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Bibliography Entries: DBLP-style

Article Content: HTM
L or DocBook

Topics and Them
es: SKOS Ontology

G
raph data m

odel for Xcerpt and visXcerpt
—

 as in RD
F and sem

i-structured D
Bs like Lore

—
great attention to XM

L specificities such as 
attributes and nam

espaces

Consistent Extension of XM
L

—
children order m

ay be irrelevant
—

possible transparent resolution of 
non-hierarchical relations

Bibliography Entries 
—

rather regular schem
a w

ith optionals
—

several ordered lists, otherw
ise 

keyed attributes

  article_66_cicero_wax @ article{

    authors[ ...  ],
    title[ "Space- and Time-Optimal Data Storage on Wax Tablets" ],
    within[ scrolls[ "1-94" ], ^journal_adm ],
    content[
      body[
        contributions @ h1[ "Contributions" ],
        h1[ "A History of Data Storage: From Stone to Parchment" ],
        p[ "Despite ", cite[ ^article_66_scaurus_qumran ], "..." ],
        ol[

     li[ em[ strong[ "Homeric" ], " Age:" ], "..." ],
     li[ em[ "Age of the ", strong[ "Kings" ], ":" ], "..." ]
   ], ...
   tachygraphy @ h1[ "Challenges for Tachygraphy on Wax" ],
   p[ "Though conditions for writing on wax tablets are adverse ", 

          "to tachygraphy, systems as described in ",
          a[ href[ ^tiro ], "Section 2" ], "..." ]
      ]
    ]
  }

A
rticle Content

—
irregular, highly recursive schem

a
—

H
TM

L: structure through delim
iters

D
ocBook: structure through nesting

Topics and Them
es:

—
SKO

S-based ontology using 
       s

k
o
s
:
n
a
r
r
o
w
e
r, s

k
o
s
:
r
e
l
a
t
e
d, etc.

—
part of A

CM
 1998 classification 

schem
e plus som

e ad-hoc concepts

Basic Patterns: Variables and Incom
pleteness

Q
uery-by-Exam

ple
 paradigm

—
 queries just like data plus variables, 

incom
pleteness, optionality, negation 

—
patterns plus variables instead of navigation

Logical Variables in Patterns
—

select relevant data (n-ary queries)
—

group and aggregate data 
—

join different data item
s

Com
plex Patterns: Form

ulas, Join, Optionality

Textual Syntax for Patterns: Term
- and XM

L-style

Separation of Q
uery and Construction

 
—

 tw
o separate parts in rules

—
no m

ixing of construction and querying
—

 instead chaining w
here necessary

Separation of Concern by View
s

—
separate tasks of a query in rules

—
effi

cient evaluation of chained queries
—

 m
em

oization and unfolding

Rules: Inference, View
s, and Chaining

Integration I: Separation of Concern

Integration II: Putting it All Together

Basic Pattern
“return the titles of all top-level sections in 
articles by M

arcus Tullius Cicero and 
published in ‘Applied D

ata M
anagem

ent’. ”

Com
plex Pattern

“return titles and optionally paragraphs of 
all top-level sections w

ithout figures in 
articles on the topic ‘W

ax Tablets’. ”

GOAL
  articles-on-wax-tablets [
    all article [
      title [ var ArticleTitle ],
      sections [
        all section [
          var SectionTitle,

      optional var Para
        ] ] ] ]
FROM
 and {
   in{ xml-document[ "file:DATA.bibliography.xcerpt" ],     
       bib {{
         article {{
           title {{ var ArticleTitle }},
           content [[ 
             section {{ 
               info {{ var SectionTitle -> title {{ }} }},
               without desc figure {{ }},
               optional var Para -> para {{ }}
            }} ]] }} }} }, 
   in{ rdf-document[ "file:DATA.acm-skos.xcerpt" ],     
       computing-classification {{
         triple[ var Paper, "skos:prefLabel", var ArticleTitle ],
         triple[ var Paper, "skos:primarySubject", var WaxTablets ],
         triple[ var WaxTablets, "skos:prefLabel", "Wax Tablets" ]
       }} }
}END

GOAL
  <articles-on-wax-tablets>
    all <article>
      <title>var ArticleTitle</title>
      <sections>
        all <section>
          var SectionTitle

      optional var Para
        </section> </sections> </article> 
  </articles-on-wax-tablets>
FROM
 and (
   xml-document "file:DATA.bibliography.xcerpt" (
       <bib 

{partial,unordered}>
         <article 

{partial,unordered}>
           <title>var ArticleTitle</title>
           <content>
             <section 

{partial,unordered}> 
               <info 

{partial,unordered}>
             var SectionTitle -> <title 

{partial,unordered}/>
           </info>

               without desc <figure 
{partial,unordered} />

               optional var Para -> <para 
{partial,unordered} />

             </section> 
           </content> 
         </article> 
       </bib> )
   rdf-document "file:DATA.acm-skos.xcerpt" (
       (var Paper, skos:prefLabel, var ArticleTitle)
       (var Paper, skos:primarySubject, var WaxTablets)
       (var WaxTablets, skos:prefLabel, "Wax Tablets") ) ) 
END

M
ultiple Syntaxes

—
textual term

 syntax (com
pact)

—
textual XM

L-style syntax (explicit)
—

visual syntax visXcerpt

Rules and Chaining
“close the skos:related relation on the 
provided data by adding skos:subject and 
traversing the closure of skos:narrow

er”

Integrating RD
F and XM

L
“in w

hich areas have m
y co-authors 

published in recent year?”

Integrating RD
F and XM

L
“I w

ould like to prepare a call-for-paper
for an established conference. W

hat are
the areas of interest in recent years?”

‘A
dvancem

ents in D
ata 

M
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ilitary and Civil 

A
pplication’
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etw
orks’
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‘D
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‘D

ata’

‘Inform
ation System

s’
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‘Storage 
M
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‘Secondary 
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‘Program
m
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Techniques’
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‘O
perating System

s’
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puting Classification System
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Q
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ran Case Study’

‘Space- and Tim
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D
ata Storage on W

ax Tablets’
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cient M
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Changing Personal Records’
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r
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p
r
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subject

related

subject

Identifier and label of elem
ents

Context-M
enu: Interactive Features

Folding elem
ents for inform

ation focus

Elem
ent nesting (child relation) becom

es
box nesting and colors

N
on-hierarchical relations as hyperlinks

O
rdered vs. unordered children list

A
ccessing W

eb resources: arbitrary XM
L 

docum
ents can be accessed using their U

RL
Term

s as form
ulas: 

Term
s m

ay contain boolean connectives, including disjunctions

Rules separate construction from
 querying

and allow
 for procedural abstraction in query program

s

Xcerpt and visXcerpt: 
Integrating W

eb Q
uerying

Sacha Berger
François Bry
Tim

 Furche

Incom
plete patterns in depth: 

descendant allow
s additional interm

ediary elem
ents

G
rouping collects alternative bindings for variables:

essential for structural assem
bly 

Incom
plete patterns in breadth: 

partial patterns allow
 additional child elem

ents

Variables are used in lieu of data :
express selection,  joins, or arithm

etic conditions

Term
s as form

ulas: 
Term

s m
ay contain boolean connectives, variables, negation, etc.

Subterm
 negation: 

Som
e subterm

s m
ay be required not to occur in m

atching data

O
ptional subterm

s:
Local form

 of disjunction essential for variable schem
a  data

Value Joins:
Expressed through m

ultiple variable occurrences

O
ptional construction:

Lim
ited form

 of conditional construction based on variable bindings

http://rewerse.net/

Antoniou et al. (Eds.): Reasoning Web 2007
Springer LNCS 4636, pp.1–153

http://rewerse.net/
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Monday, 3rd September, 2007

Session 8:30 – 10:30
I 1 Introduction
I 3 Syntax
I 4 Declarative Semantics: Fundamentals

Session 11:00 – 13:00
I 5 Declarative Semantics: Adaptations

Session 14:30 – 16:00
I 6 Operational Semantics: Positive
I 7 Operational Semantics: Negative

Session 16:30 – 18:00
I 8 Complexity and Expressive Power

Essential concepts and methods of rule-based query languages
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Session 8:30 – 10:30

I 1 Introduction
I 3 Syntax: From First-Order Predicate Logic to Query Language

Fragments of First-Order Predicate Logic
I 4 Declarative Semantics: Fundamentals of Classical Model Theory
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1 Introduction

What are Query Languages? Tentative Definitions

1. What are . . . their purposes of use?
selecting and retrieving data from “information systems”

2. What are . . . their programming paradigms?
declarative, hence related to logic

3. What are . . . their major representatives?
SQL (relational data), OQL (object-oriented data),
XPath, XQuery (HTML and XML data),
RQL, RDQL, SPARQL (RDF data),
forthcoming ones (OWL ontologies)

4. What are . . . their research issues?
query paradigms, declarative semantics, complexity and expressive
power, procedural semantics, implementations, optimisation, and
many more . . .
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1 Introduction

Coverage of This Survey

I Foundations of query languages,
I Focus on logic, complexity and expressive power

(query optimisation in proceedings only)

Limited coverage, but
I corner stone for most research
I already a large field
I unity of concerns and methods
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Session 8:30 – 10:30

I 1 Introduction
I 3 Syntax: From First-Order Predicate Logic to Query Language

Fragments of First-Order Predicate Logic
I 4 Declarative Semantics: Fundamentals of Classical Model Theory
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2 Preliminaries

(Computably) Enumerable Set

S enumerable → 2.1 p.4, Def.1
exists surjection N→ S

computably enumerable
enumerable with algorithmically computable surjection

Examples

I Set of all C programs
enumerable and computably enumerable

I Set of all terminating C programs
enumerable, not computably enumerable
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3 Syntax

3.1 First-Order Predicate Logic

3.1 Syntax of First-Order Predicate Logic

Logical Symbols → p.6, Def.2
punctuation, connectives, quantifiers, variables

Signature Symbols → p.6, Def.3
n-ary function symbols (0-ary = constant)
n-ary relation symbols

Term → p.6, Def.4
x Mary founder(x) founder(Web5.0)

Atom → p.6, Def.5
married(Mary ,Tom) married(founder(y),Tom)

Formula → p.7, Def.6
person(Mary) ∧ person(Tom) ∧ company(Web5.0) ∧
∀x

(
company(x)⇒ person(founder(x))

)
∧(

married(Mary ,Tom) ∨ ∃y
[
company(y) ∧married(founder(y),Tom)

])
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3 Syntax

3.1 First-Order Predicate Logic

Standard Notions

Subformula → p.7, Def.7

Scope → p.7, Def.8

Bound/free
(
∀x

[
∃x p(x) ∧ q(x)

]
⇒

[
r(x) ∨ ∀x s(x)

] )
→ p.7, Def.8

Rectified
(
∀u

[
∃v p(v)∧ q(u)

]
⇒

[
r(x)∨ ∀w s(w)

] )
→ p.8, Def.10

Closed no free variables → p.8, Def.11

Ground no variables → p.8, Def.11

Propositional
( [

p ∧ q
]
⇒

[
r ∨ s

] )
→ p.8, Def.12
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3 Syntax

3.1 First-Order Predicate Logic

Universal Formula

Polarity → p.8, Def.13

¬
(
¬∀x p(x) ∨ ∃z

(
q(z)⇒ r(z)

))

+ –¬

∨

¬

∀x
p(x)

∃z
⇒

q(z) r(z)

���
````̀

�� HH

+

–

– –

+

+

–

+ –

Universal → p.9, Def.14

only ∀+ and ∃ –

Prenex form → p.9, Def.15

∀x ∀z ¬
(
¬p(x) ∨

(
q(z)⇒ r(z)

))
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3 Syntax

3.2 Query and Rule Language Fragments

3.2 Query and Rule Language Fragments

Rule notation consequent ← antecedent → p.9, Ntn.18

stands for (antecedent ⇒ consequent)
or for ∀∗(antecedent ⇒ consequent)
or for something else, various nonclassical semantics

Literal atom A, negated atom ¬A → p.10, Def.19

Clause A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln → p.10, Def.20
atoms Ai , literals Lj , k ≥ 0, n ≥ 0

Range restricted p(x , z)← p(x , y) ∧ p(y , z) yes
p(x , z)← p(x , x) no

→ p.11, Def.23



Foundations of Rule-Based Query Answering 11 / 175
3 Syntax

3.2 Query and Rule Language Fragments

3.2 Query and Rule Language Fragments

Rule notation consequent ← antecedent → p.9, Ntn.18

stands for (antecedent ⇒ consequent)

or for ∀∗(antecedent ⇒ consequent)
or for something else, various nonclassical semantics

Literal atom A, negated atom ¬A → p.10, Def.19

Clause A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln → p.10, Def.20
atoms Ai , literals Lj , k ≥ 0, n ≥ 0

Range restricted p(x , z)← p(x , y) ∧ p(y , z) yes
p(x , z)← p(x , x) no

→ p.11, Def.23



Foundations of Rule-Based Query Answering 11 / 175
3 Syntax

3.2 Query and Rule Language Fragments

3.2 Query and Rule Language Fragments

Rule notation consequent ← antecedent → p.9, Ntn.18

stands for (antecedent ⇒ consequent)
or for ∀∗(antecedent ⇒ consequent)

or for something else, various nonclassical semantics

Literal atom A, negated atom ¬A → p.10, Def.19

Clause A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln → p.10, Def.20
atoms Ai , literals Lj , k ≥ 0, n ≥ 0

Range restricted p(x , z)← p(x , y) ∧ p(y , z) yes
p(x , z)← p(x , x) no

→ p.11, Def.23



Foundations of Rule-Based Query Answering 11 / 175
3 Syntax

3.2 Query and Rule Language Fragments

3.2 Query and Rule Language Fragments

Rule notation consequent ← antecedent → p.9, Ntn.18

stands for (antecedent ⇒ consequent)
or for ∀∗(antecedent ⇒ consequent)
or for something else, various nonclassical semantics

Literal atom A, negated atom ¬A → p.10, Def.19

Clause A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln → p.10, Def.20
atoms Ai , literals Lj , k ≥ 0, n ≥ 0

Range restricted p(x , z)← p(x , y) ∧ p(y , z) yes
p(x , z)← p(x , x) no

→ p.11, Def.23



Foundations of Rule-Based Query Answering 11 / 175
3 Syntax

3.2 Query and Rule Language Fragments

3.2 Query and Rule Language Fragments

Rule notation consequent ← antecedent → p.9, Ntn.18

stands for (antecedent ⇒ consequent)
or for ∀∗(antecedent ⇒ consequent)
or for something else, various nonclassical semantics

Literal atom A, negated atom ¬A → p.10, Def.19

Clause A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln → p.10, Def.20
atoms Ai , literals Lj , k ≥ 0, n ≥ 0

Range restricted p(x , z)← p(x , y) ∧ p(y , z) yes
p(x , z)← p(x , x) no

→ p.11, Def.23



Foundations of Rule-Based Query Answering 12 / 175
3 Syntax

3.2 Query and Rule Language Fragments

Logic Programming Clauses
→ 3.2.1 p.10

Name Form

H
or

n
cl

au
se definite clause A ← B1 ∧ . . . ∧ Bn k = 1, n ≥ 0

unit cl. A ← k = 1, n = 0
definite goal ← B1 ∧ . . . ∧ Bn k = 0, n ≥ 0

empty cl. ← k = 0, n = 0
normal clause A ← L1 ∧ . . . ∧ Ln k = 1, n ≥ 0
normal goal ← L1 ∧ . . . ∧ Ln k = 0, n ≥ 0
disjunctive clause A1 ∨ . . . ∨ Ak ← B1 ∧ . . . ∧ Bn k ≥ 0, n ≥ 0
general clause A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln k ≥ 0, n ≥ 0

atoms A,Aj ,Bi , literals Li , k, n ∈ N
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3 Syntax

3.2 Query and Rule Language Fragments

Datalog → 3.2.2 p.11

I definite clauses
I no function symbols except constants
I range restricted
I extensional relation symbols only in antecedents

intensional relation symbols also in consequents

Monadic datalog 1-ary intensional relation symbols → p.12

Nonrecursive datalog no recursion
Linear datalog at most one intensional atom per antecedent

Disjunctive datalog disjunctive clauses

Datalog¬ normal clauses
Nonrecursive datalog¬ datalog¬, no direct or indirect recursion

Disjunctive datalog¬ datalog¬, general clauses
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3 Syntax

3.2 Query and Rule Language Fragments

Conjunctive Queries → 3.2.3 p.12

Extensional: parent , male , female

ans()← parent(Mary ,Tom) Is Mary a parent of Tom?
ans()← parent(Mary , y) Does Mary have children?
ans(x)← parent(x ,Tom) Who are Tom’s parents?
ans(x)← female(x) ∧ Who are Tom’s grandmothers?

parent(x , y) ∧ parent(y ,Tom)
ans(x , z)← male(x) ∧ Who are grandfathers and their

parent(x , y) ∧ parent(y , z) grandchildren?

I nonrecursive datalog with extensional antecedents
corresponds to SPC subclass of relational algebra queries

I combined with disjunction / negation / quantification
corresponds to other subclasses of relational algebra queries

I combined with recursion
more expressive power than relational algebra queries
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3 Syntax

3.3 Syntactic Variations Relevant to Query Languages

3.3 Syntactic Variations from

object-oriented / knowledge representation → 3.3.1 p.15
I record-like structures
I cyclic structures
I object identity
I roles (or slots)

relational databases → 3.3.2 p.16
I roles
I relational calculus

logic → 3.3.3 p.17
I range restricted quantification
I many-sorted first-order predicate logic

Can be considered as syntactic sugaring of first-order predicate logic
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4 Declarative Semantics: Fundamentals

4.1 Classical Tarski Model Theory

4.1 Classical Tarski Model Theory

Principle of any Tarski-style semantics → 4 p.19
meaning of compound syntactic structure =
composition of meanings of immediate constituents

Advantage for computational treatment
simple recursive definition
well-defined, finite, and restricted computation scope

We’ll come to disadvantages later. . .
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4 Declarative Semantics: Fundamentals

4.1 Classical Tarski Model Theory

Tarski-Interpretation

Signature
function symbols: 0-ary a, b 1-ary f
relation symbols: 1-ary p, q 2-ary r

Interpretation I → p.20, Def.29–31

dom(I) =

{
•N|| ,
•N|| ,
•u↑cb , •u↑cb

}
aI =

•N|| bI =
•u↑cb f I =

{
•N|| 7→
•N|| ,
•N|| 7→ •u↑cb ,

•u↑cb 7→ •N|| , •u↑cb 7→
•u↑cb

}
pI =

{
•N|| ,
•u↑cb
}

qI =

{
•N|| ,
•N||

}
rI =

{(
•N|| ,
•N||

)
,

(
•N|| ,
•u↑cb

)
,

(
•N|| ,
•u↑cb
)
,

( •u↑cb , •N|| ), ( •u↑cb , •u↑cb )}
Model relationship |= → p.21, Def.32

I |= q(a) ∧ r(a, b) ∧ ¬r(f (a), b) ∧ ∀x
(

p(x)⇒ r(x , f (x))
)
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4 Declarative Semantics: Fundamentals

4.1 Classical Tarski Model Theory

Semantic Properties

A formula is → p.21, Def.33
valid iff it is satisfied in each interpretation p ∨ ¬p

satisfiable iff it is satisfied in at least one interpretation p
falsifiable iff it is falsified in at least one interpretation p

unsatisfiable iff it is falsified in each interpretation p ∧ ¬p

For formulas ϕ and ψ → p.21, Def.34
ϕ |= ψ iff for each interpretation I:

if I |= ϕ then I |= ψ (p ∧ q) |= (p ∨ q)

ϕ |=| ψ iff ϕ |= ψ and ψ |= ϕ (p ∧ q) |=| (q ∧ p)

Inter-translatable → p.21, Thm.35
Being able to determine one of validity, unsatisfiability, or entailment,
is sufficient to determine all of them.
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4 Declarative Semantics: Fundamentals

4.1 Classical Tarski Model Theory

Significance for Query Languages

Logical understanding of yes/no query
does (data ∧ rules) |= query hold?

However
depends by definition on all interpretations
(there are at least as many as there are sets)

no starting-point for algorithmic treatment
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4 Declarative Semantics: Fundamentals

4.1 Classical Tarski Model Theory

Results about Tarski Model Theory

Gödel, completeness theorem → p.23, Thm.38
entailment can be emulated by syntactic operations
(derivability in a calculus)

Church-Turing, undecidability theorem → p.23, Thm.39
syntactic derivability is not decidable

Gödel-Malcev, finiteness or compactness theorem → p.23, Thm.40
a set S of closed formulas is unsatisfiable
iff some finite subset of S is unsatisfiable

In summary → p.23, Cor.41

I entailment, unsatisfiability, validity are semi-decidable, not decidable
I non-entailment, satisfiability, falsifiability are not semi-decidable
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4 Declarative Semantics: Fundamentals

4.1 Classical Tarski Model Theory

Key to Algorithmic Approaches

Herbrand interpretation I → p.27, Def.55–56
fixed dom(I) = HU = set of all ground terms
fixed tI = t for each t ∈ HU

selectable B ⊆ HB = set of all ground atoms. Uniquely determines pI

Observe HU and HB are computably enumerable (unless pathological)
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4 Declarative Semantics: Fundamentals

4.1 Classical Tarski Model Theory

Herbrand Interpretation HI (B)

Signature
function symbols: 0-ary a, b 1-ary f
relation symbols: 1-ary p, q 2-ary r

B = { p(a), p(b),

q(a), q(f (a)), q(f (f (f (a)))), . . .
q(f (f (b))), q(f (f (f (f (b))))), . . .

r(a, b), r(a, f (a)), r(a, f (f (a))), r(a, f (f (f (a)))), . . .
r(a, f (b)), r(a, f (f (b))), r(a, f (f (f (b)))), . . .
r(b, f (a)), r(b, f (f (a))), r(b, f (f (f (a)))), . . .
r(b, f (b)), r(b, f (f (b))), r(b, f (f (f (b)))), . . . }

Model relationship |=
HI (B) |= q(a) ∧ r(a, b) ∧ ¬r(f (a), b) ∧ ∀x

(
p(x)⇒ r(x , f (x))

)
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4.1 Classical Tarski Model Theory
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4 Declarative Semantics: Fundamentals

4.1 Classical Tarski Model Theory

Herbrand Theorem

S set of universal closed formulas
Sground set of its ground instances

S is unsatisfiable → p.28, Cor.65
iff S has no Herbrand model
iff Sground has no Herbrand model
iff some finite subset of Sground has no Herbrand model

Does not hold for non-universal formulas! → p.27, Ex.58–59
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4.1 Classical Tarski Model Theory

Dealing with non-universal Formulas

Skolemization → p.29, Cor.68
L signature, S set of closed formulas, computably enumerable
Constructs:

Lsko extension
Ssko set of universal closed formulas, computably enumerable
with: S is unsatisfiable iff Ssko is unsatisfiable
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4.1 Classical Tarski Model Theory

Assessment of Tarski Model Theory
For Logic and Mathematics in General

I domain of an interpretation may by any nonempty set

first-order predicate logic can model statements
about any arbitrary application domain

I excellent clarification of relationship syntax/semantics
I rich body of results
I quite successful for mathematics
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4.1 Classical Tarski Model Theory

Assessment of Tarski Model Theory
Inadequacy for Query Languages, 1

Unique name assumption → 4.1.8 (1) p.32

I different constants to be interpreted differently
I frequent requirement in applications

a mechanism making it available by default would be useful

I not supported by Tarski model theory
explicit formalisation is cumbersome
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4.1 Classical Tarski Model Theory

Assessment of Tarski Model Theory
Inadequacy for Query Languages, 2

Function symbols as term constructors → 4.1.8 (2) p.32

I grouping pieces of data that belong together
I makes sense in many applications
I terms as compound data structures

I not supported by Tarski model theory
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4.1 Classical Tarski Model Theory

Assessment of Tarski Model Theory
Inadequacy for Query Languages, 3

Closed world assumption → 4.1.8 (3) p.33

I nothing holds unless explicitly specified
I tacit understanding in many applications

(transportation timetables)

I corresponds to an induction principle
cannot be expressed in first-order predicate logic
with Tarski model theory
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4.1 Classical Tarski Model Theory

Assessment of Tarski Model Theory
Inadequacy for Query Languages, 4

Disregard infinite models → 4.1.8 (4) p.33

I real-world query answering applications are often finite
I in this case infinite domains are irrelevent
I moreover, they cause “strange” phenomena

I restricting interpretations to finite ones is not possible
finiteness cannot be expressed in first-order predicate logic
with Tarski model theory
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4.1 Classical Tarski Model Theory

Assessment of Tarski Model Theory
Inadequacy for Query Languages, 5

Definability of transitive closure → 4.1.8 (5) p.33

I relevant in many query answering applications

e.g., traffic application
r represents direct connections between junctions
t represents indirect connections

t should be interpreted as the transitive closure of r

I cannot be expressed in first-order predicate logic
with Tarski model theory

∀x∀z
(

t(x , z)⇔
(

r(x , z) ∨ ∃y
[
t(x , y) ∧ t(y , z)

] ))
does not do it!
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4.1 Classical Tarski Model Theory

Assessment of Tarski Model Theory
Inadequacy for Query Languages, 6

Application-specific restrictions → 4.1.8 (6) p.35

I e.g., to domains with a given cardinality, with odd cardinality,
etc.

I cannot be expressed in first-order predicate logic
with Tarski model theory
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4.2 Herbrand Model Theory

4.2 Herbrand Model Theory

Restricts interpretations to Herbrand interpretations → 4.2 p.36

I appealingly simple
I on universal formulas: coincides with Tarski model theory
I on non-universal formulas: Herbrand unsatisfiability and

Herbrand entailment are not semi-decidable
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4.3 Finite Model Theory

4.3 Finite Model Theory

Restricts interpretations to interpretations with finite domain → 4.3 p.38

I amazingly different, many unexpected results, e.g.,
I finite non-entailment, finite satisfiability are semi-decidable,

finite entailment, finite unsatisfiability are not

(reversal of Results about Tarski Model Theory)
I 0-1 Laws → 4.3.2 p.41
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I 5 Declarative Semantics: Adapting Classical Model Theory to Rule
Languages
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5.1 Minimal Model Semantics of Definite Rules

5.1 Minimal Model Semantics of Definite Rules

A positive definite rule is
I a special universal formula → 3.1 p.9, Def.14

I a special inductive formula (cf. infra) → 5.1.3 p.47, Def.125

Interesting model-theoretic properties:
I If a set of universal formulas is satisfiable, then it is Herbrand

satisfiable.
I If a set of inductive formulas is satisfiable, then the intersection of its

models is also a model, provided that the models intersected are
compatible.

I A set of definite inductive formulas is satisfiable.
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5.1 Minimal Model Semantics of Definite Rules

Minimal Model Semantics of Positive Definite Rules

Thus, each set of positive definite rules has a unique minimal Herbrand
model, the intersection of all its Herbrand models.

This minimal model can be taken as “the meaning” of the set of positive
definite rules in a model-theoretic sense.
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5.1 Minimal Model Semantics of Definite Rules

Intersection of Compatible Interpretations
Let {Ii | i ∈ I} be a set of interpretations.

{Ii | i ∈ I} is compatible iff → 5.1.1 p.43, Def.114

I I 6= ∅.
I D =

⋂
{dom(Ii ) | i ∈ I} 6= ∅.

I all interpretations of a function symbol coincide on D
I a variable is identically interpreted in all interpretations

If {Ii | i ∈ I} is compatible, then
⋂
{Ii | i ∈ I} → 5.1.1 p.44, Def.115

is the interpretation I with
I dom(I) = D =

⋂
{dom(Ii ) | i ∈ I}.

I a function symbol is interpreted as the intersection of its
interpretations

I a relation symbol is interpreted as the intersection of its
interpretations

I a variable is interpreted like in all given interpretations
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5.1 Minimal Model Semantics of Definite Rules

5.1.2 Universal Formulas and Theories

Recall
I polarity of a subformula
I universal formula
I Herbrand universe HU
I Herbrand base HB
I Herbrand interpretation



Foundations of Rule-Based Query Answering 41 / 175
5 Declarative Semantics: Adaptations

5.1 Minimal Model Semantics of Definite Rules

Inducers of Herbrand Models
Let {Bi | i ∈ I} be a set of sets of ground atoms. → 5.1.2 p.45, Lem.116

I {HI (Bi ) | i ∈ I} is a compatible set of interpretations, i.e., its
intersection is defined.

I
⋂
{HI (Bi ) | i ∈ I} = HI

( ⋂
{Bi | i ∈ I}

)
Let S be a set of formulas.

I The set of inducers of the Herbrand models of S is ModHB(S)
= {B ⊆ HB | HI (B) |= S}. → 5.1.2 p.45, Def.117

I Mod∩(S) =

{ ⋂
ModHB(S) if ModHB(S) 6= ∅

HB if ModHB(S) = ∅
→ 5.1.2 p.45, Ntn.118

I If S is universal, then Mod∩(S) = {A ∈ HB | S |= A}.
→ 5.1.2 p.45, Thm.119
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5.1 Minimal Model Semantics of Definite Rules

Example → 5.1.2 p.45, Ex.120

Assume a signature consisting of a unary relation symbol p and
constants a and b and no other symbols.

Let S = {p(a) ∨ p(b)}.

Then ModHB(S) = { {p(a)}, {p(b)}, {p(a), p(b)} }.

But HI (Mod∩(S)) = HI (∅) is not a model of S .
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5.1 Minimal Model Semantics of Definite Rules

Subinterpretation Property of Universal Formulas

Subinterpretation → 5.1.2 p.46, Def.121
I1 is a subinterpretation of I2 (I1 ⊆ I2) if

I dom(I1) ⊆ dom(I2).
I the interpretations of a function symbol coincide on the common

domain
I the interpretations of a relation symbol coincide on the common

domain
I a variable is identically interpreted in the interpretations

If in addition dom(I1) 6= dom(I2), then I1 is a proper subinterpretation
of I2.

Property → 5.1.2 p.46, Thm.123
Let I1 and I2 be interpretations with I1 ⊆ I2.
For each universal closed formula ϕ, if I2 |= ϕ then I1 |= ϕ.
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5.1 Minimal Model Semantics of Definite Rules

5.1.3 Inductive Formulas and Theories

Positive and negative formulas → 5.1.3 p.46, Def.124
A formula ϕ is positive (or negative, respectively) iff every atom oc-
curring in ϕ has positive (or negative, respectively) polarity in ϕ.

Inductive formula → 5.1.3 p.47, Def.125
I A generalised definite rule or definite inductive formula is a

formula of the form ∀∗((A1 ∧ . . . ∧ An)← ϕ) where ϕ is positive
and the Ai are atoms for 1 ≤ i ≤ n.

I A generalised definite goal or integrity constraint is a formula of
the form ∀∗ϕ where ϕ is negative.

I An inductive formula is either a generalised definite rule or a
generalised definite goal.

I A (definite) inductive theory is a theory axiomatised by a set of
(definite) inductive formulas.
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5.1 Minimal Model Semantics of Definite Rules

Order on Interpretations → 5.1.3 p.47, Def.126

I1 ≤ I2 for interpretations I1 and I2 if
I dom(I1) = dom(I2).
I the interpretations of a function symbol coincide on the common

domain
I the “smaller” interpretation of a relation symbol is a restriction of the

other
I a variable is identically interpreted in the interpretations

If in addition pI1 6= pI2 for at least one p, then I1 < I2.
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5.1 Minimal Model Semantics of Definite Rules

Models of Inductive Formulas

Maximal Herbrand Model → 5.1.3 p.48, Thm.128
For each set S of generalised definite rules, HI (HB) |= S .

Intersection-Closedness → 5.1.3 p.48, Thm.129
Let S be a set of inductive formulas. If {Ii | i ∈ I} is a set of compatible
models of S with the same domain D, then I =

⋂
{Ii | i ∈ I} is also

a model of S .

Intersection Model → 5.1.3 p.48, Cor.130
If S is a set of inductive formulas and {Bi ⊆ HB | i ∈ I} is a nonempty
set with HI (Bi ) |= S for each i ∈ I , then HI

( ⋂
{Bi | i ∈ I}

)
|= S .
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5.1 Minimal Model Semantics of Definite Rules

5.1.4 Minimal Models

Minimal Model → 5.1.4 p.48, Lem.131
A minimal model of a set of formulas is a ≤-minimal member I of the
set of all its models with domain dom(I).

Minimal Herbrand Model → 5.1.4 p.49, Lem.132
Let S be a set of formulas.

I An Herbrand model of S is minimal iff it is induced by a
⊆-minimal member of ModHB(S).

I If HI (Mod∩(S)) is a model of S , it is a minimal Herbrand model
of S and it is the only minimal Herbrand model of S .

Minimal Herbrand Model of Inductive Formulas
→ 5.1.4 p.49, Thm.133

Let S be a set of inductive formulas. If either each member of S is
definite, or S is satisfiable and each member of S is universal, then
HI (Mod∩(S)) is the unique minimal Herbrand model of S .
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5.1 Minimal Model Semantics of Definite Rules

Minimal Herbrand Model

Definite Program → 5.1.4 p.49, Cor.134
Each set S of positive definite rules (i.e., each definite program) has a
unique minimal Herbrand model.
This model is the intersection of all Herbrand models of S .
It satisfies precisely those ground atoms that are logical consequences
of S .

Generalisation of inductive formulas for which ’minimal models’ remains
useful:
Generalised Rule → 5.1.4 p.49, Def.135

A generalised rule is a formula of the form ∀∗(ψ ← ϕ) where ϕ is
positive and quantifier-free.
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5.1 Minimal Model Semantics of Definite Rules

Implicant of a Positive Quantifier-Free Formula
Pre-Implicant and Implicant → 5.1.4 p.49, Def.136

Let ψ be a positive quantifier-free formula. The set primps(ψ) of pre-
implicants of ψ is defined as follows:

I primps(ψ) = { {ψ} } if ψ is an atom or > or ⊥.
I primps(¬ψ1) = primps(ψ1).
I primps(ψ1 ∧ ψ2) = { C1 ∪ C2 | C1 ∈ primps(ψ1), C2 ∈

primps(ψ2) }.
I primps(ψ1 ∨ψ2) = primps(ψ1⇒ψ2) = primps(ψ1)∪ primps(ψ2).

The set of implicants of ψ is obtained from primps(ψ) by removing all
sets containing ⊥ and by removing > from the remaining sets.

Implicants and Entailement → 5.1.4 p.50, Lem.137

1. If C is an implicant of ψ, then C |= ψ.
2. For any interpretation I, if I |= ψ then there exists an

implicant C of ψ with I |= C .
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5.1 Minimal Model Semantics of Definite Rules

Supported Atom

Supported Atom → 5.1.4 p.50, Def.138
Let I be an interpretation, V a variable assignment in dom(I) and
A = p(t1, . . . , tn) an atom, n ≥ 0.

I an atom B supports A in I [V ] iff
I [V ] |= B and B = p(s1, . . . , sn) and s I [V ]

i = t I [V ]
i for 1 ≤ i ≤ n.

I a set C of atoms supports A in I [V ] iff
I [V ] |= C and there is an atom in C that supports A in I [V ].

I a generalised rule ∀∗(ψ ← ϕ) supports A in I iff for each variable
assignment V with I [V ] |= ϕ there is an implicant C of ψ that
supports A in I [V ].
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5.1 Minimal Model Semantics of Definite Rules

Minimal Models and Supported Ground Atom

Minimal Models Satisfy Only Supported Ground Atom
→ 5.1.4 p.50, Thm.139

Let S be a set of generalised rules. Let I be an interpretation with
domain D. If I is a minimal model of S , then: For each ground atom A
with I |= A there is a generalised rule in S that supports A in I.

Example → 5.1.4 p.51, Ex.140
Consider a signature containing a unary relation symbol p and con-
stants a and b. Let S = { (p(b)← >) }.
The interpretation I with dom(I) = {1} and aI = bI = 1 and pI =
{(1)} is a minimal model of S .
(Note that the only smaller interpretation interprets p with the empty
relation and does not satisfy the rule.)
Moreover, I |= p(a). By the theorem, p(a) is supported in I by p(b),
which can be confirmed by applying the definition.
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5.1 Minimal Model Semantics of Definite Rules

Unique Name Property

Unique Name Property → 5.1.4 p.51, Def.141
An interpretation I has the unique name property, if for each term s,
ground term t, and variable assignment V in dom(I) with s I [V ] = t I [V ]

there exists a substitution σ with sσ = t.

Herbrand interpretations have the unique name property.
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5.1 Minimal Model Semantics of Definite Rules

Non-Minimal Models Supporting Ground Atoms

The converse of Thm. 139 is refuted by counter-examples with indefinite
rules such as { (p(a) ∨ p(b)← >) } because the definition of supported
cannot distinguish between implicants of rule consequent. Both atoms are
supported in the Herbrand model HI ({p(a), p(b)}) of this set, although
the model is not minimal.

The converse of Theorem 139 is also refuted by (simple) counter-examples
with definite rules:

Example → 5.1.4 p.52, Ex.142
Consider S = { (p ← p) } and its Herbrand model HI ({p}). The only
ground atom satisfied by HI ({p}) is p, which is supported in HI ({p})
by the rule. But HI ({p}) is not minimal because HI (∅) is also a model
of S .
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5.2 Fixpoint Semantics of Positive Definite Rules

5.2 Fixpoint Semantics of Positive Definite Rules
Operator → 5.2.1 p.52, Def.143

Let X be a set. An operator Γ on a set X is a mapping: P(X )→ P(X ).

Monotonic Operator → 5.2.1 p.52, Def.144
Let X be a set. An operator Γ on X is monotonic, iff for all subset
M ⊆ M ′ ⊆ X holds: Γ(M) ⊆ Γ(M ′).

Continuous operator → 5.2.1 p.52, Def.145
Let X be a nonempty set.
A set Y ⊆ P(X ) of subsets of X is directed, if every finite subset of Y
has an upper bound in Y , i.e., for each finite Yfin ⊆ Y , there is a set
M ∈ Y such that

⋃
Yfin ⊆ M.

An operator Γ on X is continuous, iff for each directed set Y ⊆ P(X )
of subsets of X holds: Γ(

⋃
Y ) =

⋃
{Γ(M) | M ∈ Y }.

A continuous operator on a nonempty set is monotonic.
→ 5.2.1 p.52, Lem.146
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5.2 Fixpoint Semantics of Positive Definite Rules

5.2.2 Fixpoints of Monotonic and Continuous
Operators

Fixpoint → 5.2.2 p.52, Def.147
Let Γ be an operator on a set X . A subset M ⊆ X is a fixpoint of Γ iff
Γ(M) = M.

Knaster-Tarski Theorem → 5.2.2 p.52, Thm.148
Let Γ be a monotonic operator on a nonempty set X . Then Γ has a
least fixpoint lfp(Γ) and a greatest fixpoint gfp(Γ) with
lfp(Γ) =

⋂
{M ⊆ X | Γ(M) = M} =

⋂
{M ⊆ X | Γ(M) ⊆ M}.

gfp(Γ) =
⋃
{M ⊆ X | Γ(M) = M} =

⋃
{M ⊆ X | Γ(M) ⊆ M}.
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5.2 Fixpoint Semantics of Positive Definite Rules

Ordinal Powers of a Monotonic Operator → 5.2.1 p.53, Def.149
Let Γ be a monotonic operator on a nonempty set X .

I The upward power of Γ is defined as:
Γ ↑ 0 = ∅ (base case)
Γ ↑ α+ 1 = Γ(Γ ↑ α) (successor case)
Γ ↑ λ =

⋃
{Γ ↑ β | β < λ} (limit case)

I The downward power of Γ is defined as:
Γ ↓ 0 = X (base case)
Γ ↓ α+ 1 = Γ(Γ ↓ α) (successor case)
Γ ↓ λ =

⋂
{Γ ↓ β | β < λ} (limit case)

Let Γ be an operator on a nonempty set X .
Theorem → 5.2.1 p.53, Thm.151

If Γ is monotonic, then there exists α such that Γ ↑ α = lfp(Γ).

Kleene Theorem → 5.2.1 p.53, Thm.152
If Γ is continuous, then lfp(Γ) = Γ ↑ ω.
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5.2 Fixpoint Semantics of Positive Definite Rules

5.2.3 Immediate Consequence Operator

Immediate Consequence Operator → 5.2.3 p.54, Def.153
Let S be a set of universal generalised definite rules. Let B ⊆ HB be
a set of ground atoms. The immediate consequence operator
TS : P(HB)→ P(HB) is defined by:
TS(B) = {A ∈ HB | there is a ground instance A1∧ . . .∧An ← ϕ of a
member of S with HI (B) |= ϕ and A = Ai for some i with 1 ≤ i ≤ n}

Theorem → 5.2.3 p.54, Thm.156
The immediate consequence operator of a set of positive definite rules
is continuous and monotonic.

Least Fixpoint of a Definite Program → 5.2.4 p.56, Ntn.158
For a set S of universal generalised definite rules, the least fixpoint of S
is lfp(S) = lfp(TS).
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5.3 Declarative Semantics of Rules with Negation

5.3 Declarative Semantics of Rules with Negation

If a database of students does not list “Mary”, then one may conclude
that “Mary” is not a student. The principle underlying this is called closed
world assumption (CWA).

Two approaches to coping with this form of negation:
I axiomatization within first-oder predicate logic
I deduction methods not requiring specific axioms conveying the CWA

The second approach is desirable but it poses the problem of the
declarative semantics, or model theory.
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5.3 Declarative Semantics of Rules with Negation

Minimal Models don’t all convey the CWA

Example → 5.3 p.57, Ex.159
S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← >) }
Minimal Herbrand models: HI ({s, r , q}), HI ({s, r , p}), and HI ({s, t}).

Example → 5.3 p.57, Ex.160
S2 = { (p ← ¬q), (q ← ¬p) }
Minimal Herbrand models: HI ({p}), HI ({q}).

Example → 5.3 p.57, Ex.161
S3 = { (p ← ¬p) } Minimal Herbrand model: HI ({p}).

Example → 5.3 p.58, Ex.162
S4 = { (p ← ¬p), (p ← >) }
Minimal Herbrand model: HI ({p}).
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5.3 Declarative Semantics of Rules with Negation

Justification vs. Consistency

Justification postulate
dependable justifications for derived truths.

Consistency postulate
every syntactically correct set of normal clauses is consistent
(hence has a model).
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5.3 Declarative Semantics of Rules with Negation

Thcanonical is not Monotonic

Example → 5.3 p.58, Ex.163
S5 = { (q ← ¬p) }
Minimal Herbrand models: HI ({p}) and HI ({q}).
Only the latter conveys the intuitive meaning under the CWA
and should be retained as (the only) canonical model.
Therefore, q ∈ Thcanonical(S5).

S ′
5 = S5 ∪ { (p ← >) }

Minimal Herbrand model: HI ({p}), which also conveys the CWA.
Therefore, q /∈ Thcanonical(S ′

5).

S5 ⊆ S ′
5 but Thcanonical(S5) 6⊆ Thcanonical(S ′

5).
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5.3 Declarative Semantics of Rules with Negation

Justification vs. Consistency Cont’d

Non-monotonicity is independent of the choice Justification vs.
Consistency.

Any semantics not complying with Consistency is non-monotonic in an
even stronger sense: Consistency (defined as usual as the existence of
models) is not inherited by subsets.
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5.3 Declarative Semantics of Rules with Negation

5.3.1 Stratifiable Rule Sets

Stratification → 5.3.1 p.59, Def.164
Let S be a set of normal clauses. A stratification of S is a parti-
tion S0, . . . ,Sk of S such that

I For each relation symbol p there is a stratum Si , such that all
clauses of S containing p in their consequent are members of Si .
(p is defined in stratum Si .)

I For each stratum Sj and for each positive literal A in the
antecedents of members of Sj , the relation symbol of A is
defined in a stratum Si with i ≤ j .

I For each stratum Sj and for each negative literal ¬A in the
antecedents of members of Sj , the relation symbol of A is
defined in a stratum Si with i < j .

A set of normal clauses is called stratifiable if there exists a stratification
of it.
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5.3 Declarative Semantics of Rules with Negation

Stratifiable Rule Sets - Examples

S = { (r ← >), (q ← r), (p ← q ∧ ¬r) } is stratifiable.
S = { (p ← ¬p) } is not stratifiable. More generally, any set of normal
clauses with a cycle of recursion through negation is not stratifiable.
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5.3 Declarative Semantics of Rules with Negation

Stratifiable Rule Sets - Model

By definition the stratum S0 always consists of definite clauses. Hence the
truth values of all atoms of stratum S0 can be determined without
negation being involved.

After that the clauses of stratum S1 refer only to such negative literals
whose truth values have already been determined.

And so on.
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5.3 Declarative Semantics of Rules with Negation

5.3.2 Stable Model Semantics
Let S be a (possibly infinite) set of ground normal clauses, i.e., of formulas
of the form A← L1 ∧ . . . ∧ Ln where n ≥ 0 and A is a ground atom and
the Li for 1 ≤ i ≤ n are ground literals.

Gelfond-Lifschitz Transformation → 5.3.2 p.59, Def.165
Let B ⊆ HB. The Gelfond-Lifschitz transform GLB(S) of S with
respect to B is obtained from S as follows:

1. remove each clause whose antecedent contains a literal ¬A with
A ∈ B.

2. remove from the antecedents of the remaining clauses all
negative literals.

Stable Model → 5.3.2 p.60, Def.166
An Herbrand interpretation HI (B) is a stable model of S iff it is the
unique minimal Herbrand model of GLB(S).
A stable model of a set S of normal clauses is a stable model of the
(possibly infinite) set of ground instances of S .
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5.3 Declarative Semantics of Rules with Negation

Stable Model Semantics - Properties

Let S be a set of ground normal clauses.

Lemma → 5.3.2 p.60, Lem.167
Let HI (B) be an Herbrand interpretation.
HI (B) |= S iff HI (B) |= GLB(S).

Theorem → 5.3.2 p.60, Thm.168
Each stable model of S is a minimal Herbrand model of S .
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5.3 Declarative Semantics of Rules with Negation

Stable Model Semantics - Example

Example → 5.3.2 p.61, Ex.169

S1 = { (q ← r ∧¬p), (r ← s ∧¬t), (s ← >) } has one stable model:
HI ({s, r , q})

S2 = { (p ← ¬q), (q ← ¬p) } has two stable models: HI ({p}) and
HI ({q})

S3 = { (p ← ¬p) } has no stable model.

S4 = { (p ← ¬p), (p ← >) } has one stable model: HI ({p})
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5.3 Declarative Semantics of Rules with Negation

Stable Model Semantics - Evaluation

I The stable model semantics coincides with the intuitive understanding
based on the “Justification Postulate”.

I A set may have several stable models or exactly one or none. Each
stratifiable set has exactly one stable model.
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5.3 Declarative Semantics of Rules with Negation

5.3.3 Well-Founded Semantics
Notation → 5.3.3 p.61, Ntn.170

For a set I of ground literals:
I = { L | L ∈ I } and pos(I ) = I ∩ HB and neg(I ) = I ∩ HB.
(I = pos(I ) ∪ neg(I ).)

(In)Consistent Sets of Literals → 5.3.3 p.61, Def.171
A set I of ground literals is consistent iff pos(I ) ∩ neg(I ) = ∅.
Otherwise, I is inconsistent.
Two sets I1 and I2 of ground literals are (in)consistent iff I1 ∪ I2 is.
A literal L and a set I of ground literals are (in)consistent iff {L}∪ I is.

Partial Interpretation → 5.3.3 p.61, Def.172
A partial interpretation is a consistent set of ground literals.
A partial interpretation I is total iff pos(I )∪neg(I ) = HB (i.e. for each
ground atom A either A ∈ I or ¬A ∈ I ).
For a total interpretation I , the Herbrand interpretation induced by I
is defined as HI (I ) = HI (pos(I )).
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5.3 Declarative Semantics of Rules with Negation

Well-Founded Semantics - Models

Let I be a partial interpretation.

Model Relationship → 5.3.3 p.61, Def.173
> is satisfied in I and ⊥ is falsified in I .

A ground literal L is
satisfied or true in I iff L ∈ I .
falsified or false in I iff L ∈ I .
undefined in I iff L /∈ I and L /∈ I .

A conjunction L1 ∧ . . . ∧ Ln of ground literals, n ≥ 0, is
satisfied or true in I iff each Li for 1 ≤ i ≤ n is satisfied in I .
falsified or false in I iff at least one Li for 1 ≤ i ≤ n is falsified in I .
undefined in I iff each Li for 1 ≤ i ≤ n is satisfied or undefined

in I and at least one of them is undefined in I .
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5.3 Declarative Semantics of Rules with Negation

Well-Founded Semantics - Models Cont’d
Let I be a partial interpretation.

Model Relationship → 5.3.3 p.61, Def.173
A ground normal clause A← ϕ is
satisfied or true in I iff A is satisfied in I or ϕ is falsified in I .
falsified or false in I iff A is falsified in I and ϕ is satisfied in I .
weakly falsified in I iff A is falsified in I and ϕ is satisfied or

undefined in I .
A normal clause is
satisfied or true in I iff each of its ground instances is.
falsified or false in I iff at least one of its ground instances is.
weakly falsified in I iff at least one of its ground instances is.
A set of normal clauses is
satisfied or true in I iff each of its members is.
falsified or false in I iff at least one of its members is.
weakly falsified in I iff at least one of its members is.
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5.3 Declarative Semantics of Rules with Negation

Well-Founded Semantics - Models Cont’d

Total and Partial Models → 5.3.3 p.62, Def.174
Let S be a set of normal clauses.

A total interpretation I is a total model of S , iff S is satisfied in I .

A partial interpretation I is a partial model of S , iff there exists a total
model I ′ of S with I ⊆ I ′.
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5.3 Declarative Semantics of Rules with Negation

Well-Founded Semantics - Unfoundedness
Let S be a set of normal clauses, I a partial interpretation, and U ⊆ HB a
set of ground atoms.

Unfounded Sets of Atoms → 5.3.3 p.63, Def.176
U is an unfounded set with respect to S and I , if for each A ∈ U and
for each ground instance A← L1 ∧ . . . ∧ Ln, n ≥ 1, of a member of S
at least one of the following holds:

1. Li ∈ I for some positive or negative Li with 1 ≤ i ≤ n. (Li is
falsified in I )

2. Li ∈ U for some positive Li with 1 ≤ i ≤ n. (Li is unfounded)

A literal fulfilling one of these conditions is a witness of unusability for
the ground instance of a clause.

U is a maximal unfounded set with respect to S and I , iff U is an
unfounded set with respect to S and I and no proper superset of U is.
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5.3 Declarative Semantics of Rules with Negation

Well-Founded Semantics - Operators
Let PI = { I ⊆ HB ∪ HB | I is consistent }, and note that P(HB) ⊆ PI.
Let S be a set of normal clauses.

Operators → 5.3.3 p.64, Def.181

TS : PI → P(HB)
I 7→ { A ∈ HB | there is a ground instance (A← ϕ)

of a member of S such that
ϕ is satisfied in I }

US : PI → P(HB)
I 7→ the maximal subset of HB that is

unfounded with respect to S and I
WS : PI → PI

I 7→ TS(I ) ∪US(I )

Lemma → 5.3.3 p.65, Lem.183
TS , US , and WS are monotonic. (but not in general continuous!)
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5.3 Declarative Semantics of Rules with Negation

Well-Founded Semantics → 5.3.3 p.64, Ex.182

Assume a signature with HB = {p, q, r , s, t}, and let I0 = ∅ and
S = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← >) }.

TS(I0) = {s}
US(I0) = {p, t}
WS(I0) = {s,¬p,¬t} = I1

TS(I1) = {s, r}
US(I1) = {p, t}
WS(I1) = {s, r ,¬p,¬t} = I2

TS(I2) = {s, r , q}
US(I2) = {p, t}
WS(I2) = {s, r , q,¬p,¬t}
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5.3 Declarative Semantics of Rules with Negation

Well-Founded Semantics - Properties

Well-Founded Model → 5.3.3 p.65, Def.185
Let S be a set of normal clauses. The well-founded model of S is its
partial model lfp(WS).

Examples → 5.3.3 p.65, Ex.186
S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← >) } has the well-founded
model {s, r , q,¬p,¬t}. It is total.
S2 = { (p ← ¬q), (q ← ¬p) } has the well-founded model ∅. It is
partial.
S3 = { (p ← ¬p) } has the well-founded model ∅. It is partial.
S4 = { (p ← ¬p), (p ← >) } has the well-founded model {p}. It is
total.
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5.3 Declarative Semantics of Rules with Negation

Well-Founded Semantics → 5.3.3 p.66, Ex.187

Assume a signature containing no other symbols than those occurring in
the following set of normal clauses.

S = { p(a)←>, p(f (x))← p(x), q(y)← p(y), s ← p(z) ∧ ¬q(z),
r ← ¬s }

lfp(WS) = WS ↑ ω+ 2 =
{ p(a), . . . , p(f n(a)), . . . } ∪ { q(a), . . . , q(f n(a)), . . . } ∪ {¬s, r }

S is the (standard) translation into normal clauses of the following set of
generalised rules:
{ p(a)←>, p(f (x))← p(x), q(y)← p(y), r ← ∀z

(
p(z)⇒ q(z)

)
}
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5.3 Declarative Semantics of Rules with Negation

Well-Founded Semantics - Evaluation

I The well-founded semantics coincides with an intuitive understanding
based on the “Justification Postulate”.

I A set always has exactly one model but some ground atoms might be
“undefined” in this model. Thus, the well-founded semantics
coincides with the “Consistency Postulate”.

I The well-founded model might not be computable (in those not
unfrequent cases where the fixpoint is reached after more than ω
steps).
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5.3 Declarative Semantics of Rules with Negation

5.3.4 Stable and Well-Founded Semantics Compared

I If a rule set is stratifiable, then it has a unique minimal model, which
is its only stable model and is also its well-founded model and total.

I If a rule set S has a total well-founded model, then this model is also
the single stable model of S .

I If a rule set S has a single stable model, then this model is also the
well-founded model of S and it is total.

I If a rule set S has a partial well-founded model I that is not total,
then S has either no stable model or more than one stable model. In
the latter case, a ground atom is true in all stable models of S if it is
true in I.

I Stable model entailment does not imply well-founded entailment:
→ missing in text!

S = {p ← ¬q, q ← ¬p, r ← p, r ← q}
r is true in all stable models but it is undefined in the well-founded
model.



Foundations of Rule-Based Query Answering 81 / 175
5 Declarative Semantics: Adaptations

5.3 Declarative Semantics of Rules with Negation

5.3.5 Inflationary Semantics

Attention restricted to datalog¬ programs, i.e. finite sets of normal clauses.

I The Herbrand universe dom is finite
I The Herbrand base HB is finite

Normal clauses are rule r of the form A← L1, . . . , Lm where m ≥ 0 and A
is an atom. They are assumed to be range restricted.

→ 3.2.2 p.11, Def.23

Notation
Head (consequent) of a rule r : H(r)

Body (antecedent) of r : B(r)

B+(r) = {R(~x) | ∃i Li = R(~x)} B−(r) = {R(~x) | ∃i Li = ¬R(~x)}
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5.3 Declarative Semantics of Rules with Negation

Inflationary Semantics - Operator

Let P be a datalog¬ program and I an instance or interpretation (I ⊆ HB)

Immediate Consequence Operator → 5.3.5 p.68, Def.188
R(~t) is an immediate consequence for I and P (R(~t) ∈ TP(I)), if either
R R(~t) ∈ I, or there exists some ground instance r of a rule in P such
that

I H(r) = R(~t),
I B+(r) ⊆ I, and
I B−(r) ∩ I = ∅.

Inflationary Operator and Semantics → 5.3.5 p.68, Def.189

T̃P(I) = I ∪ TP(I)
The inflationary semantics of P w.r.t. I (Pinf (I)) is the limit of
{T̃i

P(I)}i≥0, where T̃0
P(I) = I and T̃i+1

P (I) = T̃P(T̃i
P(I)).
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5.3 Declarative Semantics of Rules with Negation

Inflationary Semantics

I By definition of T̃P : T̃0
P(I) ⊆ T̃1

P(I) ⊆ T̃2
P(I) ⊆ . . .

I Each set in this sequence is a subset of the finite set HB. Therefore,
the sequence reaches a fixpoint T̃P(I) after a finite number of steps.

I HI (Pinf (I)) is a model of P containing I but not necessarily a minimal
model containing I.

Example → 5.3.5 p.68, Ex.190
P = { (p ← s ∧ ¬q), (q ← s ∧ ¬p) }
I = {s}.

Pinf (I) = {s, p, q}
Although HI (Pinf (I)) is a model of P, it is not minimal.

T̃P is not monotonic: T̃P({s}) = {s, p, q} and T̃P({s, p}) = {s, p}
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5.3 Declarative Semantics of Rules with Negation

Inflationary Semantics - Examples

S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← >) } → 5.3.5 p.69, Ex.191

T̃1
S1

(∅) = {s}, T̃2
S1

(∅) = {s, r}, T̃3
S1

(∅) = {s, r , q} = T̃4
S1

(∅).

S2 = { (p ← ¬q), (q ← ¬p) } → 5.3.5 p.69, Ex.192

T̃1
S2

(∅) = {p, q} = T̃2
S2

(∅)

S3 = { (p ← ¬p) } → 5.3.5 p.69, Ex.193

T̃1
S3

(∅) = {p} = T̃2
S3

(∅)

S4 = { (p ← ¬p), (p ← >) } → 5.3.5 p.69, Ex.194

T̃1
S4

(∅) = {p} = T̃2
S4

(∅)

S5 = { (r ← ¬q), (q ← ¬p) } → 5.3.5 p.69, Ex.195
S5 is stratifiable, its minimal models are HI ({q}) and HI ({p, r}).
T̃1

S5
(∅) = {q, r}
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5.3 Declarative Semantics of Rules with Negation

Inflationary Semantics - Evaluation

The inflationary semantics gives up a fundamental principle, that models
are preserved when adding logical consequences.

S5 = { (r ← ¬q), (q ← ¬p) }
S5 is stratifiable, its minimal models are HI ({q}) and HI ({p, r}).

q is true in the only inflationary model HI ({q, r}) of S5 but HI ({q, r})
is not an inflationary model of S5 ∪ {q}.
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Session 14:30 – 16:00

I 6 Operational Semantics: Positive Rule Sets
I 7 Operational Semantics: Rule Sets with Non-monotonic Negation
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6 Operational Semantics: Positive

I 6.1 Semi-naive Evaluation of Datalog Programs → p.78

I 6.4 Basic Backward Chaining: SLD Resolution → p.86

I 6.2 The Magic Templates Transformation Algorithm → p.81

I 6.3 The Rete Algorithm → p.84

I 6.5 OLDT-Resolution → p.88

I 6.6 The Backward Fixpoint Procedure → p.92
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6.1 Semi-naive Evaluation of Datalog Programs

6.1 Semi-naive Evaluation of Datalog Programs

feeds_milk(betty).
lays_eggs(betty).
has_spines(betty).
monotreme(X)←

lays_eggs(X), feeds_milk(X).
echidna(X)←

monotreme(X), has_spines(X).
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6.1 Semi-naive Evaluation of Datalog Programs

6.1 Semi-naive Evaluation of Datalog Programs

feeds_milk(betty).
lays_eggs(betty).
has_spines(betty).
monotreme(X)←

lays_eggs(X), feeds_milk(X).
echidna(X)←

monotreme(X), has_spines(X).

Terminology:

I Extensional Predicate Symbols ext(P)

I Intensional Predicate Symbols int(P)

I Semantics of a LP: Mapping from extensions over ext(P) to
extensions over int(P)
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6.1 Semi-naive Evaluation of Datalog Programs

6.1 Semi-naive Evaluation of Datalog Programs

feeds_milk(betty).
lays_eggs(betty).
has_spines(betty).
monotreme(X)←

lays_eggs(X), feeds_milk(X).
echidna(X)←

monotreme(X), has_spines(X).

I Schema of P:
{ feeds_milk, lays_eggs, has_spines, monotreme, echidna }

I Fixpoint calculation:
{betty}feeds , {betty}lays , {betty}spines , {}monotreme , {}echidna
{betty}feeds , {betty}lays , {betty}spines , {betty}monotreme , {}echidna

{betty}feeds , {betty}lays , {betty}spines , {betty}monotreme , {betty}echidna
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6.1 Semi-naive Evaluation of Datalog Programs

Further Optimizations for
Evaluating Positive Rule Sets

I Goal directedness
I Storing partially instantiated rules
I Sharing of instantiated premises among similar rules
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6.1 Semi-naive Evaluation of Datalog Programs

6.4 SLD-Resolution: Principles

I goal driven evaluation of LPs
I instead of showing that P |= q, show that P ∪ ¬q is unsatisfiable
I resolution: a mechanical method for proving statements in FOL
I uses unification
I elimination of a literal that occurs positive in one clause and negative

in another
I recall that Q ← P is equivalent to Q ∨ ¬P
I SLD resolution: Linear resolution with a Selection function for

Definite clauses
I resolution with backtracking as control mechanism in Prolog
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6.4 SLD-Resolution

6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)
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6.4 SLD-Resolution

6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}
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6.4 SLD-Resolution

6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}
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6.4 SLD-Resolution

6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}
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6.4 SLD-Resolution

6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}
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6.4 SLD-Resolution

6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}

:- e(2,A)

3,{Y/2}
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6.4 SLD-Resolution

6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}

:- e(2,A)

3,{Y/2}

:-

4,{A/1}
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6.4 SLD-Resolution

6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}

:- e(2,A)

3,{Y/2}

:-

4,{A/1}

:- t(1,Y'),
   e(Y',Y),
   e(Y,A)

2',{X'/1,Z'/Y}

...

....
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6.4 SLD-Resolution

6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}

:- e(2,A)

3,{Y/2}

:-

4,{A/1}

:- t(1,Y'),
   e(Y',Y),
   e(Y,A)

2',{X'/1,Z'/Y}

...

....Problem: Non-termination:
t(1,2),t(1,1),t(1,2),t(1,1),...
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6.4 SLD-Resolution

6.4 SLD-Resolution

2: t(X,Z)←t(X,Y),e(Y,Z).
1: t(X,Y)←e(X,Y).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

:-t(1,A)

:-e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:-t(1,Y),e(Y,A)

2,{X/1,Z/A}

:-e(1,Y),e(Y,A)

1,{X/1,Y/Y}

:-e(2,A)

3,{Y/2}

:-

4,{A/1}

:-t(1,Y'),
  e(Y',Y),
  e(Y,A)

2',{X'/1,Z'/Y}

...

.... Non-Termination!

and no solutions
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6.4 SLD-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Z)←e(Y,Z),t(X,Y).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

:-t(1,A)

:-e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:-e(Y,A),t(1,Y)

2,{X/1,Z/A}

:-t(1,1)

3,{Y/1,A/2}

:-t(1,2)

2',{Y'/2,A/1}

...

2

:-e(1,1)

1

false

:-e(Y',1),t(1,Y')
4,{Y'/2}

t(1,2)

2',{X'/1,Z'/1}

:-e(1,2)
1

:-
1 ...

2

Non-termination due to
circular data:
Solution A=1 is not found
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6.5 OLDT-Resolution

6.5 OLDT-Resolution

Ideas:

I Non-termination due to infinite branches
I Infinite branches due to

I variants of the same goal on the infinite branch or
I subsuming goals on the infinite branch

I Avoidance of repeated evaluation of a subgoal on the same
computation path

I Side effect: No repeated evaluations of subgoals at all
I Distinction of tabled predicates
I Distinction between solution- and lookup nodes.
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6.5 OLDT-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Y)←t(X,Z),e(Z,Y).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

:- t(1,A)

:- e(1,A)

1,{X/1,Y/A}

:-

3, {A/2}

:- t(1,Z),e(Z,A)

2,{X/1,Y/A}

:- e(1,Z),e(Z,A)

1,{X/1,Y/Z}

:- e(2,A)

3,{Z/2}

:-

4,{A/1}

:- t(1,Z'),
   e(Z',Z),
   e(Z,A)

2',{X'/1,Y'/Z}

...

....
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:- t(1,A)

:- e(1,A)

1,{X/1,Y/A}

:-

3, {A/2}

:- t(1,Z),e(Z,A)

2,{X/1,Y/A}

:- e(1,Z),e(Z,A)

1,{X/1,Y/Z}

:- e(2,A)

3,{Z/2}

:-

4,{A/1}
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   e(Z,A)

2',{X'/1,Y'/Z}
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6.5 OLDT-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Y)←t(X,Z),e(Z,Y).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

:- t(1,A)

:- e(1,A)

1,{X/1,Y/A}

:-

3, {A/2}

:- t(1,Z),e(Z,A)

2,{X/1,Y/A}

:- e(1,Z),e(Z,A)

1,{X/1,Y/Z}

:- e(2,A)

3,{Z/2}

:-

4,{A/1}

:- t(1,Z'),
   e(Z',Z),
   e(Z,A)

2',{X'/1,Y'/Z}

...

....

Lookup-Node

Solution-Node
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1: t(X,Y)←e(X,Y).
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6.5 OLDT-Resolution

6.5 OLDT-Resolution

1: t(X,Y)←e(X,Y).
2: t(X,Y)←t(X,Z),e(Z,Y).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

:- t(1,A)

:- e(1,A)

1,{X/1,Y/A}

:-

3, {A/2}

:- t(1,Z),e(Z,A)

2,{X/1,Y/A}

:- e(1,Z),e(Z,A)

1,{X/1,Y/Z}

:- e(2,A)

3,{Z/2}

:-

4,{A/1}

:- t(1,Z'),
   e(Z',Z),
   e(Z,A)

2',{X'/1,Y'/Z}

...

....

:- e(2,A)

{Z/2}

:-

{A/1}

Lookup-Node

Solution-Node
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6.2 The Magic Templates Transformation Algorithm

6.2 The Magic Templates Transformation Algorithm

Until now, we have seen:

I forward chaining (data driven) evaluation of LP
I backward chaining (goal driven) evaluation of LP
I improvement of backward chaining by tabling

Idea of the magic templates transformation:

I take the best of both worlds:
I Efficiency of goal directedness
I Good termination properties of forward chaining
I Easy implementation of a forward chaining rule engine
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6.2 The Magic Templates Transformation Algorithm

6.2 The Magic Templates Transformation Algorithm

t(X,Y) ← r(X,Y)
t(X,Z) ← t(X,Y), t(Y,Z)
r(a,b).
r(b,c).
r(c,d).

← t(b, Answer).

Goal-directed evaluation
Information passing

I t ↪→X r.
I t1 ↪→X t2.
I t2 ↪→Y t3.

Adornment (bound, free)
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t(X,Z) ← t(X,Y), t(Y,Z)
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Adornment (bound, free)
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6.2 The Magic Templates Transformation Algorithm

6.2 The Magic Templates Transformation Algorithm

t(X,Y) ← r(X,Y)
t1(X,Z) ← t2(X,Y), t3(Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation
Information passing

I t ↪→X r.
I t1 ↪→X t2.
I t2 ↪→Y t3.

Adornment (bound, free)
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6.2 The Magic Templates Transformation Algorithm

t(X,Y) ← r(X,Y)
t1

bf (X,Z) ← t2
bf (X,Y), t3

bf (Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation
Information passing

I t ↪→X r.
I t1 ↪→X t2.
I t2 ↪→Y t3.

Adornment (bound, free)
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6.2 The Magic Templates Transformation Algorithm

t(X,Y) ← r(X,Y)
t1

bf (X,Z) ← t2
bf (X,Y), t3

bf (Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation
Information passing

I t ↪→X r.
I t1 ↪→X t2.
I t2 ↪→Y t3.

Adornment (bound, free)

mag_tbf (b).
Magic Rules

Rewritten Rules
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6.2 The Magic Templates Transformation Algorithm

t(X,Y) ← r(X,Y)
t1

bf (X,Z) ← t2
bf (X,Y), t3

bf (Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation
Information passing

I t ↪→X r.
I t1 ↪→X t2.
I t2 ↪→Y t3.

Adornment (bound, free)

mag_tbf (b).
mag_rbf (X) ← mag_tbf (X). Magic Rules

Rewritten Rules
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t(X,Y) ← r(X,Y)
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bf (X,Y), t3

bf (Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation
Information passing

I t ↪→X r.
I t1 ↪→X t2.
I t2 ↪→Y t3.

Adornment (bound, free)
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6.2 The Magic Templates Transformation Algorithm

t(X,Y) ← r(X,Y)
t1

bf (X,Z) ← t2
bf (X,Y), t3

bf (Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation
Information passing

I t ↪→X r.
I t1 ↪→X t2.
I t2 ↪→Y t3.

Adornment (bound, free)

mag_tbf (b).
mag_rbf (X) ← mag_tbf (X).
mag_tbf (X) ← mag_tbf (X).
mag_tbf (Y) ← mag_tbf (X), t(X,Y).

Magic Rules

Rewritten Rules
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6.2 The Magic Templates Transformation Algorithm

6.2 The Magic Templates Transformation Algorithm

t(X,Y) ← r(X,Y)
t1

bf (X,Z) ← t2
bf (X,Y), t3

bf (Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation
Information passing

I t ↪→X r.
I t1 ↪→X t2.
I t2 ↪→Y t3.

Adornment (bound, free)

mag_tbf (b).
mag_rbf (X) ← mag_tbf (X).
mag_tbf (X) ← mag_tbf (X).
mag_tbf (Y) ← mag_tbf (X), t(X,Y).
t(X,Y) ← mag_tbf (X), r(X,Y).
t(X,Z) ← mag_tbf (X),t(X,Y),t(Y,Z)
r(a,b). r(b,c). r(c,d).

Magic Rules

Rewritten Rules
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6.2 The Magic Templates Transformation Algorithm

6.2 The Magic Templates Transformation Algorithm

t(X,Y) ← r(X,Y)
t1

bf (X,Z) ← t2
bf (X,Y), t3

bf (Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation
Information passing

I t ↪→X r.
I t1 ↪→X t2.
I t2 ↪→Y t3.

Adornment (bound, free)

mag_tbf (b).
mag_rbf (X) ← mag_tbf (X).
mag_tbf (X) ← mag_tbf (X).
mag_tbf (Y) ← mag_tbf (X), t(X,Y).
t(X,Y) ← mag_tbf (X), r(X,Y).
t(X,Z) ← mag_tbf (X),t(X,Y),t(Y,Z)
r(a,b). r(b,c). r(c,d).

Evaluation:
mag_tbf (b).
t(b,c).
mag_tbf (c).
t(c,d).
mag_tbf (d).
t(b,d).



Foundations of Rule-Based Query Answering 98 / 175
6 Operational Semantics: Positive

6.3 The Rete Algorithm

6.3 The Rete Algorithm

I By Charles Forgy
I Forward chaining evaluation
I Storage of partially instantiated rules
I Sharing of instantiated literals among similar rules
I Suitable for reason maintenance
I Several optimizations, industrial use
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6.3 The Rete Algorithm

Working memory:
w1: anna feeds milk
w2: anna lays eggs
w3: anna married_to pierre
w4: pierre is poisonous
w5: betty feeds milk
w6: betty lays eggs
w7: betty has spines
w8: tux has wings
w9: tux lays eggs

Production memory:
p1: X lays eggs, X has wings ==>
      X is_a bird
p2: X feeds milk ==> X is_a mammal
p3: X feeds milk, X lays eggs ==>
      X is_a monotreme
p4: X feeds milk, X lays eggs,
      X has_spines ==> X is_a echidna
p5: X feeds milk, X lays eggs, 
      X married_to Y, Y is poisonous
      ==> X is_a platypus, 
             Y is_a platypus

X lays eggs

X feeds milk

w2, w6, w9

w1, w5

w1^w2, w5^w6

(w1^w2), (w5^w6)

X has spines

w7

X has_husband Y

w3

X has wings

w8

Y is poisonous

w4

w8^w9

(X lays eggs), 
(X feeds milk),

(X married_to Y)
(Y is poisonous)

(X lays eggs), 
(X feeds milk),

(X married_to Y)

(X lays eggs), 
(X feeds milk),
(X has spines)

X is_a monotreme

X is_a platypus,
Y is_a platypus

(X lays eggs), 
(X feeds milk),

X is_a echidna

(X lays eggs), 

(X lays eggs),
(X has wings)

X is_a bird

X is_a mammal

dummy  top
node

w2, w6, w9

w5^w6^w7

w1^w2^w3

w1^w2^w3^w4

join on X

join on X

join on X join on X

join on Y

w5^w6^w7

w8^w9

w1, w5

w1^w2^w3^w4
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6.6 The Backward Fixpoint Procedure

6.6 The Backward Fixpoint Procedure

Ideas:

I Desirability of fixpoint computation
I Set-oriented fact processing
I bottom-up meta-interpretation
I Rewriting- resolution-based methods as implementations of the BFP
I Alexander and Magic Set methods as specializations of the BFP
I BFP as a logical specification of SLD-Resolution



Foundations of Rule-Based Query Answering 101 / 175
6 Operational Semantics: Positive

6.6 The Backward Fixpoint Procedure

6.6 The Backward Fixpoint Procedure

fact(Q) ← queryb(Q) ∧ rule(Q ← B) ∧ evaluate(B).
queryb(B) ← queryb(Q) ∧ rule(Q ← B).
queryb(Q1) ← queryb(Q1 ∧ Q2).
queryb(Q2) ← queryb(Q1 ∧ Q2) ∧ evaluate(Q1).

I Rules of the object program
I Rules of the meta-interpeter
I bottom-up (forward chaining) evaluation of the meta-interpreter ⇒

top-down (backward chaining) evaluation of the object program.
I evaluate(B) is true if all facts in B have been proven.
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6.6 The Backward Fixpoint Procedure

6.6 The Backward Fixpoint Procedure

fact(Q) ← queryb(Q) ∧ rule(Q ← B) ∧ evaluate(B).
queryb(B) ← queryb(Q) ∧ rule(Q ← B).
queryb(Q1) ← queryb(Q1 ∧ Q2).
queryb(Q2) ← queryb(Q1 ∧ Q2) ∧ evaluate(Q1).

t(X,Y) ← r(X,Y).
t(X,Z) ← t(X,Y), t(Y,Z).
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).
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6.6 The Backward Fixpoint Procedure

6.6 The Backward Fixpoint Procedure

fact(Q) ← queryb(Q) ∧ rule(Q ← B) ∧ evaluate(B).
queryb(B) ← queryb(Q) ∧ rule(Q ← B).
queryb(Q1) ← queryb(Q1 ∧ Q2).
queryb(Q2) ← queryb(Q1 ∧ Q2) ∧ evaluate(Q1).

rule( t(X,Y) ← r(X,Y) ).
rule( t(X,Z) ← t(X,Y), t(Y,Z) ).
fact( r(a,b) ).
fact( r(b,c) ).
fact( r(c,d) ).
queryb( t(b,Answer) ).
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6.6 The Backward Fixpoint Procedure

6.6 The Backward Fixpoint Procedure

fact(Q) ← queryb(Q) ∧ rule(Q ← B) ∧ evaluate(B).
queryb(B) ← queryb(Q) ∧ rule(Q ← B).
queryb(Q1) ← queryb(Q1 ∧ Q2).
queryb(Q2) ← queryb(Q1 ∧ Q2) ∧ evaluate(Q1).

rule( t(X,Y) ← r(X,Y) ).
rule( t(X,Z) ← t(X,Y), t(Y,Z) ).
fact( r(a,b) ).
fact( r(b,c) ).
fact( r(c,d) ).
queryb( t(b,Answer) ).

Evaluation:
fact( t(b,c) ).
queryb( t(b,Y), t(Y,Z) ).
queryb( t(b,Y) ).
queryb( t(c,Z) ).
fact( t(c,d) ).
fact( t(b,d) ).
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Session 14:30 – 16:00

I 6 Operational Semantics: Positive Rule Sets
I 7 Operational Semantics: Rule Sets with Non-monotonic Negation
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7 Operational Semantics: Negative

I 7.1 Iterative Fixpoint Semantics, Stratified → p.97

I 7.2 Magic Set Transformation, Stratified → p.98

I 7.3 Stable Model Semantics → p.100

I 7.4 Stable Model Semantics, More Efficient → p.101

I 7.5 Well-Founded Model Semantics → p.103

I 7.6 Well-Founded, Alternating Fixpoint Procedure → p.105

I 7.7 Other Query Answering Methods for Negation → p.106
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7.1 Iterative Fixpoint Semantics, Stratified

7.1 Iterative Fixpoint Semantics, Stratified

q ← p.
p ← not q.

This Section shows algorithms for the computation of
I Stratified Semantics
I Well-Founded Semantics
I Stable Model Semantics
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7.1 Iterative Fixpoint Semantics, Stratified

7.1 Iterative Fixpoint Semantics, Stratified

Recapitulation of Stratification:

I Partitioning of the set of rules S of a program
I C1, C2 define the same predicate P ⇒ C1, C2 must be in the same

stratum
I p(X ) is a positive body literal of a rule in layer i , then p must be

defined in a layer j ≤ i .
I ¬p(X ) is a negative body literal of a rule in layer i , then p must be

defined in layer j < i .

Iterative fixpoint semantics only provides a semantics for stratifiable
programs



Foundations of Rule-Based Query Answering 105 / 175
7 Operational Semantics: Negative

7.1 Iterative Fixpoint Semantics, Stratified

7.1 Iterative Fixpoint Semantics, Stratified
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7.1 Iterative Fixpoint Semantics, Stratified

Stratification Example

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) ← plays_the_piano(X).

stratum 1

has_child(X) ← human(X), not has_hobbies(X).

stratum 2

married(X) ← human(X), has_child(X).

stratum 2

bachelor(X) ← male(X), not married(X).

stratum 3

Evaluation:

I M0 := human(john), male(john), plays_the_piano(john)
I stratum 1: M1 := Tω

S1
(M0) = M0∪ {has_hobbies(john)}.

I stratum 2: M2 := Tω
S2

(M1) = M1 ∪ ∅
I stratum 3: M3 := Tω

S3
(M2) = M2∪ {bachelor(john)}.
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S3
(M2) = M2∪ {bachelor(john)}.
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7.2 Magic Set Transformation, Stratified

7.2 Magic Set Transformation, Stratified

Problem with the magic set transformation for programs with negation:

I The Magic Set Transformation of stratified programs may have
unstratified outcome.

Causes for unstratification of the MST:

I positive and negative occurrence of a literal in a rule body
I multiple negative occurrences of a literal in a rule body
I negative literal in a recursive rule

Solution:

I distinction of contexts of problematic atoms
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7.2 Magic Set Transformation, Stratified

7.2 Magic Set Transformation, Stratified

a(x) ← not b(x), c(x,y), b(y).
b(x) ← c(x,y), b(y).

magic_ab(1).
magic_bb(x) ← magic_ab(x)
magic_bb(y) ←

magic_ab(x), not b(x), c(x,y).
a(x) ←

magic_ab(x), not b(x), c(x,y), b(y).
magic_bb(y) ← magic_bb(x), c(x,y).
b(x) ← magic_bb(x), c(x,y), b(y).

I b occurs both
negatively and
positively in the first
rule.

magic_ab

magic_bb

a

b

I Resulting program
unstratifiable!
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7.2 Magic Set Transformation, Stratified

7.2 Magic Set Transformation, Stratified

a(x) ← not b_1(x), c(x,y), b_2(y).
b_1(x) ← c(x,y), b_1(y).
b_2(x) ← c(x,y), b_2(y).

magic_ab(1).
magic_b_1b(x) ← magic_ab(x).
magic_b_2b(y) ←

magic_ab(x), not b_1(x), c(x,y).
magic_bb(y) ←

magic_ab(x), not b(x), c(x,y).
a(x) ←

magic_ab(x), not b(x), c(x,y), b(y).
magic_bb(y) ← magic_bb(x), c(x,y).
b(x) ← magic_bb(x), c(x,y), b(y).

I Context labelling of
predicates

I Rule replication

magic_ab

magic_b_1b

a

b_1

magic_b_2b b_2

I Result is stratifiable!
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7.2 Magic Set Transformation, Stratified

7.2 Magic Set Transformation, Stratified: Exercise

I Consider the Program in Listing → p.99, Lst.7_17 .
I Assume the facts c(1,2), b(2), c(0,1).
I Consider the query ?- a(1).
I Compare the results of the forward chaining evaluation of the original

program with the one of the rewritten program. → p.100, Lst.7_20
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7.3 Stable Model Semantics

7.3 Stable Model Semantics: Recapitulation

married(john, mary).
male(X) ←married(X,Y), not male(Y)

Gelfond Lifschitz transformation with respect to the set
M = {married(john, mary), male(John)}

married(john, mary).
male(john) ← married(john, mary), not male(mary).
male(mary) ← married(mary, john), not male(john).
male(mary) ← married(mary, mary), not male(mary).
male(john) ← married(john, john), not male(john).
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7.3 Stable Model Semantics

7.3 Stable Model Semantics: An algorithm

Ideas:

I construction of full sets from a set of negative antecedents
I backtracking generates all possible candidates for full sets
I use of heuristics to limit the search space
I straight-forward derivation of stable models from full sets
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7.3 Stable Model Semantics

7.3 Stable Model Semantics: An algorithm
I Negative antecedents NAnt(P): → 7.4 p.101, Def.217

I Reduct R(P, L), Deductive closure DCL(P, L): → 7.4 p.101, Def.218

I Full sets: → 7.4 p.101, Def.219

Example: P := {q ← ¬r ; q ← ¬p, r ← q}
I Negative antecedents of P: { r, p }
I Reduct of P with respect to L := {p,¬p}: {q ←; r ← q}
I Deductive closure Dcl(P, L) = {p, q, r}
I First try: Λ1 := {¬p,¬r}

I Reduct R(P,Λ1) = {q; r ← q}
I Deductive closure Dcl(P,Λ1) = {q, r}. Λ1 not a full set since

r ∈ Dcl(P,Λ1) and ¬r ∈ Λ1.
I Second try: Λ2 := {¬p}

I Reduct R(P,Λ2) = {q; r ← q}
I Deductive closure Dcl(P,Λ2) = {q, r}. Hence Λ2 is a full set for P.
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7.3 Stable Model Semantics

7.3 Stable Model Semantics: An algorithm

full sets vs. stable models → 7.4 p.102, Def.221

I P: ground program
I Λ: set of negative literals
I if Λ is a full set wrt P then Dcl(P,Λ) is a stable model of P
I if ∆ is a stable model of P, then Λ = not(NAnt(P)−∆) is a full set

wrt P such that Dcl(P,Λ) = ∆.

Problem: Full sets are still guessed!
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7.3 Stable Model Semantics

7.3 Stable Model Semantics: An algorithm

function stable_model(P,B,φ)
let B’ = expand(P,B) in

if conflict(P,B’) then false
else

if (B’ covers NAnt(P)) then test(Dcl(P,B’),φ)
else

take some χ ∈ NAnt(P) not covered by B’
if stable_model(P, B’∪{not(χ)}, φ) then true

else stable_model(P, B’∪{χ}, φ)

I Good choice for expand(P,B) is the least fix point of the Fitting
operator → 7.4 p.102, Def.223
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7.5 Well-Founded Model Semantics

7.5 Well-Founded Model Semantics

Recall:

I unfounded set → 5.3.3 p.63, Def.176
I union of unfounded sets is unfounded
I existence of unique maximal unfounded set for any program
I monotonic operators TS , US , WS

I well-founded semantics may be partial or total → 5.3.3 p.64, Def.181

Problem: unfounded sets must be guessed!

A possible solution: Alternating Fixpoint Procedure
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7.5 Well-Founded Model Semantics

The Alternating Fixpoint Procedure

Ideas:

I PH : Herbrand instantiation of a Program P
I TP(I ) : immediate consequence operator
I Ĩ : complement of the set of literals “known to be false”
I iteratively build up a set of negative conclusions Ã
I straight-forward derivation of positive conclusions from Ã at the end
I nested fixpoint calculation
I each iteration is a two-phase process:

1. Transformation of an underestimate Ĩ of negative conclusions into a
temporary overestimate S̃P(Ĩ ) := SP(Ĩ ) := ¬ · (H − SP(Ĩ )).

2. Transformation of the overestimate back to an underestimate
AP(Ĩ ) := S̃P(S̃P(Ĩ ))
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7.5 Well-Founded Model Semantics

Alternating Fixpoint Procedure

~W (negative) W ?(unde¯ned) W+(positive)

~I
~SP (~I)

~SP (~SP (~I))
~S
3

P (~I)

~S
4

P (~I)

~S
5

P (
~I)

: : :
~S
4

P (
~I)

~S
5

P (~I)
: : :
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7.5 Well-Founded Model Semantics

Alternating Fixpoint Procedure: Example

a← c,¬b.
b ← ¬a.
c.

p ← q,¬s.
p ← r ,¬s.
p ← t.
q ← p.
r ← q.
r ← ¬c.

I H = {a, b, c, p, q, r , s, t}
I Ĩ0 = ∅
I SP(∅) = {c}
I Ĩ1 = S̃P(∅) = {¬a,¬b,¬p,¬q,¬r ,¬s,¬t}
I SP(Ĩ1) = {c, a, b}
I Ĩ2 = S̃P(Ĩ1) = {¬p,¬q,¬r ,¬s,¬t}
I Ĩ3 = Ĩ1 and Ĩ4 = Ĩ2. Fixpoint reached!
I Well founded partial model is
{c,¬p,¬q,¬r ,¬s,¬t}
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7.7 Other Query Answering Methods for Negation

7.7 Other Query Answering Methods for Negation

I SLD resolution with negation as failure – SLDNF (completion
semantics)

I SLS resolution (perfect model semantics)
I global SLS resolution (well founded model semantics)
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Session 16:30 – 18:00

I 8 Complexity and Expressive Power of Logic Programming Formalisms
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8.1 Complexity Classes and Reductions

The Story So far

I Query languages with the form of logics
I Syntax, declarative and operational semantics

I How much resource (time, space) do we need for the computation of
these semantics? ⇒ Complexity

I What kind of properties can a given query language express?
I Is Q1 more expressive than Q2? ⇒ Expressive power

A dream query language should have:
I lower complexity, and
I more expressive power
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8.1 Complexity Classes and Reductions

The Results Overview

Query Data Complexity Program Complexity
Conjunctive query AC0 NP-complete
FO AC0 PSPACE-complete
Prop. LP P-complete
Datalog P-complete EXPTIME-complete
Stratified Datalog P-complete EXPTIME-complete
Datalog(WFM) P-complete EXPTIME-complete
Datalog(INF) P-complete EXPTIME-complete
Datalog(Stable Model) co-NP-complete co-NEXPTIME-complete
Disjun. Datalog Πp

2-complete co-NEXPTIMENP-complete



Foundations of Rule-Based Query Answering 125 / 175
8 Complexity and Expressive Power
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8.1 Complexity Classes and Reductions

The Goal of this Lecture

I Basic concept of Turing machine, reduction, data complexity and
program complexity

I How to prove completeness, Logspace reduction
I Get a taste of the hardness proofs of logic programming via nice

encoding of a Turing machine
I Learn basics about expressive power
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8.1 Complexity Classes and Reductions

Decision Problems

I Problems where the answer is “yes” or “no”
I Formally,

I A language L over some alphabet Σ.
I An instance is given as a word x ∈ Σ∗.
I Question: whether x ∈ L holds

I The resources (i.e., either time or space) required in the worst case to
find the correct answer for any instance x of a problem L is referred
to as the complexity of the problem L
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8.1 Complexity Classes and Reductions

Complexities

Let P be a program with some query language, Din input database and A
a ground atom.

I data complexity
Let P be fixed
Instance. Din and A.
Question. Does Din ∪ P |= A hold?

I program complexity (a.k.a. expression complexity)
Let Din be fixed.
Instance. P and A.
Question. Does Din ∪ P |= A hold?

I combined complexity
Instance. P, Din and A.
Question. Does Din ∪ P |= A hold?
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8.1 Complexity Classes and Reductions

Complexity classes

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME

These are the classes of problems which can be solved in
I logarithmic space (L),
I non-deterministic logarithmic space (NL),
I polynomial time (P),
I non-deterministic polynomial time (NP),
I polynomial space (PSPACE),
I exponential time (EXPTIME), and
I non-deterministic exponential time (NEXPTIME).

we shall encounter in this course: P,NP,PSPACE,EXPTIME
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8.1 Complexity Classes and Reductions

Complexity classes – co Problems

I Any complexity class C has its complementary class denoted by co-C
I For every language L ⊆ Σ∗, let L denote its complement, i.e. the set

Σ∗ \ L. Then co-C is {L | L ∈ C}.
I Every deterministic complexity class is closed under complement,

because one can simply add a last step to the algorithm which
reverses the answer. (co-P?)



Foundations of Rule-Based Query Answering 131 / 175
8 Complexity and Expressive Power

8.1 Complexity Classes and Reductions

Complexity classes – Reductions

I Logspace Reduction
I Let L1 and L2 be decision problems (languages over some alphabet Σ).
I R : Σ∗ → Σ∗ be a function which can be computed in logarithmic

space
I The following property holds: for every x ∈ Σ∗, x ∈ L1 iff R(x) ∈ L2.
I Then R is called a logarithmic-space reduction from L1 to L2 and we

say that L1 is reducible to L2.
I Hardness, Completeness

Let C be a set of languages. A language L is called C-hard if any
language L′ in C is reducible to L. If L is C-hard and L ∈ C then L is
called complete for C or simply C-complete.
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8.1 Complexity Classes and Reductions

Turing machines

A deterministic Turing machine (DTM) is defined as a quadruple

(S ,Σ, δ, s0)

I S is a finite set of states,
I Σ is a finite alphabet of symbols, which contains a special symbol  

called the blank.
I δ is a transition function,
I and s0 ∈ S is the initial state.

The transition function δ is a map

δ : S × Σ → (S ∪ {yes, no})× Σ× {-1, 0, +1},

where yes, and no denote two additional states not occurring in S , and
-1, 0, +1 denote motion directions.
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8.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ,S , δ, s0)

Transition function:
δ(s, σ) = (s ′, σ′, d).

The tape of the TM

. a b . . . b a a     . . .

s1
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8.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ,S , δ, s0)

Transition function:
δ(s, σ) = (s ′, σ′, d).

The tape of the TM

. a b . . . b b a a a b b . . .

yes
Accept!

T halts, when any of the states yes or no is reached
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DTM quadruple:
(Σ,S , δ, s0)

Transition function:
δ(s, σ) = (s ′, σ′, d).

The tape of the TM
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no
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8.1 Complexity Classes and Reductions

NDTM

A non-deterministic Turing machine (NDTM) is defined as a quadruple

(S ,Σ,∆, s0)

I S ,Σ, s0 are the same as DTM
I ∆ is no longer a function, but a relation:

∆ ⊆ (S × Σ)× (S ∪ {yes, no})× Σ× {-1, 0, +1}.

I A tuple with s and σ. If the number of such tuples is greater than
one, the NDTM non-deterministically chooses any of them and
operates accordingly.

I Unlike the case of a DTM, the definition of acceptance and rejection
by a NDTM is asymmetric.
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8.1 Complexity Classes and Reductions

Nondeterministic Computation (Accept)

•

•

•

yes no

•

no no

•

•

yes yes

•

no no

•

•

no yes

•

no no
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8.1 Complexity Classes and Reductions

Nondeterministic Computation (Rejection)
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8.1 Complexity Classes and Reductions

Nondeterministic Computation (Rejection)

•

•

•

no no

•

no no

•

•

no no

•

no no

•

•

no no

•

no no
Reject!
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8.2 Propositional Logic Programming

8.2 Propositional Logic Programming

Today we shall concentrate on
Query Data Complexity Program Complexity
Conjunctive query AC0 NP-complete
FO AC0 PSPACE-complete
Prop. LP P-complete
Datalog P-complete EXPTIME-complete
Stratified Datalog P-complete EXPTIME-complete
Datalog(WFM) P-complete EXPTIME-complete
Datalog(INF) P-complete EXPTIME-complete
Datalog(Stable Model) co-NP-complete co-NEXPTIME-complete
Disjun. Datalog Πp

2-complete co-NEXPTIMENP-complete
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8.2 Propositional Logic Programming

Propositional LP

Theorem
Propositional logic programming is P-complete. → 8.2 p.110, Thm.224

Proof: (Membership)
I The semantics of a given program P can be defined as the least

fixpoint of the immediate consequence operator TP

I This least fixpoint lfp(TP) can be computed in polynomial time even
if the “naive” evaluation algorithm is applied.

I The number of iterations (i.e. applications of TP) is bounded by the
number of rules plus 1.

I Each iteration step is clearly feasible in polynomial time.
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8.2 Propositional Logic Programming

Propositional LP P-hardness Proof

Proof: (Hardness)

I Encoding of a a deterministic Turing machine (DTM) T . Given a
DTM T , an input string I and a number of steps N, where N is a
polynomial of |I |, construct in logspace a program P = P(T , I ,N).
An atom A such as P |= A iff T accepts I in N steps.

I The transition function δ of a DTM with a single tape can be
represented by a table whose rows are tuples t = 〈s, σ, s ′, σ′, d〉. Such
a tuple t expresses the following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to
cell number π, and this cell contains symbol σ
then at instant τ + 1 the DTM is in state s ′, cell number π contains
symbol σ′, and the cursor points to cell number π + d .
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8.2 Propositional Logic Programming

Propositional LP P-hardness: the atoms

The propositional atoms in P(T , I ,N).
(there are many, but only polynomially many...)

symbolα[τ, π] for 0 ≤ τ ≤ N, 0 ≤ π ≤ N and α ∈ Σ. Intuitive meaning:
at instant τ of the computation, cell number π contains
symbol α.

cursor[τ, π] for 0 ≤ τ ≤ N and 0 ≤ π ≤ N. Intuitive meaning: at instant
τ , the cursor points to cell number π.

states [τ ] for 0 ≤ τ ≤ N and s ∈ S . Intuitive meaning: at instant τ ,
the DTM T is in state s.

accept Intuitive meaning: T has reached state yes.
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8.2 Propositional Logic Programming

Propositional LP P-hardness: the rules

initialization facts: in P(T , I ,N):

symbolσ[0, π] ← for 0 ≤ π < |I |, where Iπ = σ
symbol [0, π] ← for |I | ≤ π ≤ N

cursor[0, 0] ←
states0 [0] ←

The tape of the TM

. a b . . . b a a     . . .

s0

c0 c1 cI−1
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8.2 Propositional Logic Programming

Propositional LP P-hardness: the rules
I transition rules: for each entry 〈s, σ, s ′, σ′, d〉, 0 ≤ τ < N,

0 ≤ π < N, and 0 ≤ π + d .

symbolσ′ [τ + 1, π] ← states [τ ], symbolσ[τ, π], cursor[τ, π]
cursor[τ + 1, π + d ] ← states [τ ], symbolσ[τ, π], cursor[τ, π]

states′ [τ + 1] ← states [τ ], symbolσ[τ, π], cursor[τ, π]

I inertia rules: where 0 ≤ τ < N, 0 ≤ π < π′ ≤ N

symbolσ[τ + 1, π] ← symbolσ[τ, π], cursor[τ, π′]
symbolσ[τ + 1, π′] ← symbolσ[τ, π′], cursor[τ, π]

I accept rules: for 0 ≤ τ ≤ N

accept ← stateyes[τ ]
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8.2 Propositional Logic Programming

Propositional LP P-hardness

I The encoding precisely simulates the behaviour machine T on input I
up to N steps. (This can be formally shown by induction on the time
steps.)

I P(T , I ,N) |= accept iff the DTM T accepts the input string I within
N steps.

I The construction is feasible in Logspace

Horn clause inference is P-complete
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8.3 Datalog Complexity

8.3 Datalog Complexity

Today we shall concentrate on
Query Data Complexity Program Complexity
Conjunctive query AC0 NP-complete
FO AC0 PSPACE-complete
Prop. LP P-complete
Datalog P-complete EXPTIME-complete
Stratified Datalog P-complete EXPTIME-complete
Datalog(WFM) P-complete EXPTIME-complete
Datalog(INF) P-complete EXPTIME-complete
Datalog(Stable Model) co-NP-complete co-NEXPTIME-complete
Disjun. Datalog Πp

2-complete co-NEXPTIMENP-complete
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8.3 Datalog Complexity

Complexity of Datalog Programs – Data complexity

Theorem
Datalog is data complete for P. → 8.6 p.116, Thm.228

Proof: (Membership)
Effective reduction to Propositional Logic Programming is possible. Given
P, D, A:

I Generate ground(P,D)

I Decide whether ground(P,D) |= A
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8.3 Datalog Complexity

Grounding of Datalog Rules

I Let UD be the universe of D (usually the active universe (domain),
i.e., the set of all domain elements present in D).

I The grounding of a rule r , denoted ground(r ,D), is the set of all
rules obtained from r by all possible uniform substitutions of elements
of UD for the variables in r .

For any datalog program P and database D,

ground(P,D) =
⋃
r∈P

ground(r ,D).
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8.3 Datalog Complexity

Grounding example

P and D:
parent(X ,Y )← father(X ,Y ) parent(X ,Y )← mother(X ,Y )
ancestor(X ,Y )← parent(X ,Y )
ancestor(X ,Y )← parent(X ,Z ), ancestor(Z ,Y )
father(john,mary), father(joe, kurt),mother(mary , joe),mother(tina, kurt)

ground(P,D):
parent(john, john)← father(john, john)
parent(john, john)← father(john,marry)
. . .
parent(john, john)← mother(john, john)
parent(john,marry)← mother(john,marry)
. . .
ancestor(john, john)← parent(john, john)
. . .
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8.3 Datalog Complexity

Grounding complexity

Given P,D, the number of rules in ground(P,D) is bounded by

|P| ∗#consts(D)vmax

I vmax(≥ 1) is the maximum number of different variables in any rule
r ∈ P

I #consts(D) = |UD | is the number of constants in D (ass.: |UD | > 0).

I ground(P ∪ D) can be exponential in the size of P.
I ground(P ∪ D) is polynomial in the size of D.

hence, the complexity of propositional logic programming is an upper
bound for the data complexity.
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8.3 Datalog Complexity

Datalog data complexity: hardness

Proof: Hardness The P-hardness can be shown by writing a simple
datalog meta-interpreter for propositional LP(k), where k is a constant.

I Represent rules A0 ← A1, . . . ,Ai , where 0 ≤ i ≤ k, by tuples
〈A0, . . . ,Ai 〉 in an (i + 1)-ary relation Ri on the propositional atoms.

I Then, a program P in LP(k) which is stored this way in a database
D(P) can be evaluated by a fixed datalog program PMI (k) which
contains for each relation Ri , 0 ≤ i ≤ k, a rule

T (X0)← T (X1), . . . ,T (Xi ),Ri (X0, . . . ,Xi ).

I T (x) intuitively means that atom x is true. Then, P |= A just if
PMI ∪ P(D) |= T (A). P-hardness of the data complexity of datalog is
then immediately obtained.
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8.3 Datalog Complexity

Program Complexity Datalog

Theorem
Datalog is program complete for EXPTIME. → 8.6 p.117, Thm.229

I Membership. Grounding P on D leads to a propositional program
grounding(P,D) whose size is exponential in the size of the fixed
input database D. Hence, the program complexity is in EXPTIME.

I Hardness.
I Adapt the propositional program P(T , I ,N) deciding acceptance of

input I for T within N steps, where N = 2m, m = nk(n = |I |) to a
datalog program Pdat(T , I ,N)

I Note: We can not simply generate P(T , I ,N), since this program is
exponentially large (and thus the reduction would not be polynomial!)
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8.3 Datalog Complexity

Datalog Program Complexity: Hardness

Main ideas for lifting P(T , I ,N) to Pdat(T , I ,N):
I use the predicates symbolσ(X ,Y ), cursor(X ,Y ) and states(X )

instead of the propositional letters symbolσ[X ,Y ], cursor[X ,Y ] and
states [X ] respectively.

I The time points τ and tape positions π from 0 to N − 1 are encoded
in binary, i.e. by m-ary tuples tτ = 〈c1, . . . , cm〉, ci ∈ {0, 1},
i = 1, . . . ,m, such that 0 = 〈0, . . . , 0〉, 1 = 〈0, . . . , 1〉,
N − 1 = 〈1, . . . , 1〉.

I The functions τ + 1 and π + d are realized by means of the successor
Succm from a linear order ≤m on Um.
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8.3 Datalog Complexity

Datalog Program Complexity: Hardness

The predicates Succm, Firstm, and Lastm are provided.

I The initialization facts symbolσ[0, π] are readily translated into the
datalog rules

symbolσ(X, t)← Firstm(X),

where t represents the position π,
I Similarly the facts cursor[0, 0] and states0 [0].
I Initialization facts symbol [0, π], where |I | ≤ π ≤ N, are translated to

the rule

symbol (X,Y)← Firstm(X), ≤m(t,Y)

where t represents the number |I |.
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8.3 Datalog Complexity

Datalog Program Complexity: Hardness

I Transition and inertia rules: for realizing τ + 1 and π + d , use in the
body atoms Succm(X,X′). For example, the clause

symbolσ′ [τ + 1, π]← states [τ ], symbolσ[τ, π], cursor[τ, π]

is translated into

symbolσ′(X′,Y)← states(X), symbolσ(X,Y), cursor(X,Y),Succm(X,X′).

I The translation of the accept rules is straightforward.
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8.3 Datalog Complexity

Defining Succm(X, X′) and ≤m

I The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided.
I For an inductive definition, suppose Succi (X,Y), Firsti (X), and

Lasti (X) tell the successor, the first, and the last element from a
linear order ≤i on U i , where X and Y have arity i . Then, use rules

Succi+1(Z ,X,Z ,Y) ← Succi (X,Y)

Succi+1(Z ,X,Z ′,Y) ← Succ1(Z ,Z ′), Lasti (X),Firsti (Y)

Firsti+1(Z ,X) ← First1(Z ),Firsti (X)

Lasti+1(Z ,X) ← Last1(Z ), Lasti (X)
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8.3 Datalog Complexity
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≤m(X,Y) ← Succm(X,Z), ≤m (Z,Y)
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8.3 Datalog Complexity

Datalog Program Complexity Conclusion

I Let Pdat(T , I ,N) denote the datalog program with empty edb
described for T , I , and N = 2m, m = nk (where n = |I |)

I Pdat(T , I ,N) is constructible from T and I in polynomial time (in
fact, careful analysis shows feasibility in logarithmic space).

I Pdat(T , I ,N) has accept in its least model ⇔ T accepts input I
within N steps.

I Thus, the decision problem for any language in EXPTIME is reducible
to deciding P |= A for datalog program P and fact A.

I Consequently, deciding P |= A for a given datalog program P and fact
A is EXPTIME-hard.
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8.3 Datalog Complexity

Complexity of Datalog with Stratified Negation

Theorem
Stratified propositional logic programming with negation is P-complete.
Stratified datalog with negation is data complete for P and program
complete for EXPTIME. → 8.7 p.118, Thm.230

I stratified P can be partitioned into disjoint sets S1, . . . ,Sn s.t. the
semantics of P is computed by successively computing fixpoints of
the immediate consequence operators TS1 , . . . , TSn .

I Let I0 be the initial instance over the extensional predicate symbols of
P and let Ii (with 1 ≤ i ≤ n) be defined as follows:

I1 := Tω
S1

(I0), I2 := Tω
S2

(I1), . . . , In := Tω
Sn(In−1)

Then the semantics of program P is given through the set In.
I In the propositional case, In is clearly polynomially computable.

Hence, stratified negation does not increase the complexity.
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8.4 Complexity Stable Model

8.4 Complexity Stable Model
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8.4 Complexity Stable Model

Recall Stable Model Semantics

Let S be a (possibly infinite) set of ground normal clauses, i.e., of formulas
of the form A← L1 ∧ . . . ∧ Ln where n ≥ 0 and A is a ground atom and
the Li for 1 ≤ i ≤ n are ground literals.

Gelfond-Lifschitz Transformation → 5.3.2 p.59, Def.165
Let B ⊆ HB. The Gelfond-Lifschitz transform GLB(S) of S with
respect to B is obtained from S as follows:

1. remove each clause whose antecedent contains a literal ¬A with
A ∈ B.

2. remove from the antecedents of the remaining clauses all
negative literals.

Stable Model → 5.3.2 p.60, Def.166
An Herbrand interpretation HI (B) is a stable model of S iff it is the
unique minimal Herbrand model of GLB(S).
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8.4 Complexity Stable Model

Complexity Prop. LP Stable model

Theorem
Given a propositional normal logic program P, deciding whether P has a
stable model is NP-complete. → 8.9 p.119, Thm.234

Membership. Clearly, P I is polynomial time computable from P and I .
Hence, a stable model M of P can be guessed and checked in polynomial
time.
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8.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

Proof hardness

I Encoding of a non-deterministic Turing machine (NDTM) T . Given a
NDTM T , an input string I and a number of steps N, where N is a
polynomial of |I |, construct in logspace a program P = P(T , I ,N). P
has a stable model iff T accepts I in non-deterministically N steps.

I Much similar to the encoding of DTM with propositional LP.
Modification on deterministic property.
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8.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

Example: 〈s, σ, s1, σ
′
1, d1〉, 〈s, σ, s2, σ

′
2, d2〉

Transition rules 0 ≤ τ < N, 0 ≤ π < N, and 0 ≤ π + d .

symbolσ′
1
[τ + 1, π] ← states [τ ], symbolσ[τ, π], cursor[τ, π]

cursor[τ + 1, π + d1] ← states [τ ], symbolσ[τ, π], cursor[τ, π]
states1 [τ + 1] ← states [τ ], symbolσ[τ, π], cursor[τ, π]

symbolσ′
2
[τ + 1, π] ← states [τ ], symbolσ[τ, π], cursor[τ, π]

cursor[τ + 1, π + d2] ← states [τ ], symbolσ[τ, π], cursor[τ, π]
states2 [τ + 1] ← states [τ ], symbolσ[τ, π], cursor[τ, π]

What is wrong here? Enforcement violated: At any time instance τ , there
is exactly one cursor; each cell of the tape contains exactly one element; in
exactly one state.
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8.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

I For each state s and symbol σ, introduce atoms Bs,σ,1[τ ],. . . ,
Bs,σ,k [τ ] for all 1 ≤ τ < N and for all transitions 〈s, σ, si , σ

′
i , di 〉,

where 1 ≤ i ≤ k.
I Add Bs,σ,i [τ ] in the bodies of the transition rules for 〈s, σ, si , σ

′
i , di 〉.

I Add the rule

Bs,σ,i [τ ] ← ¬Bs,σ,1[τ ], . . . ,¬Bs,σ,i−1[τ ],¬Bs,σ,i+1[τ ], . . . ,¬Bs,σ,k [τ ].

Intuitively, these rules non-deterministically select precisely one of the
possible transitions for s and σ at time instant τ , whose transition
rules are enabled via Bs,σ,i [τ ].

I Finally, add a rule
accept← ¬accept.

It ensures that accept is true in every stable model.
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8.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

Example: 〈s, σ, s1, σ
′
1, d1〉, 〈s, σ, s2, σ

′
2, d2〉

symbolσ′
1
[τ + 1, π] ← states [τ ], symbolσ[τ, π], cursor[τ, π],Bs,σ,1[τ ]

cursor[τ + 1, π + d1] ← states [τ ], symbolσ[τ, π], cursor[τ, π],Bs,σ,1[τ ]
states1 [τ + 1] ← states [τ ], symbolσ[τ, π], cursor[τ, π],Bs,σ,1[τ ]

symbolσ′
2
[τ + 1, π] ← states [τ ], symbolσ[τ, π], cursor[τ, π],Bs,σ,2[τ ]

cursor[τ + 1, π + d2] ← states [τ ], symbolσ[τ, π], cursor[τ, π],Bs,σ,2[τ ]
states2 [τ + 1] ← states [τ ], symbolσ[τ, π], cursor[τ, π],Bs,σ,2[τ ]

Bs,σ,1[τ ] ← ¬Bs,σ,2[τ ]
Bs,σ,2[τ ] ← ¬Bs,σ,1[τ ]

One and only one atom from Bs,σ,1[τ ] and Bs,σ,2[τ ] is true. Which one?
Non-deterministic
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8.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

Proof.
I Assume there is a sequence of choices leading to the state yes, Let I

be the set of the propositional atoms along the computation path
reaching the state accept. accept ∈ I due to the rule:

accept ← stateyes[τ ]

Clearly I is a stable model of P.
I On the contrary, if there does not exist a sequence of choices leading

to the state yes in the computation tree. Assume I is a stable model,
accept ∈ I must hold. Since (accept← ¬accept) 6∈ P I , P I 6|= accept
holds. Then I is not a least Herbrand model of P I . Contradiction.



Foundations of Rule-Based Query Answering 165 / 175
8 Complexity and Expressive Power

8.4 Complexity Stable Model

Further Complexity Results

Theorem
Propositional logic programming with negation under well-founded
semantics is P-complete. Datalog with negation under well-founded
semantics is data complete for P and program complete for EXPTIME.

→ 8.8 p.119, Thm.232

Theorem
Propositional logic programming with negation under inflationary
semantics is P-complete. Datalog with negation under inflationary
semantics is data complete for P and program complete for EXPTIME.

→ 8.8 p.119, Thm.233
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8.4 Complexity Stable Model

Further Complexity Results

Theorem
Propositional logic programming with negation under stable model
semantics is co-NP-complete. Datalog with negation under stable model
semantics is data complete for co-NP and program complete for
co-NEXPTIME. → 8.9 p.120, Thm.235

Note that the decision problem here is whether an atom is true in all
stable models.
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8.4 Complexity Stable Model

Further Complexity Results

Theorem
The program complexity of conjunctive queries is NP-complete

→ 8.3 p.113, Thm.225

Theorem
First-order queries are program-complete for PSPACE. Their data
complexity is in the class AC0, which contains the languages recognized by
unbounded fan-in circuits of polynomial size and constant depth

→ 8.4 p.113, Thm.226
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8.4 Complexity Stable Model

Further Complexity Results

Theorem
Logic programming is r.e.-complete. → 8.11 p.121, Thm.238

Theorem
Nonrecursive logic programming is NEXPTIME-complete.

→ 8.11 p.121, Thm.239
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8.5 Expressive Power

8.5 Expressive Power

I A query q defines a mapping Mq that assigns to each suitable input
database Din (over a fixed input schema) a result database
Dout =Mq(Din) (over a fixed output schema)

I Formally, the expressive power of a query language Q is the set of
mappings Mq for all queries q expressible in the language Q by some
query expression (program) E

I Research tasks concerning expressive power
I comparing two query languages Q1 and Q2 in their expressive power

(e.g. FO vs. SQL vs. Datalog), which is important for designing and
analysing a query language

I determining the absolute expressive power of a query language, e.g.
proving that a given query language Q is able to express exactly all
queries whose evaluation complexity is in a complexity class C. We say
Q captures C and write simply Q = C.
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8.5 Expressive Power

Expressive Power

There is a substantial difference between showing that the query
evaluation problem for a certain query language Q is C-complete and
showing that Q captures C.

I If the evaluation problem for Q is C-complete, then at least one
C-hard query is expressible in Q.

I If Q captures C, then Q expresses all queries evaluable in C
(including, of course, all C-hard queries).

I Example: Evaluating Datalog is P hard (data complexity), but
positive Datalog can only express monotone properties, however,
there are of course problems in P which are non-monotonic.
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8.5 Expressive Power

Expressive Power: Ordered Structures

I To prove that a query language Q captures a machine-based
complexity class C, one usually shows that each C-machine with
(encodings of) finite structures as inputs that computes a generic
query can be represented by an expression in language Q.

I A Turing machine works on a string encoding of the input database
D. Such an encoding provides an implicit linear order on D, in
particular, on all elements of the universe UD

I Therefore, one often assumes that a linear ordering of the universe
elements is predefined

I We consider here ordered databases whose schemas contain special
relation symbols Succ, First, and Last
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8.5 Expressive Power

Expressive Power: Datalog

Theorem
datalog+ $ P. → 8.12 p.123, Thm.240

Show that there exists no datalog+ program P that can tell whether the
universe U of the input database has an even number of elements.

Theorem
On ordered databases, datalog+ captures P. → 8.12 p.123, Thm.241
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8.5 Expressive Power

Expressive Power: More Results

Theorem
Nonrecursive range-restricted datalog with negation =
relational algebra =
domain-independent relational calculus. =
first-order logic (without function symbols). → 8.12 p.125, Thm.243

Theorem
On ordered databases, the following query languages capture P:

I stratified datalog,
I datalog under well-founded semantics,
I datalog under inflationary semantics.

→ 8.12 p.125, Thm.244

Theorem
Datalog under stable model semantics captures co-NP.

→ 8.12 p.126, Thm.246
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