Foundations of Rule-Based Query Answering

François Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg Gottlob, Clemens Ley, Benedikt Linse, Reinhard Pichler, Fang Wei

Institute for Informatics, University of Munich
Institute of Information Systems, Vienna University of Technology
Oxford University Computing Laboratory
Supported by the European Network of Excellence
REWERSE http://rewerse.net/

Antoniou et al. (Eds.): Reasoning Web 2007 Springer LNCS 4636, pp.1-153

Monday, $3^{\text {rd }}$ September, 2007

Session 8:30-10:30

- 1 Introduction
- 3 Syntax
- 4 Declarative Semantics: Fundamentals

Session 11:00-13:00

- 5 Declarative Semantics: Adaptations

Session 14:30-16:00

- 6 Operational Semantics: Positive
- 7 Operational Semantics: Negative

Session 16:30-18:00

- 8 Complexity and Expressive Power

Essential concepts and methods of rule-based query languages

-Session 8:30-10:30。

- 1 Introduction
- 3 Syntax: From First-Order Predicate Logic to Query Language Fragments of First-Order Predicate Logic
- 4 Declarative Semantics: Fundamentals of Classical Model Theory

What are Query Languages? Tentative Definitions

1. What are ... their purposes of use?
selecting and retrieving data from "information systems"
2. What are ... their programming paradigms?
declarative, hence related to logic
3. What are ... their major representatives?

SQL (relational data), OQL (object-oriented data),
XPath, XQuery (HTML and XML data), RQL, RDQL, SPARQL (RDF data), forthcoming ones (OWL ontologies)
4. What are ... their research issues?
query paradigms, declarative semantics, complexity and expressive power, procedural semantics, implementations, optimisation, and many more

What are Query Languages? Tentative Definitions

1. What are ... their purposes of use?
selecting and retrieving data from "information systems"
2. What are ... their programming paradigms?
declarative, hence related to logic
3. What are ... their major representatives? SQL (relational data), OQL (object-oriented data), XPath, XQuery (HTML and XML data), RQL, RDQL, SPARQL (RDF data), forthcoming ones (OWL ontologies)
4. What are ... their research issues?
query paradigms, declarative semantics, complexity and expressive power, procedural semantics, implementations, optimisation, and many more

What are Query Languages? Tentative Definitions

1. What are ... their purposes of use?
selecting and retrieving data from "information systems"
2. What are ... their programming paradigms?
declarative, hence related to logic
3. What are ... their major representatives?

SQL (relational data), OQL (object-oriented data),
XPath, XQuery (HTML and XML data),
RQL, RDQL, SPARQL (RDF data),
forthcoming ones (OWL ontologies)
4. What are ... their research issues?
query paradigms, declarative semantics, complexity and expressive power, procedural semantics, implementations, optimisation, and many more

What are Query Languages? Tentative Definitions

1. What are ... their purposes of use?
selecting and retrieving data from "information systems"
2. What are ... their programming paradigms?
declarative, hence related to logic
3. What are ... their major representatives?

SQL (relational data), OQL (object-oriented data),
XPath, XQuery (HTML and XML data),
RQL, RDQL, SPARQL (RDF data),
forthcoming ones (OWL ontologies)
4. What are ... their research issues?
query paradigms, declarative semantics, complexity and expressive power, procedural semantics, implementations, optimisation, and many more ...

Coverage of This Survey

- Foundations of query languages,
- Focus on logic, complexity and expressive power (query optimisation in proceedings only)

Limited coverage, but

- corner stone for most research
- already a large field
- unity of concerns and methods

-Session 8:30-10:30。

- 1 Introduction
- 3 Syntax: From First-Order Predicate Logic to Query Language Fragments of First-Order Predicate Logic
- 4 Declarative Semantics: Fundamentals of Classical Model Theory

(Computably) Enumerable Set

S enumerable
exists surjection $\mathbb{N} \rightarrow S$
computably enumerable
enumerable with algorithmically computable surjection

(Computably) Enumerable Set

S enumerable
exists surjection $\mathbb{N} \rightarrow S$
computably enumerable
enumerable with algorithmically computable surjection

Examples

- Set of all C programs enumerable and computably enumerable
- Set of all terminating C programs enumerable, not computably enumerable

3.1 Syntax of First-Order Predicate Logic

Formula \rightarrow p.7, Def. 6
person(Mary) \wedge person(Tom) \wedge company(Web5.0) \wedge $\forall x($ company $(x) \Rightarrow$ person $($ founder $(x))) \wedge$
$($ married $($ Mary, Tom $) \vee \exists y[$ company $(y) \wedge \operatorname{married}($ founder (y), Tom $)])$

3.1 Syntax of First-Order Predicate Logic

Logical Symbols
punctuation, connectives, quantifiers, variables
Signature Symbols
\rightarrow p.6, Def. 3
n-ary function symbols (0 -ary $=$ constant)
n-ary relation symbols

Formula
\rightarrow p.7, Def. 6
person(Mary) \wedge person(Tom) \wedge company(Web5.0) \wedge
$\forall x($ company $(x) \Rightarrow$ person $($ founder $(x))) \wedge$
$($ married $($ Mary, Tom $) \vee \exists y[$ company $(y) \wedge \operatorname{married}($ founder (y), Tom $)])$

3.1 Syntax of First-Order Predicate Logic

Logical Symbols
punctuation, connectives, quantifiers, variables
Signature Symbols
\rightarrow p.6, Def. 3
n-ary function symbols (0 -ary $=$ constant)
n-ary relation symbols
Term
\rightarrow p.6, Def. 4
x Mary founder (x) founder(Web5.0)
Atom
\rightarrow p.6, Def. 5
married(Mary, Tom) married(founder(y), Tom)
Formula
\rightarrow p.7, Def. 6
person(Mary) \wedge person(Tom) \wedge company(Web5.0) \wedge
$\forall x($ company $(x) \Rightarrow \operatorname{person}($ founder $(x))) \wedge$
$($ married $($ Mary, Tom $) \vee \exists y[\operatorname{company}(y) \wedge$ married $($ founder (y), Tom $)])$

Standard Notions

Subformula
Scope
Bound/free $(\forall x[\exists x p(x) \wedge q(x)] \Rightarrow[r(x) \vee \forall x s(x)])$
Rectified $(\forall u[\exists v p(v) \wedge q(u)] \Rightarrow[r(x) \vee \forall w s(w)]) \rightarrow$ p.8, Def. 10
Closed no free variables
Ground no variables
Propositional $([p \wedge q] \Rightarrow[r \vee s])$
\rightarrow p.7, Def. 8
\rightarrow p.7, Def. 7
\rightarrow p.7, Def. 8
\rightarrow p.8, Def. 11
\rightarrow p.8, Def. 11
\rightarrow p.8, Def. 12

Universal Formula

Polarity

\rightarrow p.8, Def. 13

$$
\neg(\neg \forall x p(x) \vee \exists z(q(z) \Rightarrow r(z)))
$$

Universal Formula

Polarity

$$
\rightarrow \text { p.8, Def. } 13
$$

Universal Formula

Polarity

\rightarrow p.8, Def. 13

Universal Formula

Polarity

\rightarrow p.8, Def. 13

Universal Formula

Polarity

\rightarrow p.8, Def. 13

Universal Formula

Polarity

$$
\rightarrow \text { p.8, Def. } 13
$$

Universal Formula

Polarity

$$
\rightarrow \text { p.8, Def. } 13
$$

Universal Formula

Polarity

$$
\rightarrow \text { p.8, Def. } 13
$$

Universal Formula

Polarity

\rightarrow p.8, Def. 13

Universal Formula

Polarity

\rightarrow p.8, Def. 13

Universal Formula

Polarity

\rightarrow p.8, Def. 13

Universal

\rightarrow p.9, Def. 14

$$
\text { only } \forall^{+} \text {and } \exists^{-}
$$

Prenex form
\rightarrow p.9, Def. 15

$$
\forall x \forall z \neg(\neg p(x) \vee(q(z) \Rightarrow r(z)))
$$

3.2 Query and Rule Language Fragments

Rule notation consequent \leftarrow antecedent
\rightarrow p.9, Ntn. 18

Range restricted $p(x, z) \leftarrow p(x, y) \wedge p(y, z)$ yes

$$
p(x, z) \leftarrow p(x, x) \quad \text { no }
$$

3.2 Query and Rule Language Fragments

Rule notation	consequent
stands for	\leftarrow antecedent
$($ antecedent	\Rightarrow consequent $)$

\rightarrow p.9, Ntn. 18

Range restricted $p(x, z) \leftarrow p(x, y) \wedge p(y, z)$ yes

$$
p(x, z) \leftarrow p(x, x) \quad \text { no }
$$

3.2 Query and Rule Language Fragments

$$
\begin{aligned}
\text { Rule notation consequent } & \leftarrow \text { antecedent } \\
\text { stands for } \quad(\text { antecedent } & \Rightarrow \text { consequent }) \\
\text { or for } \forall^{*}(\text { antecedent } & \Rightarrow \text { consequent })
\end{aligned}
$$

$$
\rightarrow \text { p.9, Ntn. } 18
$$

Range restricted $p(x, z) \leftarrow p(x, y) \wedge p(y, z)$ yes

$$
p(x, z) \leftarrow p(x, x) \quad \text { no }
$$

3.2 Query and Rule Language Fragments

Rule notation consequent \leftarrow antecedent
stands for (antecedent \Rightarrow consequent)
or for \forall^{*} (antecedent \Rightarrow consequent $)$
or for something else, various nonclassical semantics

Range restricted $p(x, z) \leftarrow p(x, y) \wedge p(y, z)$ yes

$$
p(x, z) \leftarrow p(x, x) \quad \text { no }
$$

3.2 Query and Rule Language Fragments

Rule notation consequent \leftarrow antecedent
stands for \quad (antecedent \Rightarrow consequent)
or for \forall^{*} (antecedent \Rightarrow consequent)
or for something else, various nonclassical semantics

Literal atom A, negated atom $\neg A$
\rightarrow p.10, Def. 19
Clause $A_{1} \vee \ldots \vee A_{k} \leftarrow L_{1} \wedge \ldots \wedge L_{n}$
\rightarrow p.10, Def. 20 atoms A_{i}, literals $L_{j}, k \geq 0, n \geq 0$

Range restricted $p(x, z) \leftarrow p(x, y) \wedge p(y, z)$ yes
\rightarrow p.11, Def. 23

$$
\begin{equation*}
p(x, z) \leftarrow p(x, x) \tag{no}
\end{equation*}
$$

Logic Programming Clauses

atoms A, A_{j}, B_{i}, literals $L_{i}, k, n \in \mathbb{N}$

Datalog

- definite clauses
- no function symbols except constants
- range restricted
- extensional relation symbols only in antecedents intensional relation symbols also in consequents

Datalog

- definite clauses
- no function symbols except constants
- range restricted
- extensional relation symbols only in antecedents intensional relation symbols also in consequents

Monadic datalog 1-ary intensional relation symbols $\quad \rightarrow$ p. 12
Nonrecursive datalog no recursion
Linear datalog at most one intensional atom per antecedent
Disjunctive datalog disjunctive clauses
Datalog normal clauses
Nonrecursive datalog datalog \urcorner, no direct or indirect recursion
Disjunctive datalog datalog \urcorner, general clauses

Conjunctive Queries

Extensional: parent, male, female

```
ans()}\leftarrow\operatorname{parent(Mary,Tom)
ans()}\leftarrow\operatorname{parent(Mary,y)
ans(x)\leftarrowparent(x, Tom)
ans(x)}\leftarrow\mathrm{ female (x)^
    parent(x,y)^ parent(y,Tom)
ans}(x,z)\leftarrow\operatorname{male}(x)
parent (x,y)^ parent (y,z)
```

Is Mary a parent of Tom?
Does Mary have children?
Who are Tom's parents?
Who are Tom's grandmothers?
Who are grandfathers and their grandchildren?

Conjunctive Queries

Extensional: parent, male, female

```
ans()}\leftarrow\operatorname{parent(Mary,Tom)
ans()}\leftarrow\operatorname{parent(Mary,y)
ans(x)\leftarrowparent(x,Tom)
ans(x)}\leftarrow\mathrm{ female (x)^
    parent(x,y)^ parent(y,Tom)
ans}(x,z)\leftarrow\operatorname{male}(x)
                parent (x,y)^ parent (y,z)
```

Is Mary a parent of Tom?
Does Mary have children?
Who are Tom's parents?
Who are Tom's grandmothers?
Who are grandfathers and their grandchildren?

- nonrecursive datalog with extensional antecedents corresponds to SPC subclass of relational algebra queries
- combined with disjunction / negation / quantification corresponds to other subclasses of relational algebra queries

Conjunctive Queries

Extensional: parent, male, female

```
ans()}\leftarrow\operatorname{parent(Mary,Tom)
ans()}\leftarrow\operatorname{parent(Mary,y)
ans(x)\leftarrowparent(x,Tom)
ans(x)}\leftarrow\mathrm{ female (x)^
    parent (x, y)^ parent(y,Tom)
ans}(x,z)\leftarrow\operatorname{male}(x)
                parent (x,y)^ parent (y,z)
```

Is Mary a parent of Tom?
Does Mary have children?
Who are Tom's parents?
Who are Tom's grandmothers?
Who are grandfathers and their grandchildren?

- nonrecursive datalog with extensional antecedents corresponds to SPC subclass of relational algebra queries
- combined with disjunction / negation / quantification corresponds to other subclasses of relational algebra queries
- combined with recursion
more expressive power than relational algebra queries

3.3 Syntactic Variations from

object-oriented / knowledge representation

- record-like structures
- cyclic structures
- object identity
- roles (or slots)
relational databases
- roles
- relational calculus
logic
- range restricted quantification
- many-sorted first-order predicate logic

3.3 Syntactic Variations from

object-oriented / knowledge representation

- record-like structures
- cyclic structures
- object identity
- roles (or slots)
relational databases
- roles
- relational calculus
logic
- range restricted quantification
- many-sorted first-order predicate logic

Can be considered as syntactic sugaring of first-order predicate logic

-Session 8:30-10:30。

- 1 Introduction
- 3 Syntax: From First-Order Predicate Logic to Query Language Fragments of First-Order Predicate Logic
- 4 Declarative Semantics: Fundamentals of Classical Model Theory

4.1 Classical Tarski Model Theory

Principle of any Tarski-style semantics
meaning of compound syntactic structure $=$ composition of meanings of immediate constituents

Advantage for computational treatment
simple recursive definition
well-defined, finite, and restricted computation scope
We'll come to disadvantages later. . .

Tarski-Interpretation

Signature
function symbols: 0 -ary $a, b \quad 1$-ary f
relation symbols: 1-ary p, q 2-ary r

Tarski-Interpretation

Signature
function symbols: 0 -ary $a, b \quad 1$-ary f relation symbols: 1-ary p, q 2-ary r

Interpretation \mathcal{I}
\rightarrow p.20, Def.29-31
$\operatorname{dom}(\mathcal{I})=\{\boldsymbol{q}, \boldsymbol{1}$, 用, 边 $\}$

$$
\begin{aligned}
& a^{\mathcal{I}}=\mathbb{\AA} \quad b^{\mathcal{I}}=\boldsymbol{\Pi} \\
& p^{\mathcal{I}}=\{\boldsymbol{i}, \underline{1}\} \quad q^{\mathcal{L}}=\{\mathbb{i}, \boldsymbol{\ell}\}
\end{aligned}
$$

Tarski-Interpretation

Signature
function symbols: 0 -are $a, b \quad 1$-arr f
relation symbols: 1-ary p, q 2-ary r
Interpretation \mathcal{I}
\rightarrow p.20, Def.29-31
$\operatorname{dom}(\mathcal{I})=\{\boldsymbol{q}, \boldsymbol{1}$, 用, 边 $\}$

$p^{\mathcal{I}}=\{\boldsymbol{q}, \underline{1}\} \quad q^{\mathcal{I}}=\{\boldsymbol{i}, \boldsymbol{\ell}\}$

Model relationship \models
\rightarrow p.21, Def. 32

$$
\mathcal{I} \vDash q(a) \wedge r(a, b) \wedge \neg r(f(a), b) \wedge \forall x(p(x) \Rightarrow r(x, f(x)))
$$

Semantic Properties

A formula is
valid iff it is satisfied in each interpretation
satisfiable iff it is satisfied in at least one interpretation
falsifiable iff it is falsified in at least one interpretation p
unsatisfiable iff it is falsified in each interpretation

Semantic Properties, Entailment, Log. Equivalence

A formula is

For formulas φ and ψ
$\varphi \models \psi$ iff for each interpretation \mathcal{I} : if $\mathcal{I} \models \varphi$ then $\mathcal{I} \models \psi$

$$
(p \wedge q) \models(p \vee q)
$$

$\varphi \models \psi$ iff $\varphi \models \psi$ and $\psi \models \varphi$

$$
(p \wedge q) \models(q \wedge p)
$$

Semantic Properties, Entailment, Log. Equivalence

A formula is
valid iff it is satisfied in each interpretation falsifiable iff it is falsified in at least one interpretation

For formulas φ and ψ
$\varphi \models \psi$ iff for each interpretation \mathcal{I} : if $\mathcal{I} \models \varphi$ then $\mathcal{I} \models \psi$

$$
(p \wedge q) \models(p \vee q)
$$

$$
\varphi \models \psi \text { iff } \varphi \models \psi \text { and } \psi \models \varphi
$$

$$
(p \wedge q) \models(q \wedge p)
$$

Inter-translatable \rightarrow p.21, Thm. 35
Being able to determine one of validity, unsatisfiability, or entailment, is sufficient to determine all of them.

Significance for Query Languages

Logical understanding of yes/no query does $\quad($ data \wedge rules $) \vDash$ query hold?

However
depends by definition on all interpretations (there are at least as many as there are sets)
no starting-point for algorithmic treatment

Results about Tarski Model Theory

Gödel, completeness theorem
entailment can be emulated by syntactic operations (derivability in a calculus)

Church-Turing, undecidability theorem
syntactic derivability is not decidable
Gödel-Malcev, finiteness or compactness theorem
a set S of closed formulas is unsatisfiable iff some finite subset of S is unsatisfiable
\rightarrow p.23, Thm. 39
\rightarrow p.23, Thm. 40
\rightarrow p.23, Thm. 38

Results about Tarski Model Theory

- entailment, unsatisfiability, validity are semi-decidable, not decidable
- non-entailment, satisfiability, falsifiability are not semi-decidable

Key to Algorithmic Approaches

Herbrand interpretation \mathcal{I}
fixed $\operatorname{dom}(\mathcal{I})=H U=$ set of all ground terms
fixed $t^{\mathcal{I}}=t$ for each $t \in H U$
selectable $B \subseteq H B=$ set of all ground atoms. Uniquely determines $p^{\mathcal{I}}$

Observe $H U$ and $H B$ are computably enumerable (unless pathological)

Herbrand Interpretation $H I(B)$

Signature

function symbols: 0 -ary $a, b \quad 1$-ary f
relation symbols: $\quad 1$-ary $p, q \quad 2$-ary r

Herbrand Interpretation $\mathrm{HI}(B)$

Signature
function symbols: 0 -ary $a, b \quad 1$-ary f relation symbols: 1-ary p, q 2-ary r
$B=\{p(a), p(b)$,

$$
\begin{array}{rllll}
q(a), & q(f(a)), & q(f(f(f(a)))), & \ldots & \\
& q(f(f(b))), & q(f(f(f(f(b))))), & \ldots \\
r(a, b), & r(a, f(a)), & r(a, f(f(a))), & r(a, f(f(f(a)))), & \ldots \\
& r(a, f(b)), & r(a, f(f(b))), & r(a, f(f(f(b)))), & \cdots \\
& r(b, f(a)), & r(b, f(f(a))), & r(b, f(f(f(a)))), & \ldots \\
& r(b, f(b)), & r(b, f(f(b))), & r(b, f(f(f(b)))), & \ldots
\end{array}
$$

Herbrand Interpretation $\mathrm{HI}(B)$

Signature
function symbols: 0 -are $a, b \quad 1$-ary f
relation symbols: 1-ary p, q 2-ary r
$B=\{p(a), p(b)$,

$$
\begin{array}{lllll}
q(a), & q(f(a)), & q(f(f(f(a)))), & \ldots & \\
& q(f(f(b))), & q(f(f(f(f(b))))), & \ldots \\
r(a, b), & r(a, f(a)), & r(a, f(f(a))), & r(a, f(f(f(a)))), & \ldots \\
& r(a, f(b)), & r(a, f(f(b))), & r(a, f(f(f(b)))), & \cdots \\
& r(b, f(a)), & r(b, f(f(a))), & r(b, f(f(f(a)))), & \ldots \\
& r(b, f(b)), & r(b, f(f(b))), & r(b, f(f(f(b)))), & \ldots
\end{array}
$$

Model relationship \models $H I(B) \vDash q(a) \wedge r(a, b) \wedge \neg r(f(a), b) \wedge \forall x(p(x) \Rightarrow r(x, f(x)))$

Tarski-Interpretation

Signature
function symbols: 0 -are $a, b \quad 1$-arr f
relation symbols: 1-ary p, q 2-ary r
Interpretation \mathcal{I}
\rightarrow p.20, Def.29-31

$$
\begin{aligned}
& a^{\mathcal{I}}=\mathbb{\&} \quad b^{\mathcal{I}}=\stackrel{\oplus}{\square} \\
& p^{\mathcal{I}}=\{\boldsymbol{i}, \underline{1}\} \quad q^{\mathcal{L}}=\{\mathbb{i}, \boldsymbol{\ell}\}
\end{aligned}
$$

Model relationship \models
\rightarrow p.21, Def. 32

$$
\mathcal{I} \vDash q(a) \wedge r(a, b) \wedge \neg r(f(a), b) \wedge \forall x(p(x) \Rightarrow r(x, f(x)))
$$

Herbrand Theorem

S set of universal closed formulas
$S_{\text {ground }}$ set of its ground instances
S is unsatisfiable
\rightarrow p.28, Cor. 65
iff S has no Herbrand model
iff $S_{\text {ground }}$ has no Herbrand model
iff some finite subset of $S_{\text {ground }}$ has no Herbrand model

Does not hold for non-universal formulas!

Dealing with non-universal Formulas

Skolemization
\mathcal{L} signature, S set of closed formulas, computably enumerable Constructs:
$\mathcal{L}_{\text {sko }}$ extension
$S_{\text {sko }}$ set of universal closed formulas, computably enumerable with: S is unsatisfiable iff $S_{\text {sko }}$ is unsatisfiable

Assessment of Tarski Model Theory

For Logic and Mathematics in General

- domain of an interpretation may by any nonempty set
first-order predicate logic can model statements about any arbitrary application domain
- excellent clarification of relationship syntax/semantics
- rich body of results
- quite successful for mathematics

Assessment of Tarski Model Theory

Inadequacy for Query Languages, 1

Unique name assumption

- different constants to be interpreted differently
- frequent requirement in applications
a mechanism making it available by default would be useful
- not supported by Tarski model theory explicit formalisation is cumbersome

Assessment of Tarski Model Theory

 Inadequacy for Query Languages, 2Function symbols as term constructors

- grouping pieces of data that belong together
- makes sense in many applications
- terms as compound data structures
- not supported by Tarski model theory

Assessment of Tarski Model Theory

Inadequacy for Query Languages, 3

Closed world assumption

- nothing holds unless explicitly specified
- tacit understanding in many applications (transportation timetables)
- corresponds to an induction principle cannot be expressed in first-order predicate logic with Tarski model theory

Assessment of Tarski Model Theory

Inadequacy for Query Languages, 4

Disregard infinite models

- real-world query answering applications are often finite
- in this case infinite domains are irrelevent
- moreover, they cause "strange" phenomena
- restricting interpretations to finite ones is not possible finiteness cannot be expressed in first-order predicate logic with Tarski model theory

Assessment of Tarski Model Theory

Inadequacy for Query Languages, 5

Definability of transitive closure

- relevant in many query answering applications
e.g., traffic application
r represents direct connections between junctions
t represents indirect connections
t should be interpreted as the transitive closure of r
- cannot be expressed in first-order predicate logic with Tarski model theory
$\forall x \forall z(t(x, z) \Leftrightarrow(r(x, z) \vee \exists y[t(x, y) \wedge t(y, z)]))$
does not do it!

Assessment of Tarski Model Theory

Inadequacy for Query Languages, 6

Application-specific restrictions

- e.g., to domains with a given cardinality, with odd cardinality, etc.
- cannot be expressed in first-order predicate logic with Tarski model theory

4.2 Herbrand Model Theory

Restricts interpretations to Herbrand interpretations

- appealingly simple
- on universal formulas: coincides with Tarski model theory
- on non-universal formulas: Herbrand unsatisfiability and Herbrand entailment are not semi-decidable

4.3 Finite Model Theory

Restricts interpretations to interpretations with finite domain $\rightarrow 4.3$ p. 38

- amazingly different, many unexpected results, e.g.,
- finite non-entailment, finite satisfiability are semi-decidable, finite entailment, finite unsatisfiability are not
(reversal of Results about Tarski Model Theory)
- 0-1 Laws

-Session 11:00-13:00。

- 5 Declarative Semantics: Adapting Classical Model Theory to Rule Languages

5.1 Minimal Model Semantics of Definite Rules

A positive definite rule is

- a special universal formula
$\rightarrow 3.1$ p.9, Def. 14
- a special inductive formula (cf. infra)
\rightarrow 5.1.3 p.47, Def. 125

Interesting model-theoretic properties:

- If a set of universal formulas is satisfiable, then it is Herbrand satisfiable.
- If a set of inductive formulas is satisfiable, then the intersection of its models is also a model, provided that the models intersected are compatible.
- A set of definite inductive formulas is satisfiable.

Minimal Model Semantics of Positive Definite Rules

Thus, each set of positive definite rules has a unique minimal Herbrand model, the intersection of all its Herbrand models.

This minimal model can be taken as "the meaning" of the set of positive definite rules in a model-theoretic sense.

Intersection of Compatible Interpretations

Let $\left\{\mathcal{I}_{i} \mid i \in I\right\}$ be a set of interpretations.
$\left\{\mathcal{I}_{i} \mid i \in I\right\}$ is compatible iff

- $I \neq \emptyset$.
- $D=\bigcap\left\{\operatorname{dom}\left(\mathcal{I}_{i}\right) \mid i \in I\right\} \neq \emptyset$.
- all interpretations of a function symbol coincide on D
- a variable is identically interpreted in all interpretations

If $\left\{\mathcal{I}_{i} \mid i \in I\right\}$ is compatible, then $\bigcap\left\{\mathcal{I}_{i} \mid i \in I\right\}$
is the interpretation \mathcal{I} with

- $\operatorname{dom}(\mathcal{I})=D=\bigcap\left\{\operatorname{dom}\left(\mathcal{I}_{i}\right) \mid i \in I\right\}$.
- a function symbol is interpreted as the intersection of its interpretations
- a relation symbol is interpreted as the intersection of its interpretations
- a variable is interpreted like in all given interpretations

5.1.2 Universal Formulas and Theories

Recall

- polarity of a subformula
- universal formula
- Herbrand universe $H U$
- Herbrand base HB
- Herbrand interpretation

Inducers of Herbrand Models

Let $\left\{B_{i} \mid i \in I\right\}$ be a set of sets of ground atoms. $\quad \rightarrow$ 5.1.2 p.45, Lem. 116

- $\left\{H I\left(B_{i}\right) \mid i \in I\right\}$ is a compatible set of interpretations, i.e., its intersection is defined.
- $\bigcap\left\{H I\left(B_{i}\right) \mid i \in I\right\}=H I\left(\bigcap\left\{B_{i} \mid i \in I\right\}\right)$

Let S be a set of formulas.

- The set of inducers of the Herbrand models of S is $\operatorname{Mod}_{H B}(S)$ $=\{B \subseteq H B \mid H I(B) \models S\} . \quad \rightarrow 5.1 .2$ p.45, Def. 117
$-\operatorname{Mod}_{\cap}(S)=\left\{\begin{array}{cl}\cap \operatorname{Mod}_{H B}(S) & \text { if } \operatorname{Mod}_{H B}(S) \neq \emptyset \\ H B & \text { if } \operatorname{Mod}_{H B}(S)=\emptyset\end{array}\right.$
\rightarrow 5.1.2 p.45, Ntn. 118
- If S is universal, then $\operatorname{Mod}_{\cap}(S)=\{A \in H B \mid S \models A\}$.

Example

Assume a signature consisting of a unary relation symbol p and constants a and b and no other symbols.

Let $S=\{p(a) \vee p(b)\}$.
Then $\operatorname{Mod}_{H B}(S)=\{\{p(a)\},\{p(b)\},\{p(a), p(b)\}\}$.
But $H I\left(\operatorname{Mod}_{\cap}(S)\right)=H I(\emptyset)$ is not a model of S.

Subinterpretation Property of Universal Formulas

Subinterpretation
\mathcal{I}_{1} is a subinterpretation of $\mathcal{I}_{2}\left(\mathcal{I}_{1} \subseteq \mathcal{I}_{2}\right)$ if

- $\operatorname{dom}\left(\mathcal{I}_{1}\right) \subseteq \operatorname{dom}\left(\mathcal{I}_{2}\right)$.
- the interpretations of a function symbol coincide on the common domain
- the interpretations of a relation symbol coincide on the common domain
- a variable is identically interpreted in the interpretations

If in addition $\operatorname{dom}\left(\mathcal{I}_{1}\right) \neq \operatorname{dom}\left(\mathcal{I}_{2}\right)$, then \mathcal{I}_{1} is a proper subinterpretation of \mathcal{I}_{2}.

Property
\rightarrow 5.1.2 p.46, Thm. 123
Let \mathcal{I}_{1} and \mathcal{I}_{2} be interpretations with $\mathcal{I}_{1} \subseteq \mathcal{I}_{2}$.
For each universal closed formula φ, if $\mathcal{I}_{2} \models \varphi$ then $\mathcal{I}_{1} \models \varphi$.

5.1.3 Inductive Formulas and Theories

Positive and negative formulas \rightarrow 5.1.3 p.46, Def. 124
A formula φ is positive (or negative, respectively) iff every atom occurring in φ has positive (or negative, respectively) polarity in φ.

Inductive formula
\rightarrow 5.1.3 p.47, Def. 125

- A generalised definite rule or definite inductive formula is a formula of the form $\forall^{*}\left(\left(A_{1} \wedge \ldots \wedge A_{n}\right) \leftarrow \varphi\right)$ where φ is positive and the A_{i} are atoms for $1 \leq i \leq n$.
- A generalised definite goal or integrity constraint is a formula of the form $\forall^{*} \varphi$ where φ is negative.
- An inductive formula is either a generalised definite rule or a generalised definite goal.
- A (definite) inductive theory is a theory axiomatised by a set of (definite) inductive formulas.

Order on Interpretations

$\mathcal{I}_{1} \leq \mathcal{I}_{2}$ for interpretations \mathcal{I}_{1} and \mathcal{I}_{2} if

- $\operatorname{dom}\left(\mathcal{I}_{1}\right)=\operatorname{dom}\left(\mathcal{I}_{2}\right)$.
- the interpretations of a function symbol coincide on the common domain
- the "smaller" interpretation of a relation symbol is a restriction of the other
- a variable is identically interpreted in the interpretations

If in addition $p^{\mathcal{I}_{1}} \neq p^{\mathcal{I}_{2}}$ for at least one p, then $\mathcal{I}_{1}<\mathcal{I}_{2}$.

Models of Inductive Formulas

Maximal Herbrand Model
\rightarrow 5.1.3 p.48, Thm. 128
For each set S of generalised definite rules, $H I(H B) \models S$.

Intersection-Closedness
\rightarrow 5.1.3 p.48, Thm. 129
Let S be a set of inductive formulas. If $\left\{\mathcal{I}_{i} \mid i \in I\right\}$ is a set of compatible models of S with the same domain D, then $\mathcal{I}=\bigcap\left\{\mathcal{I}_{i} \mid i \in I\right\}$ is also a model of S.

Intersection Model
$\rightarrow 5.1 .3$ p.48, Cor. 130
If S is a set of inductive formulas and $\left\{B_{i} \subseteq H B \mid i \in I\right\}$ is a nonempty set with $H I\left(B_{i}\right) \models S$ for each $i \in I$, then $H I\left(\bigcap\left\{B_{i} \mid i \in I\right\}\right) \models S$.

5.1.4 Minimal Models

Minimal Model

\rightarrow 5.1.4 p.48, Lem. 131
A minimal model of a set of formulas is a \leq-minimal member \mathcal{I} of the set of all its models with domain $\operatorname{dom}(\mathcal{I})$.

Minimal Herbrand Model
\rightarrow 5.1.4 p.49, Lem. 132
Let S be a set of formulas.

- An Herbrand model of S is minimal iff it is induced by a \subseteq-minimal member of $\operatorname{Mod}_{H B}(S)$.
- If $H I\left(\operatorname{Mod}_{\cap}(S)\right)$ is a model of S, it is a minimal Herbrand model of S and it is the only minimal Herbrand model of S.
Minimal Herbrand Model of Inductive Formulas
\rightarrow 5.1.4 p.49, Thm. 133
Let S be a set of inductive formulas. If either each member of S is definite, or S is satisfiable and each member of S is universal, then $H I\left(\operatorname{Mod}_{\cap}(S)\right)$ is the unique minimal Herbrand model of S.

Minimal Herbrand Model

Definite Program
\rightarrow 5.1.4 p.49, Cor. 134
Each set S of positive definite rules (i.e., each definite program) has a unique minimal Herbrand model.
This model is the intersection of all Herbrand models of S.
It satisfies precisely those ground atoms that are logical consequences of S.

Generalisation of inductive formulas for which 'minimal models' remains useful:
Generalised Rule
\rightarrow 5.1.4 p.49, Def. 135
A generalised rule is a formula of the form $\forall^{*}(\psi \leftarrow \varphi)$ where φ is positive and quantifier-free.

Implicant of a Positive Quantifier-Free Formula

Pre-Implicant and Implicant
\rightarrow 5.1.4 p.49, Def. 136
Let ψ be a positive quantifier-free formula. The set $\operatorname{primps}(\psi)$ of preimplicants of ψ is defined as follows:

- $\operatorname{primps}(\psi)=\{\{\psi\}\}$ if ψ is an atom or \top or \perp.
- $\operatorname{primps}\left(\neg \psi_{1}\right)=\operatorname{primps}\left(\psi_{1}\right)$.
- $\operatorname{primps}\left(\psi_{1} \wedge \psi_{2}\right)=\left\{C_{1} \cup C_{2} \mid C_{1} \in \operatorname{primps}\left(\psi_{1}\right), C_{2} \in\right.$ $\left.\operatorname{primps}\left(\psi_{2}\right)\right\}$.
$-\operatorname{primps}\left(\psi_{1} \vee \psi_{2}\right)=\operatorname{primps}\left(\psi_{1} \Rightarrow \psi_{2}\right)=\operatorname{primps}\left(\psi_{1}\right) \cup \operatorname{primps}\left(\psi_{2}\right)$.
The set of implicants of ψ is obtained from $\operatorname{primps}(\psi)$ by removing all sets containing \perp and by removing T from the remaining sets.

Implicants and Entailement
\rightarrow 5.1.4 p.50, Lem. 137

1. If C is an implicant of ψ, then $C \models \psi$.
2. For any interpretation \mathcal{I}, if $\mathcal{I} \models \psi$ then there exists an implicant C of ψ with $\mathcal{I} \models C$.

Supported Atom

Supported Atom

Let \mathcal{I} be an interpretation, V a variable assignment in $\operatorname{dom}(\mathcal{I})$ and $A=p\left(t_{1}, \ldots, t_{n}\right)$ an atom, $n \geq 0$.

- an atom B supports A in $I[V]$ iff $I[V] \vDash B$ and $B=p\left(s_{1}, \ldots, s_{n}\right)$ and $s_{i}^{l[V]}=t_{i}^{\prime[V]}$ for $1 \leq i \leq n$.
- a set C of atoms supports A in $I[V]$ iff $I[V] \equiv C$ and there is an atom in C that supports A in $I[V]$.
- a generalised rule $\forall^{*}(\psi \leftarrow \varphi)$ supports A in I iff for each variable assignment V with $I[V] \models \varphi$ there is an implicant C of ψ that supports A in $I[V]$.

Minimal Models and Supported Ground Atom

Minimal Models Satisfy Only Supported Ground Atom
\rightarrow 5.1.4 p.50, Thm. 139
Let S be a set of generalised rules. Let \mathcal{I} be an interpretation with domain D. If \mathcal{I} is a minimal model of S, then: For each ground atom A with $\mathcal{I} \models A$ there is a generalised rule in S that supports A in \mathcal{I}.

Example

\rightarrow 5.1.4 p.51, Ex. 140
Consider a signature containing a unary relation symbol p and constants a and b. Let $S=\{(p(b) \leftarrow \top)\}$.
The interpretation \mathcal{I} with $\operatorname{dom}(\mathcal{I})=\{1\}$ and $a^{\mathcal{I}}=b^{\mathcal{I}}=1$ and $p^{\mathcal{I}}=$ $\{(1)\}$ is a minimal model of S.
(Note that the only smaller interpretation interprets p with the empty relation and does not satisfy the rule.)
Moreover, $\mathcal{I} \mid=p(a)$. By the theorem, $p(a)$ is supported in \mathcal{I} by $p(b)$, which can be confirmed by applying the definition.

Unique Name Property

Unique Name Property

\rightarrow 5.1.4 p.51, Def. 141
An interpretation \mathcal{I} has the unique name property, if for each term s, ground term t, and variable assignment V in $\operatorname{dom}(\mathcal{I})$ with $s^{l[V]}=t^{l[V]}$ there exists a substitution σ with $s \sigma=t$.

Herbrand interpretations have the unique name property.

Non-Minimal Models Supporting Ground Atoms

The converse of Thm. 139 is refuted by counter-examples with indefinite rules such as $\{(p(a) \vee p(b) \leftarrow \top)\}$ because the definition of supported cannot distinguish between implicants of rule consequent. Both atoms are supported in the Herbrand model $\operatorname{HI}(\{p(a), p(b)\})$ of this set, although the model is not minimal.

The converse of Theorem 139 is also refuted by (simple) counter-examples with definite rules:

Example

 \rightarrow 5.1.4 p.52, Ex. 142Consider $S=\{(p \leftarrow p)\}$ and its Herbrand model $H I(\{p\})$. The only ground atom satisfied by $H I(\{p\})$ is p, which is supported in $H I(\{p\})$ by the rule. But $H I(\{p\})$ is not minimal because $H I(\emptyset)$ is also a model of S.

5.2 Fixpoint Semantics of Positive Definite Rules

Operator

Let X be a set. An operator Γ on a set X is a mapping: $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$.
Monotonic Operator
\rightarrow 5.2.1 p.52, Def. 144
Let X be a set. An operator Γ on X is monotonic, iff for all subset $M \subseteq M^{\prime} \subseteq X$ holds: $\Gamma(M) \subseteq \Gamma\left(M^{\prime}\right)$.

Continuous operator \rightarrow 5.2.1 p.52, Def. 145
Let X be a nonempty set.
A set $Y \subseteq \mathcal{P}(X)$ of subsets of X is directed, if every finite subset of Y has an upper bound in Y, i.e., for each finite $Y_{f i n} \subseteq Y$, there is a set $M \in Y$ such that $\bigcup Y_{\text {fin }} \subseteq M$.
An operator Γ on X is continuous, iff for each directed set $Y \subseteq \mathcal{P}(X)$ of subsets of X holds: $\Gamma(\bigcup Y)=\bigcup\{\Gamma(M) \mid M \in Y\}$.
A continuous operator on a nonempty set is monotonic.
\rightarrow 5.2.1 p.52, Lem. 146

5.2.2 Fixpoints of Monotonic and Continuous Operators

Fixpoint \rightarrow 5.2.2 p.52, Def. 147
Let Γ be an operator on a set X. A subset $M \subseteq X$ is a fixpoint of Γ iff $\Gamma(M)=M$.

Knaster-Tarski Theorem
\rightarrow 5.2.2 p.52, Thm. 148
Let Γ be a monotonic operator on a nonempty set X. Then Γ has a least fixpoint $l f p(\Gamma)$ and a greatest fixpoint $g f p(\Gamma)$ with $\operatorname{lfp}(\Gamma)=\bigcap\{M \subseteq X \mid \Gamma(M)=M\}=\bigcap\{M \subseteq X \mid \Gamma(M) \subseteq M\}$.
$\operatorname{gfp}(\Gamma)=\bigcup\{M \subseteq X \mid \Gamma(M)=M\}=\bigcup\{M \subseteq X \mid \Gamma(M) \subseteq M\}$.

Ordinal Powers of a Monotonic Operator

Let Γ be a monotonic operator on a nonempty set X.

- The upward power of Γ is defined as:

$$
\begin{array}{lll}
\Gamma \uparrow 0 & =\emptyset & \text { (base case) } \\
\Gamma \uparrow \alpha+1 & =\Gamma(\Gamma \uparrow \alpha) & \text { (successor case) } \\
\Gamma \uparrow \lambda & =\bigcup\{\Gamma \uparrow \beta \mid \beta<\lambda\} & \text { (limit case) }
\end{array}
$$

- The downward power of Γ is defined as:

$$
\begin{array}{lll}
\Gamma \downarrow 0 & =X & \text { (base case) } \\
\Gamma \downarrow \alpha+1 & =\Gamma(\Gamma \downarrow \alpha) & \text { (successor case) } \\
\Gamma \downarrow \lambda & =\bigcap\{\Gamma \downarrow \beta \mid \beta<\lambda\} & \text { (limit case) }
\end{array}
$$

Let Γ be an operator on a nonempty set X.
Theorem
$\rightarrow 5.2 .1$ p.53, Thm. 151
If Γ is monotonic, then there exists α such that $\Gamma \uparrow \alpha=\operatorname{Ifp}(\Gamma)$.
Kleene Theorem
\rightarrow 5.2.1 p.53, Thm. 152
If Γ is continuous, then $\operatorname{Ifp}(\Gamma)=\Gamma \uparrow \omega$.

5.2.3 Immediate Consequence Operator

Immediate Consequence Operator
\rightarrow 5.2.3 p.54, Def. 153
Let S be a set of universal generalised definite rules. Let $B \subseteq H B$ be a set of ground atoms. The immediate consequence operator
$\mathbf{T}_{S}: \mathcal{P}(H B) \rightarrow \mathcal{P}(H B)$ is defined by:
$\mathbf{T}_{S}(B)=\left\{A \in H B \mid\right.$ there is a ground instance $A_{1} \wedge \ldots \wedge A_{n} \leftarrow \varphi$ of a member of S with $H I(B) \models \varphi$ and $A=A_{i}$ for some i with $\left.1 \leq i \leq n\right\}$

Theorem
$\rightarrow 5.2 .3$ p.54, Thm. 156
The immediate consequence operator of a set of positive definite rules is continuous and monotonic.

Least Fixpoint of a Definite Program
$\rightarrow 5.2 .4$ p.56, Ntn. 158
For a set S of universal generalised definite rules, the least fixpoint of S is $\operatorname{lfp}(S)=\operatorname{lfp}\left(\mathbf{T}_{S}\right)$.

5.3 Declarative Semantics of Rules with Negation

If a database of students does not list "Mary", then one may conclude that "Mary" is not a student. The principle underlying this is called closed world assumption (CWA).

Two approaches to coping with this form of negation:

- axiomatization within first-oder predicate logic
- deduction methods not requiring specific axioms conveying the CWA

The second approach is desirable but it poses the problem of the declarative semantics, or model theory.

Minimal Models don't all convey the CWA

Example

$$
S_{1}=\{(q \leftarrow r \wedge \neg p),(r \leftarrow s \wedge \neg t),(s \leftarrow \top)\}
$$

Minimal Herbrand models: $H I(\{s, r, q\}), H I(\{s, r, p\})$, and $H I(\{s, t\})$.
Example
$S_{2}=\{(p \leftarrow \neg q),(q \leftarrow \neg p)\}$
Minimal Herbrand models: $\operatorname{HI}(\{p\}), H I(\{q\})$.
Example
$\rightarrow 5.3$ p.57, Ex. 161
$S_{3}=\{(p \leftarrow \neg p)\}$ Minimal Herbrand model: $\operatorname{HI}(\{p\})$.
Example
$\rightarrow 5.3$ p.58, Ex. 162
$S_{4}=\{(p \leftarrow \neg p),(p \leftarrow \top)\}$
Minimal Herbrand model: HI(\{p\}).

Justification vs. Consistency

Justification postulate
dependable justifications for derived truths.

Consistency postulate
every syntactically correct set of normal clauses is consistent (hence has a model).

Th canonical is not Monotonic

Example
$\rightarrow 5.3$ p.58, Ex. 163
$S_{5}=\{(q \leftarrow \neg p)\}$
Minimal Herbrand models: $H I(\{p\})$ and $H I(\{q\})$.
Only the latter conveys the intuitive meaning under the CWA and should be retained as (the only) canonical model.
Therefore, $q \in T h_{\text {canonical }}\left(S_{5}\right)$.
$S_{5}^{\prime}=S_{5} \cup\{(p \leftarrow \top)\}$
Minimal Herbrand model: $H I(\{p\})$, which also conveys the CWA.
Therefore, $q \notin T h_{\text {canonical }}\left(S_{5}^{\prime}\right)$.
$S_{5} \subseteq S_{5}^{\prime}$ but $T h_{\text {canonical }}\left(S_{5}\right) \nsubseteq T h_{\text {canonical }}\left(S_{5}^{\prime}\right)$.

Justification vs. Consistency Cont'd

Non-monotonicity is independent of the choice Justification vs. Consistency.

Any semantics not complying with Consistency is non-monotonic in an even stronger sense: Consistency (defined as usual as the existence of models) is not inherited by subsets.

5.3.1 Stratifiable Rule Sets

Stratification

$\rightarrow 5.3 .1$ p.59, Def. 164
Let S be a set of normal clauses. A stratification of S is a partition S_{0}, \ldots, S_{k} of S such that

- For each relation symbol p there is a stratum S_{i}, such that all clauses of S containing p in their consequent are members of S_{i}. (p is defined in stratum S_{i}.)
- For each stratum S_{j} and for each positive literal A in the antecedents of members of S_{j}, the relation symbol of A is defined in a stratum S_{i} with $i \leq j$.
- For each stratum S_{j} and for each negative literal $\neg A$ in the antecedents of members of S_{j}, the relation symbol of A is defined in a stratum S_{i} with $i<j$.
A set of normal clauses is called stratifiable if there exists a stratification of it.

Stratifiable Rule Sets - Examples

$S=\{(r \leftarrow T),(q \leftarrow r),(p \leftarrow q \wedge \neg r)\}$ is stratifiable. $S=\{(p \leftarrow \neg p)\}$ is not stratifiable. More generally, any set of normal clauses with a cycle of recursion through negation is not stratifiable.

Stratifiable Rule Sets - Model

By definition the stratum S_{0} always consists of definite clauses. Hence the truth values of all atoms of stratum S_{0} can be determined without negation being involved.

After that the clauses of stratum S_{1} refer only to such negative literals whose truth values have already been determined.

And so on.

5.3.2 Stable Model Semantics

Let S be a (possibly infinite) set of ground normal clauses, i.e., of formulas of the form $A \leftarrow L_{1} \wedge \ldots \wedge L_{n}$ where $n \geq 0$ and A is a ground atom and the L_{i} for $1 \leq i \leq n$ are ground literals.

Gelfond-Lifschitz Transformation \rightarrow 5.3.2 p.59, Def. 165
Let $B \subseteq H B$. The Gelfond-Lifschitz transform $G L_{B}(S)$ of S with respect to B is obtained from S as follows:

1. remove each clause whose antecedent contains a literal $\neg A$ with $A \in B$.
2. remove from the antecedents of the remaining clauses all negative literals.
Stable Model
\rightarrow 5.3.2 p.60, Def. 166
An Herbrand interpretation $H I(B)$ is a stable model of S iff it is the unique minimal Herbrand model of $G L_{B}(S)$.
A stable model of a set S of normal clauses is a stable model of the (possibly infinite) set of ground instances of S.

Stable Model Semantics - Properties

Let S be a set of ground normal clauses.

Lemma
\rightarrow 5.3.2 p.60, Lem. 167
Let $H I(B)$ be an Herbrand interpretation.
$H I(B) \models S$ iff $H I(B) \models G L_{B}(S)$.

Theorem
\rightarrow 5.3.2 p.60, Thm. 168
Each stable model of S is a minimal Herbrand model of S.

Stable Model Semantics - Example

Example

 $\rightarrow 5.3 .2$ p.61, Ex. 169$$
\begin{aligned}
& S_{1}=\{(q \leftarrow r \wedge \neg p),(r \leftarrow s \wedge \neg t),(s \leftarrow T)\} \text { has one stable model: } \\
& H I(\{s, r, q\}) \\
& S_{2}=\{(p \leftarrow \neg q),(q \leftarrow \neg p)\} \text { has two stable models: } H I(\{p\}) \text { and } \\
& H I(\{q\})
\end{aligned}
$$

$$
S_{3}=\{(p \leftarrow \neg p)\} \text { has no stable model. }
$$

$$
S_{4}=\{(p \leftarrow \neg p),(p \leftarrow T)\} \text { has one stable model: } \operatorname{HI}(\{p\})
$$

Stable Model Semantics - Evaluation

- The stable model semantics coincides with the intuitive understanding based on the "Justification Postulate".
- A set may have several stable models or exactly one or none. Each stratifiable set has exactly one stable model.

5.3.3 Well-Founded Semantics

Notation

$$
\rightarrow \text { 5.3.3 p.61, Ntn. } 170
$$

For a set I of ground literals:
$\bar{I}=\{\bar{L} \mid L \in I\}$ and $p o s(I)=I \cap H B$ and $n e g(I)=\bar{I} \cap H B$.
$(I=\operatorname{pos}(I) \cup n e g(I)$.
(In)Consistent Sets of Literals
\rightarrow 5.3.3 p.61, Def. 171
A set I of ground literals is consistent iff $\operatorname{pos}(I) \cap \operatorname{neg}(I)=\emptyset$.
Otherwise, I is inconsistent.
Two sets I_{1} and I_{2} of ground literals are (in)consistent iff $I_{1} \cup I_{2}$ is.
A literal L and a set I of ground literals are (in)consistent iff $\{L\} \cup I$ is.
Partial Interpretation \rightarrow 5.3.3 p.61, Def. 172
A partial interpretation is a consistent set of ground literals.
A partial interpretation I is total iff $\operatorname{pos}(I) \cup \operatorname{neg}(I)=H B$ (i.e. for each ground atom A either $A \in I$ or $\neg A \in I)$.
For a total interpretation I, the Herbrand interpretation induced by I is defined as $H I(I)=H I(\operatorname{pos}(I))$.

Well-Founded Semantics - Models

Let / be a partial interpretation.

Model Relationship

\top is satisfied in I and \perp is falsified in I.

A ground literal L is satisfied or true in I iff $L \in I$.
falsified or false in I iff $\bar{L} \in I$.
undefined in $I \quad$ iff $L \notin I$ and $\bar{L} \notin I$.
A conjunction $L_{1} \wedge \ldots \wedge L_{n}$ of ground literals, $n \geq 0$, is satisfied or true in I iff each L_{i} for $1 \leq i \leq n$ is satisfied in I. falsified or false in I iff at least one L_{i} for $1 \leq i \leq n$ is falsified in I. undefined in I
iff each L_{i} for $1 \leq i \leq n$ is satisfied or undefined in I and at least one of them is undefined in $/$.

Well-Founded Semantics - Models Cont'd

Let I be a partial interpretation.

Model Relationship

A ground normal clause $A \leftarrow \varphi$ is
satisfied or true in I iff A is satisfied in I or φ is falsified in I. falsified or false in I iff A is falsified in I and φ is satisfied in I. weakly falsified in I iff A is falsified in I and φ is satisfied or undefined in I.
A normal clause is satisfied or true in I
iff each of its ground instances is. falsified or false in I iff at least one of its ground instances is. weakly falsified in I iff at least one of its ground instances is.
A set of normal clauses is satisfied or true in I iff each of its members is. falsified or false in I iff at least one of its members is. weakly falsified in I iff at least one of its members is.

Well-Founded Semantics - Models Cont'd

Total and Partial Models
Let S be a set of normal clauses.
A total interpretation I is a total model of S, iff S is satisfied in I.
A partial interpretation I is a partial model of S, iff there exists a total model I^{\prime} of S with $I \subseteq I^{\prime}$.

Well-Founded Semantics - Unfoundedness

Let S be a set of normal clauses, I a partial interpretation, and $U \subseteq H B$ a set of ground atoms.

Unfounded Sets of Atoms \rightarrow 5.3.3 p.63, Def. 176
U is an unfounded set with respect to S and I, if for each $A \in U$ and for each ground instance $A \leftarrow L_{1} \wedge \ldots \wedge L_{n}, n \geq 1$, of a member of S at least one of the following holds:

1. $L_{i} \in T$ for some positive or negative L_{i} with $1 \leq i \leq n$. (L_{i} is falsified in I)
2. $L_{i} \in U$ for some positive L_{i} with $1 \leq i \leq n$. (L_{i} is unfounded)

A literal fulfilling one of these conditions is a witness of unusability for the ground instance of a clause.
U is a maximal unfounded set with respect to S and I, iff U is an unfounded set with respect to S and I and no proper superset of U is.

Well-Founded Semantics - Operators

Let $\mathcal{P} \mathcal{I}=\{I \subseteq H B \cup \overline{H B} \mid I$ is consistent $\}$, and note that $\mathcal{P}(H B) \subseteq \mathcal{P} \mathcal{I}$.
Let S be a set of normal clauses.
Operators

$$
\begin{aligned}
& \mathbf{T}_{S}: \mathcal{P I} \rightarrow \mathcal{P}(H B) \\
& \text { I } \mapsto\{A \in H B \mid \quad \text { there is a ground instance }(A \leftarrow \varphi) \\
& \text { of a member of } S \text { such that } \\
& \varphi \text { is satisfied in I \} } \\
& \text { unfounded with respect to } S \text { and } I
\end{aligned}
$$

```
\(\mathbf{W}_{S}: \mathcal{P I} \rightarrow \mathcal{P} \mathcal{I}\)
    \(I \mapsto \mathbf{T}_{S}(I) \cup \overline{\mathbf{U}_{S}(I)}\)
```

Lemma
$\mathbf{T}_{S}, \mathbf{U}_{S}$, and \mathbf{W}_{S} are monotonic. (but not in general continuous!)

Well-Founded Semantics

Assume a signature with $H B=\{p, q, r, s, t\}$, and let $I_{0}=\emptyset$ and $S=\{(q \leftarrow r \wedge \neg p),(r \leftarrow s \wedge \neg t),(s \leftarrow \top)\}$.
$\mathbf{T}_{S}\left(I_{0}\right)=\{s\}$
$\mathbf{U}_{S}\left(I_{0}\right)=\{p, t\}$
$\mathbf{W}_{S}\left(I_{0}\right)=\{s, \neg p, \neg t\}=I_{1}$
$\mathbf{T}_{S}\left(I_{1}\right)=\{s, r\}$
$\mathbf{U}_{S}\left(I_{1}\right)=\{p, t\}$
$\mathbf{W}_{S}\left(I_{1}\right)=\{s, r, \neg p, \neg t\}=I_{2}$
$\mathbf{T}_{S}\left(I_{2}\right)=\{s, r, q\}$
$\mathbf{U}_{S}\left(l_{2}\right)=\{p, t\}$
$\mathbf{W}_{S}\left(I_{2}\right)=\{s, r, q, \neg p, \neg t\}$

Well-Founded Semantics - Properties

Well-Founded Model
$\rightarrow 5.3 .3$ p.65, Def. 185
Let S be a set of normal clauses. The well-founded model of S is its partial model $\operatorname{lfp}\left(\mathbf{W}_{S}\right)$.

Examples
$\rightarrow 5.3 .3$ p.65, Ex. 186
$S_{1}=\{(q \leftarrow r \wedge \neg p),(r \leftarrow s \wedge \neg t),(s \leftarrow \top)\}$ has the well-founded model $\{s, r, q, \neg p, \neg t\}$. It is total.
$S_{2}=\{(p \leftarrow \neg q), \quad(q \leftarrow \neg p)\}$ has the well-founded model \emptyset. It is partial.
$S_{3}=\{(p \leftarrow \neg p)\}$ has the well-founded model \emptyset. It is partial.
$S_{4}=\{(p \leftarrow \neg p),(p \leftarrow \top)\}$ has the well-founded model $\{p\}$. It is total.

Well-Founded Semantics

Assume a signature containing no other symbols than those occurring in the following set of normal clauses.
$S=\{p(a) \leftarrow \top, \quad p(f(x)) \leftarrow p(x), \quad q(y) \leftarrow p(y), \quad s \leftarrow p(z) \wedge \neg q(z)$, $r \leftarrow \neg s\}$
$\operatorname{lfp}\left(\mathbf{W}_{S}\right)=\mathbf{W}_{S} \uparrow \omega+2=$
$\left\{p(a), \ldots, p\left(f^{n}(a)\right), \ldots\right\} \cup\left\{q(a), \ldots, q\left(f^{n}(a)\right), \ldots\right\} \cup\{\neg s, r\}$
S is the (standard) translation into normal clauses of the following set of generalised rules:
$\{p(a) \leftarrow \top, \quad p(f(x)) \leftarrow p(x), \quad q(y) \leftarrow p(y), \quad r \leftarrow \forall z(p(z) \Rightarrow q(z))\}$

Well-Founded Semantics - Evaluation

- The well-founded semantics coincides with an intuitive understanding based on the "Justification Postulate".
- A set always has exactly one model but some ground atoms might be "undefined" in this model. Thus, the well-founded semantics coincides with the "Consistency Postulate".
- The well-founded model might not be computable (in those not unfrequent cases where the fixpoint is reached after more than ω steps).

5.3.4 Stable and Well-Founded Semantics Compared

- If a rule set is stratifiable, then it has a unique minimal model, which is its only stable model and is also its well-founded model and total.
- If a rule set S has a total well-founded model, then this model is also the single stable model of S.
- If a rule set S has a single stable model, then this model is also the well-founded model of S and it is total.
- If a rule set S has a partial well-founded model I that is not total, then S has either no stable model or more than one stable model. In the latter case, a ground atom is true in all stable models of S if it is true in I.
- Stable model entailment does not imply well-founded entailment:
\rightarrow missing in text!
$S=\{p \leftarrow \neg q, \quad q \leftarrow \neg p, \quad r \leftarrow p, \quad r \leftarrow q\}$
r is true in all stable models but it is undefined in the well-founded model.

5.3.5 Inflationary Semantics

Attention restricted to datalog programs, i.e. finite sets of normal clauses.

- The Herbrand universe dom is finite
- The Herbrand base HB is finite

Normal clauses are rule r of the form $A \leftarrow L_{1}, \ldots, L_{m}$ where $m \geq 0$ and A is an atom. They are assumed to be range restricted.
\rightarrow 3.2.2 p.11, Def. 23

Notation

Head (consequent) of a rule r : $H(r)$
Body (antecedent) of $r: B(r)$

$$
B^{+}(r)=\left\{R(\vec{x}) \mid \exists i L_{i}=R(\vec{x})\right\} \quad B^{-}(r)=\left\{R(\vec{x}) \mid \exists i L_{i}=\neg R(\vec{x})\right\}
$$

Inflationary Semantics - Operator

Let P be a datalog \urcorner program and \mathbf{I} an instance or interpretation $(\mathbf{I} \subseteq H B)$
Immediate Consequence Operator \rightarrow 5.3.5 p.68, Def. 188
$R(\vec{t})$ is an immediate consequence for \mathbf{I} and $P\left(R(\vec{t}) \in \mathbf{T}_{P}(\mathbf{I})\right.$), if either $R R(\vec{t}) \in \mathbf{I}$, or there exists some ground instance r of a rule in P such that

- $H(r)=R(\vec{t})$,
- $B^{+}(r) \subseteq \mathbf{I}$, and
- $B^{-}(r) \cap \mathbf{I}=\emptyset$.

Inflationary Operator and Semantics
\rightarrow 5.3.5 p.68, Def. 189
$\widetilde{\mathbf{T}}_{P}(\mathbf{I})=\mathbf{I} \cup \mathbf{T}_{P}(\mathbf{I})$
The inflationary semantics of P w.r.t. $\mathbf{I}\left(P_{\text {inf }}(\mathbf{I})\right)$ is the limit of $\left\{\widetilde{\mathbf{T}}_{P}^{i}(\mathbf{I})\right\}_{i \geq 0}$, where $\widetilde{\mathbf{T}}_{P}^{0}(\mathbf{I})=\mathbf{I}$ and $\widetilde{\mathbf{T}}_{P}^{i+1}(\mathbf{I})=\widetilde{\mathbf{T}}_{P}\left(\widetilde{\mathbf{T}}_{P}^{i}(\mathbf{I})\right)$.

Inflationary Semantics

- By definition of $\widetilde{\mathbf{T}}_{P}: \widetilde{\mathbf{T}}_{P}^{0}(\mathbf{I}) \subseteq \widetilde{\mathbf{T}}_{P}^{1}(\mathbf{I}) \subseteq \widetilde{\mathbf{T}}_{P}^{2}(\mathbf{I}) \subseteq \ldots$
- Each set in this sequence is a subset of the finite set $H B$. Therefore, the sequence reaches a fixpoint $\widetilde{\mathbf{T}}_{P}(\mathbf{I})$ after a finite number of steps.
- $H I\left(P_{\text {inf }}(\mathbf{I})\right)$ is a model of P containing \mathbf{I} but not necessarily a minimal model containing \mathbf{I}.

Example

$P=\{(p \leftarrow s \wedge \neg q),(q \leftarrow s \wedge \neg p)\}$
$\mathbf{I}=\{s\}$.
$P_{\text {inf }}(\mathbf{I})=\{s, p, q\}$
Although $H I\left(P_{\text {inf }}(\mathbf{I})\right)$ is a model of P, it is not minimal.
$\widetilde{\mathbf{T}}_{P}$ is not monotonic: $\widetilde{\mathbf{T}}_{P}(\{s\})=\{s, p, q\}$ and $\widetilde{\mathbf{T}}_{P}(\{s, p\})=\{s, p\}$

Inflationary Semantics - Examples

$$
\begin{aligned}
& S_{1}=\{(q \leftarrow r \wedge \neg p),(r \leftarrow s \wedge \neg t),(s \leftarrow T)\} \quad \rightarrow 5.3 .5 \text { p.69, Ex. } 191 \\
& \tilde{\mathbf{T}}_{S_{1}}^{1}(\emptyset)=\{s\}, \widetilde{\mathbf{T}}_{S_{1}}^{2}(\emptyset)=\{s, r\}, \tilde{\mathbf{T}}_{S_{1}}^{3}(\emptyset)=\{s, r, q\}=\widetilde{\mathbf{T}}_{s_{1}}^{4}(\emptyset) \text {. } \\
& S_{2}=\{(p \leftarrow \neg q),(q \leftarrow \neg p)\} \\
& \rightarrow 5.3 .5 \text { p.69, Ex. } 192 \\
& \widetilde{\boldsymbol{T}}_{S_{2}}^{1}(\emptyset)=\{p, q\}=\widetilde{\mathbf{T}}_{S_{2}}^{2}(\emptyset) \\
& S_{3}=\{(p \leftarrow \neg p)\} \\
& \widetilde{\mathbf{T}}_{S_{3}}^{1}(\emptyset)=\{p\}=\widetilde{\mathbf{T}}_{S_{3}}^{2}(\emptyset) \\
& S_{4}=\{(p \leftarrow \neg p),(p \leftarrow T)\} \\
& \rightarrow 5.3 .5 \text { p.69, Ex. } 194 \\
& \widetilde{\mathbf{T}}_{S_{4}}^{1}(\emptyset)=\{p\}=\widetilde{\mathbf{T}}_{S_{4}}^{2}(\emptyset) \\
& S_{5}=\{(r \leftarrow \neg q),(q \leftarrow \neg p)\} \\
& \rightarrow \text { 5.3.5 p.69, Ex. } 193 \\
& S_{5} \text { is stratifiable, its minimal models are } H I(\{q\}) \text { and } \operatorname{HI}(\{p, r\}) \text {. } \\
& \widetilde{\mathbf{T}}_{S_{5}}^{1}(\emptyset)=\{q, r\}
\end{aligned}
$$

Inflationary Semantics - Evaluation

The inflationary semantics gives up a fundamental principle, that models are preserved when adding logical consequences.

$$
S_{5}=\{(r \leftarrow \neg q),(q \leftarrow \neg p)\}
$$

S_{5} is stratifiable, its minimal models are $H I(\{q\})$ and $H I(\{p, r\})$.
q is true in the only inflationary model $H I(\{q, r\})$ of S_{5} but $H I(\{q, r\})$ is not an inflationary model of $S_{5} \cup\{q\}$.

-Session 14:30-16:00。

- 6 Operational Semantics: Positive Rule Sets
- 7 Operational Semantics: Rule Sets with Non-monotonic Negation

6 Operational Semantics: Positive

- 6.1 Semi-naive Evaluation of Datalog Programs
- 6.4 Basic Backward Chaining: SLD Resolution
\rightarrow p. 86
- 6.2 The Magic Templates Transformation Algorithm
$\rightarrow \mathrm{p} .81$
- 6.3 The Rete Algorithm
\rightarrow p. 84
- 6.5 OLDT-Resolution
\rightarrow p. 88
- 6.6 The Backward Fixpoint Procedure
\rightarrow p. 92

6.1 Semi-naive Evaluation of Datalog Programs

```
feeds_milk(betty).
lays_eggs(betty).
has_spines(betty).
monotreme(X)}
    lays_eggs(X), feeds_milk(X).
echidna(X)}
```

 monotreme(X), has_spines(X).

6.1 Semi-naive Evaluation of Datalog Programs

```
feeds_milk(betty).
lays_eggs(betty).
has_spines(betty).
monotreme(X)}
    lays_eggs(X), feeds_milk(X).
echidna(X)}
    monotreme(X), has_spines(X).
```

Terminology:

- Extensional Predicate Symbols ext (P)
- Intensional Predicate Symbols int(P)
- Semantics of a LP: Mapping from extensions over ext (P) to extensions over $\operatorname{int}(P)$

6.1 Semi-naive Evaluation of Datalog Programs

feeds_milk(betty).
lays_eggs(betty).
has_spines(betty).
monotreme (X) \leftarrow
lays_eggs(X), feeds_milk(X).
echidna (X) \leftarrow
monotreme(X), has_spines(X).

- Schema of P :
\{ feeds_milk, lays_eggs, has_spines, monotreme, echidna \}
- Fixpoint calculation:

 $\{\text { betty }\}_{\text {feeds }},\{\text { betty }\}_{\text {lays }},\{\text { betty }\}_{\text {spines }},\{\text { betty }\}_{\text {monotreme },}\{\text { betty }\}_{\text {echidna }}$

Further Optimizations for Evaluating Positive Rule Sets

- Goal directedness
- Storing partially instantiated rules
- Sharing of instantiated premises among similar rules

6.4 SLD-Resolution: Principles

- goal driven evaluation of LPs
- instead of showing that $P \models q$, show that $P \cup \neg q$ is unsatisfiable
- resolution: a mechanical method for proving statements in FOL
- uses unification
- elimination of a literal that occurs positive in one clause and negative in another
- recall that $Q \leftarrow P$ is equivalent to $Q \vee \neg P$
- SLD resolution: Linear resolution with a Selection function for Definite clauses
- resolution with backtracking as control mechanism in Prolog

6.4 SLD-Resolution

```
1: t(X,Y)\leftarrowe(X,Y).
2: t(X,Z)\leftarrowt(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: \leftarrowt(1,A).
```


6.4 SLD-Resolution

```
1: \(\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{e}(\mathrm{X}, \mathrm{Y})\).
2: \(\mathrm{t}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}(\mathrm{X}, \mathrm{Y}), \mathrm{e}(\mathrm{Y}, \mathrm{Z})\).
3: e(1,2).
4: e(2,1).
\(5: \leftarrow \mathrm{t}(1, \mathrm{~A})\).
:- e(1,A)
```


6.4 SLD-Resolution

6.4 SLD-Resolution

2: $t(X, Z) \leftarrow t(X, Y), e(Y, Z)$.
1: $\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{e}(\mathrm{X}, \mathrm{Y})$.
3: e(1,2).
4: e(2,1).
5: $\leftarrow \mathrm{t}(1, \mathrm{~A})$.

$:-t\left(1, Y^{\prime}\right), \quad:-e(1, Y), e(Y, A) \quad:-$

Non-Termination! :-e (2,A)
and no solutions

6.4 SLD-Resolution

6.5 OLDT-Resolution

Ideas:

- Non-termination due to infinite branches
- Infinite branches due to
- variants of the same goal on the infinite branch or
- subsuming goals on the infinite branch
- Avoidance of repeated evaluation of a subgoal on the same computation path
- Side effect: No repeated evaluations of subgoals at all
- Distinction of tabled predicates
- Distinction between solution- and lookup nodes.

6.5 OLDT-Resolution

6.5 OLDT-Resolution

$$
\begin{aligned}
& \begin{array}{l}
\text { 1: } t(X, Y) \leftarrow e(X, Y) . \\
\text { 2: } t(X, Y) \leftarrow t(X, Z), e(Z, Y) .
\end{array} \\
& \text { 3: e(1,2). } \\
& \text { 4: e(2,1). } \\
& \text { 5: } \leftarrow \mathrm{t}(1, \mathrm{~A}) \text {. }
\end{aligned}
$$

6.5 OLDT-Resolution

$$
\begin{aligned}
& \begin{array}{l}
\text { 1: } t(X, Y) \leftarrow e(X, Y) . \\
\text { 2: } t(X, Y) \leftarrow t(X, Z), e(Z, Y) .
\end{array} \\
& \text { 3: e(1,2). 1, }\{X / 1, Y \mid A\} 2,\{X / 1, Y / A\} \text { Lookup-Node } \\
& \text { 4: e(2,1). } \\
& \text { 5: } \leftarrow \mathrm{t}(1, \mathrm{~A}) \text {. }
\end{aligned}
$$

6.5 OLDT-Resolution

$$
\begin{aligned}
& \begin{array}{l}
\text { 1: } t(X, Y) \leftarrow e(X, Y) . \quad:-t(X, A) \text { - Solution-Node } \\
\text { 2: } t(X, Y) \leftarrow t(X, Z), e(Z, Y) .
\end{array} \\
& \text { 3: e(1,2). } \\
& \text { 4: e }(2,1) \text {. } \\
& \text { 5: } \leftarrow \mathrm{t}(1, \mathrm{~A}) \text {. }
\end{aligned}
$$

6.5 OLDT-Resolution

$$
\begin{aligned}
& 1: \mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{e}(\mathrm{X}, \mathrm{Y}) . \\
& 2: \mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{t}(\mathrm{X}, \mathrm{Z}), \mathrm{e}(\mathrm{Z}, \mathrm{Y}) . \\
& 3: \mathrm{e}(1,2) . \\
& 4: \mathrm{e}(2,1) . \\
& 5: \leftarrow \mathrm{t}(1, \mathrm{~A}) .
\end{aligned}
$$

6.2 The Magic Templates Transformation Algorithm

Until now, we have seen:

- forward chaining (data driven) evaluation of LP
- backward chaining (goal driven) evaluation of LP
- improvement of backward chaining by tabling

Idea of the magic templates transformation:

- take the best of both worlds:
- Efficiency of goal directedness
- Good termination properties of forward chaining
- Easy implementation of a forward chaining rule engine

6.2 The Magic Templates Transformation Algorithm

```
t(X,Y) \leftarrowr(X,Y)
t(X,Z)}\leftarrow t(X,Y), t(Y,Z
r(a,b).
r(b,c).
r(c,d).
```


6.2 The Magic Templates Transformation Algorithm

```
t(X,Y) \leftarrowr(X,Y)
t(X,Z)}\leftarrow t(X,Y), t(Y,Z
r(a,b).
r(b,c).
r(c,d).
t(b, Answer).
```


6.2 The Magic Templates Transformation Algorithm

```
t(X,Y) \leftarrowr(X,Y)
t
r(a,b).
r(b,c).
r(c,d).
t(b, Answer).
```

Goal-directed evaluation Information passing

- $\mathrm{t} \hookrightarrow \boldsymbol{x}$.
$-\mathrm{t}_{1} \hookrightarrow x \mathrm{t}_{2}$.
- $\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$.

6.2 The Magic Templates Transformation Algorithm

```
t(X,Y) \leftarrowr(X,Y)
t}\mp@subsup{1}{}{bf}(\textrm{X},\textrm{Z})\leftarrow\mp@subsup{\textrm{t}}{2}{bf}(\textrm{X},\textrm{Y}),\mp@subsup{\textrm{t}}{3}{bf}(\textrm{Y},\textrm{Z}
r(a,b).
r(b,c).
r(c,d).
t(b, Answer).
```

Goal-directed evaluation Information passing

- $\mathrm{t} \hookrightarrow \boldsymbol{x}$.
$-\mathrm{t}_{1} \hookrightarrow x \mathrm{t}_{2}$.
$-\mathrm{t}_{2} \hookrightarrow Y \mathrm{t}_{3}$.
Adornment (bound, free)

6.2 The Magic Templates Transformation Algorithm

```
\(\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})\)
\(\mathrm{t}_{1}{ }^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}{ }^{\text {bf }}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}{ }^{b f}(\mathrm{Y}, \mathrm{Z})\)
\(r(a, b)\).
\(r(b, c)\).
\(r(c, d)\).
\(\leftarrow \mathrm{t}(\mathrm{b}\), Answer).
```

Goal-directed evaluation Information passing

- $\mathrm{t} \hookrightarrow \boldsymbol{x}$.
$-\mathrm{t}_{1} \hookrightarrow x \mathrm{t}_{2}$.
$-\mathrm{t}_{2} \hookrightarrow Y \mathrm{t}_{3}$.
Adornment (bound, free)
$m a g _t^{b f}(b)$.
Magic Rules

Rewritten Rules

6.2 The Magic Templates Transformation Algorithm

```
\(\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})\)
\(\mathrm{t}_{1}{ }^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}{ }^{\text {bf }}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}{ }^{b f}(\mathrm{Y}, \mathrm{Z})\)
\(r(a, b)\).
\(r(b, c)\).
\(r(c, d)\).
\(\leftarrow \mathrm{t}(\mathrm{b}\), Answer).
```

Goal-directed evaluation Information passing
$\rightarrow \mathrm{t} \hookrightarrow x$ r.
$-\mathrm{t}_{1} \hookrightarrow x \mathrm{t}_{2}$.

- $\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$.

Adornment (bound, free)
mag_t ${ }^{b f}(b)$.
mag_r $x^{b f}(X) \leftarrow$ mag_t $^{b f}(X)$.
Magic Rules

Rewritten Rules

6.2 The Magic Templates Transformation Algorithm

```
\(\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})\)
\(\mathrm{t}_{1}{ }^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}{ }^{\text {bf }}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}{ }^{b f}(\mathrm{Y}, \mathrm{Z})\)
\(r(a, b)\).
\(r(b, c)\).
\(r(c, d)\).
\(\leftarrow \mathrm{t}(\mathrm{b}\), Answer).
```

Goal-directed evaluation Information passing
$\rightarrow \mathrm{t} \hookrightarrow x$ r.
$-\mathrm{t}_{1} \hookrightarrow x \mathrm{t}_{2}$.
$-\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$.
Adornment (bound, free)

```
\(m^{\prime} \mathrm{t}^{b f}(\mathrm{~b})\).
\(m^{\prime} g_{-} b f(X) \longleftarrow \operatorname{mag}_{-}{ }^{b f}(X)\).
\(m^{2} g_{-} t^{b f}(X) \leftarrow \operatorname{mag}_{-}{ }^{b f}(X)\).
```

Magic Rules

Rewritten Rules

6.2 The Magic Templates Transformation Algorithm

```
\(\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})\)
\(\mathrm{t}_{1}{ }^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}{ }^{\text {bf }}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}{ }^{b f}(\mathrm{Y}, \mathrm{Z})\)
\(r(a, b)\).
\(r(b, c)\).
\(r(c, d)\).
\(\leftarrow \mathrm{t}(\mathrm{b}\), Answer).
```

Goal-directed evaluation Information passing
$\rightarrow \mathrm{t} \hookrightarrow x$ r.
$-\mathrm{t}_{1} \hookrightarrow x \mathrm{t}_{2}$.
$-\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$.
Adornment (bound, free)

```
mag_t \({ }^{b f}(\mathrm{~b})\).
mag_r \(^{b f}(\mathrm{X}) \leftarrow\) mag_t \(^{b f}(\mathrm{X})\).
mag_t \(^{b f}(X) \leftarrow\) mag_t \(^{b f}(X)\).
\(\mathrm{mag}_{-} \mathrm{t}^{b f}(\mathrm{Y}) \leftarrow \mathrm{mag}_{-} \mathrm{t}^{b f}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y})\).
```

Magic Rules

Rewritten Rules

6.2 The Magic Templates Transformation Algorithm

```
\(\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})\)
\(\mathrm{t}_{1}{ }^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}{ }^{\text {bf }}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}{ }^{b f}(\mathrm{Y}, \mathrm{Z})\)
\(r(a, b)\).
\(r(b, c)\).
\(r(c, d)\).
\(\leftarrow \mathrm{t}(\mathrm{b}\), Answer).
```

Goal-directed evaluation Information passing
$-\mathrm{t} \hookrightarrow x \mathrm{r}$.
$-\mathrm{t}_{1} \hookrightarrow x \mathrm{t}_{2}$.
$-\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$.
Adornment (bound, free)

```
\(\operatorname{mag}_{-} \mathrm{t}^{b f}(\mathrm{~b})\).
\(\operatorname{mag}_{-}{ }^{b f}(X) \leftarrow \operatorname{mag}_{-} t^{b f}(X)\).
\(m^{2} g_{-}{ }^{b f}(X) \leftarrow \operatorname{mag}_{-} \mathrm{t}^{b f}(X)\).
\(\mathrm{mag}_{-} \mathrm{t}^{b f}(\mathrm{Y}) \leftarrow \mathrm{mag}_{-} \mathrm{t}^{b f}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y})\).
\(\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{mag}_{\mathrm{t}} \mathrm{t}^{b f}(\mathrm{X}), \mathrm{r}(\mathrm{X}, \mathrm{Y})\).
\(\mathrm{t}(\mathrm{X}, \mathrm{Z}) \leftarrow\) mag_t \(^{b f}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y}), \mathrm{t}(\mathrm{Y}, \mathrm{Z})\)
\(r(a, b) . \quad r(b, c) . r(c, d)\).
```

Magic Rules

Rewritten Rules

6.2 The Magic Templates Transformation Algorithm

```
\(\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})\)
\(\mathrm{t}_{1}{ }^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}{ }^{\text {bf }}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}{ }^{b f}(\mathrm{Y}, \mathrm{Z})\)
\(r(a, b)\).
\(r(b, c)\).
\(r(c, d)\).
\(\leftarrow \mathrm{t}(\mathrm{b}\), Answer).
```

mag_t $^{b f}(\mathrm{~b})$.
mag_r $x^{b f}(X) \leftarrow$ mag_t $^{b f}(X)$.
mag_t $^{b f}(X) \leftarrow$ mag_t $^{b f}(X)$.
$\operatorname{mag}_{-} \mathrm{t}^{b f}(\mathrm{Y}) \leftarrow \operatorname{mag}_{\mathrm{t}} \mathrm{t}^{b f}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{mag}_{\mathrm{t}} \mathrm{t}^{b f}(\mathrm{X}), \mathrm{r}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{t}(\mathrm{X}, \mathrm{Z}) \leftarrow$ mag_t $^{b f}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y}), \mathrm{t}(\mathrm{Y}, \mathrm{Z})$
$r(a, b) . r(b, c) . r(c, d)$.

Goal-directed evaluation Information passing

- $\mathrm{t} \longrightarrow \boldsymbol{x}$.
$-\mathrm{t}_{1} \hookrightarrow X \mathrm{t}_{2}$.
$-\mathrm{t}_{2} \hookrightarrow Y \mathrm{t}_{3}$.
Adornment (bound, free)
Evaluation:
mag_t $^{b f}(\mathrm{~b})$.
$t(b, c)$.
mag_t ${ }^{b f}(c)$.
$t(c, d)$.
mag_t ${ }^{b f}(d)$.
$t(b, d)$.

6.3 The Rete Algorithm

- By Charles Forgy
- Forward chaining evaluation
- Storage of partially instantiated rules
- Sharing of instantiated literals among similar rules
- Suitable for reason maintenance
- Several optimizations, industrial use

6.3 The Rete Algorithm

6.6 The Backward Fixpoint Procedure

Ideas:

- Desirability of fixpoint computation
- Set-oriented fact processing
- bottom-up meta-interpretation
- Rewriting- resolution-based methods as implementations of the BFP
- Alexander and Magic Set methods as specializations of the BFP
- BFP as a logical specification of SLD-Resolution

6.6 The Backward Fixpoint Procedure

```
fact(Q) \leftarrow queryb(Q) ^ rule(Q \leftarrow B) ^ evaluate(B).
queryb}(B)\leftarrow\mp@subsup{queryb}{b}{(Q)}\wedge\operatorname{rule}(Q \leftarrow B)
queryb}\mp@subsup{b}{b}{}(\mp@subsup{Q}{1}{})\leftarrow\mp@subsup{q}{~}{*
queryb}(\mp@subsup{Q}{2}{})\leftarrow\mp@subsup{queryb}{b}{(Q}\mp@subsup{Q}{1}{}\wedge\mp@subsup{Q}{2}{})\wedge evaluate(\mp@subsup{Q}{1}{})
```

- Rules of the object program
- Rules of the meta-interpeter
- bottom-up (forward chaining) evaluation of the meta-interpreter \Rightarrow top-down (backward chaining) evaluation of the object program.
- evaluate (B) is true if all facts in B have been proven.

6.6 The Backward Fixpoint Procedure

```
fact(Q) \leftarrow queryb
queryb}(\textrm{B})\leftarrow\mp@subsup{queryb}{b}{(Q)}\wedge\operatorname{rule}(Q \leftarrow B)
queryb}(\mp@subsup{Q}{1}{})\leftarrow\mp@subsup{q}{}{\prime
queryb}\mp@subsup{}{b}{}(\mp@subsup{Q}{2}{})\leftarrow\mp@subsup{q}{~}{\prime
t(X,Y) \leftarrowr r(X,Y).
t(X,Z) \leftarrow t(X,Y), t(Y,Z).
r(a,b).
r(b,c).
r(c,d).
t(b, Answer).
```


6.6 The Backward Fixpoint Procedure

```
fact(Q) \leftarrow queryb}(Q) ^ rule(Q \leftarrow B) ^ evaluate(B)
queryb}(\textrm{B})\leftarrow\mp@subsup{queryb}{b}{(Q)}\wedge\operatorname{rule}(Q\leftarrowB)
queryb}(\mp@subsup{Q}{1}{})\leftarrow\mp@subsup{q}{}{\prime
queryb}\mp@subsup{}{(}{}(\mp@subsup{Q}{2}{})\leftarrow\mp@subsup{q}{~}{\prime
rule( t(X,Y) \leftarrowr(X,Y) ).
rule( t(X,Z) \leftarrow t(X,Y), t(Y,Z) ).
fact( r(a,b) ).
fact( r(b,c) ).
fact( r(c,d) ).
queryb( t(b,Answer) ).
```


6.6 The Backward Fixpoint Procedure

```
fact(Q) \leftarrow queryb(Q) ^ rule(Q \leftarrow B) ^ evaluate(B).
queryb}(B)\leftarrow\mp@subsup{queryb}{b}{(Q)}\wedge\operatorname{rule}(Q \leftarrow B)
queryb}\mp@subsup{b}{b}{}(\mp@subsup{Q}{1}{})\leftarrow\mp@subsup{q}{~}{*
queryb}(\mp@subsup{Q}{2}{})\leftarrow\mp@subsup{queryb}{b}{(}\mp@subsup{Q}{1}{}\wedge\mp@subsup{|}{2}{})\wedge evaluate(\mp@subsup{Q}{1}{})
```

```
rule( t(X,Y) \leftarrowr(X,Y) ). Evaluation:
rule( t(X,Z) \leftarrow t(X,Y), t(Y,Z) ). fact( t(b,c) ).
fact( r(a,b) )
fact( r(b,c) ).
fact( r(c,d) ).
queryb( t(b,Answer) ).

Evaluation:
```

queryb(t(b,Y), t(Y,Z)).

```
queryb( t(b,Y), t(Y,Z) ).
queryb( t(b,Y) ).
queryb( t(b,Y) ).
queryb( t(c,Z) ).
queryb( t(c,Z) ).
fact( t(c,d) ).
fact( t(c,d) ).
fact( t(b,d) ).
```

```
fact( t(b,d) ).
```

```

\section*{-Session 14:30-16:00。}
- 6 Operational Semantics: Positive Rule Sets
- 7 Operational Semantics: Rule Sets with Non-monotonic Negation

\section*{7 Operational Semantics: Negative}
- 7.1 Iterative Fixpoint Semantics, Stratified
- 7.2 Magic Set Transformation, Stratified
\(\rightarrow\) p. 98
- 7.3 Stable Model Semantics
- 7.4 Stable Model Semantics, More Efficient
- 7.5 Well-Founded Model Semantics
- 7.6 Well-Founded, Alternating Fixpoint Procedure
- 7.7 Other Query Answering Methods for Negation
\(\rightarrow\) p. 100
\(\rightarrow\) p. 101
\(\rightarrow\) p. 103
\(\rightarrow\) p. 105
\(\rightarrow\) p. 106

\subsection*{7.1 Iterative Fixpoint Semantics, Stratified}
```

q}\leftarrow\textrm{p}
p}\leftarrow\mathrm{ not q.

```

This Section shows algorithms for the computation of
- Stratified Semantics
- Well-Founded Semantics
- Stable Model Semantics

\subsection*{7.1 Iterative Fixpoint Semantics, Stratified}

Recapitulation of Stratification:
- Partitioning of the set of rules \(S\) of a program
- \(C_{1}, C_{2}\) define the same predicate \(P \Rightarrow C_{1}, C_{2}\) must be in the same stratum
- \(p(X)\) is a positive body literal of a rule in layer \(i\), then \(p\) must be defined in a layer \(j \leq i\).
- \(\neg p(X)\) is a negative body literal of a rule in layer \(i\), then \(p\) must be defined in layer \(j<i\).

\subsection*{7.1 Iterative Fixpoint Semantics, Stratified}

Recapitulation of Stratification:
- Partitioning of the set of rules \(S\) of a program
- \(C_{1}, C_{2}\) define the same predicate \(P \Rightarrow C_{1}, C_{2}\) must be in the same stratum
- \(p(X)\) is a positive body literal of a rule in layer \(i\), then \(p\) must be defined in a layer \(j \leq i\).
- \(\neg p(X)\) is a negative body literal of a rule in layer \(i\), then \(p\) must be defined in layer \(j<i\).

Iterative fixpoint semantics only provides a semantics for stratifiable programs

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X).
has_child(X) \leftarrow human(X), not has_hobbies(X).
married(X) \leftarrow human(X), has_child(X).
bachelor(X) \leftarrow male(X), not married(X).

```
Evaluation:
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
- stratum 1: \(M_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john)\}.
- stratum 2: \(M_{2}:=\boldsymbol{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathbf{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor (john) \}.

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X).
has_child(X) \leftarrow human(X), not has_hobbies(X).
married(X) \leftarrow human(X), has_child(X).
bachelor(X) \leftarrow male(X), not married(X).

```
Evaluation:
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
- stratum 1: \(M_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john)\}.
- stratum 2: \(M_{2}:=\boldsymbol{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathbf{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor (john) \}.

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X).
has_child(X) \leftarrow human(X), not has_hobbies(X).
married(X) \leftarrow human(X), has_child(X).
bachelor(X) \leftarrow male(X), not married(X).

```
stratum 1
Evaluation:
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
- stratum 1: \(M_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john) \}.
- stratum 2: \(M_{2}:=\boldsymbol{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathbf{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor (john) \}.

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X).
has_child(X) \leftarrow human(X), not has_hobbies(X).
married(X) \leftarrow human(X), has_child(X).
bachelor(X) \leftarrow male(X), not married(X).

```
stratum 2
Evaluation:
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
- stratum 1: \(M_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john) \}.
- stratum 2: \(M_{2}:=\boldsymbol{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathbf{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor (john) \}.

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X). stratum 1
has_child(X) \leftarrow human(X), not has_hobbies(X). stratum 2
married(X) \leftarrow human(X), has_child(X). stratum 2
bachelor(X) \leftarrow male(X), not married(X).

```
Evaluation:
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
- stratum 1: \(M_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john) \}.
- stratum 2: \(M_{2}:=\mathbf{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathbf{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor (john) \}.

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X).
has_child(X) \leftarrow human(X), not has_hobbies(X).
married(X) \leftarrow human(X), has_child(X).
bachelor(X) \leftarrow male(X), not married(X).

```
stratum 1
stratum 2
stratum 2
stratum 3

\section*{Evaluation:}
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
\(\Rightarrow\) stratum 1: \(M_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john) \}.
- stratum 2: \(M_{2}:=\mathbf{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathbf{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor \((\) john \()\}\).

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X).
has_child(X) \leftarrow human(X), not has_hobbies(X).
married(X) \leftarrow human(X), has_child(X).
bachelor(X) \leftarrow male(X), not married(X).

```
stratum 1
stratum 2
stratum 2
stratum 3

Evaluation:
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
\(\Rightarrow\) stratum 1: \(M_{1}:=T_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john) \}.
- stratum 2: \(M_{2}:=\mathbf{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathbf{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor \((j \circ h n)\}\).

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X).
has_child(X) \leftarrow human(X), not has_hobbies(X).
married(X) \leftarrow human(X), has_child(X).
bachelor(X) \leftarrow male(X), not married(X).

```
stratum 1
stratum 2
stratum 2
stratum 3

Evaluation:
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
- stratum 1: \(M_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john) \}.
\(\Rightarrow\) stratum 2: \(M_{2}:=\boldsymbol{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathbf{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor (john) \}.

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X).
has_child(X) \leftarrow human(X), not has_hobbies(X).
married(X) \leftarrow human(X), has_child(X).
bachelor(X) \leftarrow male(X), not married(X).

```
stratum 1
stratum 2
stratum 2
stratum 3

Evaluation:
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
- stratum 1: \(M_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john) \}.
- stratum 2: \(M_{2}:=\mathbf{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathrm{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor \((\) john \()\}\).

\section*{Stratification Example}
```

human(john).
male(john).
plays_the_piano(john).
has_hobbies(X) \leftarrow plays_the_piano(X).
has_child(X) \leftarrow human(X), not has_hobbies(X).
married(X) \leftarrow human(X), has_child(X).
bachelor(X) \leftarrow male(X), not married(X).

```
stratum 1
stratum 2
stratum 2
stratum 3

Evaluation:
- \(M_{0}:=\) human(john), male(john), plays_the_piano(john)
- stratum 1: \(M_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(M_{0}\right)=M_{0} \cup\{\) has_hobbies (john) \}.
- stratum 2: \(M_{2}:=\mathbf{T}_{S_{2}}^{\omega}\left(M_{1}\right)=M_{1} \cup \emptyset\)
- stratum 3: \(M_{3}:=\mathbf{T}_{S_{3}}^{\omega}\left(M_{2}\right)=M_{2} \cup\{\) bachelor (john) \}.

\subsection*{7.2 Magic Set Transformation, Stratified}

Problem with the magic set transformation for programs with negation:
- The Magic Set Transformation of stratified programs may have unstratified outcome.

Causes for unstratification of the MST:
- positive and negative occurrence of a literal in a rule body
- multiple negative occurrences of a literal in a rule body
- negative literal in a recursive rule

Solution:
- distinction of contexts of problematic atoms

\subsection*{7.2 Magic Set Transformation, Stratified}

Problem with the magic set transformation for programs with negation:
- The Magic Set Transformation of stratified programs may have unstratified outcome.

Causes for unstratification of the MST:
- positive and negative occurrence of a literal in a rule body
- multiple negative occurrences of a literal in a rule body
- negative literal in a recursive rule

Solution:
- distinction of contexts of problematic atoms

\subsection*{7.2 Magic Set Transformation, Stratified}
- b occurs both negatively and positively in the first rule.

- Resulting program unstratifiable!

\subsection*{7.2 Magic Set Transformation, Stratified}
```

a(x) \leftarrow not b_1(x), c(x,y), b_2(y).
b_1(x) \leftarrowc(x,y), b_1(y).
b_2(x) \leftarrowc(x,y), b_2(y).

```
magic_a \({ }^{b}\) (1).
magic_b_1 \({ }^{b}(x) \leftarrow \operatorname{magic}_{-}{ }^{b}(x)\).
magic_b_2 \({ }^{b}(\mathrm{y}) ~ \leftarrow\) magic_a \({ }^{b}(x)\), not \(b_{-} 1(x), c(x, y)\). magic_b \(^{b}(\mathrm{y}) ~ \leftarrow\) magic \({ }^{b}(x), \operatorname{not} b(x), c(x, y)\). \(\mathrm{a}(\mathrm{x}) \leftarrow\)
magic \({ }^{b}(x), \operatorname{not} b(x), c(x, y), b(y)\). magic_ \(b^{b}(y) \leftarrow\) magic_ \(^{b}(x), c(x, y)\). \(b(x) \leftarrow \operatorname{magic}^{\prime} b^{b}(x), c(x, y), b(y)\).
- Context labelling of predicates
- Rule replication

- Result is stratifiable!

\subsection*{7.2 Magic Set Transformation, Stratified: Exercise}
- Consider the Program in Listing
- Assume the facts \(c(1,2), b(2), c(0,1)\).
- Consider the query ?- a(1).
- Compare the results of the forward chaining evaluation of the original program with the one of the rewritten program. \(\rightarrow\) p.100, Lst.7_20

\subsection*{7.3 Stable Model Semantics: Recapitulation}
```

married(john, mary).
male(X) \leftarrowmarried(X,Y), not male(Y)

```

Gelfond Lifschitz transformation with respect to the set \(M=\{\operatorname{married}(j o h n, \operatorname{mary}), \operatorname{male}(J o h n)\}\)
married(john, mary).
male(john) \(\leftarrow\) married(john, mary), not male(mary).
male(mary) \(\leftarrow\) married(mary, john), not male(john). male(mary) \(\leftarrow\) married(mary, mary), not male(mary).
male(john) \(\leftarrow \operatorname{married}(j o h n, j o h n)\), not male(john).

\subsection*{7.3 Stable Model Semantics: An algorithm}

Ideas:
- construction of full sets from a set of negative antecedents
- backtracking generates all possible candidates for full sets
- use of heuristics to limit the search space
- straight-forward derivation of stable models from full sets

\subsection*{7.3 Stable Model Semantics: An algorithm}
- Negative antecedents \(\operatorname{NAnt(P):~}\)
- Reduct \(R(P, L)\), Deductive closure \(D C L(P, L)\) :
- Full sets:
\(\rightarrow 7.4\) p.101, Def. 217
\(\rightarrow 7.4\) p.101, Def. 218
\(\rightarrow 7.4\) p.101, Def. 219

Example: \(P:=\{q \leftarrow \neg r ; q \leftarrow \neg p, r \leftarrow q\}\)
- Negative antecedents of \(P:\{r, \mathrm{p}\}\)
- Reduct of \(P\) with respect to \(L:=\{p, \neg p\}:\{q \leftarrow ; r \leftarrow q\}\)
- Deductive closure \(\operatorname{Dcl}(P, L)=\{p, q, r\}\)
- First try: \(\Lambda_{1}:=\{\neg p, \neg r\}\)
- Reduct \(R\left(P, \Lambda_{1}\right)=\{q ; r \leftarrow q\}\)
- Deductive closure \(\operatorname{Dcl}\left(P, \Lambda_{1}\right)=\{q, r\}\). \(\Lambda_{1}\) not a full set since \(r \in \operatorname{Dcl}\left(P, \Lambda_{1}\right)\) and \(\neg r \in \Lambda_{1}\).
- Second try: \(\Lambda_{2}:=\{\neg p\}\)
- Reduct \(R\left(P, \Lambda_{2}\right)=\{q ; r \leftarrow q\}\)
- Deductive closure \(\operatorname{Dcl}\left(P, \Lambda_{2}\right)=\{q, r\}\). Hence \(\Lambda_{2}\) is a full set for \(P\).

\subsection*{7.3 Stable Model Semantics: An algorithm}
full sets vs. stable models
- P: ground program
- \(\Lambda\) : set of negative literals
- if \(\Lambda\) is a full set wrt \(P\) then \(\operatorname{Dcl}(P, \Lambda)\) is a stable model of \(P\)
- if \(\Delta\) is a stable model of \(P\), then \(\Lambda=\operatorname{not}(\operatorname{NAnt}(P)-\Delta)\) is a full set wrt \(P\) such that \(\operatorname{Dcl}(P, \Lambda)=\Delta\).

Problem: Full sets are still guessed!

\subsection*{7.3 Stable Model Semantics: An algorithm}
```

function stable_model(P,B,\phi)
let B' = expand(P,B) in
if conflict(P,B') then false
else
if (B' covers NAnt(P)) then test(Dcl(P,B'),\phi)
else
take some \chi}\inNAnt(P) not covered by B'
if stable_model(P, B'\cup{not(\chi)}, }\phi\mathrm{) then true
else stable_model(P, B'\cup{\chi}, \phi)

```
- Good choice for expand ( \(\mathrm{P}, \mathrm{B}\) ) is the least fix point of the Fitting operator \(\rightarrow 7.4\) p.102, Def. 223

\subsection*{7.5 Well-Founded Model Semantics}

Recall:
- unfounded set
- union of unfounded sets is unfounded
- existence of unique maximal unfounded set for any program
- monotonic operators \(\mathbf{T}_{S}, \mathbf{U}_{S}, \mathbf{W}_{S}\)
- well-founded semantics may be partial or total \(\rightarrow 5.3 .3\) p.64, Def. 181

Problem: unfounded sets must be guessed!
A possible solution: Alternating Fixpoint Procedure

\section*{The Alternating Fixpoint Procedure}

Ideas:
- \(P_{H}\) : Herbrand instantiation of a Program \(P\)
- \(\mathbf{T}_{P}(I)\) : immediate consequence operator
- \(\tilde{I}\) : complement of the set of literals "known to be false"
- iteratively build up a set of negative conclusions \(\tilde{A}\)
- straight-forward derivation of positive conclusions from \(\tilde{A}\) at the end
- nested fixpoint calculation
- each iteration is a two-phase process:
1. Transformation of an underestimate \(\tilde{I}\) of negative conclusions into a temporary overestimate \(\tilde{\mathbf{S}}_{P}(\tilde{I}):=\overline{\mathbf{S}_{P}(\tilde{I})}:=\neg \cdot\left(H-\mathbf{S}_{P}(\tilde{I})\right)\).
2. Transformation of the overestimate back to an underestimate \(\mathbf{A}_{P}(\tilde{l}):=\tilde{\mathbf{S}}_{P}\left(\tilde{\mathbf{S}}_{P}(\tilde{l})\right)\)

\section*{Alternating Fixpoint Procedure}


\section*{Alternating Fixpoint Procedure: Example}
\[
\begin{aligned}
& a \leftarrow c, \neg b . \\
& b \leftarrow \neg a . \\
& c . \\
& p \leftarrow q, \neg s . \\
& p \leftarrow r, \neg s . \\
& p \leftarrow t . \\
& q \leftarrow p . \\
& r \leftarrow q . \\
& r \leftarrow \neg c .
\end{aligned}
\]
- \(H=\{a, b, c, p, q, r, s, t\}\)
- \(\tilde{I}_{0}=\emptyset\)
- \(\mathbf{S}_{P}(\emptyset)=\{c\}\)
- \(\tilde{I}_{1}=\tilde{\mathbf{S}}_{P}(\emptyset)=\{\neg a, \neg b, \neg p, \neg q, \neg r, \neg s, \neg t\}\)
- \(\mathbf{S}_{P}\left(\tilde{I}_{1}\right)=\{c, a, b\}\)
- \(\tilde{I}_{2}=\tilde{\mathbf{S}}_{P}\left(\tilde{I}_{1}\right)=\{\neg p, \neg q, \neg r, \neg s, \neg t\}\)
- \(\tilde{I}_{3}=\tilde{I}_{1}\) and \(\tilde{I}_{4}=\tilde{I}_{2}\). Fixpoint reached!
- Well founded partial model is
\(\{c, \neg p, \neg q, \neg r, \neg s, \neg t\}\)

\subsection*{7.7 Other Query Answering Methods for Negation}
- SLD resolution with negation as failure - SLDNF (completion semantics)
- SLS resolution (perfect model semantics)
- global SLS resolution (well founded model semantics)

\section*{-Session 16:30-18:00。}
- 8 Complexity and Expressive Power of Logic Programming Formalisms

\section*{The Story So far}
- Query languages with the form of logics
- Syntax, declarative and operational semantics
- How much resource (time, space) do we need for the computation of these semantics? \(\Rightarrow\) Complexity
- What kind of properties can a given query language express?
- Is \(Q_{1}\) more expressive than \(Q_{2}\) ? \(\Rightarrow\) Expressive power

A dream query language should have:
- lower complexity, and
- more expressive power

\section*{The Story So far}
- Query languages with the form of logics
- Syntax, declarative and operational semantics
- How much resource (time, space) do we need for the computation of these semantics? \(\Rightarrow\) Complexity
- What kind of properties can a given query language express?
- Is \(Q_{1}\) more expressive than \(Q_{2}\) ? \(\Rightarrow\) Expressive power

A dream query language should have:
- lower complexity, and
- more expressive power

\section*{The Story So far}
- Query languages with the form of logics
- Syntax, declarative and operational semantics
- How much resource (time, space) do we need for the computation of these semantics? \(\Rightarrow\) Complexity
- What kind of properties can a given query language express?
- Is \(Q_{1}\) more expressive than \(Q_{2}\) ? \(\Rightarrow\) Expressive power

A dream query language should have:
- lower complexity, and
- more expressive power

\section*{The Story So far}
- Query languages with the form of logics
- Syntax, declarative and operational semantics
- How much resource (time, space) do we need for the computation of these semantics? \(\Rightarrow\) Complexity
- What kind of properties can a given query language express?
- Is \(Q_{1}\) more expressive than \(Q_{2}\) ? \(\Rightarrow\) Expressive power

\section*{A dream query language should have:}
- lower complexity, and
- more expressive power

\section*{The Story So far}
- Query languages with the form of logics
- Syntax, declarative and operational semantics
- How much resource (time, space) do we need for the computation of these semantics? \(\Rightarrow\) Complexity
- What kind of properties can a given query language express?
- Is \(Q_{1}\) more expressive than \(Q_{2}\) ? \(\Rightarrow\) Expressive power

\section*{A dream query language should have:}
- lower complexity, and
- more expressive power

\section*{The Story So far}
- Query languages with the form of logics
- Syntax, declarative and operational semantics
- How much resource (time, space) do we need for the computation of these semantics? \(\Rightarrow\) Complexity
- What kind of properties can a given query language express?
- Is \(Q_{1}\) more expressive than \(Q_{2}\) ? \(\Rightarrow\) Expressive power

A dream query language should have:
- lower complexity, and
- more expressive power

\section*{The Results Overview}
\begin{tabular}{lll}
\hline Query & Data Complexity & Program Complexity \\
\hline Conjunctive query & \(A C_{0}\) & NP-complete \\
FO & \(A C_{0}\) & PSPACE-complete \\
Prop. LP & & P-complete \\
Datalog & P-complete & EXPTIME-complete \\
Stratified Datalog & P-complete & EXPTIME-complete \\
Datalog(WFM) & P-complete & EXPTIME-complete \\
Datalog(INF) & P-complete & EXPTIME-complete \\
Datalog(Stable Model) & co-NP-complete & co-NEXPTIME-complete \\
Disjun. Datalog & \(\Pi_{2}^{p}\)-complete & co-NEXPTIME \({ }^{\text {NP }}\)-complete \\
\hline
\end{tabular}

\section*{The Results Overview}

Today we shall concentrate on
\begin{tabular}{lll} 
Query & Data Complexity & Program Complexity \\
\hline Conjunctive query & \(A C_{0}\) & NP-complete \\
FO & \(A C_{0}\) & PSPACE-complete \\
Prop. LP & & P-complete \\
Datalog & P-complete & EXPTIME-complete \\
Stratified Datalog & P-complete & EXPTIME-complete \\
Datalog(WFM) & P-complete & EXPTIME-complete \\
Datalog(INF) & P-complete & EXPTIME-complete \\
Datalog(Stable Model) & co-NP-complete & co-NEXPTIME-complete \\
Disjun. Datalog & \(\Pi_{2}^{p}\)-complete & co-NEXPTIME \({ }^{\text {NP }}\)-complete
\end{tabular}

\section*{The Goal of this Lecture}
- Basic concept of Turing machine, reduction, data complexity and program complexity
- How to prove completeness, Logspace reduction
- Get a taste of the hardness proofs of logic programming via nice encoding of a Turing machine
- Learn basics about expressive power

\section*{Decision Problems}
- Problems where the answer is "yes" or "no"
- Formally,
- A language \(L\) over some alphabet \(\Sigma\).
- An instance is given as a word \(x \in \Sigma^{*}\).
- Question: whether \(x \in L\) holds
- The resources (i.e., either time or space) required in the worst case to find the correct answer for any instance \(x\) of a problem \(L\) is referred to as the complexity of the problem \(L\)

\section*{Complexities}

Let \(P\) be a program with some query language, \(D_{\text {in }}\) input database and \(A\) a ground atom.
- data complexity

Let \(P\) be fixed
Instance. \(D_{\text {in }}\) and \(A\).
Question. Does \(D_{\text {in }} \cup P \models A\) hold?
- program complexity (a.k.a. expression complexity)

Let \(D_{i n}\) be fixed.
Instance. \(P\) and \(A\).
Question. Does \(D_{\text {in }} \cup P \models A\) hold?
- combined complexity

Instance. \(P, D_{\text {in }}\) and \(A\).
Question. Does \(D_{\text {in }} \cup P \models A\) hold?

\section*{Complexity classes}
\[
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} \subseteq \text { NEXPTIME }
\]

These are the classes of problems which can be solved in
- logarithmic space (L),
- non-deterministic logarithmic space (NL),
- polynomial time (P),
- non-deterministic polynomial time (NP),
- polynomial space (PSPACE),
- exponential time (EXPTIME), and
- non-deterministic exponential time (NEXPTIME).

\section*{Complexity classes}
\[
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} \subseteq \text { NEXPTIME }
\]

These are the classes of problems which can be solved in
- logarithmic space (L),
- non-deterministic logarithmic space (NL),
- polynomial time (P),
- non-deterministic polynomial time (NP),
- polynomial space (PSPACE),
- exponential time (EXPTIME), and
- non-deterministic exponential time (NEXPTIME). we shall encounter in this course: P, NP, PSPACE, EXPTIME

\section*{Complexity classes - co Problems}
- Any complexity class \(\mathcal{C}\) has its complementary class denoted by co- \(\mathcal{C}\)
- For every language \(L \subseteq \Sigma^{*}\), let \(\bar{L}\) denote its complement, i.e. the set \(\Sigma^{*} \backslash L\). Then co-C is \(\{\bar{L} \mid L \in \mathcal{C}\}\).
- Every deterministic complexity class is closed under complement, because one can simply add a last step to the algorithm which reverses the answer. (co-P?)

\section*{Complexity classes - Reductions}
- Logspace Reduction
- Let \(L_{1}\) and \(L_{2}\) be decision problems (languages over some alphabet \(\Sigma\) ).
- \(R: \Sigma^{*} \rightarrow \Sigma^{*}\) be a function which can be computed in logarithmic space
- The following property holds: for every \(x \in \Sigma^{*}, x \in L_{1}\) iff \(R(x) \in L_{2}\).
- Then \(R\) is called a logarithmic-space reduction from \(L_{1}\) to \(L_{2}\) and we say that \(L_{1}\) is reducible to \(L_{2}\).
- Hardness, Completeness

Let \(\mathcal{C}\) be a set of languages. A language \(L\) is called \(\mathcal{C}\)-hard if any language \(L^{\prime}\) in \(\mathcal{C}\) is reducible to \(L\). If \(L\) is \(\mathcal{C}\)-hard and \(L \in \mathcal{C}\) then \(L\) is called complete for \(\mathcal{C}\) or simply \(\mathcal{C}\)-complete.

\section*{Turing machines}

A deterministic Turing machine (DTM) is defined as a quadruple
\[
\left(S, \Sigma, \delta, s_{0}\right)
\]
- \(S\) is a finite set of states,
- \(\Sigma\) is a finite alphabet of symbols, which contains a special symbol called the blank.
- \(\delta\) is a transition function,
- and \(s_{0} \in S\) is the initial state.

The transition function \(\delta\) is a map
\[
\delta: S \times \Sigma \rightarrow(S \cup\{\text { yes }, \text { no }\}) \times \Sigma \times\{-1,0,+1\}
\]
where yes, and no denote two additional states not occurring in \(S\), and \(-1,0,+1\) denote motion directions.

\section*{Turing machines}

DTM quadruple:
\[
\left(\Sigma, S, \delta, s_{0}\right)
\]

Transition function:
\[
\delta(s, \sigma)=\left(s^{\prime}, \sigma^{\prime}, d\right)
\]

The tape of the TM


\section*{Turing machines}

DTM quadruple:
\[
\left(\Sigma, S, \delta, s_{0}\right)
\]

Transition function:
\[
\delta(s, \sigma)=\left(s^{\prime}, \sigma^{\prime}, d\right)
\]

The tape of the TM


\section*{Turing machines}

DTM quadruple:
\[
\left(\Sigma, S, \delta, s_{0}\right)
\]

Transition function:
\[
\delta(s, \sigma)=\left(s^{\prime}, \sigma^{\prime}, d\right)
\]

The tape of the TM


\section*{Turing machines}

DTM quadruple:
\[
\left(\Sigma, S, \delta, s_{0}\right)
\]

Transition function:
\[
\delta(s, \sigma)=\left(s^{\prime}, \sigma^{\prime}, d\right)
\]

The tape of the TM
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l}
\hline\(\triangleright\) & \(a\) & \(b\) & \(\cdots\) & \(b \mid\) & \(a\) & \(a\) & \(\sqcup\) & \(\sqcup\) & \(\sqcup\) & \(\sqcup\) & \(\cdots\) \\
\hline
\end{tabular}

Transition Function example:
\[
\delta(s, a)=\left(s^{\prime}, b,-1\right)
\]

\section*{Turing machines}

DTM quadruple:
\[
\left(\Sigma, S, \delta, s_{0}\right)
\]

Transition function:
\[
\delta(s, \sigma)=\left(s^{\prime}, \sigma^{\prime}, d\right)
\]

The tape of the TM
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l}
\hline\(\triangleright\) & \(a\) & \(b\) & \(\cdots\) & \(b\) & \(b\) & \(a\) & \(\sqcup\) & \(\sqcup\) & \(\sqcup\) & \(\sqcup\) & \(\cdots\) \\
\hline
\end{tabular}

Transition Function example:
\[
\delta(s, a)=\left(s^{\prime}, b,-1\right)
\]

\section*{Turing machines}

DTM quadruple:
\[
\left(\Sigma, S, \delta, s_{0}\right)
\]

Transition function:
\[
\delta(s, \sigma)=\left(s^{\prime}, \sigma^{\prime}, d\right) .
\]

The tape of the TM


Transition Function example:
\[
\delta(s, a)=\left(s^{\prime}, b,-1\right)
\]

\section*{Turing machines}

DTM quadruple:
\[
\left(\Sigma, S, \delta, s_{0}\right)
\]

Transition function:
\[
\delta(s, \sigma)=\left(s^{\prime}, \sigma^{\prime}, d\right) .
\]

The tape of the TM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \(a\) & & \(b\) & & \(b\) & & \(b\) & \(a\) & & \(a\) & \(a\) & \(b\) & \(b\) & & \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\(T\) halts, when any of the states yes or no is reached

\section*{Turing machines}

DTM quadruple:
\[
\left(\Sigma, S, \delta, s_{0}\right)
\]

Transition function:
\[
\delta(s, \sigma)=\left(s^{\prime}, \sigma^{\prime}, d\right) .
\]

The tape of the TM
\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c}
\hline\(\triangleright\) & \(a\) & \(b\) & \(\cdots\) & \(b\) & \(b\) & \(a\) & \(a\) & \(a\) & \(b\) & \(b\) & \(\cdots\) \\
\hline no Reject!
\end{tabular}
\(T\) halts, when any of the states yes or no is reached

\section*{NDTM}

A non-deterministic Turing machine (NDTM) is defined as a quadruple
\[
\left(S, \Sigma, \Delta, s_{0}\right)
\]
- \(S, \Sigma, s_{0}\) are the same as DTM
- \(\Delta\) is no longer a function, but a relation:
\[
\Delta \subseteq(S \times \Sigma) \times(S \cup\{\text { yes }, \text { no }\}) \times \Sigma \times\{-1,0,+1\}
\]
- A tuple with \(s\) and \(\sigma\). If the number of such tuples is greater than one, the NDTM non-deterministically chooses any of them and operates accordingly.
- Unlike the case of a DTM, the definition of acceptance and rejection by a NDTM is asymmetric.

\section*{Nondeterministic Computation (Accept)}


\section*{Nondeterministic Computation (Accept)}


\section*{Nondeterministic Computation (Accept)}


\section*{Nondeterministic Computation (Rejection)}


\section*{Nondeterministic Computation (Rejection)}


\subsection*{8.2 Propositional Logic Programming}

Today we shall concentrate on
\begin{tabular}{lll}
\hline Query & Data Complexity & Program Complexity \\
\hline Conjunctive query & \(A C_{0}\) & NP-complete \\
FO & \(A C_{0}\) & PSPACE-complete \\
Prop. LP & & P-complete \\
Datalog & P-complete & EXPTIME-complete \\
Stratified Datalog & P-complete & EXPTIME-complete \\
Datalog(WFM) & P-complete & EXPTIME-complete \\
Datalog(INF) & P-complete & EXPTIME-complete \\
Datalog(Stable Model) & co-NP-complete & co-NEXPTIME-complete \\
Disjun. Datalog & \(\Pi_{2}^{p}\)-complete & co-NEXPTIME \({ }^{\text {-complete }}\)-comple \\
\hline
\end{tabular}

\section*{Propositional LP}

\section*{Theorem}

Propositional logic programming is P -complete.

\section*{Proof: (Membership)}
- The semantics of a given program \(P\) can be defined as the least fixpoint of the immediate consequence operator \(\mathbf{T}_{P}\)
- This least fixpoint \(\operatorname{lfp}\left(\mathbf{T}_{P}\right)\) can be computed in polynomial time even if the "naive" evaluation algorithm is applied.
- The number of iterations (i.e. applications of \(\mathbf{T}_{P}\) ) is bounded by the number of rules plus 1.
- Each iteration step is clearly feasible in polynomial time.

\section*{Propositional LP P-hardness Proof}

\section*{Proof: (Hardness)}
- Encoding of a a deterministic Turing machine (DTM) T. Given a DTM \(T\), an input string \(I\) and a number of steps \(N\), where \(N\) is a polynomial of \(|I|\), construct in logspace a program \(P=P(T, I, N)\). An atom \(A\) such as \(P \models A\) iff \(T\) accepts \(l\) in \(N\) steps.
- The transition function \(\delta\) of a DTM with a single tape can be represented by a table whose rows are tuples \(t=\left\langle s, \sigma, s^{\prime}, \sigma^{\prime}, d\right\rangle\). Such a tuple \(t\) expresses the following if-then-rule:
if at some time instant \(\tau\) the DTM is in state \(s\), the cursor points to cell number \(\pi\), and this cell contains symbol \(\sigma\)
then at instant \(\tau+1\) the DTM is in state \(s^{\prime}\), cell number \(\pi\) contains symbol \(\sigma^{\prime}\), and the cursor points to cell number \(\pi+d\).

\section*{Propositional LP P-hardness Proof}

\section*{Proof: (Hardness)}
- Encoding of a a deterministic Turing machine (DTM) T. Given a DTM \(T\), an input string \(I\) and a number of steps \(N\), where \(N\) is a polynomial of \(|I|\), construct in logspace a program \(P=P(T, I, N)\). An atom \(A\) such as \(P \models A\) iff \(T\) accepts \(l\) in \(N\) steps.
- The transition function \(\delta\) of a DTM with a single tape can be represented by a table whose rows are tuples \(t=\left\langle s, \sigma, s^{\prime}, \sigma^{\prime}, d\right\rangle\). Such a tuple \(t\) expresses the following if-then-rule:
if at some time instant \(\tau\) the DTM is in state \(s\), the cursor points to cell number \(\pi\), and this cell contains symbol \(\sigma\) then at instant \(\tau+1\) the DTM is in state \(s^{\prime}\), cell number \(\pi\) contains symbol \(\sigma^{\prime}\), and the cursor points to cell number \(\pi+d\).

\section*{Propositional LP P-hardness Proof}

\section*{Proof: (Hardness)}
- Encoding of a a deterministic Turing machine (DTM) T. Given a DTM \(T\), an input string \(I\) and a number of steps \(N\), where \(N\) is a polynomial of \(|I|\), construct in logspace a program \(P=P(T, I, N)\). An atom \(A\) such as \(P \models A\) iff \(T\) accepts \(l\) in \(N\) steps.
- The transition function \(\delta\) of a DTM with a single tape can be represented by a table whose rows are tuples \(t=\left\langle s, \sigma, s^{\prime}, \sigma^{\prime}, d\right\rangle\). Such a tuple \(t\) expresses the following if-then-rule:
if at some time instant \(\tau\) the DTM is in state \(s\), the cursor points to cell number \(\pi\), and this cell contains symbol \(\sigma\) then at instant \(\tau+1\) the DTM is in state \(s^{\prime}\), cell number \(\pi\) contains symbol \(\sigma^{\prime}\), and the cursor points to cell number \(\pi+d\).

\section*{Propositional LP P-hardness: the atoms}

The propositional atoms in \(P(T, I, N)\). (there are many, but only polynomially many...)
\(\operatorname{symbol}_{\alpha}[\tau, \pi]\) for \(0 \leq \tau \leq N, 0 \leq \pi \leq N\) and \(\alpha \in \Sigma\). Intuitive meaning: at instant \(\tau\) of the computation, cell number \(\pi\) contains symbol \(\alpha\).
cursor \([\tau, \pi]\) for \(0 \leq \tau \leq N\) and \(0 \leq \pi \leq N\). Intuitive meaning: at instant \(\tau\), the cursor points to cell number \(\pi\).
state \(_{s}[\tau]\) for \(0 \leq \tau \leq N\) and \(s \in S\). Intuitive meaning: at instant \(\tau\), the DTM \(T\) is in state \(s\).
accept Intuitive meaning: \(T\) has reached state yes.

\section*{Propositional LP P-hardness: the rules}
initialization facts: in \(P(T, I, N)\) :
\[
\begin{aligned}
& \text { symbol }_{\sigma}[0, \pi] \leftarrow \quad \text { for } 0 \leq \pi<|I| \text {, where } I_{\pi}=\sigma \\
& \text { symbol }[0, \pi] \leftarrow \quad \text { for }|I| \leq \pi \leq N \\
& \text { cursor }[0,0] \leftarrow \\
& \text { state }_{s_{0}}[0] \leftarrow
\end{aligned}
\]

The tape of the TM


\section*{Propositional LP P-hardness: the rules}
- transition rules: for each entry \(\left\langle s, \sigma, s^{\prime}, \sigma^{\prime}, d\right\rangle, 0 \leq \tau<N\), \(0 \leq \pi<N\), and \(0 \leq \pi+d\).
\[
\begin{array}{rcl}
\text { symbol }_{\sigma^{\prime}}[\tau+1, \pi] & \leftarrow & \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi] \\
\text { cursor } \tau+1, \pi+d] & \leftarrow & \text { state }_{s}[\tau], \operatorname{symbol}_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi] \\
\text { state }_{s^{\prime}}[\tau+1] & \leftarrow & \text { state }_{s}[\tau], \operatorname{symbol}_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi]
\end{array}
\]
- inertia rules: where \(0 \leq \tau<N, 0 \leq \pi<\pi^{\prime} \leq N\)
\[
\left.\begin{array}{r}
\text { symbol }_{\sigma}[\tau+1, \pi] \\
\text { symbol }_{\sigma}\left[\tau+1, \pi^{\prime}\right] \\
\leftarrow \text { symbol }_{\sigma}[\tau, \pi], \text { symbol } \\
\sigma
\end{array} \tau, \pi^{\prime}\right], \text { cursor }\left[\tau, \pi^{\prime}\right]
\]
- accept rules: for \(0 \leq \tau \leq N\)
\[
\text { accept } \leftarrow \text { state }_{\mathrm{yes}}[\tau]
\]

\section*{Propositional LP P-hardness}
- The encoding precisely simulates the behaviour machine \(T\) on input I up to \(N\) steps. (This can be formally shown by induction on the time steps.)
- \(P(T, I, N) \models\) accept iff the DTM \(T\) accepts the input string \(I\) within \(N\) steps.
- The construction is feasible in Logspace

Horn clause inference is P -complete

\subsection*{8.3 Datalog Complexity}

Today we shall concentrate on
\begin{tabular}{lll}
\hline Query & Data Complexity & Program Complexity \\
\hline Conjunctive query & \(A C_{0}\) & NP-complete \\
FO & \(A C_{0}\) & PSPACE-complete \\
Prop. LP & & P-complete \\
Datalog & P-complete & EXPTIME-complete \\
Stratified Datalog & P-complete & EXPTIME-complete \\
Datalog(WFM) & P-complete & EXPTIME-complete \\
Datalog(INF) & P-complete & EXPTIME-complete \\
Datalog(Stable Model) & co-NP-complete & co-NEXPTIME-complete \\
Disjun. Datalog & \(\Pi_{2}^{p}\)-complete & co-NEXPTIME \({ }^{\text {-complete }}\)-comple \\
\hline
\end{tabular}

\section*{Complexity of Datalog Programs - Data complexity}

\section*{Theorem}

Datalog is data complete for P .
Proof: (Membership)
Effective reduction to Propositional Logic Programming is possible. Given \(P, D, A\) :
- Generate ground \((P, D)\)
- Decide whether ground \((P, D) \models A\)

\section*{Grounding of Datalog Rules}
- Let \(U_{D}\) be the universe of \(D\) (usually the active universe (domain), i.e., the set of all domain elements present in \(D\) ).
- The grounding of a rule \(r\), denoted \(\operatorname{ground}(r, D)\), is the set of all rules obtained from \(r\) by all possible uniform substitutions of elements of \(U_{D}\) for the variables in \(r\).

For any datalog program \(P\) and database \(D\),
\[
\operatorname{ground}(P, D)=\bigcup_{r \in P} \operatorname{ground}(r, D)
\]

\section*{Grounding example}
\(P\) and \(D\) :
\(\operatorname{parent}(X, Y) \leftarrow\) father \((X, Y) \quad\) parent \((X, Y) \leftarrow\) mother \((X, Y)\) \(\operatorname{ancestor}(X, Y) \leftarrow \operatorname{parent}(X, Y)\)
\(\operatorname{ancestor}(X, Y) \leftarrow \operatorname{parent}(X, Z)\), ancestor \((Z, Y)\)
father(john, mary), father(joe, kurt), mother(mary, joe), mother( tina, kurt)
ground \((P, D)\) :
\(\operatorname{parent}(\) john,\(j o h n) \leftarrow\) father \((\) john, john \()\)
parent(john, john) \(\leftarrow\) father(john, marry)
parent \((\) john, john \() \leftarrow\) mother \((\) john, john \()\)
parent(john, marry) \(\leftarrow\) mother (john, marry)
ancestor \((\) john,\(j o h n) \leftarrow \operatorname{parent}(\) john, john \()\)
...

\section*{Grounding complexity}

Given \(P, D\), the number of rules in \(\operatorname{ground}(P, D)\) is bounded by
\[
|P| * \# \operatorname{consts}(D)^{v \max }
\]
- \(\operatorname{vmax}(\geq 1)\) is the maximum number of different variables in any rule \(r \in P\)
- \#consts \((D)=\left|U_{D}\right|\) is the number of constants in \(D\left(\right.\) ass.: \(\left.\left|U_{D}\right|>0\right)\).
- \(\operatorname{ground}(P \cup D)\) can be exponential in the size of \(P\).
- ground \((P \cup D)\) is polynomial in the size of \(D\).
hence, the complexity of propositional logic programming is an upper bound for the data complexity.

\section*{Datalog data complexity: hardness}

Proof: Hardness The P -hardness can be shown by writing a simple datalog meta-interpreter for propositional \(\mathrm{LP}(k)\), where \(k\) is a constant.
- Represent rules \(A_{0} \leftarrow A_{1}, \ldots, A_{i}\), where \(0 \leq i \leq k\), by tuples \(\left\langle A_{0}, \ldots, A_{i}\right\rangle\) in an \((i+1)\)-ary relation \(R_{i}\) on the propositional atoms.
- Then, a program \(P\) in \(\operatorname{LP}(k)\) which is stored this way in a database \(D(P)\) can be evaluated by a fixed datalog program \(P_{M I}(k)\) which contains for each relation \(R_{i}, 0 \leq i \leq k\), a rule
\[
T\left(X_{0}\right) \leftarrow T\left(X_{1}\right), \ldots, T\left(X_{i}\right), R_{i}\left(X_{0}, \ldots, X_{i}\right)
\]
- \(T(x)\) intuitively means that atom \(x\) is true. Then, \(P \models A\) just if \(P_{M I} \cup P(D) \models T(A)\). P-hardness of the data complexity of datalog is then immediately obtained.

\section*{Program Complexity Datalog}

Theorem
Datalog is program complete for EXPTIME.
\(\rightarrow 8.6\) p.117, Thm. 229
- Membership. Grounding \(P\) on \(D\) leads to a propositional program grounding \((P, D)\) whose size is exponential in the size of the fixed input database \(D\). Hence, the program complexity is in EXPTIME.
- Hardness.
- Adapt the propositional program \(P(T, I, N)\) deciding acceptance of input \(I\) for \(T\) within \(N\) steps, where \(N=2^{m}, m=n^{k}(n=|I|)\) to a datalog program \(P_{d a t}(T, I, N)\)
- Note: We can not simply generate \(P(T, I, N)\), since this program is exponentially large (and thus the reduction would not be polynomia!!)

\section*{Datalog Program Complexity: Hardness}

Main ideas for lifting \(P(T, I, N)\) to \(P_{d a t}(T, I, N)\) :
- use the predicates \(\operatorname{symbol}_{\sigma}(X, Y), \operatorname{cursor}(X, Y)\) and \(\operatorname{state}_{s}(X)\) instead of the propositional letters symbol \({ }_{\sigma}[X, Y], \operatorname{cursor}[X, Y]\) and state \(_{s}[X]\) respectively.
- The time points \(\tau\) and tape positions \(\pi\) from 0 to \(N-1\) are encoded in binary, i.e. by \(m\)-ary tuples \(t_{\tau}=\left\langle c_{1}, \ldots, c_{m}\right\rangle, c_{i} \in\{0,1\}\), \(i=1, \ldots, m\), such that \(0=\langle 0, \ldots, 0\rangle, 1=\langle 0, \ldots, 1\rangle\), \(N-1=\langle 1, \ldots, 1\rangle\).
- The functions \(\tau+1\) and \(\pi+d\) are realized by means of the successor Succ \({ }^{m}\) from a linear order \(\leq^{m}\) on \(U^{m}\).

\section*{Datalog Program Complexity: Hardness}

The predicates Succ \({ }^{m}\), First \(^{m}\), and Last \(^{m}\) are provided.
- The initialization facts symbol \(\sigma[0, \pi]\) are readily translated into the datalog rules
\[
\operatorname{symbol}_{\sigma}(\mathbf{X}, \mathbf{t}) \leftarrow \text { First }^{m}(\mathbf{X}),
\]
where \(\mathbf{t}\) represents the position \(\pi\),
- Similarly the facts cursor \([0,0]\) and \(\operatorname{state}_{s_{0}}[0]\).
- Initialization facts symbol \([0, \pi]\), where \(|I| \leq \pi \leq N\), are translated to the rule
\[
\text { symbol }_{\mathrm{U}}(\mathbf{X}, \mathbf{Y}) \leftarrow \text { First }^{m}(\mathbf{X}), \leq^{m}(\mathbf{t}, \mathbf{Y})
\]
where \(\mathbf{t}\) represents the number \(|I|\).

\section*{Datalog Program Complexity: Hardness}
- Transition and inertia rules: for realizing \(\tau+1\) and \(\pi+d\), use in the body atoms \(\operatorname{Succ}^{m}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)\). For example, the clause
\[
\text { symbol }_{\sigma^{\prime}}[\tau+1, \pi] \leftarrow \operatorname{state}_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi]
\]
is translated into
symbol \(_{\sigma^{\prime}}\left(\mathbf{X}^{\prime}, \mathbf{Y}\right) \leftarrow \operatorname{state}_{s}(\mathbf{X}), \operatorname{symbol}_{\sigma}(\mathbf{X}, \mathbf{Y}), \operatorname{cursor}(\mathbf{X}, \mathbf{Y}), \operatorname{Succ}^{m}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)\)
- The translation of the accept rules is straightforward.

\section*{Defining \(\operatorname{Succ}^{m}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)\) and \(\leq^{m}\)}
- The ground facts \(\operatorname{Succ}^{1}(0,1)\), First \(^{1}(0)\), and \(\operatorname{Last}^{1}(1)\) are provided.
- For an inductive definition, suppose \(\operatorname{Succ}^{i}(\mathbf{X}, \mathbf{Y}), \operatorname{First}^{i}(\mathbf{X})\), and Last \(^{i}(\mathbf{X})\) tell the successor, the first, and the last element from a linear order \(\leq^{i}\) on \(U^{i}\), where \(\mathbf{X}\) and \(\mathbf{Y}\) have arity \(i\). Then, use rules
\[
\begin{aligned}
\operatorname{Succ}^{i+1}(Z, \mathbf{X}, Z, \mathbf{Y}) & \leftarrow \operatorname{Succ}^{i}(\mathbf{X}, \mathbf{Y}) \\
\operatorname{Succ}^{i+1}\left(Z, \mathbf{X}, Z^{\prime}, \mathbf{Y}\right) & \leftarrow \operatorname{Succ}^{1}\left(Z, Z^{\prime}\right), \operatorname{Last}^{i}(\mathbf{X}), \operatorname{First}^{i}(\mathbf{Y}) \\
\operatorname{First}^{i+1}(Z, \mathbf{X}) & \leftarrow \operatorname{First}^{1}(Z), \operatorname{First}^{i}(\mathbf{X}) \\
\operatorname{Last}^{i+1}(Z, \mathbf{X}) & \leftarrow \operatorname{Last}^{1}(Z), \operatorname{Last}^{i}(\mathbf{X})
\end{aligned}
\]

\section*{Defining \(\operatorname{Succ}^{m}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)\) and \(\leq^{m}\)}
- The ground facts \(\operatorname{Succ}^{1}(0,1)\), \(\operatorname{First}^{1}(0)\), and \(\operatorname{Last}^{1}(1)\) are provided.
- For an inductive definition, suppose \(\operatorname{Succ}^{i}(\mathbf{X}, \mathbf{Y})\), First \(^{i}(\mathbf{X})\), and Last \(^{i}(\mathbf{X})\) tell the successor, the first, and the last element from a linear order \(\leq^{i}\) on \(U^{i}\), where \(\mathbf{X}\) and \(\mathbf{Y}\) have arity \(i\). Then, use rules
\[
\begin{aligned}
\operatorname{Succ}^{i+1}(0, \mathbf{X}, 0, \mathbf{Y}) & \leftarrow \operatorname{Succ}^{i}(\mathbf{X}, \mathbf{Y}) \\
\operatorname{Succ}^{i+1}(1, \mathbf{X}, 1, \mathbf{Y}) & \leftarrow \operatorname{Succ}^{i}(\mathbf{X}, \mathbf{Y}) \\
\operatorname{Succ}^{i+1}(0, \mathbf{X}, 1, \mathbf{Y}) & \leftarrow \operatorname{Last}^{i}(\mathbf{X}), \text { Firsti}^{i}(\mathbf{Y}) \\
\operatorname{First}^{i+1}(0, \mathbf{X}) & \leftarrow \operatorname{Firsti}^{i}(\mathbf{X}) \\
\operatorname{Last}^{i+1}(1, \mathbf{X}) & \leftarrow \operatorname{Last}^{i}(\mathbf{X})
\end{aligned}
\]

\section*{Defining \(\operatorname{Succ}^{m}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)\) and \(\leq^{m}\)}
- The ground facts \(\operatorname{Succ}^{1}(0,1)\), \(\operatorname{First}^{1}(0)\), and \(\operatorname{Last}^{1}(1)\) are provided.
- For an inductive definition, suppose \(\operatorname{Succ}^{i}(\mathbf{X}, \mathbf{Y})\), First \(^{i}(\mathbf{X})\), and Lasti \(^{i}(\mathbf{X})\) tell the successor, the first, and the last element from a linear order \(\leq^{i}\) on \(U^{i}\), where \(\mathbf{X}\) and \(\mathbf{Y}\) have arity \(i\). Then, use rules
\[
\begin{aligned}
\operatorname{Succ}^{i+1}(0, \mathbf{X}, 0, \mathbf{Y}) & \leftarrow \operatorname{Succ}^{i}(\mathbf{X}, \mathbf{Y}) \\
\operatorname{Succ}^{i+1}(1, \mathbf{X}, 1, \mathbf{Y}) & \leftarrow \operatorname{Succ}^{i}(\mathbf{X}, \mathbf{Y}) \\
\operatorname{Succ}^{i+1}(0, \mathbf{X}, 1, \mathbf{Y}) & \leftarrow \operatorname{Last}^{i}(\mathbf{X}), \text { Firsti}^{i}(\mathbf{Y}) \\
\operatorname{First}^{i+1}(0, \mathbf{X}) & \leftarrow \operatorname{Firsti}^{i}(\mathbf{X}) \\
\operatorname{Last}^{i+1}(1, \mathbf{X}) & \leftarrow \operatorname{Last}^{i}(\mathbf{X})
\end{aligned}
\]
- The order \(\leq^{m}\) is easily defined from Succ \({ }^{m}\) by two clauses
\[
\begin{aligned}
& \leq^{m}(\mathbf{X}, \mathbf{X}) \leftarrow \\
& \leq^{m}(\mathbf{X}, \mathbf{Y}) \leftarrow \operatorname{Succ}^{m}(\mathbf{X}, \mathbf{Z}), \leq^{m}(\mathbf{Z}, \mathbf{Y})
\end{aligned}
\]

\section*{Datalog Program Complexity Conclusion}
- Let \(P_{\text {dat }}(T, I, N)\) denote the datalog program with empty edb described for \(T, I\), and \(N=2^{m}, m=n^{k}\) (where \(n=|I|\) )
- \(P_{\text {dat }}(T, I, N)\) is constructible from \(T\) and \(I\) in polynomial time (in fact, careful analysis shows feasibility in logarithmic space).
- \(P_{\text {dat }}(T, I, N)\) has accept in its least model \(\Leftrightarrow T\) accepts input \(I\) within \(N\) steps.
- Thus, the decision problem for any language in EXPTIME is reducible to deciding \(P \models A\) for datalog program \(P\) and fact \(A\).
- Consequently, deciding \(P \models A\) for a given datalog program \(P\) and fact \(A\) is EXPTIME-hard.

\section*{Complexity of Datalog with Stratified Negation}

\section*{Theorem}

Stratified propositional logic programming with negation is P -complete. Stratified datalog with negation is data complete for P and program complete for EXPTIME. \(\quad \rightarrow 8.7\) p.118, Thm. 230
- stratified \(P\) can be partitioned into disjoint sets \(S_{1}, \ldots, S_{n}\) s.t. the semantics of \(P\) is computed by successively computing fixpoints of the immediate consequence operators \(\mathbf{T}_{S_{1}}, \ldots, \mathbf{T}_{S_{n}}\).
- Let \(\mathbf{I}_{0}\) be the initial instance over the extensional predicate symbols of \(P\) and let \(\mathbf{I}_{i}\) (with \(1 \leq i \leq n\) ) be defined as follows:
\[
\mathbf{I}_{1}:=\mathbf{T}_{S_{1}}^{\omega}\left(\mathbf{I}_{0}\right), \quad \mathbf{I}_{2}:=\mathbf{T}_{S_{2}}^{\omega}\left(\mathbf{I}_{1}\right), \ldots, \quad \mathbf{I}_{n}:=\mathbf{T}_{S_{n}}^{\omega}\left(\mathbf{I}_{n-1}\right)
\]

Then the semantics of program \(P\) is given through the set \(\mathbf{I}_{n}\).
- In the propositional case, \(\mathbf{I}_{n}\) is clearly polynomially computable. Hence, stratified negation does not increase the complexity.

\subsection*{8.4 Complexity Stable Model}

Today we shall concentrate on
\begin{tabular}{lll}
\hline Query & Data Complexity & Program Complexity \\
\hline Conjunctive query & \(A C_{0}\) & NP-complete \\
FO & \(A C_{0}\) & PSPACE-complete \\
Prop. LP & & P-complete \\
Datalog & P-complete & EXPTIME-complete \\
Stratified Datalog & P-complete & EXPTIME-complete \\
Datalog(WFM) & P-complete & EXPTIME-complete \\
Datalog(INF) & P-complete & EXPTIME-complete \\
Datalog(Stable Model) & co-NP-complete & co-NEXPTIME-complete \\
Disjun. Datalog & \(\Pi_{2}^{p}\)-complete & co-NEXPTIME \({ }^{\text {-complete }}\)-comple \\
\hline
\end{tabular}

\section*{Recall Stable Model Semantics}

Let \(S\) be a (possibly infinite) set of ground normal clauses, i.e., of formulas of the form \(A \leftarrow L_{1} \wedge \ldots \wedge L_{n}\) where \(n \geq 0\) and \(A\) is a ground atom and the \(L_{i}\) for \(1 \leq i \leq n\) are ground literals.

Gelfond-Lifschitz Transformation \(\rightarrow\) 5.3.2 p.59, Def. 165
Let \(B \subseteq H B\). The Gelfond-Lifschitz transform \(G L_{B}(S)\) of \(S\) with respect to \(B\) is obtained from \(S\) as follows:
1. remove each clause whose antecedent contains a literal \(\neg A\) with \(A \in B\).
2. remove from the antecedents of the remaining clauses all negative literals.

\section*{Stable Model} \(\rightarrow\) 5.3.2 p.60, Def. 166
An Herbrand interpretation \(H I(B)\) is a stable model of \(S\) iff it is the unique minimal Herbrand model of \(G L_{B}(S)\).

\section*{Complexity Prop. LP Stable model}

\section*{Theorem}

Given a propositional normal logic program \(P\), deciding whether \(P\) has a stable model is NP-complete.

Membership. Clearly, \(P^{\prime}\) is polynomial time computable from \(P\) and \(I\). Hence, a stable model \(M\) of \(P\) can be guessed and checked in polynomial time.

\section*{Stable Model Prop. LP - Hardness}

\section*{Proof hardness}
- Encoding of a non-deterministic Turing machine (NDTM) T. Given a NDTM \(T\), an input string \(I\) and a number of steps \(N\), where \(N\) is a polynomial of \(|I|\), construct in logspace a program \(P=P(T, I, N)\). \(P\) has a stable model iff \(T\) accepts \(I\) in non-deterministically \(N\) steps.
- Much similar to the encoding of DTM with propositional LP. Modification on deterministic property.

\section*{Stable Model Prop. LP - Hardness}

\section*{Proof hardness}
- Encoding of a non-deterministic Turing machine (NDTM) T. Given a NDTM \(T\), an input string \(I\) and a number of steps \(N\), where \(N\) is a polynomial of \(|I|\), construct in logspace a program \(P=P(T, I, N)\). \(P\) has a stable model iff \(T\) accepts \(I\) in non-deterministically \(N\) steps.
- Much similar to the encoding of DTM with propositional LP. Modification on deterministic property.

\section*{Stable Model Prop. LP - Hardness}

Example: \(\left\langle s, \sigma, s_{1}, \sigma_{1}^{\prime}, d_{1}\right\rangle,\left\langle s, \sigma, s_{2}, \sigma_{2}^{\prime}, d_{2}\right\rangle\)
Transition rules \(0 \leq \tau<N, 0 \leq \pi<N\), and \(0 \leq \pi+d\).
\[
\begin{aligned}
\text { symbol }_{\sigma_{1}^{\prime}}[\tau+1, \pi] & \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi] \\
\text { cursor }\left[\tau+1, \pi+d_{1}\right] & \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi] \\
\text { state }_{s_{1}}[\tau+1] & \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi]
\end{aligned}
\]
symbol \(_{\sigma_{2}^{\prime}}[\tau+1, \pi] \leftarrow\) state \(_{s}[\tau]\), symbol \(_{\sigma}[\tau, \pi]\), cursor \([\tau, \pi]\)
cursor \(\left[\tau+1, \pi+d_{2}\right] \leftarrow \operatorname{state}_{s}[\tau]\), symbol \(_{\sigma}[\tau, \pi]\), cursor \([\tau, \pi]\)
state \(_{s_{2}}[\tau+1] \leftarrow\) state \(_{s}[\tau]\), symbol \(_{\sigma}[\tau, \pi]\), cursor \([\tau, \pi]\)
What is wrong here? Enforcement violated: At any time instance \(\tau\), there is exactly one cursor; each cell of the tape contains exactly one element; in exactly one state.

\section*{Stable Model Prop. LP - Hardness}

Example: \(\left\langle s, \sigma, s_{1}, \sigma_{1}^{\prime}, d_{1}\right\rangle,\left\langle s, \sigma, s_{2}, \sigma_{2}^{\prime}, d_{2}\right\rangle\)
Transition rules \(0 \leq \tau<N, 0 \leq \pi<N\), and \(0 \leq \pi+d\).
\[
\begin{array}{rc}
\text { symbol }_{\sigma_{1}^{\prime}}[\tau+1, \pi] & \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi] \\
{\text { cursor }\left[\tau+1, \pi+d_{1}\right]}^{\leftarrow} \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi] \\
\text { state }_{s_{1}}[\tau+1] & \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi]
\end{array}
\]
symbol \(_{\sigma_{2}^{\prime}}[\tau+1, \pi] \leftarrow\) state \(_{s}[\tau]\), symbol \(_{\sigma}[\tau, \pi]\), cursor \([\tau, \pi]\)
cursor \(\left[\tau+1, \pi+d_{2}\right] \leftarrow \operatorname{state}_{s}[\tau]\), symbol \(_{\sigma}[\tau, \pi]\), cursor \([\tau, \pi]\)
state \(_{s_{2}}[\tau+1] \leftarrow\) state \(_{s}[\tau]\), symbol \({ }_{\sigma}[\tau, \pi]\), cursor \([\tau, \pi]\)
What is wrong here? Enforcement violated: At any time instance \(\tau\), there is exactly one cursor; each cell of the tape contains exactly one element; in exactly one state.

\section*{Stable Model Prop. LP - Hardness}
- For each state \(s\) and symbol \(\sigma\), introduce atoms \(B_{s, \sigma, 1}[\tau], \ldots\), \(B_{s, \sigma, k}[\tau]\) for all \(1 \leq \tau<N\) and for all transitions \(\left\langle s, \sigma, s_{i}, \sigma_{i}^{\prime}, d_{i}\right\rangle\), where \(1 \leq i \leq k\).
- Add \(B_{s, \sigma, i}[\tau]\) in the bodies of the transition rules for \(\left\langle s, \sigma, s_{i}, \sigma_{i}^{\prime}, d_{i}\right\rangle\).
- Add the rule
\[
B_{s, \sigma, i}[\tau] \leftarrow \neg B_{s, \sigma, 1}[\tau], \ldots, \neg B_{s, \sigma, i-1}[\tau], \neg B_{s, \sigma, i+1}[\tau], \ldots, \neg B_{s, \sigma, k}[\tau] .
\]

Intuitively, these rules non-deterministically select precisely one of the possible transitions for \(s\) and \(\sigma\) at time instant \(\tau\), whose transition rules are enabled via \(B_{s, \sigma, i}[\tau]\).
- Finally, add a rule
\[
\text { accept } \leftarrow \neg a c c e p t .
\]

It ensures that accept is true in every stable model.

\section*{Stable Model Prop. LP - Hardness}

Example: \(\left\langle s, \sigma, s_{1}, \sigma_{1}^{\prime}, d_{1}\right\rangle,\left\langle s, \sigma, s_{2}, \sigma_{2}^{\prime}, d_{2}\right\rangle\)
\[
\begin{aligned}
& \text { symbol }_{\sigma_{1}^{\prime}}[\tau+1, \pi] \leftarrow \operatorname{state}_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi], B_{s, \sigma, 1}[\tau] \\
& \text { cursor }\left[\tau+1, \pi+d_{1}\right] \leftarrow \operatorname{state}_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \operatorname{cursor}[\tau, \pi], B_{s, \sigma, 1}[\tau] \\
& \text { state }_{s_{1}}[\tau+1] \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi] \text {, cursor }[\tau, \pi], B_{s, \sigma, 1}[\tau] \\
& \text { symbol }_{\sigma_{2}^{\prime}}[\tau+1, \pi] \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi] \text {, cursor }[\tau, \pi], B_{s, \sigma, 2}[\tau] \\
& \text { cursor }\left[\tau+1, \pi+d_{2}\right] \leftarrow \operatorname{state}_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi] \text {, cursor }[\tau, \pi], B_{s, \sigma, 2}[\tau] \\
& \text { state }_{s_{2}}[\tau+1] \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi], B_{s, \sigma, 2}[\tau]
\end{aligned}
\]


One and only one atom from \(B_{s, \sigma, 1}[\tau]\) and \(B_{s, \sigma, 2}[\tau]\) is true. Which one?

\section*{Stable Model Prop. LP - Hardness}

Example: \(\left\langle s, \sigma, s_{1}, \sigma_{1}^{\prime}, d_{1}\right\rangle,\left\langle s, \sigma, s_{2}, \sigma_{2}^{\prime}, d_{2}\right\rangle\)
\[
\begin{aligned}
& \text { symbol }_{\sigma_{1}^{\prime}}[\tau+1, \pi] \leftarrow \text { states }_{S}[\tau], \text { symbol }_{\sigma}[\tau, \pi] \text {, cursor }[\tau, \pi], B_{s, \sigma, 1}[\tau] \\
& \text { cursor }\left[\tau+1, \pi+d_{1}\right] \leftarrow \text { state }_{s}[\tau] \text {, symbol }{ }_{\sigma}[\tau, \pi] \text {, cursor }[\tau, \pi], B_{s, \sigma, 1}[\tau] \\
& \text { state }_{s_{1}}[\tau+1] \leftarrow \text { state }_{s}[\tau] \text {, symbol }{ }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi], B_{s, \sigma, 1}[\tau] \\
& \text { symbol }_{\sigma_{2}^{\prime}}[\tau+1, \pi] \leftarrow \text { states }_{s}[\tau] \text {, symbol } \boldsymbol{o}_{\sigma}[\tau, \pi] \text {, cursor }[\tau, \pi], B_{s, \sigma, 2}[\tau] \\
& \text { cursor }\left[\tau+1, \pi+d_{2}\right] \leftarrow \text { state }_{s}[\tau] \text {, symbol }{ }_{\sigma}[\tau, \pi] \text {, cursor }[\tau, \pi], B_{s, \sigma, 2}[\tau] \\
& \text { state }_{s_{2}}[\tau+1] \leftarrow \text { state }_{s}[\tau] \text {, symbol }{ }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi], B_{s, \sigma, 2}[\tau] \\
& \begin{array}{l}
B_{s, \sigma, 1}[\tau] \\
B_{s, \sigma, 2}[\tau] \\
\leftarrow \neg B_{s, \sigma, 2}[\tau] \\
\leftarrow B_{s, \sigma, 1}[\tau]
\end{array}
\end{aligned}
\]

One and only one atom from \(B_{s, \sigma, 1}[\tau]\) and \(B_{s, \sigma, 2}[\tau]\) is true. Which one? Non-deterministic

\section*{Stable Model Prop. LP - Hardness}

Example: \(\left\langle s, \sigma, s_{1}, \sigma_{1}^{\prime}, d_{1}\right\rangle,\left\langle s, \sigma, s_{2}, \sigma_{2}^{\prime}, d_{2}\right\rangle\)
\[
\begin{aligned}
& \text { symbol }_{\sigma_{1}^{\prime}}[\tau+1, \pi] \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi], B_{s, \sigma, 1}[\tau] \\
& \text { cursor }\left[\tau+1, \pi+d_{1}\right] \leftarrow \operatorname{state}_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \operatorname{cursor}[\tau, \pi], B_{s, \sigma, 1}[\tau] \\
& \text { state }_{s_{1}}[\tau+1] \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi] \text {, cursor }[\tau, \pi], B_{s, \sigma, 1}[\tau] \\
& \text { symbol }_{\sigma_{2}^{\prime}}[\tau+1, \pi] \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi], B_{s, \sigma, 2}[\tau] \\
& \text { cursor }\left[\tau+1, \pi+d_{2}\right] \leftarrow \operatorname{state}_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi] \text {, cursor }[\tau, \pi], B_{s, \sigma, 2}[\tau] \\
& \text { state }_{s_{2}}[\tau+1] \leftarrow \text { state }_{s}[\tau], \text { symbol }_{\sigma}[\tau, \pi], \text { cursor }[\tau, \pi], B_{s, \sigma, 2}[\tau] \\
& B_{s, \sigma, 1}[\tau] \leftarrow \neg B_{s, \sigma, 2}[\tau] \\
& B_{s, \sigma, 2}[\tau] \leftarrow \neg B_{s, \sigma, 1}[\tau]
\end{aligned}
\]

One and only one atom from \(B_{s, \sigma, 1}[\tau]\) and \(B_{s, \sigma, 2}[\tau]\) is true. Which one? Non-deterministic

\section*{Stable Model Prop. LP - Hardness}

\section*{Proof.}
- Assume there is a sequence of choices leading to the state yes, Let I be the set of the propositional atoms along the computation path reaching the state accept. accept \(\in I\) due to the rule:
\[
\text { accept } \leftarrow \text { state }_{\mathrm{yes}}[\tau]
\]

Clearly \(I\) is a stable model of \(P\).
- On the contrary, if there does not exist a sequence of choices leading to the state yes in the computation tree. Assume \(I\) is a stable model, accept \(\in I\) must hold. Since (accept \(\leftarrow \neg\) accept \() \notin P^{\prime}, P^{\prime} \not \vDash\) accept holds. Then \(I\) is not a least Herbrand model of \(P^{\prime}\). Contradiction.

\section*{Further Complexity Results}

\section*{Theorem}

Propositional logic programming with negation under well-founded semantics is P-complete. Datalog with negation under well-founded semantics is data complete for P and program complete for EXPTIME.
\(\rightarrow 8.8\) p.119, Thm. 232
Theorem
Propositional logic programming with negation under inflationary semantics is P-complete. Datalog with negation under inflationary semantics is data complete for P and program complete for EXPTIME.

\section*{Further Complexity Results}

\section*{Theorem}

Propositional logic programming with negation under well-founded semantics is P-complete. Datalog with negation under well-founded semantics is data complete for P and program complete for EXPTIME.
\(\rightarrow 8.8\) p.119, Thm. 232

\section*{Theorem}

Propositional logic programming with negation under inflationary semantics is P-complete. Datalog with negation under inflationary semantics is data complete for P and program complete for EXPTIME.
\(\rightarrow 8.8\) p.119, Thm. 233

\section*{Further Complexity Results}

\section*{Theorem}

Propositional logic programming with negation under stable model semantics is co-NP-complete. Datalog with negation under stable model semantics is data complete for co-NP and program complete for co-NEXPTIME.
\(\rightarrow 8.9\) p.120, Thm. 235
Note that the decision problem here is whether an atom is true in all stable models.

\section*{Further Complexity Results}

\section*{Theorem}

The program complexity of conjunctive queries is NP-complete
\(\rightarrow 8.3\) p.113, Thm. 225
Theorem
First-order queries are program-complete for PSPACE. Their data complexity is in the class \(\mathrm{AC}^{0}\), which contains the languages recognized by unbounded fan-in circuits of polynomial size and constant depth
\(\rightarrow 8.4\) p.113, Thm. 226

\section*{Further Complexity Results}

\section*{Theorem}

The program complexity of conjunctive queries is NP-complete
\(\rightarrow 8.3\) p.113, Thm. 225

\section*{Theorem}

First-order queries are program-complete for PSPACE. Their data complexity is in the class \(\mathrm{AC}^{0}\), which contains the languages recognized by unbounded fan-in circuits of polynomial size and constant depth
\(\rightarrow 8.4\) p.113, Thm. 226

\section*{Further Complexity Results}

\section*{Theorem}

Logic programming is r.e.-complete.
Theorem
Nonrecursive logic programming is NEXPTIME-complete.

\section*{Further Complexity Results}

\section*{Theorem}

Logic programming is r.e.-complete.
\(\rightarrow 8.11\) p.121, Thm. 238
Theorem
Nonrecursive logic programming is NEXPTIME-complete.
\(\rightarrow 8.11\) p.121, Thm. 239

\subsection*{8.5 Expressive Power}
- A query \(q\) defines a mapping \(\mathcal{M}_{q}\) that assigns to each suitable input database \(D_{\text {in }}\) (over a fixed input schema) a result database \(D_{\text {out }}=\mathcal{M}_{q}\left(D_{\text {in }}\right)\) (over a fixed output schema)
- Formally, the expressive power of a query language \(Q\) is the set of mappings \(\mathcal{M}_{q}\) for all queries \(q\) expressible in the language \(Q\) by some query expression (program) \(E\)
- Research tasks concerning expressive power
- comparing two query languages \(Q_{1}\) and \(Q_{2}\) in their expressive power (e.g. FO vs. SQL vs. Datalog), which is important for designing and analysing a query language
- determining the absolute expressive power of a query language, e.g. proving that a given query language \(Q\) is able to express exactly all queries whose evaluation complexity is in a complexity class \(\mathcal{C}\). We say \(Q\) captures \(\mathcal{C}\) and write simply \(Q=\mathcal{C}\).

\section*{Expressive Power}

There is a substantial difference between showing that the query evaluation problem for a certain query language \(Q\) is \(\mathcal{C}\)-complete and showing that \(Q\) captures \(\mathcal{C}\).
- If the evaluation problem for \(Q\) is \(\mathcal{C}\)-complete, then at least one \(\mathcal{C}\)-hard query is expressible in \(Q\).
- If \(Q\) captures \(\mathcal{C}\), then \(Q\) expresses all queries evaluable in \(\mathcal{C}\) (including, of course, all \(\mathcal{C}\)-hard queries).
- Example: Evaluating Datalog is \(P\) hard (data complexity), but positive Datalog can only express monotone properties, however, there are of course problems in \(P\) which are non-monotonic.

\section*{Expressive Power: Ordered Structures}
- To prove that a query language \(Q\) captures a machine-based complexity class \(\mathcal{C}\), one usually shows that each \(\mathcal{C}\)-machine with (encodings of) finite structures as inputs that computes a generic query can be represented by an expression in language \(Q\).
- A Turing machine works on a string encoding of the input database \(D\). Such an encoding provides an implicit linear order on \(D\), in particular, on all elements of the universe \(U_{D}\)
- Therefore, one often assumes that a linear ordering of the universe elements is predefined
- We consider here ordered databases whose schemas contain special relation symbols Succ, First, and Last

\section*{Expressive Power: Datalog}

\section*{Theorem \\ datalog \({ }^{+} \varsubsetneqq\) P.}
\(\rightarrow 8.12\) p.123, Thm. 240
Show that there exists no datalog \({ }^{+}\)program \(P\) that can tell whether the universe \(U\) of the input database has an even number of elements.

Theorem
On ordered databases, datalog \({ }^{+}\)captures P .

\section*{Expressive Power: Datalog}

\section*{Theorem \\ datalog \({ }^{+} \varsubsetneqq\) P.}
\(\rightarrow 8.12\) p.123, Thm. 240
Show that there exists no datalog \({ }^{+}\)program \(P\) that can tell whether the universe \(U\) of the input database has an even number of elements.

Theorem
On ordered databases, datalog \({ }^{+}\)captures P .

\section*{Expressive Power: More Results}

\section*{Theorem}

Nonrecursive range-restricted datalog with negation \(=\) relational algebra \(=\) domain-independent relational calculus. = first-order logic (without function symbols). \(\quad \rightarrow 8.12\) p.125, Thm. 243

Theorem
On ordered databases, the following query languages capture P:
- stratified datalog,
- datalog under well-founded semantics,
- datalog under inflationary semantics.

\section*{Theorem \\ Datalog under stable model semantics captures co-NP.}

\section*{Expressive Power: More Results}

\section*{Theorem}

Nonrecursive range-restricted datalog with negation \(=\) relational algebra \(=\) domain-independent relational calculus. = first-order logic (without function symbols). \(\quad \rightarrow 8.12\) p.125, Thm. 243

\section*{Theorem}

On ordered databases, the following query languages capture P:
- stratified datalog,
- datalog under well-founded semantics,
- datalog under inflationary semantics.
\(\rightarrow 8.12\) p.125, Thm. 244

\section*{Theorem \\ Datalog under stable model semantics captures co-NP.}

\section*{Expressive Power: More Results}

\section*{Theorem}

Nonrecursive range-restricted datalog with negation \(=\) relational algebra \(=\) domain-independent relational calculus. = first-order logic (without function symbols). \(\quad \rightarrow 8.12\) p.125, Thm. 243

\section*{Theorem}

On ordered databases, the following query languages capture P:
- stratified datalog,
- datalog under well-founded semantics,
- datalog under inflationary semantics.
\(\rightarrow 8.12\) p.125, Thm. 244

\section*{Theorem}

Datalog under stable model semantics captures co-NP.

\section*{Monday, \(3^{\text {rd }}\) September, 2007}

Session 8:30-10:30
- 1 Introduction
- 3 Syntax
- 4 Declarative Semantics: Fundamentals

Session 11:00-13:00
- 5 Declarative Semantics: Adaptations

Session 14:30-16:00
- 6 Operational Semantics: Positive
- 7 Operational Semantics: Negative

Session 16:30-18:00
- 8 Complexity and Expressive Power

Essential concepts and methods of rule-based query languages

\section*{Acknowledgments}

This research has been funded by the European Commission and by the Swiss Federal Office for Education and Science within the 6th Framework Programme project REWERSE number 506779 (cf. http://rewerse.net).

This work is based on:
François Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg Gottlob, Clemens Ley, Benedikt Linse, Reinhard Pichler, and Fang Wei:

\section*{Foundations of Rule-Based Query Answering.}

Reasoning Web, Third International Summer School 2007,
G. Antoniou et al. (eds.), LNCS 4636, 2007. ©Springer-Verlag

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 License (see http://creativecommons.org/licenses/by-nc-sa/3.0/), which gives you, except for commercial purposes, the right to freely distribute and reuse the material as long as you cite this work or (preferably) the above mentioned article. This license does not affect any copyrighted material published in the accompanying tutorial article cited above.

This is version 1.0.r404, September 18, 2007.```

