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An experimental and analytical study of the elasticity
of model polyurethane networks crosslinked
by tri- and quadriisocyanate

Bruno Fayolle · Pierre Gilormini · Julie Diani

Abstract Polyurethane networks have been prepared
from a mix of tri- and quadriisocyanate and from
two types of diols, polyether-based (with molar masses
of 1,000, 2,000, and 4,000 g/mol) and polyester-based
(1,035 g/mol). The weight fraction of sol has been mea-
sured, as well as the elastic shear modulus of the gels.
It has been found that the statistical theory of network
formation predicts a weight fraction of sol in agreement
with the experimental results, but its standard combi-
nation with the theory of rubber elasticity disagrees
significantly with the elastic modulus measured. This
suggests a discrepancy between theory and experiment
in terms of elastically active chains. In contrast, the as-
sumption that all nodes in the gel, or even in the system,
are elastically active gives much better predictions for
the system considered.

Keywords Polyurethane · Model networks ·
Rubber elasticity

Introduction

The relation between the structure of elastomers and
their elastic properties has been the subject of nu-
merous investigations, and an appealing way to test
the various theories is the use of model networks.
Polyurethane elastomers are good candidates for such
studies, they offer a variety of possible systems and
have been widely used, as mentioned in [1], for in-
stance. To cite a few among many examples, triols and
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diisocyanate were used in [2], mono-, bi-, and trifunc-
tional polyols were reacted with diisocyanate in [3],
whereas diols and triisocyanate were considered in [4].
In this paper, networks were prepared from two types
of diols reacted with a mixture of triisocyanate and
quadriisocyanate, for various molar ratios of NCO and
OH groups, with an excess of the latter. This produced
non-ideal networks, the elastic properties of which were
measured and compared to the predictions of standard
models.

Two models must be combined to relate the chemical
composition of a network to its elastic properties, actu-
ally. A first model is required to deduce such features
of the network as the crosslink density, for instance,
which vary with the functionality of the components,
with stoichiometry, and with conversion ratio, among
other factors. In this study, the results given by the
statistical network formation. Theory were obtained
by using probability-generating functions [5]. A second
model is necessary to deduce the mechanical behav-
ior from the microstructure, such as the elementary
theory of rubber elasticity [6], or the more elaborate
phantom network theory [7], with possible account for
inter-chain entanglements [8–11]. All these models fail
to predict the experimental results obtained with our
systems, and variations are proposed eventually to get
better agreement.

Experimental

Materials

Two types of polyurethane networks were pre-
pared in solution, following a procedure proposed by



Pegoraro et al. [12]. The first type of network used
poly(propylether), with three different molar masses
considered (1,000, 2,000, and 4,000 g/mol), while
the second, polyester based, used poly(tetrame-
thylene adipate) with a molar mass of 1,035 g/mol.
The poly(propylether) (PE) and poly(tetramethylene
adipate) (PTMA) were kindly supplied by Bayer
(Desmophen 1110, 2062, and 4027) and by COIM
(Diexter 215), respectively.

An isocyanate supplied by Rhodia (Tolonate HDT)
was used for crosslinking. In order to avoid side reac-
tions with water molecules, it was dried under vacuum,
then dissolved in twice its volume of ethyl acetate, and
the mixture was kept under nitrogen. The isocyanate
appeared to be a mix of tri- and quadriisocyanate,
as could be deduced from gel permeation chromatog-
raphy that inferred a weight average functionality of
f w = 3.4. In order to determine the molar fractions ϕ

and 1 − ϕ of triisocyanate and quadriisocyanate in the
isocyanate mix, one can start from the definition

f w = 3 mI3 + 4 mI4, (1)

where mI3 and mI4 denote the weight fractions of triiso-
cyanate and quadriisocyanate, respectively, with mI3 +
mI4 = 1. For triisocyanate, we have mI3 = ϕ MI3/MI ,
where MI = ϕ MI3 + (1 − ϕ)MI4 is the average num-
ber molar mass of the isocyanate mix, and for quadri-
isocyanate, we have mI4 = (1 − ϕ) MI4/MI . Therefore,
the weight average functionality writes

f w = 3ϕMI3 + 4(1 − ϕ)MI4

ϕMI3 + (1 − ϕ)MI4
, (2)

which leads to the molar fraction of triisocyanate:

ϕ =
(

1 + MI3

MI4

f w − 3

4 − f w

)−1

. (3)

Using f w = 3.4 and assuming that a molecule of quadri-
isocyanate is obtained by reaction between two mole-
cules of triisocyanate, with one molecule of carbon
dioxide produced, i.e., MI3 = 504.6 g/mol (as given
by the supplier) and MI4 = 965.2 g/mol; this equation
gives ϕ = 0.74. Alternatively, starting from the weight
fraction wNCO of NCO (with a molar mass of MNCO =
42 g/mol) in the mixture, one can write

wNCO = (4 − ϕ)MNCO

ϕ MI3 + (1 − ϕ)MI4
, (4)

which leads to the following expression for the fraction
of triisocyanate:

ϕ = MI4wNCO − 4MNCO

(MI4 − MI3)wNCO − MNCO
, (5)

which gives ϕ between 0.69 and 0.80 for the weight frac-
tion of NCO, 22 ± 0.5%, provided by the supplier. This
range is consistent with the ϕ = 0.74 value obtained
above, and that will be used in the sequel.

By varying the masses of diol and isocyanate mix
used for crosslinking reaction, a set of ratios between
the number of moles of the two functional groups
r =[NCO]/[OH] could be obtained. This ratio is easily
related to the molar fractions nD and nI of diol and
isocyanate, respectively:

r = 4 − ϕ

2

nI

nD
, (6)

where coefficient 2 in the denominator renders the
bifunctionality of the diols. In this study, only r ≤ 1
values are considered, i.e., there is an excess of OH
groups and the reaction is completed when all NCO
groups have reacted. Thus, denoting by x the fraction of
reacted NCO groups, the reaction proceeds from x = 0
to x = 1, with a fraction rx of OH groups being reacted,
and with a fraction 1 − r of OH groups that remain
unreacted eventually. Of course, this residual fraction is
zero when r = 1, i.e., for stoichiometric conditions. The
following relations, which result from Eq. 6 and from
nD + nI = 1, will be useful when models are applied:

nD = 4 − ϕ

2r + 4 − ϕ
and nI = 2r

2r + 4 − ϕ
. (7)

Finally, it will also be convenient to define the weight
fraction of diols

mD = nD MD

M
=

(
1 + 2r

4 − ϕ

MI

MD

)−1

, (8)

where the rightmost expression is obtained from Eq. 6,
with

M = nD MD + nI MI

= nD MD + nIϕ MI3 + nI(1 − ϕ)MI4 (9)

denoting the average molar mass of the mixture.

Sample preparation and mechanical behavior

For the PE diol, the following procedure was used.
First, the diol was mixed for 3 min under vacuum at



30◦C with 1% by weight of dibutyletin dilaurate used as
a catalyst. Then, isocyanate was added and the mixture
was poured into a Petri dish and kept at 60◦C for
24 h. For the PTMA diol, the procedure was different
because of its trend to crystallize: the diol was dissolved
in an equal weight of ethyl acetate in a flat-bottomed
flask with a mechanical stirrer, and the mixture was
poured into a Petri dish and kept at 60◦C for 24 h.
Complete evaporation of the solvent was obtained after
this period. In both cases, polyurethane films of less
than 1-mm thickness were obtained and the presence
of unreacted NCO (at 2,256 cm−1) groups was ana-
lyzed by Fourier transform infrared in attenuated total
reflectance mode with a resolution of 4 cm−1, using a
Bruker IFS 28 spectrophotometer. This confirmed that
the conversion was completed, within the precision of
spectrophotometry, after 24 h. For the PTMA diol, the
weight fraction of the sol was measured for various r
values by extracting and weighting the gel phase. These
results are reported in the next section.

The viscosity of the polyether-based polyurethanes
has been measured at 40◦C with an ARES rheome-
ter from TA Instruments, using parallel plates with a
diameter of 25 mm. A good sensitivity was obtained
with a strain amplitude of 0.20. For the 1,000- and
2,000-g/mol diols, viscosities of 0.06 and 0.12 Pa s were
measured, but the 4,000-g/mol diol departed from this
linear law with a viscosity of 0.35 Pa s, which suggests
a molar mass between entanglements between 2,000
and 4,000 g/mol. The Young modulus E of dumbbell-
shaped specimens (25 mm long and 4 mm wide) cut
from the unextracted polyurethane films was measured
at room temperature on a tensile testing machine In-
stron 4301 with a 100 N load cell and a constant
crosshead velocity of 10 mm/min. A linear relation
between the force per unit unstrained area and the
parameter λ − 1/λ2, where λ denotes axial extension
ratio, was obtained up to λ values of about 2 (100%
extension). The shear modulus G was obtained from
E by assuming incompressibility, i.e., G = E/3, and
is shown in Fig. 1 with standard deviation for a se-
ries of three to four specimens. As expected, it can
be observed that different diols with the same molar
mass lead to very similar shear moduli and that smaller
shear moduli are obtained for larger molar masses. The
figure suggests that gelation occurs for r about 0.35,
and it was noted indeed during the experiments that
mixtures prepared with r lower than this value kept
liquid at the end of the reaction, whatever the diol
molar mass. More interestingly, a downward curvature
is observed in Fig. 1, whereas an upward curvature is
usually reported for polyurethanes. This is discussed in
the following section.
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Fig. 1 Elastic shear modulus measured on the various
polyurethane networks prepared from polyether diol (full sym-
bols and unbroken lines, with molar masses as indicated, in
g/mol), or from polyester diol (open symbols and broken line,
with a molar mass of 1,035 g/mol)

Model and discussion

Network formation

The theory of network formation has been developed
long ago from the theory of stochastic processes. Fol-
lowing the pioneering works of Flory [13] and Stock-
mayer [14], its further developments used the theory of
stochastic branching processes, with two main variants.
The first one [5] uses probability-generating functions,
whereas the second one [15] uses a recursive technique.
Both approaches can lead to the same results but,
although the latter “can be readily understood and
applied by the typical polymer chemist” as stated by
its promoters [16], the former approach has been pre-
ferred in this paper because its systematic step-by-step
unfolding allows easy extensions to systems with com-
ponents of various functionalities. More specifically, we
refer to the work of Dus̆ek and his coworkers ([1–4], for
instance).

Our derivation given below is slightly more direct
than what can be found in the literature for other
systems, and connections with some previous results
are, therefore, given. With our notations, the following
polynomials of the dummy variable z

F0D(z) = nD(1 − rx + rxz)2 and

F0I(z) = nIϕ(1−x+xz)3+nI(1−ϕ)(1−x+xz)4 (10)

are introduced first. They are such that the factors of
zk in F0D(z) and F0I(z) give the molar fractions of



diols and isocyanates with k functional groups reacted,
respectively. Taking the derivatives with respect to z
and normalizing by the value for z = 1 gives

FD(z) = F ′
0D(z)

F ′
0D(1)

= 1 − rx + rxz and

FI(z)= F ′
0I(z)

F ′
0I(1)

= 3ϕ(1−x+xz)2+4(1−ϕ)(1 − x + xz)3

4 − ϕ
,

(11)

which lead to the two equations

eD = FD(eI) and eI = FI(eD) (12)

from which the functions eD(x) and eI(x) can be de-
duced. They define the probabilities that a reacted
group of a diol or an isocyanate molecule has a finite
bond-to-bond continuation. Consequently, 1 − eD(x)

and 1 − eI(x) give the probabilities that a reacted group
is connected to the gel. The solution to Eq. 12 is quite
simple to obtain: Eq. 12 can be rewritten as eD =
FD(FI(eD)), which leads to a second-degree equation
with respect to eD when eD(x) (and, consequently,
eI(x)) being constant is excluded:

4(1 − ϕ)rx4 e2
D + [3(4 − 3ϕ) − 8(1 − ϕ)x] rx3 eD

+ [
4(1 − ϕ)x2 + 3(3ϕ − 4)x + 6(2 − ϕ)

]
rx2

+ ϕ − 4 = 0 . (13)

Only one root is such that eD = 0 if x = 1 when
r = 1 (i.e., all molecules belong to the gel for a perfect
network):

eD(x) = 1 − 3(4 − 3ϕ)rx − √
�

8(1 − ϕ)rx2
giving

eI(x) = 1 − 1 − eD(x)

rx
, (14)

with

� = (4 − ϕ) r [16(1 − ϕ) − 3(4 − 5ϕ)rx2] . (15)

The gelation threshold corresponds to both eD(x) and
eI(x) being equal to 1:

rg = 1

6x2

4 − ϕ

2 − ϕ
, (16)

which gives rg = 0.43 for full conversion (x = 1) when
ϕ = 0.74, with higher rg values if x < 1. It can be
checked that Eq. 16 corresponds to equation 3.57 of
[17] if ϕ = 0: when no triisocyanate is present, the reac-

tion between bifunctional diols and quadriisocyanates
is formally similar to what happens in an epoxy resin.
Moreover, when ϕ = 1, Eq. 16 corresponds to equation
64 of [3], where nA1 and nB1 are taken equal to 0 (no
monofunctional molecules).

Finally, replacing x with x(1 − eI) in F0D(z) and with
x(1 − eD) in F0I(z) gives

F̃0D(z) = nD[1 − rx + rxeI + rx(1 − eI)z]2 and

F̃0I(z) = nIϕ[1 − x + xeD + x(1 − eD)z]3

+ nI(1 − ϕ)[1 − x + xeD + x(1 − eD)z]4,

(17)

where the factor of zk is the molar fraction of molecules
(diols in F̃0D(z), isocyanates in F̃0I(z)) having k reacted
groups connected to chains with infinite continuation. It
can be verified that when ϕ = 1, Eq. 17 gives equations
66 and 67 of [3] with different notations.

Since it is defined by the molecules that have no
bond with infinite continuation, the sol fraction is given
by F̃0D(0) and F̃0I(0) for diols and isocyanates, respec-
tively. Using Eq. 17, this leads to the following weight
fraction of sol:

ms = 1

M

[
nD(1 − rx + rxeI)

2 MD

+ nIϕ(1 − x + xeD)3 MI3 + nI(1 − ϕ)

×(1 − x + xeD)4 MI4
]
, (18)

which, with Eqs. 8 and 14, can be recast as

ms = mDe2
D + (1 − mD)(1 − x + x eD)3

×
[

1 − MI4

MI
(1 − ϕ)x(1 − eD)

]
(19)

in agreement with equation 68 of [3] when ϕ = 1. This
result is compared in Fig. 2 with the weight fraction
of sol measured with PTMA-based polyurethanes. It
can be observed that, although the experimental points
have some discrepancy, the agreement is quite good
when x is between 0.96 and 1. This suggests that the
theory for network formation may be pertinent for our
materials, and that almost full conversion was obtained.
As a further illustration of the theory, it may be noted
that the points where the curves meet the upper axis
(weight fraction of sol equal to 1) correspond to rg given
by Eq. 16, with a clear shift toward higher values when
conversion is lower.



0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

w
ei

gh
t  

fr
ac

tio
n 

 o
f  

so
l

r=[NCO]/[OH]

x=.96

x=.98

x=1

Fig. 2 Experimental results (open symbols) compared to the
model predictions for the weight fraction of sol of the polyester-
based polyurethanes, using three conversion ratios

Prediction of the elastic shear modulus with previous
models

Various theories have been developed to account for
the elasticity of networks, and some will be considered
here, which are of frequent use. These theories are of-
ten focused on nonlinear effects at finite strain, whereas
our experimental results relate to the small strain shear
modulus, and this allows using simplified versions of the
complex expressions involved. Some of the quantities
that these models require can be deduced from the
theory of network formation described above, such as
the molar fractions of 3-functional and 4-functional
active nodes

n3 = nI[ϕ + 4(1 − ϕ)(1 − x + xeD)]x3(1 − eD)3 and

n4 = nI(1 − ϕ)x4(1 − eD)4 . (20)

obtained by merely considering the factors of z3 and
z4 in F̃0I(z). This provides the average functionality of
active nodes f = (3n3 + 4n4)/(n3 + n4) and the number
of elastically active chains per mole of initial mixture
(3n3 + 4n4)/2. Additional useful quantities can be de-
duced, like the total length of the elastically active
chains, but most theories also require the fitting or
evaluation of some parameters.

Figure 3 shows a typical example, where the phan-
tom network model [7] has been applied, together with
an extra term related to entanglements [8], like in [2].
Fitting has been used for the r = 1 (and x = 1) case
only. The example is typical inasmuch as an upward
curvature is obtained, which disagrees with our exper-
imental results. Moreover, the curves are very repre-
sentative of what is obtained with the elementary affine
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Fig. 3 Elastic shear modulus predicted by the theory of network
formation combined with the phantom network model, with en-
tanglements taken into account. Comparison with the experimen-
tal results obtained with the polyether-based (1,000 g/mol, full
symbols) and the polyester-based (1,035 g/mol, open symbols)
polyurethanes

theory of rubber elasticity [6] (no fitting required), and
with such elaborate models as the diffused-constraint
model of Kloczkowski et al. [9] and the constrained-
chain model of Erman and Monnerie [10]. The latter
two theories predict a shear modulus that is up to 1.5
times the modulus given by the affine model for a tetra-
functional network, which unfortunately is not enough
to cover the gap with experimental results in Fig. 3
for imperfect networks. Curves very similar to those in
Fig. 3 were also obtained with the slip-link theory of
Edwards and Vilgis [11], with various combinations of
the required parameters η, α and average number of
slip links per chain.

Discussion

The experimental results that were obtained in this
study have been shown to be in reasonably good agree-
ment with the statistical theory of network formation as
far as the sol fraction is considered, but the measured
elastic shear modulus could not be reproduced by com-
bining this theory with rubber elasticity models. This
combination predicts an upward curvature of the G(r)
plot, which is found in accordance with experimental
results obtained on different systems by Ilavsý et al.
[4], for instance, with triisocyanate and diols. In this
comparison, it should be kept in mind that r is defined
as [OH]/[NCO] in the latter paper, and that log scales
are used in G plots. Nevertheless, the linear decreasing
trend obtained in Figure 3 of [4], for instance, can be
interpreted immediately as an upwardly curved G(r)
plot with our notations. In contrast, our experimental



results are consistent with observations made by Burel
et al. [18] on a similar system. Using a diol (hydro-
genated hydroxytelechelic polyisoprene) and an iso-
cyanate with an average functionality of f w = 3.43,
they did not measure the elastic shear modulus but
rather deduced the crosslink density νe by applying the
Flory–Rehner [19] theory to swelling measurements
on the polyurethane networks obtained. Interpreting
the results with the affine theory for rubber elasticity
suggests a G(r) plot with a downward curvature, like
the νe vs [NCO]/[OH] plot shown in Figure 8 of [18].

In order to interpret our experimental results, more
elaborate and recent models for network formation
could have been considered. Accounting for intramole-
cular reactions as proposed by [20], for instance, could
be a valuable refinement, but it would have lead to a gel
point value higher than that given by Eq. 16, which was
found to be slightly higher than the observed one (0.43
vs less than 0.4, see Fig. 1). It has rather been preferred
here to keep with the standard model for network
formation and explore non-standard interpretations of
its results in terms of elastically active chains to be used
in the elementary theory of rubber elasticity.

Let us assume, for instance, that all the isocyanates
in the gel with three or four reacted groups are active
nodes. A possible interpretation of this assumption
could be that all pendant chains (attached to the gel
through a single bond with finite continuation) are ac-
tive actually because they are entangled in each other,
for instance. The molar fraction of isocyanates that
have tri- or quadri-reacted is directly obtained from
Eq. 10, and the fractions that belong to the sol can be
deduced from Eq. 17, as explained above. The differ-
ences give the numbers of nodes with three and four
reacted groups in the gel obtained from one mole of
mixture:

n′
3 = nI[4 − 3ϕ − 4(1 − ϕ) x](1 − e3

D) x3 and

n′
4 = nI(1 − ϕ)(1 − e4

D) x4 . (21)

Assuming that all these nodes are active, these relations
provide the number of active chains (3n′

3 + 4n′
4)/2, and

the affine model for rubber elasticity leads to the elastic
shear modulus

G = νe RT = 3n′
3 + 4n′

4

2

ρ

M
RT . (22)

Such a theory increases the density of active chains in
the network and, therefore, the elastic shear modulus,
and Fig. 4 shows that the effect is such that the curva-
ture of the G(r) plot is changed to downward. This is in
better agreement with the experimental results, but the
predictions are still too low for small r values.
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Fig. 4 Predictions, for full conversion (x = 1), of the standard
model (dotted line), of the model assuming that all three- and
four-reacted isocyanates in the gel are active (broken line), and of
the model assuming that all three- and four-reacted isocyanates
in the system are active (unbroken line). Comparison with the
experimental results for the 1,000- and 1,035-g/mol diols

An ultimate increase of the elastic shear modulus
can be obtained by a very simple assumption, con-
sidering that all three- or four-reacted isocyanates in
the system are elastically active nodes. This assumes
implicitly that the molecules in the sol that contain at
least one isocyanate with three or four groups reacted
are physically connected to the gel and contribute to the
elastic properties measured, whereas the solvent is able
to disconnect them when the sol fraction is measured.
In these conditions, the model for network formation is
used only for predicting the gel point, after which the
degree of conversion x immediately leads to the molar
fractions of three- and four-reacted isocyanates, using
Eq. 10:

n′′
3 = nI(4 − 3ϕ)x3 and n′′

4 = nI(1 − ϕ)x4 . (23)

Combined with Eq. 22 to obtain the elastic shear modu-
lus, this leads to the upper curve shown in Fig. 4, which
is in good agreement with the experimental results. The
jump for r = rg is due to the three- and four-reacted
isocyanates that are already present in the sol for r < rg

and which suddenly belong to the gel when the latter
appears. When this simple theory is applied to the
2,000- and 4,000-g/mol diols, Fig. 5 shows that it still
predicts rather well the observed values of the shear
modulus.

These results indicate that the critical underestima-
tion of the number of elastically active chains for the
systems considered here can be amended by a differ-
ent counting. This allows preserving the simplicity of
the standard theories for both network formation and
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Fig. 5 Predictions of the elastic shear modulus given by the
simple theory (at full conversion, x = 1) for 2,000- and 4,000-
g/mol diols, compared with the experimental results

rubber elasticity, with a good concordance between
model and experiments.

Conclusions

Polyurethane networks have been prepared from a
mix of tri- and quadriisocyanate and from two types
of diols, either polyether-based (with molar masses
of 1,000, 2,000, and 4,000 g/mol) or polyester-based
(1,035 g/mol). The ratio r = [NCO]/[OH] has been
varied but kept below 1. The weight fraction of sol has
been measured, as well as the elastic shear modulus
G of the gels. It has been found that the statistical
theory of network formation predicts a weight fraction
of sol in agreement with the experimental results, but its
combination with various theories of rubber elasticity
disagrees significantly with the elastic modulus mea-
sured: the G(r) plot has the wrong curvature.

In an attempt to keep both the theory of network
formation and the elementary theory of rubber elastic-
ity, the definition of elastically active nodes has been
modified. Taking into account all the three- and four-
reacted isocyanates in the gel leads to an inversion of
the curvature of the G(r) plot, which brings predictions
significantly closer to experimental results. An even
better agreement is obtained when all three- and four-
reacted isocyanates in the system are considered as
active nodes, which is an upper bound of the actual
number of active nodes in a given system. Of course,
further work is needed to determine what is specific
in the systems considered that induces the downward
curvature observed in the G(r) plot, which has also
been obtained by other authors.
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