the state x). Since x(t) = D(x0, t) is a solution to the above differential
equation, we have the following relation between the functions f and D:
f(x(t), t) = ∂

∂t
D(x0, t).

5

3.2 Symmetries of Dynamical Systems

The concept of a symmetry has numerous definitions depending on the par-
ticular context under consideration. Broadly speaking, it is a transformation
on a system that leaves some relevant aspect of the system - which depends
strongly on the particular context - unchanged (see, for instance, [37] for an
extended philosophical discussion of symmetries and their relation to physical
laws). In the context of a dynamical system, a symmetry may be understood
as a one-to-one transformation of both the dependent and independent vari-
ables (i.e., x and t, respectively) in the equation of motion (17) that leaves
the form of this equation invariant. The most general such transformation
is one that transforms the variables (x, t) into some other variables (x′, t′) -
that is, that involves transformations of the time parameter as well as of the
state x. A map x′ = sx(x, t), t

′ = st(x, t) is a symmetry of the model M
with dynamical equation dx

dt
= f(x, t) if it is differentiable, one-to-one and

satisfies the condition

dx′

dt′
= f(x′, t′), (18)

5While conventional applications of dynamical systems models in physics involve equa-
tions whose solutions are deterministic, as a caveat it is important to note the work of
Earman, Norton and others, which has served to underscore the fact that for certain forms
of f , equations of this form do no always yield deterministic solutions, in the sense that
they may admit solutions with the same initial condition that diverge in time, or solutions
that differ at an earlier time but pass through the same point in state space at some later
time [27], [10]. Whether this occurs will depends on the function f(x, t) obeying particular
mathematical constraints that I do not discuss here. In the analysis that follows, I will
assume that the function f obeys the constraints necessary for the dynamics to respect
determinism; in particular, this will prove to be the case in the examples that I consider.

18



where f is the same function appearing in the untransformed equation (17).
Henceforth, the reader should understand the term ‘symmetry’ in this sense
when I use it (see, for instance, [5] for further discussion of symmetries of
dynamical systems in classical physics).

It will prove worthwhile here to highlight certain subclasses of symmetries
of dynamical systems. First, some symmetries, such as rotations, transla-
tions, and Galilean transformations, do not transform the time parameter,
so that x′ = sx(x, t), t

′ = t; let us designate such symmetries as ‘invariant-
time’ symmetries and all others as ‘variant-time’ symmetries. A sub-class
of invariant-time symmetries is the set of symmetries for which the state
transformation does not depend on time, so that x′ = sx(x), t′ = t; this in-
cludes rotations and translations but not Galilean transformations; call these
‘time-independent, invariant-time’ symmetries.

Let us now examine two examples of dynamical systems in physics: first,
a model of Hamiltonian classical mechanics, and second a model of non-
relativistic quantum mechanics in the Schrodinger picture.

3.3 Example 1: Hamiltonian Classical Mechanics

A system of N particles in non-relativistic Hamiltonian classical mechanics
can be modelled as a dynamical system whose state space is given by

S = ΓN , (19)

where ΓN is the phase space of N particles moving in 3-dimensional space,
which is a 6N -dimensional symplectic manifold whose points (x, p) consist of
the spatial positions x and canonically conjugate momenta p of all N particles
(see, for instance, [16], or any other graduate-level text of classical mechanics,
for detailed definition and discussion of phase space). The dynamical map
D of this model furnishes solutions to the first-order equations,

dx

dt
=
∂H

∂p
= {x,H}

dp

dt
= −∂H

∂x
= {p,H},

(20)

also known as Hamilton’s equations, so that (x(t), p(t)) = D[(x0, p0), t],
where (x0, p0) are the initial conditions (specified at t = 0), represents a
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distinct solution for each (x0, p0). Such a solution is given formally by the
expression

D
[
(x0, p0), t

]
=

(
e{◦,H}tx

∣∣
x0,p0

, e{◦,H}tp
∣∣
x0,p0

)
, (21)

where e{◦,H}tf(x, p) ≡ f(x, p)+{f(x, p), H}t+ 1
2!{{f(x, p), H}, H}t2+ 1

3!{{{f(x, p), H}, H}, H}t3+

... , and {, } denotes the Poisson bracket, defined by {f, g} ≡ ∂xf∂pg−∂xg∂pf ,
with f and g some arbitrary differentiable functions on phase space.

Assume now that the Hamiltonian takes the formH =
∑N

i
p2i
2mi

+1
2

∑
i 6=j V (xi−

xj). Then it can be shown, for instance, that among other transformations,
the transformation

(x′, p′) = sx((x, p); t) = (x− vt, p−mv)

t′ = st((x, p), t) = t,
(22)

for some constant velocity v, is a symmetry of the dynamics.

3.4 Example 2: Non-Relativistic Quantum Mechanics
(NRQM) in the Schrodinger Picture

A system of N spinless particles in non-relativistic quantum mechanics can
be modelled as a dynamical system whose state space is given by

S = HN , (23)

the Hilbert space of N spinless particles moving in three dimensions. The
dynamics of the system are furnished by the Schrodinger equation,

i
∂

∂t
|ψ〉 = Ĥ|ψ〉, (24)

where |ψ〉 ∈ HN . If Ĥ does not depend explicitly on time, as for example

when it takes the common form Ĥ = p̂2

2m
+V (x̂), the solution to Schrodinger’s

equation can be written formally as

D
[
|ψ0〉, t

]
= e−iĤt|ψ0〉, (25)
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where |ψ0〉 is some arbitrary initial condition 6.
If the potential in the Hamiltonian takes the form 1

2

∑N
i 6=j V (x̂i − x̂j),

where V is a function only of inter-particle distance, then it can be shown
that, among other transformations, the transformation

|ψ′〉 = sx(|ψ〉) = e−i
~̂L·n̂θ|ψ〉

t′ = st(|ψ〉, t) = t,
(26)

a rotation about the axis n̂ (the hat here denotes a unit vector, not an

operator as with all other quantities) by angle θ, with ~̂L the quantum angular
momentum operator, is a symmetry of the dynamics.

3.4.1 Other Examples of Dynamical Systems in Physics

Other examples of dynamical systems models in physics include: other Hamil-
tonian models of Newtonian mechanics, other models of nonrelativistic quan-
tum mechanics in the Schrodinger picture, Hamiltonian models of relativistic
classical mechanics, relativistic quantum mechanics in the Schrodinger pic-
ture, the Schrodinger picture formulation of quantum field theories, the ADM
or 3+1 formulation of general relativity (which applies only in the special case
of a globally hyperbolic spacetime and describes the evolution of a 3-metric
with a parameter that functions as ‘time’), and the Liouville equation model

6Note that this model is deterministic, despite the oft-cited indeterminism of quantum
mechanics. This is of course, a result of the fact that collapse of the wave function, where
the indeterminism of quantum mechanics arises, is not incorporated in this model. The
question as to whether the collapse process is actual or merely effective, and of whether it
is genuinely indeterministic or merely apparently so, is a highly interpretation-dependent
matter. The Everett or Many Worlds interpretation, as well as de-Broglie Bohm or pilot
wave interpretation, both posit fully deterministic dynamics, and treat the probabilistic
aspects of quantum theory as merely effective or apparent; effective wave function collapse
on both views is intimately tied up with the process of decoherence. The GRW-Pearle
(Ghirardi, Rimini, Weber, Pearle) interpretation, a particular variety of ‘spontaneous col-
lapse’ model, posits a dynamics that is indeterministic and takes the probabilistic aspects
of quantum theory to reflect a fundamental indeterminism of nature. Non-realist interpre-
tations such as the Copenhagen Interpretation likewise relinquish determinism in a sense
simply by their failure to specify exactly when or how wave function collapses occur. In
my analysis here, I restrict myself to considering the deterministic, unitary evolution of
the wave function without collapse.
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for the evolution of a phase space probabilitiy distribution in classical statis-
tical mechanics. Thus, the framework of dynamical systems theory offers a
very general and encompassing mathematical framework in which to consider
issues of reduction in physics.

4 Dynamical Systems (DS) Reduction

The framework of dynamical systems theory facilitates the formulation of
an especially natural and intuitive concept of reduction in physics. Because
of the wide range of applicability of dynamical systems models in physics,
this concept of reduction succeeds at describing a very wide range of inter-
theory relations in physics, and for this reason, I claim, should be regarded
as an alternative to the limit-based and Nagelian approaches. Nevertheless,
as I argue in Sections 6 and 7, it incorporates elements of both approaches.
Note, however, that dynamical systems reduction concerns reduction between
individual models of physical theories rather than the wholesale reduction
of entire theories; reduction of theories on the DS approach occurs only
piecemeal via reduction between individual models or classes of models of
the theories in question.

In this section, I set out formal criteria for DS reduction after some prelim-
inary definitions and remarks. I then consider a relatively simple, idealised
example in order to illustrate this approach. Discussion of more realistic
examples is deferred to another paper.

4.1 Bridge Maps

Define a bridge map between two dynamical systems models to be a differ-
entiable, time-independent function B from the low-level state space Sl to
the high-level state space Sh that satisfies certain added conditions to be
specified in Section 4.5:

B : Sl −→ Sh (27)

B : xl 7−→ B(xl), (28)

where xl ∈ Sl. The function B will typically be many-one; its domain may
be the whole of Sl or a subset of Sl, and its range the whole of Sh or a
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subset of Sh. As we will see shortly, as a consequence of satisfying the
conditions specified in 4.5, the bridge map will serve to identify structures
in the low-level model that approximately emulate the behavior of states in
the high-level model to within a certain margin of error and on a certain
timescale.

4.2 Induced Dynamics

Given a low-level model Ml = (Sl, Dl), a high-level model Mh = (Sh, Dh),
and a bridge map B : Sl −→ Sh, the dynamical map Dl : Sl → Sl of the
low-level model induces, via the bridge map, a trajectory on the state space
Sh:

x′h(t) = B(Dl(x
l
0, t)). (29)

Generally, the trajectory x′h(t) will depend on the particular choice of initial
condition xl0, not just on the image x′h0 ≡ B(xl0) to which xl0 maps under B.

4.3 Reducing Dynamics

The evolution of the quantity B(xl(t)), determined by the dynamics Dl of
Ml, will mimic the evolution prescribed by the dynamics Dh of the high-level
model Mh if the following condition holds:

B(Dl(x
l
0, t)) ≈ Dh(B(xl0), t), (30)

where the norm on Sh furnishes the sense of approximate equality (see Figure
2). Note that the left-hand side of (30) corresponds to the dynamics induced
on Sh by Dl through B, with initial condition xl0, while the right hand side
corresponds to the dynamics Dh applied to x′h0 ≡ B(xl0), the image of xl0
under B. In applications of this requirement to reductions of realistic models
in physics, approximate equality will only hold for xl0 in some restricted
domain d of states and over some limited timescale τ . With this in mind, we
can state the condition more precisely as the requirement that∣∣∣∣B(Dl(x

l
0, t)
)
−Dh

(
B(xl0), t

)∣∣∣∣
h

< δ, (31)

for xl0 in some domain d of states in Sl and 0 ≤ t ≤ τ , where | |h designates
the norm on Sh, δ is a prescribed margin of error characterising the accuracy
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Figure 1: Dynamical systems reduction requires that, for some domain of low-level
states and on some limited timescale, the result of applying some bridge map followed by
an applcation of the high-level dynamics for some time t yield approximately the same
result as applying the low-level dynamics for time t followed by an application of the bridge
map - in short, that dynamics and the bridge map approximately ‘commute.’
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of the approximation, and τ the timescale over which the approximation
holds.

If no constraints were imposed on the bridge map other than the ba-
sic requirements of continuity and differentiability, then it would always be
possible to find a function B satisfying the condition (31) between any two
models, so long as the cardinality of the low-level state space is greater than
or the same as that of the high-level theory; the reason for this is that one
can simply absorb any differences of dynamical structure between the models
into the time dependence of the bridge map itself 7. To avoid such triviality,
we should further require that the bridge map function not depend explic-
itly on the time t (though it may depend implicitly on time via the time
dependence of the low-level state).

4.4 Reducing Symmetries

Beyond the requirements already imposed on the bridge map, we also should
require that it respect a certain kind of compatibility with the symmetries of
the high- and low-level models. I restrict my attention here to invariant-time
symmetries - that is, symmetries in which the time-coordinate is not trans-
formed - since variant-time symmetries pose complications relating to the
fact that DS reduction assumes a common time parameter between the two
models (I leave the incorporation of variant-time symmetries as a subject for
future investigations). Let us then consider symmetries of the form t′ = t,
x′ = s(x, t). Notably, this class of symmetries includes rotations, spatial
translations, parity transformations, Galilean boosts, and gauge transforma-
tions, to name a few.

The specific symmetry-related condition that I impose on the bridge map
has two parts. Consider an arbitrary invariant-time symmetry sh of Mh such
that sh(x

h) ∈ B(d) for some xh ∈ B(d), where d ⊂ Sl is the domain of states
satisfying the dynamical commutation condition for some fixed δ and τ and
B(d), which I call the ‘image domain,’ is its image under B. The first part
of the symmetry-related condition requires that for any such symmetry sh,
there exist a corresponding symmetry sl of the low-level model such that

sh(B(xl), t) ≈ B(sl(x
l, t)) (32)

for all xl ∈ d such that sh(B(xl), t) ∈ B(d). This condition serves to ensure

7Thanks to Christopher Timpson and Jeremy Butterfield for pointing this out.
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Figure 2: The symmetry condition of DS reduction entails that if two Dh-trajectories
lying in B(d) are related by a high-level symmetry, then there is a corresponding low-
level symmetry relating the two low-level trajectories that approximate these high-level
trajectories under the bridge map.

that the action of any high-level symmetry within the image domain is ap-
proximately mimicked by the action in B(d) induced via the bridge map by
some low-level symmetry.

The second part of the symmetry-related condition requires that the
group structure of the high-level symmetries acting within the image do-
main B(d) should be approximately mimicked by the action in B(d) induced
via the bridge map by the group structure of the corresponding low-level
symmetries. So if the action of s1h in B(d) is approximated by the induced
action of s1l and the action of s2h in B(d) is approximated by the induced
action of s2l , then the action of the product s2h ◦ s1h should be approximated
by the induced action of s2l ◦ s1l . More precisely, we should require that if
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s1h(B(xl), t) ≈ B(s1l (x
l, t)) for all xl ∈ d such that s1h(B(xl), t) ∈ B(d), (33)

and

s2h(B(xl), t) ≈ B(s2l (x
l, t)) for all xl ∈ d such that s2h(B(xl), t) ∈ B(d), (34)

and s1l ◦ s2l (xl, t) ∈ d, and s1h ◦ s2h(B(xl), t) ∈ B(d), then

s1h ◦ s2h(B(xl), t) ≈ B(s1l ◦ s2l (xl, t)). (35)

In this sense, the bridge map serves to identify that quantity B(xl) con-
structed within the low-level model that emulates both the dynamical and
symmetry transformation behavior of a high-level state when xl is restricted
to lie in the domain d.

4.5 Formal Criteria for DS Reduction

Having made these motivating remarks, we are now in a position to state
formal conditions for dynamical systems (DS) reduction:

DS Reduction:

A model Mh=(Sh, Dh) describing some physical system re-
duces over time scale τ and to within margin of error δ to a
model Ml =(Sl, Dl) of describing the same system only if there
exists a differentiable function B : Sl → Sh that does not depend
explicitly on time, and a nonempty subset d ⊂ Sl, such that

• DSR1: for any xl0 ∈ d∣∣∣∣B(Dl(x
l
0, t)
)
−Dh

(
B(xl0), t

)∣∣∣∣
h

< δ, (36)

for all 0 ≤ t ≤ τ ;

• DSR2:
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– a) for every invariant-time symmetry sh of Mh such that
sh(x

h, t) ∈ B(d) for some xh ∈ B(d), there exists a
symmetry sl of Ml such that

sh(B(xl), t) ≈ B(sl(x
l, t)) for all xl ∈ d such that sh(B(xl), t) ∈ B(d);

(37)

– b) if

s1h(B(xl), t) ≈ B(s1l (x
l, t)) for all xl ∈ d such that s1h(B(xl), t) ∈ B(d),

(38)
and

s2h(B(xl), t) ≈ B(s2l (x
l, t)) for all xl ∈ d such that s2h(B(xl), t) ∈ B(d),

(39)
and s1l ◦ s2l (xl, t) ∈ d, and s1h ◦ s2h(B(xl), t) ∈ B(d), then

s1h ◦ s2h(B(xl), t) ≈ B(s1l ◦ s2l (xl, t)). (40)

These conditions should be understood as necessary conditions for one dy-
namical system to reduce to another. Whether they are sufficient depends
on the possibility of finding a trivialising counterexample - i.e., an example
of two dynamical systems models satisfying these conditions such that we
cannot reasonably regard the low-level model as accounting for the success
of the high-level model. If such examples can be found, then further con-
ditions must be imposed on the bridge map B. What the above conditions
are meant to capture are two of the most salient requirements that must be
satisfied for a mathematical structure defined in a low-level model - specified
by the bridge map - to emulate, or approximately instantiate the physically
salient dynamical and transformation properties of the state in the high-level
model. I leave it to future work to ascertain whether any further conditions
need be placed on the bridge map, and if so, what these conditions are.

It is important to distinguish the notion of reduction of dynamical sys-
tems just described from another that has received a significant amount of
attention in the mathematics literature. This alternate sense of reduction
of dynamical systems has been spelled out clearly by Marmo, Saletan, and
Simoni:
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A dynamical system, a dynamics, is a vector field ∆ on a manifold
M of finite dimension n 8. The problem of mechanics is to inte-
grate the dynamics, i.e., to obtain the integral curves of ∆. Such
integral curves for a dynamical system can sometimes be obtained
by integrating related dynamical systems on manifolds whose di-
mensions are lower than n. The object of this paper is to discuss
ways of finding such dynamical systems of lower dimension, that
is of reducing the original dynamics [14].

The sense of reduction of dynamical systems specified in this quotation is
intended primarily as a method for solving high-dimensional systems of dif-
ferential equations by first solving some related lower-dimensional system of
equations; the sense of reduction that I elaborate in this paper, on the other
hand, is intended primarily as a framework for describing the relationship
between different models in physics that describe some common set of phys-
ical systems. But there are also more pointed differences. First, simply as
a matter of convention, on Marmo et al ’s definition, the higher-dimensional
system, which typically corresponds to the low-level model on my approach,
is said to reduce to the lower-dimensional system; on the sense of reduction
that I propose, the reverse is typically the case. Second, while on Marmo
et al ’s definition a solution to the lower-dimensional system will typically
suffice to specify a solution to the higher-dimensional system, on the defi-
nition I elaborate here, this is not the the case (given the many-one nature
of the bridge map on my approach). Third, on the sense of reduction that
Marmo et al consider, the low-dimensional model is usually obtained from
the high-dimensional model through the process of quotienting out the high-
dimensional state space by the action of some symmetry group; this need not
be, and often is not, the case in the definition of reduction that I propose. For
further discussion of reduction of dynamical systems in the alternate sense
described in the above quotation, see for example [14], [13], [29], [6].

8On the definition of a dynamical system that I have given, the dynamical map D
can be understood as specifying the integral curves of a vector field, whose components
are given by the function f(x, t) that appears in the first-order equation of motion of the
dynamical system. The state space S in the definition of dynamical system that I employ
here furnishes the manifold M to which Marmo et al refer.
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4.6 Condition DSR1 and Equations of Motion

It is often more convenient to specify the dynamics of a DS model in the form
of first-order differential equations, rather than in the form of a dynamical
map. Let us examine how the condition DSR1 may be formulated when the
dynamics of the high- and low-level models are prescribed in this way. As
already discussed, the dynamical map of Mh specifies the solutions xh(t) =
Dh(x

h
0 , t) to the differential equation

dxh

dt
= fh(x

h, t) (41)

where fh(x
h(t), t) = ∂

∂t
Dh(x

h
0 , t), and likewise the dynamical map of Ml spec-

ifies the solutions xl(t) = Dl(x
l
0, t) to the differential equation

dxl

dt
= fl(x

l, t), (42)

where fl(x
l(t), t) = ∂

∂t
Dl(x

l
0, t).

At the level of differential equations, condition DSR1 will be satisfied if
the induced trajectory x′h(t) ≡ B(xl(t)) approximately satisfies the equation
of motion of Mh,

dx′h

dt
≈ fh(x

′h, t) (43)

over any time interval less than or equal to τ . More explicitly, this equation
can be written,

d

dt
B
(
xl(t)

)
≈ fh

(
B
(
xl(t)

)
, t

)
, (44)

or, even more explicitly,

d

dt
B
(
Dl(x0, t)

)
≈ fh

(
B
(
Dl(x0, t)

)
, t

)
. (45)

Note that while this relation is a sufficient condition for DSR1 to hold, it
is not a necessary condition. We can see that it is a sufficient condition by
integrating both sides of (44) with respect to time, up to some t such that
0 ≤ t ≤ τ :
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∫ t

0

dt′
d

dt′
B(xl(t′)) ≈

∫ t

0

dt′ fh

(
B
(
xl(t

′)
)
, t′
)

B(xl(t))−B(xl0) ≈ Dh(B(xl0), t)−Dh(B(xl0), 0)

B(Dl(x
l
0, 0)) ≈ Dh(B(xl0), 0)

(46)

where in going from the first line to the second line I have used that fh(x
h, t) =

∂
∂t
Dh(x

h
0 , t), and in going from the second to the third I have used that

B(xl0) = Dh(B(xl0), 0). Note that for the condition (44) to be sustained
over time period τ , the domain d should be such that it is preserved by the
low-level dynamics approximately over timescale τ ; that is, the low-level dy-
namics should carry states in d to other states in d over time periods less
than τ .

While (44) is sufficient for the DSR condition to hold, it is not math-
ematically necessary insofar as there may exist induced trajectories on the
high-level state space that remain close (in the sense of the Sh’s norm) to the
trajectory prescribed by the high-level model but such that the time deriva-
tive of these trajectories does not remain close in value to the derivatives
prescribed by (41). For example, consider a trajectory rapidly oscillating
with small amplitude around the trajectory prescribed by the high-level dy-
namics; the values of the states will be close, so that condition DSR1 is
satisfied, but the time derivatives will differ drastically so that (45) is not. In
all reductions considered in later chapters, the stronger condition (45) will
be proven, rather than merely the condition (36).

4.7 A Simple Example of DS Reduction

To illustrate the application of DS reduction let us consider a case in which
the high-level model is the classical Hamiltonian model described in section
3.3 and the low-level model the model of an isolated quantum system de-
scribed in section 3.4. While the high-level classical model in this case may
serve as an approximate description of some real physical systems - macro-
scopic centers of mass interacting through some time-independent potential -
the low-level model is in some respects ill-equipped to describe these systems
because it fails to take into account the effects of environmental decoherence,
as a result of which the quantum model predicts coherence lengths for the
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centers of mass that are incompatible with empirical observation. Never-
theless, the relation between the two models serves to illustrate the basic
conditions of DS reduction. A reduction of the classical model to a quan-
tum model that does take into account effects of decoherence is considered
in another paper.

DSR1: Dynamics

Take the Hamiltonians in the classical and quantum models, respectively,
to be H = p2

2m
+ V (x), Ĥ = p̂2

2m
+ V (x̂). Then the condition (45), which

suffices to prove condition DSR1, takes the form,

d

dt
〈x̂〉 ≈

{
x,H

(
x, p
)}∣∣
〈x̂〉,〈p̂〉 =

1

m
〈p̂〉

d

dt
〈p̂〉 ≈

{
p,H

(
x, p
)}∣∣
〈x̂〉,〈p̂〉 = −∂V (〈x̂)〉

∂〈x̂〉
,

(47)

where the subscript 〈x̂〉, 〈p̂〉 on the Poisson brackets indicates that the Pois-
son bracket is to be evaluated at 〈x̂〉 and 〈p̂〉. Employing the bridge map
substitutions x′ ≡ 〈x̂〉, p′ ≡ 〈p̂〉, this can be written in a form more closely
resembling the original classical equations of the high-level model:

dx′

dt
≈
{
x′, H

(
x′, p′)

}
x′,p′

=
1

m
p′

dp′

dt
≈
{
p′, H

(
x′, p′

)}
x′,p′

= −∂V (x′)

∂x′
.

(48)

Relation (47), and hence (48), can be shown to hold in the domain of states
that are wave packets narrowly peaked both in position and momentum. This
fact is proven using Ehrenfest’s Theorem, which states that for any state of a
quantum system with the above-specified Hamiltonian, the following relation
holds:

d〈p̂〉
dt

= −

〈
∂̂V

∂x

〉
. (49)

(see for instance [24] for a proof of Ehrenfest’s Theorem). Note however that
this relation does not suffice to ensure that expectation values of position
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and momentum evolve approximately according to Newtonian equations. For
this, it is necessary that the stronger (though approximate) condition,

d〈p̂〉
dt
≈ −∂V (〈x̂〉)

∂〈x̂〉
=
∂V

∂x

∣∣∣∣
〈x̂〉
, (50)

also holds. It can be shown that when we restrict to the domain of narrow
wave packets, relation (49) implies (50). It is crucial to note at this point
that the domain of narrow wave packets is not generally preserved under
the Schrodinger dynamics since wave packets tend to spread. However, one
can expect wave packets to remain narrow at least on some limited timescale,
which depends on how rapidly spreading occurs. Broadly speaking, the larger
the mass of the system, the more slowly wave packets spread, and the stronger
the effects of chaos (as gauged for example by the size of the Lyapunov
exponent associated with the system’s Hamiltonian) the more rapidly wave
packets tend to spread (see, for instance, [45] and [39] for discussion of the
role of chaos in quantum wave packet spreading). Thus, the time scale over
which the domain of narrow wave packets is preserved by the Schrodinger
dynamics will depend on these factors as well as on the upper bound that
one sets for what is to be counted as ‘narrow;’ the width beyond which (50)
ceases to he a good approximation will depend on a particular measure of
the length scale on which the potential V varies.

The relation (50) suffices to ensure the validity of condition DSR1 over
some timescale τ determined by the factors just mentioned. In this particular
case this condition takes the form,

∣∣∣∣〈ψ0|eiĤtx̂ e−iĤt|ψ0〉 − e{◦,H}tx
∣∣
〈x̂〉0,〈p̂〉0

∣∣∣∣ < δx,

and

∣∣∣∣〈ψ0|eiĤtp̂ e−iĤt|ψ0〉 − e{◦,H}tp
∣∣
〈x̂〉0,〈p̂〉0

∣∣∣∣ < δp,

(51)

where 〈x̂〉0 ≡ 〈ψ0|x̂|ψ0〉 and 〈p̂〉0 ≡ 〈ψ0|p̂|ψ0〉, for 0 ≤ t ≤ τ , where τ
is timescale on which wave packets become widely spread out on spatial
dimensions characteristic of the variation of the potential V (x) (for a more
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precise characterisation of this length scale, see for instance [1]). The norm
employed on phase space is simply the difference of the positions and of the
momenta. Less formally, we can write this condition as

〈ψ0|eiĤtx̂ e−iĤt|ψ0〉 ≈ e{◦,H}tx
∣∣
〈x̂〉0,〈p̂〉0

and

〈ψ0|eiĤtp̂ e−iĤt|ψ0〉 ≈ e{◦,H}tp
∣∣
〈x̂〉0,〈p̂〉0

,

(52)

where, again, the approximation should be understood as being relative to
some specified margins of error δx and δp.

DSR2: Symmetries

Here I will demonstrate the validity of condition DSR2, concerning the
relation between the symmetries of the models, with regard to rotations and
Galilean boosts in classical mechanics. In principle, these conditions should
be shown to hold for all symmetries and states of the high-level model such
that both the states and their mappings under the symmetry are in the
image domain B(d), which here consists of the entire classical phase space
Γ. While I limit myself here to considering these two symmetries, following
these examples it should be straightforward for the reader to demonstrate
these conditions for other symmetries of the given classical model, such as
translations and parity transformations.

Symmetry 1: Rotation
In the case of a Hamiltonian system with spherically symmetric poten-

tial V (r), the rotations about the origin constitute a group of dynamical
symmetries. Condition 2a) for rotations is ensured by the fact that

(
〈ψ|ei

~̂
L·n̂θ x̂ e−i

~̂
L·n̂θ|ψ〉, 〈ψ|ei

~̂
L·n̂θ p̂ e−i

~̂
L·n̂θ|ψ〉

)
≈ e{◦,

~L·n̂θ} (〈ψ|x̂|ψ〉, 〈ψ|p̂|ψ〉)
(53)
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for |ψ〉 ∈ d; in fact, the equality holds exactly, and for arbitrary states, not
just narrow wave packets. So, rotations on phase space are induced via the
bridge map by rotations on Hilbert space. That this condition is satisfied
can be shown using the Baker-Hausdorff Lemma, which states that

eiλB̂Âe−iλB̂ = Â+ iλ
[
B̂, Â

]
+

(iλ)2

2!

[
B̂,
[
B̂, Â

]]
+

(iλ)3

3!

[
B̂,
[
B̂,
[
B̂, Â

]]]
+ ...

(54)

≡ e[iλB̂,◦]Â (55)

(see, for instance [31], p.96).
Condition 2 b) for rotations takes the form

(
〈ψ|ei

~̂
L·m̂φei

~̂
L·n̂θ x̂ e−i

~̂
L·n̂θe−i

~̂
L·m̂φ|ψ〉, 〈ψ|ei

~̂
L·m̂φei

~̂
L·n̂θ p̂ e−i

~̂
L·n̂θe−i

~̂
L·m̂φ|ψ〉

)
≈ e{◦,

~L·n̂θ}e{◦,
~L·m̂φ}(〈ψ|x̂|ψ〉, 〈ψ|p̂|ψ〉).

(56)

Again, the equality in this case actually holds exactly and for arbitrary |ψ〉,
not just for narrow wave packet states, and can be proven in much the same
fashion as condition 2 a) for rotations.

Symmetry 2: Galilean Boosts
The dynamical map associated with a one-particle classical Hamiltonian

H = p2

2m
+ V (x) above will not generally commute with a boost by some

velocity v, which therefore will not serve as a dynamical symmetry of the
model. However, if we consider the two-particle case in which the potential
depends only on the spatial distance between the particles, so that H =
p21
2m1

+
p21
2m1

+V (|x1−x2|), then a boost of both particles by the same velocity
v will commute with the dynamical map associated with this Hamiltonian.
Thus, a Galilean boost in this case will count as a symmetry of the model.
A Galilean boost by velocity v takes the form
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x′1 = x1 − vt (57)

x′2 = x2 − vt (58)

p′1 = p1 −m1v (59)

p′2 = p2 −m2v. (60)

In the quantum mechanical model, there is likewise a symmetry of the dy-
namics that typically also goes under the name of a Galilean boost. As in
the classical model, these transformations are parametrised by a velocity v;
under such a transformation, the wave function ψ(x1, x2, t) transforms to
ψ′(x′1, x

′
2, t
′), given by

ψ′(x′1, x
′
2, t
′) = e−i(m1v·x1+m2v·x2− 1

2
m1v2t− 1

2
m2v2t)ψ(x1, x2, t) (61)

with x′1 = x1 − vt, x′2 = x2 − vt and t′ = t (see, for instance [24], p.75). It is
straightforward to see that under the bridge map given by the expectation
value, the quantum mechanical Galiliean boost induces a classical Galilean
boost:

(〈ψ′|x̂1|ψ′〉, 〈ψ′|x̂2|ψ′〉; 〈ψ′|p̂1|ψ′〉, 〈ψ′|p̂2|ψ′〉) (62)

= (〈ψ|x̂1|ψ〉 − vt, 〈ψ|x̂2|ψ〉 − vt; 〈ψ|p̂1|ψ〉 −m1v, 〈ψ|p̂2|ψ〉 −m2v) , (63)

thereby satisfying condition 2a). Thus, for any Galilean boost on phase space,
there exists a corresponding transformation on Hilbert space that induces it
via the expectation value. To satisfy condition 2b), though, it is necessary
that the composition of two Galilean boosts on phase space , by v and then
by v′, agree approximately with the transformation induced under the bridge
map by the composition of the corresponding boosts on Hilbert space. The
composition of two boosts on Hilbert space gives

ψ′′(x′′1, x
′′
2, t
′′) = e−i[m1(v+v′)·x1+m2(v+v′)·x2− 1

2
m1(v2+v′2)t− 1

2
m2(v2+v′2)t]ψ(x1, x2, t)

(64)
with x′′i = xi − (v + v′)t for i = 1, 2 and t′′ = t. Note that this is equal to
a single boost by v + v′ up to a global time-dependent phase factor (m1 +
m2)(v · v′)t, which does not make a difference to any of the amplitudes of the
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theory, or to rays in projective Hilbert space. Under the composed boosts,
it is straightforward to see that

(〈ψ′′|x̂1|ψ′′〉, 〈ψ′′|x̂1|ψ′′〉; 〈ψ′′|p̂1|ψ′′〉, 〈ψ′′|p̂2|ψ′′〉) (65)

= (〈ψ|x̂1|ψ〉 − (v + v′) t, 〈ψ|x̂2|ψ〉 − (v + v′) t; 〈ψ|p̂1|ψ〉 −m1 (v + v′) , 〈ψ|p̂2|ψ〉 −m2 (v + v′))
(66)

thereby ensuring the validity of condition 2b) with respect to classical Galilean
symmetry.

Limitations of the Quantum Model w/o Decoherence
Note that the quantum models to which the classical models considered

so far have been reduced make no mention of environmental decoherence, and
thus allow for arbitrary coherent superpositions of the degrees of freedom in
question. Moreover, in chaotic systems, the quantum models predict that
initially narrow wave packets will spread on fairly short time scales beyond
the coherence lengths that typically characterise macroscopic or mesoscopic
systems that are known to exhibit approximately Newtonian behavior (see
[39] Ch.3 for detailed discussion of this point). Thus, although the classi-
cal model considered here may serve as an effective (if only approximate)
description of such systems, the quantum model does not insofar as it will,
on relatively short timescales, predict coherence lengths that disagree dra-
matically with those observed in these systems. Thus, it is necessary to
replace the quantum model considered here with a more sophisticated one
that takes account of environmental degrees of freedom and thereby contin-
ually suppresses the coherence length of the system in question; this is done
in another paper. Nevertheless, the reduction involving the quantum model
without environmental decoherence serves to provide a simplified illustration
the basic components of DS reduction, if we momentarily allow ourselves to
overlook its shortcomings as a description of real, approximately Newtonian
systems.

5 Precursors to DS Reduction

The starting point of the DS approach to reduction, the commutation of
high- and low-level dynamics with some bridge map, is a variation on an old
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idea. While applications of this idea in physics have thus far been restricted
primarily to the context of reductions in statistical mechanics - where the
bridge map usually consists of some sort of coarse-graining function - I claim
that, suitably refined, this pattern of reasoning can be applied with a great
deal more generality to reductions across many branches of physics. In this
section, I discuss the work of a number of authors who propose different
variants of the dynamical commutation condition, highlighting differences
from the DS approach where they occur. It is worth noting from the outset
that none of these other variants imposes the additional condition requiring
compatibility of the bridge map (though they do not call it that) with the
symmetries of the models, nor do any explicitly require the bridge map to
be time-independent. Some of these other variants of the dynamical com-
mutation condition also impose requirements on the bridge map that I do
not, conditions which preclude their application to a number of inter-theory
relations to which DS reduction does apply. To distinguish the general idea
that dynamics should commute with some function between state spaces of
the high- and low- level models from its formulation specifically within the
context of DS reduction, I will refer to the general idea as the ‘dynamical
commutation’ condition, and to my own particular formulation of it as con-
dition DSR1.

I was first introduced to the idea of approaching reduction in terms dy-
namical commutation through discussions with my doctoral thesis supervisor,
David Wallace, who has for some time been advocating use of the dynam-
ical commutation approach to reduction both in writing and informally in
conversation. Wallace’s [39], Ch. 9 proposes a version of this condition in
the context of attempting to explain the direction of wave function branch-
ing in the Everett interpretation of quantum mechanics. In Ch. 2 he also
suggests a generalisation of this condition formulated in the mathematical
language of histories rather than of states evolving in time; this approach
thus involves a map not between state spaces but rather between the his-
tory spaces, though Wallace does not impose any precise constraints on this
map. Finally, I also encountered a variant of the dynamical commutation
condition in David Albert’s Columbia University course on the foundations
of statistical mechanics.

Both Giunti and Yoshimi have suggested their own variants of the dy-
namical commutation condition with regard to the reduction of dynamical
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systems generally, though their formulations of this condition do not accom-
modate many reductions within physics, where (I claim) it is especially salient
[15], [44]. Giunti, for example, requires that his version of the bridge map,
which he calls an ‘emulation,’ be an injective, or one-to one, function. As we
have seen, the bridge map of the DS approach imposes no such requirement,
and may be many-one; in fact, as will be shown in another paper where I
consider a range of particular applications of the DS approach, bridge maps
typically are not one-to-one functions. Yoshimi, on the other hand, develops
his approach primarily to accommodate reductions involving mental phenom-
ena, and requires that his counterpart to the bridge map, which he calls a
‘supervenience function,’ be an onto function between state spaces that also
furnishes a partitioning of the low-level state space; again, the bridge map of
DS reduction is subject no such requirements. The version of the dynamical
commutation condition that Yoshimi proposes is very close to the ‘meshing’
condition proposed by Butterfield which I discuss below, and many of the
differences that I highlight between the DS approach and Butterfield’s ap-
proach apply also to the contrast between DS reduction Yoshimi’s approach.
To highlight yet another difference between the DS approach and those of
Giunti and Yoshimi, neither author demands compatibility of their bridge
map counterparts with the symmetries of the models, nor do they explicitly
insist on time-independence of these maps.

While much of his work on reduction and emergence focuses on limit-
based and Nagelian approaches, Butterfield also discusses inter-level rela-
tions in physics in terms of dynamical systems. Like condition DSR1, the
core condition for reduction that Butterfield’s analysis draws on, which he
calls ‘meshing’ of ‘macro-’ and ‘micro-’ level dynamics, involves the commuta-
tion of some ‘coarse-graining’ function between micro- and macro-level state
spaces with the time-evolution on those spaces. The macro-level state space
is identified with a partition of the micro-level state space, and the coarse-
graining function simply maps an element of the micro-level space into the
cell of the partition to which it belongs. On Butterfield’s account, the closest
analogue to what I call the high-level model is the macro-level model; to
what I call call the low-level model, the micro-level model; and to what I
call the bridge map, the coarse-graining function [8]. Note that Butterfield’s
terminology draws heavily on examples of reduction in statistical mechanics.

Butterfield characterises the dynamics of a macro- and a micro- model as
‘meshing’ relative to a particular partitioning P = {Ci} of the micro-level
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state space S when the set obtained by applying the micro-evolution law
T : S → S to an element of P is itelf an element of P , so that for any i,
T (Ci) = Cj for some j. Thus, the micro-level dynamics T : S → S induces,
via the coarse-graining, some macro-level dynamics T̄ : P → P . This will
not be the case for an arbitrary partition of S since two microstates in the
same partition may evolve under the microdynamics into separate elements
of the partition, so that micro-level determinism gives rise to macro-level
indeterminism (where the macro state space corresponds to the partitioning
of the micro state space).

However, Butterfield acknowledges that this concept of meshing may not
apply to many realistic cases in which one dynamical system purportedly
reduces to another - such as the reduction of models involving the Boltz-
mann, Navier-Stokes and diffusion equations to some micro-physical mechan-
ical model - and so suggests that the following modifications and allowances
to his notion of meshing may be required before these realistic examples can
be counted as instances of it (I quote directly from Butterfield here):

• ‘the meshing may not last for all times;

• the meshing may apply, not for all micro-states s, but only for all except
a “small” class;

• the coarse-graining may not be so simple as paritioning S; and indeed

• the definition of the micro-state space S may require approximation
and-or idealisation, especially by taking a limit of a parameter: in
particular, by letting the number of microscopic contitutents tend to
infinity, while demanding of course that other quantities, such as mass
and density, remain constant or scale appropriately.’ [8]

Indeed, all of the first three of these considerations are already built into the
definition of DS reduction. DS reduction is defined only relative to a particu-
lar timescale and margin of error and for a particular, potentially restricted,
domain d of states in the low-level state space; moreover, the bridge-map of
DS reduction need not yield a partitioning of the low-level space (that is, the
inverse images under B of points in Sh need not form a partition of Sl; indeed,
it will not necessarily be the case that every point in Sh even has an inverse
image since it may not be mapped to under the bridge map). Butterfield’s
fourth concern only comes into play in certain special cases, for example in
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reductions where quantum field theory or statistical mechanics furnishes the
reducing model, since both of these theories typically involve taking limits as
the number of degrees of freedom in the theory goes to infinity. In the case of
quantum field theory, this fourth concern of Butterfield’s is averted by taking
a ‘cut-off’ approach to quantum field theory and thereby treating the QFT
model in question as a model of a large-but-finite, rather than an infinite,
number of degrees of freedom (see, for instance, [38] for a development of the
cut-off approach to QFT).

While the modifications to his meshing condition that Butterfield suggests
anticipate a number of differences between meshing and DS reduction, it will
be worthwhile to explore these differences in a bit more detail. One essential
difference, just noted, is that while Butterfield’s meshing condition requires
that the coarse-graining function (his counterpart of the bridge map) be
associated with some partition of the low-level state space, the bridge map
need not take as its domain the whole of Sl, and therefore need not prescribe
a partitioning of Sl; moreover, the bridge map need not take the whole of
Sh as its image, providing still another reason why the high-level state space
cannot in general be regarded on the DS approach as a partition of the low-
level space.

Furthermore, if a micro-level system obeys Butterfield’s meshing condi-
tion with respect to some partition, then for any macro-level initial condition
- i.e., some partition cell - it must be the case that the deterministic dynamics
induced on the partition by the micro-level dynamics yield the same result
irrespective of the microcondition that instantiates that initial macrocon-
dition. Since any element of the partition can serve as the macro- initial
condition, and since every element of the micro-level state space belongs to
some element of the partition, Butterfield’s meshing condition requires that
the whole micro-level state space (or at least all but a very small subset of
this space) serve as the domain that approximates the macro-level dynam-
ics under coarse-graining; by contrast, in DS reduction, the domain of Sl
whose induced dynamics under the bridge map approximates the high-level
dynamics is not required to be the entirety of the low-level space.

Finally, on Butterfield’s approach, the coarse-graining function associated
with a partition that respects the meshing condition is not required to respect
the symmetries of the low-level model insofar as it does not require that
for any symmetry of the deterministic macrodynamics, there will be some
symmetry of the micro-level dynamics that induces it under coarse-graining
- nor does it entail that the group structure of the micro-level symmetries
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induce the group structure of the macro-level symmetries on the partition.
A final, though potentially less substantive, difference between Butter-

field’s account of dynamical commutation and the DS approach is that while
the inspiration for the DS approach comes from examples of reduction in sta-
tistical mechanics, on the DS approach the reduced and reducing models need
not correspond, respectively, to models of macroscopic and microscopic phe-
nomena, nor does the bridge map need to correspond to a ‘coarse-graining’
in any sense other than its being a many-one function (certainly, it is not
required to furnish a partition of Sl, nor is it required to map onto the whole
of Sh). Of course, if Butterfield is using the terms ‘macro-’ and ‘micro-’
merely to suggest some analogy with statistical mechanical reductions, and
not by way of restricting this approach to reductions in which high- and
low- level descriptions correspond respectively to ‘macro-’ and ‘micro-’ level
phenomena, then this distinction collapses into one merely of terminology.

Within statistical mechanics, Lanford’s Theorem provides an explicit in-
stance of the dynamical commutation 9 (see, for instance, [20], [21], [22],
[36]). Lanford’s Theorem shows that the Boltzmann equation, which de-
scribes the behavior of the distribution ft(~x, ~p) in 6-dimensional µ-space of
particles in a dilute gas (and assumes the molecules in the gas are modelled
as solid spheres), can be derived from the formalism of classical Hamiltonian
mechanics, which prescribes via the Liouville equation the time evolution
of a probability distribution ρt(~x1, ~p1, ..., ~xN , ~pN). The theorem establishes a
particular bridge or correspondence between probability distributions ρ on
phase space and distributions f on µ-space, such that to any probability dis-
tribution ρ there corresponds a unique f , but such that there are in general
many ρ that may yield the same f under this correspondence. The theorem
then shows that provided certain constraints are imposed on the initial phase
space probability distribution ρ0 at some time t = 0, the evolution of f in-
duced by the evolution of ρ via this correspondence approximately satisfies
Boltzmann’s equation for some time scale τ (what this time scale turns out
to be depends on the strength of the assumptions made about the evolu-
tion of ρ). Thus, Lanford’s Theorem shows that, applied to some domain
of possible initial probability distributions ρ0, the low-level dynamics (The
Liouville Equation) for some time t followed by an application of the bridge
map or coarse-graining yields approximately the same final distribution ft as

9Thanks to Jeremy Butterfield for pointing me to this example.
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does the bridge map followed by an application of the high-level dynamics
(The Boltzmann equation) for the same time t, thus satisying the dynamical
commutation condition.

Werndl has shown that for every deterministic dynamical system, there
is an indeterministic model that reproduces the same empirical predictions
to within some given margin of error, and also that for every indeterministic
dynamical model, there is a deterministic one that is observationally indis-
tinguishable from it, again to within some margin of error [40], [41], [42],
[43]. All of the models considered in this thesis are deterministic, although
it is possible (particularly in the case of the quantum theories I consider)
that observationally equivalent stochastic models can be chosen in place of
these; in such a case, it would be necessary to extend the account of reduction
among deterministic models that I provide to reductions among indeterminis-
tic models, as well as to reductions of deterministic to indeterministic models,
and reductions of indeterministic to deterministic models.

6 DS Reduction and Nagelian Reduction

Dynamical systems reduction incorporates a number of basic insights from
Nagelian reduction, though there are also a number of crucial differences
between the two approaches.

6.1 DS Reduction and Nagelian Reduction: Parallels

Perhaps the most salient parallel between DS and Nagelian reduction is that
both make use of special correspondences between the elements of the high-
and low-level descriptions of a particular system. More specifically, the bridge
maps of DS reduction serve much the same purpose as the bridge laws of GNS
reduction, insofar as they identify those elements of the low-level description
that approximately mimic the behavior of particular elements in the high-
level description.

However, the analogy between the two approaches extends further than
this. Recall that the GNS account of theory reduction distinguishes four
‘theories’: the low level theory Tl, the high level theory Th, the image theory
T ∗h , and the analogue theory T ′h. On the GNS approach, T ∗h is formulated
in the language of Tl and deduced from Tl without the use of bridge laws;
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T ′h is then obtained from T ∗h by straightforward bridge law substitution, and
is formulated in the language of Th; if the reduction is successful, T ′h will
be ‘strongly analogous’ to Th. It is in this sense that a high level theory
Th may be reduced to a low level theory Tl on the GNS account. On the
DS approach to reduction, I claim, the portion of a reduction that involves
demonstrating that condition DSR1 is satisfied proceeds much according to
the same basic outline, with a major revision being that it is models rather
than whole theories that are reduced. Let us exhibit these parallels more
explicitly.

6.1.1 Image Models, Bridge Laws, Analogue Models and ‘Strong
Analogy’

On the DS account of the reduction of a high-level model Mh to a low level
model Ml, one can, by analogy with the GNS approach, identify an image
model M∗

h and an analogue model M ′
h. It is the analogue model that approx-

imates, or is ‘strongly analogous’ to, the high-level model Mh.
The image model M∗

h is formulated using elements of the model Ml - that
is, in terms of the mathematical structures defined on Ml’s state space - and
can be deduced from Ml solely on the basis of a restriction to a particular
domain of states in Sl. Its dynamics are given by the relation,

Image Model Dynamics:

d

dt
B
(
xl(t)

)
≈ fh

(
B
(
xl(t)

)
, t
)

(67)

which is assumed to hold for xl in some nonempty set d, where d is preserved
under the dynamical evolution over some limited timescale τ . Note that
this relation approximately takes the same form as the high-level equation of
motion dxh

dt
= fh(x

h, t), but with xh replaced by its counterpart B(xl) in the
low-level model. Recall, moreover, that satisfaction of image model dynamics
for some such domain d suffices to ensure satisfaction of the condition DSR1.

By further analogy with the GNS account, the analogue model is obtained
from the image model through the bridge map substitution,

Bridge Map Substitution:
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x′h ≡ B(xl) (68)

and its dynamics are specified by the equation of motion:

Analogue Model Dynamics:

dx′h

dt
≈ fh(x

′h, t). (69)

The domain of applicability of this model within Sh is the image domain
B(d). Note that the expression B(xl), which occurs in the image model, is
an expression built from structures within the low level model Ml - in this
sense the image model is formulated in the mathematical ‘language’ of the
low-level model. On the other hand, the more condensed notation of the
analogue model conceals the detailed construction of x′h from quantities in
the low-level model Ml, regarding x′h simply as a point in Sh rather than as
a quantity constructed from elements of Ml; in this sense one may view the
analogue model as formulated in the mathematical ‘language’ of the high-
level model.

For a reduction to take place in the GNS account, the analogue model
M ′

h must be ‘strongly analogous’ to the high level model Mh. Within the
context of the GNS model the condition of strong analogy is ambiguous,
though is intended to include some requirement of approximate agreement
between M ′

h and Mh. On the DS approach, the relation of strong analogy is
unambiguous, and specifically requires that

‘Strong Analogy’ :

∣∣x′h(t)− xh(t)∣∣ < δ ∀ 0 ≤ t ≤ τ, (70)

where τ again is the reduction timescale. Note that this ‘strong analogy’
claim is just the condition DSR1 rewritten using bridge map substitution
x′h(t) ≡ B

(
Dl(x

l
0, t)
)

and the definition xh(t) ≡ Dh

(
B(xl0), t

)
.
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6.2 DS Reduction and Nagelian Reduction: Disanalo-
gies

The first and most general distinction between DS and Nagelian reduction is
that the former concerns the reduction of individual models while the latter
concerns the reduction of theories. Nagelian reduction, moreover, specifically
requires the derivation of the laws of the high-level theory from those of the
low-level theory. In the case of DS reduction, to be sure, it is also necessary
that the laws of the high-level model - which I take it are most naturally
associated in the DS picture with the equations of motion of the model - be
derivable from those of the low-level model in the sense that it is possible to
derive some image laws from the low-level model, which serve to approximate
the laws of the high-level theory via bridge map substitution and the strong
analogy relation.

Yet models of physical theories involve more structure than simply their
dynamics - for example, the structures associated with their state spaces
and symmetries on those state spaces. In models of classical Hamiltonian
mechanics, for example, the dynamical equations, as expressed in terms of
Poisson brackets with the Hamiltonian, are but a portion of the larger sym-
plectic structure of the phase space manifold, which serves as a unified geo-
metrical framework in which to understand not only the dynamics but the
symmetries of the theory as well as the whole formalism of canonical trans-
formations. In models of non-relativistic quantum mechanics, likewise, the
dynamical law specified by the Schrodinger equation is but a portion of the
larger mathematical apparatus associated with Hermitian operators, unitary
transformations, and the like. Unlike Nagelian reduction, which focuses on
the derivation of the high-level theory’s laws, DS reduction more generally
seeks to identify substructures of the low-level model that approximately in-
stantiate the structures of the high-level model in some domain. While the
dynamical laws of the high-level model certainly represent one crucial piece
of the high-level model’s structure that must be instantiated by the low-level
model (and the fact of this instantiation is one that must be derived from
the low-level model), they do not exhaust it.

Another difference between DS and Nagelian reduction is that, while the
bridge maps of DS reduction and the bridge laws of Nagelian reduction do
fulfill similar roles, DS reduction is framed in terms of the existence of a
mathematical function (the bridge map) satisfying certain criteria, while the
bridge laws of Nagelian reduction are understood as separate assumptions
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made independently of the high-and low- level theories, which are necessary
to derive the appropriate analogue to the high-level laws. That is, the DS
approach takes it as a given that the high- and low- level models succeed
in describing the behavior of some system, and a reduction is said to occur
only if a certain mathematical relationship obtains between these models -
namely, the existence of a function between the state space satisfying the
necessary mathematical conditions stated above. The Nagelian approach, on
the other hand, treats bridge laws as independent auxiliary assumptions that
supplement the low-level theory to facilitate the derivation of an analogue to
the laws of the high-level theory.

On a final and perhaps more controversial point - which I do not have
space to defend in detail here but instead make in order to provoke further
discussion - in the cases where DS reduction applies, the mathematically
precise nature of its conditions and of its definitions serves to expel much
of the ambiguity that afflicts corresponding notions in the Nagelian acount:
in particular, the concepts of bridge law and ‘strong analogy.’ The discus-
sion of Nagelian bridge laws continues to be fraught with controversy over
a variety of issues, such as whether bridge laws need to be treated as iden-
tity claims, the question as to whether they deserve to be called empirical
‘laws’ in the same sense that equations of motion are or are merely conven-
tions, and various questions surrounding the issue of multiple realisability.
Likewise, the meaning of ‘strong analogy’ in the GNS account is also highly
ambiguous in the sense that it is not clear precisely which elements of T ′h
need to approximate corresponding elements of Th for the two theories to
be strongly analogous. In the mathematically precise context of dynamical
systems reduction, I suggest, much of this ambguity is avoided.

7 DS Reduction and Limits

Within the framework of DS reduction, the signficance of limits, understood
not in the literal sense of taking a mathematical limit (which, as I argued in
section 2.2, is problematic), but rather as a restriction on the values of some
appropriately chosen dimensionless parameters εi, is to specify constraints on
parameters specifying the state space and dynamics of the low-level model, as
well as on the domain d of states in the low-level model for which the quantity
specified by the bridge map satisfies the DSR conditions to within some given
margin of approximation and over some given time scale. However, nothing
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in the definition of DS reduction requires that these restrictions be imposed
in the manner specified by limit-based reduction (construed according to
our last definition). Indeed, as will become more apparent in another paper
where I present case studies of DS reduction, there are a number of cases of
DS reduction where these restrictions are not most perspicuously imposed
by requiring εi << 1 for some dimensionless parameters εi.

In many cases, results that involve ‘taking the limit’ (again, on our up-
dated construal) are strongly relevant to the reduction of models in the DS
framework, but their role is secondary in that they serve as a particular
means of satisfying the DSR conditions, which themselves make no reference
to limits. Note, moreover, that while in the limit-based approach the sense
in which ‘Th approximates Tl’ is left vague, on the DS approach the sense in
which a model Mh approximates another model Ml is made precise: bridge
maps explicitly identify the quantities in the low-level model that approxi-
mate the dynamics and symmetry transformation properties of states in the
high-level model, where the sense of approximation or ‘strong analogy’ is
specified exactly by the norm on the high-level state space.

8 Limitations of the DS Approach

While the DS approach encompasses a very wide range of reductions in
physics, there are some that it does not include. In particular, cases in
which:

• one of the two models involved in the reduction is not describable as a
dynamical system: for instance, because one of the models is not deter-
ministic; or because (for example in the context of general relativity)
no global foliation of the solution space into state spaces at different
times is possible (in general relativity this is only possible if the space-
time is globally hyperbolic); or because the laws of the theory are not
specified as first-order differential equations, but as constraints of some
other form (as is the case with the Ideal Gas Law);

• the models do not naturally share some common time parameter; for
example, special relativity and general relativity both admit many pa-
rameterisations of time; a reduction of the former to the latter would
first require some clear correspondence between a given time parame-
ter in SR to some time parameter in GR; similar considerations apply
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to the reduction of GR to speculative models of quantum gravity (for
instance, models of string theory or loop quantum gravity).

While these cases serve to highlight the limitations of the DS approach, they
also suggest ways in which we might try to generalise it - a task I leave
for future work. The DS approach offers a promising starting point from
which to develop frameworks for reduction that are even more inclusive and
preserve the DS account’s successes in the cases where it does work.

9 Conclusion

In the preceding sections, I have spelled out the basic elements of an alterna-
tive concept of reduction in physics, one that I have argued is distinct from
the popular limit-based and Nagelian approaches, although it bears some sig-
nificant parallels with Nagelian reduction relating to the use of bridge laws,
and may incorporate limit-based results as a means of specifiying the domain
of low-level models and states that satisfy the DSR conditions. One of the
crucial distinctions between this approach and the limit-based and Nagelian
approaches is that it concerns reduction only at the level of individual mod-
els of physical theories, not the wholesale reduction of entire theories; on
the DS view, reduction of theories proceeds piecemeal, via the reduction of
individual models of the high-level theory. Moreover, rather than seeking to
provide a completely general account of reduction across all of the sciences,
or all of physics, this account is specialised to the framework of dynamical
systems models in physics. While this restriction limits the applicability of
the DS view relative to the intended scope of other approaches to reduction,
the specialisation to the precisely defined context of dynamical systems mod-
els permits us to analyse reduction in terms that are in some respects more
precise and less ambiguous than the terms in which other approaches have
attempted to cast the conversation about reduction in physics.

Moreover, the very wide range of models in physics that can be treated
as dynamical systems should make this of interest as a general framework
for reduction in physics. In a separate paper, I demonstrate the application
of the DS approach to reduction in a wide range of cases, including the re-
duction of 1) ‘Center of Mass’ Newtonian mechanics to Newtonian mechan-
ics of constituent particles, 2) Newtonian mechanics to special relativistic
mechanics, 3) non-relativistic classical mechanics to unitary non-relativistic
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quantum mechanics, 4) nonrelativistic quantum mechanics of a spin-1/2 par-
ticle to the Dirac theory of a relativistic spin-1/2 particle, 5) non-relativistic
quantum mechanics of a free spinless particle to relativistic quantum field
theory of a free scalar particle, 6) master equation descriptions of quantum
mixed-state dynamics for some subsystem to quantum pure-state dynamics
of system+environment combination. Finally, I have hinted at some ways in
which this approach might be generalized in order to accommodate a wider
range of reductions in physics, though leave elaboration of the details to
future work.
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[1] V. Allori, D. Dürr, S. Goldstein, and N. Zangh́ı. Seven steps towards
the classical world. Journal of Optics B: Quantum and Semiclassical
Optics, 4(4):S482, 2002.

[2] R. Batterman. The Devil in the Details: Asymptotic Reasoning in Ex-
planation, Reduction, and Emergence. Oxford University Press, 2002.

[3] R. Batterman. Intertheory relations in physics. Stanford Encyclopedia
of Philosophy, 2007.

[4] M. Berry. Asymptotics, singularities and the reduction of theories. In
Brian Skyrms Dag Prawitz and Dag Westerst̊ahl, editors, Logic, Method-
ology and Philosophy of Science, IX: Proceedings of the Ninth Interna-
tional Congress of Logic, Methodology and Philosophy of Science, Upp-
sala, Sweden, August 7–14, 1991 (Studies in Logic and Foundations of
Mathematics: Volume 134), volume 134, pages 597–607, 1994.

[5] A.D. Boozer. Dynamical symmetries in classical mechanics. European
Journal of Physics, 33(1), 2012.

50



[6] J. Butterfield. On symplectic reduction in classical mechanics. In Jeremy
Butterfield and John Earman, editors, Philosophy of Physics. North
Holland, 2006.

[7] J. Butterfield. Emergence, reduction and supervenience: a varied land-
scape. Foundations of Physics, 41(6):920–959, 2011.

[8] J. Butterfield. Laws, causation and dynamics at different levels. Inter-
face Focus (Royal Society London), 1:1–14, 2011.

[9] F. Dizadji-Bahmani, R. Frigg, and S. Hartmann. Who’s afraid of
Nagelian reduction? Erkenntnis, 73(3):393–412, 2010.

[10] John Earman. A Primer on Determinism. Kulwer Academic Publishers,
1986.

[11] J. Ehlers. On limit relations between and approximate explanations of
physical theories. In Logic, Methodology and Philosophy of Science, VII.
Elsevier Science, 1986.

[12] P. Fazekas. Reconsidering the role of bridge laws in inter-theoretical
reductions. Erkenntnis, 71(3):303–322, 2009.

[13] G. Sparno G. Vilasi G. Landi, G. Marmo. A generalized reduction proce-
dure for dynamical systems. Modern Physics Letters A, 6(37):3445–3453,
1991.

[14] A. Simoni G. Marmo, E. J. Saletan. A general setting for reduction of
dynamical systems. Journal of Mathematical Physics, 20, 1979.

[15] M. Giunti. Emulation, reduction, and emergence in dynamical systems.
http://philsci-archive.pitt.edu/2682/, 2006.

[16] H. Goldstein. Classical Mechanics, Third Edition. Addison-Wesley,
2001.

[17] C.A. Hooker. Towards a general theory of reduction. part i: Historical
and scientific setting. Dialogue, 20(01):38–59, 1981.

[18] J. Kim. Mind in a Physical World: An Essay on the Mind-Body Problem
and Mental Causation. MIT press, 2000.

51



[19] C. Kittel and H. Kroemer. Thermal physics. Wiley New York, 1969.

[20] O.E. Lanford. Time Evolution of Large Classical Systems, volume 38 of
Lecture Notes in Theoretical Physics. Springer, Berlin, 1975.

[21] O.E. Lanford. On the derivation of the Boltzmann equation. Asterisque,
40:117–137, 1976.

[22] O.E. Lanford. The hard sphere gas in the Boltzmann-grad limit. Physica
A: Statistical Mechanics and its Applications, 106:70–76, 1981.

[23] A. Marras. Emergence and reduction: Reply to Kim. Synthese,
151(3):561–569, 2006.

[24] Eugen Merzbacher. Quantum Mechanics, Third Edition. John Wiley
and Sons, Inc., 1998.

[25] Ernest Nagel. The Structure of Science. Routledge and Kegan Paul,
1961.

[26] T. Nickles. Two concepts of intertheoretic reduction. The Journal of
Philosophy, pages 181–201, 1973.

[27] John Norton. The dome: An unexpectedly simple failure of determinism.
Philosophy of Science, 75(5):786–798, 2008.

[28] John Norton. Approximation and idealization: Why the difference mat-
ters. Philosophy of Science, 79(2):207–232, 2012.

[29] A. Julius G. Pappas P. Tabuada, A. D. Ames. Approximate reduction
of dynamical systems. arXiv:0707.3804, 2007.

[30] F. Rohrlich. Pluralistic ontology and theory reduction in the physical
sciences. The British Journal for the Philosophy of Science, 39:295–312,
1988.

[31] J.J. Sakurai, S.F. Tuan, and E.D. Commins. Modern quantum mechan-
ics. American Journal of Physics, 63:93, 1995.

[32] K.F. Schaffner. Approaches to reduction. Philosophy of Science, pages
137–147, 1967.

52



[33] K.F. Schaffner. Discovery and explanation in biology and medicine. Uni-
versity of Chicago press, 1994.

[34] E. Scheibe. Die Reduktion Physikalischer Theorien, Teil I, Grundlagen
und Elementare Theorie, volume 1. Berlin: Springer, 1997.

[35] E. Scheibe. Die Reduktion Physikalischer Theorien, Teil II, Inkommen-
surabilitat und Grenzfallreduktion. Berlin: Springer, 1999.

[36] Jos Uffink. Time’s arrow and Lanford’s theorem. In Seminaire Poincare
XV Le Temps, pages 141–173, 2010.

[37] B.C. Van Fraassen. Laws and Symmetry. Oxford University Press, 1989.

[38] D. Wallace. In defence of naivete: The conceptual status of Lagrangian
quantum field theory. Synthese, 151:33–80, 2006.

[39] D. Wallace. The Emergent Multiverse: Quantum Theory According to
the Everett Interpretation. Oxford University Press, Oxford, 2012.

[40] Charlotte Werndl. Are deterministic and indeterministic descriptions
observationally equivalent? Studies in History and Philosophy of Mod-
ern Physics, 40:232–242, 2009.

[41] Charlotte Werndl. On observational equivalence of continuous-time de-
terministic and indeterministic descriptions. European Journal for the
Philosophy of Science, 1:193–225, 2011.

[42] Charlotte Werndl. Evidence for the deterministic or indeterministic de-
scription? Journal for General Philosophy of Science, 43:295–312, 2012.

[43] Charlotte Werndl. On choosing between deterministic and indeter-
ministic models: Underdetermination and indirect evidence. Synthese,
190:2243–2265, 2013.

[44] J. Yoshimi. Supervenience, dynamical systems theory, and non-
reductive physicalism. The British Journal for the Philosophy of Science,
63(2):373–398, 2012.

[45] W.H. Zurek and J.P. Paz. Quantum chaos: a decoherent definition.
Physica D: Nonlinear Phenomena, 83(1):300–308, 1995.

53


