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Abstract

This paper presents a new anytime search algorithm, any-
time explicit estimation search (AEES). AEES is an anytime
search algorithm which attempts to minimize the time be-
tween improvements to its incumbent solution by taking ad-
vantage of the differences between solution cost and length.
We provide an argument that minimizing the time between
solutions is the right thing to do for an anytime search algo-
rithm and show that when actions have differing costs, many
state-of-the-art search algorithms, including the search strat-
egy of LAMA11 and anytime nonparametric A*, do not min-
imize the time between solutions. An empirical evaluation
on seven domains shows that AEES often has both the short-
est time between incumbent solutions and the best solution in
hand for a wide variety of cutoffs.

Introduction
Anytime search strategies have gained an ever-wider popu-
larity for problem solving. They arguably appeal to users
because they gradually return solutions with monotonically
improving quality, allowing one to arbitrarily stop compu-
tation after outputting a “good enough” satisficing (i.e., po-
tentially suboptimal) solution. This contrasts with typical
solving strategies where we must choose between a subop-
timal solver to find a single, quickly found but potentially
costly solution or an optimal solver for a slowly (or never)
found optimal solution. Despite the increased use of anytime
algorithms in, for example, the International Planning Com-
petitions (IPCs), most work in the area defines anytime algo-
rithms without considering what might constitute a ‘reason-
able behavior’ from the user’s perspective. The main con-
sideration is how to best balance the time it takes to improve
solutions over time. Ideally, we would like to find the first
solution as quickly as possible, even if it is costly. Then, we
would like to find the next fastest-to-find solution that has
better quality than the first, and so forth. This definition of
“ideal” performance matches suggestions by other investi-
gators, who argue that solutions that are only a few steps
away from discovery should never be ignored in favor of so-
lutions that may exist further away but take much longer to
find (Cushing, Benton, and Kambhampati 2011).

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we propose Anytime Explicit Estimation
Search, which attempts to optimize this performance objec-
tive. AEES is an anytime variant of the Explicit Estimation
Search (EES) algorithm (Thayer and Ruml 2011), which
was designed for bounded suboptimal search. It combines
inadmissible estimates of cost-to-go and distance-to-go to
determine which node is likely to lead to a better solution
quickest, and expands that node, directly optimizing the pre-
viously introduced notion of ideal performance. To avoid
needing a parameter schedule (of suboptimality bounds for
EES), AEES uses an admissible cost-to-go estimate to com-
pute a dynamic bound on solution quality.

Though the design of AEES focuses on minimizing time
between improving solutions, our empirical evaluation re-
veals that it also finds good solutions quickly and is com-
petitive with modern anytime search strategies such as those
used by LAMA11 (Richter, Westphal, and Helmert 2011;
Richter and Westphal 2010) and anytime nonparametric A*
(ANA*) (van den Berg et al. 2011). In contrast to these
approaches, AEES always considers estimates of solution
length in addition to estimates of solution cost. Hence,
it often performs best in domains with non-uniform costs.
Its performance is consistently good, unlike the LAMA11
search strategy, anytime repairing A* (Likhachev, Gordon,
and Thrun 2003), or ANA*. In 5 out of the 7 benchmark do-
mains we investigate, AEES both improves the incumbent
solution the quickest and has the best solution in hand for a
wide variety of potential cutoffs.

Related Work
Although anytime algorithms can take any form, they tend
to be based on best-first heuristic search algorithms and can
loosely be classified into one of three frameworks: the con-
tinued search framework, the repairing search framework,
and the restarting framework. A best-first heuristic search
algorithm is one that maintains a list of all generated, but
not yet expanded, search nodes in sorted order so that it can
easily determine which node to expand next (i.e., the “best”
node). For example, Weighted A* (Pohl 1973) is a best-first
search on f ′(n) = g(n) + w · h(n).
Continued Search runs a best-first search until the open list,
the set of all nodes generated but not yet expanded, has been
exhausted (Hansen and Zhou 2007). The largest drawback
of the continued framework is that it does not reconsider its
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parameters as new incumbents are found. The search strat-
egy used to find the first solution is the same as that used to
find the last solution, and this can be inefficient (Thayer and
Ruml 2010).
Repairing Search addresses this shortcoming of the contin-
ued search framework, and it’s designed to work well in do-
mains with many duplicates (Likhachev, Gordon, and Thrun
2003). When a repairing search encounters a solution, pa-
rameters used by the underlying search are set to new values.
This allows these algorithms to pursue solutions of higher
quality as the quality of the incumbent improves. Repairing
search algorithms also delay the reexpansion of duplicate
nodes (states previously encountered by a more expensive
path) until the next iteration (until the next goal is found).
This generally improves performance.
Restarting Search is one of the simplest frameworks for
anytime search. Restarting weighted A* (RwA*) (Richter,
Thayer, and Ruml 2010), the search strategy at the center
of the award winning LAMA planner (Richter and Westphal
2008; Richter, Westphal, and Helmert 2011), is an example
of an algorithm in the restarting framework. RwA* runs a
sequence of weighted A* searches, each with a parameter
picked from a hand-crafted parameter schedule. The subse-
quent searches do not throw away all of the effort of pre-
vious searches; they may share information in the form of
the incumbent solution, cached heuristic values, and stored
paths from the root to states. This way, when a new iteration
of search encounters a node previously explored, it need not
recompute the heuristic (which may be expensive) and it can
replace the current path to the node with a better one found
in a previous search iteration.
Contract Search algorithms are related to anytime al-
gorithms and can use many of the same techniques dis-
cussed here (Zilberstein, Charpillet, and Chassaing 1999;
Dionne, Thayer, and Ruml 2011). However, contract al-
gorithms take a deadline as input and can use it to its
advantage. Anytime algorithms are appropriate when the
computational deadline remains unknown or is ambigu-
ous. Despite this difference, anytime algorithms are often
used even when computational deadlines are known (e.g.,
the International Planning Competitions (Do et al. 2008;
Olaya et al. 2011)).

Anytime Nonparametric A*
Anytime Nonparametric A* (ANA*) (van den Berg et al.
2011) is a continued search that can be seen as an anytime
variant of potential search (Stern, Puzis, and Felner 2011).
Anytime nonparametric A* expands the node with maximal
e(n) = G−g(n)

h(n) , which is equivalent to expanding the node

with minimal e′(n) = h(n)
G−g(n) , where G is the cost of the

current incumbent solution, initially∞. Despite the fact that
ANA* changes its strategy as search progresses, it does so
without any input from the user, an important capability. The
incumbent solution sets G for the ongoing search algorithm.
This avoids having to find a good schedule of weights for
each domain, a task which is time consuming and prone to
human error. We later show a similar technique for setting
the suboptimality bound of anytime search algorithms.

BEES and BEEPS
Bounded Cost Explicit Estimation Search and Bounded
Cost Explicit Estimation Search with Potential (BEES and
BEEPS respectively) (Thayer et al. 2012) are strongly re-
lated to the technique presented in this paper, in that all
three algorithms are based upon the Explicit Estimation
Search (EES) algorithm (Thayer and Ruml 2011). BEES
and BEEPS adapt Explicit Estimation Search algorithm to
be used in the setting of bounded cost search (Stern, Puzis,
and Felner 2011), where the goal is to find some solution
within a user supplied cost-bound as quickly as possible.

BEES and BEEPS can be adapted to work in an anytime
fashion by supplying an appropriate set of cost-bounds to
the algorithms. Specifically this can be achieved by initially
setting the cost-bound to be∞ and then decreasing it to be
ε smaller than the current incumbent solution. This allows
both BEES and BEEPS to find a stream of solutions, even-
tually converging on the optimal cost solution, giving them
anytime behavior.

LAMA11
LAMA11 is a planner that uses a restarting search. It has
two modes of operation, one for domains with unit-cost
actions and one for domains where actions have differing
costs. LAMA11 runs greedy search on distance-to-go (this
step is omitted for unit-cost domains), then greedy search
on augmented cost-to-go, then a sequence of weighted A*
searches (on inadmissible heuristics). The cost-to-go heuris-
tic is augmented to take advantage of actions-to-go informa-
tion as well. The final iteration is an A* search on an in-
admissible heuristic which runs until the search space has
been exhausted. LAMA11 also leverages planning-specific
search enhancements such as delayed heuristic evaluation
and helpful actions. These help LAMA11 cope with incredi-
bly large branching factors and expensive heuristic functions
which are unique to domain independent planning.

Anytime Explicit Estimation Search
Anytime explicit estimation search (AEES) uses
EES (Thayer and Ruml 2011) as its main component,
trying to minimize the time it takes to improve the quality
of the incumbent solutions in anytime search. EES is a
bounded suboptimal best-first search where ‘best’ is the
node estimated to both lead to a solution within the desired
suboptimality bound and have the fewest remaining actions
between it and a goal. EES can only expand nodes that can
be shown to lead to a solution whose cost is no more than
some bounded factor w of optimal. In order to avoid relying
on hand-tuned parameter schedules, a new suboptimality
bound is computed every time a new goal is encountered.

EES keeps track of three values for every node. The first
is f(n) = g(n) + h(n). This is the same node evalua-
tion function used by A* (Pohl 1970). The second value is
f̂(n) = g(n)+ ĥ(n), an inadmissible doppelganger of f(n).
f̂ is EES’s best estimate of the cost of an optimal solution
passing through n. ĥ could be hand-crafted by an expert,
learned offline (Xu, Fern, and Yoon 2007), learned over the
course of many similar searches (Jabbari Arfaee, Zilles, and
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Figure 1: Anytime Explicit Estimation Search

Holte 2011), or learned during the solving of a single in-
stance (Thayer, Dionne, and Ruml 2011) as in the following
evaluation. The third value is d̂(n). This is an estimate of
the number of actions between n and a goal. For domains
where all actions have identical cost, ĥ(n) = d̂(n). How-
ever, many domains have actions of differing cost. Such
domains are often challenging (Benton et al. 2010). d̂ can
often be computed alongside ĥ by keeping track of the num-
ber of actions being taken as well as their cost. Like ĥ, d̂, an
inadmissible estimate of actions-to-go, often provides better
guidance. d̂ can be constructed analogously to ĥ.

EES keeps track of three special nodes using these three
values. bestf , the node which provides a lower bound on the
cost of an optimal solution, bestf̂ , the node which provides
EES with an estimate of the cost of an optimal solution to the
problem, and bestd̂, the node estimated to be within the sub-
optimality bound and nearest to a goal. Formally, if open
contains all nodes generated, but not yet expanded, then
bestf = argminn∈open f(n), bestf̂ = argminn∈open f̂(n),

and bestd̂ = argminn∈open∧f̂(n)≤w·f̂(best
f̂
) d̂(n). Note that

bestd̂ is chosen from a focal list based on bestf̂ . EES sus-

pects that nodes with f̂(n) ≤ w · f̂(bestf̂ ) are those nodes
that lead to solutions within the suboptimality bound. At
every expansion, EES chooses one of these nodes using
selectNode (Figure 1).

Pseudo code for AEES is provided in Figure 1. In line
3 of AEES in Figure 1 we see AEES and EES have the
same definition of best, and thus expand nodes in the same
order. selectNode pursues the nearest solution estimated
to be within the suboptimality bound, provided we can cur-

rently prove this node is actually within the bound (line 1 of
selectNode). Selecting bestd̂ is pursuing the next fastest-
to-find solution. bestd̂ is estimated to both be within bound
and have the fewest actions (and thus node expansions) be-
tween it and a goal. All other nodes are selected in an effort
to make bestd̂ pursuable, either by raising our lower-bound
on optimal solution cost or by adding new nodes to the pool
from which bestd̂ is selected.

EES and AEES differ in what happens when a goal node
is encountered (line 5 of AEES). EES would simply re-
turn the solution. AEES is an anytime search algorithm
that must eventually converge on an optimal solution. When
AEES finds a goal, it updates the cost of the incumbent so-
lution and lowers the suboptimality bound w before contin-
uing search. Setting w effectively is important because it
determines which nodes can be expanded. We could use
hand-crafted parameter schedules, but these are problematic.
What is a good weight schedule on one domain will likely
be inappropriate for others. We must choose between taking
the time to find an ideal parameter schedule or using one we
know was not tailored to the domain of interest.

Rather than supplying a schedule of suboptimality
bounds, we compute one online. During search, we can
compute a dynamic bound on the suboptimality of the in-
cumbent solution. Rather than supplying a sequence of
suboptimality bounds, we need only compute the dynamic
bound when the algorithm needs the next parameter, when
a new solution is encountered. In AEES, a dynamic bound
can be computed as g(incumbent)f(bestf ) . f(bestf ) provides a lower
bound on the cost of an optimal solution to our problem,
and so this equation computes an upper bound on the sub-
optimality of the current incumbent solution. We use this
dynamic bound to set w for the next iteration of AEES. This
technique has also been used to augment parameter sched-
ules used by anytime search (Likhachev, Gordon, and Thrun
2003; Hansen and Zhou 2007; Thayer and Ruml 2010).

The largest difference between anytime BEES and
BEEPS and AEES is how these algorithm determine if a
solution is likely to improve upon the current incumbent.
While all three approaches use inadmissible estimates of
cost-to-go to guess if a node will improve, AEES will make
this determination in a relative manner, while BEES and
BEEPS do so in an absolute fashion. That is, if f̂(n) ≥
g(inc) then neither BEES nor BEEPS will expand that node
while pursuing an improved incumbent; that node will not
be expanded until we are trying to prove that the optimal
solution is in hand. However, AEES may well expand this
node asw ·f(bestf ) is often larger than g(inc). Thus, AEES
can expand nodes where f̂(n) ≥ g(inc).

At first glance, this appears incorrect; f̂ tells us that it
cannot improve the incumbent solution, assuming ĥ is cor-
rect. However by construction, all nodes on focal (f̂(n) ≤
w · f̂(bestfH)) are capable of improving upon the incum-
bent given the current bound if f̂ is correct. When we com-
pare f̂(n) and g(inc), we are comparing an estimate to truth,
however looking at f̂(n) and f̂(bestf̂ ) compares two esti-
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Figure 2: Maximizing ∆q
∆t is not ideal.

mated values. While we would like the inadmissible heuris-
tics to be very accurate, frequently they are not. If the heuris-
tic is consistent in its errors (ie magnitude, direction) the rel-
ative comparisons of AEES are more likely to correctly iden-
tify a node as leading to an improved solution than BEES or
BEEPS. We will see this leads to a significant difference in
performance in the empirical evaluation.

Ideal Performance vs. Dominance
We present a theoretical analysis of anytime search algo-
rithms. In doing so, we argue for a definition of ideal
performance of anytime algorithms and demonstrate that
when actions have varying costs, previous state-of-the-art
approaches to anytime heuristic search can be arbitrarily
worse than AEES. This occurs even if we are willing to as-
sume perfect heuristic estimators and tie breaking.

Maximizing ∆q
∆t is not ideal

When discussing the ideal performance of an anytime algo-
rithm, we intuitively think of an algorithm that quickly im-
proves the quality of a solution it has in hand. We might even
go so far as to posit that the algorithm that has the largest
positive change in solution quality over time ( ∆q

∆t ) is the best
performing anytime search algorithm.

Figure 2 shows why this intuition leads to an ignoratio
elenchi – it fails to address the issue at hand for anytime
algorithms. The figure shows the performance of two hypo-
thetical anytime algorithms, red and black. The x-axis repre-
sents time, and the y-axis reports the quality of solutions the
algorithms have in hand at a particular time. We also show
the slope of the performance curves ( ∆q

∆t ) as dotted lines of
the same color. We see in the figure that although the black
algorithm has the higher ∆q

∆t , the red algorithm has the better
solution in hand for many points in time. This means that if
we were to stop either of the algorithms at an arbitrary time
point, the black algorithm would have a worse solution than
the red one.

As it turns out, A* guarantees the largest ∆q
∆t among all

algorithms (in terms of node expansions, and assuming all
algorithms to have access to the same information). This
is because A* is a provably optimal algorithm for optimal

heuristic search (Dechter and Pearl 1985), and thus it has
the largest possible change in solution quality in the shortest
possible time, giving it a dominating ∆q

∆t . It is well-known
that A* provides very poor anytime performance, confirm-
ing the suspicion that maximizing ∆q

∆t will not lead to ideal
anytime performance.

Ideal Performance and Dominance
We can now define our notion ideal performance. Given an
anytime algorithm χ, let the ith solution found by χ be πχi ,
the time to find πχi , t(πχi ) and the cost of πχi , c(πχi ). We
assume that at i = 0 (i.e., the null solution), t(πχ0 ) = 0 and
c(πχ0 ) =∞. An ideally performing anytime algorithm min-
imizes t(πχi+1) − t(πχi ), or the time between solutions. In
other words, it will find the next improving solution in the
least amount of time. Our definition contrasts with domi-
nance. Let A and B be two anytime algorithms. If we were
to stop each algorithm at an arbitrary time cutoff τ , we say
that the best solution of A at τ , πAτ dominates the best solu-
tion of B at τ , πBτ , iff c(πAτ ) < c(πBτ ).

Note that our definition of ideal says little about the qual-
ity of those solutions, other than the typical assumption that
c(πχi+1) < c(πχi ). It is certainly possible to construct ex-
amples where the algorithm with ideal performance will be
dominated for certain cutoffs; however, our notion of ideal
hinges on the idea that we do not know the cutoff before
hand. In the face of unknown deadlines, we argue that the
best practice is to try to find a new improving solution.

Naturally, we desire an algorithm with both of these qual-
ities (ideal performance and dominance); that is, we want an
algorithm that gives the best solution of all algorithms at any
given cutoff and the smallest times between improving the
incumbent solutions. Though it is difficult to measure the
optimal ideal performance in general (i.e., across all possi-
ble solution methods), we discuss how AEES works toward
ideal performance in the context of anytime search. It does
this by taking steps toward minimizing the time between in-
cumbent solutions while also giving the best solution of all
state-of-the-art anytime algorithms for many time cutoffs, as
the empirical evaluation reveals.

Intuitively, AEES uses an estimate on the time required to
find solutions. During the search for the first solution, AEES
greedily searches on d̂(n), the estimated distance to a goal.
For ideal performance, we would like to search in order of
minimal search effort, but how to estimate this is unclear.
Luckily the estimated distance to a solution is strongly re-
lated to the depth of that solution in a search tree. Therefore
we can use d̂ as a reasonable proxy for search effort. The
strategy of AEES is to run EES with a suboptimality bound
computed as the bound on the suboptimality over the current
incumbent solution (which is ∞ initially). EES estimates
which nodes will lead to a solution within this bound. In-
deed, these are exactly the nodes on the focal list of EES.
Further, pruning on the current incumbent ensures that we
find only improving solutions.
Example Figure 3 shows a single instance of a family of
graphs where the previously proposed anytime search algo-
rithms will not minimize the time between solutions. These
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Figure 3: A difficult graph for anytime search algorithms.

graphs all have a start node s, a goal node g, and three paths
connecting them, a short but costly path, a long cost-optimal
path, and a path of medium length that is neither the most
nor the least expensive. Though we cannot cover all any-
time search algorithms, we note that any algorithm that does
not incorporate d in determining search order will fail in the
same manner that ANA* fails. We assume that we have per-
fect information about cost and distance-to-go and begin by
discussing ideal performance on this graph.
Ideal performance: Using our definition of ideal perfor-
mance, in this graph we want to find the shortest path, then
next shortest path, then finally the longest, but cost-optimal,
path. This performance is ideal in the sense that we pre-
viously described: it minimizes the amount of time the al-
gorithm is without solution and then minimizes time to im-
prove the incumbent. For a given graph of this family and
algorithm to compare to (excepting AEES), there will al-
ways be a range of cutoffs for which ideal performance has
a better solution than the algorithm, and no algorithm im-
proves the quality of the incumbent faster than ideal on any
graph in this family.
LAMA11 Search Strategy: LAMA will find the shortest
(bottom) path in its initial greedy search on d. Then it
searches greedily on h. Since h is perfect (h = h∗), this
search will pursue the longest optimal cost plan next, and
thus take longer to improve the incumbent than ideal. We
can specify a cutoff which allows for finding the shortest
and second shortest paths, but not the shortest and longest
path. In these situations, the LAMA11 search strategy will
have a worse than ideal solution.
ANA*: Before it has an incumbent, ANA* will perform a
best-first search on cost-to-go. Since h is perfect (h = h∗),
this search will pursue the longest optimal cost plan, and
thus take longer to find the first solution than ideal. We can
then specify a cutoff that will allow for finding the shortest
solution, and no other solution. ANA* will not have any
solution, while an ideal algorithm finds the shortest solution.
EES Based Algorithms: We have perfect information, and
thus h = ĥ = h∗ and d = d̂ = d∗. Initially, AEES and
ABEES will find the shortest solution, as all solutions are
within a suboptimality bound of∞. Then, we need to look
at which solutions are within the new suboptimality bound.
f(bestf ) is equal to f∗(opt), so we get exactly the sub-
optimality bound of the current incumbent, and since both
other solutions have cost less than the current incumbent,
they must be within the bound. Since both are within the
bound, we pursue the one with least d, the next shortest so-
lution. Thus, the EES based algorithms find the solutions in
the same order as the ideal above, and so we cannot choose

a cutoff for which the ideal algorithm has a better solution
than these algorithms.

Experiments
Although AEES does try to minimize the time between im-
provements to the incumbent solution, and thus its behavior
is ideal in that sense, we do not know if it will have better so-
lutions in hand for a given cutoff than other anytime search
algorithms. This evaluation reveals that the two correlate:
the algorithm with the smallest time between solutions tends
to have the best solution in hand at any given time for the do-
mains examined here. For 5 of the 7 benchmarks considered,
this is AEES. On the remaining two benchmarks, AEES is
competitive with the best performing algorithm.

We performed an evaluation on 4 domain specific bench-
marks and 3 benchmarks from domain independent plan-
ning. All experiments were run on 64-bit Intel Linux
systems with 3.16 GHz Core2 duo processors and 8 GB
of RAM. Domain specific solvers were implemented in
OCaml, and algorithms were cut off when they exhausted
memory or 10 minutes had passed. For the domain inde-
pendent benchmarks, we evaluate the algorithms in the Fast
Downward planner which is implemented in C++. The time
cutoff was changed from 10 minutes 30 to match settings
used in the International Planning Competition.

Our evaluation covers five anytime search algorithms:
Anytime repairing A* (ARA*), using a weight schedule of
5, 3, 2, 1.5, 1 following Richter, Thayer, and Ruml (2010),
Anytime nonparametric A* (ANA*), AEES as described
in this paper, and LAMA11-PSS, an implementation of
LAMA11 which makes no use of planning-specific enhance-
ments. This works as a greedy search on d(n), followed
by a greedy search on h(n), followed by a sequence of
weighted A* searches using the same weight schedule used
by ARA*. Finally, we compare against an anytime ver-
sion of the bounded-cost explicit estimation search algo-
rithm (ABEES in the plots). We do not compare to an any-
time variant of BEEPS, as BEES and BEEPS did not have
substantially different performance (Thayer et al. 2012).
Sliding Tiles Puzzles We use the 100 instances of the 15-
puzzle presented by Korf (1985). h and d are the Manhattan
distance heuristic, and ĥ and d̂ are computed using the on-
line learning techniques described in Thayer, Dionne, and
Ruml (2011). The performance of the anytime algorithms
in this domain is shown in the first panel of Figure 4. The
x-axis represents the time at which the algorithm was halted
on a log scale. On the y-axis, we report the mean quality
(and 95% confidence intervals) of the solution the algorithm
had in hand at the time it was halted. Solution quality is the
cost of the best for any algorithm on this problem divided by
the cost of the algorithm’s current solution.

The 15-puzzle is a worst-case scenario for AEES. Dis-
tinguishing between solution cost and length provides no
advantage when actions have uniform cost. Node genera-
tion and heuristic computation are very cheap. We see in
the leftmost panel of Figure 4 that despite its handicap in
this domain AEES is competitive with the best performing
search algorithms, LAMA11-PSS and ANA*. ANA* also
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Figure 4: Performance of Anytime Algorithms in Domain Specific Solvers

Figure 5: Performance in Domain Independent Planning

has the shortest time between solutions, as we later discuss.
We also note that ABEES is one of the worst performing

algorithms in this domain. Although BEES and EES have
somewhat similar approaches to search, they differ in the
nature of the bounds they use for determining if a node is
suitable for search. EES relies on relative cost bounds, while
BEES focuses on absolute cost bounds. BEES is thus more
sensitive to the accuracy of its heuristics, as we previously
noted. Thus, if ĥ is wildly inaccurate, so long as it values
that are accurate relative to one another, AEES will continue
to work, while BEES and BEEPS will not.
Inverse Tiles We study the same 100 15-puzzle instances
as above, but we replace the standard cost function with one
where the cost of moving a tile is the inverse of its face value,

1
face as suggested by Thayer, Dionne, and Ruml (2011).
This separates the cost and length of a solution without al-
tering other properties of the domain. h is computed as the
weighted sum of Manhattan distances for each tile, that is
h(n) = MD(n)

face(n) . d is the unadulterated Manhattan distance.

Both AEES and ABEES search strategy take advantage of
distance-to-go estimates, and as we see in the plot (second
panel, Figure 4), they are the best performing algorithms in
this domain. LAMA11 also uses actions-to-go estimates in
search, but it does not consult them directly beyond the first
iteration. Rather, they are used to augment the cost-to-go
function. We see in the plot that not relying on action-to-
go estimates directly causes a sharp drop-off in LAMA11-

PSS performance for this domain when compared to the unit
tiles problem. ARA* and ANA* never use actions-to-go and
fail to solve over a third of the instances while AEES and
LAMA11-PSS solve all instances. AEES has the shortest
average time between solutions.
Dock Robot We implemented a dockyard robot domain in-
spired by Ghallab, Nau, and Traverso (2004) where a robot
puts containers in their desired stack using a crane. A robot
may drive between stacks and load or unload itself. We
tested on 150 random problems with 3 locations on a unit
square and 15 containers with random start and goal loca-
tions. Driving has a cost of the distance traveled, loading
and unloading the robot costs 0.1 plus 0.05 times the num-
ber of containers stacked at the depot. h is the cost of driving
between all depots with out of place containers plus the cost
of moving the deepest out of place container in the stack to
the robot. d is computed by substituting 1 for the action cost.

The performance of the algorithms on this domain is pre-
sented in the third panel of Figure 4. We see that AEES,
which has the shortest time between improving solutions on
average, also dominates other anytime algorithms. ARA*
beats LAMA11-PSS and ANA* because it is not being too
greedy. Of the 150 instances, greedy best-first search on
h fails to solve 55 of them within 10 minutes. ANA*
runs a greedy search on h early on, resulting in bad perfor-
mance. ARA*’s performance in this domain is partially due
to duplicate-delaying, as this domain contains many cycles,
and partially the result of a good weight schedule. If the ini-
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tial weight were very large (i. e.∞), ARA* would perform
much like ANA*.
Vacuum World This domain mirrors the first state space
presented in Russell and Norvig (2003). A robot must clean
a grid. Movement is in the cardinal directions. Whenever the
robot is on a dirty cell, it may vacuum. The cost of motion
is one plus the number of dirty cells already cleaned. We
use 100 solvable instances that are 500x500. Each cell has a
35% chance of being blocked, and there are twenty piles of
dirt, placed randomly in unblocked cells. For h we compute
the minimum spanning tree of the robot and dirt, order the
edges by greatest length first, and then multiply the edge
weights by the current weight of the robot plus the number of
edges already considered. d is the length of greedily visiting
all dirty cells if there were no obstacles.

The final panel of Figure 4 shows the performance of the
algorithms in this domain. This domain has a substantial
difference between actions and cost-to-go, and again we see
that AEES has dominant performance in this domain. This
once again shows the importance of considering d̂ when
searching.
Planning The three panels of Figure 5 show the perfor-
mance of the anytime search algorithms on three planning
benchmarks. For these plots, we omit confidence intervals.
The instances are designed to be of increasing difficulty,
they are not random, and so displaying confidence inter-
vals makes no sense. The domains are the elevators domain
from the 2008 IPC, the open stacks domain from the 2008
IPC, and the Peg Solitaire domain from the 2011 IPC. Note
we are still discussing the performance of the underlying
search strategy of LAMA11, which does not take advantage
of features particular to domain independent planning (help-
ful actions, lazy evaluation). We use LM-Cut (Helmert and
Domshlak 2009) for h, the LM-Count heuristic for ĥ, and
the FF-heuristic (ignoring action costs) for d̂.

In all three domains, AEES and LAMA11-PSS domi-
nate ANA* and ARA*. Peg Solitaire is the only domain
of those presented where ANA* and ARA* are at all com-
petitive with these two approaches. ANA* and ARA* per-
form poorly because neither take advantage of inadmissi-
ble heuristics. AEES and LAMA11-PSS take advantage of
both inadmissible heuristics and actions-to-go estimates and
both have similar performance for all of the planning do-
mains presented. In elevators ’08 and Peg Solitaire ’11,
AEES has slightly better performance in terms of dominance
than LAMA11-PSS. In openstacks, LAMA11-PSS finds so-
lutions nearly three times faster than AEES and also has
slightly better solutions for cutoffs longer than 10 seconds.

Dominance and Ideal Performance
Table 1 shows the average time between solutions and the
average number of solutions returned for the algorithms un-
der consideration on all benchmarks used in our evaluation.
To average time between solutions, we add an additional
data point at the time cutoff for all algorithms that did not
find an optimal solution, and then compute the difference
in time between all reported solutions for all instances, tak-
ing the mean of these values (∆T). In the table the smallest

AEES ABEES LAMA11 ANA* ARA*
Tiles 86 127 220 71 118
Inv. Tile 104 75 211 277 343
Dock 127 354 588 379 342
Vacuum 13 18 283 495 435
Elev. 500 663 621 1059 1200
O. Stacks 462 557 162 1500 1286
PegSol 356 960 288 837 900

Table 1: Average time between solutions in seconds

mean differences are bolded and the largest are italicized.
Comparing the results in Table 1 with the mean solution

quality results in Figures 4 and 5 reveals an interesting phe-
nomena. The algorithm with the smallest ∆T’s is almost
always the best performing algorithm for that domain; it
has the best mean solution quality across most cutoffs. This
suggests that the previously proposed notion of ideal perfor-
mance, minimizing the time between improvements to the
incumbent solution, and having the best solution for a given
cutoff are strongly correlated. We note AEES often has the
smallest ∆T, and it never has the largest. Similarly, AEES
often has the best solution in hand at any time, and it is never
the worst performing algorithm in these benchmarks.

The Peg Solitaire and tiles domain seem to provide an ex-
ception to this trend. Here ANA* and LAMA11-PSS have
small ∆T, but do not report the best mean quality across all
times. This is because the solutions are not encountered uni-
formly across all times. Most solutions do not occur in the
first few seconds of search, they happen later on. In these
cases, the algorithm reporting the lowest ∆T is among the
best performing algorithms for long cutoffs. If the plots were
not on a log scale, it would always appear that the dominat-
ing algorithm also had the smallest ∆T.

Summary
AEES was consistently among the best performing anytime
search algorithm for domains where actions could have dif-
fering costs, and often it had the best solution in hand for
many cutoffs. This is unsurprising because AEES takes
advantage of actions-to-go estimates constantly, a quantity
which other algorithms use sparingly (LAMA11) or not at
all (ANA*, ARA*). As a result, AEES performs better, in
general, than other previously proposed algorithms for any-
time search. Although it was not always the dominating al-
gorithm, it was never completely dominated for any domain,
as all other algorithms under consideration were.

For short deadlines (i. e.within the first few seconds) we
saw that AEES and ABEES had very similar performance.
However, as time marched on, AEES often began to perform
far better than ABEES. As we discussed previously, this is
because ABEES is incorrectly estimating many of the so-
lutions to have cost beyond that of the current incumbent.
As time progresses, the cost of the incumbent solution is re-
duced, but the quality of the inadmissible heuristic learned
by ABEES and AEES does not neccessarily improve. Thus,
ABEES often incorrectly assumes all nodes will have cost
higher than the current incumbent, and reverts to A* search,
while AEES, which relies on relative bounds, will not.
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For domain independent planning, the results were mixed.
When we compare AEES to other search strategies, it is of-
ten the best performing. However, if we evaluate LAMA11
with planning-specific enhancements, we see that it has bet-
ter coverage, and thus better aggregate performance. AEES
almost always outperformed LAMA11-PSS. This suggests
that once we find a way to incorporate the search enhance-
ments used by LAMA11, AEES ought to consistently out-
perform LAMA11 in planning.

Finally, we showed that there was a strong correlation be-
tween our notion of ideal anytime performance and that of
algorithm dominance. Algorithms that have small delays be-
tween improvements to the solution also tend to have the
best solution given a wide range of cutoffs.

Conclusion and Future Work
This work presented AEES, a new state of the art anytime
search algorithm that draws on recent advances in bounded
suboptimal search and anytime search to provide a better
performing, more robust algorithm. The algorithm works
toward providing a search with ideal performance by us-
ing inadmissible estimates of solution cost and length. It
also uses admissible estimates of solution cost to set its own
parameters during search, obviating the need for parameter
schedules and tuning. Our evaluation showed that minimiz-
ing the time between improving solutions appears strongly
related to having the best incumbent solution for a wide vari-
ety of cutoffs. Future work will explore the theoretical prop-
erties of ideal performance and the correlation between ideal
performance and dominance is causal.
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