Search for More Declarativity Backward Reasoning for Rule Languages Reconsidered

Simon Brodt François Bry Norbert Eisinger

Institute for Informatics, University of Munich, Oettingenstraße 67, D-80538 München, Germany http://www.pms.ifi.lmu.de/

25 October 2009

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

(日)

Rule Languages & Declarativity

Declarativity - The Greatest Advantage of Rule Languages

- Separates between
 - What is the problem?
 - *How* is the problem solved?
- Built-in problem-solving
 - \Rightarrow Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

• □ ▶ • □ ▶ • □ ▶

Rule Languages & Declarativity

Declarativity – The Greatest Advantage of Rule Languages

- Separates between
 - What is the problem?
 - *How* is the problem solved?
- Built-in problem-solving
 - \Rightarrow Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

(日)

Rule Languages & Declarativity

Declarativity – The Greatest Advantage of Rule Languages

- Separates between
 - What is the problem?
 - *How* is the problem solved?
- Built-in problem-solving
 - \Rightarrow Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

• □ ▶ • □ ▶ • □ ▶

Rule Languages & Declarativity

Declarativity - The Greatest Advantage of Rule Languages

- Separates between
 - What is the problem?
 - *How* is the problem solved?
- Built-in problem-solving
 - \Rightarrow Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< D > < A > < B > < B >

Rule Languages & Declarativity

Declarativity - The Greatest Advantage of Rule Languages

- Separates between
 - What is the problem?
 - *How* is the problem solved?
- Built-in problem-solving
 - \Rightarrow Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< D > < A > < B > < B >

Rule Languages & Declarativity

Declarativity – The Greatest Advantage of Rule Languages

- Separates between
 - What is the problem?
 - *How* is the problem solved?
- Built-in problem-solving
 - \Rightarrow Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< D > < A > < B > < B >

Rule Languages & Declarativity

Declarativity – The Greatest Advantage of Rule Languages

- Separates between
 - What is the problem?
 - *How* is the problem solved?
- Built-in problem-solving
 - \Rightarrow Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known

• Adaption to frequently changing prerequisites

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< D > < A > < B > < B >

Rule Languages & Declarativity

Declarativity - The Greatest Advantage of Rule Languages

- Separates between
 - What is the problem?
 - *How* is the problem solved?
- Built-in problem-solving
 - \Rightarrow Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< 口 > < 同 >

Rule Languages & Search

An inference engine depends on

- a logical system with reasonable soundness & completeness properties
- a search method which
 - preserves (most of) these properties
 - provides an adequate degree of efficiency

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Rule Languages & Search

An inference engine depends on

- a logical system with reasonable soundness & completeness properties
- a search method which
 - preserves (most of) these properties
 - provides an adequate degree of efficiency

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Rule Languages & Search

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning
- . . .

No Special Assumptions for this Paper

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
 - Backward reasoning with and without memorization
 - Forward reasoning approaches with some goal guidance

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Rule Languages & Search

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning
- . . .

No Special Assumptions for this Paper

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
 - Backward reasoning with and without memorization
 - Forward reasoning approaches with some goal guidance

< ロ > < 同 > < 三 > < 三 >

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Rule Languages & Search

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning
- . . .

No Special Assumptions for this Paper

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
 - Backward reasoning with and without memorization
 - Forward reasoning approaches with some goal guidance

< ロ > < 同 > < 三 > < 三 >

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

(日)

Rule Languages & Search

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning
- . . .

No Special Assumptions for this Paper

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
 - Backward reasoning with and without memorization
 - Forward reasoning approaches with some goal guidance

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

(日)

Not Much Choice

• Depth-First-Search (D-search)

- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- ٠
- ٠

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

• □ > • □ > • □ > ·

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- ٠
- ۰

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< D > < A > < B > < B >

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- •
- ۲

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< 口 > < 同 >

-

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- 0

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< □ > < 同 >

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- ۲
- ۲

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Image: Image:

Not Much Choice

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- ۲
- ٥
- •

Only uninformed search methods can be used

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< D > < A > < B > < B >

Not Much Choice

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening

Only uninformed search methods can be used

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Desiderata for Search Methods

Completeness on finite and infinite search trees. Every node in the search space is visited after a finite number of steps.

Polynomial space complexity $O(d^c)$

c = *constant*

d = maximum depth reached so far (or of the entire tree if it is finite

Linear time complexity O(n)

n = number of nodes visited at least once (or of the entire tree, if it is finite)

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Desiderata for Search Methods

Completeness on finite and infinite search trees. Every node in the search space is visited after a finite number of steps.

Polynomial space complexity $O(d^c)$

- c = constant
- d = maximum depth reached so far (or of the entire tree, if it is finite)

Linear time complexity O(n)

n = number of nodes visited at least once
 (or of the entire tree, if it is finite)

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Desiderata for Search Methods

Completeness on finite and infinite search trees. Every node in the search space is visited after a finite number of steps.

Polynomial space complexity $O(d^c)$

c = constant

d = maximum depth reached so far (or of the entire tree, if it is finite)

Linear time complexity O(n)

n = number of nodes visited at least once
 (or of the entire tree, if it is finite)

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

(日)

Traditional Methods Fail

D-search

Incomplete on infinite trees

B-search

Exponential space-complexity in the depth of the tree

Iterative Deepening

Frequent re-evaluation

Iterative Broadening

Incomplete on infinite trees Frequent re-evaluation

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< D > < A > < B > < B >

Traditional Methods Fail

D-search

Incomplete on infinite trees

B-search

Exponential space-complexity in the depth of the tree

Iterative Deepening

Frequent re-evaluation

Iterative Broadening

Incomplete on infinite trees Frequent re-evaluation

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< D > < A > < B > < B >

Traditional Methods Fail

D-search

Incomplete on infinite trees

B-search

Exponential space-complexity in the depth of the tree

Iterative Deepening

Frequent re-evaluation

Iterative Broadening

Incomplete on infinite trees Frequent re-evaluation

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

・ コ ト ・ 一戸 ト ・ 日 ト ・

Traditional Methods Fail

D-search

Incomplete on infinite trees

B-search

Exponential space-complexity in the depth of the tree

Iterative Deepening

Frequent re-evaluation

Iterative Broadening

Incomplete on infinite trees

Frequent re-evaluation

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< □ > < 同 > < 回 >

Sensible Compromise? (Prolog)

- Use D-search
- Give rule authors some control to avoid infinite dead ends (e.g. ordering of the rules, ...)

Declarativity gets lost

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< □ > < 同 > < 回 >

Sensible Compromise? (Prolog)

- Use D-search
- Give rule authors some control to avoid infinite dead ends (e.g. ordering of the rules, ...)

Declarativity gets lost

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

• □ ▶ • □ ▶ • □ ▶

Search & Declarativity

Term Representation for Natural Numbers

- zero represents 0
- succ(X,Y) can provide the predecessor X to any Y representing a nonzero natural number

Program

nat(zero)	\leftarrow	
nat(Y)	\leftarrow	<pre>succ(X,Y) ^ nat(X)</pre>
$nat_2(X,Y)$	\leftarrow	$nat(X) \land nat(Y)$
less(X,Y)	\leftarrow	"reasonably defined"

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Problem 1 – Incomplete Enumerations

Program

nat(zero)	\leftarrow	
nat(Y)	\leftarrow	<pre>succ(X,Y) ^ nat(X)</pre>
$nat_2(X,Y)$	\leftarrow	$nat(X) \land nat(Y)$
less(X,Y)	\leftarrow	"reasonably defined"

Queries

$$(1) \leftarrow nat(X)$$

$$\leftarrow \texttt{nat}_2(X,Y)$$

Expected Results

- Enumeration of N
- 2 Enumeration of $\mathbb{N} \times \mathbb{N}$

Prolog's Results

- Enumeration of N
- 2 Enumeration of $\{0\} \times \mathbb{N}$

イロト イロト イビト イビト

Simon Brodt, François Bry, Norbert Eisinger

Search for More Declarativity

-

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Problem 1 – Incomplete Enumerations

Program

nat(zero)	\leftarrow	
nat(Y)	\leftarrow	<pre>succ(X,Y) ^ nat(X)</pre>
$nat_2(X,Y)$	\leftarrow	$nat(X) \land nat(Y)$
less(X,Y)	\leftarrow	"reasonably defined"

Queries

$$(1) \leftarrow nat(X)$$

$$\leftarrow \texttt{nat}_2(X,Y)$$

Expected Results

- Enumeration of N
- **2** Enumeration of $\mathbb{N} \times \mathbb{N}$

Prolog's Results

- Enumeration of N
- ② Enumeration of $\{0\} \times \mathbb{N}$

イロト イロト イビト イビト

Simon Brodt, François Bry, Norbert Eisinger

Search for More Declarativity

-

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Problem 1 – Incomplete Enumerations

Program

nat(zero)	\leftarrow	
nat(Y)	\leftarrow	<pre>succ(X,Y) ^ nat(X)</pre>
$nat_2(X,Y)$	\leftarrow	$nat(X) \land nat(Y)$
less(X,Y)	\leftarrow	"reasonably defined"

Queries

$$(1) \leftarrow nat(X)$$

$$\leftarrow \texttt{nat}_2(X,Y)$$

Expected Results

- Enumeration of N
- **2** Enumeration of $\mathbb{N} \times \mathbb{N}$

Prolog's Results ● Enumeration of N ● Enumeration of {0} × N

Simon Brodt, François Bry, Norbert Eisinger

Search for More Declarativity

Search & Declarativity

Problem 2 – Non-Commutativity

Program

Queries

nat(zero)	\leftarrow	
nat(Y)	\leftarrow	<pre>succ(X,Y) ^ nat(X)</pre>
$nat_2(X,Y)$	\leftarrow	<pre>nat(X)</pre>
less(X,Y)	\leftarrow	"reasonably defined"

(Assume Single-Answer-Mode)

→ 1	less	(zero	,X)	\wedge	\mathtt{nat}_2	(Χ,	Y)
-----	------	-------	-----	----------	------------------	-----	---	---

 \leftarrow nat₂(X,Y) \land less(zero,X) 2

Search for More Declarativity
Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Problem 2 – Non-Commutativity

Program

Queries

nat(zero)	\leftarrow	
nat(Y)	\leftarrow	<pre>succ(X,Y) ^ nat(X)</pre>
$nat_2(X,Y)$	\leftarrow	<pre>nat(X)</pre>
less(X,Y)	\leftarrow	"reasonably defined"

(Assume Single-Answer-Mode)

→ ①	less	zero	,X)	\wedge	\mathtt{nat}_2	(Χ,	Y)
-----	------	------	-----	----------	------------------	-----	---	---

2 \leftarrow nat₂(X,Y) \land less(zero,X)

Simon Brodt, François Bry, Norbert Eisinger Search for More Declarativity

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Problem 2 – Non-Commutativity

Program

Queries

nat(zero)	\leftarrow	
nat(Y)	\leftarrow	$succ(X,Y) \land nat(X)$
$nat_2(X,Y)$	\leftarrow	<pre>nat(X)</pre>
less(X,Y)	\leftarrow	"reasonably defined"

(Assume Single-Answer-Mode)

→ 1	less	(zero	,X)	\wedge	\mathtt{nat}_2	(Χ,	Y)
-----	------	-------	-----	----------	------------------	-----	---	---

2 \leftarrow nat₂(X,Y) \land less(zero,X)

Simon Brodt, François Bry, Norbert Eisinger Search

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< 口 > < 同 >

Reason – Incomplete Search

SLD-resolution is fine

Perfectly sound and complete with any literal selection function.

Problem: Incompleteness of D-search The problems would not arise with a complete search method

Choose iterative deepening?

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Reason – Incomplete Search

SLD-resolution is fine

Perfectly sound and complete with any literal selection function.

Problem: Incompleteness of D-search The problems would not arise with a complete search method

Choose iterative deepening?

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Image: Image:

Reason – Incomplete Search

SLD-resolution is fine

Perfectly sound and complete with any literal selection function.

Problem: Incompleteness of D-search

The problems would not arise with a complete search method

Choose iterative deepening?

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Problem 3 – Inefficiency on Functional Rule Sets

Program

even(zero)	\leftarrow			
even(Y)	\leftarrow	<pre>succ(X,Y)</pre>	\wedge	odd(X)
odd(Y)	\leftarrow	<pre>succ(X,Y)</pre>	\wedge	even(X)

Query

 \leftarrow constant(X) \land even(X)

constant(X) binds X to some fixed, large number $n \in \mathbb{N}$.

Expected Runtime O(n) Runtime with Iterative-Deepening

イロト イヨト イヨト

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Problem 3 – Inefficiency on Functional Rule Sets

Program

even(zero)	\leftarrow			
even(Y)	\leftarrow	<pre>succ(X,Y)</pre>	\wedge	odd(X)
odd(Y)	\leftarrow	<pre>succ(X,Y)</pre>	\wedge	even(X)

Query

 \leftarrow constant(X) \land even(X)

constant(X) binds X to some fixed, large number $n \in \mathbb{N}$.

Expected Runtime *O*(*n*)

Runtime with Iterative-Deepening

イロト イヨト イヨト

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Problem 3 – Inefficiency on Functional Rule Sets

Program

even(zero)	\leftarrow			
even(Y)	\leftarrow	<pre>succ(X,Y)</pre>	\wedge	odd(X)
odd(Y)	\leftarrow	<pre>succ(X,Y)</pre>	\wedge	even(X)

Query

 \leftarrow constant(X) \land even(X)

constant(X) binds X to some fixed, large number $n \in \mathbb{N}$.

Expected Runtime *O*(*n*)

Runtime with Iterative-Deepening $O(n^2)$

イロト イヨト イヨト

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Problem 3 – Inefficiency on Functional Rule Sets

Program

even(zero)	\leftarrow			
even(Y)	\leftarrow	<pre>succ(X,Y)</pre>	\wedge	odd(X)
odd(Y)	\leftarrow	<pre>succ(X,Y)</pre>	\wedge	even(X)

Query

 \leftarrow constant(X) \land even(X)

constant(X) binds X to some fixed, large number $n \in \mathbb{N}$.

Expected Runtime O(n) Runtime with Iterative-Deepening $O(n^2)$

< ロ > < 同 > < 三 > < 三 >

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< 口 > < 同 >

A New Algorithm – D&B-search

• Integrates D-search and B-search

- Complete on finite and infinite trees
- Linear space complexity in depth for basic algorithm
- Non-repetitive
- Family of algorithms in parameter c with
 - Complete for *c* > 0
 - Polynomial space-requirement $O(d^c)$ in depth for $c < \infty$
 - D-search and B-search as extreme cases
- Only simple datastructures needed
- Properties are proved

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

< 口 > < 同 >

A New Algorithm – D&B-search

- Integrates D-search and B-search
- Complete on finite and infinite trees
- Linear space complexity in depth for basic algorithm
- Non-repetitive
- Family of algorithms in parameter c with
 - Complete for c > 0
 - Polynomial space-requirement $O(d^c)$ in depth for $c < \infty$
 - D-search and B-search as extreme cases
- Only simple datastructures needed
- Properties are proved

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Overview

2 Search & Partial Ordering

э

(日)

Гhe Basic Algorithm Гhe D&B-Family

D&B-search

- The Basic Algorithm
- The D&B-Family
- 2 Search & Partial Ordering

3 Conclusion

< □ > < 同 >

< ∃ >

The Basic Algorithm The D&B-Family

D-search starts

- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

- D-search starts
 - D-search passes depth bound f_0
 - B-search completes level 0 (no work to do)
 - D-search passes depth bound f_1
 - B-search completes level 1
 - D-search passes depth bound f_2
 - B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f₂
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f₂
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

The Basic Algorithm The D&B-Family

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Generally

- D-search passes depth bound f_{i+1} only if the level *i* has been completed
- B-search completes the level *i* only if depth bound *f_i* has been passed

The Basic Algorithm The D&B-Family

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Generally

- D-search passes depth bound f_{i+1} only if the level *i* has been completed
- B-search completes the level *i* only if depth bound *f_i* has been passed

The Basic Algorithm The D&B-Family

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Generally

- D-search passes depth bound f_{i+1} only if the level *i* has been completed
- B-search completes the level *i* only if depth bound *f_i* has been passed

The Basic Algorithm The D&B-Family

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Observations

- D-search advances exponentially faster than B-search
- The number of nodes to be stored is only polynomial in the maximum depth (if *f_i* is exponential in *i*)

The Basic Algorithm The D&B-Family

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Observations

- D-search advances exponentially faster than B-search
- The number of nodes to be stored is only polynomial in the maximum depth (if *f_i* is exponential in *i*)

The Basic Algorithm The D&B-Family

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Observations

- D-search advances exponentially faster than B-search
- The number of nodes to be stored is only polynomial in the maximum depth (if *f_i* is exponential in *i*)

The Basic Algorithm The D&B-Family

D&B-search – Idea

- Alternate D-search with B-search
- Rotation is controlled by a sequence f_0, f_1, f_2, \ldots of depth bounds
 - Defined by a function $\mathbb{N} \to \mathbb{N}$, $i \mapsto f_i$

•
$$i < f_i < f_{i+1}$$

 $f_i = 2^i$ for the examples

(日)

The Basic Algorithm The D&B-Family

D&B-search – Pivot-Nodes and Pivot-Sets

- Pivot-node s_i : earliest node at depth f_i
- Pre-pivot-set S_0 : nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set S_{i+1} = (D_i ∪ B_i) \X_i is expanded in-between s_i and s_{i+1}
- $X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

The Basic Algorithm The D&B-Family

D&B-search – Pivot-Nodes and Pivot-Sets

- *Pivot-node* s_i : earliest node at depth f_i
- *Pre-pivot-set* S_0 : nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set S_{i+1} = (D_i ∪ B_i) \X_i is expanded in-between s_i and s_{i+1}
- $X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

The Basic Algorithm The D&B-Family

D&B-search – Pivot-Nodes and Pivot-Sets

- *Pivot-node* s_i : earliest node at depth f_i
- Pre-pivot-set S_0 : nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set S_{i+1} = (D_i ∪ B_i) \X_i is expanded in-between s_i and s_{i+1}
- $X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

The Basic Algorithm The D&B-Family

D&B-search – Pivot-Nodes and Pivot-Sets

- *Pivot-node* s_i : earliest node at depth f_i
- Pre-pivot-set S₀: nodes earlier than s₀
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set S_{i+1} = (D_i ∪ B_i) \X_i is expanded in-between s_i and s_{i+1}
- $X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

The Basic Algorithm The D&B-Family

D&B-search – Pivot-Nodes and Pivot-Sets

- *Pivot-node* s_i : earliest node at depth f_i
- Pre-pivot-set S₀: nodes earlier than s₀
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set S_{i+1} = (D_i ∪ B_i) \X_i is expanded in-between s_i and s_{i+1}
- $X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

The Basic Algorithm The D&B-Family

D&B-search – Pivot-Nodes and Pivot-Sets

A node is "earlier" than another if (unrestricted) D-search would expand it first

- Pivot-node s_i : earliest node at depth f_i
- Pre-pivot-set S₀: nodes earlier than s₀
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set S_{i+1} = (D_i ∪ B_i) \X_i is expanded in-between s_i and s_{i+1}
- $X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$

• *Post-pivot-set R* : the rest of the nodes

The Basic Algorithm The D&B-Family

D&B-search – Pivot-Nodes and Pivot-Sets

- *Pivot-node* s_i : earliest node at depth f_i
- Pre-pivot-set S_0 : nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set S_{i+1} = (D_i ∪ B_i) \X_i is expanded in-between s_i and s_{i+1}
- $X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

The Basic Algorithm The D&B-Family

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s₀
- S_1 is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S_2 is finished
- D-search passes s₂
- B-search expands the rest of B_2

< 口 > < 同 >

• S_3 is finished

The Basic Algorithm The D&B-Family

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s₀
- S_1 is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S_2 is finished
- D-search passes s₂
- B-search expands the rest of B_2

Image: Image:

• S₃ is finished
The Basic Algorithm The D&B-Family

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s₀
- S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S_2 is finished
- D-search passes s₂
- B-search expands the rest of B_2

< □ > < 同 >

• S₃ is finished

The Basic Algorithm The D&B-Family

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s₀
- S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S_2 is finished
- D-search passes s₂
- B-search expands the rest of B_2

< □ > < 同 >

• S_3 is finished

The Basic Algorithm The D&B-Family

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s₀
- S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2

< □ > < 同 >

• S_3 is finished

The Basic Algorithm The D&B-Family

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s₀
- S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2

< □ > < 同 >

• S_3 is finished

The Basic Algorithm The D&B-Family

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s₀
- S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2

< 口 > < 同 >

• S₃ is finished

The Basic Algorithm The D&B-Family

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s₀
 - S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2

< □ > < 同 >

• *S*₃ is finished

The Basic Algorithm The D&B-Family

- D-search expands all nodes in S_0
- D-search passes s₀
 - S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S₃ is finished

The Basic Algorithm The D&B-Family

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s₀
- S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S₃ is finished

Observation

D&B-search expands the nodes in the order $S_0, s_0, S_1, s_1, \ldots, S_i, s_i, \ldots, R$

Simon Brodt, François Bry, Norbert Eisinger

Search for More Declarativity

The Basic Algorithm The D&B-Family

D&B-search – Finite Tree

- S_2 is finished
- D-search expands s₂
- D-search reaches the max. depth in *R* (no *s*₃ in this tree)

- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

The Basic Algorithm The D&B-Family

D&B-search – Finite Tree

- S_2 is finished
- D-search expands s₂
- D-search reaches the max. depth in *R* (no *s*₃ in this tree)

- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

The Basic Algorithm The D&B-Family

D&B-search – Finite Tree

- S_2 is finished
- D-search expands s₂
- D-search reaches the max. depth in *R* (no *s*₃ in this tree)

Image: Image:

-

- B-search may complete B_2
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

The Basic Algorithm The D&B-Family

D&B-search – Finite Tree

- S_2 is finished
- D-search expands s₂
- D-search reaches the max. depth in *R* (no *s*₃ in this tree)

Image: Image:

-

- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

The Basic Algorithm The D&B-Family

D&B-search – Finite Tree

- S_2 is finished
- D-search expands s₂
- D-search reaches the max. depth in *R* (no *s*₃ in this tree)

< □ > < 同 >

- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

The Basic Algorithm The D&B-Family

D&B-search – Finite Tree

- S_2 is finished
- D-search expands s₂
- D-search reaches the max. depth in *R* (no *s*₃ in this tree)

< □ > < 同 >

- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

The Basic Algorithm The D&B-Family

D&B-search – Finite Tree

- S₂ is finished
- D-search expands s₂
- D-search reaches the max. depth in *R* (no s₃ in this tree)
- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- B-search stops shortly after D-search reaches the max. depth
- Most of the tree is expanded by D-search

The Basic Algorithm The D&B-Family

D&B-search – Finite Tree

- S₂ is finished
- D-search expands s₂
- D-search reaches the max. depth in *R* (no s₃ in this tree)
- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- B-search stops shortly after D-search reaches the max. depth
- Most of the tree is expanded by D-search

The Basic Algorithm The D&B-Family

D&B-search – Finite Tree

- S₂ is finished
- D-search expands s₂
- D-search reaches the max. depth in *R* (no s₃ in this tree)
- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- B-search stops shortly after D-search reaches the max. depth
- Most of the tree is expanded by D-search

The Basic Algorithm The D&B-Family

D&B-search – Non-Complete Infinite Tree

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S₂
- D-search passes s₂
- B-search completes B₂
- S₃ is finished
- D-search passes s₃
- B-search completes B₃

< □ > < 同 >

The Basic Algorithm The D&B-Family

D&B-search – Non-Complete Infinite Tree

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S₂
- D-search passes s₂
- B-search completes B₂
- S₃ is finished
- D-search passes s₃
- B-search completes B₃

< □ > < 同 >

The Basic Algorithm The D&B-Family

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S₂
- D-search passes s₂
- B-search completes B₂
- S₃ is finished
- D-search passes s₃
- B-search completes B₃

The Basic Algorithm The D&B-Family

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S₂
- D-search passes s₂
- B-search completes B₂
- S₃ is finished
- D-search passes s₃
- B-search completes B₃

The Basic Algorithm The D&B-Family

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S₂
- D-search passes s₂
- B-search completes B₂
- S_3 is finished
- D-search passes s₃
- B-search completes B₃

The Basic Algorithm The D&B-Family

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S₂
- D-search passes s₂
- B-search completes B₂
- S₃ is finished
- D-search passes s₃
- B-search completes B₃

The Basic Algorithm The D&B-Family

- S₁ is finished
- D-search passes s₁
- B-search may complete B_1
- D-search finishes S_2
- D-search passes s₂
- B-search completes B₂
- S₃ is finished
- D-search passes s₃
- B-search completes B₃

The Basic Algorithm The D&B-Family

D&B-search – Non-Complete Infinite Tree

- S₁ is finished
- D-search passes s₁
- B-search may complete B_1
- D-search finishes S_2
- D-search passes s₂
- B-search completes B₂
- S₃ is finished
- D-search passes s₃
- B-search completes B₃

- D-search "vanishes" in the earliest infinite branch
- Most of the tree is expanded by B-search

The Basic Algorithm The D&B-Family

D&B-search – Non-Complete Infinite Tree

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B₂
- S₃ is finished
- D-search passes s₃
- B-search completes B₃

- D-search "vanishes" in the earliest infinite branch
- Most of the tree is expanded by B-search

The Basic Algorithm The D&B-Family

D&B-search – Non-Complete Infinite Tree

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B₂
- S₃ is finished
- D-search passes s₃
- B-search completes B₃

- D-search "vanishes" in the earliest infinite branch
- Most of the tree is expanded by B-search

The Basic Algorithm The D&B-Family

D&B-search – Adaptivity

D&B-Search

behaves almost like D-search on finite trees

• behaves almost like B-search on infinite trees

⇒ has a kind of built-in adaptivity behaves like the "best" uninformed search method for the tree

Similar effect when D-search and iterative-deepening are combined

The Basic Algorithm The D&B-Family

D&B-search – Adaptivity

D&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees

⇒ has a kind of built-in adaptivity behaves like the "best" uninformed search method for the tree

Similar effect when D-search and iterative-deepening are combined

The Basic Algorithm The D&B-Family

D&B-search – Adaptivity

D&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees

\Rightarrow has a kind of built-in adaptivity behaves like the "best" uninformed search method for the tree

Similar effect when D-search and iterative-deepening are combined

The Basic Algorithm The D&B-Family

D&B-search – Adaptivity

D&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees

\Rightarrow has a kind of built-in adaptivity behaves like the "best" uninformed search method for the tree

Similar effect when D-search and iterative-deepening are combined

The Basic Algorithm The D&B-Family

The D&B-Family

Assume that the tree's branching factor is bounded by $b\in\mathbb{N}$

- Parameterise the function f_i with $c \in \mathbb{N} \cup \{\infty\}$
- Idea: $f_{c,i} := \lfloor b^{\frac{1}{c}} \rfloor$
- To get monotonicity: $f_{c,i} := \lfloor b^{\frac{l}{c}} \rfloor + i$

The Basic Algorithm The D&B-Family

The D&B-Family

Assume that the tree's branching factor is bounded by $b \in \mathbb{N}$

• Parameterise the function f_i with $c \in \mathbb{N} \cup \{\infty\}$

• Idea:
$$f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor$$

• To get monotonicity: $f_{c,i} := \lfloor b^{\frac{l}{c}} \rfloor + i$

The Basic Algorithm The D&B-Family

The D&B-Family

Assume that the tree's branching factor is bounded by $b \in \mathbb{N}$

• Parameterise the function f_i with $c \in \mathbb{N} \cup \{\infty\}$

• Idea:
$$f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor$$

• To get monotonicity: $f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor + i$

The Basic Algorithm The D&B-Family

The D&B-Family

$$f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor + i$$

Properties

- For $1 \le c \le \infty$ the algorithm is complete (for c = 0 it is not)
- For $1 \le c < \infty$ its space complexity is $O(d^c)$
- For c = 0 it corresponds to D-search because $f_{0,0} = \infty$. The pre-pivot-set S_0 contains all nodes of the whole tree.
- For $c = \infty$ it corresponds to B-search because $f_{\infty,i} = i + 1$. All sets $D_i \setminus X_i$ are empty, thus $S_{i+1} = B_i \setminus \{s_i\}$

(日)

The Basic Algorithm The D&B-Family

The D&B-Family

$$f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor + i$$

Properties

- For $1 \le c \le \infty$ the algorithm is complete (for c = 0 it is not)
- For $1 \le c < \infty$ its space complexity is $O(d^c)$
- For c = 0 it corresponds to D-search because $f_{0,0} = \infty$. The pre-pivot-set S_0 contains all nodes of the whole tree.
- For $c = \infty$ it corresponds to B-search because $f_{\infty,i} = i + 1$. All sets $D_i \setminus X_i$ are empty, thus $S_{i+1} = B_i \setminus \{s_i\}$

(日)
The Basic Algorithm The D&B-Family

The D&B-Family

$$f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor + i$$

Properties

- For $1 \le c \le \infty$ the algorithm is complete (for c = 0 it is not)
- For $1 \le c < \infty$ its space complexity is $O(d^c)$
- For c = 0 it corresponds to D-search because $f_{0,0} = \infty$. The pre-pivot-set S_0 contains all nodes of the whole tree.
- For $c = \infty$ it corresponds to B-search because $f_{\infty,i} = i + 1$. All sets $D_i \setminus X_i$ are empty, thus $S_{i+1} = B_i \setminus \{s_i\}$

The Basic Algorithm The D&B-Family

The D&B-Family

$$f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor + i$$

Properties

- For $1 \le c \le \infty$ the algorithm is complete (for c = 0 it is not)
- For $1 \le c < \infty$ its space complexity is $O(d^c)$
- For c = 0 it corresponds to D-search because $f_{0,0} = \infty$. The pre-pivot-set S_0 contains all nodes of the whole tree.
- For $c = \infty$ it corresponds to B-search because $f_{\infty,i} = i + 1$. All sets $D_i \setminus X_i$ are empty, thus $S_{i+1} = B_i \setminus \{s_i\}$

The Basic Algorithm The D&B-Family

< □ > < 同 >

The D&B-Family

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c = 0) and B-search ($c = \infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a *single* implementation
- c may be adapted even during the traversal

The Basic Algorithm The D&B-Family

The D&B-Family

Advantages

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c = 0) and B-search ($c = \infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a *single* implementation
- c may be adapted even during the traversal

< D > < A > < B > < B >

The Basic Algorithm The D&B-Family

The D&B-Family

Advantages

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c = 0) and B-search ($c = \infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a *single* implementation
- c may be adapted even during the traversal

< D > < A > < B > < B >

The Basic Algorithm The D&B-Family

< 口 > < 同 >

The D&B-Family

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c = 0) and B-search ($c = \infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a *single* implementation
- c may be adapted even during the traversal

The Basic Algorithm The D&B-Family

< <p>I > < <p>I

The D&B-Family

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c = 0) and B-search ($c = \infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a *single* implementation
- c may be adapted even during the traversal

The Basic Algorithm The D&B-Family

< <p>I > < <p>I

The D&B-Family

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c = 0) and B-search ($c = \infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a *single* implementation
- c may be adapted even during the traversal

Search & Partial Ordering

D&B-search

3 Conclusion

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs
 - (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs
 - (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs
 - (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly

Search & Partial Ordering

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs
 - (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness

• Finite and infinte trees are covered uniformly

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs
 - (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly

Characterization of Completeness

Characterization of Completeness

Characterization of Completeness

Characterization of Completeness

Characterization of Completeness

Characterization of Completeness

A search algorithm is complete iff for each depth *i* there is a depth $f_{i+1} > i$ so that none of the nodes at depth f_{i+1} is expanded before every node at depth *i* has been expanded.

D&B-search

- $B_i \subseteq S_{i+1} \cup X_i$
- S_{i+1} ∪ X_i is completed before s_i, the first node at depth f_{i+1}
- ⇒ D&B-search is complete

Characterization of Completeness

A search algorithm is complete iff for each depth *i* there is a depth $f_{i+1} > i$ so that none of the nodes at depth f_{i+1} is expanded before every node at depth *i* has been expanded.

D&B-search

- $B_i \subseteq S_{i+1} \cup X_i$
- S_{i+1} ∪ X_i is completed before s_i, the first node at depth f_{i+1}
- \Rightarrow D&B-search is complete

Characterization of Completeness

Characterization of Completeness

Conclusion

D&B-search

2 Search & Partial Ordering

э

(日)

D&B-search

• Novel Search method: Integrating D-search and B-search

- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth. Polynomial depends on parameter *c*
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 → only simple datastructures needed

D&B-search

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth. Polynomial depends on parameter *c*
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 → only simple datastructures needed

< □ > < 同 >

()

D&B-search

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth. Polynomial depends on parameter *c*
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code

 only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth. Polynomial depends on parameter *c*
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 - \rightarrow only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth. Polynomial depends on parameter *c*
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 → only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth. Polynomial depends on parameter *c*
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 → only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth. Polynomial depends on parameter *c*
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 - \rightarrow only simple datastructures needed

• □ • • • • • • • • • • •

Theoretical-Framework

- Based on partial orderings
- Covers finite and infinite trees uniformly
- High analytic power, concise and precise proofs

Future work

- Combine D-search and iterative deepening to D&I-search by the same principle
 - Behaves (almost) like D-search on finite trees
 - Behaves (almost) like iterative-deepening on infinite trees
 - Achieved by the same depth bounds f_i as for D&B-search
- Same for other combinations
- Prototype implementation
- Empirical comparison to other uninformed search methods
 → Focus: Logic programming applications using backward reasoning approaches with and without memorization

Thank You

æ

イロト イヨト イヨト