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ABSTRACT: Since always, Industry minimizes manufacturing process plan and increases mechanical 
behaviour. In this topic, the thixoforging process offers important perspectives especially steel thixoforging. It 
is on the way of industrial development between casting and forging process.  
Previous works have illustrated the importance many parameters such as steel grade, slide speed, slug and 
tool temperature on the geometry from thixoforging part and of the forming load. 

e-mail: p.cezard@ascometal.lucchini.com 
 

This paper completes the previous results. It presents an analysis from mechanical resistance of samples 
extracted of from thixo-extrusion parts on a high speed hydraulic press. This strength investigation is 
correlated with metallurgical analysis. Macrograph analyses allow identifying the material yield during the 
process and the different phases. 
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1 INTRODUCTION 

Thixoforming and rheoforming are two forming 
processes lately developed. It enables the forging of 
parts with complex shapes and gives high 
mechanical properties. The aim is to get a mix of 
casting and forging strong points. Both of 
thixoforging and rheoforging are based on the semi-
solid state, the first using the melting of the metal, 
the second one using the solidification of the melted 
steel [1, 2]. 
This document shows the progress of studies dealing 
with the C38 forming by thixoforging, conducted in 
ENSAM Metz [3, 4]. The first part deals with steel 
thixoforging specificities and parameters affecting 
the forming process. The second part shows the 
analysis of the thermal exchange impact on the yield 
during the forming and on different aspects of the 
final part.  

2 STEEL THIXOFORGING 

The difficulty of the steel forming is mainly due the 
high level of temperature (1400°C) and then to the 
die design. Studies conducted in ENSAM Metz dealt 
with the modelling of semi-solid steel behaviour 

with an original micro-macro approach [2, 5, 6]. 
Studies about the die design and the semi-solid state 
of slug are shown. Results about impact of some key 
parameters on thixoforging are then developed. 

2.1 Dies 

Direct extrusion test is used in order to identify key 
parameters concerning the yield of semi-solid steel. 
It consists in a diameter reduction from 40mm to 
12mm. (figure 1).  
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Fig. 1. Complete extrusion device mounted on the press 
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400°C with induction heater integrated into the tool, 
in order to control the tests conditions and to avoid 
high thermal losses.  
The upper die stop is not instantaneous because of 
the inertia, then the metal is still being deformed 
while the speed decrease (vMAX = 1m/s). In order to 
avoid this phenomenon, a shock absorption system 
(damper) has been placed into the tool. The figure 1 
shows the setting used during the tests. This tool is 
instrumented with load and displacement sensors. 

2.2 Slug and heating process 

Only works about C38 steel are exposed in this 
study. Works of Carole Rouff [5] and Pierre Cézard 
[7] show that the induction heating of rolled steels 
allows its forming by thixoforging.   
Table1. Chemical composition from C38 (10-3%) Steel  
C Mn P S Si Al N Ni Cr Cu 

418 751 10 21 198 21 65 77 144 133 

The choice of a steel grade for its semi-solid forming 
is essential. Indeed, it determines the temperature of 
forming and its ability to be formed at semi-solid 
state. 

2.3 Parameters affecting the forming process 

After a number of tests had been done on that grade,   
it results that the forming speed, the slug 
temperature and the dies temperature have major 
influence on the flow type of steel and the load. 
Table 2 illustrates the influence of these parameters 
[3, 4]. 
Table2. Influence of speed, slug temperature and die 
temperature on steel thixoforging characteristics 
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These parameters interact mainly on thermal 
exchanges between slug and die and between slug 

heart and skin, that has effects on the liquid ratio, 
then on the viscosity and the consistency, on the 
dispersion, on the load, on the yield type, on the 
microstructure and on the mechanical properties.  

3 IMPACTS OF THERMAL EXCHANGE  

Extrusion tests might be analysed with a crossing 
approach combining values of mechanical properties 
(HV, Rp, Rm, et A%) on final parts. 

3.1 Illustration of thermal exchange by a numerical 
approach 

For instance, the figure 2 illustrates the influence of 
extrusion speed on the thermal exchange get by 
numerical simulations with FORGE 2005® 
software, the other parameters being constant. 

Tinit =1429 °C 
V = 40 mm/s 

Tinit =1429 °C
V= 215 mm/s

Fig. 2. Complete extrusion device mounted on the press, two 
examples at different die velocities 

2 1

3.2 Macroscopic analysis of the thermal affected 
zone. 

Figure 3 illustrates the macrographs of two samples 
forged in different condition of thermal exchange 
(minimal or maximal speed, initial slug temperature, 
die temperature). It’s possible to distinguish three 
areas on each sample.  
For the extrusion specimen in high thermal exchange 
conditions, area A illustrates a weak flow rate; the 
material stays in contact with the dies and is cooled 
quickly. A part of the metal is wrapped by the area B 
and C of the slug and enter then in the cone. During 
the forming process, area B contains a amount of 
semi-solid metal that is useful to feed the whole 
shape. Area C illustrates the axial flow. 
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Fig. 3. Macrostructure : display from heat flux effect  between 
the die and the shape of the flow from C38 steel 

For the extrusion specimen in low thermal exchange 
conditions, area D is identical to area A, except its 
thickness is lower. Metal from area E forms waves 
during the yield, material is semi-solid during the 
whole forming process. Area F illustrates an axial 
flow on a part of the extruded area. 
The different thickness between area A and D 
corresponds to a much more important and deeper 
solidification due to a high level of thermal 
exchange between die and slug, also visible on 
figure 2. Some high thermal exchanges exist too in 
area F and at the end of area C, they explain this 
typical forging yield. Then, a high gradient is 
created between the inside and outside of the part, 
leading to a semi-solid heart during the whole 
forming process.  Area E keeps its semi-solid 
properties thanks to the areas D and F, being the 
thermal shields by limiting the heat transfer with the 
die.  

3.3 Impact of thermal exchanges on local 
mechanical properties  

3.3.a Hardness and micrographs 
Extruded parts hardness is analysed by Vickers 
hardness tests under a 3kg load. Figure 4 shows a 
sum up of experimental hardness results. Table 3 
illustrates micrographs associated with specimens 9 
and 10 of figure 4. In table 3 we made some 
comments with Handbook reference [8], however 
experiments data can not be the identical. These 
comments give some indications to lecturers with 
thixotropic micrographs. 

Fig. 4. Vickers Hardness (weight 3kg, steel C38, Tslug=1437°C) 
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The Vickers hardness reduction at the points 13 and 
14 illustrates a low cooling speed after the forming 
(the cooling is made into the dies) or a chemical 
gradient of the slug. Micrographs confirm by high 
ferrite grade of decarburized area, that it is not very 
sensitive to the cooling speed.  
The variation of the Vickers hardness is less 
important when the forming speed is higher. Figure 
4 compares hardness of parts forged with heated dies 
(400°C) and those with room temperature dies. 
Vickers hardness is less important when the dies are 
heated; it can be explained by a thermal exchange 
between slug and dies lower. Points 13 and 14 have 
the lowest hardness, microstructures show a 
decarburized area already observed before. Point 19, 
at the heart of the sample, has an important grain 
size, independently of the tool temperature. This can 
be explained by a high temperature with a long 
keeping time during the forming process. 
Table3. Microstructures show the impact from forming speed 
Points  Testpiece 9    Tslug= 1437°C 

Tdie= 30°C     Vdie= 40mm/s 
 Testpiece 10    Tslug= 1437°C 
 Tdie= 30°C       Vdie= 215mm/s 
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Structure consists of envelopes of 
proeutectoid ferrite (light) with 
emerging spines of ferrite, in a 
matrix of pearlite (grey) ([8] fig. 
132 page 188). HV=237 

 
Ferrite (light) at prior austenite 
grain boundaries and plates within 
grains in a matrix of pearlite 
(grey) ([8] fig. 19 page 213) 
HV=255 
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Surface shows decarburization. 
The light areas near bottom of 
micrograph are ferrite; the matrix 
is pearlite (grey) ([8] fig. 18 page 
213) HV=173 

 
Ferrite (light) at prior austenite 
grain boundaries and plates within 
grains in a matrix of pearlite (grey 
([8] fig. 19 page 213) HV=201 
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Surface shows clearly 
decarburization. The light areas 
near bottom of micrograph are 
ferrite; the matrix is pearlite ([8] 
fig. 18 page 213) HV=179 

 
Note absence of decarburization. 
Ferrite at grain boundaries and as 
plates in pearlite grains([8] fig. 17 
page 213) HV=184 
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Ferrite (light) within in a matrix 
of pearlite (grey) ([8] fig. 20 page 
213) 

 
Ferrite (light) within in a matrix 
of pearlite (grey) ([8] fig. 20 page 
213) 

3.3.b Elasticity, strength and elongation  
Elasticity limit, strength and elongation are 
determined by tensile tests. Table 4 shows a 
synthesis of the results obtained on groups of three 
specimens sampled among thixoforged extruded 
parts in different conditions of speed, die 
temperature and slug temperature. 
Elasticity limit and strength are quite constant while 
forming speed varies (max. 6% for Rp and max. 
2,3% for Rm), though they decrease when dies 
temperature increases (min. 10% for Rp and min. 
4,4% for Rm),which is normal for a high variation of 
the thermal gradient (die – part) during the forming 
process and for high temperature level for heated 
dies. 
Elongation increases when Rm and Rp decrease, 
which is normal too except for the last values 
(v=200mm/s and To=400°C).  
Table4. Influence from different thixoforging parameter of C38 
steel mechanical characteristic  

Speed 
[mm/s] 

T°die/ 
T°slug 
[°C] 

Rp0,2* 
[N/mm2] 

Rm* 
[N/mm2] 

Rp/Rm
 

A% 
 

50 30/1420 537 818 0,66 18,9
50 400/1429 457 756 0,60 21,0

200 30/1420 504 800 0,63 20,7
200 400/1429 458 765 0,60 16,0

Steel data 
from C38 ≥ 430 650 to 

800  ≥ 16

Characteristics are the same as the native state of the 
steel. 

4 CONCLUSIONS 

These results illustrate the important impact of initial 
slug temperature, forming speed and dies 
temperature on thermal exchanges during a forming 
process with C38 steel at semi-solid state. These 
parameters have also an impact on the final part 

shape. Thermal exchanges have to be limited and 
controlled in order to keep a constant and 
homogenous liquid/solid ratio during the whole 
operation. A compromise between speed and 
temperature can be found to have a homogenous 
yield, a low load and high mechanical properties. 
Ability to the thixoforging can be defined in a zone 
based on the steel grade.  

100mm 100mm

100mm 100mm

During a thixoforging operation, forming speed has 
effects on thermal exchanges, but also on the solid 
lattice dispersion, which is pointed in several studies 
[9]. 
This work combined to the previous researches 
confirms that tool design with close dies for 
thixoforging is quite similar to net-shape forging. 
From a forged product point of view, experimental 
results lead to a new design of parts from functional 
specifications. This design approach is based on 
predictive tools such as behaviour laws developed 
and implemented with dedicated software such as     
Forge2005® [7, 10]. 
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