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Electron trapping around a magnetic null
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[1] Magnetic reconnection is an important process in
astrophysical, space and laboratory plasmas. The magnetic
null pair structure is theoretically suggested to be a crucial
feature of the three-dimensional magnetic reconnection. The
physics around the null pair, however, has not been
explored in combination with the magnetic field
configuration deduced from in situ observations. Here, we
report the identification of the configuration around a null
pair and simultaneous electron dynamics near one null of
the pair, observed by four Cluster spacecraft in the geo-
magnetotail. Further, we propose a new scenario of electron
dynamics in the null region, suggesting that electrons are
temporarily trapped in the central reconnection region
including electron diffusion region resulting in an electron
density peak, accelerated possibly by parallel electric field
and electron pressure gradient, and reflected from the
magnetic cusp mirrors leading to the bi-directional energetic
electron beams, which excite the observed high frequency
electrostatic waves. Citation: He, J.-S., et al. (2008), Electron
trapping around a magnetic null, Geophys. Res. Lett., 35, L14104,
doi:10.1029/2008 GL034085.

1. Introduction

[2] The nature of a magnetic null pair in a magnetic
reconnection region has two intrinsic interconnected
aspects: geometry and dynamics. Theoretical studies on
the null pair geometry indicate that magnetic field lines
close to a null have two distinct parts: a spine, where the
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field lines are bunched together, and a fan, where the field
lines are distributed apart from each other [Dungey, 1963;
Cowley, 1973; Greene, 1988; Lau and Finn, 1990; Priest
and Titov, 1996; Priest and Forbes, 2000; Dorelli et al.,
2007]. An isolated null in the geo-magnetosphere was
identified using a topological degree method of Greene
[1992] by Xiao et al. [2006] and extrapolation with a
non-linear fitting function by He et al. [2008]. Character-
istics of two nulls identified respectively at two different
time instances were combined to infer that of a null pair
under the assumption that the null identified first remains
unchanged till the second null was observed [Xiao et al.,
2007]. However no field line configuration of a null pair has
yet been identified from simultaneous in situ measurements.

[3] On the other hand, the canonical picture of the
dynamics of magnetic reconnection in collisionless plasmas
is usually described, according to different scale lengths,
with respect to three physically distinguishable regions
nested from the outside of the current sheet to the center
of the reconnection site, called as ideal magnetohydrody-
namic region, ion diffusion region, and electron diffusion
region respectively [Vasyliunas, 1975]. This theoretical
picture was tested by numerical simulations [Birn et al.,
2001; Ricci et al., 2004; Fujimoto, 2006; Karimabadi et al.,
2007] and compared with gradually revealed observational
evidences occurring in various length scales [Dieroset et al.,
2001; Deng and Matsumoto, 2001; Mozer et al., 2002;
Vaivads et al., 2004; Egedal et al., 2005].

[4] Certain aspects of electron dynamics near the recon-
nection region mostly in the two-dimensional (2-D) frame
were discussed [e.g., Karimabadi et al., 2007; Mozer et al.,
2002; Egedal et al., 2005; Henderson et al., 2006]. Electrons
are predicted by 2-D simulation to be temporarily trapped in
the inner electron diffusion region [Karimabadi et al., 2007].
The electron trapping in the ion diffusion region was
theoretically demonstrated to result from the accumulated-
ion-established electrostatic potential plus the magnetic cusp
geometry, and was used to explain the observed anisotropic
electron velocity distribution [Egedal et al., 2005]. Never-
theless, the electron dynamics in the electron diffusion
region, especially associated with a 3-D magnetic null pair,
has not yet been addressed observationally.

[5] In this letter, we present results of both the geometry
and dynamical physics around a magnetic null pair from in
situ measurements by four identical Cluster satellites
[Escoubet et al., 2001]. The results shed new light on the
inner region physics of 3-D reconnection. The electron
density peak, detected in the central reconnection region
including electron diffusion region around the null may
represent electrons temporarily trapped in the small scale
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Figure 1. Magnetic field configuration of a magnetic null pair reconstructed from Cluster measurements when Cluster C2
crosses the neutral sheet. (a) Separator reconnection configuration reconstructed from observations by Cluster at
09:48:25.637. A-null and B-null are shown as orange and red balls, respectively, with the separator as a bold pink curve
connecting them. Magnetic field lines colored by local field strengths converge along the fan surface (in white) to approach
the A-null and then travel out along the spine (marked in black arrows) of the A-null. Magnetic field lines converge along
the spine of the B-null and then diverge out along its fan surface (in grey). Cluster C1, C2, C3, C4 are drawn as four cubes
in black, red, green, and blue, respectively. The origin of the illustrating coordinates is at the C2 position. (b) Magnetic field
strength distributed on the X-line. The total field strength is drawn in bold black. Three components, B,, B,, and B., are in
red, green and blue, respectively. The x-coordinate is the distance along X-line starting at the beginning with the smallest y
in Figure la. The orange (red) circle marks the location of the A-null (B-null).
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Figure 2. Cluster C2 positions on 2-D cross-sections of the magnetic field configuration when C2 observes the
enhancement of electron number density.The white lines show the 2-D projection of the 3-D field line vector. (a) C2
positions, marked by the red rectangles on top of the regions with different total magnetic field strength Bt, with its strength
shown by the color contour and in the color bar, on the GSM x—z plane, at the time sequences of 11=09:48:25.548 UT,
12=09:48:25.637 UT, and #3=09:48:25.726 UT. The B, distribution and field lines are reconstructed from data at 2. (b) The
other 2-D cross-section of the magnetic field configuration at the time #2, passing through the C2 position and a segment of
X-line with the A-null on it. Magnetic field lines traced in this 2-D plane are drawn as white lines on it, appearing to be

converging to the A-null (the orange ball).

magnetic cavity. The trapped electrons are likely to be
accelerated by parallel electric field and electron pressure
gradient from a Hall MHD point of view, and bounced
between the magnetic cusps characterized with observed
bi-directional energetic electron beams. The electron beam
instability produces the high frequency electrostatic waves,
scattering the trapped energetic electrons to escape from
the loss cone.

2. Analysis of Cluster Measurements

[6] The measurements by various payloads on Cluster,
e.g., FGM [Balogh et al., 2001], EFW [Gustafsson et al.,
2001], PEACE [Johnstone et al., 1997], STAFF [Cornilleau-
Wehrlin et al., 2003], and CIS [Réme et al., 2001] are used in
this study. The Cluster array encountered an active magnetic
reconnection site in the geo-magnetotail over a period from
09:40:00 to 09:55:00 UT on Oct 1st 2001 [Runov et al.,
2003; Wygant et al., 2005; Cattell et al., 2005; Xiao et al.,
2007; Imada et al., 2007; Chen et al., 2007]. Spacecraft C2
passed through a thick current layer during a time interval
from 09:48:17 to 09:48:40 UT (23 sec) and a thin current
layer embedded in it from 09:48:25.000 to 09:48:25.800 UT
(0.8 sec). At about 09:48:25.637 UT, C2 crossed the neutral
sheet with B, component in GSM changing from negative to
positive to provide a good opportunity for focusing on the
plasma dynamics across the neutral sheet.

[7] To set up the stage for dynamics study, we reconstruct
the magnetic reconnection configuration from the four
magnetic field vectors, simultaneously measured by all four
Cluster satellites, making use of a novel extrapolation of
magnetic field [He et al., 2008] (see auxiliary materials)." It
should be pointed out that no Hall-current is considered in
the field extrapolation method, because the Hall-currents

'Auxiliary materials are available in the HTML. doi:10.1029/
2008GL034085.

locate outside the extrapolation box according to Runov et al.
[2003], who showed that the Hall-currents locate at both
ends of a long current sheet crossing through the extrapo-
lation region. The magnetic field configuration around a
magnetic null pair reconstructed from the Cluster measure-
ments at 09:48:25.637 UT is shown in Figure la. Clearly,
Cluster encountered a typical separator reconnection config-
uration [Priest and Forbes, 2000]. A pair of magnetic nulls,
with the separator connecting them, is encompassed by the
Cluster tetrahedron. Furthermore, Cluster C2 is located
nearly on the X-line extending the separator from the A-null.
The distance between C2 and the A-null can be estimated as
385 km, less than the ion inertial length of 1853 km and on
the order of the “ion acoustic” gyro-radius of 374 km (see
AM). The distance between C2 and the X-line however is
about 50 km, on the order of the electron inertial length of
43 km (see AM). The event thus places C2 in the electron
dynamics region, considering that uncertainty of the extrap-
olation in this case is of the order of 10 km. However, it could
be said conservatively that C2 was located in the central
reconnection region including electron diffusion region. The
reconnection rate of this event is estimated to be 0.08V,,
based on C1 observation of southward plasma flow in the
northern lobe region (Figure 1a).

[8] Figure 1b illustrates the variation of the magnetic
field strength on the X-line. The magnitude of the magnetic
field components become zero at the positions of the nulls.
On the separator between the nulls, the Y-component of the
magnetic field dominates over the other two and represents
the so-called guide field on the separator. The small guide
field with a maximum of 1 nT implies a weak guide field
effect on the reconnection rate [Ricci et al., 2004]. The
length of the separator is about 880 km.

[v] We also reconstruct the reconnection configuration
before and after 09:48:25.637 to obtain an overview of the
satellite motion in this frame. As seen in Figure 2a (GSM
x—z plane) C2 moves upward to approach the 2-D X-point
from the southern earthward magnetic cusp, passes
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Figure 3. Observations by Cluster C2 over the period from 09:48:22.5 to 09:48:28.5 UT. (a) The plasma electron number
density inferred from potential measurements by EFW. (b) The total magnetic field strength measured by FGM. (c) The

magnetic field component of B, measured by FGM in GSM.

(d) The electric field component of £, measured by EFW in

GSE. (e) The electric field wave power spectrum observed by STAFF. The black line denotes the electron plasma
frequency. (f) Two pitch angle distributions (PAD) of electron differential energy flux density measured by PEACE at
09:48:24.3 and 09:48:26.3 UT, respectively measured in a 1/8 sec interval. The orange dotted vertical line through Figure 3

a—e is located at the time of 09:48:25.6 UT.

through the X-point at 09:48:25.637 UT, and then moves
away to the northern tailward magnetic cusp. This X-point
traversal of C2 provides us a good opportunity to observe and
study the physics in the vicinity of the X-point. Figure 2b

shows the location of C2 at 09:48:25.637 UT for the
magnetic configuration in another plane, as determined by
the position of C2 and the A-null as well as the tangential
direction of the X-line. The magnetic field connectivity in
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Figure 2b reveals that the magnetic field pattern is near the
fan surface of the A-null. It is then found that C2 locates
near the X-line.

[10] The observations by C2 during passing through the
X-line near the null are illustrated in Figure 3. Figure 3a
reveals the variation of the plasma electron number density
in the time range from 09:48:22.5 to 09:48:28.5 UT,
obtained from the spacecraft potential measurements by
EFW [Pedersen et al., 2008]. A plasma electron density
peak of 0.035 (cm ) relative to adjacent background is
observed in the central reconnection region including elec-
tron diffusion region when C2 crossed the X-line as shown
in Figure 2a. This electron density hump is consistent with a
previous numerical simulation result across a 2-D X point
[Fujimoto, 2006], and implies temporary trapping in the
electron diffusion region [Karimabadi et al., 2007] since it
is smaller than the trapped electron density in the magnetic
island for a long term [Chen et al., 2007]. Moreover, the
Kappa, the magnetic field curvature radius measured in
electron gyro radius [Delcourt et al., 1996], is estimated to
be in the range of 2.4 to 258.1 (see AM). This result
indicates that electrons are trapped in magnetic cusp region.
The trapped electrons may be accelerated by parallel electric
field and electron pressure gradient to high speed (V, =
2.6 x 10% km/s) observed as energetic electron beams of
2 keV by PEACE (Figure 3f), on the order of electron
Alfvén velocity (V. = 4.6 x 10* km/s) [Karimabadi et al.,
2007] (see AM). The electron pressure gradient is estimated
to be 2.5 (mV/m), and thus able to accelerate these electrons
to an energy level of 1 keV from the null to the C2 position
(see AM). The energetic electrons may be reflected from the
magnetic cusp mirrors (see Figure 2a) [Egedal et al., 2005]
and lead to the bi-directional energetic beams observed by
PEACE as shown in Figure 3f. The electron beams are
unstable to excite the high frequency electrostatic waves
[Vaivads et al., 2004; Farrell et al., 2002] in the neighbour-
hood of the null, observed by STAFF with a strong
enhancement of the electric field wave power spectrum
around the electron plasma frequency shown in Figure 3e.
Due to the weak magnetization in the null vicinity, the wave
is very likely to be the Langmuir rather than an upper
hybrid. During the time period around 09:48:25.637 UT, C2
was close to the null, observed a magnetic field dip as low
as 1.2 nT illustrated in Figure 3b, and passed through the
neutral sheet shown in Figure 3c. The bipolar Hall electric
field component, £, in GSE, is also measured and varies
from —40 to 20 mV/m (Figure 3d). Due to the oblique angle
between the current sheet and the x—y plane, Hall electric
field should have both components of £, and £. in GSE.
However, E, in GSE is not measured.

3. Summary

[11] The magnetic field topology (Figures 1 and 2) and
plasma dynamic behaviours (Figure 3) around the magnetic
null pair are therefore revealed for the first time, observa-
tionally. Based on these facts we suggest a new scenario to
describe the electron dynamics near a null in the magnetic
null pair region. The electrons are considered to temporarily
trapped in the electron diffusion region after convecting
from the outside lobe region. The trapped electrons may be
accelerated to an energy level 2 keV, near the electron

HE ET AL.: ELECTRON TRAPPING AROUND A MAGNETIC NULL

L14104

Alfvén speed, by the parallel electric field and observed
electron pressure gradient. The energetic electrons reflected
from the magnetic cusp mirrors lead to bi-directional
energetic electron beams observed, which further stir the
high frequency electrostatic waves to scatter the electrons to
finally escape, in addition to loss cone angle expansion
resulting from the reconnected field line relaxing.
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