
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und Modellierungssprachen

Oettingenstraße 67, D–80538 München

LMU
Maximilians
Universität
München

Ludwig

The XML Query Language Xcerpt:

Design Principles, Examples, and Semantics

François Bry and Sebastian Schaffert

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht/Research Report PMS-FB-2002-7, May 2002

The XML Query Language Xcerpt: Design

Principles, Examples, and Semantics

François Bry and Sebastian Schaffert

Institute for Computer Science, University of Munich
http://www.pms.informatik.uni-muenchen.de/

Abstract. Most query and transformation languages developed since the mid
90es for XML and semistructured data – e.g. XQuery [1], the precursors of
XQuery [2], and XSLT [3] – build upon a path-oriented node selection: A node
in a data item is specified in terms of a root-to-node path in the manner of
the file selection languages of operating systems. Constructs inspired from the
regular expression constructs ∗, +, ?, and “wildcards” give rise to a flexible node
retrieval from incompletely specified data items.
This paper further introduces into Xcerpt, a query and transformation language
further developing an alternative approach to querying XML and semistructured
data first introduced with the language UnQL [4]. A metaphor for this approach
views queries as patterns, answers as data items matching the queries. Formally,
an answer to a query is defined as a simulation [5] of an instance of the query
in a data item.

1 Introduction

Essential to semistructured data is the selection of data from incom-
pletely specified data items. For such a data selection, a path lan-
guage such as XPath [6] is convenient because it provides constructs
similar to regular expressions such as ∗, +, ?, and “wildcards” that
give rise to a flexible node retrieval. For example, the XPath expres-
sion /descendant::a/descendant::b[following-sibling::c] selects all el-
ements of type b followed by a sibling element of type c that occur at any depth
within an element of type a, itself at any depth in the document.

Query and transformation languages developed since the mid 90es for XML
[6] and semistructured data – e.g. XQuery [6], the precursors of XQuery, and
XSLT [6] – rely upon such a path-oriented selection. They use patterns (also
called templates) for expressing how the selected data, expressed by paths,
are re-arranged (or re-constructed) into new data items. Thus, such languages
intertwine construct parts, i.e. the construction patterns, and query parts, i.e.
path selectors.

Example 1. An example for this intertwining of construct and query parts is
the following XQuery query from [7]. This query creates a list of book titles for
each author in a bibliography database, like that of Example 2.

<results>

{

for $a in distinct-values(document("http://www.bn.com")//author)

return

<result>

{ $a }

{

for $b in document("http://www.bn.com")/bib/book

where some $ba in $b/author satisfies deep-equal($ba,$a)

return $b/title

}

</result>

}

</results>

The XQuery expression is a construct pattern specifying the struc-
ture of the data to return. The query parts, i.e. the definition of the
values for the variables $a and $b, are included in the construct pat-
tern. Note that the (path-oriented) definitions of the variables $a and
$b refer to a common subpath document("http://www.bn.com"). Note
also the rather complicated condition relating values of $a and $b:
some $ba in $b/author satisfies deep-equal($ba,$a).

The same query can be expressed in Xcerpt as shown in Example 9. ut

This intertwining of construct and query parts à la XQuery has some ad-
vantages: For simple query-construct requests, the approach is rather natural
and results in an easily understandable code. However, intertwining construct
and query parts also has drawbacks:

1. Query-construct requests involving a complex data retrieval might be con-
fusing,

2. unnecessarily complex path selections, e.g. XPath expressions involving both
forward and reverse axes, are possible [8],

3. in case of several path selections, the overall structure of the retrieved data
items might be difficult to grasp, as in Example 1.

Among the query and transformation languages, UnQL [4] is a noticeable
exception. This language first considered using patterns instead of paths for
querying semistructured data. UnQL query patterns may contain variables.
Applying a kind of pattern matching algorithm, reminding of those pattern
matching algorithms used in functional programming and in automated rea-
soning, to a UnQL query pattern and a (variable-free) data item binds the
variables of the query pattern to parts of the data item. This paper further
investigates this approach proposing the following new ideas:

1. Instead of pattern matching, a (non-standard form of) unification is con-
sidered using which two query patterns, both containing variables, can be
made identical through bindings of their variables.

2. Within a query pattern, a variable might be constrained through a
(sub-)pattern to be bound only to data conforming to this (sub-)pattern.

3. Instead of building upon the functional paradigm, as UnQL does, the
paradigm of SQL and of logic programming is retained. Thus, a query might
have several answers and the choice of some or all of the answers specified
by a query can be expressed with language constructs reminding of the
well-known set operators of elementary mathematics.

4. A chaining of queries, the answers to which are not necessarily sought for,
makes it possible to rather naturally split complex queries into intuitive
parts.

2

A metaphor for this approach is to see queries as forms, answers as form
fillings yielding database items. With this approach, patterns are used not only
in construct expressions, but also for data selection.

In the following, the basic concepts of a query language called Xcerpt are
introduced. An answer to a query in this language is formalized as a simulation
[5] of a ground instance of the query in a database item. This formalization
yields a compositional semantics.

2 Language Principles

The following principles have prevailed to the definition of the query language:

Pattern-based or positional instead of navigational. A query should correspond
to a form, an answer to a filling yielding a database item. The relative positions
of variables in a query should be easily recognizable. It should also be possible
to constrain a variable in a query, within this query to some pattern.

Referential transparency. The meaning of an expression, especially of a variable,
should be the same wherever it appears. Therefore, destructive assignments are
prohibited and variables must be functional or logic programming variables.

Compositional semantics. A (structurally) recursive definition of the semantics
of a query in terms of the semantics of its parts, i.e. a Tarski-style model theory,
is sought for.

Multiple variable bindings. Like with SQL and other query languages, queries
might have several answers, each answer binding the query variables differently.

Strict separation of construct and query proper. Query expressions should not
occur in construct patterns. In construct expressions only variables should oc-
cur, not conditions on the variables. Conditions on variables should occur only
in query expressions.

Symmetry. Queries should allow similar forms of incomplete specifications in
breadth, i.e. concerning siblings, and in depth, i.e. concerning children.

Circularity. For the query language, queries and answers should be a queryable
data items. Note that this is more stringent than requiring an XML representa-
tion of queries: E.g. the existence of JavaML does not make XML a data type
directly accessible in Java.

Note that the requirements of [9] are fulfilled by or compatible with the
basic query language defined below.

3 Xcerpt Basic Constructs

This section introduces the essential constructs of the query language Xcerpt.
Aspects of XML, such as attributes and namespaces, that are irrelevant to this
paper, are not explicitly addresses in the following.

Below, the following pairwise disjoint sets of symbols are referred to: A set
I of identifiers, a set L of labels (or tags or strings), a set Vl of label variables,

3

a set Vt of term (or data item) variables. Identifiers are denoted by id, labels
(variables, resp.) by lower (upper, resp.) case letters with or without indices.
The following meta-variables (with or without indices and/or superscripts) are
used: id denotes an identifier, l denotes a label, L a label variable, X a term
variable, t a term (as defined below), v a label or a term, and V a label or term
variable.

3.1 Database Terms

A database is a set (or multiset) of database terms. The children of a document
node may be either ordered (as in standard XML), or unordered. In the follow-
ing, a term whose root is labelled l and has ordered (unordered, resp.) children
t1, . . . , tn is denoted l[t1, . . . , tn] (l{t1, . . . , tn}, resp.).

Definition 1 (Database Terms). Xcerpt Database Terms are expressions
inductively defined as follows and satisfying Conditions 1 and 2 given below:

1. If l is a label, then l is a (atomic) database term.
2. If id is an identifier and t is a database term neither of the form id0: t0 nor

of the form ↑id0, then id: t is a database term.

3. If id is an identifier, then ↑id is a database term.

4. If l is a label and t1, . . . , tn are n ≥ 1 database terms, then l[t1, . . . , tn] and
l{t1, . . . , tn} are database terms.

Condition 1: For a given identifier id an identifier definition id: t0 occurs at
most once in a term.
Condition 2: For every identifier reference ↑id occurring in a term t an iden-
tifier definition id: t0 occurs in t.

Example 2. The following Xcerpt database terms describe the book offers of
two online book stores bn.com and amazon.com (This example is inspired from
the W3C XQuery Use-Cases [7]). Note that both bookstores rely on different
data formats.
bn.com:

bib {

book {

title { "TCP/IP Illustrated" },

author { last { "Stevens" }, first { "W." } },

publisher { "Addison-Wesley" },

price { "65.95" }

},

book {

title { "Advanced Programming in the Unix environment" },

author { "Stevens" },

publisher { "Addison-Wesley" },

price { "65.95" }

},

book {

title { "Data on the Web" },

author { last { "Abiteboul" }, first { "Serge" } },

author { last { "Buneman" }, first { "Peter" } },

author { last { "Suciu" }, first { "Dan" } },

publisher { "Morgan Kaufmann Publishers" },

4

price { "39.95" }

},

book {

title { "The Economics of Technology and Content for Digital TV" },

editor { last { "Gerbarg" }, first { "Darcy" }, affiliation { "CITI" } },

publisher { "Kluwer Academic Publishers" },

price { "129.95" }

}

}

amazon.com:

reviews {

entry {

title { "Data on the Web" },

price { "34.95" },

review { "A good discussion of semi-structured database systems and XML." },

},

entry {

title { "Advanced Programming in the Unix environment" },

price { "65.95" },

review { "A clear and detailed discussion of UNIX programming." },

},

entry {

title { "TCP/IP Illustrated" },

price { "65.95" },

review { "One of the best books on TCP/IP." }

}

}

Note that in both examples the element order is of no importance. This is
expressed in the Xcerpt syntax using the single curly brackets { }. ut

3.2 Query Terms

A query term is a pattern that specifies a selection of database terms very
much like logical atoms and SQL selections do. The evaluation of query terms
(cf. below Definition 12 for a formalisation) differs from the evaluation of logical
atoms and SQL selections as follows:

1. Answers might have additional subterms to those mentioned in the query
term.

2. Answers might have another subterm ordering than the query.
3. A query term might specify subterms at an unspecified depth.

In query terms, the single square and curly brackets, [] and { }, denote
“exact subterm patterns”, i.e. single (square or curly) brackets are used in a
query term to be answered by database terms with no more subterms than
those given in the query term. Double square and curly brackets, [[]] and {{ }},
on the other hand, denote “partial subterm patterns”.

[] and [[]] are used if the subterm order in the answers is to be that of
the query term, { } and {{ }} are used otherwise. Thus, possible answers to
the query term t1 = a[b, c{{d, e}}, f] are the database terms a[b, c{d, e, g}, f]
and a[b, c{d, e, g}, f{g, h}] and a[b, c{d, e{g, h}, g}, f{g, h}] and a[b, c[d, e], f]. In
contrast, a[b, c{d, e}, f, g] and a{b, c{d, e}, f} are no answers to t1. The only
answers to f{ } are f-labelled database terms with no children.

5

In a query term, a term variable X can be constrained to some query
terms using the construct ;, read “as”. Thus, the query term t2 = a[X1 ;

b[c, d], X2, e] constrains the term variable X1 to such database terms that are
possible answers to the query term b[c, d]. Note that the term variable X2 is
unconstrained in t2. Possible answers to t2 are a[b[c, d], f, e] which binds X1 to
b[c, d] and X2 to f , a[b[c, d], f [g, h], e] which binds X1 to b[c, d] and X2 to f [g, h],
a[b[c, d, e], f, e] which binds X1 to b[c, d, e] and X2 to f , and a[b[c, e, d], f, e]
which binds X1 to b[c, e, d] and X2 to f . In query terms, the construct desc,
read “descendant”, specifies a subterm at an unspecified depth. Thus, possi-
ble answers to the query term t3 = a[X ; desc f [c, d], b] are a[f [c, d], b] and
a[g[f [c, d]], b] and a[g[f [c, d], h], b] and a[g[g[f [c, d]]], b] and a[g[g[f [c, d], h], i], b].

Definition 2 (Query Terms). Xcerpt Query terms are expressions induc-
tively defined as follows and satisfying Conditions 1 and 2 of Definition 1:

1. If l is a label and L is a label variable, then l, L, l{{}}, and L{{}} are
(atomic) query terms.

2. A term variable is a query term.
3. If id is an identifier and t is a query term neither of the form id0: t0 nor

of the form ↑id0, then id: t is a query term.
4. If id is an identifier, then ↑id is a query term.
5. If X is a variable and t a query term, then X ; t is a query term.
6. If X is a variable and t is a query term, then X ; desc t is a query term.
7. If l is a label, L a label variable and t1, . . . , tn are n ≥ 1 query terms,

then l[t1, . . . , tn], L[t1, . . . , tn], l{t1, . . . , tn}, L{t1, . . . , tn}, l[[t1, . . . , tn]],
L[[t1, . . . , tn]], l{{t1, . . . , tn}}, and L{{t1, . . . , tn}} are query terms.

Query terms in which no variables occur are ground. Query terms that are not
of the form ↑id, are strict. The leftmost label of strict and ground query terms
of the form l, l{{}}, l{t1, . . . , tn}, and l[t1, . . . , tn] is l; the leftmost label of a
strict and ground query term of the form id : t is the leftmost label of t.

Note that desc never occurs in a ground query term, for it is by Definition
2 always coupled with a variable.

Example 3. Consider the bookstore databases of Example 2. The following sim-
ple query term could query the first database for titles and authors and bind the
variables TITLE and AUTHOR to the corresponding values in bn.com’s database:

bib {{

book {{

title { TITLE },

author { AUTHOR }

}}

}}

ut

The evaluation strategy of Xcerpt is based on so-called Simulation Unifica-
tion. It is explained in more detail in [11]. The two variables TITLE and AUTHOR

will have several possible bindings as a result of the simulation unification, rep-
resenting all valid combinations of a title with an author that can be found
in the database, e.g. AUTHOR="Dan Suciu" and TITLE="Data on the Web" or
AUTHOR="Serge Abiteboul" and TITLE="Data on the Web".

6

Example 3 would bind the variables to the “leafs” of the database terms.
Xcerpt also allows variables at a “higher position” in a query term, as illustrated
in the next example.

Example 4. The following Xcerpt query binds the variable TITLE to the com-
pound element title { ... } (thus retrieving not the “leaf” but the parent
element title):

bib {{

book {{

TITLE ; title,

author { AUTHOR }

}}

}}

ut

Thanks to Simulation Unification (cf. below Section 4), the “leaf” of a title
element does not have to be explicitly mentioned in the query of Example 4 for
being included in the answers.

Finally, the descendant construct serves to express indefiniteness.

Example 5. The following Xcerpt query retrieves the titles of books with an
author “Stevens” at any depth:

bib {{

book {{

TITLE ; title,

author {{ X ; desc "Stevens" }}

}}

}}

ut

Definition 2 requires a desc expression to be preceded by X ; for some
variable X. This is convenient for simplifying the formalisation of Xcerpt’s
declarative semantics (cf. below Definition 10). However, this is dispensible in
practice (at the cost of a more complicated counterpart in Definition 10).

Example 6. Example 5 can be expressed using the following query term (al-
though not conforming to Definition 2):

bib {{

book {{

TITLE ; title,

author {{ desc "Stevens" }}

}}

}}

ut

In a query term, multiple occurrences of a same term variable are not pre-
cluded. E.g. a possible answer to a{{X ; b{{c}}, X ; b{{d}}} is a{b{c, d}}.
However, a[[X ; b{c}, X ; f{d}]] has no answers, for labels b and f are
distinct.

Child subterms and subterms of query terms are defined such that
if t = f [a, g{Y ; desc b{X}, h{a,X ; k{c}}], then a and g{Y ;

desc b{X}, h{a,X ; k{c}} are the only child subterms of t and e.g. a and

7

X and Y ; desc b{X} and h{a,X ; k{c}} and X ; k{c} and t itself are
subterms of t. Note that f is not a subterm of t.

The ; construct makes it possible to express (undesirable) “cyclic” query
terms. Definition 3 avoids such “cyclic” query terms.

Definition 3 (Variable Well-Formed Query Terms). A term variable X

depends on a term variable Y in a query term t if X ; t1 is a subterm of t

and Y is a subterm of t1. A query term t is variable well-formed if t contains
no term variables X0, . . . , Xn (n ≥ 1) such that 1. X0 = Xn and 2. for all
i = 1, . . . , n, Xi depends on Xi−1 in t.

E.g. f{X ; g{X}} and f{X ; g{Y }, Y ; h{X}} are not variable well-
formed. Variable well-formedness precludes queries specifying infinite answers.
In the following, query terms are assumed to be variable well-formed.

3.3 Construct Terms

Xcerpt Construct terms serve to re-assemble variables, the “values” of which
are specified in query terms, so as to form new database terms. Thus, like in
database terms both constructs [] and { } can occur in construct terms. Vari-
ables as references to subterms specified in a query can also occur in construct
terms. However, the construct ; is not allowed in construct terms. The ratio-
nale for forbidding ; in construct terms is that variables should be constrained
where they are defined, i.e. in query terms, not in construct terms where they
are used to specify new terms.

Since querying a database may yield multiple alternative bindings for the
same variables, it might be desirable to collect all such bindings in the con-
struction of a result. The construct all serves this purpose. all t denotes the
collection of all instances of t (binding the variables free in term t in all possible
ways and recursively evaluating nested all constructs). A variable X is free in
t, if X is not already contained within the argument of an all construct.

Definition 4 (Construct Terms). Xcerpt Construct terms are expressions
inductively defined as follows satisfying Conditions 1 and 2 of Definition 1:

1. Labels and label variables are (atomic) construct term.

2. If id is an identifier and t is a construct term, then id: t is a construct term.

3. If id is an identifier, then ↑id is a construct term.

4. A term variable is a construct term.

5. If t is a construct term, then all t is a construct term.

6. If l is a label, L is a label variable and t1, . . . , tn are n ≥ 1 construct terms,
then l[t1, . . . , tn], L[t1, . . . , tn], l{t1, . . . , tn}, and L{t1, . . . , tn} are construct
terms.

Note that construct terms that are not of the form all t are (simple kinds
of) query terms and database terms are (simple kinds of) construct terms.

Example 7. Consider the database bn.com of Example 2. Assume that some
query term (e.g. that of Example 3) binds the variables TITLE and AUTHOR. The
construct term

8

results {

result { TITLE, AUTHOR }

}

assembles the bindings of TITLE and AUTHOR into new database terms like e.g.

results {

result {

title { "TCP/IP Illustrated" },

author { last { "Stevens" }, first { "W." } }

}

}

In the general case there are several alternative bindings for the variables
TITLE and AUTHOR, e.g. several values for TITLE. The all construct may be used
to collect all such alternatives:

results {

all result { TITLE, AUTHOR }

}

This yields as a result an unordered collection of result elements, collecting
all possible combinations for TITLE and AUTHOR, e.g. like in

results {

result {

title { "TCP/IP Illustrated" },

author { last { "Stevens" }, first { "W." } }

},

result {

title { "Advanced Programming in the Unix environment" },

author { "W. Stevens" }

},

...

}

ut

Example 8. Using the all construct, the XQuery expression of Example 1 re-
turning for each author a list of all his titles can be expressed in Xcerpt as
follows:

results {

all result { AUTHOR, all TITLE }

}

The symmetric query listing for each title all its authors is expressed in Xcerpt
as follows:

results {

all result { all AUTHOR, TITLE }

}

Note that the only change from the first to the second Xcerpt construct
term is the position of the all construct. The same query from Example 3 can
be used in both cases, as opposed to XQuery which requires two completely
different queries (cf. queries Q3 and Q4 of use case “XMP” in [7]). ut

9

3.4 Construct-Query Rules

Xcerpt Construct-query rules relate queries, consisting of a conjunction of query
terms, and construct terms. It is assumed (cf. below Point 3 of Definition 5) that
each term variable occurring (left or right of ; or elsewhere) in the construct
term of a construct-query rule also occurs in at least one of the query terms
of the rule, i.e. variables in construct-query rules are assumed to be “range-
restricted” or “allowed”.

Definition 5 (Construct-Query Rule). A construct-query rule is an expres-
sion of the form tc ← t

q
1
∧ . . . ∧ t

q
n such that:

1. n ≥ 1 and for all i = 1, . . . n, t
q
i is a query term,

2. tc is a construct term, and
3. every variable occurring in tc also occurs in at least one of the t

q
i .

The left hand-side, i.e. the construct term, of a (construct-query) rule will
be referred to as the rule “head”. The right hand-side of a (construct-query)
rule will be referred to as the rule “body”. Note that, in contrast to the body
of a Prolog clause, the body of a (construct-query) rule cannot be empty, for
empty rule bodies do not seem to be needed for the applications considered.

Example 9. The following construct-query rule combines the query and con-
struct terms used in the previous Examples 3 and 8:

rule { cons {

results {

all result { TITLE, all AUTHOR }

}

},

eval {

in { "bn.com" } ,

bib {{

book {{ TITLE ; title, AUTHOR ; author }}

}}

}

}

ut

The advantage of the clear separation between construct and query parts
in Xcerpt is obvious, if you recall Example 1. The rule in Example 9 also
demonstrates the circularity of Xcerpt: a rule is itself a term.

Note that the eval part contains an in construct. This construct allows to
specify a different resource for each query term. The rationale behind this is
illustrated on the following, more complex example.

Example 10. The following rule creates a list of books with their prices in both
stores bn.com and amazon.com:

rule { cons {

books {

all book { title { TITLE }, price-a { PRICEA }, price-b { PRICEB } }

}

},

and {

10

eval {

in { "bn.com" },

bib {{

book {{ title { TITLE }, price { PRICEA } }}

}} },

eval {

in { "amazon.com" },

reviews {{

entry {{ title { TITLE }, price { PRICEB } }}

}} }

}

}

ut

Note is that the combination of query terms in example 10 expresses an
equijoin on the book title.

3.5 Xcerpt Programs

An Xcerpt program consists of one or several construct-query rules and of a
“main query”. A notion of modules (cf. below Section 3.7) makes it possible to
combine and re-use parts of Xcerpt programs in different manners.

3.6 Rule Chaining

Xcerpt allows to “chain” rules, i.e. to evaluate one rule against the result of
another rule. This allows for very complex queries and transformations, encap-
sulating subqueries and calculations in separate rules.

Example 11. Consider the rule of Example 10. Assume the data constructed
is to be further transformed into two different formats, HTML [12] and WML
[13], the one suitable for a PC screen, the other suitable for the small screen
of a PDA (personal digital assistand). In Xcerpt, this could be expressed using
additional rules that query the “result” of the first rule. A transformation into
an HTML table and WML card could look like this:

rule { cons {

table {

tr { td { "Booktitle" }, td { "Price at A" }, td { "Price at B" } },

all tr { td { TITLE }, td { PRICEA }, td { PRICEB } }

}

},

eval {

books {{

book { title { TITLE }, price-a { PRICEA }, price-b { PRICEB } }

}}

}

}

rule { cons {

all card {

"Title: ", TITLE, br{},

"Price at A", PRICEA, br{},

"Price at B", PRICEB, br{}

}

},

11

eval {

books {{

book { title { TITLE }, price-a { PRICEA }, price-b { PRICEB } }

}}

}

}

Both a forward chaining (as in deductive databases) and a backward chain-
ing (as in Prolog) are possible and reasonable for processing Xcerpt rules. Back-
ward chaining can be very efficient but requires a “unification” of query and
construct terms. Xcerpt relies on a non-standard unification called Simulation
Unification. Simulation Unification is introduced below in Section 4.

3.7 Further Language Constructs

The previous sections describe the basic constructs of the language Xcerpt.
While these are sufficient for basic queries and transformations, a query lan-
guage also needs to provide higher-level constructs, e.g. arithmetics and aggre-
gations. This section gives a short overview over additional features of Xcerpt
currently under development. This list is non-comprehensive.

Basic datatypes. In this article, only string data are considered, although
Xcerpt’s support of various basic scalar types such as different kinds of num-
bers (e.g. integers and reals) is under development. The (current) view is that
Xcerpt will support the “simple types” of XML Schema [14,15,16] including ba-
sics operations on these types (such as e.g. basic arithmetics on number types).

Elementary text processing primitives. In addition to the primitives forseen in
XML Schema [14,15,16] for the simple types “string”, “normalizedString”, and
“token”, Xcerpt includes primitives (inspired from Perl [17]) for an an elemen-
tary text processing – among others, regular expressions for text selection.

Aggregation. In re-assembling answers to queries into new data items, one often
needs to collect several answers (as with the all construct, cf. Section 3.3) or
to compute values (such as an average) from collected answers. In addition to
the all construct, Xcerpt supports standard aggregation primitives such as
avg (average), max, min for number datatypes, and concat (concatenation) for
text datatype. The some construct gives rise to a non-deterministic selection
of one answer. This construct is a declarative counterpart to Prolog’s cut (!)
reminding of Prolog’s once.

User defined constraints. Xcerpt allows the user to specify additional con-
straints to variables occuring in query terms. These user defined constraints
may be expressed in terms of simulation unification (cf. below Section 4) or
using system or user-defined functions.

system and user-defined functions. It is possible to refer in an Xcerpt program
to functions specified (e.g. by the user) outside the Xcerpt program.

12

Polymorphic Type system. A type system has two advantages: Programming
errors can be detected at compile time (thus supporting program development)
and the processing of queries can be more efficient. A extensible polymorphic
type system à la ML [18] for Xcerpt is under development using which user
defined types are expressed in an XML Schema syle [14,15,16].

Declarations and shadowing. Variable and type declarations local to part of an
Xcerpt program make it possible that some definitions and names are local to a
program part. Shadowing makes it possible to to differently binds same names
within different program parts.

Modules. Modules aqrte under developments using which parts of Xcerpt pro-
grams can be imported and exported so as to combine parts of programs in
different manners and to hide parts of programs that have no global relevance.

4 Query Semantics

Xcerpt’s query semantics is based on graph simulation. Informally, a simulation
of a graph G1 in a graph G2 is a mapping of the nodes of G1 in the nodes of G2

preserving the edges. The graphs considered are directed, ordered and rooted
and their nodes are labelled.

Definition 6 (Graph Simulation). Let G1 = (V1, E1) and G2 = (V2, E2) be
two graphs and let ∼ be an equivalence relation on V1∪V2. A relation S ⊆ V1×V2

is a simulation with respect to ∼ of G1 in G2 if:

1. If v1 S v2, then v1 ∼ v2.
2. If v1 S v2 and (v1, v

′

1
) ∈ E1, then there exists v′

2
∈ V2 such that v′

1
S v′

2
and

(v2, v
′

2
) ∈ E2.

A simulation S of a tree T1 with root r1 in a tree T2 with root r2 is a rooted
simulation of T1 in T2 if r1 S r2.

Definition 7 (Graphs Induced by Strict and Ground Query Terms).
Let t be a strict and ground query term. The graph Gt = (Nt, Vt) induced by t

is defined by:

1. Nt is the set of strict subterms (cf. Definition 2) of t and each t′ ∈ Nt is
labelled with the leftmost label (cf. Definition 2) of t′.

2. Vt is the set of pairs (t1, t2) such that either t2 is a child subterm of t1, or
↑id is a child subterm of t1 and the identifier definition id: t2 occurs in t.

3. The children of a node are ordered in Gt like in t.

Note that t is the root of Gt.
Figure 1 illustrates Definition 7. Note that the graph induced by a ground

query term as defined in Definition 7 does not fully convey the term structure:
Missing are representations of the various nestings [], { }, [[]] and {{ }}.

Below, a database term is identified with the graph it induces.

Definition 8 (Ground Query Term Simulation). Let t1 and t2 be ground
query terms. Let Si denote the set of subtrees of ti (i ∈ {1, 2}). A relation
S ⊆ S1 × S2 is a ground query term simulation of t1 in t2 if:

13

1 1 2 2

1 1 2 2

1

f

ba g

h i

e

c

d

h i

d d e e

f

a

c i

gb

h

f[:a,b{c{d,e,^ },^ }, :g[h,i]]idid idid

b{c{d,e,^ },^ }id id:aid :g[h,i]id

c{d,e,^ }id

(a) Abstract node representation (b) Full node representation (node labels in gray)

Fig. 1. Graph induced by t = f [id1 : a, b{c{d, e, ↑ id1}, ↑ id2}, id2 : g[h, i]].

1. t1 S t2.
2. If l1 S l2, then l1 = l2.
3. If l1{{t

1

1
, . . . , t1n}} S l2{{t

2

1
, . . . , t2m}}), then l1 = l2 and for all i ∈ {1, . . . , n}

there exists j ∈ {1, . . . ,m} such that t1i S t2j .

4. If l1{{t
1

1
, . . . , t1n}} S l2{t

2

1
, . . . , t2m}), then l1 = l2 and for all i ∈ {1, . . . , n}

there exists j ∈ {1, . . . ,m} such that t1i S t2j).

5. If l1{t
1

1
, . . . , t1n} S l2{{t

2

1
, . . . , t2m}}), then l1 = l2 and for all i ∈ {1, . . . , n}

there exists j ∈ {1, . . . ,m} such that t1i S t2j), and for all j ∈ {1, . . . ,m}

there exists i{1, . . . , n} such that t1i S t2j .

6. If l1{t
1

1
, . . . , t1n} S l2{t

2

1
, . . . , t2m}), then l1 = l2 and for all i ∈ {1, . . . , n}

there exists j ∈ {1, . . . ,m} such that t1i S t2j , and for all j ∈ {1, . . . ,m}

there exists i{1, . . . , n} such that t1i S t2j .

Definition 9 (Simulation Preorder). � is the preorder on the set of ground
query terms defined by t1 � t2 if there exists a ground query term simulation of
t1 in t2.

Figure 2 illustrates Definition 8. The simulation of Figure 2 is minimal for
⊆ in the sense that no strict subset of this simulation relation is a simulation
of tq in tdb.

By Definition 8, label identity is a rooted simulation of every ground query
term in itself. By Definition 8, if S1 is a ground query term simulation of t1 in
t2 and if S2 is a ground query term simulation of t2 in t3, then S = {(l1, l3) |
∃l2 (l1, l2) ∈ S1 ∧ (l2, l3) ∈ S2} is a ground query term simulation of t1 in t3.
In other word, � is reflexive and transitive, i.e. it is a preorder on the set of
database terms.

However, � is not a partial order, for although t1 = f{a} � t2 = f{a, a}
and t2 = f{a, a} � t1 = f{a} (both a of t2 can be simulated by the same a of
t1), t1 = f{a} 6= t2 = f{a, a}.

Rooted simulation with respect to label equality is a first notion towards
a formalisation of answers to query terms: If there exists a ground query term
simulation of a ground query term t1, in a database term t2, then t2 is an answer
to t1.

14

f

b

d e d

b

a

f

d

e

da c

Fig. 2. A simulation of the (graph induced by the) ground query term tq =
f{{id1 : a, b[d{}, ↑ id1], desc e}} in the (graph induced by the) database term
tdb = f [b[d, id2 : a], ↑ id2, c, d{e}].

An answer in a database D to a query term tq is characterised by bind-
ings for the variables in tq such that the database term t resulting from ap-
plying these bindings to tq is simulated in an element of D. Consider e.g.
the query tq = f{{X ; g{{b}}, X ; g{{c}} }} against the database D =
{f{g{a, b, c}, g{a, b, c}, h}, f{g{b}, g{c}}}. The ; constructs in tq yields the
constraint g{{b}} � X ∧ g{{c}} � X. Matching tq with the first database term
in D yields the constraint X � g{a, b, c}. Matching tq with the second database
term in D yields the constraint X � g{b} ∧X � g{c}. g{b} � X ∧ g{c} � X is
not compatible with X � g{b}∧X � g{c}. Thus, the only possible value for X

is g{a, b, c}, i.e. the only possible answer to tq in D is f{g{a, b, c}, g{a, b, c}, h}.

Definition 10 (Ground Instances of Query Terms). A grounding substi-
tution is a function which assigns a label to each label variable and a database
term to each term variable of a finite set of (label or term) variables. Let tq be
a query term, V1, . . . , Vn be the (label or term) variables occurring in tq and σ

be a grounding substitution assigning vi to Vi. The ground instance tqσ of tq

with respect to σ is the ground query term that can be constructed from tq as
follows:

1. Replace each subterm X ; t by X.
2. Replace each occurrence of Vi by vi (1 ≤ i ≤ n).

Requiring in Definition 2 desc to occur to the right of ; makes it possible to
characterise a ground instance of a query term by a grounding substitution. This
is helpful for formalising answers but not necessary for language implementions.
Not all ground instances of a query term are acceptable answers, for some
instances might violate the conditions expressed by the ; and desc constructs.

Definition 11 (Allowed Instances). The constraint induced by a query term
tq and a substitution σ is the conjunction of all inequalities tσ � Xσ such that
X ; t is a subterm of tq not of the form desc t0, and of all expressions Xσ�tσ

(read “tσ subterm of Xσ”) such that X ; desc t is a subterm of tq, if tq has
such subterms. If tq has no such subterms, the constraint induced tq and σ is
the formula true. Let σ be a grounding substitution and tqσ a ground instance
of tq. tqσ is allowed if:

15

1. Each inequality t1 � t2 in the constraint induced by tq and σ is satisfied.
2. For each t1 � t2 in the constraint induced by tq and σ, t2 is simulated in a

subterm of t1.

Definition 12 (Answers). Let tq be a query term and D a database. An an-
swer to tq in D is a database term tdb ∈ D such that there exists an allowed
ground instance t of tq satisfying t � tdb.

5 Conclusion

This article introduces the rule-based XML query and transformation language
Xcerpt. While the World Wide Web Consortium [6] has proposed XQuery as
a generic XML query language, rule-based querying may be advantageous in
cases involving more complex queries. Rule-based querying arguably allows for
programs that are easier to grasp because of a clearer separation of construction
and query parts.

In [11], a more detailed presentation of simulation unification is given and
a prototype is currently being worked on [19].

References

1. W3C http://www.w3.org/TR/xquery/: XQuery: A Query Language for XML. (2001)
2. Fernandez, M., Siméon, J., Wadler, P.: XML Query Languages: Experiences and Exam-

plars. Communication to the XML Query W3C Working Group (1999)
3. W3C http://www.w3.org/Style/XSL/: Extensible Stylesheet Language (XSL). (2000)
4. Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra for

Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000) 76–110
5. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing Simulations on Finite and

Infinite Graphs. Technical report, Computer Science Department, Cornell University
(1996)

6. World Wide Web Consortium (W3C) http://www.w3.org/. (2002)
7. Chamberlin, D., Fankhauser, P., Marchiori, M., Robie, J.: XML query use cases. W3C

Working Draft 20 (2001)
8. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. In: Proceedings

of Workshop on XML Data Management (XMLDM), http://www.pms.informatik.uni-
muenchen.de/publikationen/#PMS-FB-2002-4, Springer-Verlag LNCS (2002)

9. Maier, D.: Database Desiderata for an XML Query Language. In: Proceedings of QL’98
- The Query Languages Workshop. (1998) http://www.w3.org/TandS/QL/QL98/.

10. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann (2000)

11. Bry, F., Schaffert, S.: Towards a Declarative Query and Transformation Language for
XML and Semistructured Data: Simulation Unification. In: Proceedings of the Int. Conf.
on Logic Programming (ICLP), Copenhagen, Springer-Verlag LNCS (2002)

12. W3C http://www.w3.org/TR/xhtml1/: XHTML 1.0: The Extensible HyperText Markup
Language. (2000)

13. WAP Forum http://www.wapforum.org: Wireless Markup Language (WML). (2000)
14. W3C http://www.w3.org/TR/xmlschema-0/: XML Schema Part 0: Primer. (2001)
15. W3C http://www.w3.org/TR/xmlschema-1/: XML Schema Part 1: Structures. (2001)
16. W3C http://www.w3.org/TR/xmlschema-2/: XML Schema Part 2: Datatypes. (2001)
17. Wall, L., et al: Practical Extraction and Report Language, http://www.perl.com/. (1987-

2002)
18. Lucent Technologies, Bell Labs http://cm.bell-labs.com/cm/cs/what/smlnj/: Standard

ML of New Jersey. (1996)
19. Schaffert, S.: Xcerpt Prototype, http://demo.xcerpt.org. (2002)

16

	The XML Query Language Xcerpt: Design Principles, Examples, and Semantics
	 François Bry and Sebastian Schaffert

