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Abstract

We propose semiparametric tests of misspeci�cation of agent's information for games of incomplete

information. The tests use the intuition that the opponent's choices should not predict a player's choice

conditional on the proposed information available to the player. The tests are designed to check against

some commonly used null hypotheses (Bajari et al. (2010), Aradillas-Lopez (2010)). We show that our

tests have power to discriminate between common alternatives even in small samples. We apply our tests

to data on entry in the US airline industry. Both the assumptions of independent and correlated private

shocks are not supported by the data.
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1 Introduction

There is a growing literature on the estimation of games with incomplete information (e.g., Brock and

Durlauf (2001), Seim (2006), Sweeting (2009), Bajari, Hong, Krainer, and Nekipelov (2010) and Aradillas-

Lopez (2010) for static games and Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-Dengler (2008),

Collard-Wexler (2010), Sweeting (2011), and Ryan (2011) in the literature on the estimation of dynamic

games). Because incomplete information can take many forms, it is common for the analyst to simply

choose some information structure and analyze the game under this maintained assumption. A convenient

and common assumption is that the payo� shocks that are unobservable to the econometrician are private

information from the player's perspective. This assumption e�ectively imposes the restriction that each player

participating in the game has access to the same information about its competitors as the outside observer

analyzing the situation (i.e. the econometrician). In this case, the equilibrium choice probabilities that the

analyst can recover from the data as a function of observable covariates coincide with the player's equilibrium

beliefs. Hence, this assumption e�ectively simpli�es the estimation problem of strategic interactions to one

of a single agent random utility model.

While convenient, there is no a priori reason to believe that a player and the econometrician have the

same amount of information about the player's competitors. In particular, it is likely that the payo� shocks

unobserved to the econometrician are at least partially observed by the agents participating in the game.

Partially observed players' shocks invalidate the strategy of estimating equilibrium beliefs directly from the

conditional choice probabilities and generate dependence among players' choices. This misspeci�cation of

information on the part of the econometrician will lead to biased estimates and mistaken inference.1

As a �rst step in dealing with this potential problem, this paper proposes two simple semiparametric

speci�cation tests of the hypothesis that payo� shocks unobserved to the econometrician are entirely private

information. Since one of the main advantages of assuming that the player's and econometrician's information

(about competitors) coincide is the simplicity of the resulting estimators, we propose a test that is equally

simple. This �rst test assumes that realizations of payo� shocks are iid among players and tests against the

hypothesis that payo� shocks are entirely private information. The logic behind this test is simple: under

the iid assumption, if players partially observe their opponents' shocks but the econometrician does not,

then the players' observed equilibrium choices will not be independent of each other, even after controlling

for the observable (to the econometrician) covariates. Thus, the test checks for dependence among players'

choices after controlling for observable covariates. If dependence is detected the null hypothesis that players

use the same information as the econometrician when inferring their competitors' decisions is rejected.2

1See Cunha et al. (2005) for a similar point in the context of a lifecycle model with no strategic interactions.
2Although not exactly the same, the question we ask is isomorphic to the one in Heckman and Navarro (2004) where
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The second test we propose allows for the possibility that realizations of payo� shocks among players

are exogenously correlated as in Aradillas-Lopez (2010). Under this correlation structure, our procedure

tests the null hypothesis that payo� shocks are entirely private information. If shocks are correlated and

players know the joint distribution of the shocks, a player's realization of his own shock will help him when

forming expectations about his opponents' shocks (i.e. a signal extraction problem). In this case, dependence

(conditional on observable covariates) can come from partial observability and/or from exogenous correlation

of shocks. Therefore, we need to control for the latter factor (exogenous correlation) to test whether there

is partial observability. Under the null hypothesis of correlated shocks but no partial observability, other

players' choices net of the e�ect of observables, i.e. their unobservable (to the econometrician) shocks, should

be independent of the current player's choice. Since our test now relies on including unobservable shocks

when estimating probabilities, our proposed method jointly estimates auxiliary testing parameters and the

joint distribution of all players' unobservables.

This paper is related to Grieco (2010). In a similar spirit as ours, he proposes a �exible information

structure that nests as a special case the private information assumption that many papers place. He proves

that this assumption is testable based on independence of private payo� shocks and exclusion restrictions.

Unlike Grieco (2010), our focus is on testing procedures. Thus, our test is easy to implement and requires

none of these assumptions. In particular, our second test relaxes the independence of private shocks, which is

a signi�cant step towards a general framework. Our work also relates to de Paula and Tang (2011), who use

the same intuition as our test in order to test the existence of multiple equilibria. Their logic is that, with non-

deterministic equilibrium selection rules, multiple equilibria break the conditional independence assumption.

As opposed to them, we assume a deterministic (conditional on observables) equilibrium selection rule, hence

we interpret the failure of conditional independence as a rejection of the null of entirely private information.

Sweeting (2009) performs a test to examine whether there is any time-series correlation in players' actions in

the same market, which is evidence against private information. Since his test is speci�c to his application

in that it requires time-series variations and many players in the same market, our �rst test can be regarded

as a more general and easy-to-implement version of the test in Sweeting (2009).

The rest of the paper proceeds as follows. In section 2 we lay down a simple two player game with

incomplete information in which each player makes a binary decision. We then characterize the 3 di�erent

sets of assumptions about information we test for in section 3. In section 4 we develop the tests and show

their power properties via Monte Carlo simulation. We apply our test to data on entry in the US airline

industry in section 5. Section 6 concludes.

they characterize the informational requirements of methods that control for selection only based on variables observed by the
econometrician.
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2 A Simple Two Player Game with Binary Actions

Consider a game of incomplete information where two players, i and j have to choose one of two possible

actions.3 Let Si denote all the random variables a�ecting player i's payo� regardless of whether they are

observed by both players and/or the econometrician. A simple example would be a two �rm entry game

where Si would denote the variables determining �rm i's pro�t.4 Divide Si = (Xi, εi) where Xi is the set of

variables observable to both players and the econometrician and εi is vector of random variables unobserved

to the econometrician but observed by player i.5 The extent to which εi is observed by player j is what we

wish to determine.

Let ai denote player i's action, and let the set of actions be denoted by Ai = {0, 1}. For simplicity, denote

a−i = aj and A−i = Aj . Player i's payo� depends also on his own choice and his rival's choice. Formally we

write the payo� as

ui (ai, a−i, Si) = Ui (ai, a−i, Xi)− εi (ai) , (1)

where we allow εi to (potentially) depend on the action taken by player i. We assume that the payo� �shock�

(εi) is independent of all the observable covariates.
6 We further assume that both players draw the random

shock ε from the common and known distributionGε, which is absolutely continuous with unbounded support

and density g > 0 everywhere.

εi and εj are both unobserved to the econometrician, but we allow for the possibility that part of εi

is observed by player j and part of εj is observed by player i. We further allow for the possibility that

what player i observes about player j is di�erent from what player j observes about i so there can be

informational asymmetries between players, i.e. the potential partial observability is not necessarily due to

a common shock.

In order to �x ideas we further specialize the framework and work with a simple example. Consider a

simple static entry model where 2 players simultaneously choose between entering or not. Entry of player j

a�ects (arguably reduces) player i's pro�t. Without loss of generality, we normalize the pro�t of not entering

to zero for both players. Speci�cally, we assume that pro�ts are given by

Πi =

 hi (Xi) + αiyj − εi if yi = 1

0 if yi = 0
, (2)

3Extending the game (and the tests) to an n-player case and/or m-alternative case is straightforward at the cost of con-
siderable notational burden. Neither our tests nor any of the points we make depend on the simple setup we use in this
section.

4See Bresnahan and Reiss (1991), Berry (1992), Mazzeo (2002) and Seim (2006) for examples.
5We can also make Xi unobservable to the econometrician and introduce an observable signal for Xi instead as in Aradillas-

Lopez (2010).
6In Section 3.4 we discuss how we can relax this assumption.
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where yj = 1 if player j enters the market and yj = 0 otherwise. If we let Ωi denote player i's information

set (i.e. its state variables at time t) and let πj ≡ E (yj = 1|Ωi) , the optimal choices are then given by

yi = 11 {hi (Xi) + αiπj − εi ≥ 0} , (3)

where 11 {a} is an indicator function that equals one if a is true, and zero otherwise.

2.1 Alternative Information Structures

We consider three alternative information structures (i.e. speci�cations for Ωi) for a game of the kind

described above. The �rst one is the independent private shocks (IPS) speci�cation, in which it is assumed

that εi and εj are iid and entirely each player's private information. Bajari et al. (2010) assume this shock

structure to estimate a discrete game of incomplete information. The second speci�cation we consider is the

correlated private shocks (CPS) speci�cation, in which it is assumed that, while εi and εj are private

information, they may be correlated with each other. Because players are assumed to know the joint

distribution of εi and εj , each player conditions on the realization of his own ε when forming expectations

about his opponent's entry probability. Aradillas-Lopez (2010) provides a framework of estimating a discrete

game of incomplete information under this general shock structure. The third information structure we

propose in this paper assumes that εi and εj are independent but we allow for the possibility that player i

partially observes εj and that player j partially observes εi.

2.1.1 Independent Private Shocks (IPS)

In this case the information set for player i is given by Ωi = (Xi, Xj , εi). A Bayesian-Nash equilibrium is

given by a set of optimal strategies and beliefs consistent with these strategies. That is, a Bayesian-Nash

equilibrium of this game is given by

y1 = 11 {h1 (X1) + α1π
∗
2 − ε1 ≥ 0} (4)

y2 = 11 {h2 (X2) + α2π
∗
1 − ε2 ≥ 0} , (5)

where (π∗1 , π
∗
2) is a �xed point of ϕ = (ϕ1, ϕ2) = 0 with

ϕ1 (π1, π2) = π1 −Gε1 (h1 (X1) + α1π2) (6)

ϕ2 (π1, π2) = π2 −Gε2 (h2 (X2) + α2π1) . (7)
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Equations (6) and (7) imply that both π∗1 and π∗2 are functions of only X = (X1, X2).7 We explicitly denote

this dependence by writing π∗1 = π1 (X) and π∗2 = π2 (X). The fact that the equilibrium probabilities are a

function only of the observables X is the key result that we use when designing our test of whether an agent

knows some (or all) of his opponents' ε.

2.1.2 Correlated Private Shocks (CPS)

Let Gε1,ε2 (·, ·) be the joint distribution of (ε1, ε2) and let gε1|ε2 (ε1|ε2) denote the density of ε1 conditional

on ε2. As shown in Aradillas-Lopez (2010), since now the realization of the privately observed shock ε1

contains information about the realized ε2, the equilibrium beliefs will be functions of shock realizations.

That is, a Bayesian-Nash equilibrium of this game is given by

y1 = 11 {h1 (X1) + α1π
∗
2 − ε1 ≥ 0} (8)

y2 = 11 {h2 (X2) + α2π
∗
1 − ε2 ≥ 0} , (9)

where (π∗1 , π
∗
2) is a solution to the following system of functional equations:

π∗1 (X, ε2) =

ˆ
11 {h1 (X1) + α1π

∗
2 (X, ε1)− ε1 ≥ 0} gε1|ε2 (ε1|ε2) dε1 (10)

π∗2 (X, ε1) =

ˆ
11 {h2 (X2) + α2π

∗
1 (X, ε2)− ε2 ≥ 0} gε2|ε1 (ε2|ε1) dε2. (11)

Note that, even after controlling for the observables X, player i's beliefs about player j's probability of entry(
π∗j
)
depend on player i's shock but not on εj . The fact that beliefs will not depend on εj is the key to the

second test we develop below.

2.1.3 Partially Observable Shocks (POS)

The �nal information speci�cation we consider assumes that εi is potentially partially observable by the

opposing player. That is, we allow for the possibility that part (or all) of εi is observed to i's opponent. For

simplicity, we assume that the shock can be decomposed in an additive form:8

εi = εoi + εui , (12)

7In case of multiple equilibria π∗
1 and π∗

2 are correspondences. We come back to this issue in section 3.3.
8We assume additivity for simplicity in order to generate data in our simulations. Clearly any function

εi = fi (ε
o
i , ε

u
i )

will have the same implications.
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where εoi is observed to i's opponent, and εui is observed only to i. Neither εoi , ε
u
i nor εi are observed

by the econometrician. In terms of the notation introduced before, i's information set would be given by

Ωi =
(
Xi, Xj , εi, ε

o
j

)
. Assume that εo1, ε

u
1 , ε

o
2, and ε

u
2 are all mutually independent.

Under these assumptions, the equilibrium beliefs are functions of shock realizations too. A Bayesian-Nash

equilibrium of this game is given by

y1 = 11 {h1 (X1) + α1π
∗
2 − εo1 − εu1 ≥ 0} (13)

y2 = 11 {h2 (X2) + α2π
∗
1 − εo2 − εu2 ≥ 0} , (14)

where (π∗1 , π
∗
2) is a solution to the following system of equations:

π∗1 (X, εo1, ε
o
2) =

ˆ
11 {h1 (X1) + α1π

∗
2 (X, εo1, ε

o
2)− εo1 − εu1 ≥ 0} gεu1 (εu1 ) dεu1 (15)

π∗2 (X, εo1, ε
o
2) =

ˆ
11 {h2 (X2) + α2π

∗
1 (X, εo1, ε

o
2)− εo2 − εu2 ≥ 0} gεu2 (εu2 ) dεu2 . (16)

The key thing to notice is that, under partial observability, player i's equilibrium beliefs will depend on the

realization of his opponent's shock, even after controlling for observables and for his own shock.

3 Semiparametric Speci�cation Tests

In this section we introduce the speci�cation tests that will allow us to distinguish between the 3 models

just presented. Because the key aspect that we wish to test for is the speci�cation of Ω and not to recover

the structural model, the tests we develop are semiparametric in their speci�cation of the payo� functions.

That is, while in our discussion of the models we assumed additive separability between the direct payo�

(hi), the strategic interaction term (αi Pr (yj |Ωi)) and the shocks, the test are general enough to allow for

models speci�ed under weaker nonseparable payo�s.9 We impose the following assumptions:

A-1 (Data) Let FY1,Y2
(y1, y2|X) be the joint distribution of (y1, y2) conditional on X. The econometrician

has access to a large number of repetitions of games so that FY1,Y2 (y1, y2|X) can be treated as known.

A-2 (DGP) Data is generated from one of the three models described in the previous section. The econo-

metrician doesn't know the true model.

9To be speci�c, we apply our tests in the context of the information structures described above (see assumption A-2 ).
However, the tests we propose can apply more generally (even for certain classes of dynamic games). The only requirement is
that the policy functions that arise as an equilibrium of the game are functions of the speci�ed (a priori) information available
to each agent. With this in hand, we can simply follow the same strategy of adding the �left-out� information and testing for
its predictive power.
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A-3 (Multiple equilibria) Multiple equilibria are allowed but we assume the existence of a deterministic equi-

librium selection rule. The rule assigns an equilibrium based on public information. The econometrician

does not need to know the rule, but players do.

de Paula and Tang (2011) relax A-3 and account for cases in which the equilibrium selection rule is not

deterministic. Aradillas-Lopez and Gandhi (2011) do not specify the nature of equilibrium selection when

considering inference of parameters in ordered response games with incomplete information. Both papers,

however, maintain the assumption of independent private shocks. See section 3.3 for a discussion on the issue

of multiple equilibria and possible alternative assumptions to A-3 . In addition, we allow for the possibility

that X1 = X2, which means that we do not rely on exclusion restrictions.

3.1 Null Hypothesis: Independent Private Shocks

We �rst consider the testable implications of assuming the IPS speci�cation. In this case, both π∗1 and π∗2

are just functions of X and hence (4) can be written as

y1 = 11 {h1 (X1) + α1π
∗
2 (X)− ε1 ≥ 0} (17)

= 11 {µ1 (X)− ε1 ≥ 0} ,

for some function µ.10 The null and alternative hypotheses are

H0 : shocks are iid and private information

H1 : shocks are correlated or partially observed.

To make the test operational we take advantage of the fact that, under H0, y1 and y2 are assumed to be

independent random variables once we control forX. Therefore, we consider the following testing equation11:

y1 = 11 {µ1 (X) + δ1y2 − ε1 ≥ 0} . (18)

where δ1 is an auxiliary parameter to be used for testing purposes. The key idea behind the test is that,

10The second line makes it clear that we don't strictly require (4) to be the data generating process. Our test, will apply to
any model with the same information structure that generates the second line of (17).

11Bajari et al. (2010) also consider a model with market �xed e�ects. However, they assume that the market level unobservable
is just a function of observable covariates. Hence, for market m, (17) is rewritten as

y1m = 11 {h1 (X1m) + α1π
∗
2 (Xm) + η (Xm)− ε1m ≥ 0}

= 11 {µ̃1 (Xm)− ε1m ≥ 0} ,

implying that our testing procedure (18) is still valid even in this case.
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under the null hypothesis, δ1 = 0.12 So we consider the following hypothesis instead:

H ′0 : δ1 = 0 (19)

H ′1 : δ1 6= 0, (20)

where rejection of H ′0 implies the rejection of H0.

Notice that the test we propose can be easily implemented as a t-test of signi�cance of the auxiliary

parameter δ1. One can also choose to include a more general auxiliary function of y2.
13 As we show below in

our simulations, the test performs as expected under the null (i.e. we cannot reject δ1 = 0). More important,

as we also show, the power of the test (i.e. its ability to reject the null when it is false) is remarkably good

both against the CPS and the POS alternatives.

3.2 Null Hypothesis: Correlated Private Shocks

When the true data generating process is given by the CPS model, both π∗1 and π∗2 are functions not only of

X but of ε2 and ε1, respectively. Hence, y1 and y2 may be correlated even after controlling for X. However,

once we control for both X and ε1, player 1's choice y1 is independent of y2. The test is now more elaborate

since we need to control not only for the observable covariates but also for the player's own unobservable (to

the econometrician) shock. Following Aradillas-Lopez (2010), we add the following assumption:

A-4 (Correlation structure) The joint distribution Gε1,ε2 is such that a single parameter ρ summarizes the

correlation between ε1 and ε2.

Under CPS, (8) and (9) can be written as14

y1 = 11 {h1 (X1) + α1π
∗
2 (X, ε1)− ε1 ≥ 0} (21)

= 11 {ψ1 (X, ε1) ≥ 0} ,

and

y2 = 11 {ψ2 (X, ε2) ≥ 0} . (22)

12If the game has more than 2 players, we can add δ2y3 etc for each player since, under the null, only the X's determine the
decision.

13Another explanation for the rejection the null hypotheses described above could be the presence of market-level payo� shocks
unobserved to the econometrician. In the next section we show that the test can be generalized to account for correlation across
players unobservables.

14As before, the exact model is not important in terms of testing. The test works for any model that assumes the same
information structure (i.e. CPS) and hence generates the same decision rule as in the second line below.
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Thus, for an arbitrary value of ρ, the probability that both players enter is

Pr (y1 = 1, y2 = 1|X, ρ) (23)

=

ˆ
11 {ψ1 (X, ε1) ≥ 0} 11 {ψ2 (X, ε2) ≥ 0} gε1,ε2 (ε1, ε2; ρ) dε1dε2,

and the remaining probabilities can be de�ned accordingly.

Now consider testing the following null hypothesis:

H0 : shocks are correlated but realizations are private information

H1 : part of shocks are observed.

To make the test operational, we replace 11 {ψ1 (X, ε1) ≥ 0} and 11 {ψ2 (X, ε2) ≥ 0} in the objective function

(e.g. likelihood) of the problem de�ned by the above equations with

11{ψ1 (X, ε1) + δ1ε2 ≥ 0}, (24)

11 {ψ2 (X, ε2) + δ2ε1 ≥ 0} (25)

respectively. By doing this, we de�ne a new hypothesis for player 1:

H ′0 : δ1 = 0 (26)

H ′1 : δ1 6= 0. (27)

We can de�ne a similar hypothesis for player 2 or even test for the joint event that both δ1 and δ2

are zero. The key point to notice is that rejection of H ′0 implies the rejection of H0. That is, according

to the correlated private shocks model, once we control for X and ε1 in player 1's choice probability the

remaining information contained on player 2's choice (ε2) should not help predict player 1's choice. If it

does, it means the information structure of the game is misspeci�ed. Speci�cally, a player unobservables

(from the econometrician's perspective) are at least partially observable by the other player.

3.3 Multiple Equilibria

Because recovering the structural form (i.e. the parameters) of the model is not our goal, but rather to test

the di�erent information structures, our test is �robust� to the problem of multiple equilibria. However, one

important assumption we make is that the equilibrium selection rule is deterministic conditional on X. To

10



see why, consider an example of IPS. If there is only one equilibrium conditional on X, we have

E(y1y2|X) = E(y1|X)E(y2|X). (28)

Now suppose that there are J equilibria conditional on X. Let pj(X) be the probability that the j-th

equilibrium is played under a certain equilibrium selection rule. That is,
∑J

j=1 pj (X) = 1. Let Ej be

expectation operator when the j-th equilibrium is played. Then, we have

E(y1y2|X) =

J∑
j=1

pj(X)Ej(y1y2|X) (29)

E(y1|X)E(y2|X) =


J∑

j=1

pj(X)Ej(y1|X)




J∑
j=1

pj(X)Ej(y2|X)

 , (30)

and clearly E(y1y2|X) 6= E(y1|X)E(y2|X). Thus, a non-deterministic equilibrium selection rule breaks the

conditional independence even if payo� shocks are entirely private information. This is the key intuition

that de Paula and Tang (2011) use to test for the existence of multiple equilibria when they impose the

independent private shocks assumption. Aradillas-Lopez and Gandhi (2011) characterize the conditions

under which E(y1y2|X) ≥ E(y1|X)E(y2|X) holds, and use this moment inequality for inference of parameters

of a certain class of models.15

Thus, one can understand our µi (X) and ψi (X, εi) functions as the reduced forms of the corresponding

models provided the information structure is the same for the (unspeci�ed) equilibrium selection rule and

equilibrium assignments are deterministic conditional on common (public) information. Note that we do

not assume that a single equilibrium is played in the data. We assume the existence of an equilibrium

selection rule that depends on X and parameters, but not on any further randomness. That is, provided the

equilibrium selection does not use more information, our semiparametric tests work for any model with the

information structures we describe.

Alternatively, we could impose the assumption that the equilibrium selection rule is such that each player

uses a di�erent signal (independent of each other) to select an equilibrium. In this way, we could let the

equilibrium selection depend on signals that the econometrician does not observe, and our testing procedure

would be valid even in the presence of multiple equilibria.

15Speci�cally, Aradillas-Lopez and Gandhi (2011) consider ordered response games with incomplete information, which nest
the entry game we consider in this paper. They derive a more general set of moment inequalities associated with the ordered
response games.
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3.4 Dependence between Observable Covariates and Payo� Shocks

Our test doesn't critically depend on the exogeneity assumption that the observable covariates and payo�

shocks to players are independent. That is, we can allow Xi and εi to be correlated. For example, for the

IPS information structure, a Bayesian-Nash equilibrium of this game is given by

y1 = 11 {h1 (X1) + α1π
∗
2 − ε1 ≥ 0} , (31)

y2 = 11 {h2 (X2) + α2π
∗
1 − ε2 ≥ 0} , (32)

where (π∗1 , π
∗
2) is a �xed point of ϕ = (ϕ1, ϕ2) = 0 with

ϕ1 (π1, π2) = π1 −Gε1|X1
(h1 (X1) + α1π2) , (33)

ϕ2 (π1, π2) = π2 −Gε2|X2
(h2 (X2) + α2π1) . (34)

Thus, the key result that the equilibrium probabilities are a function only of the observables X is still valid.

In what follows, however, we keep the assumption that Xi and εi are independent for simplicity.

4 Properties of the Tests

While intuitive, it is not obvious that the tests we propose should have any power to discriminate alternative

hypotheses. Since the tests we propose are standard t-tests, we expect them to behave well under the null.

However, it is not clear whether the tests can reject the null when they should. In order to evaluate the power

properties of our tests, in this section we perform a Monte Carlo study where we simulate the distribution

of the test statistic under the relevant alternative hypotheses for di�erent sample sizes and di�erent values

of the parameters controlling the departure from the null. As we show, the tests perform remarkably well

for samples of even moderate sizes.

4.1 Simulation Design

For all the di�erent models we present the basic parametrization we use is the following. We assume that

h (X1) = β1X1 and h (X2) = β2X2. We set β1 = β2 = 0.1 and α1 = α2 = −1.5. The observable covariates

X1 and X2 are randomly drawn from U [2, 12] . Each model is distinguished by the assumptions about the

distribution of the unobservables ε1, ε2 as well as the speci�cation of the information available to each player

Ω.
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4.1.1 Independent Private Shocks

We assume that the shocks ε1, ε2 are independent and that both follow standard normal distributions. For

any draw m of (Xm, ε1m, ε2m) we form

y1m = 11 {0.1X1m − 1.5π∗2m (X1, X2)− ε1m ≥ 0} (35)

y2m = 11 {0.1X2m − 1.5π∗1m (X1, X2)− ε2m ≥ 0} , (36)

where π∗1m (X1, X2) and π∗2m (X1, X2) are the �xed point of

π1 − Φ (0.1X1m − 1.5π2) = 0 (37)

π2 − Φ (0.1X2m − 1.5π1) = 0. (38)

We calculate an equilibrium for each market as follows. Draw X1m, X2m, ε1m and ε2m. We then �nd the

equilibrium probabilities by �nding the �xed point to (37) and (38).16 To do so, we follow Aradillas-Lopez

(2010) and start the �xed point search at π2 = 1. Let π1
1 be the solution to (37). Using π1

1 , let π
1
2 be the

solution to (38). We iterate until we get |πk
1 −πk+1

1 | < ε and |πk
2 −πk+1

2 | < ε for su�ciently small ε. Call the

�xed point we obtain π∗1 and π∗2 . Using these values, determine (y1, y2) from the threshold crossing model

given by (35) and (36). We calculate the equilibrium this way M times.

4.1.2 Correlated Private Shocks

In this case, we assume the shocks are distributed jointly normal:

 ε1

ε2

 ∼ N

 0

0

 ,

 1 ρ

1


 ,

where, as a baseline, we set ρ = 0.5.

Calculating the �xed point for (10) and (11) is computationally demanding since, for given X, we need

to get a �xed point of functions π∗1 (X, ·) and π∗2 (X, ·).17 To do so, we approximate (10) and (11) as follows.

We �rst choose quadrature nodes z1, z2, ..., zNs
and quadrature weights w1, w2, ..., wNs

based on the Gauss-

Chebyshev rule adapted to (−∞,∞). For each Xm = {X1m, X2m} , set π0
1 (Xm, ·) = 1 and π0

2 (Xm, ·) = 0.

16In general we do not have uniqueness of equilibrium in this setting (since we use normal distributions and both α1 and α2

are negative). Our choice is to simply use the �rst �xed point found. For the formal analysis of multiple equilibria in estimation
of games of incomplete information, see Aradillas-Lopez (2010).

17As before, uniqueness of such a function is not guaranteed. In practice, we use the �xed point that is found �rst.
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For all ε2 ∈ {z1, z2, ..., zNs} , we update π1
1 (X, ε2) using

πk+1
1 (Xm, ε2) ≈

Ns∑
s=1

11
{

0.1X1m − 1.5πk
2 (Xm, zs)− zs ≥ 0

}
φ
(
zs; ρε2, 1− ρ2

)
ws, (39)

where φ (·; a, b) is the PDF of a normal distribution with mean a and variance b. Likewise, for all ε1 ∈

{z1, z2, ..., zNs
} , we update π1

2 (X, ε1) using

πk+1
2 (Xm, ε1) ≈

Ns∑
s=1

11
{

0.1X2m − 1.5πk
1 (Xm, zs)− zs ≥ 0

}
φ
(
zs, ρε1, 1− ρ2

)
ws. (40)

We then iterate the procedure until convergence.

Let π∗1 (X, ·) = πk+1
1 (X, ·) and π∗2 (X, ·) = πk+1

2 (X, ·) be the functions obtained from the �xed point

algorithm described above. We then calculate y1m and y2m based on

y1m = 11 {0.1X1m − 1.5π∗2 (Xm, ε1m)− ε1m ≥ 0} (41)

y2m = 11 {0.1X2m − 1.5π∗1 (Xm, ε2m)− ε2m ≥ 0} (42)

for m = 1, ...,M.

4.1.3 Partially Observable Shocks

In this case, we assume the shocks are distributed as

εo1, ε
o
2 ∼ N

(
0, σ2

o

)
εu1 , ε

u
2 ∼ N

(
0, σ2

u

)
and use the normalization σ2

o + σ2
u = 1. Notice that as σ2

o → 1 all the random shocks become common

knowledge, while as σ2
o → 0 then the shocks become entirely private information. The data generating

process is as follows: for market m = 1, ...,M the equilibrium is given by

y1m = 11
{

0.1X1m − 1.5π∗2
(
X1m, X2m, ε

o
1m, ε

o
2,m

)
− εo1m − εu1m ≥ 0

}
(43)

y2m = 11
{

0.1X2m − 1.5π∗1
(
X1m, X2m, ε

o
1m, ε

o
2,m

)
− εo2m − εu2m ≥ 0

}
, (44)
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where π∗1 (X1, X2, ε
o
1m, ε

o
2m) and π∗2 (X1, X2, ε

o
1m, ε

o
2m) are given by the solution to the following system of

equations:

π1 − Φεu1
(0.1X1m − 1.5π2 − εo1m) = 0 (45)

π2 − Φεu2
(0.1X2m − 1.5π1 − εo2m) = 0, (46)

where we obtain the equilibrium choice probabilities in a similar manner as the IPS case except that now

we do it for a given (X, εo1, ε
o
2).

4.2 Implementation

In order to implement estimation on our simulated samples we use series estimators for the payo� functions.

We approximate µi (X) i = 1, 2 with the polynomial:

µi (X) = λ0i + λ1iXi + λ2iX
2
i + λ3iXj + λ4iX

2
j + λ5iXiXj . (47)

For ψi (X, εi) i = 1, 2 we use

ψi (X, εi) = θ0i + θ1iXi + θ2iX
2
i + θ3iXj + θ4iX

2
j + θ5iεi + θ6iε

2
i + θ7iXiXj (48)

+θ8iXiεi + θ9iXjεi + θ10iXiXjεi + θ11iX
2
i εi + θ12iX

2
j εi.

For any given test for a �xed number of markets M and parameters of the model, we simulate 250 datasets.

In our baseline simulation we set the number of markets at 250. As a check, when the data is generated

under the null, we calculate the t-statistic for our auxiliary testing parameter in each of our 250 simulated

datasets and con�rm that it fails to reject the null around 95% of the time.

To evaluate the power of the tests, we need to know the distribution of the test statistics (or the 95%

con�dence interval) for δ̂i = 0 under the alternative hypothesis. To do so, we use a nonparametric bootstrap

procedure to obtain these distributions. That is, when the simulated datasets are generated under an

alternative hypothesis (CPS, POS for the IPS null; POS for the CPS null) we bootstrap each simulated

dataset 250 times in order to get the distribution of the test statistic. For each simulated dataset we then

calculate the 95% con�dence interval for the statistic and check whether it rejects the null. Finally we count

the number of times this happens across our 250 simulated datasets. The percentage of the time the null is

rejected under the alternative is the power of the test.

For each of the possible alternatives, we change M and check how the power of the test changes with
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the number of observations. We also calculate the power under di�erent values for ρ when the alternative

is CPS and di�erent values for σ2
o under POS. We plot the power function against M and ρ (or M and σ2

o)

while keeping everything else constant.

4.3 Monte Carlo Results

In this section we show the results of the Monte Carlo design we just described. As a �rst quick check, we

�rst generate 250 datasets for each of our 3 baseline data generating processes. For each dataset, we then

estimate the model under each of the 2 nulls we investigate including the auxiliary parameter (δi) that our

test is based on. In Table 1 we show the average estimate for δ1 as well as a 95% interval over the 250

simulations. Notice that these are not to be interpreted as con�dence intervals and are just meant as a rough

check for how well we expect our test to behave. As is clear from the table, when the data generating process

and the null hypothesis coincide, the average estimate is very close to 0 with the interval centered around

it. When the data generating process di�ers from the null (i.e. when the null is false) the average estimate

is far from zero and the intervals barely contain zero (if at all).

To get a formal idea of how the tests perform, we then take each of the 250 simulated datasets and

bootstrap them 250 times. Then, for each simulated dataset, we form the t-statistic by taking the estimated

δ and dividing it over the standard error obtained from the bootstrapped distribution.18 The last column of

Table 1 counts the number of times that the null is rejected (i.e. the number of times the t-statistic is larger

in absolute value than 1.96). The same pattern we see in our simple analysis without standard errors holds:

the null is rejected (roughly) 5% of the time when the null is true and it is rejected between 54% and 96% of

the time when it should be rejected. The power properties of the test are remarkably good even for datasets

of the modest size (250 markets) we use in this baseline simulation. The fact that the test has a rejection

rate of 54% when the data is generated from the POS model but the CPS is the null is surprising given the

relatively small fraction of the variance of the shock we assume is partially observed by the agents for this

particular simulation (25%).

Figures 1 through 3 give a better idea of the performance of the tests. In Figures 1 and 2 we show how

the power of the test changes as we change the sample size when the model is estimated under the null of

IPS and the data generating process is CPS with ρ = 0.5 (Figure 1) and when the data generating process is

POS with σ2
o = 0.25 (Figure 2). The power calculation is done in the same way by generating 250 datasets

and using 250 bootstrapped samples per dataset to calculate the rate of rejection. As we can see the simple

t-test we propose has considerable power even for small samples of 50 observations. The test is able to reject

18Alternatively, we could form the 95% con�dence interval for each dataset and check whether it contains zero. The results
are essentially the same as when we form the t-statistic.
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the null around 80% of the time under either alternative for sample sizes as small as 200 and it rejects almost

100% of the time for samples of 450 observations or more. Figure 3 performs the same calculation when we

test whether the test rejects the null of CPS when the true data generating process is POS with σ2
o = 0.25

and σ2
o = 0.45. The power of the test is weakly increasing in the number of markets when σ2

o = 0.25. We

speculate that this is due to simulation error. While the test is considerably less powerful in this case, the

power is still good given the small sample sizes and small fraction of the opponent's shock that we assume

is observed by the player. As expected, as we increase the proportion of the shock that is observable to the

other player (σ2
o = 0.45), the test performs quite well.

In Figure 4 we show how the power function changes as we change not only the sample size but also ρ for

the case in which the data is generated from the CPS model and the null hypothesis is IPS. The power of the

test is monotone on the sample size regardless of the degree of correlation between the shocks. Surprisingly

the test looses power for high values of the correlation coe�cient. Figure 5 repeats the exercise for the case

in which the data comes from the POS model instead and we change both the sample size and σ2
o . For this

case, the test becomes monotonically more powerful for both increases in the sample size and/or increases in

the fraction of the opponent's shock observed by the player. Finally, in Figure 6 we plot the power function

for the case in which the data is generated from the POS model but the null is CPS. Although the power is

not high when σ2
o is around 0.2 or 0.3, it increases quickly as σ2

o increases.

5 An Empirical Example

This section applies our simple test to data on entry in the US airline industry. We use this industry as our

empirical example primarily because several in�uential papers have estimated the entry model using this

data: e.g., Berry (1992) and Ciliberto and Tamer (2009). Both papers assume that payo� shocks are common

knowledge. While our test cannot provide a direct support for the complete information assumption, we can

test against another extreme of entirely private information. The rejection of the null hypothesis would be,

at least, consistent with the assumption of complete information used in these papers. The second reason is

that there is potentially a lot of �rm-speci�c information that airline carriers observe about each other but

that is not observed by the econometrician. Finally, the number of markets is large in this industry so that

our unspeci�ed reduced form function can be �exible when controlling for observable covariates.

Our data comes from the �rst quarter of 2006's Airline Origin and Destination Survey (DB1B). The

market is de�ned as a route between the origin airport and the �nal destination airport, regardless of

whether the passenger makes an intermediate stop or not. We assume that round trips are non-directional.

That is, for example, a round trip ticket between ORD and JFK is the same no matter which airport is the
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origin or destination. We use the 50 largest airports in the U.S. and exclude several airport pairs.19 The �nal

dataset contains 1,212 markets. We focus on the 5 major US airlines (Delta, American, United, Southwest,

and Northwest), which we simply call �rm 1 through �rm 5, respectively.

Each �rm has two choices: enter or not enter. Let yi = 1 if �rm i enters the market and 0 if it does not.

The decision rule for �rm i in market m is given by

yim = 11

gi (Xim, Zm, Dm) + αi

∑
j 6=i

πi
jm − εim > 0

 , (49)

where Xim is a �rm speci�c measure of market potential, Zm is a measure for demand size of market m, and

Dm is a variable for cost of serving in market m. For Xim, we use the number of airports connected (by �rm

i) to either the origin or the �nal destination airport of market m. Zm and Dm are de�ned as the product

of city populations for two end point airports and the distance between the two end airports, respectively.

πi
jm denotes �rm i's evaluation of the entry probability of �rm j.

5.1 Testing Independent Private Shocks

Our �rst goal is to test the null hypothesis that shocks are independent private information. Under the null,

the equilibrium beliefs are given by

πi∗
j = πi∗

j (X1, ..., X5, Zm, Dm) . (50)

Following the analysis in the text, we estimate the following equation for �rm 1:

y1m = 11

µ (X1m, ..., X5m, Zm, Dm) +

5∑
j=2

δ1j yjm − εim > 0

 . (51)

We approximate the µ function as polynomial on the X's, Zm, Dm, and their interactions. First we assume

εim follows the standard normal distribution. The total number of parameters we estimate is 37. For

simplicity, we test whether the δj are jointly zero:

δ12 = δ13 = δ14 = δ15 = 0 (52)

19Several routes between several airports shouldn't be regarded as markets. For example, there is no �ight between Chicago
O'Hare and Chicago Midway, and also nobody recognizes it as a route for airplanes. Therefore, we exclude several pairs that
have the same feature as this example.
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The test statistic we use is the likelihood ratio test:

LR = 2(517.0− 505.4) = 23.2, (53)

which is larger than the critical value (13.3 at the 1% signi�cance level).

If ε does not follow the standard normal distribution, the model is misspeci�ed and the auxiliary param-

eters may be biased. To alleviate this risk, we estimate the model under the same null hypothesis, assuming

that ε follows the mixture of two normal distributions. The total number of parameters is 39. The test

statistic is

LR = 2(502.1− 474.7) = 18.4, (54)

which is larger than the critical value. To conclude, we reject the hypothesis that random shocks are entirely

independent private information.

5.2 Testing Correlated Private Shocks

We next test the null hypothesis that shocks are correlated but private information. Under the null, the

equilibrium beliefs are given by

πi∗
j = πi∗

j (X1, ..., X5, Zm, Dm, ε1) . (55)

We estimate the following equation:

Pr (y1 = 1, ..., y5 = 1|X1, ..., X5, Z,D, ρ) (56)

=

ˆ 5∏
i=1

11

ψi (X1, ..., X5, Zm, Dm, εim) +
∑
j 6=i

δijεjm ≥ 0

 gε (ε) dε,

where gε denotes the density of the joint distribution of (ε1, ..., ε5) , which we assume is the multivariate

normal distribution with a single parameter ρ.20 The total number of parameters is 361 (340 in ψ, 20 δs,

and ρ).

Again, we test whether all the δij are jointly zero. The test statistic of the likelihood ratio test is

LR = 2(2176.6− 2086.1) = 181.0, (57)

which is higher than the critical value of the chi-squared distribution with 20 degrees of freedom (37.6 at

the 1% signi�cance level). Therefore, we can conclude that even after controlling for exogenous correlation

20The diagonal elements of the variance-covariance matrix are normalized to one. The o�-diagonal elements are all ρ.

19



between εi and εj , the null hypothesis that payo� shocks are entirely private information is rejected. That

is, airline companies partially (and potentially fully) observe competitors' payo� shocks not observable to

the econometrician.

6 Conclusion

The literature on the estimation of games of incomplete information has paid close attention to the semipara-

metric and nonparametric identi�cation and estimation of these games. However, in all cases, this is done

under maintained assumptions about the information available to both players and the econometrician. As

we show in this paper, a very simple speci�cation test that allows one to check whether these assumptions

are violated can be employed. Our test checks for violation of the conditional independence implied by an

information structure. As we show, for the widely used examples of static entry games, the test can be

implemented in a very simple and intuitive way. For the independent private shocks null hypothesis, the

test consists of estimating a standard binary choice model which, under assumptions about the distribution

of the shocks, is a standard problem. While simple, the test seems to have very good power properties even

for samples of moderate size. The test of correlated private shocks, while not as powerful, still exhibits good

power properties. Our simple empirical example on entry in the US airline industry shows that both the

hypotheses of independent private shocks and of correlated private shocks are not supported by the data.
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Note: We calculate the power for each pair of the number of markets and the correlation coefficient.
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Note: We calculate the power for each pair of the number of markets and the variance of observable shocks.
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Note: We calculate the power for each pair of the number of markets and the variance of observable shocks.
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