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ABSTRACT

We present a segmentation algorithm using a statistical deformation model constructed from CT data of adult
male pelves coupled to MRI appearance data. The algorithm allows the semi-automatic segmentation of bone
for a limited population of MRI data sets. Our application is pelvic bone delineation from pre-operative MRI
for image guided pelvic surgery. Specifically, we are developing image guidance for prostatectomies using the
daVinci telemanipulator. Hence the use of male pelves only. The algorithm takes advantage of the high contrast
of bone in CT data, allowing a robust shape model to be constructed relatively easily. This shape model can
then be applied to a population of MRI data sets using a single data set that contains both CT and MRI data.
The model is constructed automatically using fluid based non-rigid registration between a set of CT training
images, followed by principal component analysis. MRI appearance data is imported using CT and MRI data
from the same patient. Registration optimisation is performed using differential evolution. Based on our limited
validation to date, the algorithm may outperform segmentation using non-rigid registration between MRI images
without the use of shape data. The mean surface registration error achieved was 1.74 mm. The algorithm shows
promise for use in segmentation of pelvic bone from MRI, though further refinement and validation is required.
We envisage that the algorithm presented could be extended to allow the rapid creation of application specific
models in various imaging modalities using a shape model based on CT data.
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1. INTRODUCTION

Upcoming applications in image guided minimally invasive surgery will require the ability to rapidly segment
and classify the large amount of information currently available from pre-operative patient scans. Currently
the majority of segmentation is done manually by trained radiologists, coupling anatomical knowledge with the
appearance of the scans to identify relevant physical structures. Due to the increasing amount of, and range of
applications for, patient scan data there is a pressing need for fast, automatic segmentation methods.

The intended application for this segmentation is minimally invasive surgery on the prostate. We seek to
construct a patient specific anatomical model prior to surgery. This model could have several applications
including intraoperative guidance for the surgeon, surgical simulation prior to or during the procedure, or the
determination of the optimum port placement of laparoscopic tools.1 The model can be registered to the patient
in theatre using existing ultrasound based methods as utilised by Shao et al2 and Barratt et al .3 Our first target
for segmentation is the pelvic bone. This large, rigid structure presents an excellent target for the intra-operative
registration of the patient specific model, either through trans-rectal or freehand ultrasound. Knowledge of the
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bone surface will also aid the subsequent segmentation of surrounding soft tissues using the bone to initialise
anatomy models.4–6

Magnetic Resonance Imaging (MRI) data is gathered routinely for patients undergoing prostatectomies at
Guy’s Hospital, Computed Tomography (CT) data, however, is generally unavailable, nor can we justify an
additional CT scan for the construction of an anatomical model. Therefore we are seeking to develop a method
for the segmentation of the pelvic bone using MRI data only.

1.1 Existing segmentation methods for bone in MRI.

Several algorithms exist in the literature that aim to segment bone from MRI images, either in 2D or 3D4,7–9

without the use of prior shape knowledge. These approaches process the image intensities to create a measure
of the local texture around each pixel/voxel. The consensus is that bone cannot be segmented using MRI
intensity values directly due to overlapping intensities, intensity inhomogeneity over homogeneous anatomy
due to scanning artefacts, and the lack of strong edges. Strzelecki7 and Carballido-Gamio et al8 use texture
information to segment bony structure in the ankle and lower spine respectively. Kapur et al4 use region growing
based on texture information followed by active contour smoothing to segment the femur and tibia. Lorigo et

al9 use an active contour directly to segment the femur and tibia.

These algorithms will fail in conditions where the measure of image texture used is similar for bone and
surrounding tissue. These failures are easily spotted using our understanding of what shape the bone should take.
Building prior knowledge of the expected bone shape into the segmentation algorithm should therefore improve
performance. Hoad and Martel10 do this for the lower spine, modelling the spinal column as an elliptical column
and masking data anterior to the spinal column. Cootes and Taylor11 mention the use of an active appearance
model of the knee based on MRI data to segment bone. The shape of the pelvis has been successfully described
using a statistical shape model by Lamecker et al ,12 who used their model to accurately segment bone from
CT images. Yao and Taylor13 incorporate CT intensity information into their pelvic bone model. Chan et

al14 demonstrate the use of a pelvic CT statistical shape model for registration using ultrasound. We found no
instances of the use of a pelvic bone shape model built or used with MRI data.

In this paper we combine shape information for the adult male pelvis derived from CT data with appearance
information from an MRI volume. CT data has been used to construct the shape model due to the higher
contrast of bone in CT data. This enables rapid, accurate, and largely automatic construction of the shape
model without the need for segmentation of the bone in the training set. We use a patient data set containing
both CT and MRI data for the pelvis to warp the MRI data to the mean shape of the model. This warped MRI
appearance data can be used in conjunction with the modes of variation of the model to perform registrations
with other MRI only data sets with similar appearance. Our shape model is built using similar methods to Heitz
et al15 and Rueckert et al .16 We refer to the model as a statistical deformation model (SDM) as it is built using
a set of deformation fields. Segmentation of the target MRI data sets can be achieved by performing a manual
or semi-automatic segmentation of one CT data set in the SDM and warping this to each MRI set.

2. METHOD

Our method consists of four steps, these are:

• Build SDM using CT data.

• Warp MRI data to mean shape of SDM.

• Register MRI SDM to patient using the principal modes of variation.

• Measure registration errors and compare with alternative methods.

We first detail the data used, then describe each step in detail in the following sections.



2.1 Data.

Anonymised data from 23 subjects was used in this study. 21 CT only data sets were used to build the SDM.
These covered the full pelvic bone except for the upper extreme of the iliac crests. This data had been previously
acquired from male patients due to undergo hip replacement surgery. Areas within and adjacent to the femoral
head showed variable amounts of disease/damage. These areas were not of interest to us and so were masked out.
The areas of interest for our application (areas that may be used for intraoperative registration using ultrasound,
specifically the inner face of the pubis or iliac crests) appeared to be unaffected, so we judged that the data, given
the same sex and similar age profile, were relevant to our application. The data came from multiple scanners
and was made up of scans of a variety of voxel sizes, see Table 1.

Two data sets consisting of CT and MRI data for the same patient were used, one to warp the MRI data
to the model and the other for validation. These data sets came from patients undergoing brachytherapy for
prostate cancer. These data sets covered a smaller region of the pelvis, (from the hip joints down). We would
have preferred to validate our model on a more complete pelvis but do not have these data at present.

Table 1 gives a summary of the data used.

Data Type Voxel Size (mm) Volume Used For
21 Pelvis CT 0.7 to 0.9 In Plane (IP) Full Pelvis SDM Construction
Volumes 2.0 to 3.2 Out of Plane (OP) (Training Population)
Patient A CT & MRI CT: 0.93 IP 3.0 OP Lower Pelvis Mapping MRI

MRI: 0.7 IP 3.3 OP (Below Hip Joint) Intensities to SDM
Patient B CT & MRI CT: 0.93 IP 3.0 OP Lower Pelvis Validation

MRI: 0.7 IP 3.9 OP (Below Hip Joint)
Table 1. 23 Patient data sets were used in study. 21 CT data sets were used to build a SDM. 2 data sets containing CT
and MRI data were used to apply the SDM to MRI data and validate its performance.

2.2 CT statistical deformation model of male pelvis.

Our SDM consists of the mean shape and the principal modes of population variation around the mean shape.
To construct this it is necessary to know the correspondence between each data set in the training population.
We found this by registering each data set in the training set to a single data set, which we will refer to as the
reference data set (RDS). This was selected from the training population on the basis that its shape appeared to
fall near the mean using visual inspection. During registration the mean shape of the model is used, so provided
that the registrations to the RDS used to build the SDM are accurate the selection of the SDM should not
bias the model. However this needs to be properly validated. We used a two stage registration, consisting of
a 9 degree of freedom affine transform followed by a non rigid registration using deformations modelled as a
compressible viscous fluid. Only these non rigid deformations were used to build the model. Figure 1 presents
the model construction process as a flow chart.

2.2.1 Affine registration to RDS.

To focus the affine registration on bony areas of interest only, a bone mask was first created. This was done
by manually segmenting the RDS. Neither the femurs nor the sacrum are of use for our intended application
(registration to the inner face of the pubis or iliac crests) therefore these structures were excluded from the bone
mask. Figure 2 shows the segmented bone shape for the entire pelvis.

The RDS was masked using a 4mm dilation of this segmented bone, then the other 20 data sets were registered
to the masked RDS with a 9 degree of freedom (DOF) affine transform (3 translations, 3 rotations and 3 scalings).
The data sets were first manually aligned then each of the 9 DOFs varied iteratively to find the combination
giving the optimum normalised mutual information (NMI). The accuracy of the registrations was checked by
visual inspection.
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Figure 1. Flow chart showing the construction of the statistical deformation model. All data sets are first brought
into alignment using a 9 DOF (3 translations, 3 rotations, 3 scalings) registration. Non rigid registration based on
compressible viscous fluid flow is then used to determine the correspondence between each data set. We chose to drive
both the affine and non rigid registrations using normalised mutual information. Principal component analysis is used
on these deformation fields to give a set of principal deformation fields and a mean shape. Processing steps are shown as
rectangles, inputs/outputs as parallelograms.

Figure 2. The segmented full pelvis showing which areas of bone were used in the construction of the SDM. This was
dilated by 4mm to provide a mask containing the bone of interest and the immediate surrounding tissue.

2.2.2 Non rigid registration using compressible viscous fluid flow.

The resulting 20 volumes were then non rigidly registered to the RDS using a fluid registration algorithm
developed by Crum et al .17 This models a displacement field on the target image (the RDS) as a compressible
viscous fluid. In this case NMI between this and the source image is used to drive the fluid flow to optimise
NMI. This provides a transformation without folding or tearing, ie. diffeomorphic. A 3 stage multi-resolution
approach was used, quarter, half, then full resolution. A 30 mm dilation around the segmented RDS bone was



Figure 3. First 6 principal components of training data set. These are ranked based on their contribution to the population
variance. Note the deformation fields used to make these have been cropped to below the hip joint.

used as a mask to prevent tissue distant from any bone surfaces being included in the registration. This mask
size ensured that all relevant bone in the data set was captured. The quality of the registrations was checked
by visual inspection. The output from each registration is a 3D deformation field at the same resolution and
size as the target image showing the deformations required to transform the source to the target. In our case
therefore we are left with 20 deformation fields, all at the same resolution and size, that define the non rigid
correspondences between the data in our training set. These deformation fields form the basis of the SDM.

2.2.3 Principal component analysis of deformation fields.

Principal component analysis was performed on the 20 deformation fields plus the null deformation for the RDS.
The output of this was an average deformation field that defines the mean shape of the population (deformed
from the RDS) along with 20 deformation fields defining 20 orthogonal modes of variation about this mean.
These were ranked in order of the amount of population variance they account for. The first 6 of these modes
are shown in figure 3. It should be noted that as mentioned in Section 2.1, the data sets used to validate this
method are smaller than the full pelvic volumes used to create the deformation fields in the previous section.
For this reason the deformation fields were first cropped to a volume closer to the validation data sets. Hence
the incomplete pelves seen in figure 3. It was decided that doing this enabled a more compact model while still
enabling the construction of a full pelvic SDM when suitable validation data is acquired.

Figure 4 shows the cumulative variance plot for all 20 principal components. The first mode accounts for 17%
of the training set variance. As will be discussed in Section 2.4 we elected to use the first 12 modes of variation
in our registration algorithm. These account for 86% of the training set variation.

2.3 Warping MRI appearance data to SDM.

Figure 5 shows how MRI appearance data was built into our CT based SDM. The method requires matched
CT and MRI for the region of interest. We used a 9 DOF affine registration to align the CT and MRI data.
The three directional scaling should account for calibration errors on either piece of equipment. In this case
the quality of the registration was evaluated by comparing manual segmentations of both the CT and the MRI
data. The CT volume was registered to the RDS using the technique of an affine registration followed by a fluid
registration as for the construction of the SDM, see Section 2.2. The resulting affine transformation matrix and
deformation field were applied to the matched MRI data to transform the MRI volume to the RDS. The next
section details how this warped MRI volume, the deformation to the mean shape, and the 20 modes of variation
about this can be used to perform a registration.

2.4 Validation of method.

To assess the performance of the proposed method 4 registrations were performed, these are detailed in figure 6.
An explanation of each registration follows.
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Figure 4. Cumulative percentage of population variance accounted for by the 20 principal components. The first mode
accounts for 17% of the training set variance and the first 12 modes account for 86% of the training set variance.
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Figure 5. Flow chart showing method used to warp MRI data to reference data set used in SDM. This can be easily
warped to the SDM mean shape by applying the SDM average deformation. Patient CT data is non rigidly aligned to the
RDS CT data and the resulting deformation applied to matching patient MRI data. Registration between the MRI and
CT data uses a 9 DOF affine registration. This may account for calibration errors in either data set. Processing steps are
shown as rectangles, inputs and outputs as parallelograms.

2.4.1 Registration 1 (R1): CT to CT using SDM.

This registration is intended to evaluate the performance of the SDM independently of any effects due to the
warping and use of the MRI data. The target image is defined as the source image deformed by the SDM’s
average deformation plus a linear combination of the first 12 deformation modes. In theory any of the 20 modes
of variation can be used here. We selected the first 12 as they accounted for most of the variation in the training
set. Selecting less will result in a faster algorithm, while selecting more will give a more complete description
of the geometry of the training set. Determination of the optimum set of modes to use would require more
validation data sets than we had available.

We elected to continue using NMI as the similarity measure between the deformed source and the target. The
NMI calculation was restricted via a region mask of 2mm around the segmented bone mask, see Section 2.2.1,
to prevent regions away from the bone influencing the registration. This similarity measure is used to drive a
differential evolution18 algorithm to generate a set of coefficients for the 12 modes that optimises the NMI.

We set starting estimates for the 12 coefficients to be within +/- 3 standard deviations of the population
mean for each mode. The coefficients used for each member of the starting population were set within these
limits using a pseudo random number generator. However there was no hard constraint on the coefficients to
prevent them evolving to values outside this range, i.e. to values that would not be predicted by the training
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set. We feel this is appropriate as given the small size of the training set it is unlikely to be representative of
the actual patient population. Validation on a larger sample would be required to justify this assumption or
otherwise.

2.4.2 Registration 2 (R2): MRI to CT using SDM.

This registration is intended to show whether warping the MRI data to the SDM provides a measurable benefit.
That is, as NMI is a multi-modal similarity measure, could the same results be achieved by registering the MRI
data direct to the CT RDS. The method used was the same as for Registration 1 excepting the following 3
changes.

• Patient B MRI data set was used as the source image. A Gaussian blur with a kernel size of 0.75 mm was
first applied to this image.

• The mask used to calculate the NMI was expanded to the segmented bone plus 10 mm.

• The affine transform used for initial alignment was calculated from the two MRI images, whereas the 2 CT
images were used for Registration 1.

2.4.3 Registration 3 (R3): MRI to MRI using SDM.

This is our proposed optimal method, using the SDM and the warped MRI appearance data. The method used
is identical to Registration 2 except the warped Patient A MRI data was used as the target image.

2.4.4 Registration 4 (R4): MRI to MRI using fluid registration.

Here we are attempting to see if the SDM algorithm provides any benefit over a non rigid registration using the
same fluid registration method described in Section 2.2.2. The source and target are as for Registration 3.

2.4.5 Registration evaluation.

The performance of each registration was assessed by inverting the deformation field generated and using this
to deform the manual segmentation of the RDS to the source image. This gave a binary bone segmentation that
could be compared to a manual segmentation of either the Patient B CT data (Registration 1) or the Patient B
MRI data (Registrations 2-4), referred to here as the gold standards. Two measures of the registration accuracy
were used;

• the average distance from each point on the registered segmented surface to the nearest point on the gold
standard segmentation surface, and



• the percentage of the registered segmented volume that is overlapped by the gold standard volume.

In each case we also compared these values to those of the case where there was no non rigid registration, ie. the
data sets were aligned by the 9 DOF affine transform only.

3. RESULTS

Table 2 shows quantitative results for each of the 4 registration methods. Figure 7 shows the segmentation
results for the MRI SDM based method (Registration 3) on three example axial slices through Patient B MRI
data.

Reg. Name R1 R2 R3 R4
Average Distance between Surfaces (mm) 1.68 1.95 1.74 1.86
Average Distance for Affine only Registration (mm) 1.81 1.75 1.75 1.75
Overlap of Segmented Bone with Gold Standard (%) 87.16 85.80 85.70 80.22
Overlap Using Affine only Registration (%) 83.82 81.04 81.04 81.04

Table 2. Average surface distance and percentage volume overlaps between automatic and manual (gold standard) bone
surface segmentations for 4 registration methods used. Changes from measures calculated using only affine registration
are shown in the second row of each section.

4. DISCUSSION

Table 2 shows that for the registrations to MRI data our proposed method (R3) was the most accurate. However
the differences were marginal, and because we currently only have a single data set for validation there is little
basis for making any claims on whether one method is superior to any of the others based on this data set. The
fact that none of the methods show a significant improvement over the affine only transform suggests that the
data set we used for validation was very close to the RDS and thus did not not adequately demonstrate the
non rigid registrations. More complete validation is in progress pending more data. We believe that the shape
information present in the SDM should aid the registration and this will be demonstrable when larger non rigid
deformations are required. Based on the results we presented here we have demonstrated the feasibility of our
approach, but it is not realistic to draw any further conclusions. We confirmed that the differential evolution
algorithm was evolving to a solution with an improved NMI to the starting estimate. For the MRI model solution,
the absolute variation of the SDM components was on average 0.98 standard deviations away from the mean,
with the largest mode deformation being 2.07 standard deviations. The results for registrations 1 and 3 are
similar indicating that our method of incorporating MRI appearance information into the SDM is valid in this
case.

The SDM contains shape data from a population of 21 CT scans and MRI appearance data from 1 subject.
The SDM should be applicable to patient data that falls near the shape range covered by the CT model training
data and is acquired with the same MRI protocol. Work by van de Kraats et al19 indicates that MRI intensities
are similar across scans for a small region of interest. Based on this our model should work for our application
(patients due to undergo robot-assisted radical prostatectomy at a single institution). Further validation is
required to confirm this. The method needs to be validated with a larger population, using data covering a more
complete pelvic volume, this work is in progress. It may then become necessary to incorporate MRI appearance
information from multiple subjects, or to transform the MRI intensities to a localised texture measure.

The segmentation examples shown in Figure 7 show a plausible segmentation. The method presented here
allows for the creation of application specific SDMs from a generic CT derived SDM. The application specific
SDM can be created rapidly using data in both modalities from the same subject. The method is generic and
could in principle be applied to any situation in which a model is built from one modality (i.e. the modality that
shows the required structure with optimal contrast), but instantiated with another modality (i.e. the only one
available).
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Figure 7. Results of registration algorithm (Registration 3) shown as bone segmentation boundary made by applying
inverse deformation to manual segmentation of RDS. Results shown for 3 example axial slices.


