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Abstract—Optimal control problem, which is a dynamic
optimization problem over a time horizon, is a pratical problem
in determining control and state trajectories to mhimize a cost
functional. The applications of this optimization poblem have
been well-defined over past decades. However, thesau of
nonlinear programming (NLP) approach for solving ogimal
control problems is still a potential research topi. In this paper,
a formulation of NLP model for optimal control problems is
done. In our model, a class of the difference equahs, which is
nature in discrete time or is discretized by using the
approximation scheme, is considered. Based on theontrol
parameterization approach, the optimal control prodem is
generalized in the canonical form as a mathematicalptimization
problem. The control variables are defined as contl parameters
and their values are then calculated. In doing sathe gradient
formula of the cost function and the correspondingconstraints is
derived and is presented as an algorithm. The optial solution of
NLP model approximates closely to the true solutionof the
original optimal control problem at the end of the computation
procedure. For illustration, four examples are stuied and the
results show the efficiency of the approach propose

Keywords—Optimal Control, Nonlinear Programming, Control
Parameterization, Canonical Form, Optimal Solution

I. INTRODUCTION

and the boundary-value problem is being solved hitaio
trajectories of state and control [19], [20], [2Pntryagin’s
principle and Hamilton-Jacobi-Bellman equation elassical
approaches for solving optimal control problems][120],
[21], [22], [23].

In this paper, we aim to discuss a formulation dfPN
model for solving optimal control problems. In cuodel, a
class of difference equations, which is natureigcrete time
or is discretized by using the approximation schefise
considered. Then, the control parameterization Gaagr is
applied, where the control variables are definedl@sision
variables and are approximated via a finite dimemesi
parameterization so as the admissible controls ban
calculated. For the constraints involved, the talascontrols
are determined to approximate the values of theesponding
constraints. In addition, the cost functional anbe t
corresponding constraints are formulated in theowoeal
form. Based on this canonical formulation, the gatd
formula is derived and is presented as an algorithm
Consequently, the control parameters are computeldtize
value of the cost functional is minimized.

The rest of the paper is organized as follows. dnti$n 2,
the general optimal control problem is describedSéction 3,

Optimal control problems, which arise in enginegfinthe NLP model is formulated, where the optimal caint

management and sciences, are a practical problertheke
problems, the optimal policy is found in order tonimize the
cost functional subject to a class of differencaliferential
equations and the corresponding constraints. Becafishe
optimization is over a time horizon, optimal comtpooblem
is also known as dynamic optimization problem Qyer past
decades, many of the efficient approaches have e

developed for solving optimal control problems, ésamples,
control parameterization, see [2], [3], [4], [5]6]] [7],

collocation method, see [8], [9], [10], [11], ancbdel-reality
differences approach, see [12], [13], [14], [188], [17], [18].

Basically, the algorithms developed are dividea idirect
and indirect methods. In direct method, the optimahtrol

problem is generalized in canonical form basedhencontrol

parameterization approach. The derived gradienndita is

presented as an algorithm so as the feasible dsntie

calculated. In Section 4, four illustrative exangpéee studied.
Finally, some concluding remarks are made.

[I. PROBLEM STATEMENT
Consider a class of difference equations givenwelo
x(k+1)= f(x(k), UK, K (1a)
where u(k)OJ O™, k=0,...,N-Land x(kyOO", k=0,...,N,
are, respectively, control sequence and state segquend
f:0"x0™x0O - O"is a given function. For the differential

problem is formulated as nonlinear programming (NLRquations, the approximation scheme shall be used f

problem, where state and control variables are ;qipated
by a piecewise constant parameterization [9], [1Bdr

discretization.
The initial condition for the system of differenegquations

indirect method, the Hamiltonian function shalldmnstructed (1a) is
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x(0) = %, (1b)  Now, we define a nonlinear programming problem give

below.
n )
where x, 00" is a given vector. min g (U) (8a)

Define u(k)
V={v[\4.., ] O0™ g< y< h 1., m (2)  Subjectto .
wherea;, i =1,...m,andh, i =1,...m ,are given real numbers. gi(u) =0, 1=1,...M,; (8b)
g;(u) =<0, i=M;+1,..M (8c)

Notice thatV is a compact and convex subsetdf'. a<y(Q<b, i=1..m, k=0,.N-1 (8d)

Let u denote a control sequence(k): k=0,...,N—=1} in
V. Then,u is called an admissible control. Lidtbe the class
of all such admissible controls.

For eachuOU, letx(k|u), k=0,..,N-1be a sequence

where

N-1
gW=g (XN W+ LXK, (B & (8e)
k=0

in O" such that the difference equations (1a) with tiital are the cost function fori=0 and the corresponding
condition (1b) are satisfied. This discrete timendtion is constraint functions for =1,... M in canonical form given by
called the solution of the system (1) corresponding JU. (3) and (4).

Further from this, two set of nonlinear termindhte Here, the terminal constraints (3), which are writtn the

constraints are specified as follow: canonical form, are given below:
W, (X(N]u))=0, i=1..M; (3a) gi(W=¥(XN|Y)=0, i=1..M; (9a)
W, (x(N|u)<o0, i=M;+1,...M, (3b) gW =W, ((N|u)<0, i=M;+1,..M,. (9b)
whereW,, i =1,... M, ,are given real valued functions definedRecall thatéd is defined by (6), then,
in O". The following set of all-time-step inequality corashts 6={ubU: g(y =0, i =1,.My;
on state and control variables is considered: g(u<0,i=M;+1,..M,} (20)

h(x(k| u), WK, K< 0,k=0,...,N-1i=1..M; (4) For eachi=1,...M,, the all-time-step inequality constraint
whereh, i =1,... M4 ,are given real valued functions defined4) is equivalent to

in O <070, =S maxth(( k 0}=0 11
If udU satisfies the constraints (3) and (4), then the g (U = gmax{ 1OCK 0, UK, B,0}= (112)
admissible controli is called a feasible control. LEt be the where h
class of all feasible controls.
Hence, for the given system (1), the aim is to finfeasible Li (x(k| u), u(k), B=max{h(X K 9, ¢ §, §0). (11b)
control ull F such that the cost function Thus, the seF of feasible controls defined by (7) can also be
N-1 written as
9o(U) = o(X(N| U))+Z (XK U, LB B ®) F={ubé: g(y =0, i=1..M3} (12)
k=0 For more detail about constraints approximatios, [S§

is minimized ovelFr and the corresponding constraints (3) and This problem is referred to as Problem (Q). Notat th
(4) are satisfied, wherg, and L, are given real valued Problem (Q) is a canonical formulation of ProbleR). (This

functions. mathematical programming model in the control patems
This problem is regarded as an optimal control feob a0 be solved by using any optimization techniguiegre for
and we refer it to as Problem (P). eachulJU, we compute
It is assumed that the functiorfs W,, h, ¢, and L, are u=[uo)N, (u@)",...u(N-J T (13)
continuously differentiable with respect to the&spective such that (8d) are satisfied with the correspondialges of
ar%u’?_ents. the cost functiong,(u) defined by (8a) and the constraints
efine

) functions g; (u) for i =1,...M defined by (8e).
={u0U: Y, ((N|Y) =0,i=1,...My;

W, (X(N|u)<0,i=M; +1,..M,} (6) A. Control Parameterization

and Let the control vectou be perturbed by, wheree >0
F={uldé: h(x(k|u, UK, K=< 0, is a small real number and is an arbitrary but fixed
k=0,..N-1i=1,..M3} (7) perturbation ol given by
G =[(0)", @) ,....a(N-1J T (14)

I11. NONLINEAR PROGRAMMING APPROACH This gives
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u, =u+et =[(u(0,&)", u@e)) ,...a(N-1£)J T (15) N oH, (x(K), u(K), P (k+1), K

where +; (g TI1x(K)
u(k,&) = u(k+eU R, k=0,..,N—-1. (16) - o (x(K), u(K). K

Following from (16), the state of the system (1)l viie —(p' (k+1))T /=222 220 T (k)
perturbed, _ and so are the cost functional and the _‘)X( K)
corresponding constraint functions. N OH; (x(K), u(K), P(k+1), k)l](k)
B. Gradient Formulae ou(k)

Define the state sequence i of (X(K), u(k), K

x(ke)=x(klg),  k=1..N. (17) ~(p' (k+ D) Tl “(k)} (22)

Then, the system of difference equations (1a) besom
X(k+1,e)= f(x(ke), u(ke), k) (18
The variation of the state fdt=0,...,N-1is

) Let the co-statep'(k) be determined by the following
system of difference equations

_OH (x(K), u(K, Bk 1), K

ION ,k=N-1,...,1(23
(k1) = PLKFLE) (P (k) ox(K) (232)
de leso d the boundary value is given b
ot (x(K. WK, BHX R (B, & and the boundary value is ggl;r(l ()’/\l))
=R 20 Ty (k) +—— 22 2 5 Ty (19a) i T = 991 (X
. ox(k) ou(K (P (N)) x(N) (23b)
with Hence, consider (19) and (23) in (22), it yieldstth
0x(0)=0. (19b) agl (u) .
For theith constraint function, it is considered that TU
09 (W & _ i ()=~ 9(Y _ dg( Ol _[oH,(x(0),u(0), P (,0) aH x(N- Du(N- 1),p (N),N- 1 g
au £-0 £ de |, = o) u(N-1)
= M[ X(N) Because ofl is arbitrary, we obtain the following gradient
Ox(N) formula
S 0L (xR, Uk, K OL(XR UB B 99, (1)
! “Ox(k ! ! . (20
%{ xTT o ”(k)} 20~ au | |
Define the Hamiltonian sequence :{aHi(X(O)’U(O)'d 1).0) OH (x(N- 1)u(N-1),p (N), & lj
Hy (K, UK, B (ke 1), B 2u0) ouN= o
= L), u(k, B+ pOke) f(OXB, @) b (21  we present this result in the following as a theof8].
where p'(k) 00", k=N,...,1, is referred to as the co-statelheorem 1 _ _
sequence for thigh canonical constraint. Consider Consider Problem (Q). For eatk 0,...M , the gradient of
OH, (x(K), UK, B(k+1), K 9, (1), where
au(k) u=[(uO)", (u@)",...u(N-1f T,
) is given by (24).
_ 0L(X(ak), u(k), K +(p (k+1)T 0f(X R, B K& _ _
u(k) ou(k C. Computation Algorithm
and We shall summarize the computation of the gradiérthe
oH, (x(k), u(k), p'(k+ 1, K constraint functionsg; (u) for i =0,...M , in the following
ax(K) algorithm.
Gradient Algorithm
= %(:)(k)k) +(p' (k+1)T %kw Data For each =1,...m, and for a given
X — T T _
Then, it follows from (20) that u=[(uO)", (D) ..., w(N- D T
3g; (U) 94 (x(N)) such that (8d) are satisfied. . .
D20 == Ox(N) Step 1 Solve the system of the state differencatémns (1)
ou Ox(N) forward in time fromk =0 to k=N with initial

condition (1b) to obtaink(k| u), k =0,...,N.
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Step 2 Solve the system of the co-state differenpeations min g (U) = (% (N))? + (%( N)?
(23) backward in time fronk =N to k=1. Let u(k) 0 1 %

p' (k| u) be the solution obtained. +§[(x1(k))2 +(%( K)2+0.005(u(K) ]
Step 3 Calculate the values of the cost functigiu) for =

i=0 and the constraint functionsy(u) for subject to

i=1,...M from (8e). X (k+1) = % (K)+0.02x% (k)
Step 4 Compute the gradient gf(u) according to (24). X (k+1) = 0.98% (k)+ 0.0 K

IV. [LLUSTRATIVE EXAMPLES Xz(k) ~8(0.0%~ 0'053 *O0s

In this section, four optimal control problems wittfferent for k=0,...,49, with initial state

dimensional are considered. %(0)=0, %(0)=-1.
Example 1 Consider the scalar system [3]: The results of control and the corresponding cairgtrare

x(k+1) = 0.5x(k)+ u(k), x(0)=1 shown in Figures 2 (a) and 2 (b), respectively, levtihe

for k =0..... 49 The cost functional minimum cost functional ig, = 9.123153.

0.05 4
14 A

0.00 - - - ‘ . )
10 20 30 40 50 &0 124
005 - 10 4

010 - &

Control u
@

-0.15

Contral u

-0.20

7 -
o

030 4 1 30 40 50 50
Time k -2 A

Figure 1 (a): Control trajectory % |
Time k
12 4
5 Figure 2 (a): Control trajectory
08 - 1
x 0§ A 0
£ 1 20 30 50 50
a 04 -1
02 4 w
\ = -1
n 11 21 31 21 51 %, |
02 - 3
Time k
2
Figure 1 (b): State trajectory 3
N-1 5
9o(W) = D IR +( U B)?]
k=0
is to be minimized with the control bounded by Figure 2 (b): State inequality
-1<u(k)<1. Example 3 For the state difference equations [21]
The minimum cost iy, =1.132782. The control and state X (k+1) = % (k)—0.02(x (k)+ 0.25
trajectories are, respectively, shown in Figuréa)land 1 (b). 25x (K)
Example 2 Consider the following optimal control problem +0.01(x, (k)+ 0.5) ex%m}

[3]:
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-0.01(4 (k)+ 0.25) k)

%,(k+1) = 0.99% (k)- 0.00

-0.01(x, k)+ 0.5) ex%M}

x(K)+2

for k =0,..., 77 with initial condition

x,(0)=0.05, x,(0)=0,

the cost function

N-1
0o(W) =0.00) [(% (k¥ + (% (K’ + 0.1(u(K)Y ]
k=0

is to be minimized.

The trajectories of control and state are, respelgti
shown in Figures 3 (a) and 3 (b). The minimum vaitieost

functional is g, = 0.02725.

Control u

0.0

18 4
16 o
14 4
12 4
1.0 4
08 -
06 -
04 -
02 -

0.2 -

Figure 3 (a): Control trajectory

State x

0.06 o

0.04 +

0.02 +

-0.02 +

-0.04 4

-0.06 +

— ] -7
L s 11 21 31 41 51 61 71

e .
-—
-

-0.08 -

Figure 3 (b): State trajectory

Example 4 Consider the third-order system [24]:
¥ (k+1) =% (K)+0.01(sinGe (K} (% (K} 1)x% (k)]
X (K+1) = % (1) +0.010% (kf + % (K)

X3 (k+1) = % (K)+0.01(x (KF + u(K))
with the initial state

x(0)=1  %(0)=0,

%3(0) =-1.

The aim is to find an admissible contng(k) such that the

cost function

N-1
0o(W) =0.00) [0 (k) + (% (W) + (U B)’]
k=0

is minimized with the control bound
0<u(k)< 0.06.

The results are shown in Figures 4 (a) and 4 (b wie
minimum value of cost functionay, = 0.18299.

V. CONCLUDING REMARKS

In this paper, the NLP approach was discussed lvingp

optimal control

problems. The control

parametertrat

approach is applied to generalize the optimal abquroblem
in canonical form. With this canonical formulaticthe NLP
model of the optimal control problem is obtainetieTcontrol
variables, which are piecewise constant, are defias

decision variables in the NLP model.

Their value® a

calculated from the gradient formulae that are\aetifrom
the canonical formulation. From the illustrativeaexples, the
efficiency of the algorithm discussed is shown.
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0.05

0.04

0.03

Control u

0.02

0.00

1 2 3 4 5 6 7
-0.01

&8 9 10

Time k

Figure 4 (a): Control trajectory

— ] w2

1.2

0.8 -

0.6 -
04
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0.2 A
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Time k

02 -

O o ——— . — ———— |
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Figure 4 (b): State trajectory
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