# Search for More Declarativity <br> Backward Reasoning for Rule Languages Reconsidered 

Simon Brodt François Bry Norbert Eisinger<br>Institute for Informatics, University of Munich, Oettingenstraße 67, D-80538 München, Germany http://www.pms.ifi.lmu.de/

25 October 2009

## Rule Languages \& Declarativity

## Declarativity - The Greatest Advantage of Rule Languages

- Separates between
- What is the problem?
- How is the problem solved?
- Built-in nroblem-solving
$\Rightarrow$ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites


## Rule Languages \& Declarativity

## Declarativity - The Greatest Advantage of Rule Languages

- Separates between
- What is the problem?
- How is the problem solved?
- Built-in problem-solving
$\Rightarrow$ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites


## Rule Languages \& Declarativity

## Declarativity - The Greatest Advantage of Rule Languages

- Separates between
- What is the problem?
- How is the problem solved?
- Built-in problem-solving
$\Rightarrow$ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites


## Rule Languages \& Declarativity

## Declarativity - The Greatest Advantage of Rule Languages

- Separates between
- What is the problem?
- How is the problem solved?
- Built-in problem-solving
$\Rightarrow$ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites


## Rule Languages \& Declarativity

## Declarativity - The Greatest Advantage of Rule Languages

- Separates between
- What is the problem?
- How is the problem solved?
- Built-in problem-solving $\Rightarrow$ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to freauently changing prereauisites


## Rule Languages \& Declarativity

## Declarativity - The Greatest Advantage of Rule Languages

- Separates between
- What is the problem?
- How is the problem solved?
- Built-in problem-solving $\Rightarrow$ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites


## Rule Languages \& Declarativity

## Declarativity - The Greatest Advantage of Rule Languages

- Separates between
- What is the problem?
- How is the problem solved?
- Built-in problem-solving
$\Rightarrow$ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites


## Rule Languages \& Declarativity

## Declarativity - The Greatest Advantage of Rule Languages

- Separates between
- What is the problem?
- How is the problem solved?
- Built-in problem-solving $\Rightarrow$ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

Motivation

## Rule Languages \& Search

An inference engine depends on

- a logical system with reasonable soundness \& completeness properties
- a search method which
- preserves (most of) these properties
- provides an adequate degree of efficiency

Motivation

## Rule Languages \& Search

An inference engine depends on

- a logical system with reasonable soundness \& completeness properties
- a search method which
- preserves (most of) these properties
- provides an adequate degree of efficiency

Motivation

Conclusion

## Rule Languages \& Search

## Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning
- ...


## No Special Assumptions for this Paper

Motivation
D\&B-search
Search \& Partial Ordering
Conclusion

## Rule Languages \& Search

## Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning

No Special Assumptions for this Paper

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
- Backward reasoning with and without memorization
- Forward reasoning approaches with some goal guidance


## Rule Languages \& Search

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning

No Special Assumptions for this Paper

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
- Backward reasoning with and without memorization
- Forward reasoning approaches with some goal guidance

Motivation

## Rule Languages \& Search

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning

No Special Assumptions for this Paper

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
- Backward reasoning with and without memorization
- Forward reasoning approaches with some goal guidance


## Not Much Choice

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening


## Not Much Choice

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening


## Not Much Choice

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening


## Not Much Choice

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening


## Not Much Choice

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- 
- 
- 


## Not Much Choice

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- 
- 
- 


## Only uninformed search methods can be used

## Not Much Choice

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening


## Only uninformed search methods can be used

## Desiderata for Search Methods

Completeness on finite and infinite search trees.
Every node in the search space is visited after a finite number of steps.
Polynomial space complexity $O\left(d^{c}\right)$
$c=$ constant
$d=$ maximum depth reached so far (or of the entire tree, if it is finite)

Linear time complexity $O(n)$
$n=$ number of nodes visited at least once (or of the entire tree, if it is finite)

## Desiderata for Search Methods

Completeness on finite and infinite search trees.
Every node in the search space is visited after a finite number of steps.
Polynomial space complexity $O\left(d^{c}\right)$
$c=$ constant
$d=$ maximum depth reached so far
$\quad$ (or of the entire tree, if it is finite)

Linear time complexity $O(n)$
$n=$ number of nodes visited at least once (or of the entire tree, if it is finite)

## Desiderata for Search Methods

Completeness on finite and infinite search trees.
Every node in the search space is visited after a finite number of steps.
Polynomial space complexity $O\left(d^{c}\right)$
$c=$ constant
$d=$ maximum depth reached so far (or of the entire tree, if it is finite)
Linear time complexity $O(n)$
$n=$ number of nodes visited at least once (or of the entire tree, if it is finite)

Rule Languages \& Declarativity
Rule Languages \& Search
Desiderata for Search Methods
Search \& Declarativity

## Traditional Methods Fail

## D-search

## Incomplete on infinite trees

## B-search <br> Exnonential space-complexity in the depth of the tree

## Iterative Deepening

Frequent re-evaluation

Iterative Broadening
Incomplete on infinite trees
Frequent re-evaluation

Rule Languages \& Declarativity

## Traditional Methods Fail

## D-search

Incomplete on infinite trees

## B-search

Exponential space-complexity in the depth of the tree

## Iterative Deepening

Frequent re-evaluation

Iterative Broadening
Incomplete on infinite trees
Frequent re-evaluation

## Traditional Methods Fail

## D-search

Incomplete on infinite trees

## B-search

Exponential space-complexity in the depth of the tree

## Iterative Deepening <br> Frequent re-evaluation

Iterative Broadening
Incomplete on infinite trees
Frequent re-evaluation

## Traditional Methods Fail

## D-search

Incomplete on infinite trees

## B-search

Exponential space-complexity in the depth of the tree

## Iterative Deepening

Frequent re-evaluation

## Iterative Broadening <br> Incomplete on infinite trees <br> Frequent re-evaluation

Rule Languages \& Declarativity

Sensible Compromise? (Prolog)

- Use D-search
- Give rule authors some control to avoid infinite dead ends (e.g. ordering of the rules, ...)


## Declarativity gets lost

Sensible Compromise? (Prolog)

- Use D-search
- Give rule authors some control to avoid infinite dead ends (e.g. ordering of the rules, ...)


## Declarativity gets lost

## Search \& Declarativity

## Term Representation for Natural Numbers

- zero represents 0
- $\operatorname{succ}(X, Y)$ can provide the predecessor $X$ to any $Y$ representing a nonzero natural number


## Program

```
nat(zero) \leftarrow
nat(Y) \leftarrow succ(X,Y) ^ nat(X)
nat}2(X,Y) \leftarrow nat(X) ^ nat(Y)
less(X,Y) \leftarrow "reasonably defined"
```


## Problem 1 - Incomplete Enumerations

## Program

```
nat(zero) }
nat(Y) }\leftarrow\operatorname{succ}(X,Y) ^ nat(X
nat}\mp@subsup{\mp@code{N}}{(X,Y) }{(H)nat(X) ^ nat(Y)
less(X,Y) \leftarrow "reasonably defined"
```


## Queries

```
(1) \leftarrow nat (X)
(2)}\leftarrow\mp@subsup{\operatorname{nat}}{2}{(X,Y)
```


## Expected Results

(1) Enumeration of $\mathbb{N}$
(2) Enumeration of $\mathbb{N} \times \mathbb{N}$

## Prolog's Results

(1) Enumeration of $\mathbb{N}$
(2) Enumeration of $\{0\} \times \mathbb{N}$

## Problem 1 - Incomplete Enumerations

## Program

```
nat(zero) \leftarrow
nat(Y) \leftarrow succ(X,Y) ^ nat(X)
nat}2(X,Y) \leftarrow nat(X) ^ nat(Y)
less(X,Y) \leftarrow "reasonably defined"
```


## Queries

```
(1) \leftarrow nat (X)
(2)}\leftarrow\mp@subsup{\operatorname{nat}}{2}{(X,Y)
```


## Expected Results

(1) Enumeration of $\mathbb{N}$
(2) Enumeration of $\mathbb{N} \times \mathbb{N}$

## Prolog's Results

(1) Enumeration of $\mathbb{N}$
(2) Enumeration of $\{0\} \times \mathbb{N}$

## Problem 1 - Incomplete Enumerations

## Program

```
nat(zero) \leftarrow
nat(Y) }\leftarrow\operatorname{succ}(X,Y) ^ nat(X
nat
less(X,Y) \leftarrow "reasonably defined"
```


## Queries

(1) $\leftarrow \operatorname{nat}(X)$
(2) $\leftarrow \operatorname{nat}_{2}(\mathrm{X}, \mathrm{Y})$

## Expected Results

(1) Enumeration of $\mathbb{N}$
(2) Enumeration of $\mathbb{N} \times \mathbb{N}$

## Prolog's Results

(1) Enumeration of $\mathbb{N}$
(2) Enumeration of $\{0\} \times \mathbb{N}$

## Problem 2 - Non-Commutativity

## Program

```
nat(zero) \leftarrow
nat(Y) \leftarrow succ(X,Y) ^ nat(X)
nat}2(X,Y) \leftarrow nat(X) ^ nat(Y)
less(X,Y) \leftarrow "reasonably defined"
```


## Queries

## (Assume Single-Answer-Mode)

(1) $\leftarrow \operatorname{less}(z e r o, X) \wedge \operatorname{nat}_{2}(X, Y)$
(2) $\leftarrow \operatorname{nat}_{2}(X, Y) \wedge$ less (zero, X)

(1) Yes


## Prolog's Results


(2) No answer (does not terminate)

## Problem 2 - Non-Commutativity

## Program

```
nat(zero) \leftarrow
nat(Y) }\leftarrow\operatorname{succ}(X,Y) ^ nat(X
nat}2(X,Y) \leftarrow nat(X) ^ nat(Y)
less(X,Y) \leftarrow "reasonably defined"
```


## Queries

## (Assume Single-Answer-Mode)

(1) $\leftarrow \operatorname{less}(z e r o, X) \wedge \operatorname{nat}_{2}(X, Y)$
(2) $\leftarrow \operatorname{nat}_{2}(X, Y) \wedge$ less (zero, X)

## Expected Results

(1) Yes
(2) Yes
Prolog's Results
(1) Yes
2 No answer (does not terminate)

## Problem 2 - Non-Commutativity

## Program

```
nat(zero) \leftarrow
nat(Y) }\leftarrow\operatorname{succ}(X,Y) ^ nat(X
nat}2(X,Y) \leftarrow nat(X) ^ nat(Y)
less(X,Y) \leftarrow "reasonably defined"
```


## Queries

## (Assume Single-Answer-Mode)

(1) $\leftarrow \operatorname{less}(z e r o, X) \wedge \operatorname{nat}_{2}(X, Y)$
(2) $\leftarrow \operatorname{nat}_{2}(X, Y) \wedge$ less (zero, X)

## Expected Results

(1) Yes
(2) Yes

## Prolog's Results

(1) Yes
(2) No answer (does not terminate)

Rule Languages \& Declarativity

## Reason - Incomplete Search

## SLD-resolution is fine

Perfectly sound and complete with any literal selection function.

## Problem: Incompleteness of D-search

## The problems would not arise with a complete search method

Choose iterative deepening?

Motivation

## Reason - Incomplete Search

SLD-resolution is fine
Perfectly sound and complete with any literal selection function.

## Problem: Incompleteness of D-search

The problems would not arise with a complete search method

Choose iterative deepening?

## Reason - Incomplete Search

SLD-resolution is fine
Perfectly sound and complete with any literal selection function.

## Problem: Incompleteness of D-search

The problems would not arise with a complete search method

Choose iterative deepening?

## Problem 3 - Inefficiency on Functional Rule Sets

## Program

```
even(zero) \leftarrow
even(Y) }\leftarrow\operatorname{succ}(X,Y) ^ odd(X
odd(Y) }\leftarrow\operatorname{succ(X,Y) ^ even(X)
```


## Query

```
\leftarrow \mp@code { c o n s t a n t ( X ) ~ ^ ~ e v e n ( X ) }
```

constant (X) binds $X$ to some fixed, large number $n \in \mathbb{N}$.


Search should not slow down the evaluation of functional rules

## Problem 3 - Inefficiency on Functional Rule Sets

## Program

```
even(zero) \leftarrow
even(Y) }\leftarrow\operatorname{succ}(X,Y) ^ odd(X
odd(Y) }\leftarrow\operatorname{succ(X,Y) ^ even(X)
```


## Query

```
\leftarrow \mp@code { c o n s t a n t ( X ) ~ ^ ~ e v e n ( X ) }
```

constant (X) binds $X$ to some fixed, large number $n \in \mathbb{N}$.

## Expected Runtime <br> $O(n)$



Search should not slow down the evaluation of functional rules

## Problem 3 - Inefficiency on Functional Rule Sets

## Program

```
even(zero) \leftarrow
even(Y) }\leftarrow\operatorname{succ}(X,Y) ^ odd(X
odd(Y) }\leftarrow\operatorname{succ(X,Y) ^ even(X)
```


## Query

```
\leftarrow \mp@code { c o n s t a n t ( X ) ~ ^ ~ e v e n ( X ) }
```

constant (X) binds $X$ to some fixed, large number $n \in \mathbb{N}$.

## Expected Runtime <br> $O(n)$

Runtime with Iterative-Deepening

$$
O\left(n^{2}\right)
$$

Search should not slow down the evaluation of functional rules

Rule Languages \& Declarativity
Rule Languages \& Search

## Problem 3 - Inefficiency on Functional Rule Sets

## Program

```
even(zero) }
even(Y) }\leftarrow\operatorname{succ}(X,Y) ^ odd(X
odd(Y) }\leftarrow\operatorname{succ(X,Y) ^ even(X)
```

Query
$\leftarrow$ constant $(X) \wedge$ even (X)
constant (X) binds $X$ to some fixed, large number $n \in \mathbb{N}$.

Expected Runtime
$O(n)$

Runtime with Iterative-Deepening

$$
O\left(n^{2}\right)
$$

Search should not slow down the evaluation of functional rules

## A New Algorithm - D\&B-search

- Integrates D-search and B-search
- Complete on finite and infinite trees
- Linear space complexity in depth for basic algorithm
- Non-repetitive
- Family of algorithms in parameter c with
- Complete for $c>0$
- Polynomial space-requirement $O\left(d^{c}\right)$ in depth for $c<\infty$
- D-search and B-search as extreme cases
- Only simple datastructures needed
- Properties are proved


## A New Algorithm - D\&B-search

- Integrates D-search and B-search
- Complete on finite and infinite trees
- Linear space complexity in depth for basic algorithm
- Non-repetitive
- Family of algorithms in parameter $c$ with
- Complete for $c>0$
- Polynomial space-requirement $O\left(d^{c}\right)$ in depth for $c<\infty$
- D-search and B-search as extreme cases
- Only simple datastructures needed
- Properties are proved

Rule Languages \& Declarativity

## Overview

(1) D\&B-search
(2) Search \& Partial Ordering
(3) Conclusion

## D\&B-search

(1) D\&B-search

- The Basic Algorithm
- The D\&B-Family
(2) Search \& Partial Ordering
(3) Conclusion

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2
- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2
- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$ - B-search completes level 2
- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$ - B-search completes level 2

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$ - B-search completes level 2

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2


## Generally

- D-search passes depth bound $f_{i+1}$ only
if the level $i$ has been completed
- B-search completes the level i only
if depth bound $f_{i}$ has been passed

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2


## Generally

- D-search passes depth bound $f_{i+1}$ only if the level $i$ has been completed
- B-search completes the level $i$ only if depth bound $f_{i}$ has been passed

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2


## Generally

- D-search passes depth bound $f_{i+1}$ only if the level $i$ has been completed
- B-search completes the level $i$ only if depth bound $f_{i}$ has been passed

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2


## Observations

- D-search advances exponentially faster than B-search
- The number of nodes to be stored is only polynomial in the maximum depth (if $f_{i}$ is exponential in $i$ )

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2


## Observations

- D-search advances exponentially faster than B-search
- The number of nodes to be stored is only polynomial in the maximum depth (if $f_{i}$ is exponential in $i$ )

- D-search starts
- D-search passes depth bound $f_{0}$
- B-search completes level 0 (no work to do)
- D-search passes depth bound $f_{1}$
- B-search completes level 1
- D-search passes depth bound $f_{2}$
- B-search completes level 2


## Observations

- D-search advances exponentially faster than B-search
- The number of nodes to be stored is only polynomial in the maximum depth (if $f_{i}$ is exponential in $i$ )


## D\&B-search - Idea

- Alternate D-search with B-search
- Rotation is controlled by a sequence $f_{0}, f_{1}, f_{2}, \ldots$ of depth bounds
- Defined by a function $\mathbb{N} \rightarrow \mathbb{N}, i \mapsto f_{i}$
- $i<f_{i}<f_{i+1}$
$f_{i}=2^{i}$ for the examples


## D\&B-search - Pivot-Nodes and Pivot-Sets



A node is "earlier" than another if (unrestricted) D-search would expand it first

- Pivot-node $s_{i}$ : earliest node at depth $f_{i}$
- Pre-pivot-set $S_{0}$ : nodes earlier than $s_{0}$
- $D_{i}$ : nodes earlier than $s_{i+1}$
- $B_{i}$ : nodes at depth $i$
- Inter-pivot-set $S_{i+1}=\left(D_{i} \cup B_{i}\right) \backslash X_{i}$ is expanded in-between $s_{i}$ and $s_{i+1}$

- Post-pivot-set $R$ : the rest of the nodes


## D\&B-search - Pivot-Nodes and Pivot-Sets



A node is "earlier" than another if (unrestricted) D-search would expand it first

- Pivot-node $s_{i}$ : earliest node at depth $f_{i}$
- Pre-pivot-set $S_{0}$ : nodes earlier than so
- $D_{i}$ : nodes earlier than $s_{i+1}$
- Bi: nodes at denth ;
- Inter-pivot-set $S_{i+1}=\left(D_{i} \cup B_{i}\right) \backslash X_{i}$ is expanded in-between $s_{i}$ and $s_{i+1}$ e $X_{i}=S_{0} \cup s_{0} U \ldots U S_{i} \| s_{i}$
- Post-pivot-set $R$ : the rest of the nodes


## D\&B-search - Pivot-Nodes and Pivot-Sets



A node is "earlier" than another if (unrestricted) D-search would expand it first

- Pivot-node $s_{i}$ : earliest node at depth $f_{i}$
- Pre-pivot-set $S_{0}$ : nodes earlier than $s_{0}$
- $D_{i}$ : nodes earlier than $s_{i+1}$
- $B_{i}$ : nodes at depth $i$
- Inter-pivot-set $S_{i+1}=\left(D_{i} \cup B_{i}\right) \backslash X_{i}$ is expanded in-between $s_{i}$ and $s_{i+1}$

- Post-pivot-set $R$ : the rest of the nodes


## D\&B-search - Pivot-Nodes and Pivot-Sets



A node is "earlier" than another if (unrestricted) D-search would expand it first

- Pivot-node $s_{i}$ : earliest node at depth $f_{i}$
- Pre-pivot-set $S_{0}$ : nodes earlier than $s_{0}$
- $D_{i}$ : nodes earlier than $s_{i+1}$
- $B_{i}$ : nodes at depth $i$
- Inter-pivot-set $S_{i+1}=\left(D_{i} \cup B_{i}\right) \backslash X_{i}$ is expanded in-between $s_{i}$ and $s_{i+1}$ - $X_{i}=S_{0} \cup s_{0} \cup \ldots \cup S_{i} \cup s_{i}$
- Post-pivot-set $R$ : the rest of the nodes


## D\&B-search - Pivot-Nodes and Pivot-Sets



A node is "earlier" than another if (unrestricted) D-search would expand it first

- Pivot-node $s_{i}$ : earliest node at depth $f_{i}$
- Pre-pivot-set $S_{0}$ : nodes earlier than $s_{0}$
- $D_{i}$ : nodes earlier than $s_{i+1}$
- $B_{i}$ : nodes at depth $i$
- Inter-pivot-set $S_{i+1}=\left(D_{i} \cup B_{i}\right) \backslash X_{i}$ is expanded in-between $s_{i}$ and $s_{i+1}$

- Post-pivot-set $R$ : the rest of the nodes


## D\&B-search - Pivot-Nodes and Pivot-Sets



A node is "earlier" than another if (unrestricted) D-search would expand it first

- Pivot-node $s_{i}$ : earliest node at depth $f_{i}$
- Pre-pivot-set $S_{0}$ : nodes earlier than $s_{0}$
- $D_{i}$ : nodes earlier than $s_{i+1}$
- $B_{i}$ : nodes at depth $i$
- Inter-pivot-set $S_{i+1}=\left(D_{i} \cup B_{i}\right) \backslash X_{i}$ is expanded in-between $s_{i}$ and $s_{i+1}$
- $X_{i}=S_{0} \cup s_{0} \cup \ldots \cup S_{i} \cup s_{i}$
- Post-pivot-set $R$ : the rest of the nodes


## D\&B-search - Pivot-Nodes and Pivot-Sets



A node is "earlier" than another if (unrestricted) D-search would expand it first

- Pivot-node $s_{i}$ : earliest node at depth $f_{i}$
- Pre-pivot-set $S_{0}$ : nodes earlier than $s_{0}$
- $D_{i}$ : nodes earlier than $s_{i+1}$
- $B_{i}$ : nodes at depth $i$
- Inter-pivot-set $S_{i+1}=\left(D_{i} \cup B_{i}\right) \backslash X_{i}$ is expanded in-between $s_{i}$ and $s_{i+1}$
- $X_{i}=S_{0} \cup s_{0} \cup \ldots \cup S_{i} \cup s_{i}$
- Post-pivot-set $R$ : the rest of the nodes


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes so
- $S_{1}$ is finished
- D-search passes $S_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes $s_{0}$
- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes $s_{0}$
- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes $s_{0}$
- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes $s_{0}$
- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes $s_{0}$
- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes $s_{0}$
- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes $s_{0}$
- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes $s_{0}$
- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## D\&B-search - Complete Infinite Tree



- D-search expands all nodes in $S_{0}$
- D-search passes $s_{0}$
- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search expands the rest of $B_{1}$
- $S_{2}$ is finished
- D-search passes $s_{2}$
- B-search expands the rest of $B_{2}$
- $S_{3}$ is finished


## Observation

D\&B-search expands the nodes in the order $S_{0}, s_{0}, S_{1}, s_{1}, \ldots, S_{i}, s_{i}, \ldots, R$

## D\&B-search - Finite Tree



- $S_{2}$ is finished
- D-search expands $s_{2}$
- D-search reaches the max. depth in $R$ (no $s_{3}$ in this tree)
- B-search may complete $B_{2}$
- D-search continues $R$
- D-search continues $R$
- D-search finishes $R$
- Search is finished


## D\&B-search - Finite Tree



- $S_{2}$ is finished
- D-search expands $s_{2}$
- D-search reaches the max. depth in $R$ (no $s_{3}$ in this tree)
- B-search may complete $B_{2}$
- D-search continues $R$
- D-search continues $R$
- D-search finishes $R$
- Search is finished


## D\&B-search - Finite Tree



- $S_{2}$ is finished
- D-search expands $s_{2}$
- D-search reaches the max. depth in $R$ (no $s_{3}$ in this tree)
- B-search may complete $B_{2}$
- D-search continues $R$
- D-search continues $R$
- D-search finishes $R$
- Search is finished


## D\&B-search - Finite Tree



- $S_{2}$ is finished
- D-search expands $s_{2}$
- D-search reaches the max. depth in $R$ (no $s_{3}$ in this tree)
- B-search may complete $B_{2}$
- D-search continues $R$
- D-search continues $R$
- D-search finishes $R$
- Search is finished


## D\&B-search - Finite Tree



- $S_{2}$ is finished
- D-search expands $s_{2}$
- D-search reaches the max. depth in $R$ (no $s_{3}$ in this tree)
- B-search may complete $B_{2}$
- D-search continues $R$
- D-search continues $R$
- D-search finishes $R$
- Search is finished


## D\&B-search - Finite Tree



- $S_{2}$ is finished
- D-search expands $s_{2}$
- D-search reaches the max. depth in $R$ (no $s_{3}$ in this tree)
- B-search may complete $B_{2}$
- D-search continues $R$
- D-search continues $R$
- D-search finishes $R$
- Search is finished


## D\&B-search - Finite Tree



- $S_{2}$ is finished
- D-search expands $s_{2}$
- D-search reaches the max. depth in $R$ (no $s_{3}$ in this tree)
- B-search may complete $B_{2}$
- D-search continues $R$
- D-search continues $R$
- D-search finishes $R$
- Search is finished


## Observation

# - B-search stops shortly after D-search reaches the max. depth <br> - Most of the tree is expanded by D-search 

## D\&B-search - Finite Tree



- $S_{2}$ is finished
- D-search expands $s_{2}$
- D-search reaches the max. depth in $R$ (no $s_{3}$ in this tree)
- B-search may complete $B_{2}$
- D-search continues $R$
- D-search continues $R$
- D-search finishes $R$
- Search is finished


## Observation

- B-search stops shortly after D-search reaches the max. depth
- Most of the tree is expanded by D-search


## D\&B-search - Finite Tree



- $S_{2}$ is finished
- D-search expands $s_{2}$
- D-search reaches the max. depth in $R$ (no $s_{3}$ in this tree)
- B-search may complete $B_{2}$
- D-search continues $R$
- D-search continues $R$
- D-search finishes $R$
- Search is finished


## Observation

- B-search stops shortly after D-search reaches the max. depth
- Most of the tree is expanded by D-search


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search nasses s2
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes $s_{3}$
- B-search completes $B_{3}$


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search passes $s_{2}$
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes $s_{3}$
- B-search completes $B_{3}$


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search passes $s_{2}$
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes s3
- B-search completes $B_{3}$


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search passes $s_{2}$
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes $s_{3}$
- B-search completes $B_{3}$


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search passes $s_{2}$
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes s3
- B-search completes $B_{3}$


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search passes $s_{2}$
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes $s_{3}$
- B-search completes $B_{3}$


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search passes $s_{2}$
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes $s_{3}$
- B-search completes $B_{3}$


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search passes $s_{2}$
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes $s_{3}$
- B-search completes $B_{3}$


## Observation

- D-search "vanishes" in the earliest infinite branch
- Most of the tree is expanded by B-search


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search passes $s_{2}$
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes $s_{3}$
- B-search completes $B_{3}$


## Observation

- D-search "vanishes" in the earliest infinite branch
- Most of the tree is expanded by B-search


## D\&B-search - Non-Complete Infinite Tree



- $S_{1}$ is finished
- D-search passes $s_{1}$
- B-search may complete $B_{1}$
- D-search finishes $S_{2}$
- D-search passes $s_{2}$
- B-search completes $B_{2}$
- $S_{3}$ is finished
- D-search passes $s_{3}$
- B-search completes $B_{3}$


## Observation

- D-search "vanishes" in the earliest infinite branch
- Most of the tree is expanded by B-search


## D\&B-search - Adaptivity

D\&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees
$\Rightarrow$ has a kind of built-in adaptivity
behaves like the "best" uninformed search method for the tree
Similar effect when D-search and iterative-deepening are combined


## D\&B-search - Adaptivity

D\&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees
$\Rightarrow$ has a kind of built-in adaptivity behaves like the "best" uninformed search method for the tree

Similar effect when D-search and iterative-deepening are combined

## D\&B-search - Adaptivity

## D\&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees
$\Rightarrow$ has a kind of built-in adaptivity
behaves like the "best" uninformed search method for the tree
Similar effect when D-search and iterative-deepening are combined


## D\&B-search - Adaptivity

## D\&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees
$\Rightarrow$ has a kind of built-in adaptivity
behaves like the "best" uninformed search method for the tree
Similar effect when D-search and iterative-deepening are combined


## The D\&B-Family

Assume that the tree's branching factor is bounded by $b \in \mathbb{N}$

- Parameterise the function $f_{i}$ with $c \in \mathbb{N} \cup\{\infty\}$
- Idea: $f_{c, i}:=\left\lfloor b^{\frac{1}{c}}\right\rfloor$
- To get monotonicity: $f_{c, i}:=\left\lfloor b^{\frac{1}{c}}\right\rfloor+i$


## The D\&B-Family

Assume that the tree's branching factor is bounded by $b \in \mathbb{N}$

- Parameterise the function $f_{i}$ with $c \in \mathbb{N} \cup\{\infty\}$
- Idea: $f_{c, i}:=\left\lfloor b^{\frac{i}{c}}\right\rfloor$
- To get monotonicity: $f_{c, i}:=\left\lfloor b^{\frac{1}{c}}\right\rfloor+i$


## The D\&B-Family

Assume that the tree's branching factor is bounded by $b \in \mathbb{N}$

- Parameterise the function $f_{i}$ with $c \in \mathbb{N} \cup\{\infty\}$
- Idea: $f_{c, i}:=\left\lfloor b^{\frac{i}{c}}\right\rfloor$
- To get monotonicity: $f_{c, i}:=\left\lfloor b^{\frac{i}{c}}\right\rfloor+i$


## The D\&B-Family

$f_{c, i}:=\left\lfloor b^{\frac{i}{c}}\right\rfloor+i$

## Properties

- For $1 \leq c \leq \infty$ the algorithm is complete (for $c=0$ it is not)
- For $1 \leq c<\infty$ its space complexity is $O\left(d^{c}\right)$
- For $c=0$ it corresponds to D-search because $f_{0,0}=\infty$ The pre-pivot-set $S_{0}$ contains all nodes of the whole tree.
- For $c=\infty$ it corresponds to B-search because $f_{\infty, i}=i+1$. All sets $D_{i} \backslash X_{i}$ are empty, thus $S_{i+1}=B_{i} \backslash\left\{s_{i}\right\}$


## The D\&B-Family

$f_{c, i}:=\left\lfloor b^{\frac{i}{c}}\right\rfloor+i$

## Properties

- For $1 \leq c \leq \infty$ the algorithm is complete (for $c=0$ it is not)
- For $1 \leq c<\infty$ its space complexity is $O\left(d^{c}\right)$
- For $c=0$ it corresponds to D-search because $f_{0,0}=\infty$. The pre-pivot-set $S_{0}$ contains all nodes of the whole tree - For $c=\infty$ it corresponds to B-search because $f_{\infty, i}=i+1$. All sets $D_{i} \backslash X_{i}$ are empty, thus $S_{i+1}=B_{i} \backslash\left\{s_{i}\right\}$


## The D\&B-Family

$f_{c, i}:=\left\lfloor b^{\frac{i}{c}}\right\rfloor+i$

## Properties

- For $1 \leq c \leq \infty$ the algorithm is complete (for $c=0$ it is not)
- For $1 \leq c<\infty$ its space complexity is $O\left(d^{c}\right)$
- For $c=0$ it corresponds to D-search because $f_{0,0}=\infty$. The pre-pivot-set $S_{0}$ contains all nodes of the whole tree.
- For $c=\infty$ it corresponds to B-search because $f_{\infty, i}=i+1$. All sets $D_{i} \backslash X_{i}$ are empty, thus $S_{i+1}=B_{i} \backslash\left\{s_{i}\right\}$


## The D\&B-Family

$f_{c, i}:=\left\lfloor b^{\frac{i}{c}}\right\rfloor+i$

## Properties

- For $1 \leq c \leq \infty$ the algorithm is complete (for $c=0$ it is not)
- For $1 \leq c<\infty$ its space complexity is $O\left(d^{c}\right)$
- For $c=0$ it corresponds to D-search because $f_{0,0}=\infty$. The pre-pivot-set $S_{0}$ contains all nodes of the whole tree.
- For $c=\infty$ it corresponds to B-search because $f_{\infty, i}=i+1$. All sets $D_{i} \backslash X_{i}$ are empty, thus $S_{i+1}=B_{i} \backslash\left\{s_{i}\right\}$


## The D\&B-Family

## Advantages

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search $(c=0)$ and $B$-search $(c=\infty)$
- Snace complexity nolynomial in denth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c mav be adanted even during the traversal


## The D\&B-Family

## Advantages

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search $(c=0)$ and $B$-search $(c=\infty)$
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as narameter for a single implementation
- c may be adapted even during the traversal


## The D\&B-Family

## Advantages

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search $(c=0)$ and B-search $(c=\infty)$
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- C may be adapted even durines the traversal


## The D\&B-Family

## Advantages

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search $(c=0)$ and B-search $(c=\infty)$
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c may be adapted even during the traversal


## The D\&B-Family

## Advantages

- cexpresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search $(c=0)$ and B-search $(c=\infty)$
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c may be adapted even during the traversal


## The D\&B-Family

## Advantages

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search $(c=0)$ and B-search $(c=\infty)$
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c may be adapted even during the traversal


## Search \& Partial Ordering

(1) D\&B-search
(2) Search \& Partial Ordering
(3) Conclusion

## Search \& Partial Ordering

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
- precise notation
- Powerful instruments for proofs (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly


## Search \& Partial Ordering

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
- precise notation
- Powerful instruments for proofs (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly


## Search \& Partial Ordering

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
- precise notation
- Powerful instruments for proofs (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly


## Search \& Partial Ordering

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
- precise notation
- Powerful instruments for proofs (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly


## Search \& Partial Ordering

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
- precise notation
- Powerful instruments for proofs (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly


## Characterization of Completeness

A search algorithm is complete iff for each depth $i$ there is a depth $f_{i+1}>i$ so that none of the nodes at depth $f_{i+1}$ is expanded before every node at depth $i$ has been expanded.

## Characterization of Completeness

A search algorithm is complete iff for each depth $i$ there is a depth $f_{i+1}>i$ so that none of the nodes at depth $f_{i+1}$ is expanded before every node at depth $i$ has been expanded.


## Characterization of Completeness

A search algorithm is complete iff for each depth $i$ there is a depth $f_{i+1}>i$ so that none of the nodes at depth $f_{i+1}$ is expanded before every node at depth $i$ has been expanded.


## Characterization of Completeness

A search algorithm is complete iff for each depth $i$ there is a depth $f_{i+1}>i$ so that none of the nodes at depth $f_{i+1}$ is expanded before every node at depth $i$ has been expanded.


## Characterization of Completeness

A search algorithm is complete iff for each depth $i$ there is a depth $f_{i+1}>i$ so that none of the nodes at depth $f_{i+1}$ is expanded before every node at depth $i$ has been expanded.


## Characterization of Completeness

A search algorithm is complete iff for each depth $i$ there is a depth $f_{i+1}>i$ so that none of the nodes at depth $f_{i+1}$ is expanded before every node at depth $i$ has been expanded.


D\&B-search

- $B_{i} \subseteq S_{i+1} \cup X_{i}$
- $S_{i+1} \cup X_{i}$ is completed before $s_{i}$, the first node at depth $f_{i+1}$ D\&,R-search is complete


## Characterization of Completeness

A search algorithm is complete iff for each depth $i$ there is a depth $f_{i+1}>i$ so that none of the nodes at depth $f_{i+1}$ is expanded before every node at depth $i$ has been expanded.


D\&B-search

- $B_{i} \subseteq S_{i+1} \cup X_{i}$
- $S_{i+1} \cup X_{i}$ is completed before $s_{i}$, the first node at depth $f_{i+1}$ D\&,R-search is complete


## Characterization of Completeness

A search algorithm is complete iff for each depth $i$ there is a depth $f_{i+1}>i$ so that none of the nodes at depth $f_{i+1}$ is expanded before every node at depth $i$ has been expanded.


D\&B-search

- $B_{i} \subseteq S_{i+1} \cup X_{i}$
- $S_{i+1} \cup X_{i}$ is completed before $s_{i}$, the first node at depth $f_{i+1}$
D\&B-search is complete


## Characterization of Completeness

A search algorithm is complete iff for each depth $i$ there is a depth $f_{i+1}>i$ so that none of the nodes at depth $f_{i+1}$ is expanded before every node at depth $i$ has been expanded.


D\&B-search

- $B_{i} \subseteq S_{i+1} \cup X_{i}$
- $S_{i+1} \cup X_{i}$ is completed before $s_{i}$, the first node at depth $f_{i+1}$
$f_{i+1}=f_{2} \Rightarrow$ D\&B-search is complete


## Conclusion

## (1) D\&B-search <br> (2) Search \& Partial Ordering

(3) Conclusion

## D\&B-search

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter $c$
- D-search and B-Search as borderline cases
- Complete in all non-borderline cases
- Non-repetitive, i.e. time complexity is linear in size
- Space complexity is polynomial in depth Polynomial depends on parameter c
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code $\rightarrow$ only simple datastructures needed


## D\&B-search

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter C
- D-search and B-Search as borderline cases
- Complete in all non-borderline cases
- Non-repetitive, i.e. time complexity is linear in size
- Space complexity is polynomial in depth Polynomial depends on parameter $c$
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code $\rightarrow$ only simple datastructures needed


## D\&B-search

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter $c$
- D-search and B-Search as borderline cases
- Complete in all non-borderline cases
- Non-repetitive, i.e. time complexity is linear in size
- Space complexity is polynomial in depth. Polynomial depends on parameter $c$
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code $\rightarrow$ only simple datastructures needed


## D\&B-search

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter $c$
- D-search and B-Search as borderline cases
- Complete in all non-borderline cases
- Non-repetitive, i.e. time complexity is linear in size
- Space complexity is polynomial in depth. Polynomial depends on parameter $c$
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Imnlementation in form of detailed nseudo-code $\rightarrow$ only simple datastructures needed


## D\&B-search

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter $c$
- D-search and B-Search as borderline cases
- Complete in all non-borderline cases
- Non-repetitive, i.e. time complexity is linear in size
- Space complexity is polynomial in depth. Polynomial depends on parameter $c$
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code $\rightarrow$ only simple datastructures needed


## D\&B-search

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter $c$
- D-search and B-Search as borderline cases
- Complete in all non-borderline cases
- Non-repetitive, i.e. time complexity is linear in size
- Space complexity is polynomial in depth. Polynomial depends on parameter $c$
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code $\rightarrow$ only simple datastructures needed


## D\&B-search

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter $c$
- D-search and B-Search as borderline cases
- Complete in all non-borderline cases
- Non-repetitive, i.e. time complexity is linear in size
- Space complexity is polynomial in depth. Polynomial depends on parameter $c$
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code $\rightarrow$ only simple datastructures needed


## Theoretical-Framework

- Based on partial orderings
- Covers finite and infinite trees uniformly
- High analytic power, concise and precise proofs


## Future work

- Combine D-search and iterative deepening to D\&I-search by the same principle
- Behaves (almost) like D-search on finite trees
- Behaves (almost) like iterative-deepening on infinite trees
- Achieved by the same depth bounds $f_{i}$ as for D\&B-search
- Same for other combinations
- Prototype implementation
- Empirical comparison to other uninformed search methods $\rightarrow$ Focus: Logic programming applications using backward reasoning approaches with and without memorization


## Thank You

