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1 Summary 

 

The Thymine DNA Glycosylase (TDG) was initially discovered by its ability to excise the deamination 

products of cytosine and 5-methylcytosine (5-mC), and therefore thought to initiate base excision 

repair (BER) of the resulting G•U  and  G•T  mismatches.  Later, TDG was also found to act in concert 

with transcription factors in the regulation of gene expression. Whereas in some cases the function 

of TDG in gene regulation appeared to be a purely structural one (Chen et al. 2003), its role as a co-

activator of the retinoic acid receptors (RAR/RXR), for instance, was shown to require its catalytic 

activity. In the attempt to connect these two seemingly distinct functions, TDG has been proposed to 

act as a DNA demethylase, removing 5-mC from the promoter regions of genes for transcriptional 

activation (Jost 1993; Jost et al. 1995; Zhu et al. 2000). However, as TDG appeared not to have direct 

5-mC glycosylase activity its role in active DNA demethylation in mammals has remained 

controversial and the mechanism in general elusive.  

With its apparently two-sided nature, TDG has riddled researchers for many years and the stimuli 

and interactions that control TDG function are still under investigation. The aim of my thesis was to 

dissect the role of TDG in DNA repair with a focus on its regulation by post-translational modification, 

and to investigate how TDG-initiated BER contributes to epigenetic stability at CpG islands (CGIs) 

during cell differentiation. 

Both described functions of TDG, in DNA repair and in the regulation of gene expression, require its 

post-translational modification and non-covalent interaction with the small ubiquitin-like modifiers, 

SUMO1 and SUMO2/3 (Hardeland et al. 2002; Steinacher and Schar 2005; Mohan et al. 2007). 

Extensive biochemical studies by our laboratory have shown that SUMOylation of TDG may induce its 

dissociation from the abasic (AP-) site after base excision (Hardeland et al. 2002; Steinacher and 

Schar 2005). However, in vivo evidence corroborating an involvement of SUMOylation in TDG-

dependent BER has been pending and the function of non-covalent SUMO-binding has remained 

elusive. I thus generated a Fluorescence Resonance Energy Transfer (FRET) system to monitor the 

interaction between TDG and SUMO1 or SUMO3 in cells. I was able to confirm a modulation of the 

SUMO1-TDG interaction dynamics in response to DNA damage, whereas the interaction with SUMO3 

remained unaffected. This finding suggests that SUMO3 might regulate TDG function in a context 

other than DNA repair. In the light of recent findings that TDG is indeed involved in processes beyond 

canonical DNA repair, i.e. in maintaining the epigenetic stability of CGIs, our FRET system provides a 

powerful tool to investigate the role of SUMOylation and also specifically SUMO-binding in regulating 

TDG function in these pathways.  

As the interaction partners of TDG range from DNA repair factors to transcription factors and even 

DNA methyltransferases (DNMTs) (Cortazar et al. 2007; Li et al. 2007; Boland and Christman 2008), 
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we set out to investigate the biological function of TDG genetically, by generating a Tdg knockout 

mouse. Much to our surprise, and in contrast to any other known DNA glycosylase, deletion of Tdg 

caused embryonic lethality. Further characterization of MEFs isolated from TDG-proficient 

and -deficient embryos revealed no evidence for a DNA repair defect, but a significant number of 

misregulated genes in differentiated Tdg-/- cells. We found that Tdg knockout caused a loss of active 

histone marks, gain of repressive histone modifications and an accumulation of CpG methylation at 

CGI promoters. Interestingly, this phenotype became apparent only in differentiated but not in 

pluripotent cells. From these data, we proposed a dual function of TDG in maintaining active 

chromatin states at promoters during cell differentiation, first by structurally coordinating histone 

modifying enzymes and second by counteracting errors of the DNA methylation machinery by 

initiating repair of aberrantly methylated cytosines in CGIs. Consistent with a TDG-dependent 

engagement of DNA repair at such sites, we found BER factors to associate with these promoters and 

DNA repair intermediates to accumulate in differentiating cells in a TDG dependent manner. 

These findings established a role of TDG in maintaining epigenome integrity in the context of cell 

differentiation. To investigate how TDG is involved in DNA methylation control, we mapped DNA 

methylation in the genomes of TDG-proficient and -deficient mouse embryonic stem cells (ESCs), 

neuronal progenitor cells (NPs) and MEFs and again found differential methylation to arise only with 

differentiation. Further characterization of the resulting differentially methylated regions (DMRs) 

revealed that those overlapping with a CGI were almost exclusively hypomethylated in TDG-deficient 

compared to -proficient cells, reflecting a failure to establish methylation at these CGIs during 

differentiation. In search of the reason for this failure in a 24 h differentiation timecourse, we found 

global 5-mC levels to rise with differentiation in cells lacking TDG activity, in parallel to the generation 

of the final products of TET-protein catalyzed 5-mC oxidation, 5-formylcytosine (5-fC) and 

5-carboxylcytosine (5-caC), the latter two of which are proposed intermediates of active DNA 

demethylation and substrates for TDG. Differentiation thus appeared to induce methylation but also 

5-mC oxidation to 5-fC and 5-caC for subsequent active demethylation by TDG. We therefore 

analyzed 5-mC and 5-caC levels at the CGI DMRs and found both to rise with differentiation in 

wildtype cells, suggesting that the loss of pluripotency induces a cycle of DNA methylation and 

demethylation at specific CGIs. In Tdg knockout cells, though, this induction appeared to fail whereas 

in cells expressing a catalytically dead mutant TDG (TDGΔcat), the cycle of methylation and 

demethylation was induced but blocked by the inability of TDGΔcat to excise 5-caC. In these cells, 

5-caC will eventually be erased passively by DNA replication but this way of restoring an 

unmethylated C appears not to be sufficient to maintain the cycle and eventually establish 

methylation at these CGIs.  
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Taken together, in collaboration with colleagues from different laboratories I was able to show that 

differentiation triggers a state of high epigenetic plasticity at these CGIs and that catalytically active 

TDG is required to maintain an equilibrium of DNA methylation and demethylation. The imbalance of 

epigenetic marks resulting from knockout of TDG disrupts gene expression programs and the 

accumulation of aberrations eventually leads to loss of viability on the cellular and on the organismic 

level. 
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2 Introduction 

 

 

2.1. DNA Repair and the Concept of Genome Maintenance 

 

DNA is the carrier of genetic information, encoding the building blocks of all organisms. The DNA 

forms a double helical structure, consisting of two complementary single-strands that are made up of 

a deoxyribose-phosphate backbone supporting a sequential assembly of nucleosides with four 

different bases: the purines adenine (A) and guanine (G), and the pyrimidines thymine (T) and 

cytosine (C). The bases of opposite strands form specific hydrogen bonds with one another, 

establishing the complementarity of the two single-strands through the so-called Watson-and-Crick 

base pairing: G pairs with C via three hydrogen bonds, while A and T form two hydrogen bonds. All 

DNA-templated processes like replication, repair and transcription, rely on this basic principle. 

 

 

2.1.1. Sources of DNA Damage and Modification 

 

As an inherently instable molecule, the DNA is constantly at risk of being damaged by reacting with 

oxygen, water or other reactive agents of endogenous or exogenous origin.  

 

Endogenous DNA damage 

 

Endogenous DNA damage can arise, for instance, when the N-glycosidic bond between a DNA base 

and the deoxyribose hydrolyzes spontaneously, producing an apurinic or apyrimidinic (AP) site. Such 

AP-sites lack any instructive coding information and are therefore potentially mutagenic. 

Spontaneous damage can also derive from hydrolysis of the exocyclic amino groups of cytosine, 5-

methylcytosine (5-mC), adenine and guanine, which converts them to uracil, thymine, hypoxanthine 

and xanthine, respectively. Thus, deamination of C and 5-mC  generate  C  →  T  transition  mutations, 

while   the   deamination   product   of   A   pairs   preferentially   with   C,   thus   causing   A  →  G   transitions if 

unrepaired before the next round of DNA replication. As xanthine also pairs with C, deamination of G 

has no mutagenic effect. Another endogenous cause of DNA damage is the replication process itself, 

which can produce mismatches and double-strand breaks despite the high accuracy of the replicative 

DNA polymerases. 
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Oxidative damage can derive from reactions of the DNA with reactive oxygen species (ROS), which 

can arise as by-products of the normal cell metabolism. Oxidative damage to the bases can produce 

for example 8-oxoG   which   causes   G   →   T   mutations,   or   thymine   glycol   which   interferes   with  

replication fork progression. 

Alkylation of bases can also be caused by endogenous agents; S-adenosylmethionine, for example, is 

an enzymatic cofactor which can accidentally generate 7-methylG, 3-methylA or O6-methylG, the 

latter of which is pro-mutagenic as it pairs with T instead of C (Scharer 2003). 

 

Endogenous DNA modification 

 

It is striking that not all alkylation of bases is harmful to the integrity of the genetic code; certain base 

modifications have a function in cellular processes. Such modifications do not alter the base-pairing 

properties but change the   DNA’s overall charge and surface enough to affect DNA-protein 

interactions. The most prominent example is 5-mC, which occurs in mammals almost exclusively in 

the CpG context and serves as an epigenetic mark (see chapter 2.3.3.). The mechanisms that evolved 

to recognize small but harmful modifications to bases appear perfectly suited to read functional base 

modifications as well, a concept that is supported by the notion that members of the DNA 

glycosylase family of proteins, which initiate the Base Excision Repair (BER) pathway by recognizing 

and excising even bases with minor alterations, have been found to be involved in processes beyond 

canonical DNA repair (Jacobs and Schar 2012) (Appendix IV). 

Deamination of bases not only occurs spontaneously but can also be enzymatically induced, which 

plays an important role in innate and adaptive immunity. Members of the apolipoprotein B mRNA 

editing catalytic polypeptide (APOBEC) family of cytodine deaminases confer innate immunity against 

retroviruses by deaminating cytosines in the viral cDNA and thus triggering its degradation by the 

concerted action of UNG2 and APE1 (Harris et al. 2003; Yang et al. 2007). Furthermore, the activation 

induced cytidine deaminase (AID) contributes to antibody maturation in adaptive immunity by 

deaminating cytosines in the course of somatic hypermutation to induce mutations in the light chain 

variable region of immunoglobulin loci (Pavri and Nussenzweig 2011). Also, deamination of cytosine 

followed by uracil processing that produces single-strand breaks required for the initiation of class 

switch recombination (Imai et al. 2003). 

 

Exogenous DNA damage 

 

Exogenous DNA damage can be caused for instance by UV light, which generates pyrimidine dimers 

by inducing the formation of cyclobutane rings between adjacent cytosines and/or thymines, thus 
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disturbing the double helical structure. These dimers are mostly paired with A during replication, 

which is why T-T dimers are less mutagenic than C-T and C-C  dimers.  The  latter  can  cause  C  →  T  or  CC  

→  TT  transition  mutations  if  they  remain  unrepaired (Scharer 2003). 

The integrity of the DNA structure can also be compromised by X-rays,  α-,  β- and  γ-radiation, which 

are summarized as ionizing radiation. These can affect not only the bases but also the deoxyribose 

moieties of the DNA backbone, causing single- and double-strand breaks as well as DNA-DNA or DNA-

protein-crosslinks. These effects arise either directly or through the generation of ROS, like hydrogen 

peroxide, superoxide radical anions or hydroxyl radicals (Scharer 2003). 

Alkylating agents pose a threat to the DNA either by causing intra- or interstrand crosslinks which 

block replication fork progression or by aberrantly methylating DNA bases (Scharer 2003). 

 

 

 

 

2.1.2. Molecular Mechanisms to Repair DNA Damage 

 

To ensure the integrity of the genetic code, cells harbor an arsenal of repair mechanisms that address 

specifically different kinds of DNA damage. Figure 2-01 summarizes the most relevant causes of DNA 

damage, the type of DNA damage they produce and the repair pathway that fixes them. 

 

Direct Repair 

 

The most straightforward way a cell can address DNA damage is by direct chemical reversal of the 

lesion. Bacteria, plants and lower eukaryotes harbor so-called photolyases which can reverse UV light 

induced pyrimidine dimers in a light-dependent   process   called   ‘photoreactivation’   (Essen and Klar 

2006). Higher eukaryotes, on the other hand, depend on Nucleotide Excision Repair (NER) to address 

these photoadducts (see below). 

O6-alkylguanine transferases (AGTs, or in humans O6-methylguanine methyltransferase, MGMT) are 

another example. These proteins convert O6-alkylguanine back to guanine in an irreversible reaction 

that transfers the aberrant methyl-group from the guanine to an acceptor cysteine residue of the 

protein, after which they are inactive and targeted for proteolytic degradation (Pegg 2000). Finally, 

the bacterial iron and 2-ketoglutarate dependent oxygenase AlkB targets methyl-lesions (1-methylA 

and 3-methylC) in DNA and RNA, converting them to their original state through oxidative 

demethylation (Falnes et al. 2007). 
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Figure 2-01: Overview of the most common DNA damaging agents, lesions and corresponding repair 
pathways. Summarized are the most important DNA damage causes (top), the lesions they induce (middle) and 
the pathways employed to repair these lesions (bottom) (Scharer 2003). 
 

 

DNA Double-Strand Break Repair 

 

DNA double-strand breaks (DSBs) can be the product of ionizing radiation or metabolic by-products 

like ROS but also arise during DNA replication or repair. DSBs are among the most harmful DNA 

lesions as they can lead to chromosomal aberrations and deletions, or if unrepaired cause cell death. 

In order to give the cellular repair machinery time to react, DSBs trigger cell cycle checkpoints that 

arrest cell cycle progression. Members of the phosphatidylinositol 3-kinase-like kinase (PIKK) family, 

namely ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad 3-related), are thought to 

activate the central checkpoint regulators p53, Chk1 and Chk2, which in turn activate Cdk2/CyclinE 

and Cdk2/CyclinB1 to mediate G1 and G2 arrest, respectively (Langerak and Russell 2011). 

Depending on the cell cycle stage, DSBs are repaired preferentially either by homologous 

recombination (HR) or non-homologous end joining (NHEJ). HR is mostly employed in S and G2 phase 

when a sister chromatid is available as an identical copy of the damaged double-strand that can 

serve as a template for synthesis the original sequence across the DSB. This requires strand-invasion 

and the formation of so-called Holliday-junctions, the ultimate resolution of which may result in a 

reciprocal exchange of the engaged DNA double-strands, known as sister chromatid exchange. In G1 

and early S phase, when a sister chromatid is not available, cells utilize the more error-prone NHEJ to 

repair DSBs and avoid cell death. In this pathway, free ends at the break are captured, tethered and 
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re-attached through minimal base-pairing, which often results in deletions and point mutations 

(Friedberg 2003). 

 

 

Nucleotide Excision Repair 

 

Bulky DNA lesions that perturb the overall structure of the DNA double helix and interfere with DNA 

replication and transcription are corrected by the Nucleotide Excision Repair (NER) machinery. NER 

can be subdivided by the mode of damage recognition into global genome repair (GGR) and 

transcription-coupled repair (TCR). As the name implies, TCR involves the transcription machinery 

sensing a lesion that blocks the progression of the RNA polymerase, whereas in the transcription-

independent GGR pathway, a helix-distorting damage is recognized by a complex of XPC and HR23B. 

In both cases, the DNA is locally unwound and the damage-containing  strand  is  cleaved  3’  and  5’  of  

the damage, generating a single-stranded DNA stretch of 24-32 nucleotides. The double-strand is 

restored  through  repair  synthesis  by  polymerase  δ  and/or  ε  and  ligation  by  DNA  ligase   I (Friedberg 

2003). 

Defects in NER are connected to a predisposition to cancer and premature ageing. Two syndromes 

are caused by loss-of-function of NER factors, namely Xeroderma pigmentosum caused by defects in 

GGR, and Cockayne syndrome resulting from defective TCR. The fact that certain types of Xeroderma 

pigmentosum are connected to neurological abnormalities and that patients with Cockayne 

syndrome display developmental and neurological defects, reflects the involvement of NER factors in 

processes beyond DNA repair (Kamileri et al. 2012).  

 

 

Mismatch Repair 

 

Although strictly taken no physical DNA damage, base mismatches and small insertions/deletions 

that derive from base misincorporation by and slippage of DNA polymerases during the DNA 

replication process have to be corrected to avoid mutations. Such replication errors are corrected by 

the Mismatch Repair (MMR) system that can distinguish between the template and the newly 

synthesized DNA strand. In eukaryotes, mismatched bases and small insertion/deletion loops are 

recognized   by   MutSα   (heterodimer   of   hMSH2-hMSH6),   larger   loops   by   MutSβ   (heterodimer   of  

hMSH2-hMSH3), which in subsequent steps recruit the MLH1/PMS2 heterodimer. This heterodimer, 

termed   MutLα,   recognizes   the   newly   synthesized   strand   by   replication-associated strand 

discontinuities, e.g. between unprocessed Okazaki fragments. Furthermore, the PMS2 subunit of 
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MutLα   was   found   to   possess   endonuclease   activity   in   concert   with  MutSα,   PCNA   and   replication  

factor C (RFC) that could induce strand discontinuities (Kadyrov et al. 2006). Such a nick in close 

proximity to the mismatch serves as an entry point for excision of the newly synthesized strand by 

exonucleases (e.g. EXO1) through and beyond the mismatch, followed by DNA repair synthesis by a 

replicative DNA polymerase and sealing of the nick by DNA ligase I (Friedberg 2003). 

 

 

2.1.3. Base Excision Repair and Single-strand Break Repair 

 
Single-base damage caused by deamination, oxidation or alkylation is mainly addressed by Base 

Excision Repair (BER). As this pathway is central to my thesis, I summarize it here in more detail. 

This pathway is initiated by DNA glycosylases, a family of enzymes that evolved to specifically 

recognize irregular DNA base modifications. DNA glycosylases recognize a substrate base by flipping 

it out of the double-helical context into an active site pocket. Subsequently, they cleave the N-

glycosidic bond between the base and the deoxyribose, which produces an AP-site. In Appendix IV, I 

am presenting a detailed review on this ancient family of enzymes, their mode of action and their 

involvement in processes beyond canonical DNA repair, for instance in adaptive immunity and active 

DNA demethylation. 

Two sub-pathways are distinguished in BER, depending on whether just a single nucleotide is 

replaced (short-patch) or a stretch of 2-13 nucleotides (long-patch, Fig. 2-02). Short-patch BER 

involves a mono- or bifunctional glycosylase, distinguished by their mode of base excision. 

Monofunctional glycosylases only catalyze base excision by utilizing an activated water molecule for 

nucleophilic attack on the N-glycosidic bond. Bifunctional glycosylases use the amino group of a 

conserved lysine for this purpose, resulting in a covalent Schiff’s  base  intermediate. Their  inherent  3’  

AP lyase activity enables bifunctional glycosylases to cleave the AP-site by   β-elimination. The 

resulting 3’  α,β-unsaturated aldehyde is processed by an AP endonuclease (e.g. APE1 in human and 

mouse) to  produce  the  3’OH required for repair synthesis. 

Since monofunctional glycosylases have no AP lyase activity, nicking of the AP-site is performed by 

APE1  which  generates  a  3’OH  and  a  5’deoxyribose-phosphate  (5’dRP)  end.  DNA  polymerase  β  (Polβ)  

harbors  a  5’dRP   lyase  activity,   thus  hydrolyzing   the  5’dRP  prior   to   filling   the   single-nucleotide gap. 

The remaining nick is sealed either by DNA ligase I or by a complex of DNA ligase III with XRCC1 

(Almeida and Sobol 2007) (Fig. 2-02). 

The  5’  end  produced  by  APE1  upon  incising  an  oxidized  or  reduced  AP-site cannot be processed by 

the 5’dRP  lyase  activity  of  Polβ.  In  this  case,  a stretch of DNA 3' to the excised bases is displaced and 

resynthesized through long-patch BER. The current mechanistic model proposes that strand-
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displacement   is   accomplished   through   DNA   synthesis   by   polymerase   δ,   ε   or   β,   aided   by   the  

Proliferating Cell Nuclear Antigen (PCNA), the replication factor C (RFC) and the poly (ADP-ribose) 

polymerase 1 (PARP1). The resulting DNA flap structure of 2-13 nucleotides is degraded by the flap 

endonuclease 1 (FEN1) and the ends are sealed by DNA ligase I (Fig. 2-02) (Almeida and Sobol 2007; 

Fortini and Dogliotti 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-02: Overview of short- and long-patch BER and SSBR in human cells. Short-patch (SP-) BER is initiated by 
a mono- or bifunctional glycosylase excising a substrate base. APE1 or the inherent AP lyase activity of a 
bifunctional glycosylase cleaves the AP-site, followed by processing of the free DNA ends to allow repair 
synthesis  by  Polβ.  Finally,  the  remaining  nick  is  ligated  by  LigaseIII   (LIGIIIα)  in complex with XRCC1. Long-patch 
BER is employed when strand incision by APE1 produces ends that are refractory  to  end  processing  by  Polβ.  In  
this case, the  damaged  strand  is  displaced  through  DNA  synthesis  by  Polβ,  δ  or  ε  aided  by  PCNA,  the  resulting  
DNA flap is cleaved by FEN1 and the ends are sealed by Ligase I (LIGI). An APE1-independent pathway is 
initiated by NEIL1 or 2, followed by end-processing by PNK (PNKP). SSBR is initiated by PARP which recognize a 
single-strand   break   and   recruits   XRCC1/LIGIIIα,   which   in   turn   provide   a   scaffold   for   the   assembly   of  
downstream   factors.   The  damaged   5’   and  3’   termini   (red circles) are further processed by APE1 or PNKP to 
yield 3’OH  and  5’  phosphate  moieties.  Subsequent  steps  are  similar  if  not  identical  to  SP- or LP-BER. Adapted 
from (Kim and Wilson 2012) with information from (Caldecott 2003). 
 

 

Downstream of base excision and AP-site incision, BER converges with the single-strand break repair 

pathway (SSBR). Hence, BER and SSBR share many proteins and features except for the initiation 

step, which, in the latter case, appears to be coordinated by the poly (ADP-ribose) polymerase 1 

Single-Strand Break 

LIGIIIα/XRCC1 

PNKP 
APE1 

PARP 
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(PARP1) instead of a DNA glycosylase. PARP1 recognizes the single-strand break and recruits XRCC1 

which serves as a scaffold for the assembly of the SSBR complex (Masson et al. 1998). The DNA ends 

are   processed   to   generate   a   3’OH  and   a  5’   phosphate  moiety,  which   can   involve   several   enzymes  

depending  on  the  type  of  residue  at  the  3’  and  5’  end,  e.g.  APE1  or  the  polynucleotide  kinase  (PNK)  

(Fig. 2-02). The subsequent repair steps are similar, if not identical to those of BER with regard to the 

factors involved and the short- or long-patch repair sub-pathways (Fortini and Dogliotti 2007). 

Oxidized bases like dihydrothymine or α-anomeric 2'-deoxynucleosides like  α-2'-deoxyadenosine can 

also be repaired by nucleotide incision repair (NIR) a pathway equivalent to BER except for the 

initiation step. NIR is independent of DNA glycosylases but relies on APE1 which cleaves the DNA 

backbone  5’  of  these  bases.  NIR  of  deaminated  purine  bases  is  initiated  by  EndoV  which  incises  one  

nucleotide  3’  of  the  lesion  (Dalhus et al. 2009).  

Moreover, oxidized bases have been shown to be repaired independently of APE1, following the 

action of the bifunctional glycosylases NEIL1 and 2 that catalyze a simultaneous beta-delta 

elimination.  The  resulting  3’  phosphate  end   is  processed  by  PNK  to  generate   the  3’OH  required  by  

Polβ  for  repair  synthesis  (Fig.  2-02) (Wiederhold et al. 2004; Das et al. 2006; Kim and Wilson 2012). 

 

 

2.2. The Thymine DNA Glycosylase (TDG) 

 

2.2.1. Classification and Characterization of TDG 

 

DNA glycosylases can be categorized into three superfamilies: the Helix-hairpin-Helix (HhH) 

glycosylases, the Endonuclease VIII-Like (NEIL) glycosylases and the Uracil DNA glycosylases (UDG). 

The latter has been named after the Escherichia coli Uracil-N-Glycosylase (Ung), the first glycosylase 

found to excise uracil from DNA. Uracil in DNA can arise through deamination of cytosine or U 

misincorporation during DNA replication, producing  G•U  mismatches   or  non-mutagenic   A·∙U   pairs, 

respectively. While the recognition and repair of uracil as a foreign base in DNA appears relatively 

straightforward, the deamination of methylated cytosine (5-mC) gives rise to thymine, which as a 

normal DNA base cannot be easily recognized as damage. Thus, a subfamily of the UDGs evolved to 

recognize and excise thymine when it is mispaired with guanine. These monofunctional Mismatch-

specific Uracil DNA Glycosylases (MUGs) form specific contacts with the opposing base to distinguish 

a T derived from deamination of 5-mC from a canonical   A·∙T   pair. The first member of this family 

isolated was the human TDG, identified by its ability to recognize and excise thymine opposite 

guanine (Wiebauer and Jiricny 1989; Neddermann and Jiricny 1993). 
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Members of the MUG protein family harbor  an  α/β  fold  structural  domain  that  is  characteristic  of  the  

UDG superfamily. All MUGs have a common and rather simple architecture, consisting of a conserved 

core domain containing the active site flanked by variable N- and C-terminal domains. Within the 

core domain, the MUG orthologs share 37-52% sequence identity on the amino acid level (Cortazar 

et al. 2007). Members of this protein family have been identified in organisms throughout the tree of 

life, from E. coli and Schizosaccharomyces pombe over Drosophila melanogaster to Xenopus laevis 

and mammals (Wiebauer and Jiricny 1989; Neddermann and Jiricny 1993; Gallinari and Jiricny 1996; 

Hardeland et al. 2003). One characteristic of the MUG proteins is their large catalytic cavity that can 

accommodate a broad spectrum of damaged bases for excision (Barrett et al. 1999). 

Human TDG is made up of 410 amino acids. The mouse ortholog exists as two splice variants, TdgA 

and TdgB, the latter lacking the first 24 amino acids of the N-terminus (Neddermann and Jiricny 1993; 

Gallinari and Jiricny 1996). Whether these two isoforms serve distinct biological functions remains 

unclear. The N-terminal domain of TDG has been shown to be essential for efficient processing of 

G•T   mismatches (see chapter 2.2.2.) and both terminal domains are involved in protein-protein 

interactions (see chapter 2.2.3).  

 

 

2.2.2. Mechanism of Substrate Recognition and Processing 

 

Structural studies on E. coli Mug have provided insight into the catalytic mechanism of damage 

recognition and base excision by the MUG proteins. While the damaged base is flipped into the 

catalytic pocket, conserved amino acid residues within that cavity form a wedge that takes the place 

of the damaged base in the double-stranded DNA, forming specific contacts and thus mimicking 

Watson-Crick base pairing with the widowed G. Due to this combined nucleotide 

flipping/intercalation mechanism, MUG proteins only process modified bases in double-stranded 

DNA and exhibit a strong preference for substrates opposite guanine (Barrett et al. 1998). 

Extensive biochemical studies have shed light on the mechanism employed by TDG to search for, 

recognize and excise a damaged base. The flexible N-terminal domain mediates non-specific DNA 

binding, switching from an open to a clamp-like conformation upon binding to DNA. This DNA binding 

capacity of the N-terminal domain has also been found to be essential for effective processing of 

G•T,  probably  stabilizing  the  glycosylase-substrate complex (Hardeland et al. 2002; Hardeland et al. 

2003; Steinacher and Schar 2005). 

The clamp-like configuration presumably allows TDG to slide along the DNA in search of a substrate 

base. When encountering a lesion, TDG employs the same combined nucleotide 

flipping/intercalation mechanism as Mug. A highly conserved asparagine residue within the catalytic 
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pocket (in human N140, in mouse TdgA N151) positions an activated water molecule for hydrolytic 

attack on the N-glycosidic bond between the base and the deoxyribose (Barrett et al. 1998; Barrett et 

al. 1999; Hardeland et al. 2000). In contrast to Mug, TDG remains firmly bound to the AP-site after 

release of the damaged base. This product inhibition is mediated by the specific contacts formed 

with the widowed guanine and the non-specific DNA binding of the N-terminus (Hardeland et al. 

2002; Steinacher and Schar 2005). As AP-sites represent a lesion that is even more hazardous than 

the original base damage as they can easily turn into single- and double-strand breaks, their hand-

over to downstream acting repair factors has to be tightly controlled. The high affinity of TDG to its 

product AP-site probably serves the purpose of stabilizing this dangerous repair intermediate. It was 

shown that post-translational modification with Small Ubiquitin-like Modifiers (SUMOs) regulates this 

hand-over as well as the dissociation of TDG (see chapter 2.2.4.) (Hardeland et al. 2002; Steinacher 

and Schar 2005).  

 

 

2.2.3. Biological Functions of TDG 

 

Classical DNA repair 

 

TDG recognizes and excises U or T mispaired with G, arising from spontaneous or enzymatic 

deamination of cytosine or 5-mC, respectively. Methylated cytosine (5-mC) is even more sensitive to 

spontaneous hydrolytic reactions at its exocyclic amino-group than cytosine (Ehrlich et al. 1990). 5-

mC occurs predominantly in CpG dinucleotides which have been found to be a hotspot for mutation, 

possibly not only because of 5-mC deamination but also because alkylation damage to the 

neighboring G is repaired less efficiently by MGMT (Bentivegna and Bresnick 1994). Both, 

deamination of 5-mC and unrepaired O6-methylguanine  would  result  in  C  →  T  transition mutations. C 

→  T  transitions  are  among  the  most  frequent  mutations  associated  with  human  cancer   (Sjoblom et 

al. 2006; Wood et al. 2007; Rubin and Green 2009), making up about 25% of all somatic mutations in 

the p53 tumor suppressor gene in human cancers, in certain tumors even ~50% (Petitjean et al. 

2007).  

Furthermore, the spontaneous deamination of 5-mC (but possibly also inefficient repair of O6-

methylguanine in a methylated CpG) has been proposed to have caused the underrepresentation of 

CpG dinucleotides observed in organism with DNA methylation. CpG islands (CGIs) are 

characteristically hypomethylated, which has been suggested to have preserved their high CpG 

content (Antequera 2003; Jones 2012). What mechanisms maintain CGIs in a hypomethylated state, 
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however, remains unclear although recent studies suggest an involvement of TDG-dependent BER in 

protecting CGIs from aberrant methylation ((Illingworth and Bird 2009) and Appendices II and III). 

Four glycosylases have evolved capacities to counteract the deamination of cytosine, i.e. 

mutagenesis   by   G•U   mismatches: the Uracil N-Glycosylase UNG, the Single-strand specific 

Monofunctional Uracil Glycosylase SMUG1, Methyl-binding domain glycosylase MBD4 and TDG. Of 

these, MBD4 and TDG also process  G•T  mismatches  that arise from 5-mC deamination. In agreement 

with a function in mutation avoidance, knockout of Mbd4 and knockdown of Smug1 result in a mild 

increase  in  C  →  T  transition  mutations  (Millar et al. 2002; Wong et al. 2002; An et al. 2005). Inhibition 

of UNG in human cells also leads to a mild increase in mutations. In agreement with a role of UNG in 

innate and adaptive immunity downstream of enzymatic cytosine deamination, knockout of Ung in 

mice results in the development of B-cell lymphomas, deficiencies in antibody diversification and 

defective innate immunity against retroviral infection (Radany et al. 2000; Rada et al. 2002; Nilsen et 

al. 2003). SMUG1 is thought to serve as a back-up for UNG in counteracting the accumulation of 

uracil in genomic DNA, which has recently been corroborated by the knockout of Smug1 in mice (An 

et al. 2005; Kemmerich et al. 2012). 

With its large catalytic cavity, TDG accommodates a broad spectrum of substrates comprising not 

only   G•U   and   G•T   mismatches   but   also   uracil-derivates modified at the C5 position, e.g. 

5-fluorouracil or 5-bromouracil, etheno-adducts like 3,N4-ethenocytosine and oxidized pyrimidines 

like thymine glycol (see Table 2-01) (Hardeland et al. 2003). Furthermore, TDG was reported to have 

5-mC glycosylase activity, yet these findings could not be corroborated so far (Jost 1993; Zhu et al. 

2000). Recently, TDG has been shown to process 5-formylcytosine (5-fC) and 5-carboxylcytosine 

(5-caC), the oxidation products of 5-hydroxymethylcytosine catalyzed by the Ten Eleven Translocator 

(TET) family of 5-mC hydroxylases (see chapter 2.4.) (He et al. 2011; Maiti and Drohat 2011).  

In contrast to UNG, MBD4 and SMUG1, the knockout of Tdg does not increase mutation frequencies 

in standard mutation assays, suggesting that its function in classical DNA repair is neglectable, at 

most redundant. Interestingly though, in contrast to all other DNA glycosylases, we and others have 

found deletion of Tdg in mice to cause embryonic lethality, hinting at a non-redundant function of 

TDG in embryonic development (Cortazar et al. 2011; Cortellino et al. 2011).   

Still, the DNA repair function of TDG is not entirely obsolete, as was demonstrated in the context of 

5-FU processing. 5-FU is a base analog that is often used in chemotherapy as it is incorporated into 

RNA and DNA, disturbing RNA synthesis and DNA replication. TDG has been found to be one of the 

major contributors to 5-FU  induced  cytotoxicity.  It  excises  this  base  analog  from  A•5-FU base pairs, 

lingering on the resulting AP-site and thus interfering with downstream repair processes, which leads 

to an accumulation of DNA strand breaks. Accordingly, depleting MEFs and Hela cells of TDG 

rendered them resistant to 5-FU (Kunz et al. 2009). 
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Table 2-01: Substrate spectrum of TDG orthologs* 

Substrate** hsTDG   hsTDG ΔN hs/mmTDGΔcat ecMug  spThp1p  dmThd1p 

G•U   +++ +++ nd +++ +++ +++ 
A•U   + + nd + +++ ++ 
ss U  - - nd - +++ - 
G•FU   +++ nd ++ nd +++ +++ 
A•FU   ++ nd - nd +++ ++ 
ss FU  ++ nd nd nd ++ ++ 
G•BrU   +++ nd nd nd ++ +++ 
A•BrU   + nd nd nd + - 
ss BrU  - nd nd nd + - 
G•hmU  +++ nd nd + - ++ 
G•hU  +++ nd nd ++ +++ nd 
G•T   +++ - -/+ - - ++ 
G•Tg   ++ nd nd nd nd nd 
G•εC   +++ nd nd +++ +++ +++ 
A•εC   ++ nd nd nd +++ ++ 
ss εC   - nd nd + +++ - 
G•Hx   + + nd nd +++ + 
T•Hx   - - nd - +++ - 
ss Hx  - nd nd nd +++ - 
G•εA   - nd nd + ++ - 
T•εA   - nd nd - ++ - 
ss εA   - nd nd nd + - 
G•mC   -/+ nd - nd - - 
G•hmC - nd - nd nd nd 
G•fC +++ nd nd nd nd nd 
G•caC +++ nd -/+ nd nd nd 
ss caC ++ nd nd nd nd nd 
G•heC   - nd nd ++ +++ nd 
G•hpC   - nd nd - +++ nd 
G•G   - nd nd nd + - 

* Relative processing efficiencies of recombinant human full size TDG (hsTDG), N-terminally truncated TDG 
(hsTDG  ΔN)  and human or murine catalytic amino acid residue mutated TDG (TDGΔcat, N140A in human, N151A 
in mouse TdgA) and the orthologs of E. coli (ecMug), S. pombe (spThp1p) and D. melanogaster (dmThd1p). Base 
release  efficiencies  are  indicated  as:  +++,  high;  ++,  intermediate;  +,  low;  −,  insignificant;  nd,  not  determined. 
** The putative substrate base is in bold letters. ss, single strand; F, fluoro-; Br, bromo-; h, hydroxy-; hm, 
hydroxymethyl-; Tg, thymine glycol; ε, etheno-; Hx, hypoxanthine; f, formyl-; ca, carboxyl-; he, hydroxyethano-; 
hp, hydroxypropano-. Adapted from (Cortazar et al. 2007) with information from (Hardeland et al. 2001; He et 
al. 2011; Maiti and Drohat 2011) and Alain Weber, personal communication and Appendix III. 
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Transcriptional regulation  

 

TDG has been shown to interact with several transcription factors, transcriptional co-activators and 

the DNA methyltransferases Dnmt3a and b. The first indication for an involvement of TDG in 

transcriptional regulation was provided by Chevray and colleagues in 1992, who reported a direct 

interaction between the glycosylase and c-Jun, a basic leucine zipper transcription factor that is part 

of the activator protein 1 (AP-1) complex (Chevray and Nathans 1992). The function of TDG as a co-

activator of transcription was corroborated when it was found to interact with two nuclear receptors, 

the retinoic acid receptor (RAR) and the retinoid X receptor (RXR), to potentiate their binding to 

retinoic acid response elements (RAREs) and to enhance the transactivation of a reporter gene by 

RAR/RXR (Um et al. 1998). A structurally intact but catalytically inactive mutant TDG (N151A) failed 

to significantly stimulate RAR/RXR-mediated transcription, suggesting that its glycosylase activity is 

essential for its co-activator function in this context (Hardeland, U. and Schär, P., unpublished data). 

Furthermore,  TDG  was   found  to   interact  with  estrogen  receptor  alpha  (ERα)   in  a   ligand-dependent 

manner.  ERα  and  ERβ  are  the  nuclear  receptors  mediating  the  major  responses  to  estradiol.  TDG  acts  

as a co-activator   of   ERα   but,   unlike   with RAR/RXR, its glycosylase activity is dispensable for this 

function. Therefore, it was suggested that TDG serves as a structural scaffold in this case (Chen et al. 

2003). 

Similarly, the catalytic activity of TDG was found to be dispensable for a physical and functional 

interaction with the CREB binding protein (CBP) and its paralog p300. CBP/p300 are transcriptional 

co-activators with intrinsic histone acetyltransferase activity. They stimulate transcriptional 

activation in collaboration with a number of sequence-specific transcription factors, e.g. CREB and 

p53, through chromatin modeling and interactions with the basal transcription machinery (Goodman 

and Smolik 2000). TDG interacts with CBP/p300 through its N- and C-terminal domains, potentiates 

CBP-activated transcription and was found to be a substrate for acetylation by CBP/p300. 

Interestingly, TDG acetylation abolishes its interaction with CBP as well as with the downstream-

acting BER factor APE1 (Tini et al. 2002). 

Two reports describe a repressive effect of TDG on gene transcription. Rat TDG was found to interact 

with the thyroid transcription factor TTF1 and to repress TTF1-activated transcription in transient co-

transfection experiments (Missero et al. 2001). Additionally, the interaction of TDG with Myocardin, 

a co-activator of the serum response factor (SRF) in the regulation of smooth muscle-specific gene 

expression, was found to interfere with the Myocardin-SRF interaction and binding of Myocardin to 

its target promoters (Zhou et al. 2008). 
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The function of TDG in the regulation of gene expression has been associated with the establishment 

and maintenance of epigenetic marks during cell differentiation. The role of TDG in this context is 

described in chapters 2.4.2. as well as in Results 4.2. (Appendix II) and 4.3. (Appendix III). 

 

 

2.2.4. Regulation of TDG Function by Post-Translational Modification 

 

Modification by Small Ubiquitin Like Modifiers (SUMOs) 

 

The high affinity of TDG for its product AP-site benefits the cell by protecting these dangerously 

fragile sites and thereby preventing the spontaneous generation of DNA single- and double-strand 

breaks. On the other hand, this tight AP-site binding interferes with downstream steps of BER, which, 

for instance in the case of the base analog 5-FU that is frequently used in cancer therapy, results in 

the accumulation of unrepaired AP-sites that eventually trigger cell death (Kunz et al. 2009). Correct 

timing of the hand-over of this repair-intermediate to the downstream BER factors is therefore of 

utmost importance and requires a tight regulation. TDG was shown to be post-translationally 

modified by Small Ubiquitin-like Modifiers (SUMOs), which was implicated in regulating TDG’s  

dissociation from the AP-site (Hardeland et al. 2002; Steinacher and Schar 2005).  

SUMOs are structurally similar to ubiquitin but share less than 20% sequence homology. 

SUMOylation can modulate structural and functional features of its target protein, including the 

stability, subcellular localization, protein-protein interactions and activity. Four distinct SUMO genes 

have been identified in the human genome, encoding SUMO1-4. SUMO2 and 3 share 97% sequence 

homology and are therefore often referred to as SUMO2/3. While SUMO1 and 2/3 are ubiquitously 

expressed, SUMO4 is only found in kidney, lymph nodes and spleen (Geiss-Friedlander and Melchior 

2007).  

TDG has been shown to be modified by SUMO1 and 2/3 (Hardeland et al. 2002). The SUMO-

conjugation process requires several enzymatic steps, starting with a SUMO-activating enzyme E1 

(SAE1/SAE2), which catalyzes the formation of a thioester bond between SUMO and SAE2. 

Subsequently, SUMO is transferred to a cysteine in the SUMO-conjugating enzyme E2 (UBC9) and 

further to a lysine residue in a target protein. The SUMO acceptor lysine in TDG (K341 in mouse 

TdgA) lies within a C-terminal SUMOylation consensus motif (VKEE) (Hardeland et al. 2002). This last 

step of the conjugation process is often – but not always – catalyzed by a SUMO E3 ligase which is 

thought to mediate target specificity (Geiss-Friedlander and Melchior 2007). In the case of TDG-

SUMOylation, such an E3 ligase has yet to be identified.  
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Extensive biochemical analyses have shed light onto the regulation of TDG function by SUMOylation 

(Fig. 2-03). The flexible N-terminus of TDG undergoes a conformational change upon binding to 

homoduplex DNA, mediating non-specific DNA interaction that has been found to be essential for 

effective  G•T  processing  (Fig.  2-03 B) (Hardeland et al. 2002). This binding capacity keeps TDG firmly 

attached to the AP-site after base excision (Fig. 2-03 D). SUMOylation reverses the conformational 

switch in the N-terminus, abolishing the tight AP-site binding (Fig.2-03 E). Finally, deSUMOylation by 

a Sentrin-specific protease (SENP) restores the DNA binding ability of TDG (Steinacher and Schar 

2005).  

 

 

 
 

Fig.2-03: A model for SUMO modulated dynamic DNA interactions of TDG during BER. (A) DNA-free TDG is 
present in the cell nucleus in an open conformation. (B) Upon binding to DNA, the N-terminus forms a closed 
structure with the catalytic core domain. This clamp-like conformation may allow TDG to slide along the DNA in 
search of  a  potential  substrate.  (C  and  D)  G•U- or  G•AP-site-bound TDG reflects a third conformational state 
where the catalytic site forms specific contacts with the guanine opposite (dashed lines). The non-specific and 
the specific DNA contacts now cooperate to keep TDG firmly bound to the substrate. (E) SUMOylation of TDG 
then induces a fourth conformational state, neutralizing the non-specific DNA interactions of the N-terminus 
and facilitating the dissociation of the enzyme from the AP-site. (F) APE1 gains access to the AP-site and carries 
on the BER process. DeSUMOylation by SENP proteins allows recycling of TDG and SUMO. (Steinacher and 
Schar 2005) 

(A) 

(B) 
(C) 

(D) (E) 

(F) 
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A role of SUMOylation in regulating the release of TDG from the AP-site has been corroborated by 

structural analyses showing that SUMO-conjugation   induces   the   formation   of   a   protruded   α-helix 

within the catalytic domain that was proposed to facilitate TDG dissociation (Baba et al. 2005, 2006). 

Furthermore, in agreement with a role of SUMOylation in timing the dissociation of TDG from the AP-

site until downstream BER factors are in place to take over the repair intermediate, presence of APE1 

stimulates the release of TDG (Fig. 2-03 F) (Waters et al. 1999).  

In addition to being SUMOylated, TDG contains two SUMO Interaction/Binding Motif (SIM or SBM), 

one in the N- and one in the C-terminal domain (Mohan et al. 2007). SBMs mediate non-covalent 

SUMO-interactions and consist of a hydrophobic core with N- or C-terminally flanking acidic and/or 

serine residues (Minty et al. 2000; Song et al. 2004; Hecker et al. 2006).  

The function of non-covalent SUMO binding of TDG is less clear than that of SUMOylation. While 

SUMOylation is thought to induce conformational changes in its target proteins that affect their 

affinity to other proteins, SUMO-binding is regarded as a kind of proteinaceous glue, stabilizing 

complexes through interactions of SBM-containing proteins with SUMO-conjugated factors. An 

example for this function is the formation of promyelocytic leukemia protein (PML) nuclear bodies 

(NBs). SUMOylation of PML has been suggested to induce the assembly of PML networks through 

non-covalent interactions with the SBM of other PML molecules (Shen et al. 2006). A similar scenario 

might also apply for TDG as it was shown to localize to PML-NBs in a SUMO-dependent manner. 

However, the role of SUMO-binding and SUMOylation in regulating the interaction between TDG and 

PML is not yet clearly defined. There have been contradictory reports, one claiming that SUMO-

binding and SUMOylation of TDG are necessary for the TDG-localization to PML-NBs, the other 

proposing that SUMO-binding mediates and SUMOylation of TDG abolishes the interaction with PML 

(Takahashi et al. 2005; Mohan et al. 2007). 

Furthermore, SUMO1-binding of TDG has been shown to be essential for the stimulating effect on 

CBP-dependent transcription. SUMOylation of TDG on the other hand proved to abolish the 

interaction with and acetylation by CBP (Mohan et al. 2010). As the interaction with CBP involves the 

N-terminal domain of TDG, the conformational change induced by SUMOylation might disrupt this 

interaction (Tini et al. 2002). Also, intramolecular interactions of conjugated SUMO with the two 

SBMs might interfere with interactions with other SUMOylated factors (Mohan et al. 2007). 

However, this point is not entirely clear as another study based on NMR spectroscopy revealed no 

competition between intermolecular and intramolecular SUMO-binding of the C-terminal SBM 

(Smet-Nocca et al. 2011). The same study also reported that SUMO1-binding but not SUMOylation 

induces a conformational change in TDG, thus contradicting previous work. 
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Taken together, SUMO-binding and SUMOylation play essential roles in regulating TDG function by 

mediating protein-protein interactions or abolishing protein-protein and protein-DNA interactions, 

respectively. However, the details of this regulation are not yet fully understood. 

 

 
 
Modification of TDG by Ubiquitylation 

 

The fact that four mammalian glycosylases with apparently redundant UDG activity have co-evolved 

suggests that they serve distinct functions. One way cells could diverse these enzymatically 

redundant functions is by cell cycle regulation. TDG was found to be degraded in S-phase through the 

ubiquitin-proteasome system, strikingly at the same time when expression of UNG is induced. While 

TDG levels are high in G2-M and G1 phase but is rapidly degraded at the onset of S-phase, the 

pattern of UNG2 levels is exactly inverse with a peak in early S-phase and ubiquitin-proteasome 

mediated degradation towards the end of the replication process (Fischer et al. 2004; Hardeland et 

al. 2007).  While  UNG2’s  main   function   appears   to  be   the   excision  of  misincorporated  uracil   (A•U)  

during DNA replication (Otterlei et al. 1999), TDG appears better suited for excision of uracil and 

thymine arising through deamination events in non-replicating  DNA  (G•U  or  G•T).  The  activity  of  TDG  

on   A•U   is   rather   low   and   its   high   affinity   for   AP-sites might interfere with the progression of 

replication forks. UNG2 on the other hand excises U opposite A with high efficiency and turnover. 

Exclusion of TDG from S-phase thus prevents its activity from interfering with the replication process 

(Hardeland et al. 2007). 

Ubiquitylation, like SUMOylation, involves an ubiquitin-activating E1, a ubiquitin-conjugating E2 

enzyme and an E3 ubiquitin ligase. The E3 responsible for TDG-ubiquitylation has yet to be identified.  

The ubiquitylation and SUMOylation systems have been reported to interact in antagonistic or non-

antagonistic ways on certain target proteins, sometimes competing for the same acceptor site (Ulrich 

2005). However, such a crosstalk in the case of TDG has not been described. 

 
 
Phosphorylation and Acetylation 

 

The N-terminal domain of TDG was found to be acetylated by CBP and phosphorylated by the protein 

Kinase   C   α   (PKCα)   in   a   mutually   exclusive   manner   (Tini et al. 2002; Mohan et al. 2010). Both 

modifications occur on adjacent lysine (acetylation) and serine (phosphorylation) residues in a 

conserved sequence motif SKKSGKS. While phosphorylation can occur on free and DNA-bound TDG 

alike, DNA-binding reduces TDG susceptibility to acetylation, suggesting that this modification 
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requires release from the DNA. Additionally, acetylation was shown to decrease the homoduplex 

binding  and  G•T  processing  capacity  of  TDG  but  apparently  does  not  affect  AP-site binding (Mohan et 

al. 2010). 

The role of phosphorylation in regulating the function of TDG is still unclear although it was proposed 

to preserve its   G•T   processing   activity   by   preventing   acetylation.   Phosphorylation   has   been  

suggested to modulate the SUMO-modification of certain target proteins, e.g. in the case of IƘBα,  the  

inhibitor of the transcription factor NF-ƘB. Phosphorylation of IƘBα   prevents its SUMOylation and 

primes it for degradation by the ubiquitin-proteasome system (Desterro et al. 1998). Whether 

phosphorylation of TDG has an effect on its modification by SUMO remains to be tested. However, 

phosphorylation may be involved in cell cycle regulation of TDG, i.e. by enhancing interactions with 

an E3 ubiquitin ligase (Gao and Karin 2005; Hardeland et al. 2007). 

 

 

2.3. Epigenetic Regulation of Gene Expression 

 

2.3.1. Chromatin Structure and Dynamics 

 

In the nucleus of eukaryotic cells, genomic DNA is packaged into a protein-DNA complex termed 

chromatin. The basic building blocks of chromatin are the nucleosome core particles which consist of 

147 base pairs (bp) of DNA wrapped in 1.7 superhelical turns around a histone octamer. These 

octamers consist of two H3-H4 and two H2A-H2B histone dimers. Nucleosome core particles are 

separated by linker DNA of 10-80 bp length associated with the linker histone H1, altogether forming 

a 10 nm   fiber,   resembling   “beads   on   a   string”,  which   is   further   compacted   into   a   fibre of ~30 nm 

diameter (Felsenfeld and Groudine 2003; Hubner et al. 2012). Further compaction into higher-order 

structures involves long-range intra- and interchromosomal interactions mediated by chromatin 

associated structural organizer complexes such as the CCCTC-binding factor (CTCF), cohesins (Lee and 

Iyer 2012), and others. Chromosome Conformation Capture (3C) experiments have revealed that 

chromatin is packaged into fractal globules. All fractal globules of one chromosome appear to occupy 

a distinct area of the nucleus, a so-called chromosomal territory (Hubner et al. 2012). 

The chromatin structure represents a second layer  of  genetic  information  “on  top  of” the DNA base 

sequence.   This   “epigenetic”   information   is   shaped  by  developmental and environmental cues that 

instruct heritable patterns of chromatin structure to regulate gene expression in a cell type specific 

manner and thus determine cell fate. The   sum   of   this   “epigenetic”   information   is   termed  

“epigenome”.   Chromatin   exists either in a condensed (heterochromatin) or in a more open, 

accessible form (euchromatin). The latter contains mostly transcriptionally active genes (but may 
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contain silent genes or heterochromatinized regions), whereas heterochromatin in its most 

condensed form is inaccessible for the large protein complexes involved in gene transcription. It thus 

contains mostly transcriptionally inactive genes and repetitive sequences (Hubner et al. 2012). 

DNA replication, recombination, repair and activation or silencing of transcription, all involve 

alterations of the chromatin structure. This modulation can occur in three ways: First, by ATP-

dependent chromatin remodeling complexes, second, through exchange of the core histones with 

other histone variants, third, through alterations of epigenetic modifications, namely histone 

modifications and DNA methylation (Felsenfeld and Groudine 2003).  

For gene regulatory factors to be able to bind to their target sequences in the genome, their binding 

sites - which may lie deeply buried within a nucleosome - have to be made accessible without 

unraveling the overall chromatin architecture. This is accomplished by chromatin remodeling 

complexes that metabolize ATP to alter the DNA-histone interactions so that a nucleosome is 

relocated to a neighboring stretch of free DNA, transiently exposing the previously occupied 

sequence (Becker and Horz 2002).  

The canonical histones can be replaced by histone variants to regulate transcriptional activation or 

silencing, chromatin structure, DNA repair and ES cell differentiation (Talbert and Henikoff 2010). For 

instance, a variant of H2A, H2AX, which is ubiquitously present throughout the genome, is 

phosphorylated in the course of DNA strand break repair, e.g. in the context of DNA damage or V(D)J 

recombination during antibody diversification (Fernandez-Capetillo et al. 2004). Furthermore, the 

histone variant H3.3 was found to be associated with active chromatin, whereas H3.2 correlates with 

a repressive chromatin state (Hake and Allis 2006). 

 

 

2.3.2. Histone Modifications 

 

The core histones consist of a globular domain and an amino-terminal tail, both of which were found 

to be subject to an ever-growing number of post-translational modifications, including 

phosphorylation, acetylation, methylation, mono- and poly-ADP-ribosylation,   deimination,   β-N-

acetylglucoamine-modification, proline isomerization, SUMOylation and ubiquitylation. These 

modifications not only change the interactions between nucleosomes and between histones and 

DNA,   but   are   also   thought   to   form   a   “histone   code”   that   is   “read”   by   various   protein   complexes  

involved for instance in chromatin remodeling or transcription (Bernstein et al. 2007). Here, I will 

focus on histone acetylation and methylation, introduce the enzymes catalyzing these modifications 

(writers) and the factors that recognize them (readers and effectors). For an in-depth review on 

other histone modifications, refer to (Bannister and Kouzarides 2011). 
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Histone Acetylation 

 

While the function of many of these modifications is still not fully understood, some basic principles 

have emerged. Acetylation of lysine residues almost always increases transcriptional activity and 

chromatin accessibility, presumably by neutralizing the charge interaction between the DNA 

backbone and the positively charged lysine residues of the histone tails (Bernstein et al. 2007; 

Bannister and Kouzarides 2011). Acetylation is highly dynamic and controlled by two families of 

enzymes with antagonistic functions: the histone acetyl-transferases (HATs) and the histone 

deacetylases (HDACs). HATs act as part of large multi-protein complexes (see also next sub-chapter) 

and can be subdivided into different groups with specific functions, type-A and type-B HATs. The 

latter is responsible for acetylating newly synthesized histones in the cytoplasm. Type-A HATs can 

modify histones that are already integrated into nucleosomes, and many members of this family are 

involved in transcriptional co-activation, e.g. CBP/p300. In contrast, HDACs are mostly transcriptional 

repressors as they restore the positive charge of a lysine through deacetylation, tightening the 

interaction between the histone tail and the DNA.  

Like HATs, HDACs are present in several large protein complexes, often with other members of the 

HDAC family. HDAC1 and HDAC2, for instance, are subunits of the NuRD, Sin3a and Co-REST 

repressor complexes (Bannister and Kouzarides 2011). 

 

Histone Methylation 

 

Histone methylation does not alter the charge of the histone tail but rather functions as a recognition 

site for histone-code  “readers”,  proteins with a chromo-, bromo-, MBT, Tudor or PHD finger domain. 

Thus, methylation can have different effects, depending on which residues are modified and with 

how many methyl-groups. Methylation occurs mostly on lysine or arginine residues, in which lysine 

can be mono-, di- or tri-methylated and arginine mono- or di-methylated (symmetrically or 

asymmetrically). For instance, H3K4me3 marks promoters and transcriptional start sites of active and 

“poised”   (to   be   activated)   promoters, whereas H3K4me1 is associated with introns and distal 

regulatory elements termed enhancers (Black et al. 2012). H3K9 and H3K27 trimethylation on the 

other hand is generally associated with repression of transcription. The methyl-donor for both, lysine 

and arginine methylation is S-adenosylmethionine (SAM) (Bannister and Kouzarides 2011). 

At the center of establishing and maintaining active or repressive chromatin states are trithorax 

(TrxG) and polycomb group (PcG) proteins, respectively. Both form large multi-protein complexes 

that contain both writers and readers of histone modifications, and that exhibits not only histone 
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methylating but also HAT or HDAC and other activities, reflecting the functional interlink between 

different histone-modifications. 

TrxG proteins can be subdivided into three classes, one consisting of SET-domain containing factors 

that methylate histone tails (writers), a second including ATP-dependent chromatin remodeling 

factors that read the histone methylation established by the SET-domain proteins (readers and 

effectors), and a third class that binds directly to specific DNA sequences and serve multiple 

functions. Five PcG protein complexes have been identified to date. Polycomb repressive complex 1 

(PRC1) and 2 (PRC2), for instance, establish repressive chromatin states, e.g. through their H3K9 

methyltransferase, H3K4 and H3K36 demethylase and H3K27 methyltransferase activities (Lanzuolo 

and Orlando 2012). 

All histone lysine methyltransferases (HKMTs) that modify histone tails have a common SET domain 

that harbors the enzymatic activity and catalyzes the transfer of a methyl-group from S-

adenosylmethionine  (SAM)  to  the  ε-amino group of a target lysine. One of the first SET-domain TrxG 

proteins identified in mammals was MLL1, which catalyzes H3K4 trimethylation (following mono- and 

di-methylation) primarily at HOX genes. MLL1 was originally identified as a gene inducing human 

leukemia through aberrant fusion, e.g. with AF9 or TET1, caused by chromosomal rearrangements. 

(Schuettengruber et al. 2011). A prominent example for a SET-domain containing PcG protein is EZH2 

(enhancer of zeste), the catalytic subunit of PRC2, which catalyzes di- and tri-methylation of H3K27. 

Interestingly, EZH2 also recognizes H3K27me3, which makes it not only a writer but also a reader of 

this chromatin mark (Lanzuolo and Orlando 2012). 

Lysine methylation is reversible through the action of a lysine-specific demethylase (LSD1), which can 

demethylate mono- and dimethylated lysine. Target specificity and biological role is conferred by the 

different protein complexes LSD1 is associated with. For instance, as a subunit of the Co-REST 

complex, LSD1 demethylates mono- or dimethylated H3K4, acting as a co-repressor, but in complex 

with the androgen receptor, it demethylates H3K9, functioning as a co-activator. Trimethylation of a 

histone lysine can be reversed by jumonji domain proteins, of which JMJD2 was the first trimethyl 

lysine demethylase identified. The histone demethylase JARID2 for example is a subunit of PRC2 

(Marmorstein and Trievel 2009; Bannister and Kouzarides 2011). 

 

Inheritance of Histone Modifications 

 

How epigenetic information encoded by histone modifications is maintained during/after DNA 

replication remains poorly understood. Several models have been proposed over the years how 

histone modifications are inherited during mitotic divisions. The simplest, a semi-conservative 

inheritance mechanism, would rely on equal distribution of the two copies of each core histones to 
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the daughter strands upon DNA replication, and a symmetrical copying of the modification onto the 

newly deposited histones. However, it is unknown if histone modifications occur in a symmetric 

manner on both copies of each histone within a single nucleosome and whether nucleosomes are 

distributed semi-conservatively during DNA replication. Indeed, recent work questions such a mode 

of distribution of H3-H4, which carry the modifications most likely to be relevant for epigenetic 

phenomena (Zhu and Reinberg 2011). 

The observation that many histone modifiers localize to the replication forks in S-phase has raised 

the hypothesis that factors within or associated with the DNA replication machinery recruit 

chromatin-modifying enzymes to restore the histone modifications on newly synthesized chromatin.  

Yet,  this  model  cannot  apply  for  certain  histone  modifications  that  appear  to  “mature”  throughout  

the cell cycle (Zhu and Reinberg 2011). 

It is clear that the inheritance of histone modifications requires some instructive pre-existing 

modifications to serve as templates for restoration of the chromatin states during or after DNA 

synthesis. Assuming a random distribution of nucleosomes to the nascent DNA strands, newly 

deposited histones might be modified analogous to a neighboring nucleosome, similar to a 

phenomenon   termed  “chromatin-modification  spreading”.  Such  spreading  of  histone  modifications  

has been found to occur with H4K16 acetylation, H3K9 and H3K27 methylation (Cockell et al. 1998; 

Grewal and Moazed 2003; Margueron et al. 2009). 

Histone modifications are functionally interlinked with DNA cytosine methylation in the 

establishment of the epigenetic code, although the hierarchical order in which these modifications 

are written and read is not clear. While the mechanism of propagation of histone modifications is still 

under debate, the biochemistry of the DNA methylation system offers a logical and plausible concept 

for inheritance (see 2.3.3.).  

 

 

2.3.3. DNA methylation 

 

CpG Methylation System 

 

CpG dinucleotides in mammalian cells are subject to methylation at the C5 position of cytosine. The 

occurrence of 5-mC is negatively correlated with the density of CpG dinucleotides, the CpG-richest 

sequences, also termed CpG islands (CGIs), showing the lowest methylation levels (Bird et al. 1985; 

Kafri et al. 1992; Illingworth and Bird 2009). Non-CpG methylation is common in plants but was found 

to be a characteristic exclusively of the pluripotent stem cell state in mammals and is lost with 

differentiation (Ramsahoye et al. 2000; Lister et al. 2009). In the human genome, over half of the 
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total amount of 5-mC is associated with repetitive sequences and contributes to genome stability by 

repressing recombination and the transcription of retrotransposons (Hu and Rosenfeld 2012). 

Cytosine methylation is accomplished by three DNA methyltransferases, the maintenance DNA 

methyltransferase Dnmt1 and the de novo DNA methyltransferases Dnmt3a and b. Like histone 

methyltransferases, Dnmts use SAM as a methyl-group donor. Deletion of Dnmt1 or Dnmt3b in mice 

is embryonic lethal and Dnmt3a knockout mice die about one month after birth (Li et al. 1992; Okano 

et al. 1999). Cultured triple knockout (Dnmt1-/-Dnmt3a-/-Dnmt3b-/-) ES cells lose the ability to 

differentiate (Tsumura et al. 2006). 

The de novo DNA methyltransferases Dnmt3a and Dnmt3b – in concert with the catalytically inactive 

cofactor Dnmt3L – establish methylation patterns in early development and contribute to the 

maintenance of these patterns through cell divisions (Jones and Liang 2009). How Dnmt3a and b are 

recruited to their target sites is not entirely clear although several reports suggest that they may be 

directed by histone modifications or associated factors (Fuks et al. 2003; Vire et al. 2006; Ooi et al. 

2007; Dong et al. 2008). Faithful transmission of methylation patterns through mitotic divisions is 

conferred by Dnmt1 which is targeted to hemimethylated CpGs by Np95, e.g. following DNA 

replication, to restore the fully methylated state (Sharif et al. 2007). As DNA methylation and histone 

modifications are functionally interlinked, the Dnmt1-mediated inheritance of DNA methylation 

patterns might also support the faithful transmission of histone marks by providing cues for their 

restoration. 

 

DNA Methylation in Transcriptional Regulation 

 

DNA methylation plays a crucial role in the control of gene expression, e.g. in the allele-specific 

expression of imprinted genes and in establishing cell type-specific expression patterns during cell 

fate determination. Depending on its localization, DNA methylation can have different effects on 

transcriptional activity. Enrichment of 5-mC in close proximity to a transcription start site (TSS) 

inhibits transcription initiation but DNA methylation in the gene body has been found to even 

stimulate transcriptional elongation and may control splicing (Laurent et al. 2010; Jones 2012). The 

effect of DNA methylation at enhancer regions on gene expression is only beginning to become clear. 

Enhancers are mostly CpG poor regulatory sites located at variable distances from gene promoters 

and marked by transcription factor binding. Genome-wide studies of DNA methylation in mouse ES 

cells and neuronal precursors have associated transcription factor binding with the CpG methylation 

level of enhancers (Stadler et al. 2011). As a single CpG in a single cell can only be either methylated 

or unmethylated, the intermediate methylation levels observed at these regions possibly reflect a 

highly dynamic methylation state, shaped by competing DNA methylation and demethylation which 



31 
 

averages to intermediate levels in a cell-population. Indeed, these low methylated regions (LMRs) 

have been found to be associated with 5-hmC, a potential intermediate of DNA demethylation, and 

generation of 5-hmC appears to facilitate enhancer activation (Stadler et al. 2011; Serandour et al. 

2012). 

 

CpG Islands 

 

CpG islands (CGIs) represent stretches of relatively high CpG density (observed/expected ratio >0.65) 

in the otherwise CpG-depleted genomes of all organisms with DNA methylation. CGIs overlap with 

the promoters of all ubiquitously expressed genes and also about 40% of those expressed in a tissue-

specific pattern (Illingworth and Bird 2009). CGIs are maintained in a hypomethylated state which is 

thought to have protected these genomic regions from deamination-induced 5-mCpG→TpG  

mutation. However, the mechanisms conferring this immunity of CGIs to de novo methylation remain 

largely unknown. DNA sequence itself has been proposed to make CGIs refractory to the activity or 

binding of Dnmt3a and b (Fig. 2-04 A). Such a scenario is unlikely considering the high density of 

CpGs, which are the preferred substrate of Dnmts (Ramsahoye et al. 2000). Alternatively, the 

association of transcription factors might sterically block the access of Dnmts to CGIs (Fig. 2-04 C). 

Several lines of evidence support this hypothesis, e.g. the fact that the promoters of all constitutively 

expressed genes and 93% of those expressed during mouse embryogenesis contain CGIs (Ponger et 

al. 2001; Illingworth and Bird 2009). Moreover, the presence of the active histone mark H3K4me3 has 

been shown to inhibit binding of Dnmt3L (Fig. 2-04 C) (Ooi et al. 2007). H3K4 methyltransferase 

complexes are targeted to CGIs by the CXXC domain, conferring binding to unmethylated CpGs, of 

factors like Cfp1 or MLL1 (Clouaire et al. 2012). 

Finally, transcription itself and the formation of R-loops (RNA-DNA hybrid structures) have been 

proposed to maintain hypomethylation at CGIs immediately downstream of a TSS (Ginno et al. 2012). 

A third possibility how CGIs might be protected from methylation is a targeted proof-reading 

complex that removes aberrant 5-mC (Fig.2-04 B).  First evidence for such a proof-reading activity 

came with the finding that in vitro methylated CGIs become demethylated when introduced into ES 

cells (Frank et al. 1991). The discovery of the TET proteins as 5-mC hydroxylases has shed new light 

on possible mechanisms involved in CGI methylation proof-reading (Tahiliani et al. 2009), especially 

since TET1 localizes to CGIs (Williams et al. 2012). However, such a proof-reading complex might not 

be the first and foremost mechanism to keep CpG islands unmethylated but might rather function as 

a caretaker to correct aberrant methylation caused by the failure of the two other – or as yet 

unknown – mechanisms (see next chapter).   
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Fig. 2-04: Possible mechanisms maintaining hypomethylation at CGIs. (A) Intrinsic sequence properties might 
keep CpGs in CGIs unmethylated (white lollipops) by inhibiting activity or binding of DNA methyltransferases 
(DNMT). (B) CGIs might be subject to methylation but a targeted DNA demethylase (DM) complex might 
remove 5-mC (black lollipops) from these genomic loci. (C) Occupation by transcription factors (TF) and RNA 
polymerase II (RNA polII) might sterically block the access of Dnmts to CGIs. Also, the active histone mark 
H3K4me3 was shown to inhibit binding of the DNMT cofactor DNMT3L. (Illingworth and Bird 2009) 
 

 

CpG Methylation Instability  

 

Carcinogenesis and ageing are accompanied by a disruption of DNA methylation patterns. In general, 

cancer cells exhibit hypomethylation of the bulk genome punctuated by hypermethylation at CGIs. 

Hypomethylation occurs mostly in CpG poor regions and contributes to tumorigenesis through 

aberrant gene activation, loss of transposon and recombination repression and destabilization of the 

chromatin structure e.g. at telomeres (Schar and Fritsch 2011; Gokul and Khosla 2012). CGI 

hypermethylation at the promoters of tumor suppressor genes resulting in transcriptional 

downregulation is one of the hallmarks of carcinogenesis. (Hanahan and Weinberg 2000; Gronbaek 



33 
 

et al. 2007). Causes for aberrant DNA methylation can be mutations in or misregulation of the Dnmt 

genes, false targeting of the Dnmts or an imbalance of the methyl-group donor SAM (Schar and 

Fritsch 2011). Still, whether DNA methylation errors are the cause or the consequence of 

carcinogenesis remains unclear.  

Yet, the fact that the DNA methylation machinery can erroneously methylate regions that should 

remain unmethylated makes it clear that proof-reading mechanisms must have evolved for this 

epigenetic mark (Schar and Fritsch 2011). Also, the erasure of DNA methylation, e.g. in order to reset 

the epigenome to a totipotent state (see chapter 2.3.4.), illustrates the need for reversibility of DNA 

methylation. In plants, 5-mC demethylation is accomplished by 5-mC glycosylases but mammals 

appear to employ more complex mechanisms (see chapter 2.4.) (Zhu 2009).  

 

 

2.3.4. Epigenome dynamics in mammalian development 

 

Multicellular organisms develop out of a single cell, the zygote. After fertilization, the epigenetic 

marks of the paternal and maternal genomes, present as distinct structures in the zygote, have to be 

erased to restore totipotency, the ability to generate any cell type. Newly established epigenetic 

programs   determine   cell   identity   and   provide   a   heritable   “cellular   memory”.   Although   histone  

modifications play a crucial role in establishing the gene expression profiles that confer cell identity, 

this chapter focuses mostly on DNA methylation dynamics. 

Upon entering the oocyte, the densely packed and transcriptionally silent paternal chromatin 

undergoes extensive remodeling to become transcriptionally inducible. This includes replacement of 

protamines, sperm-specific histone-analogs, with canonical histones provided by the oocyte, as well 

as DNA decondensation, which results in the formation of the paternal pronucleus (Jenkins and 

Carrell 2012). The paternal pronucleus undergoes rapid, global DNA demethylation, with the 

exception of imprinted loci, IAP retrotransposons and centromeres. As this global erasure of 5-mC 

precedes and coincides with the first round of DNA replication, it is thought to be an active process 

(see chapter 2.4.2.). The maternal pronucleus escapes this global DNA demethylation event through 

mechanisms that are as of yet not entirely clear, although an involvement of repressive histone 

modifications and the maternal factor Stella has been suggested (Nakamura et al. 2007; Wossidlo et 

al. 2011; Szabo and Pfeifer 2012). Demethylation of the maternal DNA is gradually achieved through 

several  cell  divisions  upon  reactivation  of  the  oocyte’s  cell  cycle,  consistent  with  a  passive  process  by  

inhibition of maintenance methylation (Jenkins and Carrell 2012). The erasure of the majority of this 

epigenetic mark allows for the establishment of new, cell type-specific DNA methylation profiles. 
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A first divergence in the epigenetic profiles of the zygote-derived cells becomes evident at the 

morula stage, where cells in the periphery are primed to become extra-embryonic tissue, whereas 

cells at the center eventually give rise to the embryo proper (Johnson and Ziomek 1981). In the 

blastocyst, the peripheral trophectoderm cells reach the lowest levels of 5-mC, while in the inner cell 

mass DNA methylation has already begun to be restored by de novo methyltransferases (DNMT3). 

One of the first genes silenced through DNA methylation in the epiblast, which determines lineage 

trajectory, is Elf5, a trophectoderm-specific transcription factor (Seisenberger et al. 2013). During and 

following implantation of the mouse embryo, about 480 gene promoters become methylated and 

thus transcriptionally silenced, including a set of CGI promoters. Among them are many pluripotency 

factors, i.e. Rex1, but also germline-specific genes and tissue-specific factors that are re-expressed in 

later stages of development, e.g. hematopoietic genes (discussed below) (Borgel et al. 2010). 

Primordial Germ Cells (PGCs), the precursors of the gametes, inherit a significant amount of DNA 

methylation from the epiblast they are derived from, including imprinted loci inherited from the 

parental generation. To reset these somatic methylation profiles to that of germ cells that are 

capable of forming a totipotent zygote, PGCs undergo global DNA demethylation that spares only the 

retrotransposons with the highest mutagenic potential. Male or female gamete-specific methylation 

profiles are established gradually until the prospermatogonia stage or in the growing oocyte, 

respectively. New imprints are established   according   to   the   embryo’s   gender   (Seisenberger et al. 

2013). 

A subset of tissue-specific genes was found to be silenced in early development but reactivated in 

later stages.  Among these are brain-, eye- or hematopoiesis-specific genes, i.e. Mbp, Cryaa, Cplx4, 

Obf1, Tlr6 and Cytip. The promoters of these genes display intermediate CpG-density and were found 

to acquire DNA methylation in early embryogenesis. Yet, the promoters of the eye-specific genes 

Cryaa and Cplx4 become demethylated during eye-development, as are those of Tlr6 and Cytip in the 

hematopoietic lineage and that of Obf1 during adult B-cell differentiation (Borgel et al. 2010). This 

targeted erasure of 5-mC is likely to employ different mechanisms than the global DNA 

demethylation observed in zygotes and PGCs (discussed in chapter 2.4.). 

 

 

2.4. DNA demethylation 

 

2.4.1. Concepts of DNA demethylation 

 

The fact that plants have evolved enzymes with 5-mC glycosylase activity and appear to achieve DNA 

demethylation through BER has fueled the search for analogous enzymes in mammals. Passive 
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removal of 5-mC has long been established to occur through inhibition of DNA methylation 

maintenance by Dnmt1, e.g. to gradually achieve global demethylation of the maternal pronucleus. 

However, the rapid loss of 5-mC in the paternal pronucleus and in PGCs suggests the involvement of 

an enzymatic component. 

Indeed, the discovery of the TET proteins as 5-mC hydroxylases has shed light on the mechanism of 

global DNA demethylation (Tahiliani et al. 2009; Ito et al. 2010). Recent studies have revealed that 

TET3 mediated conversion of 5-mC to 5-hmC and subsequent dilution by DNA replication causes a 

global loss of 5-mC in the paternal pronucleus (Gu et al. 2011; Inoue and Zhang 2011; Wossidlo et al. 

2011). Furthermore, global demethylation of primordial germ cells has been demonstrated to be 

driven by TET-catalyzed conversion of 5-mC to 5-hmC, followed by a decline of 5-hmC levels 

consistent with replication-mediated dilution (Hackett et al. 2013). 

Such a semi-active process of DNA demethylation, converting 5-mC to 5-hmC which is no longer 

maintained by Dnmt1 (Valinluck and Sowers 2007), appears perfectly suitable for global erasure of 

5-mC. Alternative pathways that were proposed for global demethylation entail a DNA repair step 

(see chapter 2.4.2.), which would generate potentially hazardous AP-sites and DNA strand-breaks at 

an alarming number. Still, the BER factor APE1 and BER facilitator PARP1 were shown to be essential 

for global DNA demethylation in PGCs (Hajkova et al. 2010). How BER contributes to these global 

events remains to be elucidated. However, replication-independent pathways for enzymatic DNA 

demethylation may well be employed in controlling DNA methylation at specific sites. 

Direct removal of the methyl-group has been proposed as a most straightforward way to actively 

convert 5-mC back to C. The 5-mC binding domain protein MBD2 has been reported to exhibit such 

activity but this finding could not be reproduced by other groups so far (Bhattacharya et al. 1999). 

Also, Mbd2 knockout mice exhibit normal 5-mC levels and paternal pronucleus demethylation, 

shedding doubt over a biologically relevant MBD2-mediated DNA demethylation process (Hendrich 

et al. 2001; Santos et al. 2002). 

An alternative to the removal of the methyl-group is excision of 5-mC through DNA repair. Two major 

pathways have been considered in such a scenario: nucleotide excision repair (NER), which would 

remove a stretch of DNA that contains the methylated CpG, and BER, which would remove 5-mC 

directly. The unmethylated CpG would be restored by repair synthesis in both cases. 

The NER machinery has been implicated in transcriptional regulation in absence of DNA damage. NER 

factors are recruited to active gene promoters and contribute to chromatin remodeling for efficient 

transcription initiation (Schmitz et al. 2009; Le May et al. 2010). The NER endonucleases XPG and XPF 

were shown to be essential for controlling DNA demethylation at promoter and transcriptional 

termination sites although the mechanistic connection between strand incision by XPG or XPF and 

DNA demethylation remains unclear (Le May et al. 2012). As NER mostly recognizes and corrects 
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helix-distorting lesions, the cue triggering NER action in the context of DNA demethylation has yet to 

be identified. One possibility is the occurrence of AP-sites which have been shown to be repaired by 

NER under certain circumstances (Lin and Sancar 1989; Huang et al. 1994; Kim and Jinks-Robertson 

2010). 

The search for a mammalian 5-mC DNA glycosylase initiating DNA demethylation by BER has revealed 

an enzyme capable of excising 5-mC from hemimethylated DNA in chicken embryo extracts. This 

enzyme later turned out to be the chicken homolog of TDG, in complex with RNA and an RNA 

helicase (Jost 1993; Jost et al. 1995; Fremont et al. 1997; Jost et al. 1997; Jost et al. 1999; Zhu et al. 

2000). Yet, the glycosylase activity of TDG on 5-mC could not be corroborated so far with 

recombinant enzymes. A more plausible pathway, which is supported by recent reports, is the 

conversion of 5-mC to a more suitable substrate for DNA glycosylases (discussed in chapter 2.4.2). 

 

 

2.4.2. Current models for BER-mediated active DNA demethylation 

 

As 5-mC is more susceptible to deamination than C and as several DNA glycosylases evolved to 

counteract such spontaneous deamination events, enzymatic deamination has long been considered 

as a potential first step of DNA demethylation, followed by BER. Candidate 5-mC deaminases in such 

a pathway include the activation induced deaminase (AID) and the apolipoprotein B mRNA-editing 

enzyme complex (APOBEC) family of proteins as well as Dnmt3a and b. 

AID was shown to contribute to demethylation of the Oct4 and Nanog gene promoters during 

somatic cell reprogramming (Bhutani et al. 2010). AID has also been implicated in global DNA 

demethylation in PGCs, as AID-deficient mouse PGCs exhibit threefold higher methylation levels at 

embryonic day 13.5 as their wildtype counterparts (Popp et al. 2010). Furthermore, a deamination-

coupled DNA demethylation pathway was also observed in zebrafish embryos, involving deamination 

of 5-mC by AID and subsequent excision by MBD4 (Rai et al. 2008). 

Dnmt3a and b have also been shown to deaminate 5-mC in vitro under conditions of SAM depletion. 

Whether such an environment is generated in vivo is unclear, but transient recruitment of the 

Dnmt3s and TDG has been shown to be associated with cyclical methylation and demethylation at 

estrogen-responsive promoters. Interestingly, reminiscent of the reports by J.P. Jost and colleagues, 

this putative DNA demethylation complex also includes the RNA helicase p68, suggesting the 

complex to be targeted and/or stabilized by an RNA component (Kangaspeska et al. 2008; Metivier et 

al. 2008). 

The discovery of the TET proteins as 5-mC hydroxylases shed new light on a possible BER-coupled 

DNA demethylation pathway (Tahiliani et al. 2009; Ito et al. 2010). Interestingly, a 5-hmC glycosylase 
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activity had been identified in calf thymus long ago (Cannon et al. 1988), alas the responsible enzyme 

has never been identified and none of the mammalian DNA glycosylases characterized appears to be 

capable of excising 5-hmC on its own (He et al. 2011; Maiti and Drohat 2011). More recently, it was 

suggested that the concerted action of TET proteins and AID or APOBEC proteins facilitate 5-mC 

demethylation through subsequent generation of 5-hmC and deamination to 5-hydroxymethyluracil 

(5-hmU), followed by excision of 5-hmU by either TDG or SMUG1 (Boorstein et al. 2001; Hardeland et 

al. 2003). One study implicated TET1 and Apobec1-catalyzed deamination of 5-hmC in neuronal 

activity-induced site-specific active DNA demethylation in the adult mouse brain (Guo et al. 2011). 

Also, AID was reported to interact directly with TDG in a coupled deamination-BER pathway of DNA 

demethylation (Cortellino et al. 2011). However, a recent study of the enzymatic properties of AID 

and APOBEC proteins revealed that 5-hmC is no suitable substrate for deamination by these 

enzymes, whereas a residual activity on 5-mC was confirmed (Nabel et al. 2012).  

Further insight into a potential mechanism of active DNA demethylation came with the finding that 

TET proteins can oxidize 5-hmC further to 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), 

both of which are readily excised by TDG but – unlike the deamination products of 5-mC and 5-hmC – 

apparently by no other DNA glycosylase (He et al. 2011; Ito et al. 2011; Maiti and Drohat 2011). Given 

the fact that TDG is also the only DNA glycosylase known so far with a developmental phenotype 

(Cortazar et al. 2011; Cortellino et al. 2011; Jacobs and Schar 2012), its non-redundant 5-fC/5-caC 

glycosylase activity might hint at an essential role of TDG in DNA demethylation during development. 

However, the significance of such a TET-TDG mediated pathway during development has remained 

elusive. 
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3 Aims of the Thesis 

 

TDG has been implicated in two seemingly disconnected biological processes, DNA repair and 

transcriptional regulation. Both functions have been shown to require SUMOylation or SUMO-

binding (Hardeland et al. 2002; Steinacher and Schar 2005; Mohan et al. 2007). The regulation of TDG 

function by SUMOylation has been studied extensively in biochemical assays and we previously 

proposed that SUMOylation induces dissociation of TDG from its product AP-site (Steinacher and 

Schar 2005). However, an involvement of SUMOylation in TDG-dependent BER had not been 

corroborated by in vivo data.  

The first goal of my PhD thesis was to generate a tool to monitor the SUMO-TDG interaction in 

living cells, unchallenged and in presence of DNA damaging agents. To this end, I established a 

Fluorescence Resonance Energy Transfer (FRET) system, which we used to characterize the covalent 

and non-covalent SUMO1- and SUMO3-binding of TDG. 

 

In the attempt to reconcile its functions in DNA repair and in the regulation of gene expression, TDG 

was proposed to actively demethylate DNA by directly excising 5-mC (Zhu et al. 2000). As this model 

was not corroborated by independent experimental evidence, the involvement of TDG in active DNA 

demethylation has remained elusive. Still, we found deletion of Tdg in mouse to cause embryonic 

lethality and epigenetic aberrations at CGIs in Tdg knockout cells. These aberrations suggested a dual 

role of TDG in safeguarding CGIs, one in coordinating the maintenance of active histone marks and 

one in counteracting aberrant DNA methylation. The underlying mechanisms, however, have 

remained obscure. 

The second goal of my PhD thesis was to investigate the mechanism by which TDG contributes to 

the epigenetic stability of CGIs. To this end, I – in collaboration with others – dissected the causes for 

aberrant methylation levels in Tdg knockout cells in the course of cell differentiation to address the 

involvement of BER, deamination and/or oxidation in controlling CGI methylation. 

 

The study of factors involved in maintaining stable chromatin states raises the need for tools to 

investigate the rates of epigenetic change (epimutagenesis). However, unlike for genetic change 

(mutagenesis), no such tools have been designed nor developed thus far.  

The third goal was thus to establish a system that allows quantitative monitoring of the epigenetic 

stability of promoters. To this end, I established an ES cell-based system that allows a timed release 

of an exchangeable promoter of interest from selective pressure and several read-out options to 

monitor promoter activity, applicable in high-throughput screening approaches as well as in studying 

stochastic effects on a clonal basis. 
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4 Results 

 

The following section summarizes the results presented in the manuscripts provided in the appendix 

as well as supplementary results not included in the manuscripts. 

 

4.1. Measuring the SUMO-Interaction Dynamics of the Thymine DNA Glycosylase by 

Fluorescence Resonance Energy Transfer (Appendix I) 

 

Post-translational modification with Small Ubiquitin-like Modifiers (SUMOs) can affect the subcellular 

localization, enzymatic activity, three-dimensional structure or protein-interactions of a target 

protein and is thus involved in regulating and coordinating various cellular processes, e.g. in DNA 

replication and repair but also in pathways connected to development (Gill 2004; Lomeli and Vazquez 

2011). SUMO is also bound non-covalently by proteins with a SUMO Interaction/Binding Motif 

(SIM/SBM). We have previously reported that SUMOylation of TDG facilitates the dissociation of the 

glycosylase from the AP-site by abolishing the non-specific DNA-interaction of the N-terminal domain 

(Hardeland et al. 2002; Steinacher and Schar 2005). TDG also interacts non-covalently with SUMO 

(Hardeland et al. 2002), via two SIM/SBM motifs located in the N-terminal and the C-terminal 

domains (Mohan et al. 2007) 

In this part of my PhD thesis, I present the development of a Fluorescence Resonance Energy 

Transfer (FRET) system to monitor the SUMO1- and SUMO3-interactions of TDG in living cells. FRET is 

a physical process involving the transfer of an energy quantum between a donor and an acceptor 

fluorophore, in our case Cerulean and Citrine, respectively. This energy transfer requires an overlap 

of the emission spectrum of the donor with the absorption spectrum of the acceptor, so that an 

energy quantum emitted by the donor in an excited state can be absorbed by the acceptor 

fluorophore, which subsequently emits a photon in a wavelength beyond that of the donor. The 

transfer can only occur if the donor and acceptor are in a suitable orientation and in close proximity 

(10 to 80 Å) of one another. Thus, the interaction between two proteins of interest can be monitored 

by fusing one to the donor fluorophore and one to the acceptor (Siegel et al. 2000). 

We generated and validated a series of constructs encoding wildtype TDG as well as a SUMOylation 

deficient  mutant  (K341R,  TDG  ∆S)  and  a  catalytically  dead  mutant  (TDG  ∆cat)  fused  N- or C-terminally 

to the FRET acceptor Citrine. The donor Cerulean was N-terminally fused to SUMO1 and SUMO3. We 

could confirm full-length expression and catalytic activity of the TDG fusion proteins, although the N-

terminal tag appears to interfere with efficient expression and the non-specific DNA interactions of 
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the N-terminal domain (Appendix I, Fig.2b, 2c and 3d). Additionally, we proved that the fluorophore 

tags on both, TDG and SUMO, do not interfere with the SUMO conjugation pathway or with their 

respective subcellular localization (Appendix I, Fig. 2d and Fig. 4). 

We provide proof that the SUMO1- and SUMO3-interactions of TDG can be monitored in living cells 

and that these interactions occur at a surprisingly high steady state in the absence of induced DNA 

damage (Appendix I, Fig. 4 and 5). Including the SUMOylation-deficient mutant TDG ∆S  in  our  system  

enabled us to distinguish between covalent and non-covalent SUMO-interactions. We found a 

significantly higher FRET signal for the SUMO3-interaction   of   wildtype   TDG   than   for   TDG   ΔS,  

suggesting that a significant part of the cellular TDG pool is covalently attached to SUMO3 in the 

presence of endogenous levels of DNA damage (Appendix I, Fig.5b). On the other hand, it appears 

that SUMO1 is mostly associated with TDG through its SBMs rather than through a covalent bond as 

we do not find a significant difference between the FRET signal produced by the SUMO1-interaction 

of  wildtype  TDG  and  TDG  ΔS  (Appendix  I,  Fig.  5a).   

To validate our system, we tested whether excess DNA damage alters the TDG-SUMO-interaction 

dynamics. By treating cos7 cells transiently expressing the FRET constructs with the base analog 5-FU 

which is incorporated into the DNA and represents a substrate for TDG-mediated repair, we were 

able to shift the balance between SUMO-binding and SUMO-modification of TDG. Interestingly, the 

treatment  only  affected  the  interaction  with  SUMO1  and  not  with  SUMO3  (Fig.  5).  TDG  ΔS  appears  to  

lose the interaction with SUMO1 upon treatment with 5-FU, which is in agreement with previous 

reports of SUMO- and DNA-binding of recombinant TDG being mutually exclusive (Smet-Nocca et al. 

2011). We observe a small increase of the SUMO1 interaction of wildtype TDG upon induction of 

DNA damage. As the FRET signal derived from the SUMO1-interactions of wildtype TDG is a mix of 

covalent and non-covalent SUMO-binding, and as the non-covalent interaction is reduced upon 5-FU 

treatment, we conclude that modification of TDG by SUMO1 is in fact stimulated by DNA damage 

(Appendix I, Fig. 5a). This observation supports a role of SUMOylation in regulating TDG function 

during DNA repair. 

SUMO3, on the other hand, appears to be covalently attached to part of the cellular TDG pool even 

in absence of DNA damage. Upon 5-FU treatment, the association of SUMO3 with TDG through its 

SBMs appears to be stimulated, evident in a mildly increased FRET signal derived from the SUMO3-

interactions  of  TDG  ΔS  (Appendix  I,  Fig.5b).  As  the  overall  interaction  of  wildtype  TDG  with  SUMO3  is  

reduced, covalent SUMO3 binding appears to be dissolved upon induction of DNA damage. 

Taken together, it appears that the interaction with SUMO1 and SUMO3 regulate TDG function in 

different contexts. As TDG is involved not only in canonical DNA repair but also in the regulation of 

gene expression, these two different processes might employ different SUMO family members. 

SUMOylation of TDG in response to exogenous DNA damage appears to involve mostly SUMO1, 
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whereas SUMO3 might control TDG function in the context of transcriptional regulation by mediating 

protein-protein interactions with transcription factors or histone modifying enzymes. SUMO1 was 

shown to mostly interact with the C-terminal SBM of TDG (Smet-Nocca et al. 2011), raising the 

question whether the N-terminal SBM serves a distinct function and mediates interactions within a 

different set of complexes, possibly involving SUMO3. Our FRET system provides a powerful tool for 

elucidating the different roles of SUMO1- and SUMO3 interaction of TDG and the conditions affecting 

these interaction dynamics. 

We further designed and generated a FRET system to monitor the conformational switch of TDG 

between an open and a closed form by fusing the FRET donor Cerulean to the C-terminus and the 

acceptor Citrine to the N-terminus of TDG. We found that attaching fluorophore tags to both termini 

drastically increased the relative catalytic activity of  TDG  on  a  G•T   substrate   (Appendix  1   Fig.   3d).  

Therefore, double-tagged TDG might not be able to efficiently switch to or remain in a closed 

conformation. Still, pilot experiments revealed a robust FRET signal. As some biochemical and 

structural evidence suggests the formation of TDG homodimers ((Maiti et al. 2008; Morgan et al. 

2011) and Roland Steinacher, personal communication), we included dimerization controls: single-

tagged TDG fused N- or C-terminally to either Cerulean or Citrine. We found FRET to occur between 

single-tagged TDG molecules, although it remains unclear in which conformation, parallel or anti-

parallel, this interaction occurs. N-terminally Citrine- and C-terminally Cerulean-tagged TDG 

produced a robust FRET signal which was significantly enhanced when both tags were fused to the C-

terminus (Appendix 1, Fig.6). The FRET efficiency was potentiated further with double-tagged TDG, 

which is probably mostly due to doubling the number of fluorophores between which the energy 

transfer can occur, although we cannot exclude that part of the FRET signal derives from an 

intramolecular energy transfer. Furthermore, we found a significantly higher FRET signal produced by 

double-tagged TDG   ΔS   compared   to   wildtype   TDG,   suggesting   that   SUMO-modification interferes 

with dimerization. It remains to be tested whether this interaction involves only two TDG molecules 

or is in fact a polymerization, and whether it is mediated by DNA and/or SUMO-binding. 

Dimerization of TDG on the DNA in the course of DNA repair might serve the purpose of inhibiting 

BER or NER of any damage occurring in close proximity of the produced AP-site on the opposite 

strand. The generation of two opposing AP-sites or the degradation of a whole stretch of DNA 

opposite an AP-site might result in double-strand breaks. It is likely that mechanisms evolved to avoid 

such a clash of two DNA repair processes. Such a function of TDG dimerization becomes especially 

appealing with regard to DNA demethylation in which TDG has been implicated. 5-mC occurs mostly 

symmetrically in a palindromic CpG dinucleotide and a BER-coupled DNA demethylation process 

would have to be restricted to one strand at a time to avoid double-strand breaks (see also Appendix 

III). 
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In conclusion, we have generated a FRET system that provides a powerful tool to elucidate the role of 

the SUMO-TDG-interaction in DNA repair and other contexts. Furthermore, we provide the first 

evidence of TDG dimerization in living cells, which may have a function in ensuring strand specificity 

during DNA demethylation processes.   

 

Contribution: 

I designed, generated, validated and characterized all FRET constructs used in this study. I cultured 

and transfected cos7 cells, performed protein extraction from cos7 cells, conducted Western blot 

analysis, base release assay, microscopy and image analysis, and wrote the manuscript in Appendix I. 

 

 

 

4.2. Embryonic lethal phenotype reveals a function of TDG in maintaining 

epigenetic stability (Appendix II) 

 

The interaction partners of TDG are various, ranging from DNA repair factors to transcription factors 

and chromatin modifiers. Thus, TDG has been implicated not only in DNA repair but also in the 

regulation of gene expression. To elucidate the biological function of TDG, we generated Tdg-/- mice 

and found TDG to be essential for embryonic development, unlike any other mammalian DNA 

glycosylase. TDG knockout embryos display internal haemorhage by E10.5 and die around E11.5 

(Appendix II, Fig. 1a). To investigate whether loss of the DNA repair function of TDG causes 

embryonic lethality, we tested the sensitivity of wildtype and Tdg-/- immortalized MEFs to ionizing 

radiation and H2O2 but found that TDG deficiency had no effect on cell survival. Furthermore, a 

standard mutator assay revealed no increase in the frequency of spontaneous mutations (Appendix 

II, Supplementary Fig. 2). The function of TDG in canonical DNA repair, if any, is likely redundant and 

compensated for by other DNA glycosylases with an overlapping substrate spectrum. 

We further investigated whether deletion of Tdg affects the regulation of gene expression in MEFs. 

Expression analysis revealed 461 misregulated genes in the Tdg knockout of which many encode 

transcription factors, thus suggesting direct as well as indirect gene expression effects of the TDG 

loss. The gene networks most affected were connected to embryogenesis and development 

(Appendix II, Supplementary Fig. 3a). 

As TDG has been implicated in active DNA demethylation, we analyzed DNA methylation at the CGI 

containing promoters of genes downregulated in Tdg knockout MEFs. CGI are normally maintained in 

a hypomethylated state, but sequencing of Na-bisulphite converted DNA isolated from wildtype and 
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Tdg knockout MEFs revealed an accumulation of aberrant de novo DNA methylation in absence of 

TDG (Appendix II, Fig. 1c). We found that TDG is associated with these promoters by chromatin 

immunoprecipitation (ChIP) but found no enrichment of TDG on an intergenic control region or the 

transcriptionally silent promoters of Oct4 and Tuba3 (Appendix II, Fig. 1d). It thus appears that TDG is 

targeted to active gene promoters, possibly to protect them from acquiring aberrant de novo DNA 

methylation and transcriptional silencing. 

Further analysis of the chromatin status of these gene promoters revealed a loss of di-methylation of 

lysine 4 on histone 3 (H3K4me2) which is associated with an active chromatin state. In parallel, we 

found these loci to gain repressive histone marks: active promoters which showed only H3K4me2 in a 

wildtype background (e.g. those of Sfrp2 and Twist2) acquired H3K27 tri-methylation (H3K27me3), 

whereas promoters with a bivalent chromatin state (coinciding H3K4me2 and H3K27me3 e.g. at the 

promoters of Hoxa10 and Hoxd13) acquired H3K9me3 (Appendix II, Fig. 1e). Stable complementation 

of Tdg-/- MEFs with a vector encoding TDG rescued the chromatin state at the promoters and the 

expression of Sfrp2 and Twist2 (Appendix II, Fig. 2). However, we found that those promoters that 

lost H3K4me2 completely and gained H3K9me3 (e.g. those of Hoxd13 and Hoxa10) could not be 

reversed to a bivalent chromatin state by re-introducing Tdg into knockout MEFs, suggesting that 

heterochromatinization of these promoters progressed beyond a point of reversibility in our 

experimental system. 

To investigate the origin of the epigenetic instability we observe in absence of TDG, we profiled gene 

expression in Tdg positive and negative ES cells and after in vitro differentiation to neuronal 

progenitor cells (NPs). Interestingly, we found almost no differentially regulated genes in ES cells but 

a significant increase of transcriptional misregulation (297 genes) after differentiation to NPs (Fig. 

3a). Analysis of gene networks most affected revealed a connection to developmental functions and 

many of the misregulated genes to have promoter CGIs and to be targets of the polycomb repressive 

system (Appendix II, Supplementary Fig. 7a).  We could confirm enrichment of TDG at the promoter 

of misregulated genes in ES cells and NPs. Moreover, we found TDG associated with the promoters of 

Oct4 and Nanog in ES cells but not in NPs (Appendix II, Fig. 3b) suggesting that TDG loses affinity to 

these promoters upon heterochromatinization, which may explain why TDG complementation failed 

to rescue the chromatin state of the heterochromatinized Hoxd13 and Hoxa10 promoters in MEFs. 

Na-bisulphite sequencing revealed increased levels of DNA methylation at several promoters of 

genes downregulated in Tdg-/- NPs but not in ES cells (Appendix II, Fig. 3c). Similarly, aberrant histone 

modifications only arose upon in vitro differentiation, evident in a gain of H3K27me3 at the 

promoters of Hoxa10 and Hoxd13 (Appendix II, Supplementary Fig. 8). Taken together, epigenetic 

aberrations in absence of TDG appear to arise only in differentiated cells, suggesting a function of 

TDG in establishing and maintaining epigenetic marks during cell differentiation. 
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To elucidate whether this function of TDG entails downstream BER, we tested for an association of 

key BER factors with these TDG-bound gene promoters. We found a TDG-dependent enrichment of 

XRCC1 and APE1 in MEFs at these genomic regions, whereas XRCC1 appears to bind independent of 

TDG in ES cells (Fig. 4a). Furthermore, we found an induction of chromatin associated XRCC1 foci in 

TDG positive but not in TDG-deficient ES cells that were differentiated for 8 h with retinoic acid (RA) 

(Appendix II, Supplementary Fig. 9). Additionally, Tdg-/- cells exhibited reduced sensitivity to 

inhibition of poly(ADP-ribose) polymerase (PARP) upon differentiation (Appendix II, Supplementary 

Fig. 10), suggesting that differentiation in the presence of TDG induces the formation of single-strand 

DNA breaks the further processing of which requires XRCC1 and PARP. 

Investigating the origin of the imbalance of histone modifications at these promoters, we found that 

the histone acetyltransferase CBP and the H3K4 specific methyltransferase MLL1 are enriched at the 

promoters of genes downregulated in TDG knockout MEFs, and that this association depends on the 

presence of TDG in MEFs but not in ES cells (Appendix II, Fig. 4b). Interestingly, CBP/p300 has been 

shown to interact with TDG and to protect promoters from H3K27 tri-methylation (Tini et al. 2002; 

Pasini et al. 2010). 

In conclusion, our results suggest a dual role of TDG in maintaining an active chromatin state at CGI 

promoters during differentiation: first by structurally coordinating the association of chromatin 

modifiers responsible for establishing and maintaining active histone marks (e.g. MLL1 and 

CBP/p300), second by enzymatically contributing to protection of these CGIs against aberrant 

methylation (Appendix II, Fig. 4c). The induction of DNA single-strand breaks in response to RA 

differentiation in addition to the association of XRCC1 and APE1 with CGI promoters in a TDG-

dependent manner suggests that this latter function entails BER, hinting at a repair mediated DNA 

demethylation process contributing to epigenome stability during cell differentiation. 

 

Contribution: I established immunocytochemical staining of XRCC1 and PCNA (Supplementary 

Fig. 9a), performed imaging of ES cells at 0 and 8 h of RA differentiation and visual assessment of 

XRCC1 foci number in S-phase and non-S-phase cells in 5 independent, blinded experiments 

(Supplementary Fig. 9b). I further assessed XRCC1-foci number in H2O2 treated and mock treated ES 

cells (Supplementary Fig. 9c) and confirmed equal cell cycle profiles of TDG positive and negative ES 

cells after 8 h of RA differentiation (data not shown). Moreover, I established immunostaining of 

H3K4me2, H3K27me3 and H3K9me3, which I performed on ES cells differentiated for 0, 48 and 96 h 

with RA in replicates. The global patterns of these chromatin modifications did not differ between 

TDG-proficient and -deficient cells within this timeframe of differentiation (data not shown). 

For all experiments involving ES cells, I prepared Feeder cells, conditioned the ES cells for an 

undifferentiated state for 3 passages on Feeders and prepared frozen stocks. During the 
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establishment of Na-bisulphite sequencing, I prepared genomic DNA from ES cells at 0, 48 and 96 h of 

RA differentiation and conducted bisulphite conversion. PCR-amplified DNA fragments were cloned 

into bacterial vectors and transformed into E.coli. I prepared plasmid DNA from 117 bacterial clones 

for commercial sequencing. I further prepared total RNA from ES cells differentiated for 48 h with RA 

for gene expression analyses by qRT-PCR (Supplementary Fig. 6c). Finally, in the attempt to 

investigate the mechanism underlying TDG catalyzed DNA demethylation at CGIs, I generated DNA 

substrates for base release assays to test a potential 5-hmC glycosylase activity. We found no activity 

of TDG on 5-hmC (data not shown) which has by now been confirmed by other studies. The 

conversion of 5-hmC to 5-fC and 5-caC  and  TDG’s  glycosylase  activity  on  these bases was reported 

later (He et al. 2011; Ito et al. 2011; Maiti and Drohat 2011). 

 

 

 

4.3. TDG maintains a transitory equilibrium of CpG island methylation and oxidative 

demethylation during cell differentiation (Appendix III) 

 

Our previous efforts to elucidate the biological function of TDG in embryo development has 

implicated TDG in safeguarding CGIs during cell differentiation by coordinating histone modifiers 

responsible for an active chromatin state as well as by counteracting aberrant DNA methylation. 

Recently, TDG has been implicated in a putative DNA demethylation pathway involving the Ten 

Eleven Translocator (TET) family of proteins. TET1-3 convert 5-mC to 5-hydroxymethylcytosine 

(Tahiliani et al. 2009) and further to 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), the latter 

two representing excellent subtrates for TDG (He et al. 2011; Maiti and Drohat 2011). 

To investigate a function of TDG in DNA methylation control, we performed MeDIP in combination 

with next generation sequencing on DNA from TDG positive and negative ES cells, in vitro 

differentiated neuronal progenitors (NPs) and MEFs derived from litter-matched wildtype and TDG 

knockout embryos around E10.5. While we found no differentially methylated regions (DMRs) in ES 

cells, in vitro differentiation gave rise to more than 900 DMRs in NPs, a number that increased about 

40 fold in MEFs, a more advanced stage of differentiation (Appendix III, Fig. 1b). Further 

characterization of the NP DMRs revealed that DMRs with a high CpG density were mostly 

hypomethylated in knockout NPs, whereas CpG poor DMRs were almost exclusively hypermethylated 

(Appendix III, Fig. 1c). Moreover, we wondered whether differential methylation affected regions 

involved in the regulation of gene expression. We found that hypomethylated DMRs were on 
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average localized closer to a TSS and more often associated with promoters (ENSEMBL TSS -1.5 kb 

and +0.5 kb) than hypermethylated DMRs (Appendix III, Fig. 1d and e).  

As we previously proposed a function of TDG in safeguarding CGIs against aberrant DNA methylation, 

we tested whether the NP DMRs overlapped with CGIs. DMRs were indeed significantly enriched for 

CGIs and almost all these CGI DMRs were hypomethylated in the Tdg knockout background 

(Appendix III, Fig. 2a). This finding was counterintuitive given that CGIs are generally considered 

devoid of CpG methylation, demanding explanation. As, in principle, hypomethylation in TDG-

deficient NPs can derive either from a loss of methylation already present at the ES cell stage or from 

a failure to de novo methylate sequences in absence of TDG during differentiation, we intersected 

the hypomethylated CGI DMRs with CGIs that are hypermethylated in wildtype NPs compared to 

wildtype ES cells. Almost all CGI DMRs overlapped with CGIs that are poised for methylation during 

differentiation (Appendix III, Fig. 2b). Thus, hypomethylation of CGIs in Tdg knockout NPs arises 

through a failure to de novo methylate these regions. 

As only a minority of CGIs are differentially methylated across cell types and those that are do not 

necessarily overlap with gene promoters (Illingworth and Bird 2009; Jones 2012), we intersected the 

CGI DMRs with published datasets of histone modifications and DNA binding factors to characterize 

which type of CGI is affected by the absence of TDG. We found that the CGI DMRs were depleted for 

promoters (ENSEMBL TSS -1.5 kb and +0.5 kb), RNA polymerase II, p300 and H3K27ac. On the other 

hand, we found the CGI DMRs to be significantly enriched for TET1 binding sites, H3K4me1, 

H3K27me3 as well as distal regulatory regions that were recently characterized as low methylated 

regions (LMRs) (Stadler et al. 2011). Especially with NP-specific LMRs, i.e. binding sites of 

transcription factors only expressed or active in NPs, we found a striking overlap of 52%. The 

association of hypomethylation in the TDG-deficient NPs with LMRs expanded also to CpG poor 

DMRs, 20% of which were LMRs. Taken together, this characterization revealed that CGI DMRs 

overlap with polycomb targets (H3K27me3) (Kuzmichev et al. 2002) and enhancer regions (LMRs) 

(Stadler et al. 2011) which appear to be in a silent or poised state, enriched for H3K4me1 but not 

p300 or H3K27ac (Creyghton et al. 2010). 

Reduced levels of 5-mC at the CGI DMRs can be explained either by a failure to recruit Dnmt3a and b, 

which were both shown to interact with TDG (Li et al. 2007; Boland and Christman 2008), or by a 

chemical conversion of 5-mC to a derivative that is no longer recognized by the 5-mC antibody used 

for MeDIP. Such a conversion could entail deamination, which would result in a pre-mutagenic  G•T  

mismatch, or TET catalyzed oxidation to 5-hmC and further to 5-fC and 5-caC. Alternatively, 5-hmC 

could   be   deaminated   to   give   rise   to   a   G•5-hmU mismatch. Both deamination-coupled scenarios 

would  result  in  C  → T transition mutations. 
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To test these different hypotheses, we performed hairpin bisulphite sequencing (BS-seq), which 

allows simultaneous assessment of strand-specific methylation and mutation frequency at selected 

targets with  a  sequencing  read  depth  of  ~10’000.  To  be  able  to  distinguish  between  a  structural  and  

a catalytic function of TDG, we performed in vitro differentiation in a complemented cell system 

(Tdg-/- ES cells complemented with wildtype Tdg, catalytically inactive TdgΔcat or the empty 

complementation vector). Analysis of a set of representative CGI DMRs confirmed hypomethylation 

of 5 out of 7 targets in knockout NPs and cells expressing TdgΔcat  (Appendix III, Fig. 3). As the catalytic 

inactive but structurally intact TDG should still be capable of recruiting other factors like Dnmt3a and 

b, it is unlikely that hypomethylation is caused by a failure to direct the de novo methyltransferases 

to these regions during differentiation. Importantly, we did not find any increase in   the   C   → T 

mutation frequency in knockout and TDGΔcat. We thus conclude that 5-mC is not lost due to 

deamination and ultimately mutation of CpGs at these CGIs. 

As the product of TET mediated oxidation, namely 5-hmC, 5-fC and 5-caC are not maintained through 

DNA replication by Dnmt1 (Valinluck and Sowers 2007; Inoue et al. 2011), we performed a short 

(24 h) RA differentiation timecourse to avoid dilution of these 5-mC derivates. Further, to reduce 

epigenetic heterogeneity, we preconditioned the ES cells in 2i medium for 4 passages prior to RA 

differentiation, which, nota bene, reduced the global 5-mC levels by approximately 50% (Appendix III, 

Fig. S2b). By monitoring RNA and protein levels of key factors like TET1 and TET2, but also of 

pluripotency genes and transcription factors silenced or induced by differentiation, we were able to 

confirm equal loss of pluripotency in all three complemented ES cell lines (Appendix III, Fig. S1). It is 

noteworthy that AID RNA levels remained extremely low throughout differentiation and protein 

levels were below the detection limit in Western blot analysis (Appendix III, Fig. S1c). 

 We investigated the global levels of 5-mC, 5-hmC, 5-fC, 5-caC and 5-hmU throughout the 24 hours 

timecourse of RA differentiation and found the levels of 5-mC, 5-fC and 5-caC to rise significantly 

with time in knockout and TDGΔcat but not in wildtype cells (Appendix III, Fig. 4 and S2a). Differential 

5-mC and 5-fC levels between TDG-proficient and -deficient cells thus arose with differentiation. 

5-caC levels were already in the pluripotent state about 9 fold higher in cells lacking TDG activity, 

which is in agreement with previous observations in Tdg knockdown experiments (He et al. 2011). 

We also verified that TDGΔcat retains no activity on 5-caC but found that it binds this substrate with 

higher affinity than C, 5-mC or 5-hmC (Appendix III, Fig. 5b and c). Taken together, our findings 

suggest that differentiation-induced methylation is accompanied by the generation of higher 

oxidized 5-mC derivatives which accumulate in TDG deficient cells. 

To investigate whether the changes observed on the global scale reflect the situation at the CGI 

DMRs, we performed targeted analysis of 5-mC and 5-caC levels. We found the levels of 5-mC and 5-

caC to increase in both, wildtype and TDGΔcat cells but not in absence of TDG. TDGΔcat cells displayed a 
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striking accumulation of 5-caC at the CGI DMRs (Appendix III, Fig. 5a). It thus appears that 

differentiation-induced methylation of the CGI DMRs is accompanied by stepwise oxidation of 5-mC. 

As the overall trajectory of the CGI DMRs points towards methylation in NPs (Appendix III, Fig. 3), the 

generation of not only 5-mC but also 5-caC suggests that 5-caC eventually has to be removed and 

replaced with C, the substrate for Dnmt3a and b. In knockout cells, on the other hand, RA 

differentiation induced neither methylation nor the generation of 5-caC at the CGI DMRs, suggesting 

a structural function of TDG in inducing or maintaining the cycle of cytosine methylation and 

demethylation. 

To further investigate the structural and catalytic contribution of TDG to the cycle of CGI methylation 

and demethylation, we performed chromatin immunoprecipitation (ChIP) to monitor the association 

of TET1, the most highly expressed member of the TET family in ES cells (Appendix III, Fig. S1a and b), 

to the CGI DMRs during differentiation. We found that after incubation with RA, TET1 binds to the 

CGI DMRs with increasing affinity in wildtype cells but loses this affinity with differentiation in 

knockout and, surprisingly, also in TDGΔcat  cells (Appendix III, Fig. 6a and S4). 

As TDGΔcat   is incapable of processing 5-caC but binds this substrate with high affinity, we reasoned 

that TDGΔcat   might bind the accumulating 5-caC at the CGI DMRs and thus destabilize TET1 

association. We therefore performed ChIP to compare the affinity of wildtype and TDGΔcat  to the CGI 

DMRs. Indeed, we found that wildtype TDG is associated with the DMRs only transiently, whereas 

TDGΔcat  accumulated at the CGI DMRs (Appendix III, Fig. 6c and S5). The inability of TDGΔcat   to turn 

over might result in unusual DNA demethylation intermediates after the next round of DNA 

replication, i.e. hemi-caC sites which are no longer a substrate for TET1. 

Taken together, we found that TDG controls the transition of CGI methylation states during cell 

lineage restriction by safeguarding the balance of 5-mC and its oxidized derivatives during a state of 

high epigenetic plasticity. We found that cell differentiation induces a cycle of DNA methylation and 

oxidative demethylation at CGIs associated with polycomb targets and poised enhancers and 

propose that TDG not only contributes catalytically to this cycle by excising the products of TET 

mediated 5-mC oxidation but also structurally coordinates initiation and/or maintenance of the cycle. 

 

Contribution:  I cultured the complemented ES cell lines before and during the 24h RA timecourse, 

checked the cell cycle profile of undifferentiated and differentiated cells by FACS (data not shown), 

prepared genomic DNA, RNA and protein extracts of a 2i control (-16h) and timepoints 0, 4, 8 and 

24 h, and organized and coordinated the LCMSMS analysis of genomic levels of 5-mC derivatives in 

collaboration with researchers from the Hans Krokan laboratory in Trondheim, Norway. Moreover, I 

conducted qRT-PCR and Western Blot analyses for the 24 h timecourse, as well as statistical analysis 

of the LCMSMS, MeDIP, GLIB, caCDIP and ChIP results. Together with A. Wirz, I prepared chromatin 
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and performed TET1- and TDG-ChIP of timepoints 0, 8 and 24 h. I also performed and coordinated 

bioinformatic analyses to characterize NP DMRs with regard to the correlation between methylation 

change and CpG density, proximity to the nearest TSS and overlap with various (epi)genomic 

features. Finally, I wrote the manuscript in Appendix III. 

 

 

 

 

4.4. Supplementary Results 

 

4.4.1. A cell-based assay to measure the epigenetic stability of gene promoters 

 

The finding that mechanisms exist to ensure the epigenetic stability of promoters during cell 

differentiation has raised the need for tools to assess the rate of stochastic epigenetic aberrations. 

To this end I set out to develop a cell-based assay to measure the epigenetic stability of promoters, 

which can be applied in high-throughput screens as well as to analyze stochastic events on a clonal 

basis. 

In a pilot experiment, I explored a fluorescence microscopy-based approach (Meilinger et al. 2009) to 

compare the silencing kinetics of the cytomegalovirus (pCMV) promoter driving mCherry expression 

to the epigenetically more stable chicken actin promoter (pCAG) driving the expression of GFP. Both 

constructs were transiently co-transfected into TDG-proficient and -deficient MEFs and cells were 

imaged for 2, 4, 6 and 8 days after transfection (Fig. 4-01). Both constructs are non-replicating as 

they lack a mammalian origin of replication and, thus, we expect dilution by cell-replication to 

contribute to loss of fluorescence signal.  

Although pCAG is regarded as an epigenetically more stable promoter, we found a rapid loss of GFP 

signal within the first 2-4 days. Furthermore, we observed a faster loss of signal of both constructs in 

TDG knockout compared to wildtype MEFs (Fig. 4-01b), which can be interpreted either as faster 

dilution of the constructs in knockout MEFs or as differential silencing of the constructs in absence of 

TDG.  

The proliferation-rate and also the rate of random integration of the constructs into the genome 

might produce cell-line specific biases, raising the need for a more controlled approach to monitor 

promoter silencing, excluding such artifacts. Moreover, as this simple promoter silencing assay is 

limited in its applications, I designed and generated a construct for stable integration into ES cells 

that allows keeping the promoter of interest under selective pressure and timing its release to 

monitor gradual silencing. The construct, termed plProX, contains two modified Cre recombinase 
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target (lox) sites, lox511 and lox2272, facilitating site-directed, unidirectional exchange of the whole 

cassette. Upstream of lox511, we inserted 8 repeats of the lac operator (lacO) sequence to allow 

targeting of a factor of interest fused to the lac repressor (lacI). Such targeting of TDG has been 

shown to induce DNA demethylation of the targeted sequences (Gregory et al. 2012). Downstream of 

lox2272, we integrated a firefly luciferase reporter gene to allow for simplified expression monitoring 

(Fig. 4-02). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-01: Silencing of transiently transfected fluorescence reporter constructs. a) pCMV mCherry and pCAG 
GFP were co-transfected into TDG wildtype and knockout MEFs. Images were acquired every second day with 
equal settings. b) Medians of 130 - 400 cells per time point and sample. Fluorescence intensities were 
normalized to the respective median at day 4; error bars, s.e.m. of normalized intensities, *, p < 0.01, ***, p < 
0.0001, Mann-Whitney test. 
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     pCAG                     GFP        pCMV                mCherry 
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The Cre-lox exchangeable cassette consists of the promoter of interest, driving expression of the 

puromycin N-acetyltransferase (PuroR) that confers resistance to puromycin. PuroR allows not only 

selecting for stable integration of the construct in the ES cell genome but also for keeping the 

promoter of interest under selective pressure and thus active. PuroR is flanked by flippase (FLP) 

recognition target (FRT) sites which allow removal of PuroR by FLP-FRT recombination. Removing the 

selective pressure mediated by PuroR allows gradual silencing of the promoter of interest which can 

be monitored as transcription of a reporter gene encoding a fusion of GFP with the HSV-1 thymidine 

kinase (TK) downstream of the second FRT site. Expression of GFP allows live cell sorting to attain a 

pure population of cells having gone through FLP-FRT recombination to start the silencing time 

course. Silencing can be monitored as gradual loss of GFP fluorescence by microscopy, as a reduction 

in GFP-positive cells by FACS, by measuring GFP-TK mRNA levels and by selection for silencing with 

ganciclovir for clonal analyses (St Clair et al. 1987).  

 

 
Figure 4-02: Scheme of the plProX construct. FLP-FRT recombination allows removal of PuroR and thus release 
of the selective pressure on promoter 1. Additionally, transcription of a GFP-TK reporter gene is switched on, 
which allows cell sorting for a pure population of GFP-TK expressing cells and subsequent monitoring of 
silencing by fluorescence microscopy, FACS, qRT-PCR and ganciclovir selection. The whole cassette can be 
exchanged by Cre-lox recombination to analyze other promoters of interest. A sequence encoding firefly 
luciferase downstream of lox2272 allows a simplified analysis of gene expression. The line above PuroR or GFP-
TK indicates transcription, ! marks the position of transcription terminator sequences. 
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I generated a first construct with the CMV promoter, which provides sufficient expression levels of 

PuroR for initial selection, and selected for stable integration of the construct into the genome of Tdg 

knockout ES cells in the presence of puromycin. An initial screen of the stable plProX clones was 

performed by PCR on genomic DNA, testing for the presence of lox511 and lox2272 (Fig. 4-03a).  

 

 
Fig. 4-03: Characterization of ES cell clones with stable integration of plProX. a) Initially, presence of the lox 
sites was verified by PCR on genomic DNA with 2 primer pairs each (circled numbers). b) Clones with verified 
lox sites were transiently co-transfected with vectors encoding mCherry and an optimized flippase (FLPo), the 
latter catalyzing the removal of FRT-site flanked PuroR, resulting in the expression of GFP-TK. c) Genomic DNA 
from clones with FLP-activatable GFP-expression was subjected to Southern blot (SB) analysis to test for single-
copy integration of plProX. The hybridization site of the probe is indicated in a. E, EcoRI-, B, BglII-digested DNA. 
 

a) 

b) 

c) 
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Additionally, clones that were verified to contain the construct were co-transfected with a vector 

encoding an optimized FLP recombinase (FLPo) and one encoding mCherry as a transfection control. 

Images were acquired two days after transfection (Fig. 4-03b). Clones that expressed GFP after 

transfection with FLPo were further characterized with regard to copy number of the construct 

integrated into the genome. Genomic DNA was digested either with EcoRI or with BglII, both of 

which cut once within the plProX construct. The DNA fragments containing the construct were 

subsequently detected by Southern blot with a radioactive probe hybridizing to the sequence of 

PuroR (Fig. 4-03a and c). In collaboration with S. Diggelmann, I identified the clones 1d-4 

(characterization not shown), 5d-13, 5d-16 and 5d-31 as containing a single copy, the latter two of 

which yield a robust GFP signal in FACS analysis (data not shown).  

 

 

        
Fig. 4-04: LacO-lacI mediated targeting of mCherry-tagged factors. a) Scheme of targeting to 256 lacO repeats 
in NIH3T3 cells and IPTG-induced dissociation of lacI-tagged TDG. b) lacI-TDG-mCherry transiently expressed in 
NIH3T3. The arrow indicates the position of the lacO array within the cell nucleus, evident as a focus of 
mCherry fluorescence (left panel). After addition of 5 mM Isopropyl-β-D-thiogalactopyranosid (IPTG) to the 
medium, lacI-TDG-mCherry dissociates from the lacO array (right panel). c) Targeting of lacI-AID-mCherry and 
lacI-MLL1 SET-mCherry in NIH3T3. The arrows indicate the focal accumulation of the lacI-fusion protein on the 
lacO array.   
 
 
Further characterization of these clones will entail ganciclovir selection, test for efficient Cre-lox 

recombination and a preliminary characterization of silencing rates. Finally, two independent clones 

will be complemented with a vector containing a Tdg minigene controlled by the authentic Tdg 

promoter and allowing alternative splicing to produce isoforms A and B. For separation of function 

a) 

c) 

TDG b) 
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studies, we also generated a variant of this minigene expressing a catalytic inactive but structurally 

intact isoform of TDG. 

As our system includes the option to target factors of interest to the promoter through lacO lacI 

interaction, we generated constructs encoding AID, the MLL1 SET domain and TDG fused to mCherry 

and lacI. In parallel to establishing the plProX system, we validated targeting and IPTG-induced 

dissociation of the fusion proteins in an availble lacO cell system (Soutoglou et al. 2007) (Fig. 4-04). 

The lacI-fusion constructs can thus be used to address mechanistic questions with the plProX system 

by measuring the effect of the targeted activities on silencing rates or even reactivation of the 

promoter.  

Taken together, the plProX system provides a novel and versatile method to monitor the epigenetic 

stability of gene regulatory sequences and to facilitate high throughput screens as well as the 

isolation and analysis of stochastic silencing events in a cell population, equivalent to the fluctuation 

test available for the assessment of genetic mutation rates.  

 

Methods:  

 

Construction of plProX. Essentially as described in Appendix I. All components were PCR amplified 

with primers containing additional restriction sites, FRT or lox sites where required and inserted into 

EGFP-1 (Clontech). The gene encoding firefly luciferase replaced EGFP and introduced lox2272. The 

CMV  promoter   introduced   lox511,  PuroR   the  5’  FRT  site.  The  GFP-TK   fusion  with  a  5’  FRT  site  was  

assembled in EGFP-N1 and subsequently inserted between PuroR and lox2272. All PCR-amplified 

fragments were verified by sequencing (Microsynth, Switzerland). 

 

Cell culture. All cell lines were incubated at 37°C, 5% CO2 and 100% moisture. ES cells were cultured 

essentially as described in Appendix III. Tdg-/- cells were cultured in ECM with LIF and transfected 

with   1,   2   or   5   μg   of   endotoxin   free   plProX   plasmid   (Qiagen,   Switzerland)   using   jetPEI™   (Polyplus  

Transfections, France). Clones were selected with 1.5 μg/mL  puromycin   for  5-7 days. Single clones 

were constantly cultured with 1 μg/mL   puromycin.   Transfection   of   mCherry-N1 and FlpO was 

performed with jetPEI. 

NIH3T3 cells with lacO repeates (NIH2/4) were cultured in Dulbecco’s   Modified   Eagle’s   Medium  

(DMEM) supplemented with 10% FCS and 2 mM L-glutamine and transfected with lacI-fusion 

constructs   using   jetPEI™.      To reverse targeting of lacI-fusion proteins, culture medium was 

supplemented with 5 mM IPTG. 

 

Extraction of genomic DNA. As described in Appendix III. 
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Validation of lox sites by PCR. Fragments surrounding the lox sites were amplified with Paq5000 

polymerase   in   standard   polymerase   chain   reaction   according   to   the   manufacturer’s  

recommendations. Primer pairs used are listed in Table 4-01. 

 

Southern Blot. 15 μg  genomic  DNA  was  digested  with  5U  EcoRI or BglII per  μg  DNA   for  5  hours   at  

37°C,  then  with  additional  5U  per  μg  DNA  overnight.  DNA  was  purified  by  ethanol  precipitation  and  

resuspended for ~5 h at 55°C shaking at 14000 rpm, followed by separation on a 0.7% agarose gel in 

TBE with 50 V for 8 h.  DNA  was  stained  with  0.3  μg/mL  ethidium  bromide  and  visualized  under  UV.  

DNA was depurinated by incubating the gel in 0.1% HCl for 10 min. The gel was rinsed in ddH2O, 

equilibrated for 10min in 4N NaOH and the DNA transferred overnight to a nylon membrane (Zeta-

probe, BioRad, Switzerland) in 4N NaOH. The membrane was briefly rinsed 3 times in 2x SSC, DNA 

was crosslinked to the membrane by incubation for 2 h at 80°C. The probe detecting the sequence of 

PuroR was PCR   amplified  and   100ng  of   the   purified   PCR  product  was   radiolabelled  with   50μCi   [α-

32P]-dCTPs (Perkin Elmer, Switzerland) using the Fermentas Hexalabel DNA labeling kit (Fermentas, 

Switzerland). Excess nucleotides were removed with the QIAquick Nucleotide Removal Kit (Qiagen, 

Switzerland). The membrane was pre-hybridized in hybridization buffer (0.25M Na2HPO4, pH 7.2, 7% 

SDS) for 15 min - 2 h at 65°C before addition of the probe and incubation overnight at 65°C. 

Subsequently, the membrane was washed at 65°C, three times in Wash Solution I (40 mM Na2HPO4, 

pH 7.2, 5% SDS), twice in Wash Solution II (40 mM Na2HPO4, pH 7.2, 1% SDS), followed by incubation 

for 48 h on a phospho-imager screen in a light-tight cassette and scan with a Typhoon fluorescence 

scanner (GE Healthcare, Switzerland). 

 

Table 4-01: Primers used in clone characterization. 

 Name 5‘-3‘  sequence 

Primer 
pair 1 

pEGFP F CCGTATTACCGCCATGCATTAG 

CMV 5' R GTTATGTAACGCGGAACTCC 

Primer 
pair 2 

TK seq 3 CTG CTG CAA CTT ACC TCC GG 

TK BglII NotI rev CGA GCG GCC GCA GAT CTG GGT CGT CCA CCA GAC CCC 

ACG 

Primer 
pair 3 

Across lox511 fw GGC CTT TTG CTG GCC TTT TGC TC 

Across lox511 rev GTC AAT GGG CGG GGG TCG TTG 

Primer 
pair 4 

Across lox2272 fw CAG GGC TCG CAG CCA ACG TC 

Across lox2272 re CGC GCC CAA CAC CGG CAT AA 

Southern 
Blot probe 

PuroR probe fw ACA TCG AGC GGG TCA CCG AG 

PuroR probe rev CCA TAG AGC CCA CCG CAT CCC 

All primers were obtained from Microsynth, Switzerland. 
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Contribution: I designed and generated the plProX construct and the TDG complementation vectors. 

Furthermore, I selected ES cell clones stably transfected with plProX and performed initial 

characterization by PCR and fluorescence microscopy. Moreover, I supervised the Master project of 

S. Diggelmann who continues characterization of the clones, e.g. by Southern blot. 

 

 

 

 

4.4.2. Generation of 5-caC through inducing oxidative damage in live cells 

 

The TET proteins were found to oxidize 5-mC to 5-hmC and further to 5-fC and 5-caC (Tahiliani et al. 

2009; He et al. 2011; Ito et al. 2011). LCMSMS analysis of global 5-fC and 5-caC levels in Tdg knockout 

and TdgΔcat cells revealed 2-9 fold enrichments compared to wildtype cells, which is in agreement 

with TDG being the primary DNA glycosylase responsible for the excision of 5-fC and 5-caC. However, 

as these higher oxidized 5-mC derivatives are not maintained by Dnmt1 (Valinluck and Sowers 2007; 

Inoue et al. 2011) and, thus, diluted by DNA replication, it is striking that such a high level of 5-fC and 

5-caC accumulate in TDG-deficient cells. We therefore asked whether 5-fC and 5-caC might arise 

spontaneously through non-enzymatic oxidation of 5-hmC and, thus, if oxidative stress might have an 

impact on epigenetic stability. 

We treated Tdg-/- ES cells complemented with wildtype Tdg or TdgΔcat with H2O2 to induce oxidative 

stress and subsequently performed immunofluorescence staining with a specific anti 5-caC antibody. 

Surprisingly, we found 5-caC to localize in distinct foci throughout the nucleus in absence of oxidative 

damage and independent of cell cycle stage, irrespective of the TDG status. These foci did not co-

localizing with focal PCNA during S-phase (Fig. 4-04a), indicating that they do not associate with 

progressing replication forks. As 5-caC localization in ES cells has not been described so far, neither 

by immunofluorescence staining nor by genome wide mapping, it remains to be verified that 5-caC 

indeed clusters in foci. However, 15min of incubation in H2O2 appeared to increase the number of 

foci in a dose dependent manner in wildtype cells but not in TDGΔcat (Fig. 4-04b), suggesting that the 

latter is either refractory to H2O2-induced generation of 5-caC or that the already elevated levels of 

5-caC in TDGΔcat represent a ground state that allows no further induction of 5-caC without erratic 

effects. The wider range of foci numbers observed in TDGΔcat might indicate the latter. 

We next measured the global levels of 5-mC, 5-hmC, 5-fC, 5-caC and - as a control - 8-oxoG by 

LCMSMS. 15min of H2O2 exposure plus 15min of recovery increased the global 8-oxoG levels 

approximately 7 fold in wildtype genomic DNA compared to mock treated cells (Fig. 4-04c). 
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Interestingly, 5-mC levels were decreased and 5-hmC, 5-fC and 5-caC levels were increased by H2O2 in 

wildtype cells, suggesting that the application of oxidative stress indeed oxidized 5-mC to 5-hmC and 

further. However, the H2O2 treatment appeared ineffective in TdgΔcat and knockout cells, as evident 

from the unchanged levels of 8-oxoG. The variable efficacy of the treatment might be caused by the 

instability of H2O2. Surprisingly though, the effect observed in wildtype cells appeared to be reversed 

in TdgΔcat and knockout cells suggesting that the treatment converted 5-hmC, 5-fC and 5-caC in a way 

not detectable in our approach.  

 

 

 
 

Fig. 4-04: Non-enzymatic generation of 5-fC and 5-caC. a) Immunofluorescence staining of 5-caC and PCNA in 
wildtype ES cells mock treated in PBS for 15min. DAPI was used to stain DNA. b) Number of 5-caC foci per cell 
(n=7-12), visually assessed in z-stacks acquired on a confocal microscope (Leica SP5). Floating bars indicate 
median plus range. Statistical analysis by two-way Anova with Bonferroni post-test. ** p<0.001. c) LCMSMS 
quantification of the indicated modified bases in the genome of wildtype (wt), TDGΔcat (Δcat) and knockout (ko) 
cells. Bars indicate number per 106 unmodified bases (A, C, T and G). 
 

a) 

b) c) 
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These results were obtained in a single experiment the reproduction of which failed due to the 

erratic effects of H2O2 on the induction of oxidative damage. Still, my preliminary results indicate that 

higher oxidized 5-mC derivatives could indeed arise non-enzymatically, suggesting that oxidative 

stress, besides inducing genetic mutations, might also destabilize cell programming. The question 

how oxidative damage affects 5-mC and its derivatives thus remains an important one and will have 

to be readdressed in a more robust set-up. Other reagents which are more stable, i.e. menadione, 

might prove more suitable to study the generation of 5-fC and 5-caC under oxidative stress. 

 

Methods: 

 

ES cell culture. Essentially as described in Appendix III. Cells were cultured in 2i medium prior to 

treatment with 100 μM  (if  not  indicated  otherwise)  H2O2 in PBS or just PBS (mock control) for 15 min. 

Cells were left for 15 min in culture medium to recover followed by further processing. 

 

Immunocytochemistry. Essentially as described in Appendix II. Cells were fixed in -20°C cold methanol 

for 5 min on ice and then rehydrated for 2x 15 min in PBS. After permeabilization with 0.2% TritonX-

100/PBS for 5 min on ice, cells were rinsed with PBS and DNA was depurinated with 2 N HCl for 

20 min. Cells were washed with PBS and neutralized by two 10 min washes in 100mM Tris-HCl pH 8. 

After blocking with blocking solution (BS; 2% BSA, 0.05% Tween20, PBS) for 1 h at room temperature, 

cells were incubated with the primary antibodies (anti 5-caC 1:500, Active Motif, Belgium; anti-PCNA 

FITC 1:400, Leinco Technologies, Missouri USA) in BS over night at 4°C. Three 10 min washes with BS 

were followed by incubation with secondary antibody (goat anti rabbit Alexa 594 1:500, Invitrogen – 

Life Technologies Switzerland) in BS for 1 h. After two 10 min washes in BS and one in PBS, DNA was 

stained   with   5   μg/mL   DAPI.   Excess   DAPI   was   removed   by   two   5 min washes in PBS followed by 

mounting in Vectashield (Vector Labs, UK). Z-stacks were acquired on a Leica SP5 with 405 nm, 

488nm and 594 nm laser lines (Leica, Switzerland).  

 

LCMSMS. As described in Appendix III. Conditions for 8-oxo(dG) were as for C-modifications. Mass 

spectrometry detection of 8-oxo(dG) was performed using an MDS Sciex API5000 triple quadrupole 

(Applied Biosystems – Life Technologies, Norway) operating in positive electrospray ionization mode 

for the mass transition 284.1/168.2. 

 

Contribution: I cultured the ES cells and performed the treatment with H2O2. Moreover, I established 

the 5-caC immunofluorescence staining, conducted microscopy-based analysis and visual assessment 
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of 5-caC foci number. I further prepared genomic DNA from treated and mock treated cells for 

LCMSMS analysis. 

 

 

 

 

 

 

4.4.3. Familial loss-of-function TET2 mutation does not correlate with the disease phenotype 

Alexey Veligodskiy1, Franz X. Schaub1, Angelika Jacobs2, Primo Schär2, and Radek C. Skoda1 

 

(Manuscript in preparation) 

 
1 Experimental Hematology, 2 Institute of Biochemistry and Genetics, Department of Biomedicine, 

University Hospital Basel, Basel, Switzerland 

 

 

Members of the TET family of proteins have been implicated in myeloid malignancies. Only recently, 

TET proteins have raised considerable attention in the epigenetics field, owing to the discovery of 

their biochemical activity as iron- and alpha-ketoglutarate- dependent dioxygenases, converting 5-

methylcytosine to 5-hydroxymethylcytosine, and ultimately to 5-formylcytosine and 5-

carboxylcytosine (chapter 2.4.2. and (Tan and Shi 2012)). Whereas TET1 was originally identified as a 

fusion partner of MLL, generated by aberrant chromosomal rearrangements in acute myeloid 

leukemia (AML) (Lorsbach et al. 2003), TET2 mutations have been identified in patients with 

hematological diseases like myeloproliferative neoplasms (MPN), myelodysplastic syndromes and 

AML (Tefferi et al. 2009). Among these mutations are frameshifts, nonsense and missense mutations 

that abolish its catalytic activity. Hence, patients with TET2 mutations display lower overall 5-hmC 

levels and hypermethylation at promoter regions (Ko 2010, Figueroa 2011, Liu X 2013). The impact of 

TET2 inactivation on myeloid malignancies is not yet fully understood although it was proposed to 

promote expansion of mutant progenitor or stem cells in the course of hematopoiesis (Delhommeau 

et al. 2009; Figueroa et al. 2010; Schaub et al. 2010; Swierczek et al. 2011). However, it is unclear 

whether TET2 inactivation is sufficient to cause disease. 

The frameshift mutation TET2-D1858fs was identified as a heterozygous germline mutation in a 

familial case of MPN (Schaub et al. 2010). The frameshift is caused by a deletion of 4 nt that results in 

a stretch of 27 amino acids unrelated to the original sequence before a premature stop-codon. The 
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mutation thus abolishes two out of three amino acid moieties required for binding of Fe(II) ions and 

2-oxoglutarate, namely H1881 and R1896 (Tailiani 2009, Ito 2010). Despite the fact that knockdown 

of TET2 resulted in expansion of progenitor and stem cells in a mouse model (Figueroa et al. 2010), 

two individuals carrying the heterozygous mutation were found to be asymptomatic regarding blood 

counts or reported hematological diseases but displayed decreased levels of 5-hmC in DNA isolated 

from peripheral blood mononuclear cells (Veligodskiy et al, manuscript in preparation). Therefore, 

we tested the catalytic activity of TET2-D1858fs. In addition to the analysis of global 5-hmC levels in 

genomic DNA of HEK293T cells expressing wildtype or mutant TET2 by dot blot (Veligodskiy et al, 

manuscript in preparation), we tested the ability of TET2-D1858fs to induce the generation of 5-hmC 

in HEK293T cells by immunofluorescence staining and confocal microscopy. We found that wildtype 

TET2 readily generated 5-hmC, whereas the naturally low levels of 5-hmC in HEK293T cells remained 

unchanged in cells expressing TET2-D1858fs or a previously described truncated and inactive TET2-

S1848x (Langemeijer et al. 2009) (Fig. 4-05). We conclude that the frameshift mutation D1858fs 

abolished TET2 activity and that the absence of a phenotype in these patients may be explained with 

compensation by the functional copy of TET2. 

In conclusion, we report two cases of a heterozygous germline loss-of-function mutation in TET2 in 

individuals without any symptoms of hematological disease. Whereas the functional copy of TET2 

might be sufficient to suppress a phenotype, 5-hmC levels are decreased in peripheral blood 

mononuclear cells from these individuals (Veligodskiy et al., manuscript in preparation). Also, the 

development of symptoms in members of the same family with haploinsufficiency of TET2 suggests 

an involvement of other, as yet unknown factors. Notably, knockdown of TET2 by 40-80% in murine 

hematopoietic stem cells (which might be comparable with haploinsufficiency) was shown to impair 

differentiation (Figueroa et al. 2010) and mice with targeted deletion of TET2 develop myeloid 

malignancies (Li et al. 2011). 

Taken together, the decrease in 5-hmC levels alone appears to not be sufficient to explain the 

development of symptoms, raising the question whether TET2 is structurally rather than 

enzymatically required for controlling haematopoiesis. A recent study revealed that TET2 targets the 

O-linked  β-N-acetylglucosamine transferase (OGT) to chromatin to modify a serine in H2B (Chen et al. 

2013; Deplus et al. 2013; Vella et al. 2013). As this TET2-OGT complex is potentially involved in the 

regulation of gene expression, it remains to be elucidated whether truncated TET2, i.e. TET2-

D1858fs, is still capable of interacting with and targeting OGT. 

 



61 
 

 
Fig. 4-05: 5-hmC levels in HEK293T cells expressing wildtype and mutant myc-tagged TET2. a) Representative 
confocal images (z-stack projection) acquired 44-48 h after transfection. TET2-S1848x and TET2-D1858fs do not 
generate 5-hmC. b) Scatter plot of log2-transformed average intensities of myc and 5-hmC signals (0 to 255) 
per cell nucleus with linear regression. s, average slope resulting from 3 replicate experiments ± s.e.m.; p-
values of t-test versus wildtype. 
 

 

Methods: 

 

Immunocytochemistry. HEK293T cells were seeded onto sterile coverslips in 12-well plates at 3 x 104 

cells/well one day prior to transfection with expression constructs encoding myc-tagged wildtype 

TET2, D1858fs, S1848x and empty vector (myc only) using JetPEITM (Polyplus Transfections, France) 

a) 

b) 
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according  to  the  manufacturer’s  instructions.  44-48 h post transfection, cells were fixed for 10 min in 

3.7% paraformaldehyde/PBS, washed briefly in PBS and incubated for 5min in pre-chilled methanol 

at -20°C. After 30 min of rehydration in PBS, cells were permeabilized for 30 min in 0.2% TritonX100/ 

PBS, incubated for 15 min in 2 N HCl and neutralized for 10 min in 100mM Tris-HCl pH 8.4. Cells were 

blocked for 1 h at room temperature in 3%BSA, 0.1% Tween 20 in PBS (BS), incubated over night at 

4°C with primary antibodies (mouse anti-myc 9E11, Santa Cruz, rabbit anti-hydroxymethylcytosine, 

Active Motif, Belgium) 1:200 in BS, followed by detection with secondary antibodies (goat anti-rabbit 

Alexa594, goat anti-mouse Alexa488, Invitrogen - Life Technologies, Switzerland) 1:200 in BS for 30-

60 min at room temperature. Nuclei were stained with 5 μg/mL of   4’,6-diamidino-2-phenylindole 

(DAPI) and cover slips were mounted in VectaShield (Vector Labs, UK). Images were collected as z-

stacks on a Leica SP5 confocal microscope (Leica, Switzerland), using the 20x objective for 

quantification and 63x objective for visualization of cellular TET2 and HMC distribution. Four z-stacks 

per sample were acquired with the 405nm, 488nm and 594nm laser lines, and subsequently 

converted to 2D tiff images by maximum intensity projection in ImageJ (http://imagej.nih.gov/ij/) for 

further image analysis. 

 

Image analysis. Image quantification was performed with the CellProfilerTM software 

(www.cellprofiler.org). Cell nuclei were identified in the DAPI images with the 

“IdentifyPrimaryObjects”  module  (between  20  and  80  pixel  units in diameter), with a lower boundary 

of  the  “Otsu  PerObject”  derived  threshold  of  0.05.  Misinterpreted  objects  were  manually   removed  

with   the   “EditObjectsManually”   module.      HMC   and   mycTET2   intensities   were   quantified   in   the  

remaining regions using the “MeasureObjectIntensities”  module.  Average  intensities  per  cell  (ranging  

from 0 to 255) were log2 transformed with a pseudocount of 1 (y=log2(x+1)). The corresponding 

figures were generated in R (www.r-project.org). 

 

 

Contribution: I transfected HEK293T cells with wildtype and mutant myc-tagged TET2. Subsequently, 

I established immunocytochemical co-staining of 5-hmC and myc-tagged TET2, conducted image 

acquisition, automated image analysis with the CellProfiler software (www.cellprofiler.org) and 

statistical analysis with R. 
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4.5. DNA Glycosylases: In DNA Repair and Beyond (Appendix IV) 

 

The integrity of the genome is safeguarded by a number of cellular DNA repair mechanisms that have 

evolved to specifically address different kinds of damage. Single-base lesions caused by oxidation, 

deamination or alkylation are repaired by the Base Excision Repair (BER) pathway which is initiated 

by DNA Glycosylases. These enzymes are capable of detecting base damage that does not distort the 

overall structure of the DNA double helix but is pro-mutagenic  or   cytotoxic  by  disturbing  a  base’s  

Watson-Crick base-pairing properties or interferes with DNA replication. Detection of such small 

irregularities is possible through a mode of action common to all DNA glycosylases: they flip a 

damaged base out of the double helix and into a catalytic site cavity, in which specific interactions 

between the base and key amino acid residues ensure recognition of the damage and alignment of 

the base for hydrolysis of the N-glycosidic bond. 

While all DNA glycosylases share this base-flipping mechanism, they differ in how they scan the DNA 

for base lesions, how such lesions are initially recognized and how excision of a damaged base is 

catalyzed. I performed a comprehensive study of the literature and explored the principles of design 

relating to the function of DNA glycosylases in the recognition of DNA base modifications in the 

context of canonical DNA repair and other processes, e.g. adaptive immunity and DNA demethylation 

(Appendix IV).    
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5 Concluding Discussion and Outlook 

 

Following its discovery as mismatch directed Thymine DNA Glycosylase, studies on TDG function have 

revolved mainly around classical aspects of DNA repair and genome stability. However, recent 

discoveries pointed into a quite different direction, implicating TDG dependent repair processes in 

the maintenance of epigenetic rather than genetic stability. These important discoveries have shaped 

the progress of my PhD thesis, the aims of which was to investigate TDG function both 

mechanistically and biologically.  

TDG has been isolated as interaction partner of many different kinds of proteins. Most often these 

were transcription factors, implicating a contributing of TDG to the regulation of gene expression. 

Besides transcription factors, Dnmt3a and Dnmt3b were also found to interact with TDG, connecting 

the glycosylase with DNA methylation control (Cortazar et al. 2007; Li et al. 2007; Boland and 

Christman 2008). The search for interaction partners with TDG as a bait, however, was much less 

yielding, and produced only a few hits. The strongest interaction partners identified in this way were 

Small Ubiquitin like Modifiers (SUMOs), and it turned out that TDG is indeed covalently modified but 

also non-covalently interacts with SUMOs. Biochemical studies have implicated SUMOylation in 

controlling the dissociation of TDG from its product AP-site (Hardeland et al. 2002; Steinacher and 

Schar 2005; Mohan et al. 2007). To investigate the function of TDG SUMOylation in vivo, I have 

established a Fluorescence Resonance Energy Transfer (FRET) system and was able to show first 

evidence for an involvement of SUMOylation in TDG dependent DNA repair in live cells. Preliminary 

studies of the SUMO-TDG interaction indicated that SUMO1 and SUMO3 might control TDG function 

in distinct contexts, as I was able to shift the balance of covalent and non-covalent SUMO1-binding 

by inducing DNA damage, whereas the SUMO3-interaction remained mostly unaffected. Moreover, I 

found a surprisingly high level of SUMO-TDG interaction already in absence of exogenous DNA 

damaging agents. These studies were based on the classical paradigm that TDG is a bona fide DNA 

repair protein counteracting DNA damage. However, this view has changed with the finding that TDG 

contributes to epigenetic stability. 

In the light of recent findings that TDG is involved in chromatin maintenance and more specifically in 

maintaining a cycle of DNA methylation and demethylation (Appendix II and III), the steady state of 

SUMO-TDG interaction we observed might reflect the contribution of SUMO to regulating TDG-

dependent processes beyond canonical DNA repair. Be it in counteracting DNA damage or in 

safeguarding chromatin states, TDG operates in an intricate framework of enzymatic cascades that 

need to be tightly controlled to ensure efficient substrate processing, handover and dissociation in a 

complex of structural and catatlytic factors. SUMOylation and SUMO-binding are very likely involved 

in regulating these processes and transactions, creating a need for tools to monitor the SUMO-
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interactions of the key players of genome and epigenome maintenance in living cells. Our FRET 

system allows analyzing the SUMO-TDG interaction dynamics not only in response to DNA damage 

but also for instance in the course of ES cell differentiation. By including a SUMOylation deficient 

mutant TDG, we can distinguish between the contribution of SUMO-binding and SUMOylation to 

controlling TDG function in these processes. 

Remarkably, our attempt to generate a FRET system to monitor the conformational changes of TDG 

revealed that part of the cellular TDG pool exists as homodimers. In the context of active DNA 

demethylation, it is tempting to speculate that homodimerization of TDG might inhibit simultaneous 

repair processes on opposing DNA strands. As 5-mC mostly occurs symmetrically on a palindromic 

CpG dinucleotide, mechanisms must have evolved to avoid the simultaneous conversion of both 5-

mCs to a BER-substrate and subsequent generation of two adjacent AP-sites. On the other hand, the 

high affinity of TDG for its product AP-site might already block the access of TET proteins to the 

opposite 5-mC. These hypotheses may be tested in the future by making use of biochemical assays, 

for instance by testing whether pre-incubation of TDGΔcat with a substrate containing 5-caCpG/ 

5-hmCpG inhibits oxidation of 5-hmC to 5-fC/5-caC by TET. Combination with the FRET system using 

purified FRET fusion proteins (single- or double-tagged TDG) would allow testing a) whether 

dimerization depends on DNA and b) whether a potential exclusion of TET from the opposite 5-hmC 

involves TDG dimerization.  

 

Establishing the function of TDG in safeguarding epigenetic transitions, we found that knockout of 

Tdg in mice is embryonic lethal and that CGI promoters acquire aberrant methylation during in vitro 

differentiation in TDG-deficient ES cells. Furthermore, we observed that RA-induced in vitro 

differentiation increases the number of XRCC1 foci and the sensitivity to PARP inhibition in wildtype 

but not in Tdg knockout cells (Appendix II), indicating that single-strand breaks are induced upon 

differentiation in a TDG dependent manner. We found further support for the hypothesis that cell 

differentiation is accompanied by TDG-dependent DNA repair processes when we observed that the 

loss of pluripotency triggers a state of high epigenetic plasticity that is characterized by the 

generation of 5-mC and its higher oxidized derivates 5-fC and 5-caC at CGIs. TDG appears to 

contribute to this cycle of DNA methylation and oxidative demethylation not only enzymatically by 

initiating BER of 5-fC and 5-caC to restore an unmethylated C, but also structurally as we found 

initiation and/or maintenance of the cycle to fail in Tdg knockout cells. Interestingly, TdgΔcat appears 

to structurally support initiation but due to its inability to excise 5-caC fails to maintain the cycle and 

- by binding with high affinity to the accumulating 5-caC at these genomic regions - destabilizes the 

association of TET1. 
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In the absence of TDG, differentiation stimuli might trigger undirected and uncoordinated 

methylation. A failure to assemble the protein complex required to maintain the balance between 

methylation and demethylation might cause the stochastic patterns of hypermethylation we 

observed at CGI promoters in Tdg knockout NPs by pyrosequencing of bisluphite converted genomic 

DNA. In apparent contrast to this finding, genome-wide methylation analysis by MeDIP-seq revealed 

that most differentially methylated CGIs in TDG knockout NPs are hypomethylated. However, 

keeping in mind that MeDIP relies on an antibody for the specific enrichment of 5-mC containing 

DNA fragments and bisulphite sequencing does not distinguish between 5-mC and 5-hmC, it may 

very well be that the aberrant methylation we observed by bisulphite sequencing was in fact an 

accumulation of 5-hmC. Moreover, the fact that this hypermethylation appeared rather mild might 

reflect that 5-fC and 5-caC, which are indistinguishable from C in bisulphite sequencing, accumulate 

rather than 5-hmC at these CGI promoters. As methods for mapping 5-fC and 5-caC are being 

developed (Raiber et al. 2012), it will be possible to analyze the balance between the different C-

modifications on a genome-wide scale. The combination of, for instance, 5-caCDIP with next 

generation sequencing holds the promise of shedding light onto which sites are affected by this 

differentiation induced cycle of DNA methylation and demethylation. Intersecting such data with 

published data sets might reveal 1) what signals are necessary to target the key factors involved to 

these specific sites and 2) what determines the overall trajectory of this cycle towards a methylated 

or an unmethylated state.  

Another question to be addressed is what role TET2 and TET3 play in this cycle. As TET1 is gradually 

downregulated upon differentiation, it is likely that the other members of the TET family take over at 

later stages of differentiation and in terminally differentiated cells, providing altered target 

specificities that might be required in these cells. 

 

To facilitate mechanistic studies into the maintenance of epigenetic stability, I developed a model 

system that allows assessment of the rates of spontaneous epigenetic aberrations by monitoring the 

silencing of gene promoters or other sequences of interest. While the core reporter system is 

established and functional and first experiments in stable TDG proficient and deficient backgrounds 

are pending, pilot experiments with a transient transfection setup studies already indicated that 

differential silencing dynamics between TDG-proficient and -deficient cells can be measured. Besides 

measuring silencing rates, the goal was also to make the tool applicable for analyzing stochastic 

epigenetic aberrations at a clonal level, and for high-throughput screening for factors or even 

chemical compounds affecting the epigenetic stability of gene promoters. Moreover, by faciliating 

the targeting of factors like MLL1, AID, TET1 or TDG to the promoter of interest by lacO-lacI 



67 
 

interaction, we hope to provide a tool for mechanistic investigations into the signals required for 

assembling the complex mediating epigenetic changes. 

 

Epigenetic instability and thus the failure of pathways proof-reading the epigenome is also a hallmark 

of many human cancers. The mechanisms behind this epigenetic instability, especially with regard to 

DNA methylation, are only beginning to be uncovered. For instance, fusions of TET1 with MLL have 

been identified in several patients with acute myeloid leukemia (Lorsbach et al. 2003) and TET2 

mutations have been associated with myeloid malignancies (Tefferi et al. 2009). Future studies will 

have to address if mutation, misregulation or mistargeting of the TET proteins - and TDG for that 

matter - might be involved in carcinogenesis and cancer progression. In a collaboration, we 

addressed the correlation of a heterozygous loss-of-function TET2 mutation found in a familial case 

of MPN with disease phenotype. Strikingly, this mutation was found in family members both with 

and without myeloid disease symptoms, illustrating the complexity of the interlink between disease 

and  the  system  that  maintains  a  “healthy”  epigenome. 

 

In conclusion, our studies have revealed an essential function of TDG in development and more 

particularly as part of the cellular machinery that safeguards and possibly directs epigenetic 

transitions during cell differentiation. In the course of my thesis, I produced data that may guide 

future studies and generated tools that can be exploited in the analyses of the intricate framework of 

factors maintaining epigenome stability, to investigate the dynamic protein-protein interactions 

involved and their effect on promoter stability.  
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Abstract 

 

The Thymine DNA Glycosylase (TDG) initiates Base Excision Repair (BER) of single-base damage, 

preferentially the deamination products of cytosine and 5-mythylcytosine, uracil and thymine, 

respectively. By hydrolyzing the N-glycosidic bond between the damaged base and the deoxyribose, 

TDG produces an abasic (AP) site to which TDG remains firmly attached. We have previously shown 

that modification of TDG with Small Ubiquitin-like Modifiers (SUMOs) facilitates the dissociation of 

TDG from its product AP-site by inducing a conformational change from a closed to an open 

conformation. Since this hypothesis was based solely on biochemical studies, the significance of the 

SUMO-TDG interaction for BER in vivo remains unclear. Here, we present a Fluorescence Resonance 

Energy Transfer (FRET) system that allows monitoring the SUMO-interactions of TDG in living cells, 

and we provide evidence that the interaction dynamics measured by FRET can be altered by inducing 

DNA damage. Furthermore, we established a FRET system for the dimerization of TDG and report 

that part of the cellular TDG pool exists as homodimers. 

 

 

Introduction 

 

The DNA encoding all genetic information is under constant risk of damage by deamination, 

oxidation or alkylation. Most frequently, such chemical modifications concern the DNA bases, which 

are then corrected through the Base Excision repair (BER) system. BER is initiated by DNA 

glycosylases which recognize the damage base in the DNA and flip it out of the DNA double helix into 

a catalytic pocket for hydrolysis of the N-glycosidic bond (Lindahl and Wood 1999). The resulting 

abasic (AP) site is then further processed by an AP endonuclease (APE1) producing a single-strand 

break which is subsequently repaired through short-patch or long-patch BER (Fortini and Dogliotti 

2010).  
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The Thymine DNA Glycosylase (TDG) was first discovered by its ability to excise the deamination 

products of cytosine (C) and 5-methylcytosine (5-mC), uracil and thymine mispaired with guanine, 

respectively, but its substrate spectrum encompasses a broad range of pyrimidine derivates, e.g. 5-

fluorouracil (5-FU) or 5-hydroxymethyluracil (5-hmU) (Cortazar et al. 2007; Jacobs and Schar 2012). 

Recently, 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), the oxidation products of the Ten 

Eleven Translocator (TET) family of 5-mC hydroxylases, have been shown to be efficiently excised 

from DNA by TDG, suggesting an involvement of TDG in the epigenetic regulation of gene expression 

through a putative DNA demethylation pathway (He et al. 2011; Maiti and Drohat 2011). In this 

context, it is noteworthy that among the interaction partners of TDG are not only DNA repair factors 

but  also  transcription  factors   like  the  retinoic  acid  receptor  (RAR)  or  the  estrogen  receptor  α  (ERα)  

and the de novo DNA methyltransferases Dnmt3a and b (Cortazar et al. 2007).  

The search for interaction partners of TDG has revealed an involvement of post-translational 

modification with Small Ubiquitin-like Modifiers (SUMOs) in TDG-initiated BER (Hardeland et al. 

2002). SUMOylation represents a fast and (in most cases) reversible way to regulate protein stability, 

subcellular localization, enzymatic activity or interaction dynamics. The SUMO protein family includes 

three genes in mammals, SUMO1, 2 and 3; the latter two share 97% sequence identity and are often 

referred to as SUMO2/3. While most of the cellular SUMO1 pool appears to be constitutively 

attached to target proteins, SUMO2/3 appear to become conjugated to target proteins primarily as a 

reaction to environmental stress (Saitoh and Hinchey 2000). A fourth gene, encoding SUMO4, is 

present only in the human genome and is expressed mostly in lymph nodes, kidney and spleen 

(Geiss-Friedlander and Melchior 2007). 

SUMO is synthesized as an inactive precursor and processed by a SUMO-specific isopeptidase 

(SENtrin-specific Protease, SENP) to yield a glycine-glycine motif at the C-terminus, which can form 

an isopeptide bond with an acceptor lysine of a target protein. The SUMO proteins are covalently 

attached to their respective target protein in a multi-step process, initiated by a SUMO activating 

enzyme E1 (heterodimer of SAE1/SAE2) which adenylates SUMO, facilitating the formation of a 
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thioester bond with SAE2. SUMO is then transferred to the SUMO-conjugating enzyme (E2) UBC9, 

and further to a lysine residue in the target protein, this last step often but not always being 

mediated by SUMO E3 ligases. The E3 ligase responsible for SUMOylating TDG has so far remained 

elusive. The modification is reversible through the action of SENPs (Geiss-Friedlander and Melchior 

2007). 

A majority of the SUMO-targets appear to be nuclear proteins, many of which are involved in DNA 

replication and transcription or in the regulation of chromosome structure and dynamics, suggesting 

SUMO to be a key player in genome maintenance and stability (Gill 2004). Moreover, knockout of any 

of the non-redundant components of the SUMO conjugation pathway has been reported to be 

embryonic lethal, suggesting a crucial role of SUMOylation in development (Lomeli and Vazquez 

2011). 

Apart from forming covalent bonds, SUMO has been shown to interact non-covalently with proteins 

containing a so-called SUMO Interaction/Binding Motif (SIM or SBM), which consist of a hydrophobic 

core, flanked N- or C-terminally by acidic and/or serine residues (Minty et al. 2000; Song et al. 2004).  

TDG interacts covalently as well as non-covalently with SUMO1 and SUMO2/3 (Hardeland et al. 

2002). The SUMO acceptor lysine K341 (in murine splice-variant TdgA) lies within a C-terminal 

SUMOylation consensus motif (VKEE). Additionally, two SBMs have been identified in TDG, one in the 

N- and one in the C-terminal domain (Mohan et al. 2007).  

Extensive biochemical studies have revealed that SUMOylation induces a conformational change in 

TDG that regulates the dynamics of the initiation of BER (Steinacher and Schar 2005). Upon binding 

to homoduplex DNA, the N-terminal domain of TDG forms a clamp-like structure that allows the 

glycosylase to slide along the DNA in search of a substrate base. When encountering a damaged base 

and flipping it into the catalytic pocket, specific interactions with the opposite guanine in addition to 

the homoduplex DNA-binding activity of the N-terminal domain cooperate to bind TDG firmly to the 

substrate for excision, after which TDG stays firmly bound to the AP-site (Waters et al. 1999; 

Hardeland et al. 2000). SUMOylation of the C-terminus facilitates the dissociation of TDG by opening 
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the clamp-like conformation, thus neutralizing the homoduplex binding activity of the N-terminus 

(Hardeland et al. 2002; Steinacher and Schar 2005). Downstream-acting repair factors like the AP-

endonuclease1 (APE1) and XRCC1 stimulate SUMOylation of TDG, suggesting that AP-site binding 

may serve the purpose of stabilization of these hazardously fragile sites until the BER complex is in 

place for hand-over of the repair intermediate ((Steinacher and Schar 2005) and unpublished data). 

To confirm this function of TDG SUMOylation as well as the conformational switch of TDG between 

an open and a closed form in vivo, we developed a tool for monitoring the SUMO-interactions and 

the conformational changes of murine TDG in live cells. We established a Fluorescence Resonance 

Energy Transfer (FRET) system, which allows measuring the interaction between two proteins by 

fusing one to a donor fluorophore and one to an acceptor fluorophore with a suitable absorption 

spectrum. If the two proteins of interest bring the fluorophores in close proximity (10 to 80 Å) and a 

favorable orientation, an energy quantum is transferred from the donor in its excited state to the 

acceptor fluorophore. The thus excited acceptor emits light in a wavelength beyond the emission 

spectrum of the donor. Here, we report that the inter- and intramolecular interaction dynamics of 

TDG can be measured in vivo by FRET and that the SUMO-interaction dynamics can be altered by 

inducing DNA damage.  

 

 

Materials and Methods 

 

Vector construction 

The FRET constructs were assembled by standard cloning techniques in IRES constructs holding either 

the chicken actin promoter and a Puromycin resistance cassette downstream of the IRES (pCAIp used 

for TDG constructs, the positive control Citrine-Cerulean and Citrine) or the CMV promoter and a 

Hygromycin resistance (pCMIh, analogous to pIREShyg, Clontech, used for SUMO constructs and 

Cerulean). Murine TDG, SUMO and the fluorophores were PCR amplified with adaptor primers 
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holding the required restriction sites. All oligonucleotides used for cloning can be found in 

Supplementary Table 2. A schematic overview of the cloning strategy is shown in Supplementary 

Fig. 1. 

The sequence encoding for the wildtype Tdg (murine splice variant A, mTdgA) or the SUMOylation-

deficient mutant mTdgA K341R (TDG ΔS) was inserted into the EcoRI and BamHI sites of pCAIp, 

introducing additional restriction sites for NheI, BsrGI, XhoI and ClaI. For N-terminal fusion with EGFP 

or Citrine, the respective coding sequence was inserted into the EcoRI and BsrGI sites upstream of 

TDG. C-terminal fusion was accomplished by introducing the fluorophore sequence into the 

downstream XhoI and BamHI sites. The DNA fragment encoding for Cerulean was digested with XbaI 

and NheI and inserted into the NheI site  at  the  5’  end  of  TdgA. For the C-terminal fusion, the coding 

sequence was inserted into the XhoI and ClaI sites 3’  of  TdgA. 

The sequences encoding human SUMO1 and 3 (identical with murine proteins at the amino acid 

level) with a glycine-glycine motif at the C-terminus were PCR-amplified from pCDNA3-HA-SUMO1GG 

or pCDNA3-HA-SUMO3GG (kindly provided by Ron Hay), respectively, and inserted into the EcoRV 

and NotI sites of pCMIh, additionally introducing XhoI, NheI and BsrGI sites. The Cerulean encoding 

sequence was introduced into the XhoI and NheI sites upstream of the SUMO1/3 encoding sequence. 

The FRET positive control vector pCAIp Citrine-Cerulean was derived from a vector encoding double 

tagged TDG (pCAIp Cit-TDG-Ceru), by replacing TDG with a linker sequence encoding 

VQSGGDASGGSSST. The negative controls pCAIp Citrine and pCMIh Cerulean were assembled 

through introduction of the fluorophore sequences into the EcoRI and BamHI sites of the respective 

expression vector. All PCR-amplified fragments were validated by sequencing.  

 

Cell culture and transfection 

All cell lines were incubated at 37°C, 5% CO2 and 100% humidity. Cos7 cells were cultured in 

Dulbecco’s  Modified  Eagle’s  Medium  (DMEM)  supplemented  with  10%  FCS  and  2 mM L-glutamine. 

Murine ES cells were cultivated on feeder cells in DMEM with 15% heat-inactivated FCS, 2mM L-
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glutamine, 1x sodium pyruvate, 1x MEM non-essential amino  acids,  0.1mM  β-mercaptoethanol and 

1000U/mL LIF. Transfections were performed using TransFectin™ (BioRad, Siwtzerland) or   JetPEI™  

(Polyplus Transfection, France) according  to  the  manufacturer’s  manuals. ES cells were transfected 

with TransFectin in suspension after feeder-removal and subsequently plated for further incubation. 

DNA  damage  was  induced  by  adding  30μM  5-FU  or  10μM  BrdU  to  the  culture  medium  followed  by  

24-28h of incubation. 

 

Protein extraction 

Denaturing SDS-extracts were prepared 40-48 h after transfection by adding 100 μL of SDS sample 

buffer (45 mM Tris-HCl pH8, 10% glycerol, 1% SDS, 0.01% bromophenol blue, 50 mM DTT) to one 

35 mm plate, scraping the cells off the surface and transferring the lysate to an Eppendorf tube. The 

samples were heated to 95°C for 10 min and centrifuged at 16’000xg and 4°C for 10 min. 

For native protein extracts, mammalian cells were harvested, washed with PBS and lysed in an 

appropriate volume of NP40 lysis buffer (50 mM sodium phosphate buffer pH8, 125 mM NaCl, 

0.5 mM EDTA pH8, 1% NP40, 1 mM PMSF, 1 mM DTT, 1x Complete EDTA-free Protease Inhibitor 

Cocktail) by vortexing and incubating them on ice for 30 min. To increase cell breakage, samples 

were sonicated 5 times for 20 sec with intervals of 40 sec. After centrifuging at 16’000xg and 4°C for 

20 min, the supernatants were shock-frozen and stored at -80°C. The Bradford Protein Assay (BioRad, 

Switzerland) was used to determine the approximate protein concentration in the cell lysates 

according to the manufacturer’s  instructions. 

 

Denaturing Gel electrophoresis and Western Blotting 

Gels were cast using the Mini-PROTEAN® 3 system (BioRad, Switzerland). For one 0.75 mm minigel, 

5 mL of separating gel were prepared (375 mM Tris-HCl pH8.8, 0.1% SDS, x% Acryl/BisTM 37.5:1, 0.1% 

APS, 0.05% TEMED). To facilitate homogeneous polymerization, the gel solution was overlaid with 2-

propanol. After complete polymerization of the separating gel, the 2-propanol was removed and the 
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stacking gel (125 mM Tris-HCl pH6.8, 0.1% SDS, 0.05% APS, 0.1% TEMED) was cast. 10-15 μL of 

protein samples were loaded in SDS sample buffer (45mM Tris-HCL pH 8, 10% SDS, 0.01% 

bromphenol blue, 50mM DTT) and separated at 30 mA for 1 hour.  

SDS-PAGE separated proteins were transferred onto a nitrocellulose membrane (Schleicher & Schuell 

Bioscience) by the wet-blot technique using the Mini-Transblot system (BioRad, Switzerland). Blotting 

was done at 1 mA per cm2 gel in pre-cooled transfer buffer (25 mM Tris, 192 mM glycine, 20% 

methanol) at 4°C over night. The membrane was blocked with 10% blocking milk in TBS (100 mM 

Tris-HCl pH8, 150 mM NaCl) followed by incubation with the two primary antibodies in 7.5% blocking 

milk in TBS + 0.2% Tween20 (TBST) at 33°C for 1 h (anti-TDG 1:10’000; anti-GFP 1:1’000, Roche 

#11814460001; anti-β-actin 1:10’000, Abcam ab8226). After two rinses in TBST, the membrane was 

washed three times for 10 min in TBST, once at 33°C, twice at room temperature. The fluorescence-

labeled secondary antibodies (goat anti-rabbit IRDye 800CW, LICOR® P/N 926-32211; goat anti-

mouse IRDye 680; LICOR® P/N 926-32220) were diluted 1:5’000 in 5% blocking milk in TBST and 

incubated on the membrane for 30 min, protected from light. After three washes in TBST, the 

membrane was rinsed three times with TBS to remove residual Tween20 and scanned with a LICOR® 

Odyssey scanner (LI-COR, Germany). 

 

Base release assay 

The   heteroduplex   G•T-substrate  was   prepared   by   annealing   the   oligonucleotides   “Subs60uG”   and  

the FITC-labeled “Subs60lT-F” (Supplementary Table 2). The reaction mixture for the base release 

assay contained 1x nicking buffer (50 mM Tris-HCl pH8, 1 mM EDTA, 1 mM DTT, 0.1 mg/mL BSA), 

1 pmol heteroduplex  G•T-substrate and 100 μg NP40 protein extract in a total volume of 50 μL. After 

an overnight incubation at 37°C, the reaction was stopped by adding 10 μg Proteinase K and 

incubating at 37°C for another 30 min. To induce a single-strand break at the product AP-site, 5 μL of 

1 N NaOH was added, the sample was mixed well and heated to 99°C for 10 min. Afterwards, the 
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DNA was precipitated by adding 5 μL 3 M sodium acetate pH5.2, 150 μL of 99% ethanol and 

incubating at -20°C for 2 h. 

After centrifugation at 4°C and 16’000xg for 20 minutes, the supernatant was discarded and the 

pellet washed with 180 μL of 80% ethanol. After another 5 min of centrifugation, the supernatant 

was discarded and the pellet air-dried at room temperature for 5 min. The pellet was finally 

resuspended in 10 μL formamide buffer (90% formamide, 1x TBE), heated to 99°C for 5 min to 

denature the DNA double-strands, and chilled on ice. The cold samples were loaded onto a pre-

warmed and pre-run 15% denaturing DNA gel (2M urea, 500 μL H2O, 1 mL 5x TBE, 1.88 mL 40% PAA 

19:1, 0.05% APS, 7.5 μL TEMED) in pre-warmed buffer. After running the gel at 200 V for 30 min, 

labeled DNA was detected with the blue fluorescence mode of the Typhoon 9400 (GE Healthcare, 

Switzerland) and analyzed by ImageQuant TL software (v7.0 GE Healthcare). 

 

Fluorescent Microscopy and FRET analysis 

Fluorescent images were acquired on a Leica DMI 6000B equipped for live cell imaging with a 

temperature-controlled incubation chamber, using the MetaMorph® software. Cos7 cells transiently 

expressing the FRET constructs were imaged in 3 channels, the CFP- (Cerulean), the YFP- (Citrine) and 

the FRET-channel. The specifications of the filter cubes used for acquisition are listed in 

Supplementary Table 3. Settings were adjusted first roughly on TDG-Citrine and Cerulean-SUMO 

expressing cells and then fine-tuned for each channel to render equal brightness for equal amounts 

of fluorophore using the positive control Citrine-Cerulean. Spectral bleed-through was measured on 

images of cos7 cells expressing either only the donor or only the acceptor fluorophore and calculated 

as BTX=IFRET/IX (I=intensity, X= CFP or YFP) (Xia and Liu 2001). Images were processed in ImageJ using 

the PixFRET plugin (Feige et al. 2005) which calculates FRET values pixel by pixel as FRET= IFRET – 

BTCFP*ICFP – BTYFP*IYFP, normalizes for different intensity levels of the donor and acceptor using the 

formula NFRET= FRET/sqrt(ICFP*IYFP) and visualizes the NFRET value of each pixel in grey scale. As this 

formula normalizes only within certain limits of different intensities, cells exceeding a ratio of 5:1 
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were excluded. NFRET values were measured within a random region in the cell nucleus and 

normalized to the average NFRET of the positive control. All graphs and statistical analyses (Mann-

Whitney T-test) were generated in GraphPad Prism. 

 

 

 

Results 

 

Setup of a FRET system to monitor SUMO1/3 interactions and the conformational switch of TDG 

Biochemical data showed that modification of TDG with SUMO1 or 2/3 induces the dissociation of 

the glycosylase from its product AP-site. Based on these data, we proposed SUMO modification as a 

means to control the hand-over of the fragile AP-site repair intermediate to downstream acting BER 

factors (Hardeland et al. 2002; Steinacher and Schar 2005). To test whether SUMOylation is indeed 

associated with TDG function in the context of DNA repair, we set up a Fluorescence Resonance 

Energy Transfer system to measure the TDG-SUMO-interaction dynamics in live cells (Fig. 1). 

Although crystal structures of SUMOylated TDG were available, they described the core-domain only 

(Baba D et al, 2005 Baba D et al JBC 2006) and therefore, were not suitable to predict an optimal 

placement of the GFP-tag on full-length TDG to achieve the proximity and orientation of the TDG-

fused fluorophore relative to the SUMO-fused fluorophore required for FRET. For this reason, we 

generated constructs for N- and C-terminally Citrine-tagged mouse TdgA (Suppl. Figure 1 A).  

We also wanted to test whether the predicted conformational change TDG undergoes upon binding 

to DNA can be monitored by FRET. For this purpose, we tagged TDG N-terminally with Citrine and C-

terminally with Cerulean. Since in this context a FRET signal could also derive from the formation of 

TDG homodimers, we generated control constructs for Cerulean-tagged TDG in addition to the 

Citrine-TDG fusions described above. All fusion constructs were generated in parallel with a 
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SUMOylation-deficient mutant TdgA K341R (TDG ΔS)   to allow covalent and non-covalent SUMO-

interactions to be distinguished, and with a catalytic-dead mutant TdgA N151A (TDG ∆cat) to allow 

substrate and product AP-site binding to be examined separately. 

The FRET donor, Cerulean, was fused to the flexible N-terminus of SUMO1 and SUMO3 with an HA-

tag as a spacer and additional epitope for antibody detection (Suppl. Figure 1 B). As the C-termini of 

SUMO are engaged in the covalent linkage to target proteins, we refrained from generating C-

terminally tagged SUMO constructs. 

All available FRET constructs are listed in Supplementary Table 1, which also included additional 

control constructs not further described in this study. 

 

Characterization of expression and functionality of the FRET fusion proteins 

To characterize the FRET constructs functionally, we tested whether their transfection into 

mammalian cells resulted in the synthesis of full-length fusion proteins, whether tagged TDG could 

still be modified by endogenous SUMO on one hand and whether tagged SUMO could be covalently 

attached to tagged TDG on the other hand. Protein extracts from transiently transfected cos7 cells 

were subjected to SDS-PAGE and multiplex Western blotting with an anti-GFP (red channel) and an 

anti-TDG antibody (Fig. 2). This revealed that Citrine or Cerulean-tagged TDG (wildtype and mutants) 

were expressed to produce full-length proteins, migrating at approximately 85 kDa (N-terminally 

tagged) or 90 kDa (C-terminally tagged). Notably, the N-terminally tagged TDG fusions were 

consistently expressed at lower levels than the C-terminally tagged ones (Fig. 2B and C). The 

intramolecular FRET constructs (Citrine-TDG-Cerulean) were also expressed in full length, producing 

proteins of approximately 120 kDa (Fig. 2D). 

Western blotting also revealed that tagged TDG  wildtype  and  TDG  Δcat  can  still  be  SUMOylated while 

TDG ΔS  – as expected – is not; N-terminally tagged SUMOylated wildtype and catalytically dead TDG 

migrated at molecular weight of approximately 120 kDa in SDS-PAGE, the C-terminally tagged TDGs 

migrated at approximately 200 kDa, and both these bands were missing in the extracts containing 
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the SUMOylation-deficient TDG (Fig. 2B and C). This also confirms that the fluorophore-tags are not 

SUMOylated and fusion to TDG did not produce a new SUMO acceptor site. The intramolecular FRET 

fusion proteins were also still proficient for SUMOylation, evident from additional bands at 180 kDa 

for  TDG  wildtype  and  TDG  Δcat  but  not  TDG  ΔS  (Fig.  2D). 

The Cerulean tag on SUMO1 does not interfere with the SUMO-conjugation process as is evident 

from the appearance of an additional band running above 250 kDa (Fig. 2E). The fact that in the TDG-

channel both bands, the one corresponding to endogenous SUMO attached to TDG-Citrine and the 

one representing Cerulean-SUMO1 linked to TDG-Citrine, show a similarly strong signal suggests that 

SUMOylation efficiency is not reduced by either of the tags (Suppl. Fig. 2). 

We tested further whether a fluorophore tag on TDG has an effect on its glycosylase activity. To this 

end we utilized a standard base-release assay (Fig. 3A), testing the ability of differently tagged TDG to 

process a 60 bp  substrate  oligomer  containing  a  single  G•T  mismatch. This oligomer was incubated 

with native protein extracts from Tdg knockout embryonic stem (ES) cells transiently expressing 

untagged, N-terminally, C-terminally or double-tagged TDG. Tdg-/- ES cells were chosen as they 

tolerate overexpression of TDG (Y. Saito, personal communication) and to start with a clean TDG 

deficient background. Following incubation of the 60mer substrate with the protein extracts, 

quantification of glycosylase activity utilizes a Fluorescein-tag at the  5’  end  of  the  strand  containing 

the mismatched T: heating under alkaline conditions cleaves the AP-site produced by TDG and 

generates a shorter 23-mer, which can be separated by denaturing PAGE from the uncleaved 

substrate (Fig. 3A and B). 

We calculated the relative efficiency of base excision as the ratio between the percentage of 

processed substrate (Fig. 3B) and the relative TDG protein levels in the same extracts as determined 

by Western blotting (Fig. 3C), both normalized to the levels observed for untagged TDG. For testing 

the glycosylase activity of single-tagged TDG, EGFP-fusion constructs analogous to the Citrine-fusion 

ones were used. The N-terminal tag appears to increase the relative  G•T  processing  efficiency of TDG 

approximately 3 fold (Fig. 3D), possibly by interfering with the non-specific DNA-binding capacity of 
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the N-terminal domain that keeps TDG firmly attached to the AP-site after base excision and, hence, 

prevents enzymatic turnover. This product-inhibition is further decreased by fusing fluorophores to 

both termini of TDG (Citrine-TDG-Cerulean), thus increasing the relative catalytic activity of TDG 5 

times above the level of untagged TDG. It is likely that the double-tagged TDG cannot efficiently 

switch to or remain in the closed clamp-like conformation and so does not stay firmly attached to the 

AP-site. 

From these results we conclude that the C-terminally tagged TDG FRET construct is similar to 

untagged TDG concerning expression and catalytic activity and would thus be the favorable construct 

for FRET experiments monitoring the SUMO-TDG interaction. 

 

Visualization of the SUMO-interaction of TDG 

To test the subcellular localization of the FRET constructs as well as visualizing the interaction of TDG 

with SUMO, we co-transfected cos7 cells with TDG-Citrine and Cerulean-SUMO1 or -SUMO3, as well 

as with controls: TDG-Citrine + Cerulean, Cerulean-SUMO1 or -SUMO3 + Citrine and TDG ΔS-Citrine + 

Cerulean-SUMO1 or -SUMO3. The nuclear localization of wildtype TDG and TDG ∆S was not 

perturbed by the fluorescence tag (Fig. 4, YFP-channel, line 3, 4, 6 and 7), while the free fluorophores 

were distributed equally between the nucleus and the cytoplasm (Fig. 4, CFP-channel, line 1, YFP-

channel, line 2 and 5). The distribution of Cerulean-SUMO1 and 3, with a bias towards nuclear 

localization (Fig. 4, CFP-channel, line 2-7), is in agreement with previously reported 

immunofluorescence stainings of the endogenous SUMO proteins (Saitoh and Hinchey 2000; 

Evdokimov et al. 2008).  

As similar levels of FRET donor and acceptor are essential for accurate FRET measurement and an 

excess of either one of them results in a false positive FRET signal after normalization, microscope 

settings were adjusted using cells expressing a direct fusion of Citrine and Cerulean, which also 

served as a positive control. Images of cells with similar donor and acceptor levels were acquired in 3 

channels: the CFP (Cerulean), the YFP (Citrine) and the FRET channel. The images were processed 
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using the PixFRET ImageJ plugin (Feige et al. 2005) which calculates FRET values pixel per pixel, 

normalized for different intensity levels of donor and acceptor, and visualizes them in grey scale. As 

this formula is only accurate within certain limits of differential intensity levels, cells with a ratio of 

intensities above 5:1 were excluded. The false positive FRET signal deriving from different intensities 

beyond these limits is evident for instance as a cytoplasmic halo in cells expressing the nuclear TDG-

Citrine and the ubiquitously distributed Cerulean (Fig. 4, NFRET, line 1).  

The FRET signal within the nucleus of cells expressing TDG-Citrine and Cerulean-SUMO3 is increased 

1.5 - 2 fold (p<0.0001, Mann-Whitney test) compared to the   highest   “background”   FRET   signal  

observed in control cells, namely those expressing TDG-Citrine and free Cerulean (Fig. 4 and 5B). The 

same applies for the interaction between TDG and SUMO1 (Fig. 4 and 5A). The fact that cells 

expressing  TDG  ΔS  instead  of  the  wildtype  produces  a  FRET  signal  significantly above the background 

(approximately 1.5 fold, p<0.0001, Mann-Whitney test) and in the same range as wildtype TDG 

indicates that our FRET system does not solely measure the covalent but also the non-covalent 

SUMO-interaction of TDG. TDG ΔS  therefore  functions  as  a  control  to  estimate  which  changes  in  the  

FRET signal derive from covalent and which derive from non-covalent SUMO-interactions. 

 

Induction of DNA damage alters the TDG-SUMO interaction dynamics measured by FRET  

It is noteworthy that a significant part of the cellular TDG pool appears to interact with SUMO1 and 3 

without the presence of DNA damaging agents. To test the hypothesis that SUMOylation of TDG is 

involved in regulating processes during DNA repair, in particular the dissociation of TDG from the 

abasic site, we treated the cells with the base analog 5-FU which, incorporated into the DNA, 

represents a lesion addressed by TDG (Hardeland et al. 2003; Morgan et al. 2007). We have 

previously reported that TDG contributes to the cytotoxic effect of 5-FU by a delayed repair of the 

AP-site after excision of 5-FU from 5-FU•A  mismatches,  possibly  through  a  saturation  of  the  SUMO  

system (Kunz et al. 2009).  
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We treated cells with 30 μM  5-FU and measured the SUMO1- and SUMO3-interactions of TDG. The 

FRET signal observed with wildtype TDG, reflecting the compound signal produced by covalent and 

non-covalent SUMO1-interactions, remained unchanged after treatment with 5-FU. Yet, the FRET 

signal of SUMO1 and TDG  ∆S was significantly decreased in 5-FU-treated cells by approximately one 

third (p<0.0001, Mann-Whitney test) (Fig. 5A), possibly reflecting a previously reported effect that 

DNA associated TDG fails to engage in non-covalent SUMO-interactions (Mohan et al. 2007; Smet-

Nocca et al. 2011).  As 5-FU treatment appears to reduce SUMO1-binding but the FRET signal derived 

from the sum of SUMO1-binding plus SUMO1-modification of wildtype TDG remains unchanged, we 

conclude that SUMO1-modification of TDG is stimulated by the treatment. 

In contrast to SUMO1, SUMO3 shows a significantly higher FRET signal (by approximately 20%, 

p<0.001, Mann-Whitney test) produced by SUMO3 with wildtype TDG compared to SUMO3 with 

TDG ∆S in untreated cells. This suggests that at least 1/5 of the signal observed with wildtype TDG 

represents SUMO3-modified protein. Thus it appears that TDG is preferentially modified by SUMO3 

rather than by SUMO1 in unchallenged cells (Fig. 5B). Treatment with 5-FU, however, does not alter 

the FRET efficiency significantly although we observed certain small trends: the signal derived from 

wildtype TDG and SUMO3 seems to be slightly reduced whereas the one   derived  with   TDG  ∆S is 

mildly increased. 

Taken together, it appears that the interaction of TDG with SUMO1 and SUMO3 occur in the context 

of different processes as SUMO1-binding is influenced by the induction of DNA damage while 

SUMO3-binding remains mostly unaffected at least under the conditions used in this study.  

 

Part of the cellular TDG pool exists as a homodimer 

We fused TDG N- and C-terminally to Citrine and Cerulean with the aim to monitor the 

conformational switch TDG undergoes upon binding to homoduplex DNA. Since there is biochemical 

evidence that suggests the formation of TDG homodimers (Roland Steinacher, personal 

communication), we included single-tagged TDG-donor- and -acceptor fusions as dimerization 
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controls to distinguish between FRET deriving from intramolecular or from intermolecular 

interactions. We found that TDG-Citrine and TDG-Cerulean generated a significant FRET signal, 

similar to but surpassing Citrine-TDG and TDG-Cerulean. Double-tagged TDG produced an even 

higher FRET signal, which   was   significantly   increased   in   TDG   ∆S (Fig. 6).   Assuming   that   TDG   ∆S  

remains longer in the closed conformation, this increase suggests that at least part of the FRET signal 

derives from the conformational switch bringing the donor and acceptor fluorophores closer 

together, although it remains unclear whether this involves one or two TDG proteins.  

Still, the majority of the FRET signal appears to be generated through dimerization of TDG, evident 

from the FRET signal produced by two single-tagged TDG fusion proteins, which is enhanced 

approximately 2-fold by addition of a second fluorophore tag. Moreover, as the two tags appear to 

weaken non-specific DNA interactions of TDG (homoduplex DNA binding), accelerating enzymatic 

turnover of TDG (Fig. 3D), it is likely that the conformational switch is not induced efficiently upon 

DNA binding. We therefore conclude, that this system does not allow a precise quantitative 

monitoring of the conformational switch of TDG as the fluorophore tags may interfere with the 

efficient formation of a clamp-like closed conformation, but we provide the first in vivo evidence of 

TDG homodimerization. Whether this is mediated by DNA remains to be tested. 

 

 

Discussion 

 

TDG operates in the BER pathway which excises and replaces damaged bases that are continuously 

generated in the DNA. For BER to be beneficial for cells, it requires a tight regulation of protein 

complex assembly, of hand-over of potentially hazardous repair intermediates and of the dissociation 

of the factors involved. Post-translational modification with SUMO, in addition to non-covalent 

SUMO-binding of key proteins such as TDG, is likely to function as a platform for protein-protein 
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interactions and as a regulatory switch to control the interplay of proteins and DNA in these 

processes (Geiss-Friedlander and Melchior 2007 ). 

We present a FRET system to monitor the SUMO-interaction dynamics of TDG in living cells, which 

produces a robust FRET signal in cos7 cells (Fig. 4). By including a SUMOylation-deficient mutant TDG, 

our system allows to distinguish between covalent and non-covalent SUMO-binding and, thus, to 

draw conclusions about the dynamics of SUMO modification and interaction of TDG. 

Interestingly, a considerable proportion of the cellular TDG pool appears to interact with SUMO1 and 

SUMO3 non-covalently (TDG   ∆S   in   Fig. 4 and 5). Little is known about the function of the non-

covalent interaction between TDG and SUMO, although it has been found to be essential for its role 

as a co-activator of CBP/p300 and for its translocation to and/or from PML bodies (Takahashi et al. 

2005; Mohan et al. 2007). Examples of other factors harboring an SBM suggest that TDG might 

interact with SUMOylated proteins through its SBM. The transcriptional repressor Daxx, for example, 

was shown to interact with SUMO covalently and non-covalently. The SBM of Daxx is essential for its 

repressor function as it mediates the interaction with other SUMOylated factors (Lin et al. 2004; Kuo 

et al. 2005; Lin et al. 2006). If a similar scenario applies for TDG, its interaction with SUMO-

conjugated proteins might mediate the assembly of downstream acting BER factors, which is then 

followed by SUMOylation of TDG and its release from the AP-site. This hypothesis is supported by 

proteomics approaches that revealed several BER factors to be target of SUMO modification, e.g. 

XRCC1, DNA Ligase III and PARP1 (Gocke et al. 2005; Bruderer et al. 2011). Moreover, non-denaturing 

pull-down of protein complexes with SUMOylated subunits also revealed Polβ, which fills the 

nucleotide gap in the final steps of BER, to be associated with SUMOylated proteins without being a 

target of modification itself (Bruderer et al. 2011). 

Although we can measure solely non-covalent SUMO-binding with our FRET system by using TDG ∆S, 

it is unclear whether the interaction occurs with free or with conjugated SUMO. To provide a means 

to distinguish these two possibilities in the future, we generated a Citrine-tagged mutant SUMO1, in 

which we replaced the C-terminal Gly-Gly motif with Ala-Ala, thus abolishing conjugation capacity. 
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By inducing DNA damage, we were able to alter the interaction dynamics between TDG and SUMO1 

but not with SUMO3. Interestingly, SUMO1 was reported to exist almost exclusively in the 

conjugated form, whereas SUMO2/3 conjugation appears to occur mainly in response to stress 

(Geiss-Friedlander and Melchior 2007). We found 5-FU to boost SUMO1-conjugation but decreases 

non-covalent SUMO1-binding (Fig. 5a). This shift towards SUMOylation can be explained by the 

highly efficient processing of 5-FU by TDG. TDG would repeatedly bind a substrate 5-FU•G of 5-FU•A, 

immediately excise 5-FU and get SUMOylated to dissociate from the abasic site (Hardeland et al. 

2003). The decrease in non-covalent SUMO-binding hints at the disassembly of complexes (involving 

either free or conjugated SUMO) and/or an increased engagement of TDG in DNA repair which shifts 

the balance of covalent and non-covalent interaction towards the covalent modification. 

Furthermore, dissolving any non-covalent SUMO-interactions is necessary to allow DNA-binding, as 

these two were shown to be mutually exclusive (Smet-Nocca et al. 2011).  

The fact that the SUMO3-interaction of TDG remains mostly unaffected by the incorporation of 5-FU 

into the DNA (Fig. 5b) suggests that the interaction with this SUMO variant may be involved in 

another pathway. Given the recent findings that TDG may be involved in processes other than 

classical DNA repair, e.g. the maintenance of epigenetic stability of CpG islands (reviewed in (Jacobs 

and Schar 2012)), it is likely that SUMO in general and the SUMOylation of TDG in particular play an 

essential role in regulating the interactions and conformational changes needed in these epigenetic 

pathways. SUMO1 and SUMO3 may play distinct roles in assembling different TDG-associated 

complexes, and our FRET system provides a tool to elucidate their functions as it allows monitoring 

these interactions under various conditions in live cells.  

We also designed the TDG-FRET system to monitor the predicted conformational switch of TDG from 

an open to a closed form upon DNA interaction. These attempts, however, were complicated by the 

fact that the N- and C-terminal fluorophore tags needed for FRET appeared to interfere with the 

formation of the predicted clamp-like configuration, as inferred from an increased relative efficiency 

of the double-tagged TDG in G•T  mismatch  processing (Fig. 3d).  
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However, data we obtained from pilot FRET analyses with these double-tagged fusion proteins 

provide evidence that TDG may form homodimeric complexes in living cells (Fig. 6): The dimerization 

controls included to distinguish between intra- and intermolecular FRET showed clearly that TDG 

interacts with itself in vivo (Fig. 6). The biological function of this interaction may be further 

stabilization of the fragile AP-site and its direct vicinity (discussed below). 

Whether this interaction really involves only two TDG proteins or more and if the orientation of TDG 

within these dimers is parallel or anti-parallel is not clear. If DNA-binding mediates this interaction, it 

is possible that the termini of two TDG molecules in a closed conformation bring the donor and 

acceptor fluorophores in a suitable proximity and orientation for FRET. A published crystal structure 

of DNA-bound TDG indeed suggests that TDG homodimers might assemble on DNA (Maiti et al. 2008; 

Morgan et al. 2011). 

Further studies are necessary to test whether DNA- and SUMO-binding are involved in TDG 

dimerization and what the biological function of this interaction is. Assuming for example the binding 

of a second TDG opposite an AP-site-bound TDG, such an interaction might support stabilization of 

this fragile site, possibly by interfering with repair processes addressing damage in the opposing 

strand. Such a function of TDG dimerization appears plausible in the light of recent findings 

implicating TDG in active DNA demethylation (He et al. 2011; Maiti and Drohat 2011). Methylated 

cytosine 5-mC occurs (in most cases) symmetrically in palindromic CpG dinucleotides. During BER-

coupled DNA demethylation, mechanisms must be in place to inhibit simultaneous generation of AP-

sites as demethylation intermediates on both strands. The generation of a second AP-site in the 

opposing strand would inevitably result in the formation of a double-strand break which would have 

to be avoided at all costs. Other repair pathways, i.e. long-patch BER, nucleotide excision and 

mismatch repair, involve the degradation of a whole stretch of single-strand containing a mismatch 

or lesion, which would also have to be avoided vis-à-vis an ongoing BER process. It is thus likely that 

mechanisms evolved to avoid the clash of two repair events on opposing strands, and these might 

include the SUMO coordinated binding and release of repair proteins to and from the DNA. 
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In conclusion, our FRET system provides a powerful tool to investigate the dynamic SUMO- and auto-

interactions of TDG in DNA repair and other processes, i.e. DNA demethylation and maintenance of 

epigenetic stability. 
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Figure Legends 

 

Fig. 1: Measuring SUMO interactions and conformational changes of TDG in the process of base 
excision by FRET. A: Structure-function model of TDG action. In the open and unmodified form, TDG 
has a high affinity for DNA, facilitating the search for and binding of a substrate base. Upon binding 
to double-stranded DNA, TDG undergoes a conformational change involving the N-terminal domain, 
switching to a closed form. Upon excision of the substrate base, involving the catalytically essential 
N141 (N), TDG stays firmly bound to the abasic site. SUMOylation of K341 (K) facilitates dissociation 
of TDG by switching it back to an open form, thus reducing its affinity to DNA. Fusion of TDG with 
Citrine and SUMO with Cerulean allows for measuring their interaction following base-release, since 
SUMOylation of TDG brings the two fluorophores in the required proximity for FRET. B: Rationale of 
the intramolecular FRET approach; fusing TDG N- and C-terminally to Citrine and Cerulean 
respectively will allow measuring intramolecular FRET if the N- and the C-terminus of the closed form 
bring the donor and acceptor fluorophore in a suitable proximity for the energy transfer. 

 

Fig. 2: Analysis of expression of the FRET constructs and SUMOylation efficiency.  SDS-extracts of 
cos7 cells transiently expressing the indicated constructs were separated by SDS-PAGE, blotted and 
probed with anti-GFP (red channel) and anti-TDG (green channel) antibodies. Shown are overlays of 
both channels. A: Schematic overview of the constructs. B and C: Test for full-length expression and 
SUMOylation of Citrine- or Cerulean-tagged TDG, comparison of N- and C-terminally tagged TDG, C: 
test for full-length expression of double-tagged TDG (Citrine-TDG-Cerulean), D: test for full-length 
expression and ability of HA- and Cerulean-tagged SUMO1 to modify Citrine-tagged TDG; numbers 
represent molecular weight in kDa; the asterisk indicates a truncated peptide recognized by the anti-
GFP antibody. 

 

Fig. 3: Glycosylase activity of the wildtype TDG-fluorophore fusion proteins. Shown are the results 
of a base-release assay (Hardeland et al. 2000) with native whole cell extracts of murine ES cells 
transiently expressing the fusion constructs. A: Schematic overview of the base-release assay. A 60-
mer G•T-heteroduplex DNA substrate (green star, Fluorescein-label) was incubated with cell extract. 
Functional TDG excises the T from the G•T mismatch. The resulting AP-site was cleaved by heating 
under alkaline conditions, inducing β-δ-elimination. The nicked substrate DNA strand was separated 
from the unprocessed oligomeres by denaturing PAGE. The Fluorescein-labelled DNA was detected 
by fluorescence scanning. B: Results of the base-release assay; TDG activity is indicated by a 
shortened DNA substrate strand (23 nt). Depending   on   the   3’   moiety   (OH   or   P),   the   shortened  
substrate DNA strands migrate slightly differently, giving rise to a double band. Overexpressed TDGB 
was used as positive control; negative control, no extract; Cit, Citrine; Ceru, Cerulean; mock 
transfected, without DNA; C: Western blot of native ES cell extracts to estimate relative expression 
level; green channel anti-TDG (upper), red channel anti-β-actin (lower). The asterisk indicates 
SUMOylated TDG. D: quantification of the relative catalytic activity of the wildtype TDG-fluorophore 
fusion   proteins  on   a  G•T-substrate, calculated as the ratio between relative amount of processed 
substrate and relative expression level, both normalized to the values of untagged TDG. 



Appendix I 
 

- 23 - 
 

 

Fig. 4: Normalized FRET images of cos7 cells transiently expressing the indicated FRET constructs. 
Images of cells with similar expression levels were analysed with the PixFRET plugin for ImageJ, 
calculating normalized FRET values pixel by pixel, visualizing them in grey scale. An imbalance of 
donor and acceptor expression causes a false positive FRET signal; the halo in the cell expressing 
TDG-Citrine and Cerulean (upper row) is caused by TDG being restricted to the nucleus while 
Cerulean is ubiquitously distributed.  

 

Fig. 5: FRET analysis of the SUMO1 and 3-interactions of TDG upon induction of DNA damage. Cos7 
cells were transiently transfected with the indicated constructs. A: Cells were incubated with 30 μM 
5-FU for 24 h prior to FRET analysis, n=26-37. B: as A, n=33–99. Relative NFRET, percent of the 
average of the positive control, each dot representing one cell. **, p < 0.005, ***, p < 0.0001, Mann-
Whitney test. 

 

Fig. 6: The majority of the FRET signal of double-tagged TDG derives from homodimer formation. 
cos7 cells were transiently transfected with the indicated constructs. n=34-39. Relative NFRET, 
percent of the average of the positive control, each dot representing one cell. ***, p < 0.0001, Mann-
Whitney test. 
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FIGURES 

 

 

 

 

Figure 1: Measuring SUMO interactions and conformational changes of TDG in the process of base 
excision by FRET.  
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Fig. 2: Analysis of expression of the FRET constructs and SUMOylation efficiency.   
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Fig. 3: Glycosylase activity of the wildtype TDG-fluorophore fusion proteins.  
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Fig. 4: Normalized FRET images of cos7 cells transiently expressing the indicated FRET constructs.  
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Fig. 5: FRET analysis of the SUMO1 and 3-interactions of TDG upon induction of DNA damage.  

 

 

 

Fig. 6: The majority of the FRET signal of double-tagged TDG derives from homodimer formation.  

  

B A SUMO1 SUMO3 



Appendix I 
 

- 29 - 
 

 

Supplementary Material 

 

 

 

Measuring the SUMO-Interaction Dynamics of the Thymine DNA Glycosylase 

by Fluorescence Resonance Energy Transfer 

 

Angelika L. Jacobs, David Schürmann, Yusuke Saito, Primo Schär* 

 

 

 

Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland 

*To whom correspondence should be addressed: E-mail primo.schaer@unibas.ch; Tel. +41 61 267 

3561; Fax: +41 61 267 3566 

  



Appendix I 
 

- 30 - 
 

A 

Supplementary Figures 
 

 

 

 

 

 

 

 

 

 

 

Suppl. Figure 1: Cloning strategy for the TDG- and SUMO-fluorophore fusion constructs. A: 
TdgA (wildtype,  ∆cat,  ∆S) was digested with the indicated restriction enzymes and inserted into the 
mammalian expression vector pCAIp, containing an internal ribosome entry site (IRES), a eukaryotic 
Puromycin and a prokaryotic Ampicillin resistance cassette (PuroR and AmpR), as well as the chicken 
actin promoter (PCAG). In a second step, the DNA fragments coding for the fluorophores (left panel: 
XFP = EGFP and Citrine; right panel: Ceru = Cerulean) were digested and inserted into the vector via 
the indicated restriction sites. The linker between TDG and the N-terminal tag codes for the amino 
acids NVQST for XFP, for ASSVQST for Ceru. The linker between TDG and the C-terminal tag codes 
for SSSRLEFA for XFP, for SSSST for Cerulean. The original amino acid sequence of TDG was 
extended by four serine residues, the first three of which are part of the spacer between TDG and the 
C-terminal tag. B: The PCR-amplified SUMO1 and SUMO3 genes were inserted into the expression 
vector pCMIh, containing an internal ribosome entry site (IRES), a eukaryotic Hygromycin and a 
prokaryotic Ampicillin resistance cassette (HptII and AmpR), as well as the cytomegalovirus promoter 
(PCMV). In a second step, the DNA fragments coding for the fluorophores (XFP = EGFP and Citrine, 
Ceru = Cerulean) were inserted into the vector via the indicated restriction sites. The linker between 
XFP and SUMO codes for the amino acids NVQT, between Cerulean and SUMO1 for ASSVQT. 
Asterisks indicate the position of the stop codons.  
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Suppl. Figure 2: Modification of Citrine-tagged TDG with Cerulean-SUMO1 is not hindered by either 
of the fluorophore tags. SDS-extracts of cos7 cells transiently expressing the indicated constructs 
were separated by SDS-PAGE, blotted and probed with anti-GFP (red channel) and anti-TDG (green 
channel) antibodies. HA- and Cerulean-tagged SUMO1 can modify Citrine-tagged TDG with an 
efficiency equal to that of endogenous SUMO; numbers represent molecular weight in kDa. 
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Supplementary Tables 

 

Supplementary Table 1: Constructs generated in this study 

  
N-terminal C-terminal Promoter Selection Name 

controls 
Citrine-Cerulean pCAG Puromycin pCAIp Cit-Ceru 
Citrine pCAG Puromycin pCAIp Cit 
Cerulean CMV Hygromycin pCMIh Ceru 

TDG 

TDG wt Citrine - pCAG Puromycin pCAIp Cit-TDG wt 
TDG wt - Citrine pCAG Puromycin pCAIp TDG wt-Cit 
TDG wt Citrine Cerulean pCAG Puromycin pCAIp Cit-TDG wt-Ceru 
TDG wt Cerulean - pCAG Puromycin pCAIp Ceru-TDG wt 
TDG wt - Cerulean pCAG Puromycin pCAIp TDG wt-Ceru 
TDG wt EGFP - pCAG Puromycin pCAIp GFP-TDG wt 
TDG wt - EGFP pCAG Puromycin pCAIp TDG wt-GFP 
TDG K341R Citrine - pCAG Puromycin pCAIp Cit-TDG  ∆S 
TDG K341R - Citrine pCAG Puromycin pCAIp  TDG  ∆S-Cit 
TDG K341R Citrine Cerulean pCAG Puromycin pCAIp Cit-TDG  ∆S-Ceru 
TDG K341R Cerulean - pCAG Puromycin pCAIp Ceru-TDG  ∆S 
TDG K341R - Cerulean pCAG Puromycin pCAIp  TDG  ∆S-Ceru 
TDG K341R EGFP - pCAG Puromycin pCAIp GFP-TDG  ∆S 
TDG K341R - EGFP pCAG Puromycin pCAIp  TDG  ∆S-GFP 
TDG N141A Citrine - pCAG Puromycin pCAIp Cit-TDG  ∆cat 
TDG N141A - Citrine pCAG Puromycin pCAIp  TDG  ∆cat-Cit 
TDG N141A Citrine Cerulean pCAG Puromycin pCAIp Cit-TDG  ∆cat-Ceru 
TDG N141A Cerulean - pCAG Puromycin pCAIp Ceru-TDG  ∆cat 
TDG N141A - Cerulean pCAG Puromycin pCAIp  TDG  ∆cat-Ceru 
TDG N141A EGFP - pCAG Puromycin pCAIp GFP-TDG  ∆cat 
TDG N141A - EGFP pCAG Puromycin pCAIp  TDG  ∆cat-GFP 

SUMO 

SUMO1 Cerulean-HA - pCMV Hygromycin pCMIh Ceru-SUMO1-GG 
SUMO1 Citrine-HA - pCMV Hygromycin pCMIh Cit-SUMO1-GG 
SUMO1 EGFP-HA - pCMV Hygromycin pCMIh EGFP-SUMO1-GG 
SUMO1-AA Citrine-HA - pCMV Hygromycin pCMIh Cit-SUMO1-AA 
SUMO3 Cerulean-HA - pCMV Hygromycin pCMIh Ceru-SUMO3-GG 
SUMO3 Cit-HA - pCMV Hygromycin pCMIh Cit-SUMO3-GG 
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Supplementary Table 2: Oligonucleotides* 

Name Use Sequence 5'--> 3' 
Ceru fw X X +K PCR of Cerulean GCGCTCTAGACTCGAGCACCATGGTGAGCAAGGGCGA 

GGAGC 
Ceru rev N*C PCR of Cerulean CGCATCGATGTTAGCTAGCCTTATACAGCTCGTCCATGC 

CGAGAGTGA 
EGFP fw X E +K PCR of EGFP and Citrine GCGCGCTCGAGGCTCGAATTCGCCATGGTGAGCAAGGG 

CGAGGAGC 
EGFP rev B*B PCR of EGFP and Citrine GCGCGGATCCATGCATCTATTGTACATTGTATAGCTCGT 

CCATGCCGAGAGTGATC 
HA fw XhoNheBsrGI PCR of HA-SUMO1 and 3 ATCCTCGAGTAGCTAGCAGTGTACAGACCATGGCTTCAT 

ATCCTTACG 
Linker B N X fw Spacer for Cit-Ceru GTACAGAGCGGTGGCAATGCATCAGGAGGTAGC 
Linker B N X rev Spacer for Cit-Ceru TCGAGCTACCTCCTGATGCATTGCCACCGCTCT 
mTDGa fw E N B +K PCR of mTdgA CGCGAATTCTAGCTAGCAGTGTACAGAGCACCATGGAC 

GCAGAGGCCGC 
mTDGa rev X*C B PCR of mTdgA CGCGGATCCATCGATTAGCTCGAGCTAGAAGCGTGGCT 

CTCTTCTTCCTG 
SP6 PCR of HA-SUMO1 and 3 TGAATTTAGGTGACACTATAG 
SUMO1AA rev*N PCR of HA-SUMO1-AA GCGTATCAGCGGCCGCCTAAGCCGCCGTTTGTTCCTGATAAAC 

Subs60lT-F Base release assay CGGAATTCGTCTAGGTTTGAGGTTGACATCGGATCCATG 
GTACCTCGAGGGCAATGTCTA 

Subs60uG Base release assay TAGACATTGCCCTCGAGGTACCATGGATCCGATGTCGAC 
CTCAAACCTAGACGAATTCCG 

 

  

*all oligonucleotides were provided by Microsynth AG, Switzerland 

 

Supplementary Table 3: Filter cube* specifications for fluorescent microscopy 

Name Excitation band Excitation filter Dichroic mirror Emission band Emission filter 
Dapi 325-375 nm 350/50 400 435-485 nm 460/50 
GFP 450-490 nm 470/40 495 500-550 nm 525/50 
CFP 418-442 nm 430/24 455 458-482 nm 470/24 
YFP 510-530 nm 500/20 515 520-550 nm 535/30 
FRET 418-442 nm 430/24 455 520-550 nm 535/30 

*source: Chroma Technology Corp® 
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Embryonic lethal phenotype reveals a function of
TDG in maintaining epigenetic stability
Daniel Cortázar1*, Christophe Kunz1*, Jim Selfridge2, Teresa Lettieri3{, Yusuke Saito1, Eilidh MacDougall2, Annika Wirz1,
David Schuermann1, Angelika L. Jacobs1, Fredy Siegrist4, Roland Steinacher1{, Josef Jiricny3, Adrian Bird2 & Primo Schär1

Thymine DNA glycosylase (TDG) is a member of the uracil DNA
glycosylase (UDG) superfamily of DNA repair enzymes. Owing to
its ability to excise thymine when mispaired with guanine, it was
proposed to act against the mutability of 5-methylcytosine (5-mC)
deamination in mammalian DNA1. However, TDG was also found
to interact with transcription factors2,3, histone acetyltransferases4

and de novo DNAmethyltransferases5,6, and it has been associated
with DNA demethylation in gene promoters following activation
of transcription7–9, altogether implicating an engagement in gene
regulation rather than DNA repair. Here we use a mouse genetic
approach to determine the biological function of this multifaceted
DNA repair enzyme. We find that, unlike other DNA glycosylases,
TDG is essential for embryonic development, and that this pheno-
type is associated with epigenetic aberrations affecting the expres-
sion of developmental genes. Fibroblasts derived from Tdg null
embryos (mouse embryonic fibroblasts, MEFs) show impaired
gene regulation, coincident with imbalanced histone modification
and CpG methylation at promoters of affected genes. TDG asso-
ciates with the promoters of such genes both in fibroblasts and in
embryonic stem cells (ESCs), but epigenetic aberrations only appear
upon cell lineage commitment. We show that TDG contributes to
the maintenance of active and bivalent chromatin throughout
cell differentiation, facilitating a proper assembly of chromatin-
modifying complexes and initiating base excision repair to counter
aberrantdenovomethylation.WethusconcludethatTDG-dependent
DNA repair has evolved to provide epigenetic stability in lineage
committed cells.
TDG is one of four enzymes with UDG activity inmammalian cells,

but its biological function has remained enigmatic10.We thus set out to
generate and phenotypically investigate a Tdg knockout mouse (Sup-
plementary Fig. 1a–c). ESC clones carrying the targeted allele gave rise
to healthy heterozygous Tdg knockout mice but attempts to generate
homozygous null mutants failed, indicating that TDG-deficiency may
cause embryonic lethality. This was unexpected, given the generally
mildphenotypeofotherDNAglycosylase knockouts11. In timedmatings,
Tdg null embryos isolated up to embryonic day (E) 10.5 appeared alive
and normal, whereas those isolated at E12.5 were dead, and none were
detectable at E16.5 (Fig. 1a andSupplementaryFig. 1d).Tdgnull embryos
at E10.5 produced viable fibroblasts (MEFs) but only a third of E11.5
embryos did so, suggesting that by this stagemost of themwere dead.We
thus concluded that lethality in Tdg null embryos occurs around E11.5.
For the actual cause of lethality, closer examination of the Tdg null
embryos at E10.5 indicated internal haemorrhage, and evidence for
haemorrhagic necrosis (data not shown), but otherwise did not reveal
an informative pathology.
We then explored the essential function of TDG inMEFs and ESCs,

first addressing a potential DNA repair defect by classical genotoxicity
and mutator analyses. The TDG status did not affect cell survival

following ionizing radiation or H2O2 exposure, both of which induce
DNA base lesions processed by TDG in vitro10, nor did it affect muta-
tion frequencies in a Big Blue transgenic mutation assay (Supplemen-
tary Fig. 2). We therefore concluded that the role of TDG in the repair
of canonical base damage is minor and therefore unlikely to account
for its essential function in mouse embryogenesis.
We next investigated a possible involvement of TDG in gene regu-

lation by expression profiling of TDG-proficient and -deficient MEFs.
To limit potential clonal biases, we compared the transcriptomes of
early passages of litter-matched populations of SV40 immortalized
MEFs. This identified 461 differentially transcribed genes (P# 0.05,
fold change (FC)$ 1.5, Fig. 1b), comprising many transcription
factors and, thus, likely reflecting both direct and indirect con-
sequences of TDG loss. Global pathway analyses revealed gene net-
works associated with embryogenesis and development as being most
significantlymisregulated in theabsenceofTDG(SupplementaryFig.3a).
Four out of six target genes analysed showed TDG-dependent differ-
ential expression also in independently isolated primary MEFs (Sup-
plementary Fig. 3b).
Considering its putative involvement in DNA demethylation7–9, we

next investigated a possible occurrence of aberrant promoter methyla-
tion in TDG-deficient cells. We examined the CpG islands in the pro-
moters of Hoxa10, Hoxd13, Sfrp2, Twist2 and Rarb, all of which were
downregulated in TDG-deficient MEFs (Fig. 1b and Supplementary
Fig. 3a). These genes are developmentally regulated by the polycomb
repressive system12 and their promoter CpG islands are unmethylated
in most normal tissues but subject to aberrant de novomethylation in
human cancers13,14. Na-bisulphite sequencing of the respective CpG
islands revealed an increased occurrence of de novo methylation in
the TDG-deficient MEFs (Fig. 1c and Supplementary Figs 4 and 5a).
The patterns and frequency of these methylation events indicated that
the loss of TDG generates hotspots of de novo methylation in certain
gene promoters. We then used chromatin immunoprecipitation
(ChIP) to examine a possible association of TDG with the promoters
of these and additional differentially expressed genes. Comparedwith a
randomly chosen intergenic sequence or the silent promoters of Oct4
and Tuba3, DNA fragments surrounding the promoters of all genes
examinedwere significantly enriched in the TDGprecipitates (Fig. 1d).
This indicated thatTDG is targeted to specific gene promoters, possibly
toprotect them fromacquiring aberrantCpGmethylation and eventual
epigenetic silencing. Consistently, further examination of the chro-
matin status revealed a general loss of activating (H3K4me2) and a
concomitant increase of repressive histone marks (H3K27me3,
H3K9me3) in TDG-deficient cells with promoter-specific patterns
(Fig. 1e): a complete loss of H3K4 dimethylation was accompanied
by a strong increase of H3K27 and/or H3K9 trimethylation at the
Hoxd13 and Hoxa10 promoters; a partial reduction of H3K4me2
coincided with an enrichment of H3K27me3 but not H3K9me3 at
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the Sfrp2 and Twist2 promoters; and reduction of H3K4me2 was
coupled with an increase in H3K9me3 but not H3K27me3 at the
Rarb promoter. Thus, promoter de novomethylation in TDG-deficient
cells is associatedwith a loss ofH3K4dimethylation and a concomitant
increase in trimethylation of H3K27 more than H3K9.
Stable expression of a TDG encoding complementaryDNA (cDNA)

in Tdg2/2 MEFs (Supplementary Fig. 1f) restored activity to the Sfrp2
and Twist2 genes (Fig. 2a). This correlated with a loss of H3K27
trimethylation in their promoters and an increase in H3K4 dimethyla-
tion in the case of Twist2 (Fig. 2b). Expression ofHoxd13 andHoxa10,
however, was not restored although a partial reduction of H3K27
trimethylation also occurred. This indicated that, once H3K4methyla-
tion is lost (Hoxd13,Hoxa10), the repressive chromatin maintained by

H3K9 and H3K27 methylation and aberrant CpG methylation cannot
be reversed to an active state by re-expression of Tdg. If residual H3K4
methylation is present, however, promoter reactivation is possible, and
this requires the catalytic function of TDG15 as shown for Sfrp2 and
Twist2 (Fig. 2a).
To address the origin of the epigenetic aberrations inTdgnullMEFs,

we investigated gene expression and chromatin states in TDG-
proficient and -deficient ESCs before and after retinoic-acid-induced
in vitro differentiation to neuronal progenitor cells16 (Supplementary
Fig. 6a). Strikingly, gene expressiondifferences wereminor in ESCs (16
genes, P# 0.05, FC$ 1.5) but increased significantly upon differenti-
ation to neuronal progenitor cells (297 genes, P# 0.05, FC$ 1.5)
(Fig. 3a). This was not due to an inability of TDG-deficient ESCs to
respond transcriptionally to retinoic acid (Supplementary Fig. 6b),
although they showed somewhat faster kinetics of silencing pluri-
potency genes (Oct4, Nanog) and activating developmental genes (for
example,Gata6,Pax6) (Supplementary Fig. 6c). Similar to the situation
in MEFs, the genes most significantly misregulated in TDG-deficient
neuronal progenitor cells control developmental functions, most of
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them having CpG islands in their promoters and being targets of the
polycomb repressive system (Supplementary Fig. 7a). Using ChIP, we
confirmed an enrichment of TDG at the promoters of differentially
expressed genes both in ESCs and in neuronal progenitor cells (Fig. 3b).
This also revealed that TDG associates with the promoters ofOct4 and
Nanog in ESCs but not in neuronal progenitor cells and MEFs (Fig. 3b
and Supplementary Fig. 6d), suggesting that its interaction is lost upon
heterochromatinization of these promoters. Notably, the inability to
associate with heterochromatized promoters may explain why re-
expression of TDG in Tdg null MEFs failed to restore Hoxd13 and
Hoxa10 transcription (Fig. 2).
Next, we examined the status of CpG methylation in gene pro-

moters downregulated in TDG-deficient neuronal progenitor cells,
making use of Na-bisulphite (pyro)sequencing and methylated

DNA-immunoprecipitation (MeDIP). AlthoughMeDIP only detected
trends for methylation differences at specific promoters (Supplemen-
tary Fig. 7b and unpublished observations), pyrosequencing revealed
significantly increased DNA methylation in Tdg null neuronal pro-
genitor cells at three out of five gene promoters tested (Hoxa10, Pax6,
Tgfb2). Notably, these methylation differences were not present in
ESCs nor in freshly dissociated embryonic bodies, they arose within
48 h of cultivation of the neuronal progenitor cells in progenitormedium
(Fig. 3c and Supplementary Fig. 7c), and the phenotype was comple-
mentedby ectopic expressionofTdgduring cell differentiation. Similarly,
histone methylation marks were not different between TDG-proficient
and -deficientESCsbut arose inneuronal progenitor cellswithanenrich-
ment of H3K27me3 at the promoters of Hoxd13, Hoxa10 (Supplemen-
tary Fig. 8) and Pdgfra (unpublished observations). Thus, differences in
DNA methylation and histone modifications became apparent at the
neuronal progenitor cell stage but were not as pronounced as in MEFs,
indicating an epigenetic phenotype that may progress upon further dif-
ferentiation and/or cultivation. Consistently, attempts to differentiate
TDG-deficient neuronal progenitor cells to terminal neurons failed
because of a rapid loss of cell viability in neuronal-rich medium.
We thenwonderedwhether this epigenetic functionofTDG involves

active DNA repair, as implicated by the inability of a catalytic-dead
TDG (N151A) to complement the loss of Sfrp2 and Twist2 expression
in Tdg null MEFs (Fig. 2). To monitor a possible engagement of down-
streambase excision repair, we first performedChIP for XRCC117. This
revealed a specific, TDG-dependent enrichment of this critical base
excision repair protein at the Hoxd13, Hoxa10, Sfrp2 and Twist2 pro-
moters in MEFs but not in ESCs (Fig. 4a and Supplementary Fig. 5b).
Hence, in MEFs, where TDG helps maintain these promoters in an
active state, its presence correlates with an enrichment of XRCC1. In
ESCs, however, where TDG also associates with these promoters but
does not affect their chromatin status, XRCC1 enrichment is not
observed. Besides XRCC1, we also found APE1, another component
of base excision repair, to associate with these promoters in a TDG
dependentmanner inMEFs (Fig. 4a).Moreover, retinoic acid treatment
of ESCs for 8 h increased the number of chromatin-associated XRCC1
foci in the presence but not in the absence of TDG (Supplementary Fig.
9), and TDG-proficient cells were significantly more sensitive to
poly(ADP-ribose) polymerase (PARP) inhibition than TDG-deficient
cells upon retinoic-acid-induceddifferentiation (Supplementary Fig. 10).
These observations strongly suggest that cell differentiation-induced
TDG activity feeds into PARP and XRCC1-dependent DNA single-
strand break repair18.
Addressing thephenotypeonhistonemodifications,we then foundby

ChIP that the absence of TDG also compromises the association of the
H3K4-specific methyltransferase MLL1 with the promoters ofHoxd13,
Hoxa10, Sfrp2 and Twist2 (Fig. 4b). This was apparent in TDG-deficient
MEFs but not in ESCs, with the former indeed showing a loss of H3K4
methylation and an occurrence of aberrant CpG methylation at gene
promoters reminiscent of the phenotype of MLL defects19–21. Similar to
MLL, the binding of CBP/p300 to these promoters was significantly
reduced in the Tdg null MEFs (Fig. 4b). CBP/p300 is a transcription-
activating histone acetyltransferase known to interact with TDG4 and,
notably, its associationwith gene promoters has been reported to protect
from polycomb-mediated H3K27 trimethylation22.
Taken together, our data suggest structural and catalytic functions of

TDG in epigenetic maintenance (Fig. 4c). As a structural component,
TDG complexes with activating histone modifiers (for example, MLL,
CBP/p300) to maintain states of active (H3K4me2) and bivalent
(H3K4me2, H3K27me3) chromatin during cell differentiation. In
the absence of TDG, the assembly and function of such complexes is
distorted and, consequently, chromatin modifications imbalanced
towards repressive states. TDG also provides DNA repair capacity to
erase CpGmethylation locally. Aberrantmethylation arises at GC-rich
promoters in TDG-deficient cells following lineage commitment, and
the frequencies and patterns of these events indicate an underlying
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Figure 3 | TDG-dependent differences in gene expression and chromatin
status arise during cell differentiation. a, Scatter plots comparing gene
expression profiles of Tdg1/2 and Tdg2/2 ESCs or in vitro differentiated
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genes at P, 0.05 and P, 0.01, respectively. b, ChIP–qPCR analysis of TDG
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stochastic process of de novomethylation. Hence, TDG keeps de novo
DNMT activities in check to avoid erroneous methylation, and the
engagement of XRCC1 and APE1 suggests that it operates through

base excision repair. Several previous studies have implicated TDG in
active DNA demethylation8,9,23. Mechanistically, it may do so on its
own, acting as a 5-mC DNA glycosylase23, or it may cooperate with a
5-mC deaminase (for example, AID/Apobec24,25 or DNMTs8), or a
5-mC hydroxylase (for example, TET126,27) that would convert 5-mC
into a favourable substrate for TDG. Numerous efforts to reproduce
5-mC glycosylase activity for mouse and human TDG have failed
(Supplementary Fig. 11 and unpublished observations). We therefore
consider a deamination or hydroxylation-mediated, TDG-dependent
repair process a preferable model for active cytosine demethylation.
The mouse Tdg knockout phenotype shows that such an epigenetic
control system has evolved to protect critical DNA sequences from de
novomethylation and heterochromatinization during development.

METHODS SUMMARY
Tdg knockout mouse and cell lines. The Tdg-targeting construct (Supplemen-
tary Fig. 1)was generated by replacement of aNarI–PacI fragment enclosing exons
6 and 7 by a neomycin resistance cassette in a cloned fragment spanning exons
5–10 of theTdg locus. This construct was used to target theTdg allele in 129mouse
ESCs, which were then used to generate chimaeras and, ultimately, Tdg1/2

heterozygotes by backcrossing to C57BL/6. The generation and establishment of
MEFs and Tdg2/2 ESCs was previously described28.
In vitro differentiation. In vitro differentiation of ESCswas performed essentially
according to the protocol published in ref. 16. RNA isolation for transcriptome
analysis of MEFs or ESCs and neuronal progenitor cells was performed using the
RNeasy Mini Kit (Qiagen) or the Trizol reagent (Invitrogen), respectively.
Antibodies and sequences of oligonucleotides used for PCR with reverse tran-
scription (RT–PCR), bisulphite sequencing and ChIP are listed in Supplementary
Tables 1–4.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 4 | Structural and catalytic functions of TDG in epigenetic
maintenance. a, ChIP–qPCR analysis of XRCC1 and APE1 association with
the gene promoters indicated in chromatin of TDG-proficient and -deficient
MEFs and ESCs. Shown are relative enrichments of XRCC1 and APE1 at these
promoters normalized to a randomly chosen intergenic control region
(means6 s.e.m.; n$ 3; *P, 0.05; **P, 0.01; unpaired Student’s t-test).
b, ChIP–qPCR analysis of MLL1 and CBP/p300 association with the gene
promoters indicated in chromatin of TDG-proficient and -deficient MEFs and
ESCs. Shown are relative enrichments of MLL1 and CBP/p300 at these
promoters normalized to a randomly chosen intergenic control region
(means6 s.e.m.; n$ 3; *P, 0.05; **P, 0.01; unpaired Student’s t-test).
c, Model summarizing epigenetic aberrations and implicated functions
observed in the absence of TDG. In ESCs TDG associates with gene promoters
in an active ‘open’ (H3K4me2, for example; Sfrp2 and Twist2, left side) or
transiently silent ‘bivalent’ chromatin conformation (H3K4me2 and
H3K27me3, for example;Hoxd13 andHoxa10, right side). In active chromatin,
the lack of TDG results in a partial loss of H3K4 dimethylation and a gain of
H3K27 trimethylation as well as in sporadic DNAhypermethylation (red balls)
upon cell differentiation. Differentiation-associated activation of promoters in
‘bivalent’ chromatin involves the demethylation of H3K27me3 and
transcription factor binding. The absence of TDG results in an aberrant loss of
H3K4 dimethylation accompanied by a gain in repressive H3K9 and H3K27
trimethylation and in DNA methylation, eventually directing irreversible
transcriptional silencing. In both cases, the loss of active and the gain in
repressive histone marks can be accounted for by a failure of TDG-deficient
cells to targetMLL and CBP to these promoters. We propose that TDG, as part
of transcription regulatory complexes, assures the establishment and the
maintenance of proper epigenetic states at developmentally regulated gene
promoters. As a DNA glycosylase, it protects these regions from aberrant CpG
methylation in a process that engages XRCC1 and APE1, factors essential for
downstream base excision repair.
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METHODS
Tdg knockout strategy. The Tdg-targeting construct (Supplementary Fig. 1) was
generated by replacement of a NarI–PacI fragment enclosing exons 6 and 7 by a
neomycin resistance cassette in a cloned fragment spanning exons 5–10 of theTdg
locus. This construct was used to target the Tdg allele in 129 mouse ESCs, which
were then used to generate chimaeras and, ultimately, Tdg1/2 heterozygotes by
backcrossing to C57BL/6. The generation and establishment of MEFs and Tdg2/2

ESCs was previously described28.
Cell culture and ESC differentiation. SV40-immortalized MEF cell lines were
previously described29 and cultivated in growthmedium(DMEM, 10%FCS, 2mM
L-glutamine) at 37 uC in a humidified atmosphere containing 5%CO2. For growth
of cell lines complemented with Tdg-expressing vectors, the growth medium was
additionally supplemented with 1mgml21 puromycin.
For isolation of primary MEFs, 10.5 days post-coitum embryos were dissected,

homogenized and cells dissociated in 0.05% trypsin-EDTA for 5min before plat-
ing inmodified ES cell mediumwithout LIF (DMEM, 10% FCS seraplus, 13 non-
essential amino acids, 1mM sodium pyruvate, 2mM L-glutamine and 50mM
b-mercaptoethanol, 13 penicillin/streptomycin) and cultivation for 10 days.
ESCs were grown in the presence of feeder cells at 37 uC in ES cell medium

(ECM: DMEM, 15% heat-inactivated FCS, LIF (1,000Uml21), 13 non-essential
aminoacids, 1mMNa-pyruvate, 2mML-glutamine and90mMb-mercaptoethanol)
in a humidified atmosphere containing 5% CO2.
Before starting retinoic-acid-induced differentiation , ESCs were grown in the

absence of feeder cells for two passages. For embryoid body formation during
neuronal differentiation, 43 106 Tdg1/2 or Tdg2/2 ESCs were plated into non-
adherent bacterial dishes (Greiner Bio-one) in differentiation medium (ECM
without LIF and with 10% FCS) and grown at 37 uC with a medium exchange
after 2 days. After 4 days, 5mM all-trans retinoic acid was added and cells were
further incubated for 4 days with a medium exchange after 2 days. Embryoid
bodies were washed twice with 13 PBS and dissociated with freshly prepared
trypsin solution (0.05% TPCK-treated trypsin in 0.05% EDTA/13 PBS) at
37 uC for 3min. Dissociated embryoid bodies were re-suspended in 10ml differ-
entiation medium and collected by centrifugation at 700g for 5min at room
temperature. The pellet was re-suspended in N2 medium (DMEM-F12 nutrient
mixture 1:1, 13N2 supplement) and the cell suspension filtered through a 40-mm
nylon cell strainer (BD). Filtered cells were immediately plated onto poly-L-lysine
and laminin-coated dishes at a density of 53 106 cells per 60-mmdish or 1.53 107

cells per 100-mm dish. The N2 medium was exchanged 2 and 24h after plating,
and cells were collected after 4 and 48h for further analysis.
Retinoic-acid-induced differentiation of ESCs for time course, PARP inhibitor

and immunofluorescence experiments was induced in ECM without LIF in the
presence of 1 or 5mM retinoic acid. The retinoic-acid-containing medium was
exchanged every 24 h, and cells were collected at the indicated time points. For
immunofluorescence experiments, 105 ESCs were seeded onto gelatin-coated
cover slips 1 day before differentiation. For the analysis of PARP inhibition on
cell survival during differentiation, 105 ESCswere seeded into gelatin-coated 12-well
dishes, 1 day before the addition of 5mMretinoic acid or further cultivation in ECM.
After 24 h, increasing concentrations of the PARP inhibitor AG-014699 (a gift of
SelleckChem)were added and cell numbers determined 24h laterwith theCASYcell
counter. The 50% lethal dose of the inhibitor and statistical differences betweenTdg-
proficient and -deficient cells were calculated on triplicate experiments by linear
regression with 95% confidence intervals using GraphPad Prism software.
Microarray gene expression analysis. For the analysis of differential gene
expression between Tdg1/2 and Tdg2/2MEFs, total RNAwas isolated from three
independent cultures of each cell line using the RNeasy Mini Kit (Qiagen), cDNA
synthesized from 13mg RNA with the SuperScript double-Stranded cDNA
Synthesis Kit (Invitrogen) followed by in vitro transcription reactions using the
MEGA Script T7 Kit (Ambion) supplemented with 1.5mMBio-11-CTP and Bio-
16-UTP (Enzo Life Sciences). cDNAs and cRNAs were purified using the
GeneChip Sample Cleanup Module (Qiagen). cRNA (15mg) was fragmented
and hybridized to GeneChip Mouse Expression Arrays 430A (Affymetrix).
Hybridized arrays were stained and washed according to the manufacturer’s pro-
tocol and scanned with an Affymetrix Scanner 3000 7G. Scanned images were
processed with Microarray Suite software and obtained ‘cel’-files used for further
data analysis.
For gene expression analysis of ESCs and in vitro differentiated neuronal pro-

genitor cells, total RNA was extracted from independent triplicates using the
Trizol reagent (Invitrogen). RNA was quantified using the Quant-iT RiboGreen
RNAAssay (Invitrogen) and500ng of total RNA subjected to cDNAsynthesis and
subsequent in vitro transcription to biotiylated cRNA using the Illumina
TotalPrep RNAAmplification Kit (Ambion, USA). cRNA (1.5mg) was hybridized
to MouseWG-6v2 slides (Illumina) according to the manufacturer’s protocol.
Bead arrays were washed and stained using FluoroLink Cy3 Streptavidin (GE

Healthcare). Fluorescent signals were imaged using the iScan system (Illumina).
Scanner images files were processed to probe intensity files by the manufacturer’s
software and further processedwith the genome studio software (Illumina)without
normalization and background correction.
Affymetrix data and Illumina probe intensity data were either processed by

robust multi-array average or variance stabilization transformation, respectively,
using R/Bioconductor software and ‘affy’ or ‘lumi’ libraries, followed by quantile
normalization. Significanceof effects for probes (Illumina) or probe-sets (Affymetrix)
was tested in R/Bioconductor (‘limma’ library) using a moderated t-test and the
false discovery rate (55%)methodofBenjamini andHochberg formultiple testing
correction. No unspecific filter was applied and multiple probe-sets per gene or
probe-sets with ambiguous genomic targets were retained.
Methylation analyses.GenomicDNA fromMEFs, ESCs and neuronal progenitor
cells was isolated with the QIAamp DNA Mini Kit (Qiagen). DNA (2mg) was
subjected to bisulphite conversion using the EZ DNA Methylation Kit (Zymo
Research). Respective target regions were amplified from bisulphite-treated DNA
withTrueStartTaqpolymerase (NewEnglandBiolabs). For conventionalbisulphite
sequencing, Hoxd13 or Sfrp2 promoter regions were amplified from converted
DNA and cloned into the XhoI and BamHI restriction sites of pBluescript SK-
before sequencing of individual clones. For pyrosequencing, potential regions of
hypermethylation were first identified by COBRA. Pyrosequencing primers
(Supplementary Table 1) were designed using the PyroMark Assays Design soft-
ware (version 2.0.1.15, Qiagen). Primer pairs included either one biotinylated
primer or one primer containing a universal region. In the latter case, products
were subjected to a second amplification using a biotinylated universal primer and
Phusion Hot Start High-Fidelity DNA Polymerase (Finnzymes). PCR products
were purified using the QIAquick PCR Purification Kit (Qiagen), quantified and
300–500ng were used for pyrosequencing in a PyroMark Q24 (Qiagen). Reactions
were analysedusingPyroMarkQ24 software (version 2.0.6,Qiagen). Significanceof
methylation differences between different Tdg-proficient and -deficient cell lines at
individual CpG sites was evaluated by unpaired, two-tailed t-tests.
ChIP. To crosslink protein-bound DNA, MEFs, ESCs and neuronal progenitor
cells were incubated in freshly prepared crosslinking solution (PBS pH 7.4, 1%
formaldehyde) at room temperature. The reaction was quenched after 10min by
addition of glycine to a final concentration of 125mM. After washing twice with
cold PBS, cells were collected using a cell scraper and subsequent centrifugation at
600g and 4 uC. Nuclei were isolated by incubation in 200ml of cold ChIP Buffer I
(10mM HEPES pH 6.5, 10mM EDTA, 0.5mM EGTA, 0.25% Triton X-100) for
5min on ice followed by two incubations of 5min on ice in 200ml cold ChIP buffer
II (10mMHEPES pH 6.5, 1mM EDTA, 0.5mM EGTA, 200mMNaCl). Pelleted
nuclei were lysed in 400ml ChIP buffer III (50mMTris-HCl pH 8.0, 1mMEDTA,
0.5%TritonX-100, 1%SDS, 1mMPMSF) for 10min on ice followed by sonication
for 15min (15 s on, 30 s off, power high) using a Bioruptor sonicator (Diagenode)
to produce random chromatin fragments ranging from 300 to 1,000 base pairs.
The solution was cleared by centrifugation at 14,000g and 4 uC for 10min and the
concentration of chromatin was estimated by absorbance at 260nm. For ChIP of
TDG, MLL and APE1 100–150mg of chromatin were diluted ten times in ChIP
dilution buffer I (50mM Tris-HCl pH 8.0, 1mM EDTA, 150mM NaCl, 0.1%
Triton X-100, 1mM PMSF). For histone ChIPs, 25–75mg of chromatin were
diluted in ChIP dilution Buffer II (16.7mM Tris-HCl pH 8.0, 1.2mM EDTA,
167mM NaCl, 1.1% Triton X-100, 0.01% SDS, 1mM PMSF). Diluted chromatin
was pre-cleared at 4 uC for 1 h with 40ml of a 50% slurry of magnetic Protein G
beads (Invitrogen) preblocked with 1mgml21 BSA and 1mgml21 tRNA (TDG,
XRCC1, APE1 and MLL-ChIPs) or salmon sperm single-stranded DNA (histone
ChIPs). Precleared chromatinwas incubatedwith 2–5mg of the respective antibody
(Supplementary Table 2) overnight at 4 uC under slow rotation. Immuno-
complexes were precipitated with 40ml of a 50% slurry of blocked Protein G beads
and further incubated at 4 uC for 2 h. Beads were then serially washed with 500ml
ChIP wash buffer I (20mM Tris-HCl pH 8.0, 2mM EDTA, 150mM NaCl, 0.1%
SDS, 1%TritonX-100), 500ml ChIPwash buffer II (20mMTris-HCl pH8.0, 2mM
EDTA, 500mMNaCl, 0.1%SDS, 1%TritonX-100) and 500ml ChIPwash buffer III
(10mM Tris-HCl pH 8.0, 1mM EDTA, 250mM LiCl, 1% sodium deoxycholate,
1%NP-40). For TDG, APE1 andMLL ChIPs, beads were washed once with 500ml
ChIP wash buffer I and twice with 500ml ChIP wash buffer II. After two additional
washes with 500ml TE buffer (10mM Tris-HCl pH 8.0, 1mM EDTA), bound
complexes were eluted by two sequential incubations with 150ml elution buffer
(1% SDS, 0.1 M NaHCO3) at 65 uC for 10min. Crosslink reversal of eluates and
respective input samples (1% of chromatin used for ChIP)was done in the presence
of 200mMNaCl at 65 uC for 4 h followed by proteinase K digestion (50mgml21) in
the presence of 10mM EDTA at 45 uC for 1 h. DNA was purified by phenol/
chloroform extraction and Na-acetate/ethanol precipitation, and re-suspended
in 10mM Tris-HCl pH 8.0. qPCR analysis with target specific primers (Sup-
plementary Table 3) was performed using Quantitect SYBR Green (Qiagen) with
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a Rotor-Gene 3000 thermocycler (Qiagen). The significance of different ChIP
efficiencies among Tdg-proficient and -deficient cell lines was evaluated from
triplicate experiments by non-paired, two-tailed t-tests.
MeDIP. MeDIP assays were performed as described in ref. 30. Briefly, genomic
DNA was prepared from 53 106 cells by incubation in lysis buffer (20mM Tris-
HCl pH 8.0, 4mM EDTA, 20mM NaCl, 1% SDS and 1mgml21 proteinase K) at
55 uC for 5 h and subsequent phenol/chloroformextraction andNa-acetate/ethanol
precipitation. DNA pellets were re-suspended in TE containing 20mgml21 RNase.
DNA was sonicated as described for ChIP followed by NaCl (400mM)/EtOH
precipitation in the presence of glycogen-carrier. Fragmented DNA (4mg) in
450ml TE was denatured at 95 uC for 10min and immediately chilled on ice.
After addition of 103 immunoprecipitation buffer (100mM sodium phosphate
pH 7.0, 1.4 M NaCl, 0.5% Triton X-100), the DNA was incubated with 10mg of a
monoclonal anti 5-methylcytidine antibody (clone 33D2, Eurogentec) at 4 uC for
2 h. Immuno-complexes were precipitated by the addition of 40ml M-280 sheep
anti mouse IgG antibody coupled Dynabeads (Invitrogen) and incubation at 4 uC
for 2 h followedby threewashes in 700ml IPbuffer. Boundmaterialwas treatedwith
250ml proteinase K digestion buffer (50mMTris-HCl pH 8.0, 10mMEDTA, 0.5%
SDS and 0.25mgml21 proteinase K) at 50 uC for 3 h. Immunoprecipitated methy-
lated DNA was purified by phenol/chloroform extraction followed by Na-acetate/
ethanol precipitation and re-suspended in TE. qPCR analysis of sonicated genomic
inputDNA andMeDIPDNAwith target specific primers (Supplementary Table 3)
was performed as described for ChIP, and significance ofMeDIP efficiencies tested
by non-paired, two-tailed t-tests.
Quantitative RT–PCR analyses. Total RNA (2–4mg) extracted by RNeasy Mini
Kit or by Trizol methods was reverse transcribed with the RevertAid H Minus
M-MuLV Kit (Fermetas) according to the manufacturer’s protocol. qPCR with
target specific primers (Supplementary Table 4)was performed using Power SYBR
Green Master Mix (Applied Biosystems) with a Rotor-Gene 3000 thermocycler.
Conditions for each target were validated by standard andmelting curve analyses.
Target-specific amplificationswere normalized to aGAPDHcontrol and data of at
least three independent experiments were analysed by unpaired, two-tailed t-tests.
Tdg genotype-specific target gene expression in primaryMEFswas analysed by the
non-parametric Kruskal–Wallis test and post hoc Dunn’s multiple comparison.
Western blot analyses.Whole-cell extractswerepreparedbycell lysis in lysis buffer
(50mM Na-phosphate pH 8.0, 125mM NaCl, 1% NP-40, 0.5mM EDTA, 1mM
PMSF, 1mM DTT, 13 complete protease inhibitor, 23 phosphatase inhibitor
cocktail 1 and 2) on ice for 30min and clarification by centrifugation (15min,
20,000g, 4 uC). Chromatin extracts were isolated as described for ChIP assays.
Soluble proteins (50mg) were separated on 7% or 10% SDS–polyacrylamide gels
and transferred to a nitrocellulosemembrane (Millipore).Membranes were washed
once with TBS-T (100mM Tris-HCl pH 8.0, 150mM NaCl, 0.1% Tween-20),
blocked with blocking buffer (TBS-T, 5% dry milk) at room temperature for 1 h
and incubated with the primary antibody at 33 uC (anti-mTDG) or room temper-
ature (anti-DNMT1, anti-DNMT3a, anti-XRCC1, anti-APE1, anti-MLL, anti-b-
actin) for 1 h in blocking buffer. Dilutions were 1:10,000 for the rabbit anti-
mTDG, the mouse anti-b-actin and the anti-DNMT1 antibodies; 1:1,000 for the
anti-DNMT3a and anti-XRCC1 antibodies; 1:500 for the anti-APE1 and anti-MLL
antibodies.Washing steps after hybridization were once at 33 uC and twice at room
temperature for 15min for anti-mTDG, or three times at room temperature for
10min for all other antibodies. Membranes were incubated with secondary HRP-
conjugated antibodies diluted 1:5,000 in blocking buffer and at room temperature
for 1 h. After three washing steps of 10min at room temperature, detection of the
signals was performed using the Immobilon Western Chemiluminescent HRP
Substrate (Millipore).
Cytotoxicity assays. For measurement of c-ray sensitivity, MEF single-cell sus-
pensions at a cell density of 23 105 cellsml21 in PBS were irradiated with the

indicated doses in a Gammacell 40 irradiator using 137Cs as a radioactive source.
Irradiated cells were plated in 96-wellmicrotitre plates at a density of 1000 cells per
well in growth medium, and survival was measured after 3 days using the Cell
Counting Kit-8 (Dojindo). Alternatively, survival was determined by clonogenic
growth by plating 500–2000 cells in triplicate in 10-cm dishes containing growth
mediumand counting ofGiemsa-stained colonies after 10 days. Tomeasure sensi-
tivity to H2O2, cells were plated at 2,500 cells per well in 96-well plates. After 24 h
cells were treated for 15min with the indicated concentrations of H2O2, washed
with PBS and incubated in fresh growth medium for a further 24 h before mea-
surement of survival with the Cell Counting Kit-8. Survival was determined as the
percentage of mock-treated cells.
Base release assay. For base release assays, 25–50mg of ESC whole-cell extracts
were incubatedwith 0.5 pmol of a fluorescein-labelledGC/TG,GCm/CGorGCm/
mCG DNA substrate in reaction buffer (50mM Tris-HCl pH 8.0, 1mM EDTA,
1mM DTT, 1mgml21 BSA) at 37 uC for 1 h (GC/TG) or overnight (methylated
substrates). Resulting AP-sites were cleaved by the addition of NaOH to a final
concentration of 100mMandheating to 95 uC for 10min. Subsequently,DNAwas
ethanol-precipitated overnight at220 uC in the presence of 0.3M Na-acetate pH
5.2 and 0.4mgml21 carrier t-RNA. DNAwas collected by centrifugation (20min,
20,000g, 4 uC) and washed with 80% ethanol. Air-dried pellets were re-suspended
in loading buffer (13 TBE, 90% formamide), heated at 95 uC for 5min and
immediately chilled on ice. Reaction products were separated on denaturing
8M urea/15% polyacrylamide gels in 13 TBE. The fluorescein-labelled DNA
was visualized with a Typhoon 9400 and quantified using ImageQuant TL soft-
ware (GE Healthcare).
Immunofluorescence. For detection of XRCC1 foci during retinoic acid stimu-
lation, cells were fixed in ice-cold methanol for 5min, then permeated in 0.2%
Triton X-100/PBS pH 7.4 and 0.2% Triton X-100/0.2%NaBH4/PBS pH 7.4 on ice
for 5min each. The induceability of XRCC1 foci formation in ESCs was tested by
incubationwithH2O2 (50mMinPBS) or PBS for 15min at 37 uCandan additional
5min in ECM with LIF before further processing. Coverslips were blocked in
blocking buffer (1% BSA/0.05% Tween20/PBS pH 7.4), stained with rabbit anti-
XRCC1 antibody (1:100 in blocking buffer) at room temperature for 1 h and
washed three times for 10min with blocking buffer before labelling with goat
anti-rabbit Alexa Fluor 594 (1:200 in blocking buffer) for 30–60min. After two
washes of 10min with blocking buffer, cells were again fixed in 220 uC cold
methanol, incubated in blocking buffer for 1 h and stained with a mouse mono-
clonal anti-PCNA antibody (1:100 dilution) in blocking buffer overnight at 4 uC.
Slides were counterstained for DNA with 50ng ml21 DAPI and mounted in
VectaShieldmountingmedium (Vector Lab). Slides were randomized and blinded
before z-stacks were acquired on a Leica SP5with the 405-nmdiode, argon 488nm
and He–Ne 594-nm laser lines. XRCC1 foci numbers for individual cells were
determined by visual inspection of the three-dimensional stacks. One hundred
and fifty (retinoic acid stimulation) or 50 (H2O2) cells per sample were analysed.
For co-staining of PAR and XRCC1 during retinoic acid differentiation, cells were
fixedwith2% formaldehyde/PBS at roomtemperature for 30minandpermeabilized
with PBS/0.2% Triton-X100 for 30min. Antigene detection was done with a 1:250
diluted monoclonal a-PAR antibody 10H (Enzo Life Sciences) and a polyclonal
a-XRCC1 as described above, but using 1:250 diluted anti-rabbit Alexa Fluor 594
and anti-mouse Alexa Fluor 488 secondary antibodies (Invitrogen). Pictures were
acquired with a Nikon Diaphot 300 epifluorescence microscope using identical
settings for all slides.

29. Kunz, C. et al. Base excision by thymine DNA glycosylase mediates DNA-directed
cytotoxicity of 5-fluorouracil. PLoS Biol. 7, e91 (2009).

30. Weber,M.et al.Chromosome-wideandpromoter-specific analyses identify sites of
differential DNA methylation in normal and transformed human cells. Nature
Genet. 37, 853–862 (2005).

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2011

Appendix II



Summarizing Figure

DNA repair
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Summarizing Figure. The role of TDG in epigenetic control. TDG sustains proper 

(permissive) epigenetic states at gene promoters. As a structural component of 

transcription regulatory complexes, it contributes to the establishment and/or 

maintenance of accurate histone modification patterns (1), as a DNA repair enzyme, it 

corrects occasional aberrant de novo methylation of cytosine bases (2). 
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Supplementary Figure 1 | Tdg knockout strategy and validation. a, Schematic of the 

mouse Tdg locus representing exons 5-10. The insertion of the neomycin-resistance 

cassette to replace exons 6-7 is indicated, as well as the positions of probes used for 

Southern blotting (b) and primers for genotyping (c). b, Southern blot of EcoRI digested 

genomic DNA extracted from three E14 ESC clones (C49, C57, C77) with targeted Tdg 

locus. EcoRI digestion generated 9 kbp and 7.8 kbp DNA fragments for the wild-type 

and targeted Tdg alleles, respectively, here detected with a flanking probe external to 

the targeting construct as indicted in (a). c, PCR genotyping of Tdg knockout embryos. 

DNA was isolated from portions of embryos and analyzed by PCR using a primer pair 

amplifying both the targeted (1.7 kbp) and wild-type Tdg alleles (1.1 kbp). Shown are 

the PCR results of consecutive samples representing two Tdg+/+, one Tdg+/- and two Tdg-

/- genotypes. d, Pre-natal recovery of Tdg+/+, Tdg+/- and Tdg-/- embryos after timed 

matings. Note that the Tdg null embryos isolated at E12.5 were all dead. e, Northern 

blot analysis of Tdg expression in MEFs isolated from Tdg+/+, Tdg+/-, and Tdg-/- embryos. 

Blots were probed using a cDNA fragment spanning Tdg exons 8 to 10, amplified by 

RT-PCR. e, Western blot analysis of whole-cell protein extracts derived from SV40 

immortalized Tdg+/+ and Tdg-/- MEFs and Tdg-/- complemented with wild-type (pTdg) 

and catalytically deficient (pTdgcat) TDG or a vector control (pC). TDG was stained 

with a highly specific polyclonal anti-mouse TDG antibody (TDG) and staining for β-

ACT served as loading control. 
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Supplementary Figure 2 | Lack of DNA repair associated phenotypes in TDG 

deficient cells. a, Sensitivities towards ionizing radiation (ɣ-ray) or hydrogen peroxide 

(H2O2) of Tdg+/-, Tdg-/- or complemented Tdg-/- MEFs. Shown are survival curves as 

percentages of mock-treated cells (means ± s.e.m., n=3). pV, vector control; pTdg, Tdg-

expressing vector. c, cII mutation frequencies in Tdg and Mbd4 single or double mutant 

MEFs. The cII mutant frequency is the ratio of cII− plaques to the total number of λ 
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phage screened. Shown are mutation frequencies with 95% confidence intervals as 

calculated from the binominal proportions, with M indicating the actual number of 

mutant plaques scored for each genotype. 
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Supplementary Figure 3 | Gene ontology analysis and expression of selected targets 

in primary MEF isolates. a, Gene ontology (GO) annotations of the 200 most 

differentially regulated genes (p<0.05) reveal a significant enrichment of developmental 

pathways (Ingenuity Pathway Analysis). b, Expression levels of selected genes in 

primary MEFs isolated from Tdg+/+, Tdg+/-, and Tdg-/- embryos at 10.5 dpc and cultured 

for 10 days. Gene expression was assessed by qRT-PCR, mRNA levels were 

normalized to Gapdh mRNA. Values represent arbitrary units with medians of six 

independent MEF isolates indicated by horizontal bars. 
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Supplementary Fig. 4
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Supplementary Figure 4 | CpG methylation states of selected target promoters in 

MEFs. DNA methylation analysis by bisulfite pyrosequencing of Hoxd13, Twist2, 

Hoxa10 and Rarb promoter regions in Tdg+/+, Tdg+/- and Tdg-/- MEFs. Promoter regions 

are depicted schematically with vertical tick marks indicating CpG sites, bent arrows 

denoting transcription start sites, and horizontal brackets highlighting the CpGs for 

which methylation data is presented in the graphs below. Methylation levels are given 

as percentage of methylated cytosines at each CpG analyzed. Shown are means with 

95% confidence intervals (bars) as obtained from at least 3 independent DNA isolations 

and bisulfite conversions for each genotype. *, p<0.05; **, p<0.01; ***, p<0.001; 

unpaired Student’s t-test. 
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Supplementary Fig. 5
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Supplementary Figure 5 | Validation of proteins levels and ChIP analysis of 

DNMT3a in TDG proficient and deficient MEFs. a, Western blots showing protein 

levels of TDG, DNMT1 and DNMT3a in whole cell extracts (WCE) of Tdg+/+, Tdg+/- 

and Tdg-/- MEFs with β-ACT as loading control. 50 µg of WCE were loaded in parallel 

on 10% (TDG, β-ACT) or 7% (TDG, DNMT1, DNMT3a) polyacrylamide gels and 

proteins detected with the respective antibodies after protein transfer. b, Western blots 

showing XRCC1, APE1 protein levels in 50 µg chromatin extract of Tdg+/+, Tdg+/- and 

Tdg-/- MEFs and Tdg+/- and Tdg-/- ESCs. β-ACT was used as loading control. c, Western 

blot showing MLLc protein levels in 50 µg of chromatin extracts of Tdg+/+, Tdg+/- and 

Tdg-/- MEFs and Tdg+/- and Tdg-/- ESCs with β-ACT as loading control. 
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Supplementary Figure 6 | In vitro differentiation of ESCs to the neuronal lineage. 

a, Schematic of the protocol used for in vitro differentiation of ESCs to NPs. ESCs were 

differentiated into embryoid bodies (EB) in the absence of LIF. EBs were treated with 

RA prior to dissociation and plating in N2 medium. ESCs and NPs at 4 or 48 hours after 

EB dissociation and plating were harvested for ChIP, DNA methylation and gene 

expression analyses. All differentiation experiments were done in biological triplicates. 

LIF, leukemia inhibitory factor; RA, all-trans retinoic acid. b, Scatter plots comparing 

gene expression before and after differentiation of Tdg+/- or Tdg-/- ESCs to NPs. Green 

(p<0.05) and red (p<0.01) dots represent differentially expressed genes. c, Validation of 

regulation of Oct4 and Gata6 expression following a time course of RA-induced cell 

differentiation. Shown are expression levels (qRT-PCR) relative to undifferentiated 

ESCs of the same genotype (mean±s.e.m., n=3, * p<0.05, unpaired Student’s t-test). d, 

ChIP analysis of TDG association with the promoters of Hoxd13, Oct4 and Nanog in 

chromatin of Tdg+/- and Tdg-/- ESCs, 48h NPs and MEFs. Shown are relative 

enrichments normalized to a random intergenic control region as determined by qPCR 

(mean±s.e.m., n=3; *, p<0.05; **, p<0.01; unpaired Student’s t-test). 
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Supplementary Fig. 7
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Supplementary Figure 7 | Gene ontology and DNA methylation analyses of TDG 

controlled genes during ESC - NP differentiation. a, Gene ontology (GO) 
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annotations of the 200 most differentially regulated genes (all p<0.05) reveal a 

significant enrichment of developmental pathways (Ingenuity Pathway Analyses). b, 

The DNA methylation status at the Oct4, Pax6, Pdgfra, Gata6 and Tgfb2 promoters was 

analysed by MeDIP-qPCR in Tdg+/-
 and Tdg-/-

 ESCs and 4h NPs. The promoter region of 

Gapdh was used as internal normalizer (means±s.e.m., n=3, **p<0.01, unpaired 

Student’s t-test), T, target region; C, control region. c, Bisulfite pyrosequencing analysis 

of CpG methylation in the Tgfb2 promoter region in ESCs and NPs at 4 and 48h after 

plating of embryoid bodies in N2 medium. Promoter regions are depicted schematically 

with vertical tick marks indicating CpG sites, bent arrows denoting transcription start 

sites, and horizontal brackets highlighting the CpGs for which methylation data is 

presented in the graphs below. Methylation levels are given as percentage of methylated 

cytosines at each CpG analyzed. Shown are means with 95% confidence intervals (bars) 

as obtained from three differentiation experiments. *, p<0.05; **, p<0.01; ***, p<0.001 

(unpaired Student’s t-test). 
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Supplementary Fig.8
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Supplementary Figure 8 | Histone modification states in TDG deficient ESCs and 

NPs. ChIP-qPCR analyses performed on chromatin derived from Tdg+/- and Tdg-/- ESCs 

and NPs to assess the chromatin status at the TDG target promoters indicated. Data is 

expressed as relative enrichment normalized to Iap and the Hprt promoter for active and 

repressive chromatin marks, respectively (means±s.e.m., n=3; *, p<0.05; unpaired 

Student’s t-test). T, target region; C, control region. 
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Supplementary Fig. 9
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Supplementary Figure 9 | TDG dependent DNA repair activity upon RA induced 

ESC differentiation. Immunofluorescence staining of XRCC1 and PCNA in Tdg+/- and 

Tdg-/- ESCs before (RA-, LIF+) and after 8 hours induction of differentiation by 5 µM 

retinoic acid (RA+, LIF-). a, Maximum intensity projections of confocal z-stacks for 

XRCC1 and PCNA immunofluorescence and for DNA counterstaining with DAPI. 
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PCNA staining was used as an indicator of S-phase cells to monitor and control for 

potential proliferation difference. b, Induction of XRCC1 foci following RA exposure. 

Shown are numbers of XRCC1 foci per cell as determined in 5 independent 

experiments. 150 cells per sample and experiment were analyzed for the number of 

XRCC1 foci. c, Positive control of damage dependent induction of XRCC1 foci. Shown 

are numbers of XRCC1 foci per cell after treatment with 50 µM H2O2 in PBS (+) or 

PBS alone (-), as determined in 3 independent experiments. 50 cells per sample and 

experiment were analyzed. Note that the higher background of XRCC1 foci in the H2O2 

experiments results from the prolonged incubation of the cells in PBS. Dots indicate 

individual cells, red lines the medians, and asterisks statistical significance determined 

by the Mann-Whitney-U-test (*, p<0.05; **, p<0.01; ***, p< 0.001). 

!
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Supplementary Fig. 10
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Supplementary Figure 10 | TDG sensitizes differentiating cells to the inhibition of 

PARP activity. a, ES cells were kept undifferentiated (+LIF, -RA) or differentiated (-

LIF, +5 µM RA) for 48 hours in the presence of increasing concentrations of the PARP 
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inhibitor (PARPi) AG-014699. Survival of Tdg proficient and deficient cells was 

measured and the LD50 determined by regression analysis (box, 95% confidence 

interval; line, LD50; *, p<0.05). Shown are representative epifluorescence images (100x 

magnification) of immunostainings for XRCC1 and poly(ADP)-ribose (PAR) in TDG 

deficient ES (b) and differentiating cells (c) treated without or with 10 µM PARP 

inhibitor. 
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Supplementary Figure 11 | TDG has no 5-mC DNA glycosylase activity on its own. 

Base release assays with whole cell extracts from Tdg+/-, Tdg-/- and Tdg-/- ESC 

expressing either TdgA, TdgB or harbouring the vector only. Synthetic 60-mer DNA 

duplexes containing either a GC/TG mispair (left panel), or hemi- (GCm/CG) or fully 

methylated (GCm/CmG) CpGs (right panel) were incubated with 25 µg and 50 µg of cell 

extracts at 37°C for 1 hour or overnight, respectively. Shown is a representative 

denaturing polyacrylamide gel showing the intact substrate (S) and cleaved product (P) 

at the top and bottom respectively with numbers at the bottom of the lanes representing 

the amounts of cleaved substrate (%). Neg. control = no extract. 
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Supplementary Table 1: Pyrosequencing primers 

Primer 5’-3’ Sequence 

HoxA10 F GAGGGGTAGGGAGGAAAAGTGGT 

HoxA10 R b-AACCATTCCTAAATTTTCAACTCTAAACCCA 

HoxA10 S TTTGTAAGGTATTTAAAATAAGTAG 

HoxD13 F GGGTTATGAGTAGTTAGGGGATTTGGGATATGGATGG 

HoxD13 R GTCAGTCCAGTCCAGGTCAGGGTGAAGTATAGTATAGAGGTTGAG
GTTGAATTTTAAAT 

HoxD13 S1 GGGGATTTGGGATATG 

HoxD13 S2 GTAGTAGAGTTTGGTTAG 

Pax6 F GAGTGGGGTGGGGGGAAAAT 

Pax6 R b-TTCACCCTAACTTCCCACCCCTTATCC 

Pax6 S1 GGGAAAATGGGTAGG 

Pax6 S2 GGTTTAGGTATAGTTGTGTTA 

Rarß F GTTAGATTGGTTGGGTTATTTGAAGGTTAG 

Rarß R GTCAGTCCAGTCCAGGTCAGGATCTTTTTCCCAACCCCCAATCATA
AATTATAACAA 

Rarß S1 GGGTTATTTGAAGGTTAGTA 

Rarß S2 GTTTGGAAGGGAGAAT 

Rarß S3 GATTGGGATGTAGAGG 

Rarß S4 GGGGGGATTAGAGTTT 

Tgfß2 F TAATAGTATTAGGGATTTATTGTAGGAGAAGGTAAG 

Tgfß2 R b-AATTTACAAACCTATAAATCCCTCTCCATC 

Tgfß2 S GGGATTTATTGTAGGAGAAG 

Twist2 F GTCAGTCCAGTCCAGGTCAGGGTTGTGATGTTTAAGTTATAAAGTAT
TTAGGGGGTAG 

Twist2 R TCTCCTAAAACAAATTTAACCCTACCAAAATTC 

Twist2 S1 TTTCTAAACTACTTCAACCTA 

Twist2 S2 CCAAACCCAAATATACTC 

Unique b-GTCAGTCCAGTCCAGGTCAGG 

b-, biotinylated primer; F, forward primer; R, reverse primer; S, sequencing primer; underlined 
sequence, universal primer 
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Supplementary Table 2: Antibodies  

Antibody Product Nr.   Manufacturer 

Anti-H3K4me2 07-030  Millipore, USA 

Anti-H3K9me3 pAb-056-050 Diagenode, UK 

Anti-H3K27me3 07-449 Millipore, USA 

Anti-MLLc 05-765 Millipore, USA 

Anti-Ref-1 (APE1; C-20) sc-334 Santa Cruz Biotechnology, Inc., USA 

Anti-Dnmt3a (H-295) sc-20703 Santa Cruz Biotechnology, Inc., USA 

Anti-CBP (A-22) Sc-369 Santa Cruz Biotechnology, Inc., USA 

Anti-Dnmt3a  ab2850 Abcam, UK 

Anti-Dnmt1 ab5208 Abcam, UK 

Anti-beta Actin ab8226 Abcam, UK 

Anti-5-MeCyd (33D2) BI-MECY-0100 Eurogentec, Belgium 

Anti-XRCC1  X0629 Sigma-Aldrich, USA 

Anti-PAR (10H) ALX-804-220 Enzo Life Sciences 

Anti-PCNA-Fluorescein P105 Leinco Technolgies, USA 

Anti-rabbit-HRP NA934 GE Healtcare, USA 

Anti-mouse-HRP NXA931 GE Healtcare, USA 

Anti-rabbit-Alexa594 A-11012 Invitrogen, USA 

Anti-mouse-Alexa488 A-11017 Invitrogen, USA 

 

Supplementary Table 3: ChIP and MeDIP primers 

Primer 5’-3’ Sequence 

pHoxD13F TGGGCTATGGCTACCACTTC 

pHoxD13R GACACTTCCTTGGCTCTTGC 

pHoxA10F CACTCCCAGTTTGGTTTCGT 

pHoxA10R GGGGGTACAGGTTCAAGAGC 

pSfrp2F GACTTTCGTTGCCTCCTCCT 
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pSfrp2R AGGCCGGTCACTACTTTCTG 

pTwist2F TCGCTGTGATGCCTAAG 

pTwist2R CACGATCTCGCCTCTAGGAT 

pRarßF GGGAGTTTTTAAGCGCTGTG 

pRarßR CGGAGCAGCTCACTTCCTAC 

pTgfß2F AAGGGACGAGACGAGAAGGT 

pTgfß2R ACATCCACACGCACACTCAT 

pPax6F CGGTGAAAGAAGCCACTAGG 

pPax6R TAGGGCGTTTGTTTCCAAAT 

pOct4F GTGAGGTGTCGGTGACCCAAGGCAG 

pOct4R GGCGAGCGCTATCTGCCTGTGTC 

pGata6F AGTTTTCCGGCAGAGCAGTA 

pGata6R AGGAGGAAACAACCGAACCT 

pDnm1F ATTCGCGGACTGGTCACTAT 

pDnm1R TTAGCACCCCTAGCCATCAC 

pPdgfraF GGACGAGCGATCTGGAATAA 

pPdgfraR CCGTGCAGAAAAGACTCCAC 

pFgfr2F CTTCCAGAATCCAAGGACCA 

pFgfr2R CATCCCAATGCTGACATCTG 

IapF CTCCATGTGCTCTGCCTTCC 

IapR CCCCGTCCCTTTTTTAGGAGA 

pHprtF CCAAGACGACCGCATGAGAG 

pHprtR CAACGGAGTGATTGCGCATT 

Chr2negF AGCACAGCCTGAAGCCTCTA 

Chr2negR AGAGGGCATTTCCGTCTTTT 

 

Appendix II



Supplementary Table 4: qRT-PCR primers 

Primer Name  5’-3’ Sequence 

GapDH(U) TGCACCACCAACTGCTTA 

GapDH(R) GGATGCAGGGATGTTC 

HoxA10a RT F CTCCCTGGGCAGTTCCAAAG 

HoxA10a RT R CGCTACGGCTGATCTCTAGG 

HoxD13 RT1 F CGACATGGTGTCCACTTTTG 

HoxD13 RT1 R TGGTGTAAGGCACCCTTTC 

RT Sfrp2 fw3 GCCGGCCACAGAGGAAGCTC 

RT Sfrp2 rev3 GGTCCCTTTCGGACACGCCG 

Twist2 RT F CGTCTCAGCTACGCCTTCTC 

Twist2 RT R CTGAGATGTGCAGGTGGGTC 

Rar-b RT F TTAATCTGTGGAGACCGCCAG 

Rar-b RT R TTACACGTTCGGCACCTTTCG 

Pdgfra RT F CGAGGTCGTTGACCTGCAGTGG 

Pdgfra RT R CGACGAAGCCTTTCTCGTGGACC 

Tgfb2 RT F AGAATCGTCCGCTTTGATGT 

Tgfb2 RT R GCTGGGTGGGAGATGTTACG 

Oct3/4(U) GGCGTTCTCTTTGGAAAGGTGTTC 

Oct3/4(R) CTCGAACCACATCCTTCTCT 

Gata6 RT F TCCATGGGGTGCCTCGACCA 

Gata6 RT R ACCCCTGAGGTGGTCGCTTGT 
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Abstract 

The Thymine DNA Glycosylase (TDG) initiates  Base  Excision  Repair  of  G•T  mismatches  arising   from 

deamination of 5-methylcytosine (5-mC) . Due to this substrate specificity, TDG has been suggested 

to act in a deamination-coupled 5-mC demethylation process. More recently, TDG has been 

implicated in active DNA demethylation propagated by the TET proteins as it processes 5-

formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), the final products of TET mediated 5-mC 

oxidation. However, the significance of either of these proposed pathways in the context of 

epigenetic programming during cell differentiation is yet unclear. Here, we report that TDG is 

required to establish DNA methylation at CpG islands during differentiation by controlling a 

transitory state of high epigenetic plasticity mediated by a cycle of DNA methylation and 

demethylation. We provide evidence that this cycle does not entail a deaminase but stepwise 

oxidation of 5-mC and that TDG structure and catalytic activity both contribute to controlling the 

epigenetic transitions from a pluripotent to a differentiated state. 

 

 

Introduction 

Cell type specific patterns of gene expression are shaped by chemical modifications of histone 

proteins and the DNA. As these modifications encode heritable information about cell identity that is 

not   laid  down  in  the  sequence  of  the  DNA  bases,  they  are  termed  “epigenetic”. The C5-position of 

cytosine is subject to methylation by DNA methyltransferases (DNMTs) (Goll and Bestor 2005). 5-

methylcytosine (5-mC) occurs predominantly in CpG dinucleotides, the vast majority of which is 

methylated throughout the genome, with the exception of CpG islands (CGIs) (Bird et al. 1985). These 

regions of high CpG density are maintained unmethylated and colocalize with the promoters of all 

ubiquitously expressed genes but also with about 40% of those with tissue-specific expression 
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patterns. However, a small but significant proportion of CGIs, many of which are distal to promoters, 

is differentially methylated between cell types (Illingworth and Bird 2009).  

In contrast to histone modifications that are highly dynamic in being placed, removed and replaced 

by a cohort of histone modifying enzymes (Bannister and Kouzarides 2011), cytosine methylation has 

long been regarded as a stable epigenetic mark that, once established by the de novo DNA 

methyltransferases DNMT3a and DNMT3b, is preserved through cell proliferation by the 

maintenance DNA methyltransferase DNMT1 (Goll and Bestor 2005). However, two global DNA 

demethylation events have been described to occur in the mammalian life cycle, one in the paternal 

pronucleus in the zygote and one in primordial germ cells (PGCs). Both events have recently been 

shown to be mediated by the activity of the Ten Eleven Translocator (TET) family of proteins. These 

5-mC hydroxylases convert 5-mC to 5-hydroxymethylcytosine (5-hmC) (Tahiliani et al. 2009), which in 

the case of global DNA demethylation appears to be subsequently diluted by DNA replication as 

5-hmC is not maintained by DNMT1 (Valinluck and Sowers 2007; Iqbal et al. 2011; Wossidlo et al. 

2011; Hashimoto et al. 2012; Hackett et al. 2013). Whereas the conversion of 5-mC to 5-hmC 

followed by passive removal presents a plausible and safe pathway for global demethylation, several 

lines of evidence suggest that at specific loci, DNA demethylation can occur by an active process not 

requiring DNA replication (Bruniquel and Schwartz 2003; Kangaspeska et al. 2008; Metivier et al. 

2008). Both, passive and active mechanisms are likely involved in global and targeted reprogramming 

during development. 

Interestingly, plants have been shown to utilize DNA glycosylases to excise 5-mC, followed by 

restoration of an unmethylated C by the base excision repair (BER) pathway (Zhu 2009). Efforts to 

identify analogous enzymes in mammals have implicated the thymine DNA glycosylase (TDG) as a 

prime candidate for a 5-mC demethylase. Apart from its ability to excise the deamination product of 

5-mC, thymine, from G•T  mismatches, interactions with DNMT3a and DNMT3b (Li et al. 2007; Boland 

and Christman 2008) and various transcription factors have placed TDG in the context of DNA 

methylation control and regulation of gene expression (Cortazar et al. 2007).  
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In further support of such a function, we and others have found deletion of Tdg in mice to be 

embryonic lethal, which suggests a non-redundant role of TDG in development. Furthermore, TDG-

deficient cells accumulate epigenetic aberrations with differentiation (Cortazar et al. 2011; Cortellino 

et al. 2011). While a direct 5-mC glycosylase activity of TDG has been proposed (Zhu et al. 2000), 

these findings still pend corroboration and it appears that mammalian cells apply a more complex 

mechanism than plants in erasing 5-mC. 

A plausible alternative to direct excision of 5-mC by a DNA glycosylase is the conversion of 5-mC to a 

more favorable substrate for DNA glycosylases. Three major pathways have been proposed, the most 

straightforward suggesting the deamination of 5-mC by a cytosine deaminase, e.g. the activation 

induced deaminase (AID) or the apolipoprotein B RNA-editing catalytic component (APOBEC) 

enzymes,   resulting   in   a   G•T  mismatch   that   could   be   processed   by   TDG but also the Methyl-CpG 

Binding Domain protein 4 (MBD4).  Support for such a pathway came with the finding that AID 

contributes to demethylation of the Oct4 and Nanog gene promoters during somatic cell 

reprogramming and to global DNA demethylation in primordial germ cells (PGCs) (Bhutani et al. 

2010; Popp et al. 2010). Furthermore, a deamination-coupled DNA demethylation pathway involving 

the coupled action of AID and MBD4 was described in zebrafish embryos (Rai et al. 2008). A second 

putative DNA demethylation pathway entails the coupled action of the TET proteins, converting 5-mC 

to 5-hmC, and subsequent deamination of 5-hmC to 5-hydroxymethyluracil (5-hmU), which can be 

excised by either TDG or the single-strand specific monofunctional glycosylase 1 (SMUG1) (Hardeland 

et al. 2003; Cortellino et al. 2011). However, a recent study has cast doubt on such a pathway since 

AID and the APOBEC family of deaminases appear to be mostly inactive on 5-hmC (Nabel et al. 2012). 

As neither MBD4 nor SMUG1 are essential for embryonic development (Wong et al. 2002; 

Kemmerich et al. 2012) and neither can compensate for the loss of TDG, it appears that TDG acts in a 

distinct pathway essential for embryo development that is not coupled to deamination. Such a 

pathway has taken shape with the finding that the TET proteins catalyze not only the generation of 5-

hmC but also its further oxidation to 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), both of 
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which are excellent substrates for TDG-mediated BER and appear not to be processed by any other 

DNA glycosylase (He et al. 2011; Ito et al. 2011; Maiti and Drohat 2011). 

We have previously proposed a dual function of TDG in maintaining a permissive chromatin state at 

CpG island promoters during cell differentiation, first by structurally supporting the maintenance of 

active histone marks and second by counteracting errors of the DNA methylation machinery 

(Cortazar et al. 2011). However, how exactly TDG supports epigenetic stability through processes of 

cell fate determination has remained elusive. Here, we report that TDG is essential for establishing 

differentiation-induced methylation at CpG islands by structurally and enzymatically supporting an 

equilibrium of DNA methylation and oxidative demethylation during a transitory state of high 

epigenetic plasticity. 

 

 

Results 

 

Neuronal differentiation in Tdg-/- cells is accompanied by an increasing disturbance of DNA 

methylation patterns 

We reported previously that TDG is essential for embryonic development and that TDG deficient cells 

accumulate aberrant DNA methylation at CpG island (CGI) promoters, accompanied by a loss of 

active and gain of repressive histone marks in differentiated cells (Cortazar et al. 2011). To 

investigate the role of TDG in the regulation of DNA methylation, we performed MeDIP combined 

with next generation sequencing on DNA from TDG proficient and deficient embryonic stem cells 

(ESCs), early (4h) neuronal progenitors (NPs) derived by in vitro differentiation (Fig.1a) and MEFs 

isolated from Tdg+/+ and Tdg-/- embryos (Wilson 2012). Whereas Tdg-/- ESCs showed no significant 

differences in their DNA methylation patterns compared to TDG proficient cells, in vitro neuronal 
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differentiation gave rise to 942 differentially methylated regions (DMRs), and the comparison of the 

MEFs revealed 32976 DMRs (Fig.1b). This phenotype indicated a failing DNA methylation control in 

the TDG deficient cells that deteriorates with differentiation. This notion is supported by the 

observation that Tdg-/- ESCs fail to form terminal neurons in vitro and rapidly lose cell viability in 

neuronal differentiation medium (Fig.1a).  

Of the 942 DMRs found in NPs, 609 are hypermethylated and 333 hypomethylated in Tdg knockout 

cells compared to wildtype. As DNA methylation is not equally distributed throughout the genome 

and was found to negatively correlate with the density of CpG dinucleotides (Meissner et al. 2008), 

we characterized the relationship between DMRs and CpG density. In the absence of TDG, CpG poor 

DMRs were preferentially hypermethylated while DMRs with a higher CpG density were associated 

with a loss of DNA methylation (Fig.1c). We also analyzed the average distance of the DMRs to the 

nearest transcriptional start site (TSS). Hypomethylated DMRs were on average located closer to a 

TSS (24.3 kb +/- 45.0 kb) than the hypermethylated (47.7 kb +/- 77.4 kb) (Fig.1d). Accordingly, 57% of 

the hypomethylated DMRs but only 34% of the hypermethylated lie within 10 kb of a TSS. 

Intersection of the DMRs with promoter regions confirmed that only a minority of the DMRs overlap 

with promoters, but that a greater proportion of the hypomethylated DMRs are promoter-associated 

than of the hypermethylated (Fig.1e). We thus conclude that the hypomethylated DMRs are more 

likely to affect gene expression than the hypermethylated, but aberrant methylation appears to 

affect mostly regions distal to promoters. 

 

Differentiation-associated de novo methylation of CGIs is diminished in absence of TDG 

We found 123 DMRs to overlap with CGIs as defined in the UCSC genome analysis tools (Gardiner-

Garden and Frommer 1987). Unexpectedly, 122 of these 123 differentially methylated CGIs, 

henceforth called CGI DMRs, were hypomethylated in NPs derived from TDG deficient ESCs, whereas 

DMRs not classified as CGIs were predominantly hypermethylated (hyper-:hypomethylated = 3:1) 
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(Fig.2a). Although a vast majority of CGIs is maintained in a hypomethylated state in ESCs, a subset 

was shown to acquire de novo methylation during neuronal differentiation (Mohn et al. 2008). We 

therefore asked whether the hypomethylation at CGIs in Tdg knockout NPs represents a loss of DNA 

methylation present in ESCs or a failure to establish methylation during NP differentiation. We thus 

intersected the CGI DMRs with all CGIs showing increased methylation in wildtype NPs compared to 

wildtype ESCs in our setup (Wilson 2012). This revealed that 117 of the 122 CGI DMRs overlap with 

CGIs that become methylated with differentiation (Fig.2b). Thus, hypomethylation of CGIs in Tdg 

knockout NPs is associated with diminished differentiation-associated de novo methylation. 

To further explore the genomic features of the CGI DMRs, we intersected them with published 

datasets of genome-wide protein-binding sites and histone modifications in ESCs and tested for the 

enrichment or depletion of specific elements (Fig.2c). This revealed that the CGI DMRs were 

significantly depleted for gene promoters (Ensembl TSS -1kb and +0.5kb), sites of RNA-polymerase II 

(RNA-Pol II), histone acetyltransferase p300 and H3K27ac enrichment. On the other hand, we found 

the CGI DMRs to be enriched in sites of TET1 binding and H3K4me1 and H3K27me3 modification, 

suggesting that a large proportion of these CGIs represent enhancer elements and targets of the 

polycomb repressive complex 2 (PRC2) which trimethylates H3K27 (Kuzmichev et al. 2002). Enhancer 

elements were shown to be marked by H3K4 monomethylation and bound by TET1 (Heintzman et al. 

2007; Serandour et al. 2012) but the fact that the CGI DMRs are enriched for H3K4me1 and TET1 but 

depleted for H3K27ac and p300 suggests that  these enhancer elements are inactive or poised in ES 

cells (Creyghton et al. 2010). Interestingly, we found a highly significant overlap of CGI DMRs with 

low methylated regions (LMRs) that represent transcription factor binding sites at distal regulatory 

regions (Stadler et al. 2011); 52% of the CGI DMRs coincided with NP-specific LMRs and 7% with ESC-

specific LMRs (Fig.2c), whereas constitutive LMRs showed no significant overlap. The CGI DMRs thus 

appear to be enriched for polycomb targets and poised enhancer elements that acquire de novo 

methylation during differentiation. 
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Cells lacking TDG activity exhibit hypomethylation of CGIs but  no  rise  in  C→T  mutations 

The diminished differentiation-triggered methylation of CGIs and, thus, the apparent 

hypomethylation of such regions in Tdg knockout NPs can be explained in two ways: 1) by failure to 

target the DNA methylation machinery to these regions or 2) by conversion of 5-mC to another base 

that would no longer be recognized by the 5-mC antibody used in MeDIP. Conversion of 5-mC could 

occur by deamination by AID, which would generate a  G•T  mismatch that – unless repaired by TDG 

or MBD4 – will give  rise  to  C→T  mutations, or by oxidation of 5-mC to 5-hmC and further to 5-fC and 

5-caC by the TET proteins. 

To test these hypotheses and to be able to distinguish between structural and enzymatic role of TDG 

in this context, we performed in vitro differentiation in a complemented cell system, in which either 

wildtype TDG (wt), a catalytically dead mutant TDG N151A (TDG∆cat) or vector control (ko) were stably 

expressed in Tdg-/- ESCs. Genomic DNA from NPs derived from these ESCs was subjected to hairpin 

Na-bisulfite sequencing (BS-seq) to allow simultaneous analysis of strand-specific methylation status 

and mutation frequency (Arand et al. 2012). The analysis of 7 representative hypomethylated CGIs 

(Supplementary Table 1) sequenced   with   a   coverage   of   ~10’000   reads confirmed the 

hypomethylation in 5 targets (Fig.3).  Furthermore,  the  frequency  of  C→T  mutations  we  observed  did 

not rise above the error rate of the method and cannot explain the loss of 5-mC, which is in the 

higher percentage range. We thus conclude that the hypomethylation appearing in NPs is not caused 

by deamination of 5-mC or 5-hmC, as both deamination products (T and 5-hmU) are pre-mutagenic 

and would give rise to appreciable amounts of C→T  mutations  in Tdg knockout cells. Compensation 

by other DNA glycosylases like MBD4 and SMUG1 is unlikely, as neither is capable of compensating 

the 5-mC loss nor the developmental knockout phenotype of the TDG knockout. 

Notably, 2 of the 7 targets chosen for hairpin Na-bisulfite sequencing (DMR36 and 8) exhibited 

hypermethylation in TDG∆cat and (only in DMR8) knockout NPs but hypomethylation in MeDIP-seq in 

TDG deficient cells. 5-mC and 5-hmC are both protected from deamination by Na-bisulfite and can 
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thus not be distinguished by this method. MeDIP-seq, on the other hand, discriminates between the 

two C modifications as it relies on an antibody specific for 5-mC. The discrepancy between the results 

from BS-seq and MeDIP-seq thus suggests accumulation of 5-hmC at the respective targets. This 

notion is supported by the increased appearance of hemimethylated CpGs at the same targets; 5-

hmC is not maintained by the maintenance DNA methyltransferase DNMT1 (Valinluck and Sowers 

2007; Hashimoto et al. 2012) and therefore is expected to occur more often opposite an 

unmethylated CpG. 

 

Aberrant levels of higher oxidized C-modifications accumulate in the absence of TDG  

TDG was proposed to be the only DNA glycosylase capable of excising the higher oxidized 5-hmC-

derivatives 5-fC and 5-caC and, consistently, the levels of these C-modifications were shown to 

increase following a knockdown of TDG in ESCs (He et al. 2011). We wanted to investigate the 

generation of these derivatives in the context of ESC differentiation, i.e. when differential 

methylation in TDG proficient and deficient cells becomes apparent. Yet, since neither 5-hmC nor the 

higher oxidized C-modifications are maintained by DNMT1 (Valinluck and Sowers 2007; Inoue et al. 

2011), the quantitative analysis of the generation of these modifications is likely perturbed by 

dilution through DNA replication. To minimize this dilution effect, we performed a 24 h retinoic acid 

(RA) differentiation time course, allowing a maximum of two rounds of DNA replication to occur. To 

reduce epigenetic heterogeneity often observed in ESC culture, we conditioned our complemented 

ESC lines for a homogeneously undifferentiated state in 2i medium prior to RA-induced 

differentiation (Ying et al. 2008). Remarkably, we observed that culturing in 2i medium decreased the 

global 5-mC levels in comparison to cells cultured exclusively in ESC medium with LIF (Fig.S2b) by 

about 50%, irrespective of the status of TDG activity. This suggested that active inhibition of 

differentiation in the 2i medium changes the epigenetic ground state of our ESCs in a TDG 

independent manner and consistent with previous observations (Reik, W., personal communication). 
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We harvested genomic DNA and chromatin after 0, 8 and 24 hours of incubation with RA, RNA and 

protein at two additional timepoints (2i medium control and 4h) (Fig.4a). By testing the mRNA levels 

of Nanog, Oct4, Rex1 and Gata6 we verified the loss of expression of pluripotency genes and 

induction of developmental genes within these 24 h of RA differentiation (Fig.S1a), and we confirmed 

at mRNA and protein level that TET1 and TET2 expression was equal in all three cell lines (Fig.S1a and 

b and Fig.6b). The levels of AID mRNA were extremely low and protein levels were below the 

detection limit in Western blot analysis (Fig.S1c). 

We then measured levels of 5-mC, 5-hmC, 5-fC, 5-caC and 5-hmU in the genomic DNA of 

undifferentiated and differentiated cells by liquid chromatography-tandem mass spectrometry 

(LCMSMS). In agreement with previous findings in TDG knockdown experiments (He et al. 2011), we 

found a significant enrichment of 5-fC and 5-caC (~2- and 9-fold, respectively) in Tdg knockout as well 

as catalytically inactive (TDG∆cat) cells (Fig.4b). We also found the global levels of 5-mC, 5-fC and 5-caC 

to rise with differentiation, and this effect was more pronounced in cells lacking TDG activity and 

specifically induced by RA (Fig.S2a and c). Accordingly, global 5-mC levels became significantly 

different between TDG proficient and deficient (ko, TDG∆cat) cells at 24 h of differentiation (Fig.4b). 

Similarly, global 5-fC levels in knockout and TDG∆cat cells increased significantly above wildtype levels 

only after 8 and 24 h of differentiation. By contrast, 5-caC levels were ~9 fold higher in 

undifferentiated knockout and TDG∆cat cells than in wildtype ESCs and only the mutant cell lines 

showed a further significant increase in 5-caC with differentiation (Fig.S2a). Global 5-hmC and 5-hmU 

levels were not significantly different neither between any of the genotypes nor within the 

differentiation timecourse. 

From these results, we conclude that the loss of pluripotency triggers a turnover of global 5-mC, 5-

hmC, 5-fC and 5-caC, a process which is disturbed in the absence of active TDG. Overall, cytosine 

modification levels are equally affected in Tdg knockout or catalytic-dead cells, implicating a catalytic 

active role of TDG in controlling transitions in CpG methylation. 
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TDG activity is required to balance 5-mC and 5-caC at CGIs 

The absence of increased C→T   mutations at CGI DMRs in NPs derived from TDG deficient ESCs 

indicated that the hypomethylation observed is not a result of deamination-mediated loss of CpG 

sites but, instead, may originate from targeted 5-mC oxidation by the TET proteins. To address this 

hypothesis, we analyzed 5-mC (MeDIP), 5-hmC (GLIB) and 5-caC (caCDIP) levels at 4 CGI DMRs and 

compared their change in the 24 h interval of RA-induced ESC differentiation in the presence or 

absence of TDG protein and/or activity. 

While the effects we observed varied to some extent with the genomic context of the target, certain 

trends became apparent across targets. We observed a slight but consistent differentiation-induced 

increase of 5-mC in TDG wildtype and TDG∆cat ESCs set against no change or even a small decrease in 

knockout cells (Fig.5a). While the levels of 5-hmC showed a high variability between replicate 

experiments and, thus, no consistent difference between Tdg genotypes, 5-caC levels were clearly 

increased in TDG∆cat across the targets when compared to wildtype and knockout cells (Fig.5a, 

aggregated p-value < 0.0001, Anova). Comparing the proportions of 5-mC and 5-caC modifications at 

0 and 24 h (Fig.S3a) revealed a shift in the equilibrium between these modifications in a time- and 

genotype-dependent manner. While in wildtype and in Tdg ko cells, both modifications remained 

equilibrated at the CGI DMRs during the 24 h interval of differentiation, this balance tipped towards 

an increase in 5-caC in differentiated TDG∆cat cells (Fig.S3a).  

The increase of 5-mC and 5-caC at CGI DMRs in RA-stimulated wildtype and TDG∆cat ESCs indicates 

that the transition to a higher methylated state of these CGIs in the course of cell differentiation is 

accompanied by the generation of higher oxidized 5-mC-modifications, thus requiring 5-caC to be 

excised and replaced with an unmodified C for subsequent re-methylation by DNMT3a or DNMT3b. 

The fact that Tdg knockout cells did not show an increase in 5-mC but rather a reduction of 5-caC 
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suggests that TDG is structurally involved in the initiation and/or maintenance of cyclic methylation 

and oxidative demethylation.  

This cycle of methylation and demethylation appears to be disrupted in TDG∆cat, resulting in an 

increase of 5-caC over time that surpasses that observed in wildtype. To elucidate how this 

disruption occurs, we characterized TDG∆cat biochemically with respective to its activity on and 

association with 5-caC. As TDG∆cat shows residual glycosylase activity on substrates with a weak N-

glycosidic bond, e.g. 5-FU  (Kunz et al. 2009), we tested the activity of recombinant wildtype TDG and 

TDG∆cat in a standard base release assay on double-stranded oligonucleotide substrates with one 

fluorescence-labeled strand containing a single thymine or modified cytosine opposite guanine. We 

found TDG∆cat to be virtually inactive on 5-caC (Fig.5b), which is in agreement with the accumulation 

of 5-caC in TDG∆cat cells (Fig.4b). We then tested the ability of the catalytic-dead TDG to bind the 5-

caC substrate in electrophoretic mobility-shift assays with fluorescence-labeled substrate 

oligonucleotides   (G•T,   G•5-mC, G•5-hmC,   G•5-caC) in the presence of a 10 or 20 fold excess of 

unlabeled competitor DNA containing either unmodified C or a 5-caC. These competition assays 

identified 5-caC as the substrate most efficiently bound by TDG (Fig.5c); the binding specificity and 

efficiency of the catalytic-dead protein appeared to be comparable to that of the wildtype TDG 

(Fig.S3b) with the caveat that the assay with the latter most likely reflects binding of to the product 

abasic-sites  (Hardeland et al. 2000). We thus conclude that TDG∆cat binds 5-caC with higher affinity 

than 5-mC and 5-hmC. 

 

 

TDG-activity facilitates stable association of TET1 to CGIs during differentiation 

Given the differential effects of the Tdg disruption and the catalytic-dead mutant on the 

methylation-demethylation equilibrium at the CGI DMRs, we tested whether the presence or 

absence of TDG influences the association of TET1 – the most highly expressed of the TET proteins in 
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ES cells (Fig.S1a) – with these regions. Chromatin immunoprecipitation (ChIP) revealed that TET1 

enrichment increases at all selected CGI DMRs over time of RA stimulation in wildtype cells.  

Whereas the association of TET1 to the CGI DMRs appears to be independent of TDG in pluripotent 

cells, differentiation induces a gradual loss of TET1 occupancy at the CGI DMRs in both knockout and 

TDG∆cat cells (Fig.6a and S4).  These findings corroborate that initiation of ESC differentiation activates 

a cycle of DNA methylation and demethylation involving 5-mC oxidation at specific CGIs. 

Notably, while TDG∆cat is sufficient to support the stepwise oxidation of 5-mC to 5-caC structurally 

(Fig.5a), the absence of the catalytic activity in this mutant significantly destabilizes – or suppresses – 

TET1 association to the CGI DMRs (Fig.6a). The high affinity of TDG∆cat to 5-caC combined with its 

inability to turn over (Fig.5b and c) is likely to result in an accumulation of TDGΔcat at these CGIs, thus 

blocking the progression of the cycle. Indeed, by ChIP, we found TDG∆cat to be clearly enriched at the 

CGI DMRs, while association of wildtype TDG hardly rose above the background measured in Tdg 

knockout (Fig.6c, for relative enrichment, controls and statistics see Fig.S5).  

It thus appears that both TDG structure and catalytic activity are essential for stabilizing TET1-

occupancy at the CGI DMRs but that TDG structure can become an obstacle without the ability to 

turnover on 5-caC.  

 

 

 

Discussion 

 

We have found that in vitro differentiation of TDG deficient ESCs is accompanied by an increasing 

disturbance of DNA methylation patterns. The majority of differentially methylated regions arising 

with lineage restriction of Tdg knockout cells show aberrantly increased levels of CpG methylation, 
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which is in agreement with a previously proposed function of TDG in preventing de novo methylation 

errors (Cortazar et al. 2011). Remarkably though, one third of the DMRs showed reduced levels of 

methylation in the Tdg knockout cells. These hypomethylated regions display a higher CpG density, 

closer proximity to TSS and a greater overlap with gene promoters than the hypermethylated DMRs, 

suggesting that the hypomethylation phenotype is connected with the regulation of gene expression. 

Hypomethylated DMRs arising in NPs are highly enriched for CGIs, and this translates into 99% of all 

differentially methylated CGIs being hypomethylated in cells lacking TDG. The vast majority of these 

regions are CGIs that undergo de novo methylation during in vitro differentiation of ESCs to NPs, 

suggesting that TDG is essential for establishing cell-type specific methylation of CGIs in the course of 

cell differentiation. Interestingly, many of these CGI DMRs appear to be inactive or poised enhancers, 

evident from a 75% overlap of CGI DMRs with H3K4me1 enriched regions but only  a minor overlap 

with sites of H3K27ac and p300 enrichment (Creyghton et al. 2010). Furthermore, 52% of the CGI 

DMRs overlap with NP-specific LMRs (Stadler et al. 2011). At first glance, the overlap with LMRs, 

which are distal regulatory regions that display variable methylation levels due to transcription factor 

binding, and the gain of methylation at these enhancer CGIs, which correlates with a transcriptionally 

inactive state of the corresponding gene, might appear counter-intuitive. However, it is important to 

bear in mind that also the binding of transcriptional repressors can produce an LMR (Stadler et al. 

2011).  

We found that a catalytically-dead but structurally intact TDG variant (TDG∆cat) fails to rescue 

differentiation-triggered methylation at these CGI DMRs, showing that the establishment and 

maintenance of methylation patterns at these regions depends on the active excision of DNA bases. 

Furthermore, we exclude that loss of 5-mC at these CGIs arises through deamination of either 5-mC 

or 5-hmC, which was proposed to be catalyzed by AID in direct interaction with TDG (Cortellino et al. 

2011). The deamination products of 5-mC (T) and 5-hmC (5-hmU) are both pre-mutagenic and would 

result   in  C→T transition mutations if unrepaired prior to DNA replication. Yet, by hairpin bisulfite-

sequencing with high coverage of a representative set of hypomethylated CGIs, we did not detect 
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increased mutation levels, neither in Tdg knockout cells nor in cells expressing TDG∆cat. The results 

with the catalytic inactive but structurally intact TDG allow us to exclude that the lack of mutations 

may reflect a failure to recruit AID to these genomic loci. Consistently, we did not observe a 

significant increase of 5-hmU in the genomic DNA of cells lacking TDG activity, neither with regard to 

differentiation nor to genotype. Together with recent reports of AID and other APOBEC proteins 

showing little to no reactivity on 5-mC and 5-hmC (Nabel et al. 2012), our data strongly argue against 

a deamination-dependent process accounting for the loss of 5-mC at these CGIs.  

In contrast, our data support a model connecting the loss of 5-mC at CGIs in TDG deficient NPs with 

the conversion of 5-mC to 5-hmC and 5-fC/caC by TET proteins. In a 24 h timecourse of RA-induced 

ESC differentiation, we found the genomic levels of all 5-mC-derivatives to increase in Tdg wildtype, 

knockout and TDG∆cat cells, with 5-fC and 5-caC specifically accumulating in TDG deficient cells, which 

is agreement with previous reports of TDG being the only DNA glycosylase excising these bases (He 

et al. 2011; Maiti and Drohat 2011). From the similarly elevated levels of 5-fC and 5-caC in TDGΔcat 

and from a glycosylase activity assay with recombinant TDGΔcat, we conclude that the N151A 

mutation abolishes TDG’s  5-caC processing capacity (Fig.5b). However, the mutation does not disrupt 

binding of 5-caC, which we found TDG to associate more tightly with than with C, 5-mC or 5-hmC 

(Fig.5c). It is somewhat striking that relatively high levels of 5-fC and 5-caC accumulate in TDG 

deficient ESCs, considering that these undergo DNA replication every 13-16h and 5-mC oxidation 

products fail to support maintenance methylation by DNMT1 (Valinluck and Sowers 2007; Inoue et 

al. 2011; Hashimoto et al. 2012). This finding thus suggests that the higher oxidized 5-mC-

modifications are continuously generated at the same rate as replication-dependent dilution occurs. 

To what extent they arise as consequence of epigenetic modeling or simply by chemical oxidation of 

the considerable genomic 5-mC and 5-hmC pool remains to be tested. In any case, it is clear that TDG 

is required to keep control of the global 5-fC/caC levels.  

The analysis of local C-modification levels at representative CGI DMRs revealed a differentiation-

induced increase of 5-mC and 5-caC levels in wildtype, a slight rise in 5-mC coupled with pronounced 
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accumulation of 5-caC in TDG∆cat but no significant shift of C-modification levels in knockout cells 

(Fig.5a and Fig.S3a). 5-hmC levels appear to change only slightly during differentiation, which may 

reflect that this oxidation intermediate is rapidly converted to 5-fC and 5-caC. 

Although the differences that arise in the 24 h interval of in vitro differentiation are not dramatic, 

they indicate clearly that the loss of pluripotency coincides with a transition of DNA methylation 

states at certain CGIs that involves the generation of higher oxidized derivatives of 5-mC. As the 

overall trajectory at these CGIs is towards 5-mC enrichment, it is evident that these higher oxidized 5-

mC-modifications have to be erased and replaced again by 5-mC. The passive removal of 5-

hmC/fC/caC by DNA replication does not appear to be sufficient to establish methylation at these loci 

as the process clearly depends on functional TDG. We thus propose that at these CGIs, RA-induced 

differentiation triggers a cycle of DNA methylation and demethylation involving the iterative 

oxidation of 5-mC and enzymatic removal of 5-fC/caC by TDG and BER (Fig.7). This establishes a 

transient equilibrium of methylation and demethylation intermediates that, at later stages of 

differentiation (early NPs), is tipped towards methylation (Fig.7), suggesting that this cycle represents 

a transitory state that accompanies the loss of pluripotency.  

As only wildtype and even more the TDG∆cat cells exhibit an accumulation of 5-caC at these CGIs, we 

propose a dual function of TDG, one as an enzymatic component and one as a structural scaffold in 

the assembly of key factors involved in the cycle of DNA methylation and demethylation. Indeed, we 

found that TET1 associates with these loci independent of TDG in ESCs but is rapidly lost upon 

differentiation in Tdg knockout cells. TDG∆cat, on the other hand, can still function as a scaffold, as 

evident by the accumulation of 5-caC in a differentiation-dependent manner. Notably, this occurs 

despite the concomitant reduction of TET1 association with these regions in these cells, suggesting 

that the specific 5-caC binding capacity of TDG actively blocks the turnover of the 5-caC generated. 

This implies that with the accumulation of 5-caC, an increasing number of TDG∆cat molecules would 

bind at these loci but fail to catalyze the final step of demethylation, as indeed indicated by the 
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increased enrichment of TDG∆cat at these DMRs (Fig.6c and Fig.S5). Wildtype TDG on the other hand 

is capable of rapid turnover on 5-caC and accordingly associates with the CGI DMRs only transiently. 

While the failure of turnover of TDG∆cat might disrupt the methylation-demethylation complex by 

steric hindrance, excision and subsequent repair of 5-caC itself might produce signals necessary for 

associating TET1. Alternatively, the failure to excise 5-caC might result in unusual demethylation 

intermediates, i.e. hemi-5-caC sites that cannot be remethylated by DNMT1 after DNA replication. 

Also, DNMT3a and DNMT3b cannot target 5-caC for methylation and may not be able to methylate a 

CpG opposite a 5-caCpG bound by TDG∆cat. Without BER resetting the methylation state, the TET 

proteins lack a substrate and would thus lose association with the CGI DMRs. Passive erasure of 

5-fC/caC through DNA replication would eventually result in the hypomethylation observed in NPs. 

Previous reports of cyclical methylation and demethylation of the pS2 promoter in response to 

estrogen-induced transcriptional activation have implicated DNMT3a and DNMT3b as well as TDG in 

coordinating these epigenetic transitions between transcriptionally active and silent states 

(Kangaspeska et al. 2008; Metivier et al. 2008). Here, we describe a cycle driven by the activity of 

DNMTs, TET1 (possibly also TET2) and TDG that reflects a transitory state at CpG islands that undergo 

methylation during differentiation. This cycle of CpG methylation and demethylation appears to be 

induced by differentiation which is in agreement with our previous observation that RA induces DNA 

repair processes involving TDG that increase the number of XRCC1 foci and the sensitivity to PARP 

inhibitors in differentiating wildtype compared to Tdg-/- cells (Cortazar et al. 2011). In this cycle, TDG 

fulfills two functions: first, structural stabilization of a complex that drives the cycle and second, 

catalyzing the final step of 5-caC removal . However, what initiates the cycle at these specific CGIs 

and which signals determine the overall trajectory towards a methylated or an unmethylated state 

remains to be elucidated.  
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Methods 

 

Cell culture and ES cell differentiation 

For NP differentiation, ESCs were grown on Feeders at 37°C in ES cell medium (ECM: DMEM, 15% 

heat-inactivated FCS, 1x non-essential amino acids, 1 mM Na-pyruvate, 2 mM L-glutamine and 90 μM  

β-mercaptoethanol) with LIF  (1’000Uml-1) in a humidified atmosphere containing 5% CO2. 

Prior to differentiation, ESCs were grown without Feeders for 2 passages. For embryoid body 

formation, 4x106 Tdg+/-, Tdg-/- or Tdg-/- pWt,   pΔcat   and  pVec ESCs were plated onto non-adherent 

bacterial dishes (Greiner Bio-one) in differentiation medium (ECM without LIF and with 10% FCS) and 

grown at 37°C with a medium exchange after 2 days. After 4 days, 5 μM  all-trans retinoic acid (RA) 

was added and cells were further incubated for 4 days with a medium exchange after 2 days. 

Embryoid bodies were washed twice with 1x PBS and dissociated with freshly prepared trypsin 

solution (0.05% TPCK-treated trypsin in 0.05% EDTA/PBS) at 37°C for 3 min. Dissociated embryoid 

bodies were resuspended in 10 ml differentiation medium and collected by centrifugation at 700xg 

for 5 min at room temperature. The pellet was resuspended in N2 medium (DMEM-F12 nutrient 

mixture 1:1, 1xN2 supplement) and the cell suspension filtered through a 40 mm nylon cell strainer 

(BD). Filtered cells were immediately plated onto poly-L-lysine and laminin-coated dishes at a density 

of 5x106 cells per 60 mm dish or 1.5x107 cells per 100 mm dish. The N2 medium was exchanged 2 and 

24 h after plating. For MeDIP-sequencing and hairpin BS-sequencing, cells were collected after 4 h in 

N2 medium. 

Complemented ES cell lines were derived by transfection of Tdg-/- ES cells with the complementation 

vectors pTCO2 TDG wt, pTCO2 TDGΔcat  and empty pTCO2 (Cortazar et al. 2011) using jetPEI® (Polyplus 

Transfections)   according   to   the   manufacturer’s   recommendations.   Cells   were   cultivated in ECM 

supplemented with 1.5 μg ml-1 puromycin to select stable clones. 

For the 24 h RA differentiation, complemented ES cells were cultured on Feeders for 2 passages, then 

conditioned for 4 passages without Feeders in 2i medium (Neurobasal medium and DMEM/F-12 1:1, 
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1x N2 supplement, 1x B27 supplement, LIF   (1’000 Uml-1), 2 mM L-glutamine, 90 μM  

β-mercaptoethanol, 3 μM   CHIR99021   and   1 μM   PD0325901   (University   of   Dundee)   and   1x  

penicillin/streptomycin). Prior to RA differentiation, ESCs were seeded at suitable cell numbers for 

each time point onto two 140 mm dishes (for Chromatin and genomic DNA extraction) or two 30 mm 

dishes (for Protein and RNA extraction) in ECM. For differentiation, the medium was exchanged for 

ECM without LIF but supplemented with 5 μM  RA  (5 mM stock in DMSO). Chromatin, genomic DNA 

were harvested at 0, 8 and 24 h, Protein and RNA at -16 h (2i control),  0, 4, 8 and 24 h. For the DMSO 

control for LCMSMS, ES cells were treated accordingly but incubated with DMSO 1:1’000 in ECM. 

If not indicated otherwise, cell culture components were obtained from Gibco® Life Technologies, 

chemicals from Sigma and LIF from Merck Millipore. 

 

MeDIP-Sequencing 

5 μg of DNA was sonicated giving fragment sizes <500bp. Fragments were end repaired, 

phosphorylated, 3’   adenylated and ligated to Illumina adapters in accordance with the Illumina 

Multiplex Sample Preparation protocol (PE-930-1001). These samples were then subjected to MeDIP 

as described previously (Weber et al. 2005), with 3 μg  5-mC antibody (Euogentec) per 1 μg  DNA. The 

immunoprecipitated (IP) sample was purified using the DNA   Clean   &   Concentrator™-5 kit (Zymo 

Research) according   to   the   manufacturer’s   instructions. The sample isolated by MeDIP then 

underwent gel electrophoresis and library size selection (150-200 bp), prior to PCR amplification 

using Illumina paired-end primers for 18 cycles. During this step, the libraries were tagged with a 

unique identifier, or index, as per Multiplex Sample Preparation Oligonucleotide protocol (PE-400-

1001). Libraries were quantified using an Agilent Bioanalyzer 2100. 
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MeDIP-seq Data Analysis  

The generated MeDIP-seq data were analyzed using the computational pipeline MeDUSA 

(v1.0.0)(Wilson 2012) and the MEDIPS (v1.0.0) R bioconductor package (Chavez et al. 2010). MeDUSA 

comprises several analysis steps. Firstly, BWA (v0.5.8) (Li and Durbin 2009) was used to align the 

paired end sequence data to the reference mouse genome (Build mm9) using default settings. 

Filtering was performed to remove reads that were unable to be aligned as a viable pair and also 

those pairs in which neither read scored an alignment score of ≥  10. In cases of non-unique reads, 

possibly caused by PCR artifacts, all but one pair was removed. Quality control was performed using 

the tool FastQC (v0.9.4) (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) and MEDIPS. The 

USeq (v6.8) suite of tools (Nix et al. 2008), specifically MultipleReplicaScanSeqs (MRSS) and 

EnrichedRegionMaker, were used to identify DMRs between cohorts. MRSS processes Point data for 

use in the BioConductor package DESeq (Anders and Huber 2010). Window size was set at 500. Only 

regions containing a minimum of 10 reads summed from the cohorts being compared were included 

for DMR analysis. The dataset was initially described in (Wilson 2012), and is available in the GEO 

repository (GSE27468). 

To   determine   the   overlap   between   DMRs   and   other   genomic   features,   the   “operate   on   genomic  

intervals”   tool   of   the   Galaxy   project   was   used   (http://usegalaxy.org/;   (Giardine et al. 2005; 

Blankenberg et al. 2010; Goecks et al. 2010). DMRs were intersected with promoters, defined as 

Ensembl TSS plus 1kb upstream and 0.5kb downstream, RNA-Pol II (GSM918749), p300 

(GSM918750), H3K4me1 (GSM1000121), H3K27ac (GSM1000126), H3K4me3 (GSM769008) and 

H3K27me3 (GSM1000089) peaks for ES cells, generated by ENCODE/LICR (Dunham et al. 2012), as 

well as with CGI coordinates (Gardiner-Garden and Frommer 1987) and LMRs (Stadler et al. 2011). 

TET1 binding sites (GSM706672) were converted from mm8 to mm9 using liftOver (Kent et al. 2002) 

prior to intersection with the DMRs.  
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Hairpin bisulfite deep sequencing for selected genomic regions 

The analysis was performed according to (Arand et al. 2012). Briefly, genomic DNA was digested with 

a restriction enzyme cutting in the selected DMRs, specified in Supplementary Table 1, followed by a 

ligation of a hairpin linker to link the upper to the lower strand. After bisulfite treatment the selected 

regions were amplified. Restriction enzymes and primers used in this analysis are given in 

Supplementary Table 2. The amplified products were sequenced by 454 sequencing. The sequencing 

data was then analyzed by BiQAnalyzerHT (Lutsik et al. 2011) for accurate alignment and methylation 

evaluation, followed by merging of the methylation information of the upper and lower strand using 

python scripts.  Average methylation, hemimethylation and mutation rates were calculated in 

Microsoft Excel. 

 

LCMSMS analysis of global C-modification levels 

Genomic DNA was enzymatically hydrolyzed to nucleosides essentially as described (Crain 1990), 

followed by addition of 3 volumes of methanol and centrifugation (16’000xg, 30 min, 4C). The 

supernatants were dried and dissolved in 50 µl 5% methanol in water (v/v) for LCMSMS analysis of 

the deoxynucleosides 5-hm(dC), 5-f(dC), 5-ca(dC), and 5-hm(dU). A portion of each sample was 

diluted for the quantification of 5-m(dC) and unmodified deoxynucleosides (dA, dC, dG, and dT). 

Chromatographic separation was performed on a Shimadzu Prominence HPLC system with a Zorbax 

SB-C18 2.1x150 mm i.d. (3.5 µm) column equipped with an Eclipse XDB-C8 2.1x12.5 mm i.d. (5 µm) 

guard column (Agilent Technologies). The mobile phase consisted of water and methanol (both 

supplemented with 0.1% formic acid), for 5-m(dC), 5-hm(dC), 5-f(dC), and 5-ca(dC) starting with a 

5 min gradient of 5-60% methanol, followed by 6 min re-equilibration with 5% methanol, and for 

unmodified nucleosides maintained isocratically with 85% methanol. hm(dU) was gradient 

chromatographed with a mobile phase of only water and methanol. Mass spectrometry detection 

was performed using an MDS Sciex API5000 triple quadrupole (Applied Biosystems) operating in 
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positive electrospray ionization mode for the mass transitions 258.1/ 142.1 (5-hm(dC)), 256.1/ 140.1 

(5-f(dC)), 272.1/ 156.1 (5-ca(dC)), 242.1/ 126.1 (5-m(dC)), 252.1/136.1 (dA), 228.1/112.1 (dC), 

268.1/152.1 (dG), and 243.1/127.1 (T), or negative electrospray ionization mode for the mass 

transitions 257.1/ 124.1, 257.1/ 141.1, and 257.1/ 214.1 (5-hm(dU), quantifier and qualifier ions). 

 

Purification of recombinant TDG 

See (Kunz et al. 2009), briefly, TDG wt and TDGΔcat were expressed from vectors pET28c-mTDGa.0 and 

pET28c-mTDGa.1 as described. Cell lysis was carried out in NiNTA lysis buffer (50 mM Na-phosphate 

[pH 7.5], 500 mM NaCl, 20% glycerol, 0.1% Tween-20, 20 mM imidazole, 20 mM  β-mercaptoethanol, 

0.1 mM phenylmethylsulfonyl fluoride) by sonication followed by extract clarification. The clear 

supernatant was loaded onto a 5 ml HisTrap FF crude column (GE Healthcare), bound protein was 

eluted with 400 mM imidazole and dialyzed against Heparin buffer (25 mM Na-phosphate [pH 7.0], 

250 mM NaCl, 20% glycerol, 20 mM  β-mercaptoethanol, 0.1 mM phenylmethylsulfonyl fluoride). The 

dialyzed fractions were loaded onto a 5 ml HiTrap Heparin HP column (GE Healthcare) and bound 

protein was eluted with a linear gradient of 250 mM – 1.5 M NaCl. For ion exchange, relevant 

fractions were pooled, dialyzed against AIEX buffer (50mM Bicine [pH 8.8], 25 mM NaCl, 20% 

glycerol,  20  mM  β-mercaptoethanol, 0.11 mM phenylmethylsulfonyl fluoride) and loaded onto a 1 ml 

Resource Q column (GE Healthcare). Bound protein was eluted with a linear salt gradient of 25 mM – 

1 M NaCl and purest fractions finally dialyzed against storage buffer (50 mM Tris-HCl [pH 8.0], 50 mM 

NaCl, 10% glycerol, 1 mM dithiothreitol), frozen on dry-ice and stored at -80°C. 

 

Base release assay 

60-mer double-stranded oligonucleotide substrates containing different modifications were prepared 

by annealing of an unlabeled upper strand oligonucleotide (5‘-TAGACATTGCCCTC 
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GAGGTACCATGGATCCGATGTCGACCTCAAACCTAGACGAATTCCG-3‘) to a (5‘-fluorescein-labeled lower 

oligonucleotide   strand   5‘-F-CGGAATTCGTCTAGGTTTGAGGTXGACATCGGATCCATGGTACCTCGAGGG 

CAATGTCTA-3‘,  where  X  =  T,  5mC,  5hmC  or  5caC. 

Base release assays were carried out in a total volume of 20 µl containing 0.5 pmol of recombinant 

protein and 0.5 pmol of the labeled DNA substrate in 1x reaction buffer (50 mM Tris-HCl [pH 8.0], 

1 mM EDTA, 1 mM DTT, 1 mg/ml BSA) for 15 min at 37°C. Generated AP-sites were cleaved by the 

addition of NaOH to a final concentration of 100 mM and heating to 99°C for 10 min. Subsequently, 

DNA was ethanol precipitated overnight at -20°C in 0.3 M Na-acetate (pH 5.2) and in the presence of 

0.4 mg/ml carrier tRNA. The DNA was collected by centrifugation (20 min,  20‘000g,  4°C) and washed 

in 80% ethanol. Air-dried pellets were resuspended in loading buffer (1x TBE, 90% formamide), 

heated at 99°C for 5 min, and then immediately chilled on ice. Reaction products were separated on 

15% denaturing polyacrylamide gels in 1x TBE. The fluorescein-labeled DNA was visualized with a 

Typhoon 9400 (GE Healthcare) and quantified using the ImageQuant TL software (GE Healthcare). 

 

Electrophoretic mobility shift assay 

EMSAs were performed to measure the DNA-binding ability of wild-type and mutant TDG protein, 

using the double-stranded oligonucleotide substrates described above. Standard EMSA were carried 

out in a total reaction volume of 10 µl containing 2 pmol of recombinant protein and 1 pmol of 

labeled DNA substrate with varying amounts of unlabeled competitor DNA in 1x reaction buffer 

(50 mM Tris-HCl [pH 8.0], 1 mM DTT, 5% glycerol, and 1 mM EDTA). After 15 min incubation at 37°C 

the reactions were loaded immediately onto 6% native polyacrylamide gels and separated in 0.5x TBE 

for 50 min at 100 V at room temperature. The fluorescein-labeled DNA was also visualized with a 

Typhoon 9400 (GE Healthcare) and quantified using the ImageQuant TL software (GE Healthcare). 
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DNA Immunoprecipitation and GLIB 

Genomic  DNA  was  prepared   from  cells  by   incubation   in   lysis  buffer   (20 mM Tris-HCl  pH  8.0,  4 mM  

EDTA,   20 mM   NaCl,   1% SDS   and   1 mg ml−1 proteinase K) at 55°C for 8-12 h and subsequent 

phenol/chloroform extraction and Na-acetate/ethanol precipitation. DNA pellets were resuspended 

in 10 mM Tris-HCl pH 8 and concentration was measured by absorbance at 260 nm. RNA was 

removed   by   incubation   with   2.5 µg   RNaseA   per   µg   DNA   for   30 min at 37°C, followed by Na-

acetate/ethanol precipitation. Quality of the DNA tested by standard agarose gel electrophoresis. 

5-mC and 5-caC were detected by MeDIP and caCDIP, performed essentially as described in (Weber 

et al. 2005). DNA was sonicated to yield fragments of 100-500bp followed by  NaCl  (400 mM)/ethanol 

precipitation in the presence of glycogen-carrier. 1 µg   fragmented DNA in TE was denatured and 

incubated  with  0,3 µg  of  monoclonal  anti-5-methylcytidine or 2 μg  polyclonal  anti-5-carboxylcytosine 

antibody (Supplementary Table 3) at 4°C for 2 h in 1x immunoprecipitation   (IP)   buffer   (10 mM  

sodium phosphate pH 7.0, 140 mM NaCl, 0.05% Triton X-100). Immuno-complexes were precipitated 

by the addition of 20 µl M-280 sheep anti-mouse IgG antibody coupled Dynabeads (Invitrogen) and 

incubation at 4°C for 2 h followed by three washes in IP buffer. Bound material was treated with 

250 µl proteinase K digestion buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 0.5% SDS and 

0.25 mg ml−1 proteinase K) at 50°C for 3 h. Immunoprecipitated methylated DNA was purified by 

phenol/chloroform extraction followed by NaCl/ethanol precipitation and re-suspended in 10 mM 

Tris-HCl pH 8.0.  

5-hmC containing DNA fragments were captured with the Hydroxymethyl Collector kit from Active 

Motif as described in the manufacturer’s  instructions.  

qPCR analysis of sonicated genomic input DNA and Me/caCDIP/GLIB DNA with target specific primers 

(Supplementary Table 4) was performed using Quantitect SYBR Green (Qiagen) with a Rotor-Gene 

3000 thermocycler (Qiagen). Statistical analysis was performed on Graphpad Prism Software. 
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Chromatin Immunoprecipitation 

To crosslink protein-bound DNA, ES cells were incubated in 1% formaldehyde/PBS at room 

temperature.  The  reaction  was  quenched  after  10 min  by  addition  of  glycine  to a final concentration 

of  125 mM.  After  washing  three  times  with  ice  cold  PBS,  cells  were  collected  using  a  cell  scraper  and  

subsequent centrifugation at 600xg and  4 °C.  Supernatant  was  discarded  and   the  cells   snap-frozen 

until further processing. After thawing  on   ice,   nuclei  were   isolated  by   incubation   in  400 µl  of   cold  

ChIP   Lysis   Buffer   I   (10 mM  HEPES   pH   6.5,   10 mM  EDTA,   0.5 mM  EGTA,   0.25% Triton X-100, 1 mM 

PMSF)  for  5 min  on  ice  followed  by  two  incubations  of  5 min  on  ice  in  400 µl  cold  ChIP  Lysis buffer II 

(10 mM  HEPES  pH  6.5,   10 mM  EDTA,   0.5 mM  EGTA,  200 mM  NaCl,   1mM  PMSF).   All   centrifugation  

steps were conducted at 600xg and 4°C   for   5  min.   Pelleted   nuclei  were   lysed   in   400 µl   ChIP   Lysis 

buffer  III  (50 mM  Tris-HCl  pH  8.0,  1 mM  EDTA,  0.5%  Triton  X-100, 1% SDS,  1 mM  PMSF)  for  10 min  on  

ice  followed  by  sonication  for  15 min  (15 sec  on,  30 sec  off,  power  high)  using  a  Bioruptor  sonicator  

(Diagenode) to yield fragments of ~200-500 bp. The solution was cleared of remaining cell debris by 

centrifugation at 14’000xg and 4°C  for  10 min.  For  ChIP  of  TDG and TET1,  150 µg  of  chromatin  were  

diluted 1:10 in  ChIP  dilution  buffer  (50 mM  Tris-HCl  pH  8.0,  1 mM  EDTA,  150 mM  NaCl,  0.1%  Triton  X-

100, 1x protease inhibitor cocktail,   1 mM   PMSF).   After removing 1% (volume) for input analysis, 

diluted chromatin was pre-cleared at 4°C   for  1 h  with  30 µl  of   a  50% slurry of magnetic Protein G 

beads (Invitrogen) pre-blocked  with  1 mg ml−1 BSA  and  1 mg ml−1 tRNA. Pre-cleared chromatin was 

incubated with 1-2 µg   of   the   respective   antibody (Supplementary Table 3) overnight at 4°C under 

slow rotation. Immuno-complexes  were  precipitated  with  40 µl  of  a  50% slurry of blocked Protein G 

beads and further incubated at 4°C  for  2 h.  Beads  were  then  serially  washed  with  500 µl  ChIP  wash  

buffer  I  (20 mM  Tris-HCl  pH  8.0,  2 mM  EDTA,  150 mM  NaCl,  0.1% SDS, 1% Triton X-100), twice with 

500 µl  ChIP  wash  buffer  II  (20 mM  Tris-HCl pH 8.0, 2 mM  EDTA,  500 mM  NaCl,  0.1% SDS, 1% Triton X-

100).  After  two  additional  washes  with  500 µl  TE  buffer  (10 mM  Tris-HCl  pH  8.0,  1 mM  EDTA),  bound  

complexes   were   eluted   by   two   sequential   incubations   with   250 µl   elution   buffer   (1% SDS, 0.1 M 
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NaHCO3) at 65°C  for  10 min  shaking.  Crosslink  reversal  of  eluates  and  respective  input  samples  was  

done in the  presence  of  200 mM  NaCl  at  65°C  for  4 h  followed  by  proteinase  K  digestion  (50 µg ml−1) 

in   the   presence   of   10 mM  EDTA   and   40 mM Tris-HCl pH 6.5 at 45°C   for   1 h. DNA was purified by 

phenol/chloroform   extraction   and   NaCl/ethanol   precipitation,   and   resuspended   in   10 mM   Tris-HCl 

pH 8.0. qPCR analysis with target specific primers (Supplementary Table 4) was performed using 

Quantitect SYBR Green (Qiagen) with a Rotor-Gene 3000 thermocycler (Qiagen). Statistical analysis 

was performed on Graphpad Prism Software.  

 

Western Blot analyses 

Denaturing protein extracts were prepared by washing the ES cells twice in cold PBS before addition 

of lysis buffer (50 mM Tris-HCl pH 7.5, 1% SDS, 5 mM DTT). The lysate was collected using a cell 

scraper and processed by two cycles of heating to 65°C and sonication for 5 min (15 sec on, 30 sec 

off, power high), followed by 10 min centrifugation at 20’000xg and 4°C. The concentration of the 

supernatant was estimated by a standard Bradfort assay by diluting the extract 1:800 in ddH2O 

before adding Bradfort reagent (final volume 1 ml). 40 μg of protein extract was separated on a 10% 

PAA gel (for AID) or a Mini-Protean pre-cast gradient gel (BioRad) and transferred to a nitrocellulose 

membrane (Millipore). For TET1, TET2 and TDG, 10% methanol and 0.002% SDS were added to the 

transfer buffer (25 mM Tris, 192 mM Glycine), for AID no SDS but 20% methanol. Membranes were 

washed once with TBS-T (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.2% Tween-20), blocked with 

blocking buffer (TBS-T, 10% low fat dry milk) at room temperature for 1 h and incubated with the 

primary antibody at 33°C (anti-mTDG) or room temperature (anti-TET1, anti-TET2, anti-AID, anti-

DNMT3b, anti-β-actin) for 1 h in 7.5% dry milk/TBS-T. Dilutions were 1:10’000   for   the   rabbit  anti-

mTDG and the mouse anti-β-actin antibodies; 1:2’000  for  the  rabbit  anti-TET1 (Millipore) antibody; 

1:500 for the monoclonal mouse anti-AID (gift by S.K. Petersen-Mahrt) and 1:100 for the monoclonal 

rat anti-TET2 antibody (gift by H. Leonhard). Washing steps after hybridization were once at 33°C and 
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twice at room temperature for 15 min for anti-mTDG, or three times at room temperature for 10 min 

for all other antibodies. Membranes were incubated with secondary HRP-conjugated antibodies 

diluted  1:5’000 (goat anti-rabbit and goat anti-mouse) or 1:20’000  (anti-rat) in 5% dry milk/TBS-T at 

room temperature for 1 h. After three washing steps of 10 min at room temperature, detection of 

the signals was performed using the WesternBright Quantum Chemiluminescent HRP Substrate 

(Advansta). 

 

Quantitative RT-PCR  

1 μg  total  RNA  extracted  with  TRI  Reagent  (Sigma)  was  reverse   transcribed  with  the  RevertAidTM H 

Minus First Strand cDNA Synthesis Kit (Fermentas)  according  to  the  manufacturer’s  protocol.  qPCR  

with target specific primers (Supplementary Table 5) was performed using Rotor-Gene SYBR Green 

PCR mix with a Rotor-Gene 3000 thermocycler (Qiagen). Conditions for each target were validated by 

standard and melting curve analyses. Target-specific amplifications were normalized to the average 

of TBP, B2m and  β-actin. Data of three independent experiments were analyzed by Anova to test for 

differences between genotypes. 
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Figure Legends 

 

Figure 1: Differentiated Tdg-/- cells accumulate aberrant methylation patterns. a) In vitro 
differentiation of Tdg+/- and Tdg-/- ES cells to neuronal progenitors; Tdg-/- cells rapidly lose viability at 
later stages of NP differentiation (24-48h). b) MeDIP-seq reveals an increasing number of 
differentially methylated regions (DMRs) with advancing differentiation state. c) DMRs that are 
hypomethylated in knockout NPs are associated with higher CpG density, whereas CpG poor DMRs 
are almost exclusively hypermethylated; CpG density and methylation fold change refer to narrow 
peaks. d) Density plot of the log10 distance of hypo- or hypomethylated NP DMRs (center of broad 
peaks) to the nearest TSS (Ensembl), **p<0.005, Mann-Whitney T-test on average of distances 
(linear). e) Promoter-association of hypo- versus hypermethylated NP DMRs (broad peaks). 

 

Figure 2: Differentiation-dependent methylation at CpG islands fails in absence of TDG. a) Volcano-
plot of methylation fold change versus FDR-adjusted p-value (narrow peaks), CpG islands (CGIs) in 
red. 99% of the DMRs that overlap with a CGI are hypomethylated in knockout NPs, non-overlapping 
ones (other) are mostly hypermethylated. b) Overlap of CGIs hypomethylated in knockout versus 
wildtype with CGIs that become de novo methylated with differentiation; p<0.0001, Chi-square with 
Yates correction. Hypomethylation at these CGIs is caused by diminished differentiation-driven 
methylation. c) Overlap of broad peaks with published datasets. To test for enrichment or depletion 
of a feature in the hypomethylated CGIs, we compared the proportion of CGI DMRs overlapping 
(positive) or not overlapping (negative) with a feature to the analogous proportion within CGIs that 
were not differentially methylated. Percentages of CGIs overlapping (positive, grey) or not 
overlapping (negative, white). ** p<0.005; *** p<0.0001, Chi-square with Yates correction. 

 

Figure 3: Hairpin bisulfite-sequencing of representative CGI DMRs in NPs. Strand-specific 
methylation (5-mC and 5-hmC) and mutation analysis of CGI DMRs, specified with characteristics in 
Supplementary Table 1, in Tdg knockout NPs complemented with wildtype TDG (wt), a catalytically 
dead mutant (TDGΔcat) or the empty complementation vector (ko). Insulin growth factor 2 (Igf2) 
served as a control (Arand et al. 2012). The bars indicate average percentage of fully methylated, 
hemi-methylated and mutated CpGs, the according numbers are presented in the tables. The heat 
maps display neighboring CpG dinucleotides, and each line represents one sequencing read. Catalytic 
activity of TDG is essential to establish methylation. Hypomethylation at these CGIs appears to not be 
caused by deamination of 5-mC,  as  the  rate  of  C→T  mutation  is  within  the  error  rate  of  the  method. 

 

Figure 4: Global levels of 5-mC and its derivates in a 24 h differentiation timecourse. 

a) Scheme of experimental setup. ES cells preconditioned in 2i medium were seeded in ESC medium 
(ECM) with LIF 14-16 h  prior  to  differentiation,  then  transferred  to  ECM  without  LIF  and  with  5μM  
retinoic acid (RA). Samples were harvested at the indicated timepoints. b) LCMSMS analysis of global 
C-modification and 5-hmU levels in genomic DNA prepared at 0, 8 and 24 h of differentiation. We 
observe a significant rise of the global levels of 5-mC, 5-fC and 5-caC with differentiation in knockout 
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and TDG∆cat (for statistics see Fig.S2). Shown are Log2 fold changes compared to wildtype (mean with 
s.e.m.); statistical analysis was performed on absolute numbers (Fig.S2), asterisks indicate significant 
difference to the respective timepoint in wt, * p<0.05, **p<0.005, *** p<0.0001, one-way Anova. 

 

Figure 5: Targeted MeDIP, GLIB and caCDIP analysis of CGI DMRs. a) Relative enrichment (RE) of 
5-mC (n=2) and 5-caC (n=3) normalized to a randomly chosen CpG-poor region (neg.contr.). TDG and 
TDG∆cat accumulate 5-mC and 5-caC over time, 5-caC especially accumulates in TDG∆cat. Mean with 
s.e.m. Asterisk, significant difference of RE between 0 h and 24 h within a genotype, * p<0.05, one-
way Anova. Statistical comparison of genotypes with regard to the log2-transformed 24 h versus 0 h 
fold change across targets: aggregated p-value < 0.0001. b) Biochemical analysis of TDG and TDGΔcat 
glycosylase activity on 5-mC derivates. Double-stranded 60mer oligonucleotide substrates containing 
a single T, 5-mC, 5-hmC or 5-caC on a fluorescence labeled strand were incubated with recombinant 
wildtype TDG or TDG∆cat. Glycosylase activity on the indicated substrates produces an abasic site 
which is converted to a single-strand break by heating under alkaline conditions, giving rise to a 
shorter fragment of 23 nt. Shown are reaction products separated on a denaturing polyacrylamide 
gel and quantification of 3 independent experiments (mean with standard deviation). c) 
Electrophoretic mobility shift assay with labeled 60mer oligonucleotides with the indicated 
modification (Substrate*), incubated with wildtype TDG or TDG∆cat and varying amounts of unlabeled 
competitor substrate containing an unmodified C or 5-caC. See also text. 

 

Figure 6: TET1 fails to stably associate with CGI DMRs during differentiation in absence of TDG 
activity. TET1-ChIP on chromatin prepared at 0, 8 or 24h of differentiation. a) Log2 fold changes of 
relative enrichment (RE) at 8 or 24 h versus the respective RE at 0 h (median with range). TET1 loses 
affinity to the CGI DMRs with ongoing differentiation in absence of TDG activity. For RE values and 
controls, refer to Fig. S4. Asterisks, significant difference between the genotypes with regard to their 
fold change versus 0h, *p<0.05, ** p<0.005, one-way Anova with Bonferroni post-test.  b)  TET1  and  β-
actin protein levels in SDS protein extracts detected by Western blot. c) TDG-ChIP, analogous to a. 
Log2 fold changes of relative enrichment (RE) versus the respective relative enrichment in TDG ko 
cells serving as a background control (median with range). TDGΔcat  is enriched at CGI DMRs due to its 
high affinity to 5-caC present at these loci. Wildtype TDG is capable of rapid turnover on 5-caC and 
appears to be associated very transiently with the CGI DMRs. For RE values and statistical analysis, 
refer to Fig. S5.  d)  TDG  and  β-actin protein levels in SDS protein extracts detected by Western blot. 

 

Figure 7: Model for a dual function of TDG in a differentiation-driven DNA methylation and 
demethylation cycle. At the onset of differentiation, a cycle of DNA methylation and demethylation 
is triggered. CpG methylation is catalyzed by Dnmts. 5-mC is oxidized by the TET proteins in a 
stepwise manner and the final products 5-fC/caC are excised by TDG (wt, top). With ongoing 
differentiation, the equilibrium of the different C-modifications is shifted towards 5-mC, evident as 
CGI de novo methylation  in  early  NPs  (“normal  methylation”).  We  propose  that  apart  from  its  active  
function in catalyzing the final step of demethylation TDG additionally provides a structural scaffold 
to allow the recruitment of the key factors involved. In absence of TDG, initiation of the cycle fails or 
stops immediately after initiation (Tdg ko, middle), resulting in lower methylation levels in ko NPs 
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than  in  wt  NPs  (“hypomethylation”).  TDGΔcat  on the other hand provides the scaffold for assembly 
and coordination of the different steps of the cycle but upon binding to 5-caC fails to turn over 
(bottom). The lacking catalytic activity of TDG leads to the accumulation of 5-caC which is bound with 
high affinity by TDG∆cat. As the cycle fails to proceed, TET1 association is destabilized. Removal of 5-
caC by dilution through DNA replication eventually leads to the hypomethylation observed in NPs. 
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Supplementary Figure Legends 

 

Figure S1: mRNA and protein levels in a 24h differentiation timecourse. a) mRNA levels of the 
pluripotency markers Oct4, Nanog and Rex1, and the differentiation-induced transcription factor 
Gata6, detected by qRT-PCR, confirm loss of pluripotency within 24h of differentiation. All three cell 
lines appear to differentiate with similar efficiency. TET1 mRNA levels decrease towards 24h but 
protein levels remain stable throughout this time window and are equal between cell lines (Fig.6b). 
mRNA   levels  were  normalized   to   the  average  of  TBP,  B2m  and  β-actin. b) TET2 mRNA and protein 
levels, detected by qRT-PCR and Western blot, respectively, show no differences between the cell 
lines. Note that mRNA levels of TET2 are 5-10 times lower than those of TET1. c) mRNA and protein 
levels of AID. AID mRNA levels are extremely low and protein levels are below the detection limit of 
Western blot. Activated B-cells served as a positive control for detection of AID in Western blot. 
Shown are means with s.e.m.; statistical analysis by one-way Anova revealed no significant 
differences across genotypes. 

 

Figure S2: Global C-modification levels measured by LCMSMS at 0, 8 and 24h of differentiation. a) 
Absolute numbers per 106 unmodified nucleotides. b) 5-mC levels decrease with culturing in 2i 
medium. Without 2i, n=1, with 2i n=3. c) Control for unspecific effects, 0h or 24h incubation with 
DMSO; n=2. DMSO does not induce any significant change of C-modification levels. Error bars, s.e.m.; 
statistical test between time points, * p<0.05, ** p<0.005, *** p<0.0001, Anova. 

 

Figure S3: Targeted analysis of 5-mC, 5-caC and 5-hmC at CGI DMRs. a) 5-mC and 5-caC proportions 
of the sum of both average RE. In Tdg∆cat the equilibrium of 5-mC and 5-caC is tipped towards 5-caC 
upon differentiation. 

 

Figure S4: TET1-association at CGI DMRs. Relative enrichment normalized to a randomly chosen 
CpG-poor region (neg.contr.). Bars indicate the mean, error bars the s.e.m. The promoter regions of 
Oct4, Nanog and HoxA10 served as control regions. See also Fig.7. 

 

Figure S5: TDG-association at CGI DMRs. Relative enrichment normalized to a random CpG-poor 
region (neg.contr.). Bars indicate the mean, error bars the s.e.m. The promoter regions of Oct4, 
Nanog and HoxA10 served as control regions. Statistical analysis, two-way Anova: genotypes 
significantly different, 3 p<0.05, ** p<0.005. See also Fig.8. 
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Figure S3: Targeted analysis of 5-mC, 5-hmC and 5-caC levels at CGI DMRs 
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Figure S4: TET1-ChIP, relative enrichment versus chr2neg 
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Figure S5: TDG-ChIP, relative enrichment versus chr2neg 
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Supplementary Tables 

 

 

 

Supplementary Table 1: Targets of hairpin BS-seq with characteristics 

DMR genic/intergenic gene CGI genomic features NP vs ES 

8 5' exon Tbx3 weak TET1 hyper 

9 intron Kdm2b strong 
TET1, H3K4me1, 
H3K4me3, NP-LMR 

hyper 

10 3' exon Zfp282 strong TET1, H3K4me1, H3K4me3 hyper 

36 intron Gm5089 strong 
TET1, H3K4me1, 
H3K4me3, NP-LMR 

hyper 

39 5' exon Ldoc1l strong 
TET1, H3K4me1, 
H3K4me3, NP-LMR 

hyper 

49 intergenic  ------ strong 
TET1, H3K4me1, 
H3K4me3, NP-LMR 

hyper 

54 exon Mgat4b strong 
CTCF, H3K4me1, 
H3K4me3, NP-LMR 

hyper 

 

 

 

Supplementary Table 2: Enzymes and primers used in hairpin BS-sequencing 

DMR restriction enzyme Primer sequences 

8 MspI F GATAAGGATATTGAGTTAGAGGA 
  R AAAAACACTAAACCAAAAAAC 
9 TaqI F TTTTAGGAGATATAAAGAATAGTTT 
  R AAAAACACAAAAAACAACTC 
10 PstI F AGAAGAGTTTTAATTGTTATTTTGG 
  R AAACTTCAACTACCACTCTAACC 
36 BamHI F TTTGATATTTTTTTTTAGTTTT 
  R CCTAACACTTTCTCTTAATTT 
39 TaqI F GGATGTAGGTATTGATTAT 
  R ACCTACCAAACTTTACAA 
49 TaqI F GTGTATAGTTGGGTTTGTAGTG 
  R TAAAAAACTAAAATATCCCCTC 
54 MspI F TAGGATTGTGTTGTTTTTAGATTT 
  R CACCTATACCTTTCTCAACCA 
Igf2 according to (Arand et al. 2012).   
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Supplementary Table 3: Antibodies used in this study 

Antibody Product Nr. Manufacturer 

Anti-5mC monoclonal antibody 33D3 Mab-081-100 Diagenode 

Anti-5-Carboxylcytosine antibody 61225 Active Motif 

Anti-Methylcytosine dioxygenase TET1 antibody 09-872 Millipore 

Anti-β-actin monoclonal ab8226 Abcam 

Anti-TET2 monoclonal  H. Leonhard 

Anti-AID monoclonal 4.26.1  S.K. Petersen-Mahrt 

Anti-Dnmt3b ab2851 Abcam 

Anti-TDG L58 polyclonal  our laboratory 

Anti-mouse Ig (horse radish peroxidase linked)  NXA931 GE Healthcare 

ECL™  Anti-rabbit IgG (HRP linked) NA934V GE Healthcare 

Anti-rat Ig (HRP linked) A9037-1ML Sigma 

 

The anti-TDG antibody used for ChIP was produced and affinity purified in our lab, for further 
information see (Neddermann et al. 1996; Hardeland et al. 2002). 

 

 

 

 

Supplementary Table 4: Primers used in ChIP, MeDIP, GLIB and caCDIP qPCR 

Primer 5’-3’  sequence 

neg. contr. F AGC ACA GCC TGA AGC CTC TA 

neg. contr. R ACA CAG CAT GGC ATC TTG AA 

DMR 54 F ACCCAGCAAAATCTCACCTG 

DMR 54 R GACACTGGACAGGGCTCCA 

DMR 39 F GAGCTGGATAGCCCTTGTAGAATG 

DMR 39 R TTGGCAGCGGAGGGAGCAG 

DMR 8 F CTGGCCACAGCTTTACCATC 

DMR 8 R AAGGACACTGAGCCAGAGGA 

DMR 49 F GCTGGGTTTGTAGTGGGAAC 

DMR 49 R GCAGGACCACACCTCACATC 

Nanog P_2 F GAGGATGCCCCCTAAGCTTTCCCTCCC 

Nanog P_2 R CCTCCTACCCTACCCACCCCCTATTCTCCC 

Oct4_PP F GTGAGGTGTCGGTGACCCAAGGCAG 

Oct4_PP R GGCGAGCGCTATCTGCCTGTGTC 

pHoxA10_T1 F CACTCCCAGTTTGGTTTCGT 

pHoxA10_T1 R GGGGGTACAGGTTCAAGAGC 
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F forward primer; R reverse primer. 

 

 

 

Supplementary Table 5: Primers used in quantitative RT-PCR  

Primer 5’-3’  sequence 

AID RT fw TTC GGC GCA TCC TTT TGC CCT 

AID RT rev GGC GGT CCT GTG CAG CTC AA 

β-actin RT fw CGT CGA CAA CGG CTC CGG CAT 

β-actin RT rev CCA CCA TCA CAC CCT GGT GCC TAG G 

B2m RT fw TCA CGC CAC CCA CCG GAG AA 

B2m RT rev TCT CGA TCC CAG TAG ACG GTC TTG G 

Gata6 RT fw TCG AAA CGC CGG TGC TCC AC 

Gata6 RT rev CCG TGA TGA AGG CAC GCG CT 

Nanog RT fw CCT TCC CTC GCC ATC ACA CTG ACA 

Nanog RT rev GAG GAA GGG CGA GGA GAG GCA GC 

Oct4 RT fw GTC CCC CAA GTT GGC GTG GAG 

Oct4 RT rev CAT GTC CTG GGA CTC CTC GGG AG 

Rex1 RT fw GGA CTA AGA GCT GGG ACA CG 

Rex1 RT rev TCC TGC TTT TTG GTC AGT GGT 

TBP RT fw CCT AAA GAC CAT TGC ACT TCG TG 

TBP RT rev ACT GAA AAT CAA CGC AGT TGT CC 

TET1 RT fw ACA CAC CTT GGG GCA GGA CCA 

TET1 RT rev TCT GAT CAC CCA CTT GGC GAC C 

TET2 RT fw GGA AGC AAG ATG GCT GCC CTG TA 

TET2 RT rev GAA TGA ATC CAG CAG CAC CGT CCC 

 

 

Arand, J., et al. (2012). "In vivo control of CpG and non-CpG DNA methylation by DNA 
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Abstract The base excision repair machinery protects
DNA in cells from the damaging effects of oxidation,
alkylation, and deamination; it is specialized to fix single-
base damage in the form of small chemical modifications.
Base modifications can be mutagenic and/or cytotoxic,
depending on how they interfere with the template function
of the DNA during replication and transcription. DNA
glycosylases play a key role in the elimination of such
DNA lesions; they recognize and excise damaged bases,
thereby initiating a repair process that restores the regular
DNA structure with high accuracy. All glycosylases share a
common mode of action for damage recognition; they flip
bases out of the DNA helix into a selective active site
pocket, the architecture of which permits a sensitive
detection of even minor base irregularities. Within the past
few years, it has become clear that nature has exploited this
ability to read the chemical structure of DNA bases for
purposes other than canonical DNA repair. DNA glyco-
sylases have been brought into context with molecular
processes relating to innate and adaptive immunity as well
as to the control of DNA methylation and epigenetic
stability. Here, we summarize the key structural and
mechanistic features of DNA glycosylases with a special
focus on the mammalian enzymes, and then review the
evidence for the newly emerging biological functions
beyond the protection of genome integrity.

Introduction

The integrity of genetic information is under constant threat
by the tendency of DNA to engage in chemical reactions in
its cellular environment. These can damage the DNA in
various ways, most frequently by oxidation, alkylation, or
deamination of the coding bases (Lindahl and Wood 1999).
Damage to DNA bases may affect their base-pairing
properties and, therefore, needs to be fixed to maintain the
template function of the DNA (Kunz et al. 2009a). Many
base lesions are pro-mutagenic, i.e., they give rise to
genetic mutations if not repaired. One such example is
7,8-dihydro-8-oxoguanine (8-oxoG), a frequent product of
DNA oxidation. 8-oxoG tends to base-pair with adenine,
thus giving rise to G•C to T•A transversion mutations.
Likewise, hydrolytic deamination of cytosine and 5-
methylcytosine (5-meC) gives rise to uracil and thymine
mispaired with guanine, respectively, causing C•G→T•A
transition mutations if not repaired. Alkylation can generate
a variety of DNA base lesions comprising O6-
methylguanine (6-meG), N7-methylguanine (7-meG), or
N3-methyladenine (3-meA). While 6-meG is pro-
mutagenic by its property to pair with thymine, 7-meG
and 3-meA block replicative DNA polymerases and are
therefore cytotoxic (Lindahl and Wood 1999).

These and many other forms of DNA base damage arise
in cells at least 10,000 times every day and only the
continuous action of specialized DNA repair systems can
prevent a rapid decay of genetic information. Single-base
lesions are eliminated by base excision repair (BER), a
pathway initiated by DNA glycosylases that recognize and
excise damaged bases. Base removal by a DNA glycosylase
generates a so-called apurinic/apyrimidinic site (AP-site) in
DNA, which is then further processed by specific AP-
endonuclease, DNA polymerase, and DNA ligase activities
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to restore the original DNA sequence (Fig. 1) (Almeida and
Sobol 2007). Accordingly, cells lacking DNA glycosylase
functions generally show increased levels of base damage in
their DNA, elevated mutation rates, and hypersensitivity to
specific DNA damaging agents. Surprisingly, however, the
phenotype of DNA glycosylase disruptions in mice is usually
rather moderate (reviewed in Robertson et al. 2009), the only
known exception being the thymine DNA glycosylase
(TDG), which was recently reported to be essential for
embryonic development in mouse (Cortazar et al. 2011;
Cortellino et al. 2011).

In this review, we will focus on the mammalian DNA
glycosylases, for which we will briefly summarize the key
structure–function concepts and discuss their role in the
repair of DNA base lesions. We will further elaborate on
their newly emerging functions beyond canonical DNA
repair, e.g., in innate and adaptive immunity and in DNA
methylation control.

DNA glycosylases—an ancient family of DNA repair
proteins

The consideration that cells must possess an ability to
remove uracil from DNA, which arises either by misincor-
poration of deoxyuridine monophosphate (dUMP) during
DNA replication or by hydrolytic deamination of cytosine,
led to the discovery of an enzyme capable of cleaving
uracil–deoxyribose bonds, the uracil N-glycosidase (Ung)
in Escherichia coli (Lindahl 1974). This finding was
followed by the isolation of many other DNA glycosylases
in species from all kingdoms of life. Eleven DNA
glycosylases have been identified in mammals and these
can be subdivided into four structurally distinct super-
families; the uracil DNA glycosylases (UDGs), the helix-
hairpin-helix (HhH) glycosylases, the 3-methyl-purine
glycosylase (MPG), and the endonuclease VIII-like (NEIL)
glycosylases (Table 1).

The uracil DNA glycosylases

E.coli Ung turned out to be the founding member of a large
superfamily of glycosylases, which now includes six
subfamilies, three of which are present in the eukarya.
Besides the UNG subfamily, these include the mismatch-
specific uracil DNA glycosylases (MUGs) (Gallinari and
Jiricny 1996) and the single-strand-specific monofunctional
uracil DNA glycosylases (SMUGs) (Haushalter et al.
1999). Despite a considerable amino-acid sequence diver-
gence, all UDGs share a common alpha–beta fold struc-
tured catalytic domain (Aravind and Koonin 2000).

Members of the UNG subfamily have been characterized
in organisms from bacteria and yeasts to humans and large

Fig. 1 The core pathway short-patch BER. The base-excision repair
pathway addresses single-base lesions (a). BER is initiated by a DNA
glycosylase, e.g., UNG, specifically recognizing and binding a base
lesion. Upon encountering a substrate base, e.g., uracil for UNG, the
glycosylase flips the base out of the base-stack into its catalytic site
pocket where specific contacts examine the substrate base and position
it for nucleophilic attack to the N-glycosidic bond (b). Release of the
substrate base results in an abasic site (c), which is further processed
by the AP-endonuclease, APE1, that cleaves the phosphate backbone
5’ to the abasic site, producing a 3’OH and a 5’deoxyribose-phosphate
moiety (5’dRP) (d). Polymerase β (Polβ) hydrolyzes the 5’dRP and
fills in the single nucleotide gap, which is subsequently sealed by the
DNA ligase III (LigIII), supported by the scaffold protein XRCC1 (e),
thus restoring the original base sequence (f). The increase of DNA
bending from UNG to Polβ might support the directionality of the
handover from one BER factor to the next

2 Chromosoma (2012) 121:1–20
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"eukaryotic" viruses. These are highly conserved both at the
amino-acid sequence and gene structure levels; the yeast
and human proteins share 40.3% amino-acid sequence
similarity and the human, mouse, and fish genes have
identical exon–intron boundaries, indicating that the exon–
intron organization has not changed for more than
450 million years (Krokan et al. 1997). Alternative splicing
as well as transcription from two distinct start sites gives
rise to the specific mitochondrial and nuclear isoforms
UNG1 and UNG2 in mouse and human cells (Nilsen et al.
1997). UNG is highly specific for processing of uracil in
DNA but also excises DNA-incorporated 5-fluorouracil (5-
FU), a uracil analog used in cancer therapy (Pettersen et al.
2011). Interactions with PCNA and RPA target the nuclear
UNG2 to sites of DNA synthesis, where its main function is
to rapidly excise uracil that gets incorporated opposite from
adenine (Otterlei et al. 1999). Accordingly, mouse cells
deficient in UNG accumulate ~100-fold increased levels of
uracil in their DNA but, notably, do not show a significant
mutator phenotype (Nilsen et al. 2000). This is unlike

human cells where inhibition of UNG appears to elevate the
mutation frequency mildly (Radany et al. 2000). However,
mice lacking Ung do develop B-cell lymphomas and show
disturbances of antibody diversification, implicating a
specific function of UNG in processing deamination-
induced U•G mismatches at immunoglobulin loci to
facilitate somatic hypermutation and class switch recombi-
nation (Rada et al. 2002; Nilsen et al. 2003). Consistently,
mutations in the human UNG gene have been associated
with a subgroup of hyper-IgM syndrome patients, showing
impaired class switch recombination (Imai et al. 2003).

The MUG subfamily of UDGs emerged with the identifi-
cation of TDG, an enzyme capable of excising thymine from
G•Tmismatches. Nonetheless, the family was named after the
E.coli Mug protein (Gallinari and Jiricny 1996), giving
credit to the fact that the G•U rather than the G•T mismatch
represents the common most efficiently processed substrate
for the members of this subfamily. MUG orthologs have
been described in Schizosaccharomyces pombe, Drosophila
melanogaster (Hardeland et al. 2003), and mammals

Table 1 Mammalian DNA glycosylases, their main substrates, modes of action, and mutant phenotypes

Type of base lesion Name Physiological
substrates

Mono
(M)/ bi(B)
functional

Mouse knockout (ko)/
knockdown (kd) phenotype

Uracil in ssDNA
dsDNA

UNG Uracil-N glycosylase U, 5-FU, ss and
dsDNA

M ko: viable, B-cell lymphomas,
disturbed antibody diversification

SMUG1 Single-strand-specific
monofunctional uracil
DNA glycosylase 1

U, 5–hmU, 5-FU,
ss and dsDNA

M kd: moderate increase in mutation
frequency (C→T)

Pyrimidine derivates
in mismatches

MBD4 Methyl-binding domain
glycosylase 4

T, U, 5-FU, εC,
opposite G, dsDNA

M ko: viable, elevated mutation
frequency (C→T)

TDG Thymine DNA
glycosylase

T, U, 5-FU, εC,
5-hmU, 5-fC, 5-caC;
opposite G, dsDNA

M ko: embryonic lethal, aberrant DNA
methylation and imbalanced
chromatin marks in CpG-rich
promoters

Oxidative base
damage

OGG1 8-OxoG DNA
glycosylase 1

8–oxoG, FaPy,
opposite C, dsDNA

B ko: viable, accumulation of 8-oxoG,
elevated mutation frequency (G→T)

MYH MutY homolog DNA
glycosylase

A opposite 8–oxoG, C
or G, 2–hA opposite
G, dsDNA

M ko: viable, see OGG1

Alkylated purines MPG Methylpurine
glycosylase

3–meA, 7-meG, 3-
meG, hypoxanthine,
εA, ss and dsDNA

M ko: viable, elevated levels of ethenoA
and hypoxanthine

Oxidized,
ring-fragmented
or –saturated
pyrimidines

NTHL1 Endonuclease III-like 1 Tg, FaPyG, 5-hC,
5-hU, dsDNA

B ko: viable

NEIL1 Endonuclease VIII-like
glycosylase 1

Tg, FaPyG, FaPyA,
8-oxoG, 5–hU, 5–
hC, ss and dsDNA

B ko: metabolic syndrome, increased
damage levels in mitochondrial DNA;
kd: hypersensitive to γ radiation

NEIL2 Endonuclease VIII-like
glycosylase 2

As NTHL1 and
NEIL1

B Unknown

NEIL3 Endonuclease VIII-like
glycosylase 3

FaPyG, FaPyA,
prefers ssDNA

B ko: normal

U, uracil; , A, adenine; , T, thymine; , C, cytosine, G, guanine; , ss single stranded; , ds, double stranded; , 5–hm, 5–hydroxymethyl; , 5-FU, 5-
fluorouracil; , ε, etheno; , 5-fC, 5-formylcytosine; , 5-caC, 5-carboxylcytosine; , 8–oxoG, 8–oxo-7,8-dihydroguanine; , Tg, thymine glycol; , FaPy,
2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine; , me, methyl; , h, hydroxyl
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(Neddermann et al. 1996). Crystal structural analyses
revealed a striking resemblance in the overall fold of the
glycosylase domains of E.coli Mug and Ung, despite the
absence of a notable sequence similarity (Barrett et al. 1998).
Unlike UNG, however, the MUG glycosylases have a
spacious and rather non-discriminating active site pocket,
accommodating a broad range of substrates including
pyrimidine derivates like 5-FU, 5-hydroxymethyluracil (5-
hmU), and 3,N4-ethenocytosine (Table 1) (reviewed in
Cortazar et al. 2007), and they process these substrates with
an extremely low turnover rate (Waters and Swann 1998;
Hardeland et al. 2000). Compared to E.coli Mug, which
consists of the catalytic core only, TDG contains additional
N- and C-terminal domains, providing non-specific DNA
interaction and regulatory functions (Hardeland et al. 2002;
Steinacher and Schär 2005; Baba et al. 2005). Knockout of
Tdg in mouse is embryonic lethal, suggesting that, unlike
other UDGs, it has a non-redundant essential function in
embryonic development (Cortazar et al. 2011; Cortellino et al.
2011). TDG-deficient cells do not show increased sensitivity
towards agents that would cause TDG-relevant DNA base
lesions, nor do they show increased levels of spontaneous
mutations (Cortazar et al. 2011), implicating functions
beyond canonical DNA repair, which will be discussed
below. An involvement of TDG in DNA repair becomes
obvious, however, in the processing of the anti-cancer drug
5-FU when incorporated into the DNA. In this special case,
the repair activity of TDG does not provide drug resistance
as might be expected; excision of the base analog by TDG
results in an accumulation of toxic AP-site intermediates and
DNA strand breaks and, thus, mediates the DNA-directed
cytotoxic effect of 5-FU (Kunz et al. 2009b).

SMUG-family glycosylases were initially identified as
a uracil-excising activity in Xenopus, insect, and human
cells (Haushalter et al. 1999). As such, it appears to serve
as back-up for UNG in limiting uracil accumulation (U•A)
in genomic DNA and in preventing C→T mutation
following cytosine deamination (U•G) (Haushalter et al.
1999; An et al. 2005). While Xenopus SMUG has a
preference for uracil in single-stranded DNA, hence the
name “single-strand-specific monofunctional uracil DNA
glycosylase”, the human homolog processes uracil also in
double-stranded DNA (Table 1) (Haushalter et al. 1999;
Kavli et al. 2002). SMUGs show only limited amino-acid
sequence similarity with members of other UDG sub-
families and the conservation seems restricted to catalytic
site residues, showing mosaic features of the UNG and
MUG enzymes. Crystallographic analysis of SMUG1
identified a pyrimidine binding pocket topologically
similar to other UDGs and implicated a water displace-
ment/replacement mechanism to account for the enzyme's
preference for uracil over thymine (Wibley et al. 2003).
Like TDG, SMUG1 is active on 5-FU but, unlike TDG,

appears to protect cells from the cytotoxic effects of the
drug as shown in siRNA knockdown experiments (An et
al. 2007). Notably, a 5-hmU DNA glycosylase activity
originally discovered in calf thymus was later identified as
SMUG1 (Cannon-Carlson et al. 1989; Boorstein et al.
2001). So, like TDG, SMUG1 is capable of processing the
deamination product of 5-hydroxymethylcytosine (5-
hmC), a substrate that has recently gained attention in
the context of active DNA demethylation.

Additional subfamilies of UDGs appear to have
evolved in archaeal and bacterial organisms thriving
under extreme environmental conditions such as high
temperature, favoring hydrolytic deamination of cytosine
and 5-meC. As these will not be further discussed here,
the reader is referred to the excellent classification of the
UDG superfamily originally published by Aravind and
Koonin (2000).

The helix-hairpin-helix glycosylases

The second superfamily of DNA glycosylases, charac-
terized by a shared helix-hairpin-helix (HhH) domain,
comprises a diverse group of enzymes present in
organisms throughout all kingdoms of life. Phylogenetic
analysis in 94 genomes from bacteria, archaea, and
eukaryotes identified six distinct families of HhH DNA
glycosylases: Nth (homologs of the E. coli EndoIII
protein), OggI (8-oxoG DNA glycosylase I), MutY/Mig
(A/G-mismatch-specific adenine glycosylase), AlkA
(alkyladenine-DNA glycosylase), MpgII (N-methylpur-
ine-DNA glycosylase II), and OggII (8-oxoG DNA
glycosylase II) (Denver et al. 2003). The Nth and MutY/
Mig family glycosylases as well as some of the MpgII
type proteins contain iron–sulfur [4Fe4S] clusters that are
thought to play a structural role in DNA binding and
substrate recognition (Cunningham et al. 1989; Kuo et al.
1992; Guan et al. 1998; Porello et al. 1998; Begley et al.
1999).

The founding member of the Nth family was originally
discovered as an endonuclease activity (EndoIII) in E.coli
(Radman 1976) but then turned out to be a DNA glycosylase
with an associated AP-lyase activity. Nth proteins appear to
be the most highly conserved subfamily within the HhH
glycosylases (Denver et al. 2003). The mammalian homolog,
NTHL1 (endonuclease III-like 1), acts on ring fragmented
purines or oxidized pyrimidine residues like thymine glycol
(Tg), formamidopyrimidine (FaPy), 5-hydroxycytosine (5-
hC), and 5-hydroxyuracil (5-hU), preferentially when placed
opposite guanine (Table 1) (Dizdaroglu et al. 1999; Eide et al.
2001). Nth1 knockout mice show no overt abnormalities
presumably because the loss of its repair function can be
compensated for by NEIL glycosylases (see below) (Ocampo
et al. 2002; Takao et al. 2002).
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MutY was first identified in E.coli as an enzyme
excising adenine from A•G mispairs (Au et al. 1988),
while Mig.Mth was discovered in hyperthermophilic
archaea by its ability to excise U or T mispaired with G
(Horst and Fritz 1996). MutY/Mig homologs are wide-
spread in bacterial genomes, but only about half of the
eukaryotes and less than a third of the archaeal species
analyzed have glycosylases of this family (Denver et al.
2003). The mammalian homolog of MutY, termed MYH,
excises adenine opposite 8-oxoG, guanine, or cytosine
(Table 1) (McGoldrick et al. 1995), contributing to a
multimodal defense against the mutability of guanine
oxidation (van Loon et al. 2010). Facilitating the replace-
ment of A opposite 8-oxoG with a C, MYH produces the
preferred substrate for the 8-oxoG directed DNA glyco-
sylase OGG1. Hence, disruption of Myh in mice does not
produce a mutator phenotype per se because it is masked
by OGG1, which corrects the bulk of oxidized guanines
before replicative DNA polymerases get a chance to
misinsert adenine opposite the damaged base. Knocking
out both Myh and Ogg1, however, results in a synergistic
increase in G→T mutations (Russo et al. 2004). In humans,
germline mutations in the MYH gene have been associated
with a predisposition to colorectal cancer (Al-Tassan et al.
2002; Jones et al. 2002).

The Ogg1 protein family is less well represented across
the phylogeny. While present in most eukaryotic genomes,
Ogg1 encoding genes seem to be missing in bacteria and
archaea (Denver et al. 2003). Ogg1 was originally
discovered in yeast and later also identified in mammals
(Nash et al. 1996; Lu et al. 1997; van der Kemp et al. 1996;
Radicella et al. 1997), where it provides the major activity for
the removal of 8-oxoG opposite cytosine (Friedberg et al.
2006). It does, however, also excise other oxidized pyrimi-
dines or ring-fragmented purines like formamidopyrimidine
(FaPy) (Table 1) (Dherin et al. 1999; Karahalil et al. 1998).
In Saccharomyces cerevisiae, inactivation of OGG1 results
in an accumulation of G→T transversion mutations
(Thomas et al. 1997). Ogg1 null mice are viable but
exhibit a 2-fold increase in chromosomal 8-oxoG and
moderately elevated spontaneous mutation frequencies
(Klungland et al. 1999). Polymorphisms in the human
OGG1 gene impairing the 8-oxoG incision activity were
found to be associated with non-small cell lung cancer (Janik
et al. 2011) and an increased risk of childhood acute
lymphoblastic leukemia (Stanczyk et al. 2011).

Although closely related to the Nth and MutY proteins,
MBD4, also known as MED1, is special in two ways; it has a
methyl-CpG binding domain (MBD) and is therefore also a
member of the MBD protein family, and it functionally
interacts with MLH1, a protein of the postreplicative
mismatch repair system (Hendrich and Bird 1998; Bellacosa
et al. 1999). Like the structurally unrelated TDG, MBD4 is a

mismatch-directed DNA glycosylase processing a wide
range of G-mispaired base lesions, including thymine, uracil,
5-FU, and 3,N4-ethenocytosine (Table 1) (Petronzelli et al.
2000; Cortellino et al. 2003). Its methyl-CpG binding
domain in addition to its activity on the deamination product
of 5-meC has made MBD4 a prime candidate for an active
DNA demethylase, an epigenetic function likely to be
important in embryogenesis. However, Mbd4 knockout mice
show no developmental defects, but a mild increase in C→T
mutation frequency and a predisposition to gastrointestinal
cancer in APC-deficient tumor models (Millar et al. 2002;
Wong et al. 2002), consistent with a role of MBD4 in repair
of cytosine or 5-meC deamination damage.

E.coli AlkA, the founding member of the AlkA family
of HhH glycosylases, acts on alkylated bases, e.g., 3-meA.
While homologs are present in many bacterial and
eukaryotic genomes (Denver et al. 2003), mammals appear
to be devoid of this particular class of enzyme. Instead, they
use a structurally unrelated enzyme, MPG, to eliminate
specific forms of base alkylation damage.

The 3-methyl-purine glycosylase (MPG)

MPG, also known as AAG or MDG, originally identified in
rat (O'Connor and Laval 1990) and later in human, is a
DNA glycosylase excising a range of alkylated bases from
DNA, including 3-meA, 7-meG, 3-methylguanine (3-meG)
as well as ethylated bases in single- and double-stranded
DNA (Table 1) (O'Connor 1993; Lee et al. 2009). MPGs
form a structurally distinct class of glycosylases; they lack
helix-hairpin-helix motifs nor do they have an alpha–beta
fold structure characteristic of UDGs. Mice lacking MPG are
viable and show a mild increase in the frequency of
spontaneous mutation (Engelward et al. 1997; Hang et al.
1997), and they are more prone to develop azoxymethane-
induced colon cancer than their wild-type counterparts (Wirtz
et al. 2010). Reminiscent of TDG’s role in the DNA-directed
cytotoxic effect of 5-FU, MPG drives alkylation-induced
retinal degeneration in mice by generating cytotoxic BER
intermediates (Meira et al. 2009).

The endonuclease VIII-like glycosylases

Although their substrate spectrum overlaps with that of
endonuclease III (Nth), the homologs of E. coli endonuclease
VIII, encoded by the nei gene, are structurally related to the
formamidopyrimidine-DNA glycosylase Fpg and form a
separate family of DNA glycosylases. Nei was discovered in
E. coli as a second activity next to Nth acting on thymine
glycol (Tg) and urea (Melamede et al. 1994).

The mammalian counterparts are termed Nei-like
(NEIL)1, 2, and 3, and share a conserved helix-two-turn-
helix motif with the E. coli Fpg and EndoVIII proteins. The
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preferred substrates of NEIL1 and NEIL2 are oxidized
pyrimidines such as Tg, 5-hC, FaPyA, and FaPyG (Hazra
et al. 2002; Morland et al. 2002; Rosenquist et al. 2003),
but also 5-hydroxyuracil (5-hU) and 8-oxoG in DNA
bubble structures (Table 1) (Dou et al. 2003). NEIL3, on
the other hand, excises FaPy but is inactive on 8-oxoG
(Liu et al. 2010). Mice with a targeted inactivation of the
Neil1 gene exhibit a phenotype reminiscent of the
metabolic syndrome, as well as increased levels of DNA
damage in mitochondrial DNA (Vartanian et al. 2006).
Neil3 knockout mice are viable and fertile, and the protein
appears to be preferentially expressed in hematopoietic
tissues (Torisu et al. 2005), implicating a possible function
in hematopoiesis or the immune system.

Structure function aspects

DNA glycosylases evolved to counter the many different
forms of chemical damage occurring to DNA bases. They
are highly specialized enzymes with distinct structures and
substrate specificities, but they all share a common
principle of action. DNA glycosylases recognize their
cognate substrates by rotating bases out of the DNA helix
into a specifically fitting pocket that harbors the active site.
Substrate selectivity is mostly achieved by steric exclusion
from the binding pocket of bases that are not to be
processed, and to some extent also by the catalytic
efficiency of the active site configuration. If base fitting is
successful, cleavage of the N-glycosidic bond will occur,
resulting in the release of a free base and the generation of a
base-less sugar, an AP-site in the DNA.

Detection and verification of base damage

Detecting a single damaged base in a vast excess of regular
bases in the genome amounts to the proverbial task of
searching a needle in a haystack, and this is not helped by
the fact that the lesions addressed by BER do not usually
cause notable distortions to the DNA helix. A human cell
suffers about 104 base lesions per day, translating into
roughly one lesion every 10 s within a genome of about
14 billion nucleotides that must be spotted and repaired.
How DNA glycosylases manage to efficiently search for
and recognize these lesions is not clear but biochemical and
structural work has provided some insight into possible
mechanisms.

Scanning the genome for damaged bases

Little is known about how DNA glycosylases find damaged
bases in the genome. One idea, proposed on the basis of
biochemical evidence and theoretical considerations, postu-

lates the association of the glycosylase with undamaged
DNA by non-specific interactions, facilitating sliding along
the DNA duplex for a certain distance and scanning the
sequence for irregular bases (Berg et al. 1981). Considering
the structural and functional diversity of DNA glycosylases,
however, there are likely to be different translocation
mechanisms, variably involving features of tracking, diffu-
sion, and hopping on the DNA (Blainey et al. 2009;
Steinacher and Schär 2005; Friedman and Stivers 2010).
Recently, an appealing DNA scanning concept was pro-
posed for DNA glycosylases harboring an [4Fe4S] cluster.
The underlying observation was that E. coli MutY and Nth
change the oxidation state of their iron–sulfur cluster from
[4Fe4S]2+ to [4Fe4S]3+ upon contact with DNA, which
stabilizes the interaction. Thus, if such DNA glycosylases
bind in the vicinity of each other, they might act as electron
donors and acceptors for each other, making use of the
DNA for charge transfer. This may facilitate the dissocia-
tion of one glycosylase upon binding of another by
reduction of its [4Fe4S] cluster. If the electron transfer
involved is perturbed by a base lesion between the two
glycosylases, however, both will stay bound to the DNA,
increasing the likelihood of damage detection (Boal et al.
2009). This way, [4Fe4S] clusters may support the search
for base damage without a need of scanning the entire DNA
sequence.

Detection of DNA base damage by DNA glycosylases
ultimately requires a full examination of the chemical
surface of single bases. To minimize the effort, DNA
glycosylases employ strategies of damage pre-selection.
OGG1 and UNG, for instance, were proposed to pre-select
substrates by establishing superficial base contacts through
conserved residues in close proximity to the mouth of their
catalytic pocket. This allows potential substrates to be
identified without fully inserting every base into the active
site pocket (Fig. 2) (Banerjee et al. 2005; Parker et al.
2007). Consistently, NMR studies on human UNG showed
the glycosylase to undergo a conformational change upon
DNA binding, allowing for oscillation between an open
form, loosely interacting with the DNA in an unspecific
manner, and a closed form engaged in base examination
without fully rotating the base out of the helix (Fig. 2)
(Friedman et al. 2009). Base pre-scanning is likely to be
facilitated by DNA breathing, considering that many base
lesions affect base pairing dynamics to some extent and are
therefore likely to enhance local DNA melting.

Formation of a mature enzyme substrate complex

For final damage verification, the base needs to be flipped
out of the DNA helix and accommodated in the active site
cavity of the glycosylase. This increases the surface for
molecular interactions, providing for a sensitive discrimi-
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nation of even minor base alterations and, ultimately,
catalysis of the base release. One of the best-studied
glycosylases with regard to damage recognition is UNG.
On its surface, UNG forms a positively charged groove that
accommodates the minor groove of the DNA and contains

the active site cavity. Upon encountering a uracil in DNA,
UNG uses a hydrophobic side chain of a conserved leucine
to push the uracil out of the base stack and insert it into the
catalytic pocket (Fig. 3). The same residue stabilizes the
double helix by occupying the vacated space (Mol et al.

Fig. 2 Mechanism of base removal by monofunctional and bifunc-
tional glycosylases. While all DNA glycosylases share a common
principle of action, they differ in details of damage search,
recognition, and excision. Among the monofunctional DNA glyco-
sylases, UNG searches for uracil in DNA by oscillating between an
open conformation, making unspecific contacts with the DNA, and a
closed conformation for base-interrogation (a), involving conserved
structures at the mouth of the catalytic site pocket (b). Pre-selected
bases are flipped out of the DNA duplex and inserted into the catalytic
pocket, where specific hydrogen bonds align the base for nucleophilic
attack by an activated water molecule strategically positioned by a
conserved aspartic acid residue (red asterisk, c). TDG differs from
UNG by its non-specific interaction with DNA through a clamp
formed by the N-terminal domain (a), its larger catalytic pocket that
accommodates a broader range of substrates, and its ability to involve

the opposing base in lesion recognition (b). The catalytic residue in
TDG is an asparagine (black asterisk) that positions, but does not
activate, a water molecule which can then act as a weak nucleophile
(c). TDG stays firmly bound to the abasic site upon base release (d)
until SUMOylation induces dissociation by neutralizing the N-
terminal DNA binding activity (e). Similar to UNG, the bifunctional
OGG1 pre-selects bases for flipping by interactions with conserved
amino-acid residues at the mouth of the catalytic cavity (a, b), and
similar to TDG, it also takes the opposing base into account for
substrate selection (c). Bifunctional glycosylases use a conserved
amino-acid residue (blue asterisk) for nucleophilic attack, which
results in a covalent intermediate between the glycosylase and the
DNA substrate (d). Resolution of this intermediate produces a DNA
nick that is further processed by APE1 (e)
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1995; Savva et al. 1995). At the same time, UNG pinches and
compresses the double-stranded DNA backbone, thereby
inducing DNA bending by about 45° at the site of the damage
(Fig. 1) (Parikh et al. 1998). Selectivity for uracil is mediated
by several structural features: purine bases are sterically
excluded from the active site by the overall narrow geometry
of the binding pocket, while the entry of thymine and other 5-
methylated pyrimidines is blocked by a side chain of a
conserved tyrosine residue. Accordingly, UNG can be
converted into a thymine-processing enzyme by an amino
acid substitution that eliminates this sterical block (Kavli et al.
1996). Cytosine can enter the active site but, due to
unfavorable hydrogen bonding at the bottom of the cavity,
cannot be positioned correctly for catalysis (Kavli et al. 1996;
Slupphaug et al. 1996).

While UNG is highly specialized to the excision of DNA
uracil, TDG is a good example of a broad spectrum UDG
showing mismatch dependency. Unlike UNG, the bacterial
and human TDG orthologs have rather spacious pyrimidine-
binding pockets, accommodating a large variety of base
derivatives (Barrett et al. 1998, 1999; Baba et al. 2005; Maiti
et al. 2008), although the preferred substrates are G-
mismatched deaminated pyrimidines (Waters and Swann
1998; Hardeland et al. 2003). Because TDG acts on thymine,
it needs to be able to discriminate between a regular thymine
in DNA (A•T) and one that resulted from deamination of 5-
meC (G•T). Substrate selection thus has to take into account
not only the base structure itself but also the opposite base.
Structural and biochemical studies of E.coli Mug and human
TDG (Barrett et al. 1998; Maiti et al. 2008, 2009) have shed
light on how this might be achieved. In contact with DNA,
TDG undergoes a conformational change in its N-terminal
domain, forming a clamp-like structure that permits TDG to
track along the DNA (Fig. 2) (Steinacher and Schär 2005).
Upon encountering a G-mismatched substrate (G•T), the
substrate base is pushed out of the DNA helix by an insertion
loop wedging into the DNA helix. This same wedge

stabilizes the base stack and forms specific hydrogen bonds
with the widowed guanine, mimicking Watson–Crick base
pairing (Barrett et al. 1998, 1999; Maiti et al. 2008). These
interactions then cooperate with the non-specific DNA
binding activity of the N terminus to stabilize the TDG–
substrate complex for efficient base excision (Hardeland et al.
2000; Steinacher and Schär 2005).

Another DNA glycosylase well studied with regard to
damage recognition is OGG1. Following successful pre-
selection of a potential 8-oxoG substrate (Fig. 2) (Banerjee
et al. 2005), the oxidized base is flipped into the active site
cavity of OGG1, inducingDNAbending of about ~70° due to a
tyrosine residue that wedges between the opposing C and its 5′
neighbor. Unstacking of the widowed C facilitates enzyme–
DNA contacts that maintain opposite base selectivity. The void
generated by 8-oxoG rotation is occupied by a conserved
asparagine residue, which contributes to hydrogen bonding
with the opposing cytosine. While A, C, and T are excluded
from the active site pocket by several strategically positioned
amino-acids, a conserved glycine is the only residue discrim-
inating between G and 8-oxoG (Bruner et al. 2000).

Catalysis of base removal

The catalytic mechanism subdivides DNA glycosylases into
monofunctional and bifunctional enzymes (Table 1). Mono-
functional glycosylases perform base excision only, using
an activated water molecule for nucleophilic attack on the
N-glycosidic bond, while bifunctional glycosylases use an
amino group of a lysine side chain for the same purpose,
forming a Schiff-base intermediate, and subsequently
cleave the DNA backbone 3′ to the lesion.

Monofunctional DNA glycosylases

To illustrate the monofunctional mode of action, we will
focus on UNG and TDG as two well-studied UDGs

Fig. 3 The base-flipping
intermediate captured in a crystal
structure of substrate bound
human UNG. The UNG double
mutant L272R/D145N, stabilizing
the glycosylase–substrate
complex, was co-crystallized with
an oligonucleotide bearing a U•G
mismatch. Uracil (red) is flipped
into an extrahelical position (a)
and inserted deeply into the tight
fitting active site pocket of UNG
(b), where it is positioned by
specific molecular interactions for
the nucleophilic attack on the
N-glycosidic bond (Slupphaug
et al. 1996)
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showing contrasting catalytic features. Upon recognition,
uracil is tightly fitted into the active site pocket of UNG
(Fig. 3). Interactions between the uracil and amino-acid
residues at the bottom of the pocket position the N-glycosidic
bond for hydrolysis (Mol et al. 1995; Savva et al. 1995;
Slupphaug et al. 1996). Structure and mutational analyses
have established a catalytic mechanism involving the
polarization of the N-glycosidic bond by a conserved
histidine to make it susceptible for nucleophilic attack, and
the positioning and deprotonation of a water molecule by a
conserved catalytic aspartate, which then attacks the C1 of
the deoxyribose (Fig. 2) (Mol et al. 1995; Slupphaug et al.
1996). N-glycosidic bond cleavage is completed by addition
of the water nucleophile to uracil, resulting in a free base and
an AP-site.

The mismatch-specific uracil glycosylases, e.g., Mug
and TDG, interact less specifically with the substrate
base within the catalytic pocket and use a less potent
mechanism of catalysis, as first revealed in the crystal
structure of E.coli Mug (Barrett et al. 1998, 1999). In
place of the catalytic aspartate in UNG, Mug/TDG
enzymes have an asparagine. This asparagine positions a
water molecule but, unlike the aspartate in UNG, is
unable to protonate it for an efficient nucleophilic attack
on the N-glycosidic bond (Fig. 2). Also, an appropriate
residue for polarization of the N-glycosidic bond appears
to be missing in Mug/TDG, altogether explaining the
comparably low catalytic efficiency of the MUG enzymes
(Hardeland et al. 2000; Maiti et al. 2009). These differ-
ences illustrate that the mode of catalysis can vary
considerably even within one DNA glycosylase super-
family, most likely reflecting the requirement to fine tune
substrate spectrum and catalytic efficiency in the evolu-
tion of subfamilies with distinct biological functions.

Bifunctional DNA glycosylases

DNA glycosylases that use an amino group of a lysine
side chain as a nucleophile for base cleavage form a
covalent Schiff-base intermediate with the substrate. The
resolution of this reaction intermediate incises the DNA
3′ to the product AP-site, generating a strand break with
3′phosphate and 5′OH ends. Thus, these enzymes couple
base excision with an AP-lyase step, as best illustrated
by the bifunctional mechanism proposed for OGG1 (Sun
et al. 1995; Nash et al. 1997). Once an 8-oxoG is stably
fitted in the active site cavity of OGG1, the side chain amino
group of a suitably positioned catalytic lysine is activated as a
nucleophile to attack the C1 of the deoxyribose. The resulting
rearrangement to a covalent Schiff-base intermediate releases
the damaged base from the DNA, which is then held in
position to further participate in the catalysis of the β-lyase
reaction, cleaving the DNA strand at the 3′phosphate. Notably,

all steps of the OGG1 catalyzed base release involve the
transfer of protons and this is promoted by the excised base
itself (Bruner et al. 2000; Fromme et al. 2003). An interesting
variation on the bifunctional mode of action is displayed by
the mammalian NEIL proteins and their E.coli counterpart
Nei. These enzymes couple base excision to beta and delta
elimination, incising the DNA strand both 3′ and 5′ to the
AP-site (Takao et al. 2002). Moreover, unlike OGG1, E. coli
Nei ejects the excised base from the catalytic site immedi-
ately, i.e., is capable to perform the AP-lyase reaction without
contribution of the damaged base (Zharkov et al. 2002).

AP-site dissociation and turnover of glycosylases

Upon base release, DNA glycosylases tend to stay bound to
the product of their action, the AP-site. In fact, many
glycosylases display a higher affinity to AP-sites than to
their actual substrate base (Parikh et al. 1998; Waters et al.
1999; Hardeland et al. 2000; Hill et al. 2001; Pope et al.
2002). The release of the glycosylase from the AP-site is
thus rate limiting in the BER process (Fig. 1). Since AP-
sites are chemically unstable and lack base coding potential,
the binding of the glycosylase might serve to protect cells
against their cytotoxic and mutagenic effects. This consid-
ered, it appears reasonable that the release of the AP-site is
coordinated with the recruitment and assembly of the
downstream acting BER factors. Consistently, the AP-
endonuclease APE1 was reported to stimulate the turnover
of several DNA glycosylases including UNG2, TDG, and
OGG1 (Parikh et al. 1998; Waters et al. 1999; Hill et al.
2001), and a similar effect was observed for the XPC
protein on TDG and SMUG1 (Shimizu et al. 2003, 2010).
It remains to be clarified, though, to what extent these
stimulatory effects reflect active processes or simply a
passive competition for a common DNA substrate.

Another, perhaps more sophisticated, way to regulate
AP-site interaction of the glycosylase is by posttransla-
tional modification. In this direction, UNG2 was reported
to be cell cycle specifically phosphorylated at serine 23,
which markedly increases its association with replicating
chromatin but also its turnover rate, apparently to
facilitate efficient correction of misincorporated uracil
during ongoing DNA replication (Hagen et al. 2008). In
the case of TDG, which binds AP-sites very rigidly,
dissociation is regulated by modification of a C-terminal
lysine residue with small ubiquitin-like modifiers
(SUMOs). This induces a conformational change that
neutralizes the non-specific DNA-binding capacity of its
N-terminal domain, thereby facilitating AP-site dissocia-
tion (Fig. 2) (Hardeland et al. 2002; Steinacher and Schär
2005). SUMO modification might be triggered by the
presence of downstream acting BER factors, providing for
a controlled handover of the AP-site intermediate in the
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repair process (R. Steinacher and P. Schär, unpublished
data).

It appears to be a general feature of DNA glycosylases to
bend DNA upon establishing a mature enzyme–substrate
complex; UNG for example induces a bend of ~45° (Parikh
et al. 1998), OGG1 of even ~70° (Bruner et al. 2000). On the
basis of these and similar observations with other BER
factors, it was proposed that the DNA bending might serve as
a structural determinant to orchestrate the handover from one
step in the repair process to the next (Fig. 1) (Parikh et al.
1999; Wilson and Kunkel 2000).

Functions of DNA glycosylases beyond DNA repair

Although DNA glycosylases are optimally suited for the repair
of damaged DNA bases, their structural and biochemical
properties would support a much wider spectrum of genetic
functions. The ability to recognize and excise chemically
modified bases can be used to edit the DNA at specifically
marked sites. The UDG superfamily in particular appears to
comprise enzymes with specialized functions, e.g., in innate
immunity and antibody diversification, as well as in the
regulation of gene expression and epigenetic maintenance.

DNA glycosylases in immunity

UDGs haven been functionally associated with mechanisms
providing innate immunity against viral infection as well as
antibody diversity in the adaptive immune system. All these
processes are triggered by enzymatic deamination of
cytosine by members of the apolipoprotein B mRNA
editing catalytic polypeptide (APOBEC) family of proteins,
including the activation-induced cytidine deaminase (AID)
(Conticello et al. 2005).

DNA glycosylases providing innate immunity

Proteins of the human APOBEC3 subfamily were shown to
inhibit replication of a variety of retroviruses, including
human immunodeficiency viruses (HIV) (reviewed in
Holmes et al. 2007). APOBEC3G was discovered by its
ability to restrict replication of a mutant HIV-1 lacking the
viral infectivity factor (Vif) (Sheehy et al. 2003). Cells
infected with such a virus package APOBEC3G into HIV-1
virions. When these infect new cells, APOBEC3G will
deaminate multiple cytosines in the viral cDNA during
reverse transcription, which inactivates the provirus
(reviewed in Holmes et al. 2007). While APOBEC3G
appears to intervene with the viral life cycle at several steps,
the antiviral activity mediated by uracilation of the viral
genome is coupled to the action of UNG2 and APE1.
UNG2 is thought to introduce AP-sites into the deaminated

viral cDNA, triggering the cleavage and thus degradation by
APE1 (Harris et al. 2003; Yang et al. 2007). Consistently,
inhibition and/or downregulation of either UNG2 or APE1
was shown to decrease the antiviral potency of APOBEC3G
(Yang et al. 2007). Given that HIV-1 evolved Vpr, a small
protein specifically targeting UNG2 and SMUG1 for
degradation by the ubiquitin–proteasome system, supports a
critical role of uracil base excision in antiviral defense
(Schrofelbauer et al. 2005, 2007).

DNA glycosylases providing adaptive immunity

The cooperation of cytidine deaminase and UDG activities is
also central to the genetic transactions associated with
antibody diversification in the adaptive immune system, i.e.,
somatic hypermutation (SHM) and class switch recombina-
tion (CSR) (Fig. 4) (Muramatsu et al. 2000; Rada et al.
2002).

SHM introduces point mutations in the light chain
variable (V) region of immunoglobulin loci. Mutagenesis
is initiated by AID, which is targeted to these loci to
deaminate multiple cytosines in single-stranded DNA
occurring during transcription (reviewed in Pavri and
Nussenzweig 2011). Mutations can arise from these U•G
mismatches in several ways (Fig. 4): (1) in the absence of
uracil excision, replication across the U•G mismatch would
generate a C→T mutation in one of the daughter strands;
(2) uracil excision by a UDG and subsequent replication
across the resulting AP-site can potentially give rise to any
type of base substitution at the site of deamination,
although replicative DNA polymerases preferentially insert
A opposite an AP-site; (3) long-patch BER, initiated by a
UDG, or MMR coupled to error-prone DNA synthesis
would cause mutations in proximity to the deaminated
cytosine, allowing for mutations to occur also at A•T base
pairs.

An involvement of UNG2 in antibody diversification
was first implicated by a general perturbance of both SHM
and CSR in an UNG2 inhibited chicken B-cell line as well
as in UNG-deficient mice (Di Noia and Neuberger 2002;
Rada et al. 2002). While the loss of UNG mainly affected
SHM at G•C base pairs, inactivation of the mismatch repair
system (MMR) was found to diminish hypermutation
at A•T pairs (Rada et al. 1998; Wiesendanger et al. 2000).
This suggested that error prone MMR contributes to muta-
genesis at sites away from the deaminated cytosine (Wilson et
al. 2005). Later work then implicated that MMR can indeed
operate at an AID induced G•U mismatch if assisted by
UNG2, providing a nick at a nearby G•U for initiation of
strand excision (Frieder et al. 2009; Schanz et al. 2009).

AID, UNG2, and APE1 were also shown to play a
crucial role in the initiation of CSR, a specialized
recombination process switching the Ig isotype of an
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Fig. 4 Uracil DNA glycosylase in antibody diversification. UNG
plays a central role in somatic hypermutation (SHM) and class switch
recombination (CSR). UNG2 is targeted to immunoglobulin loci in
activated B-cells by AID converting cytosine to uracil in single-
stranded DNA during transcription. While replication across unpro-
cessed uracil itself will generate C→T mutations, uracil excision by
UNG provides for a wider range of mutations both at the C•G and
nearby A•T base pairs; (1) by generating non-instructive AP-sites

which, upon DNA replication give rise to transition or transversion
mutations, (2) by initiating long-patch BER or, (3) following cleavage
by APE1, by providing a DNA strand nick for activation of MMR.
Error-prone synthesis associated with long-patch BER and MMR
would then produce mutations at A•T base pairs. Similarly, DNA
strand breaks occurring through BER of deaminated cytosines in
switch regions of immunoglobulin heavy chain loci may induce CSR
(blue panel)
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antibody without affecting its antigen specificity. CSR
rearranges the antibody constant region of heavy chain
genes (CH) by strand breakage in and joining of two
selected switch (S) regions located upstream of every CH-
coding segment. The DNA strand breaks required for
initiation of CSR were shown to arise through cytosine
deamination, subsequent uracil excision, and AP-site
cleavage by AID, UNG2, and an AP-endonuclease,
respectively (Fig. 4) (Imai et al. 2003). Consistently, murine
B-cells lacking UNG2 show a severe reduction of CSR and
in humans, recessive mutations in the UNG gene have been
associated with the hyper-IgM syndrome caused by a
deficiency in CSR (Rada et al. 2002; Imai et al. 2003). It is
also reported, however, that the catalytic activity of UNG2 is
dispensable for efficient CSR, while an N-terminal sequence
motif appears to be important, suggesting that UNG2 is not
responsible for the DNA cleavage step of CSR (Begum et al.
2007, 2009). It is possible that UNG2 simply marks AID-
induced G•U mismatches for further processing by other
factors, whereby the N terminus is required to mediate
specific protein–protein interactions.

Residual CSR and SHM in UNG2-deficient mice hint at
a possible contribution of other UDGs. Indeed, over-
expression of SMUG1 in MSH2 UNG2 double-deficient
cells could partially restore SHM and CSR. A biological
role of SMUG1 in antibody diversification, however, is
questionable as it is downregulated upon B-cell activation
(Di Noia et al. 2006). Likewise, the U•G mismatch-directed
glycosylase MBD4 is unlikely to play a major role in either
SHM or CSR as a knockout of the gene in mouse showed
no effect on either processes (Bardwell et al. 2003). The
situation is less clear for TDG. While the impact of a TDG-
deficiency on antibody diversification remains to be
investigated, its upregulation in activated mouse B-cells
hints at a specific function in B-cell maturation (Christophe
Kunz and Primo Schär, unpublished data). In this context,
TDG might be simply required to prevent mutations at non-
Ig genes arising from mistargeted AID. It might, however,
also directly contribute to SHM and CSR. Considering its
tight interaction with AP-sites, TDG would be optimally
suited to delay processing of these repair intermediates,
thereby favoring error-prone translesion synthesis and
recombination repair.

DNA glycosylases in DNA methylation control

Distinct patterns of DNA methylation and histone mod-
ifications are established during cell lineage restriction to
determine and maintain cell-type-specific gene expression
programs. In mammals, DNA methylation occurs mainly in
the form of 5-meC in CpG dinucleotide sequences and is
controlled by a methylation machinery consisting of both
methylating and demethylating components. While the de

novo establishment and the maintenance of CpG methylation
can be rationalized by the biochemical features of the DNA
methyltransferase (DNMT) activities involved (Hermann et al.
2004), the reverse process of demethylation has remained
elusive. In principle, however, DNA demethylation can be
achieved through active and/or passive mechanisms. Whereas
passive demethylation occurs upon DNA replication with
downregulation or inhibition of the maintenance DNA
methyltransferase, active demethylation describes the enzy-
matic removal of 5-meC and replacement with C. Active
mechanisms have been implicated in several important
biological processes, including the demethylation of the
paternal pronucleus in the murine zygote (Mayer et al.
2000; Oswald et al. 2000), the genome-wide methylation
erasure and reset of parental imprinting during gametogenesis
(Monk et al. 1987; Kafri et al. 1992), and the reprogramming
of methylation patterns observed after transfer of somatic cell
nuclei to enucleated oocytes (Dean et al. 2001; Simonsson
and Gurdon 2004). Active demethylation has also been
reported to be targeted to select gene regulatory regions
during neurogenesis, memory formation, and immune re-
sponse (Bruniquel and Schwartz 2003; Miller and Sweatt
2007; Ma et al. 2009).

Mechanistically, the conversion of 5-meC to C in DNA
can occur in different ways: (1) by a direct removal of the
methyl group, (2) the replacement of 5-meC with C by
excision repair, or (3) the deamination or oxidation of 5-
meC followed by replacement of the nucleotide by BER.
Consistent with an excision repair scenario, an increasing
number of observations point at an engagement of DNA
glycosylases in active demethylation. In plants, the removal
of 5-meC by at least four bifunctional DNA glycosylases is
well established; ROS1, DEMETER (DME), and the DME-
like (DML) 2 and 3 all process 5-meC in CpG and non-
CpG sequence contexts (reviewed in Zhu 2009). Mutations
in these glycosylases affect cytosine methylation at specific
loci but not in the overall genome, suggesting that they act
in a targeted rather than a global manner (Penterman et al.
2007; Lister et al. 2008). In vertebrates, the situation is less
clear; MBD4 and TDG have been implicated in DNA
demethylation but they do not seem to be potent enough to
excise 5-meC directly.

Concepts of DNA glycosylase-mediated demethylation
in vertebrates

First evidence for an involvement of DNA glycosylases in
active demethylation in vertebrates came with the discovery
of a 5-meC DNA glycosylase activity in extracts of chicken
embryos (Jost et al. 1995). The responsible enzyme later
revealed itself as a homolog of the human TDG (Zhu et al.
2000b). 5-meC DNA glycosylase activity was then also
reported for the human TDG and MBD4 proteins by the
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same group (Zhu et al. 2000a, 2001). Yet, as several
attempts to reproduce these finding were unsuccessful, the
idea of TDG and MBD4 acting as demethylating glyco-
sylases did not achieve broad acceptance. Recent observa-
tions, however, indicate that the difficulty in reproduction
might lie in the necessity of unknown co-factors that either
boost the catalytic efficiency of these glycosylases or
convert 5-meC into a more favorable substrate.

MBD4 was recently reported to control CpG methylation
in the context of parathyroid (PTH) hormone-induced gene
activation. This was shown for the CYP27B1 promoter,
which undergoes active demethylation upon hormone
stimulation (Kim et al. 2009). Both promoter activation
and cytosine demethylation coincided with and depended on
the physical association of MBD4 and downstream BER
factors, but not of the functionally related TDG. Remarkably,
this study further showed that phosphorylation of MBD4 by

PKC may potentiate its activity to process 5-meC, suggesting
that posttranslational modification might be required to
unleash a potentially harmful but dormant 5-meC glycosylase
activity in certain DNA glycosylases for targeted demethyla-
tion under specific conditions (Fig. 5a). This might apply as
well to TDG, given its propensity to posttranslational
modification by SUMOylation (Hardeland et al. 2002),
ubiquitylation (Hardeland et al. 2007), phosphorylation
(Um et al. 1998), and acetylation (Tini et al. 2002). It will
thus be necessary to revisit TDG's activity as a 5-meC
glycosylase under conditions that support the formation of
these posttranslational modifications.

Other lines of investigation support demethylation
scenarios that involve the conversion of 5-meC to more
favorable substrates for DNA glycosylases. Deamination of
5-meC by a cytidine deaminase is one possibility. This
would generate a G•T mismatch that can be acted on by

Fig. 5 Possible pathways of active DNA demethylation involving
BER. Enzymatic removal of 5-meC has been suggested to be
accomplished by different DNA glycosylase mediated mechanisms.
Direct excision of 5-meC by mammalian DNA glycosylases has been
tested with contradicting results, suggesting the possibility that
posttranslational modification might induce a shift in the substrate
spectrum, allowing for the removal of 5-meC. (a) Another possibility
is the enzymatic conversion of 5-meC to substrates more favorable to

DNA glycosylases, such as deamination to thymine (b), hydroxylation
to 5-hydroxymethylcytosine (c) and/or further oxidation or deamina-
tion of 5-hmC to 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-
caC) (d) or 5-hydroxymethyluracil (e), respectively. All these
processes could be accomplished by a cooperation of 5-meC
deaminases like AID, hydroxylases like the TET proteins, and DNA
glycosylases like TDG (G•T, G•5hmU, G•fC, G•caC), MBD4 (G•T, ?)
and possibly SMUG1 (G•T, G•5hmU, ?)
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MBD4 or TDG (Fig. 5b). Along these lines, it was shown
that the estrogen responsive pS2/TFF1 promoter undergoes
cyclic DNA methylation and demethylation during tran-
scriptional activation, involving 5-meC deamination by the
methyltransferase Dnmt3a/b itself and subsequent TDG-
dependent BER (Metivier et al. 2008; Kangaspeska et al.
2008). The demethylation complex also includes the RNA
helicase p68, implicating an RNA component in either
targeting and/or stabilization of the complex, consistent
with previously reported observations on the chicken 5-
methylcytosine DNA glycosylase (Jost et al. 1997; Schwarz
et al. 2000). Additional support for a deamination-coupled
demethylation pathway came from a study in zebrafish
embryos, implicating AID in the deamination of 5-meC and
MBD4 in the excision of the resulting G•T mismatch, as
well as Gadd45 as an auxiliary factor (Rai et al. 2008). The
same concept was adopted more recently to explain TDG-
mediated 5-meC demethylation as it may occur during
somatic differentiation of the developing mouse embryo
(Cortellino et al. 2011). This, however, was mainly inferred
from the co-immunoprecipitation of overexpressed AID and
Gadd45 with TDG and therefore needs to be corroborated by
more direct functional evidence. Finally, an AID-dependent
and, thus, deamination-mediated mechanism has been associ-
ated with global DNA demethylation occurring in primordial
germ cells as well as during the reprogramming of somatic cell
nuclei towards pluripotency (Bhutani et al. 2010; Popp et al.
2010). Obviously, genome-wide 5-meC deamination would
generate massive amounts of G•T mismatches, and all of
these would have to be repaired by the G•T-directed DNA
glycosylases MBD4 or TDG. A strong prediction of a
deamination-based demethylation model is therefore that a
failure of G•T repair would result in genome-wide C→T
mutagenesis. This has not been observed so far in MBD4
and/or TDG-deficient cells (Cortazar et al. 2011) and will
have to be tested more carefully.

The recent discovery of DNA dioxygenases acting on 5-
meC in DNA introduced another conceptual framework for
active demethylation. The principle of oxidative demethy-
lation of DNA bases was first described for the bacterial
DNA repair protein AlkB. AlkB belongs to a large
superfamily of Fe(II)/2-oxoglutarate (2-OG)-dependent
hydroxylases and catalyzes the hydroxylation of N-
methylated bases like 1-methyladenine (1-meA) and 3-
methylcytosine (3-meC), ultimately resulting in demethylation
upon release of the hydroxymethyl moiety as formaldehyde
(Falnes et al. 2002; Trewick et al. 2002). The superfamily of
Fe(II)/2-OG hydroxylases also contains the kinetoplastid
base J binding proteins (JBP). Base J stands for β-D-
glucosyl(hydroxymethyl)uracil, an abundant base in the
genome of kinetoplastida, synthesized through a 5-hmU
intermediate generated by enzymatic hydroxylation of thy-
mine by JBP1/2 (reviewed in Borst and Sabatini 2008).

Computational analyses identified the mammalian oncogenic
TET proteins as close relatives of the JBPs (Iyer et al. 2009).
The ultimate finding that TETs comprise a catalytic domain
capable of catalyzing the oxidation of 5-meC to 5-hmC
uncovered a functional link between these proteins and DNA
methylation, possibly demethylation (Tahiliani et al. 2009; Ito
et al. 2010). Indeed, 5-hmC was suggested to trigger passive
demethylation through inhibition of the maintenance methyl-
transferase DNMT1 (Valinluck and Sowers 2007). Besides
that, 5-hmC might represent an intermediate of active DNA
demethylation through stepwise oxidation of 5-meC coupled
to either excision repair or decarboxylation (Fig. 5d).

Direct excision of 5-hmC by a DNA glycosylase would
seem a plausible scenario (Fig. 5c). A 5-hmC DNA
glycosylase was reported to be active in calf thymus
extracts (Cannon et al. 1988). The responsible protein,
however, has never been purified, nor has 5-hmC glyco-
sylases activity been associated with any known mamma-
lian DNA glycosylase. Given their activity on 5-hmU, TDG
and SMUG1 would seem good candidates for 5-hmC
processing, but recent evidence shows that at least TDG
fails to do so at an appreciable rate (He et al. 2011; Maiti
and Drohat 2011). Thus, while direct 5-hmC excision by
DNA glycosylases may occur and contribute to DNA
demethylation, the underlying enzymatic pathway remains
to be clarified.

Another possible route of demethylation would be the
further conversion of 5-hmC to an intermediate for DNA
glycosylase mediated excision. The deamination of 5-hmC
by a specific deaminase (e.g., AID), for example, would
give rise to 5-hmU mismatched with G (Rusmintratip and
Sowers 2000), which is a substrate for SMUG1 and TDG
(Fig. 5e) (Boorstein et al. 2001; Hardeland et al. 2003;
Cortellino et al. 2011). As discussed above for 5-meC
deamination, however, the concept of demethylation
through a pro-mutagenic 5-hmU intermediate is debatable
as this would require an immensely efficient and accurate
coupling of the deamination and repair processes, particu-
larly in densely methylated DNA sequences, if genome
integrity is to be maintained.

Less problematic in this regard seems a more recently
implicated mode of TET-mediated demethylation. The key
discovery was that TET proteins do not only generate 5-
hmC but can oxidize this intermediate further to 5-
formylcytosine (5-fC), and 5-carboxylcytosine (5-caC) (Ito
et al. 2011), which are good substrates for excision by TDG
(He et al. 2011; Maiti and Drohat 2011) (Fig. 5d). Given
this, a DNA glycosylase-mediated conversion of 5-meC to
C may thus occur without a need to deaminate, i.e., to
generate a mutagenic intermediate. However, such a
pathway would still trigger massive DNA incision activity
in the context of genome-wide active demethylation, which
seems a genetically risky and energetically wasteful way to
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erase an epigenetic mark. A more straightforward way to
eliminate 5-caC under these conditions would be to couple
the 5-meC oxidation cascade with a decarboxylation step to
generate C and CO2 as final products. A 5-caC decarbox-
ylase is thus an activity to watch out for.

G•T-directed DNA glycosylases and epigenetic stability

Active demethylation of 5-meC in mammalian cells occurs
under different circumstances for different purposes, such
as genome-wide epigenetic reprogramming, activation of
tissue-specific genes during embryogenesis, and the main-
tenance of active and bivalent chromatin states during and
after cell-lineage commitment. These circumstances gener-
ate specific demands for a demethylation mechanism (e.g.,
targeting, catalysis, processivity, efficiency) which are most
likely addressed by distinct pathways.

Any of the above considered routes of DNA repair-
mediated active demethylation of 5-meC requires an
enzyme capable of recognizing and excising a cytosine
derivative (5-meC, 5-hmC, 5-caC, T, 5-hmU) in a base
(mis)pairing configuration with guanine. On the basis of
their substrate spectra, the two DNA glycosylases MBD4
and TDG appear to be most suitable for this purpose, and
both have been implicated in one way or another in DNA
demethylation as discussed. The biological functions
associated with these activities, however, still need to be
clarified. Considering, for instance, the reported involve-
ment of MBD4 in hormone-induced promoter demethyla-
tion, and the requirement of such demethylation for
derepression of select genes during embryogenesis, it is
surprising that Mbd4 knockout mice develop normally and
display no apparent epigenetic abnormality (Millar et al.
2002; Wong et al. 2002). So, either promoter demethylation
during embryogenesis is not developmentally important, or
MBD4 is not or only redundantly involved in these
processes. The phenotype of Tdg knockout mice, however,
has provided more direct evidence for an epigenetic
function.

Disruption of TDG in mouse causes embryonic lethality
(Cortazar et al. 2011; Cortellino et al. 2011), most likely
because TDG-deficient cells fail to properly establish and/
or maintain cell-type-specific gene expression programs
during cell lineage commitment (Cortazar et al. 2011). This
phenotype coincides with the occurrence of aberrant
chromatin modifications at promoters of misregulated
genes: a loss of active histone marks (H3K4me2), a gain
of repressive histone marks (H3K9me3, H3K27me3) and,
nota bene, a gradual accumulation of CpG methylation
(Cortazar et al. 2011). Together with evidence for a TDG-
dependent engagement of BER at affected gene promoters
(Cortazar et al. 2011; Cortellino et al. 2011), this suggests
that TDG protects CpG-rich promoters from aberrant

hypermethylation by active demethylation of erroneously
methylated cytosines.

TDG may also contribute to active demethylation of
originally methylated sequences. Tissues of TDG defi-
cient embryos showed hypermethylation at the Alb1
enhancer and the Tat glucocorticoid-responsive unit, both
undergoing demethylation in the process of tissue specific
gene activation (Cortellino et al. 2011). These results can,
however, be interpreted in two ways; while the hyper-
methylation measured in the absence of TDG can indeed
be explained by inefficient active CpG demethylation
during tissue differentiation, it can equally well be
accounted for by a lack of TDG-dependent maintenance
of the unmethylated state following successful active
demethylation through a different pathway. Hence, while
the concept of TDG-mediated active demethylation in the
maintenance of hypomethylated states at CpG-rich gene
promoters is well supported, its potential contribution to
demethylation of methylated sequences requires further
validation.

The functions of MBD4 and TDG in mediating DNA
demethylation are clearly distinct but there might be a
partial overlap; TDG might compensate for the loss of
MBD4 in knockout mice but obviously not vice versa. A
plausible scenario would be that MBD4 is primarily
involved in the demethylation of methylated sequences in
the context of developmental gene activation, whereas
TDG’s function is to protect unmethylated promoter
sequences across the genome from aberrant de novo
methylation. This would be supported by the ability of
MBD4 to bind to methylated CpGs, and the preferential
association of TDG with unmethylated gene promoters.

Conclusion

Given their ability to interrogate the surface of DNA
bases by flipping them out of the helix into a selective
active site pocket, DNA glycosylases represent efficient
tools to specifically recognize unduly modified bases and
eliminate them from the DNA, thereby enforcing genetic
integrity. Yet, while being perfectly equipped to function
in DNA repair, their structure and mode of action could
provide for more. This is supported by accumulating
evidence for non-canonical functions of these DNA-
probing enzymes, the most recent and most intensely
discussed being an involvement in DNA demethylation
and epigenetic control. Further studies will shed light on
the mechanism surrounding the action of DNA glyco-
sylases in such a context, from the signals required for
the temporal and spatial regulation of their action to the
co-factors necessary for efficient base-flipping and
excision.
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