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Abstract—Optimal control problem, which is a dynamic 

optimization problem over a time horizon, is a practical problem 
in determining control and state trajectories to minimize a cost 
functional. The applications of this optimization problem have 
been well-defined over past decades. However, the use of 
nonlinear programming (NLP) approach for solving optimal 
control problems is still a potential research topic. In this paper, 
a formulation of NLP model for optimal control problems is 
done. In our model, a class of the difference equations, which is 
nature in discrete time or is discretized by using the 
approximation scheme, is considered. Based on the control 
parameterization approach, the optimal control problem is 
generalized in the canonical form as a mathematical optimization 
problem. The control variables are defined as control parameters 
and their values are then calculated. In doing so, the gradient 
formula of the cost function and the corresponding constraints is 
derived and is presented as an algorithm. The optimal solution of 
NLP model approximates closely to the true solution of the 
original optimal control problem at the end of the computation 
procedure. For illustration, four examples are studied and the 
results show the efficiency of the approach proposed. 
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I. INTRODUCTION 
Optimal control problems, which arise in engineering, 

management and sciences, are a practical problem. In these 
problems, the optimal policy is found in order to minimize the 
cost functional subject to a class of difference or differential 
equations and the corresponding constraints. Because of the 
optimization is over a time horizon, optimal control problem 
is also known as dynamic optimization problem [1]. Over past 
decades, many of the efficient approaches have been well-
developed for solving optimal control problems, for examples, 
control parameterization, see [2], [3], [4], [5], [6], [7], 
collocation method, see [8], [9], [10], [11], and model-reality 
differences approach, see [12], [13], [14], [15], [16], [17], [18].   

Basically, the algorithms developed are divided into direct 
and indirect methods. In direct method, the optimal control 
problem is formulated as nonlinear programming (NLP) 
problem, where state and control variables are approximated 
by a piecewise constant parameterization [9], [10]. For 
indirect method, the Hamiltonian function shall be constructed 

and the boundary-value problem is being solved to obtain 
trajectories of state and control [19], [20], [21]. Pontryagin’s 
principle and Hamilton-Jacobi-Bellman equation are classical 
approaches for solving optimal control problems [19], [20], 
[21], [22], [23]. 

In this paper, we aim to discuss a formulation of NLP 
model for solving optimal control problems. In our model, a 
class of difference equations, which is nature in discrete time 
or is discretized by using the approximation scheme, is 
considered. Then, the control parameterization approach is 
applied, where the control variables are defined as decision 
variables and are approximated via a finite dimensional 
parameterization so as the admissible controls can be 
calculated. For the constraints involved, the feasible controls 
are determined to approximate the values of the corresponding 
constraints. In addition, the cost functional and the 
corresponding constraints are formulated in the canonical 
form. Based on this canonical formulation, the gradient 
formula is derived and is presented as an algorithm. 
Consequently, the control parameters are computed and the 
value of the cost functional is minimized.  

The rest of the paper is organized as follows. In Section 2, 
the general optimal control problem is described. In Section 3, 
the NLP model is formulated, where the optimal control 
problem is generalized in canonical form based on the control 
parameterization approach. The derived gradient formula is 
presented as an algorithm so as the feasible controls are 
calculated. In Section 4, four illustrative examples are studied. 
Finally, some concluding remarks are made.  

II.  PROBLEM STATEMENT 

Consider a class of difference equations given below:  
( 1) ( ( ), ( ), )x k f x k u k k+ =           (1a) 

where ( ) ,mu k ∈ℜ 0,..., 1,k N= − and ( ) ,nx k ∈ ℜ 0,..., ,k N=  

are, respectively, control sequence and state sequence, and 

: n m nf ℜ ×ℜ ×ℜ → ℜ is a given function. For the differential 

equations, the approximation scheme shall be used for 
discretization.  

The initial condition for the system of difference equations 
(1a) is   
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             0(0)x x=                         (1b) 

where 0
nx ∈ℜ  is a given vector.  

Define  

   T
1{ [ ,..., ] : , 1,..., }m

m i i iV v v v a v b i m= = ∈ℜ ≤ ≤ =        (2) 

where ,ia 1,..., ,i m= and ,ib 1,..., ,i m= are given real numbers. 

Notice that V is a compact and convex subset of .mℜ  
Let u denote a control sequence {( ) : 0,..., 1u k k N= − } in 

V. Then, u is called an admissible control. Let U be the class 
of all such admissible controls.  

For each ,u U∈  let ( | ),x k u 0,..., 1,k N= − be a sequence 

in nℜ  such that the difference equations (1a) with the initial 
condition (1b) are satisfied. This discrete time function is 
called the solution of the system (1) corresponding to .u U∈        

 Further from this, two set of nonlinear terminal state 
constraints are specified as follow:  

( ( | )) 0,i x N uΨ =  11,...,i M=                    (3a) 

( ( | )) 0,i x N uΨ ≤   1 21,...,i M M= +          (3b) 

where ,iΨ 21,..., ,i M= are given real valued functions defined 

in .nℜ The following set of all-time-step inequality constraints 
on state and control variables is considered:  

  ( ( | ), ( ), ) 0,ih x k u u k k ≤ 0,..., 1,k N= − 31,...,i M=         (4) 

where ,ih 31,..., ,i M= are given real valued functions defined 

in .n mℜ ×ℜ ×ℜ  
If u U∈ satisfies the constraints (3) and (4), then the 

admissible control u is called a feasible control. Let F be the 
class of all feasible controls.    

Hence, for the given system (1), the aim is to find a feasible 
control u F∈ such that the cost function  

    
1

0 0 0
0

( ) ( ( | )) ( ( | ), ( ), )
N

k

g u x N u L x k u u k kϕ
−

=

= +∑              (5) 

is minimized over F and the corresponding constraints (3) and 
(4) are satisfied, where 0ϕ  and 0L  are given real valued 

functions.  
This problem is regarded as an optimal control problem, 

and we refer it to as Problem (P).   
It is assumed that the functions ,f ,iΨ ,ih 0ϕ  and 0L  are 

continuously differentiable with respect to their respective 
arguments. 

Define   
     { : ( ( | )) 0,iu U x N uθ = ∈ Ψ = 11,..., ;i M=  

( ( | )) 0,i x N uΨ ≤ 1 21,...,i M M= + }        (6) 

and  
        { :F u θ= ∈ ( ( | ), ( ), ) 0,ih x k u u k k ≤  

0,..., 1,k N= − 31,...,i M= }                     (7) 

III.  NONLINEAR PROGRAMMING APPROACH 

Now, we define a nonlinear programming problem given 
below.  

0
( )

min ( )
u k

g u           (8a) 

subject to  
( ) 0,ig u =  11,...,i M=                                  (8b) 

( ) 0,ig u ≤           1 1,...,i M M= +                          (8c) 

( ) ,i i ia u k b≤ ≤  1,..., ,i m=   0,..., 1,k N= −        (8d) 

where 

              
1

0

( ) ( ( | )) ( ( | ), ( ), )
N

i i i
k

g u x N u L x k u u k kϕ
−

=

= +∑         (8e) 

are the cost function for 0i =  and the corresponding 
constraint functions for 1,...,i M= in canonical form given by 
(3) and (4).  

Here, the terminal constraints (3), which are written in the 
canonical form, are given below:    

( ) ( ( | )) 0,i ig u x N u= Ψ =   11,...,i M=                   (9a) 

( ) ( ( | )) 0,i ig u x N u= Ψ ≤   1 21,...,i M M= + .       (9b) 

Recall that θ  is defined by (6), then, 
          { : ( ) 0,iu U g uθ = ∈ = 11,..., ;i M=  

( ) 0,ig u ≤ 1 21,...,i M M= + }.                (10) 

For each 31,..., ,i M=  the all-time-step inequality constraint 

(4) is equivalent to   
1

0

( ) max{ ( ( | ), ( ), ),0} 0
N

i i
k

g u h x k u u k k
−

=

= =∑        (11a) 

where  
          ( ( | ), ( ), ) max{ ( ( | ), ( ), ),0}i iL x k u u k k h x k u u k k= .  (11b) 

Thus, the set F of feasible controls defined by (7) can also be 
written as 

{ : ( ) 0,iF u g uθ= ∈ = 31,..., }i M=                  (12) 

For more detail about constraints approximation, see [3].   
This problem is referred to as Problem (Q). Note that 

Problem (Q) is a canonical formulation of Problem (P). This 
mathematical programming model in the control parameters 
can be solved by using any optimization technique, where for 
each ,u U∈  we compute   

T T T T[( (0)) , ( (1)) ,..., ( ( 1)) ]u u u u N= −               (13)    

such that (8d) are satisfied with the corresponding values of 
the cost function 0( )g u  defined by (8a) and the constraints 

functions ( )ig u  for 1,...,i M=  defined by (8e).   

A. Control Parameterization 

Let the control vector u be perturbed by ˆ,uε  where 0ε >  

is a small real number and û  is an arbitrary but fixed 
perturbation of u given by  

T T T Tˆ ˆ ˆ ˆ[( (0)) , ( (1)) ,..., ( ( 1)) ]u u u u N= − .              (14) 

This gives  
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ˆu u uε ε= + T T T T[( (0, )) , ( (1, )) ,..., ( ( 1, )) ]u u u Nε ε ε= −   (15) 

where  
  ˆ( , ) ( ) ( ),u k u k u kε ε= +   0,..., 1.k N= −            (16) 

Following from (16), the state of the system (1) will be 
perturbed, and so are the cost functional and the 
corresponding constraint functions.  

B. Gradient Formulae  

Define the state sequence 
( , ) ( | ),x k x k uεε =   1,..., .k N=                (17) 

Then, the system of difference equations (1a) becomes  
       ( 1, ) ( ( , ), ( , ), )x k f x k u k kε ε ε+ =                     (18) 

The variation of the state for 0,..., 1k N= −  is  

0

( 1, )
( 1)

dx k
x k

d ε

ε
ε =

++ =�  

( ( ), ( ), ) ( ( ), ( ), )
ˆ( ) ( )

( ) ( )

f x k u k k f x k u k k
x k u k

x k u k

∂ ∂= +
∂ ∂

�          (19a) 

with  
            (0) 0.x =�                       (19b) 

For the ith constraint function, it is considered that  

0
0

( ) ( ) ( ) ( )
ˆ limi i i ig u g u g u dg u
u

u d
ε ε

ε εε ε→ =

∂ −
= ≡

∂
 

  
( ( ))

( )
( )

i x N
x N

x N

ϕ∂
=

∂
�  

 
1

0

( ( ), ( ), ) ( ( ), ( ), )
ˆ( ) ( )

( ) ( )

N
i i

k

L x k u k k L x k u k k
x k u k

x k u k

−

=

 ∂ ∂
+ + ∂ ∂ 
∑ � .   (20) 

Define the Hamiltonian sequence  

         ( ( ), ( ), ( 1), )i
iH x k u k p k k+      

T( ( ), ( ), ) ( 1) ( ( ), ( ), )i
iL x k u k k p k f x k u k k= + +      (21) 

where ( ) ,i np k ∈ℜ ,...,1,k N=  is referred to as the co-state 

sequence for the ith canonical constraint. Consider   

    
( ( ), ( ), ( 1), )

( )

i
iH x k u k p k k

u k

∂ +
∂

              

          T( ( ), ( ), ) ( ( ), ( ), )
( ( 1))

( ) ( )
iL x k u k k f x k u k k

p k
u k u k

∂ ∂= + +
∂ ∂

 

and 

( ( ), ( ), ( 1), )

( )

i
iH x k u k p k k

x k

∂ +
∂

  

      T( ( ), ( ), ) ( ( ), ( ), )
( ( 1))

( ) ( )
iL x k u k k f x k u k k

p k
x k x k

∂ ∂= + +
∂ ∂

 

Then, it follows from (20) that  
( )

ˆig u
u

u

∂
∂

( ( ))
( )

( )
i x N

x N
x N

ϕ∂
=

∂
�  

      
1

0

( ( ), ( ), ( 1), )
( )

( )

N i
i

k

H x k u k p k k
x k

x k

−

=

∂ ++  ∂
∑ �  

    
( ( ), ( ), )

( ( 1)) ( )
( )

i f x k u k k
p k x k

x k
Τ ∂− +

∂
�  

( ( ), ( ), ( 1), )
ˆ( )

( )

i
iH x k u k p k k

u k
u k

∂ +
+

∂
 

( ( ), ( ), )
ˆ( ( 1)) ( )

( )
i f x k u k k

p k u k
u k

Τ ∂− + ∂ 
        (22) 

Let the co-state ( )ip k  be determined by the following 

system of difference equations  

( ( ), ( ), ( 1), )
( ( )) ,

( )

i
i iH x k u k p k k

p k
x k

Τ ∂ +
=

∂
1,...,1k N= −  (23a) 

and the boundary value is given by  
( ( ))

( ( )) .
( )

i i x N
p N

x N

ϕΤ ∂
=

∂
                         (23b) 

Hence, consider (19) and (23) in (22), it yields that  
( )

ˆig u
u

u

∂
∂

( (0), (0), (1),0) ( ( 1), ( 1), ( ), 1)
ˆ,...,

(0) ( 1)

i i
i iH x u p H x N u N p N N

u
u u N

 ∂ ∂ − − −
=  

∂ ∂ −  

   

Because of ̂u  is arbitrary, we obtain the following gradient 
formula  

( )ig u

u

∂
∂

 

( (0), (0), (1),0) ( ( 1), ( 1), ( ), 1)
,...,

(0) ( 1)

i i
i iH x u p H x N u N p N N

u u N

 ∂ ∂ − − −
=  

∂ ∂ −  

 

                        (24) 
We present this result in the following as a theorem [3].  

Theorem 1 
Consider Problem (Q). For each 0,..., ,i M=  the gradient of 

( ),ig u  where  
T T T T[( (0)) , ( (1)) ,..., ( ( 1)) ]u u u u N= − , 

is given by (24).  

C. Computation Algorithm 

We shall summarize the computation of the gradient of the 
constraint functions ( )ig u  for 0,..., ,i M=  in the following 

algorithm.  
Gradient Algorithm  
Data For each 1,..., ,i m=  and for a given  

T T T T[( (0)) , ( (1)) ,..., ( ( 1)) ]u u u u N= −  

 such that (8d) are satisfied.  
Step 1 Solve the system of the state difference equations (1) 

forward in time from 0k = to k N= with initial 
condition (1b) to obtain ( | ),x k u 0,..., .k N=   
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Step 2 Solve the system of the co-state difference equations 
(23) backward in time fromk N= to 1.k = Let 

( | )ip k u  be the solution obtained.  

Step 3  Calculate the values of the cost function 0( )g u for 

0i = and the constraint functions ( )ig u for 

1,..., ,i M= from (8e).   

 Step 4  Compute the gradient of ( )ig u  according to (24).   

IV.  ILLUSTRATIVE EXAMPLES 

In this section, four optimal control problems with different 
dimensional are considered.  
Example 1: Consider the scalar system [3]:  

( 1) 0.5 ( ) ( )x k x k u k+ = + , (0) 1x =  

for 0,...,49.k =  The cost functional  
 

 
Figure 1 (a): Control trajectory 

 
Figure 1 (b): State trajectory 

1
2 2

0
0

( ) [( ( )) ( ( )) ]
N

k

g u x k u k
−

=

= +∑  

is to be minimized with the control bounded by  
1 ( ) 1.u k− ≤ ≤  

The minimum cost is 0g = 1.132782. The control and state 

trajectories are, respectively, shown in Figures 1 (a) and 1 (b).   
Example 2: Consider the following optimal control problem 
[3]:  

2 2
0 1 2

( )
min ( ) ( ( )) ( ( ))
u k

g u x N x N= +  

                 
1

2 2 2
1 2

0

[( ( )) ( ( )) 0.005( ( )) ]
N

k

x k x k u k
−

=

+ + +∑  

subject to  

1 1 2( 1) ( ) 0.02 ( )x k x k x k+ = +  

     2 2( 1) 0.98 ( ) 0.02 ( )x k x k u k+ = +  
2

2( ) 8(0.02 0.05) 0.5 0x k k− − + ≤  

for 0,...,49,k =  with initial state  

1(0) 0,x =  2(0) 1.x = −  

The results of control and the corresponding constraint are 
shown in Figures 2 (a) and 2 (b), respectively, while the 
minimum cost functional is 0g =  9.123153.  

 
 

 
Figure 2 (a): Control trajectory 

 
Figure 2 (b): State inequality 

Example 3: For the state difference equations [21]  

1 1 1( 1) ( ) 0.02( ( ) 0.25)x k x k x k+ = − +  

1
2

1

25 ( )
0.01( ( ) 0.5)exp

( ) 2

x k
x k

x k

 
+ +  + 
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10.01( ( ) 0.25) ( )x k u k− +  

2 2( 1) 0.99 ( ) 0.005x k x k+ = −   

  1
2

1

25 ( )
0.01( ( ) 0.5)exp

( ) 2

x k
x k

x k

 
− +  + 

 

for 0,...,77,k = with initial condition  

1(0) 0.05,x =   2(0) 0,x =  

the cost function  
1

2 2 2
0 1 2

0

( ) 0.01 [( ( )) ( ( )) 0.1( ( )) ]
N

k

g u x k x k u k
−

=

= + +∑  

is to be minimized.    
The trajectories of control and state are, respectively, 

shown in Figures 3 (a) and 3 (b). The minimum value of cost 
functional is 0g =  0.02725.  

 
 
 

 

 
Figure 3 (a): Control trajectory 

 
Figure 3 (b): State trajectory 

Example 4: Consider the third-order system [24]: 

1 1 2 2 3( 1) ( ) 0.01(sin( ( ) ( ( ) 1) ( ))x k x k x k x k x k+ = + + +  

      5
2 2 1 3( 1) ( ) 0.01( ( ) ( ))x k x k x k x k+ = + +  

      2
3 3 1( 1) ( ) 0.01( ( ) ( ))x k x k x k u k+ = + +  

with the initial state 

1(0) 1,x =      2(0) 0,x =      3(0) 1.x = −  

The aim is to find an admissible control ( )u k  such that the 

cost function  
1

2 2 2
0 1 2

0

( ) 0.01 [( ( )) ( ( )) ( ( )) ]
N

k

g u x k x k u k
−

=

= + +∑  

is minimized with the control bound 
0 ( ) 0.06.u k≤ ≤  

The results are shown in Figures 4 (a) and 4 (b) with the 
minimum value of cost functional 0g =  0.18299. 

V. CONCLUDING REMARKS 
In this paper, the NLP approach was discussed in solving 

optimal control problems. The control parameterization 
approach is applied to generalize the optimal control problem 
in canonical form. With this canonical formulation, the NLP 
model of the optimal control problem is obtained. The control 
variables, which are piecewise constant, are defined as 
decision variables in the NLP model. Their values are 
calculated from the gradient formulae that are derived from 
the canonical formulation. From the illustrative examples, the 
efficiency of the algorithm discussed is shown.  

 
Figure 4 (a): Control trajectory 

 
Figure 4 (b): State trajectory  
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