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Abstract

Introduction: With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While
time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations
by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods
appropriate for count data are required, especially during ‘‘consolidation’’ and ‘‘pre-elimination’’ phases.

Methods: Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal
autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non
Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time
series in a district in Sri Lanka, where malaria has decreased dramatically in recent years.

Results: The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-
binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different
criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than
Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the
series.

Conclusions: G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count
series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA
models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more
suitable when counts are low.
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Introduction

There is increasing interest in using malaria prediction

models to help clinical and public health services strategically

implement prevention and control measures [1–5]. The Anti

Malaria Campaign Directorate of the Ministry of Health in Sri

Lanka has tested a malaria forecasting system that uses

multiplicative seasonal autoregressive integrated moving average

(SARIMA) models, which assume that logarithmically trans-

formed monthly malaria case count data are approximately

Gaussian distributed. Such an approach is widely used in

predictive modelling of infectious diseases [4,6,7]. Malaria in Sri

Lanka is seasonal and unstable and fluctuates in intensity, both

spatially and temporally [8]. Malaria was a major public health

problem in the country [9] until incidence started to dwindle in

2000 [10]. Sri Lanka entered the pre-elimination phase in 2007

and progressed to the elimination phase in 2011 [11].

Box-Cox class transformation of malaria counts (such as a

logarithmic transformation) may yield approximately Gaussian

distributed data, however, approximation is less close for

observations with a low expected mean [12]. Also, low count

data may include zeros, which renders Box-Cox transformation

inapplicable. To overcome this problem, a small constant can be

added to the data. Gaussian modelling with transformed data may

result in inaccurate prediction distributions. This is problematic,

particularly when the most recent monthly case counts are low,

which tends to be the case in countries in the advanced phase of

elimination [3]. Models that assume a negative binomial

distribution for malaria count data may be more appropriate

[13–15]. However, negative binomial models that incorporate a

SARIMA structure are not yet available.
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Benjamin and colleagues [16] provide a framework for

generalized linear autoregressive moving average (GARMA)

models, and discuss, GARMA p,qð Þ models for Poisson and

negative binomially distributed data, among others. GARMA

models are observation-driven models that allow for lagged

dependence in observations. Alternatively, parameter-driven

models (also) allow dependence in latent variables [17–20].

GARMA models are easier to estimate and prediction is

straightforward, while parameter-driven models are easier to

interpret [21,22]. Jung and colleagues [23] find that both types of

models perform similarly.

GARMA models relate predictors and ARMA components to

a transformation of the mean parameter of the data distribution

(lt), via a link function. A log link function ensures that lt is

constrained to the domain of positive real numbers. Lagged

observations used as covariates should, therefore, also be

logarithmically transformed, which is not possible for observa-

tions with a value of zero. To circumvent this problem, Zeger

and Qaqish [24] discuss adding a small constant to the data,

either to all data or only to zeros. Grunwald and colleagues

[25] consider a conditional linear autoregressive (CLAR) model

with an identity link function. In order to ensure a positive lt,
restrictions can be put on the parameters. A variant of the

GARMA model, a generalized linear autoregressive moving

average (GLARMA) model, is presented by Davis and

colleagues [22].

Heinen [26] proposes a class of autoregressive conditional

Poisson (ACP) models with methods that allow for over and under

dispersion in the marginal distribution of the data. Another class of

Poisson models with auto correlated error structure uses ‘‘binomial

thinning’’, and are called integer-valued autoregressive (INAR)

models [27]. INAR models may be theoretically extended to

moving average (INMA) and INARMA models [28,29], but these

are not easily implemented [30].

An alternative parameter-driven modelling approach assumes

an autoregressive process on time specific random effects

introduced in the mean structure, using a logarithmic link

function [31]. Such a model is sometimes called a stochastic

autoregressive mean (SAM) model [23] and has frequently been

applied in Bayesian temporal and spatio-temporal modelling

[15,21,32–36].

Of the models discussed above, the GARMA framework

appears to be the most flexible for modelling count data with

an autoregressive and/or moving average structure. Benjamin

and colleagues [16] apply a stationary GARMA model to a

time series of polio cases with a seasonal trend, using a sine/

cosine function with a mixture of an annual and a semi-annual

cycle. However, if the seasonal component is assumed to be

stochastic, the GARMA model presented by Benjamin and

colleagues [16] is not appropriate. Also, many time series of

count data, including malaria cases, are non stationary.

Here, GARMA was extended to a class of generalized

multiplicative seasonal autoregressive integrated moving average

(GSARIMA) models, analogous to SARIMA models for Gaussian

distributed data. The class of GSARIMA models includes

generalized autoregressive integrated moving average (GARIMA)

models. Model fit was carried out using full Bayesian inference.

The effect of incorrect distributional assumptions on the posterior

predictive distributions was demonstrated using simulated and real

malaria case count data from Sri Lanka. Software code is provided

as supporting information.

Methods

Model Formulation
Let yT~ yt,ytz1,:::,ytznð Þ be a time series of count data of

length n arising from a negative binomial distribution

yt*NegBin lt,yð Þ with E ytð Þ~lt and V ytð Þ~ltz
l2t
y
. The

limiting form of the negative binomial distribution, that is

y??, is the Poisson distribution.

Figure 1. Monthly malaria case counts and rainfall in Gampaha
District over time. Panel A shows monthly malaria case counts and
panel B shows monthly rainfall.
doi:10.1371/journal.pone.0065761.g001

GSARIMA Models Applied to Case Count Time Series
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The GARMA p,qð Þ model can be written:

g ltð Þ~Wp Bð Þ xTt b{g ytð Þ
� �

zg ytð Þ

{Hq Bð Þ g ytð Þ{g ltð Þ½ �zg ytð Þ{g ltð Þ

where g :ð Þ is a link function, Wp Bð Þ~1{w1B
1{:::{wpB

p, and

Hq Bð Þ~1{h1B
1{:::{hqB

q. B is a backshift operator with

Bdyt~yt{d (note that BdBDyt~yt{(dzD)). b
T~ b0,b1,b2,:::,bnð Þ

is a vector of coefficients for xTt ~ x0,x1,t,x2,t,:::,xn,tð Þ which

includes an intercept multiplier (usually taken as x0~1) and n time

dependent covariates. In the GARMA framework, count data

could be modelled via a logarithmic or an identity link function,

whichever is most appropriate for the series. To avoid the problem

of taking the logarithm of observations with value zero under the

logarithmic link, Zeger and Qaqish [24] propose a transformation

y’t of yt such as y0t~max yt,cð Þ,0vcƒ1, henceforth called

‘‘ZQ1’’. Zeger and Qaqish [24] also suggest an alternative

method, henceforth called ‘‘ZQ2’’, which translates into the

model variant:

log ltð Þ~Wp Bð Þ log exp xTt b
� �

zc
� �

{ log ytzcð Þ
� �

z log ytzcð Þ

{Hq Bð Þ log ytzcð Þ= ltzcð Þ½ �z log ytzcð Þ= ltzcð Þ½ �

Under an identity link, restrictions may be necessary to ensure a

positive lt, depending on the data and model parameters.

The above models can be extended to

GSARIMA p,d,qð Þ| P,D,Qð Þs analogues by including seasonal-

ity (S) and differencing (I) components as follows:

g ltð Þ~Wp Bð Þ 1{Bð Þd 1{Bsð ÞDW�
P Bsð Þ xTt b{g ytð Þ

� �
zg ytð Þ

{Hq Bð ÞH�
Q Bsð Þ g ytð Þ{g ltð Þ½ �zg ytð Þ{g ltð Þ:

where s is the length of the period (s~12 for monthly data with an

annual cycle), W�
P Bsð Þ~1{w�1B

s{:::{w�PB
sP,

H�
Q Bsð Þ~1{h�1B

s{:::{h�QB
sQ, Wp Bð Þ, Hq Bð Þ, and B are as

above. Examples of negative binomial GARMA 1,1ð Þ
andGSARIMA 0,0,0ð Þ| 1,1,0ð Þs models with log link function

and ZQ1 transformation are given in Appendix S1. The influence

of link function choice and data transformations choices on the

distribution of data are also assessed in Appendix S1.

Model Fit
Benjamin and colleagues [16] employ maximum likelihood

estimation through iterative weighted least squares and base

inference on asymptotic results. In this paper, the model was

formulated in a Bayesian framework.

In Bayesian inference, prior distributions need to be assigned to

all model parameters. A weakly stationary model was assumed

and, therefore, the auto correlation and moving average param-

eters were constrained using an algorithm provided by Jones [37].

For this purpose, the autoregressive and moving average

parameters in the likelihood were reparameterized and prior

distributions were adopted on the new parameterization. For

example, the non seasonal autoregressive parameters w1,:::,wp
were reparameterized in terms of r, rT~ r1,:::,rp

� �
, where

wp~2rp{1 and

wp{i~2rp{i{1{
Xi

k~1

2rp{k{1
� �

2rp{kz1{1
� �

,i~1,:::,p{1.

The following prior distributions were assumed:

ri*Beta
1

2
iz1ð Þ

� �
,
1

2
iz1

� �	 

,i~1,:::,p, where x½ � denotes the

integer part of x. Further priors chosen were b0,:::,bn*N 0,1000ð Þ
and y*Ga 0:01,0:01ð Þ.
For the first w observations, the residuals on the predictor scale

(e.g. log y’tð Þ{ log ltð Þ in the case of a logarithmic link function)

were set to zero. A restriction can be put on the mean lt itself, that
is lt§0 when the identity link is used. The GSARIMA models

were estimated using the free Bayesian software programme,

‘‘JAGS’’ [38], which employs Markov chain Monte Carlo

(MCMC) simulation methods. Examples of code written for using

JAGS within the R software, for negative binomial GSARIMA

models with logarithmic link function and ZQ1 transformation,

are provided as supporting information [see Additional file S1].

The ability of these models to estimate simulated data series

with GSARIMA structure is briefly explored in Appendix S1. The

effect of (mis)specifying the link function and data transformation

when estimating GARMA model parameters is also assessed and

described in Appendix S1.

Application to Malaria Time Series Analysis
This section provides an example of a GSARIMA model

applied to monthly malaria case count yt for the period 1972–

2005 in the district of Gampaha in Sri Lanka (Figure 1A), with

rainfall as covariate (Figure 1B). Code of the analysis is provided as

supporting information in Additional File S2. Records of malaria

positive blood films were reported monthly by government health

facilities and aggregated by the Anti Malaria Campaign (AMC) of

Sri Lanka. Rainfall was the monthly district average height of the

precipitation column, which was derived from monthly island-

wide precipitation surfaces. These rainfall surfaces were generated

by spatial interpolation of precipitation records collected by 342

stations across the island. The data was earlier described in

previous work [8]. The time series of 408 months contained three

months with zero malaria cases: October 1982, and March and

August 2005. Rainfall slightly improved malaria prediction by

Gaussian SARIMA models fitted to logarithmically transformed

malaria case data three to four months ahead [2].

Table 1. Akaike’s information criterion (AIC) for selected
(Gaussian) models on Box-Cox transformed data.

Model
Excluding
rainfall

Including
rainfall

SARIMA(39,1,0)6(1,0,0)12 1638.61 1640.35

SARIMA(39,1,0)6(0,0,1)12 1638.95 1640.74

SARIMA(0,1,39)6(1,0,0)12 1638.44 1640.36

SARIMA(0,1,39)6(0,0,1)12 1638.79 1640.74

ARIMA(39,1,0)-SOH 1632.2 1630.68

ARIMA(0,1,39)-SOH 1631.27 1630.07

Legend: SOH: second order harmonics. For all these models, where applicable,
the autoregrdessive (w1 and w2) or moving average parameters (h1 and h2)
corresponding to the first two lags were omitted.
doi:10.1371/journal.pone.0065761.t001

GSARIMA Models Applied to Case Count Time Series
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Preliminary Frequentist Gaussian SARIMA Model
Identification
Because Bayesian model fit using MCMC algorithms is

computationally expensive, preliminary model identification to

choose the SARIMA parameters, p, d, q, P, D, and Q, was

performed using standard (frequentist) tools developed for time

series with Gaussian marginal errors, rather than through fitting

many possible MCMC models. A visual analysis of the malaria

time series (Figure 1) detected the presence of a long-term (inter

annual) change in the mean level, an unstable variance (which

appears to increase with the mean), and multiplicative seasonality

(the size of the seasonal effect is proportional to the mean). Thus,

for the preliminary Gaussian analysis, the data was transformed

using a fitted Box-Cox transformation [39], in order to stabilize

the variance, to make the seasonal effect additive, and to make the

data approximately normally distributed [40]. The trend in the

Box-Cox transformed series was treated as a stochastic trend,

which was (first order) difference stationary. The augmented

Dickey – Fuller test [41] on a lag order of 15 was used to detect the

presence of a unit root, to assess whether the series needed to be

integrated (differenced). Gaussian SARIMA models and ARIMA

models with a second order harmonic seasonal component, both

with d=1 because of the presence of a unit root, were fitted with

the (frequentist) R software package ‘stats’, and models were

evaluated based on Akaike’s information criterion (AIC). The

covariate matrix for the seasonal effect using second order

harmonics (i.e. using two sine and cosine pairs) is given by

xTt ~ sin 2pt=12ð Þ, cos 2pt=12ð Þ, sin 2pt=6ð Þ, cos 2pt=6ð Þ½ �. A (time

independent) intercept was not included because the intercept

drops out of the equation after first order differencing.

GSARIMA Model Selection
Bayesian negative binomial versions of four SARIMA models

and two ARIMA models, with second order harmonics identified

in the preliminary analysis, were implemented in JAGS on

untransformed data, using a logarithmic link function and ZQ1

transformation. Since there were only three observations with zero

counts, the results would not be sensitive to the choice of the

transformation constant for ZQ1 and this was set at c = 1. Also,

versions with identity link were considered. Models were evaluated

based on two criteria. The first was the deviance information

criterion (DIC), which was calculated as the mean of the posterior

distribution of the deviance conditional on the first v observations

(with v equal to the maximum w of the models compared),

Table 2. Selection criteria statistics for selected negative binomial models.

Model nep DIC on full series MARE DIC on first half MARE out of sample*

GSARIMA(39,1,0)6(1,0,0)12-IL 3 4637.8 0.4054 2266.6 0.3970

GSARIMA(39,1,0)6(1,0,0)12-LL 3 4350.7 0.3883 2243.2 0.3638

GSARIMA(39,1,0)6(0,0,1)12-LL 3 4351.1 0.3898 2243.0 0.3684

GSARIMA(0,1,39)6(1,0,0)12-LL 3 4352.4 0.3883 2243.7 0.3661

GSARIMA(0,1,39)6(0,0,1)12-LL 3 4352.8 0.3882 2243.1 0.3669

GSARIMA(39,1,0)6(1,0,0)12-RF-LL 4 4352.5 0.3876 2240.0 0.3795

GSARIMA(39,1,0)6(0,0,1)12-RF-LL 4 4352.9 0.3896 2240.6 0.3726

GSARIMA(0,1,39)6(1,0,0)12-RF-LL 4 4354.3 0.3869 4354.2 0.3721

GSARIMA(0,1,39)6(0,0,1)12-RF-LL 4 4355.0 0.3893 2241.1 0.3775

GARIMA(39,1,0)-SOH-LL 6 4335.7 0.3933 2246.2 0.3796

GARIMA(0,1,39)-SOH-LL 6 4336.5 0.3910 2246.1 0.3750

GARIMA(39,1,0)-SOH-RF-IL 7 4399.8 0.4000 2212.3 0.3979

GARIMA(39,1,0)-SOH-RF-LL 7 4333.3 0.3862 2236.7 0.3859

GARIMA(0,1,39)-SOH-RF-LL 7 4333.8 0.3899 2237.1 0.3845

Legend: IL: identity link; LL: logarithmic link function with transformation method ‘‘ZQ1’’ corresponding to equation 2.2 in Zeger and Qaqish [24] and with c~1; nep:
number of estimated parameters; DIC: Deviance Information Criterion; MARE: mean absolute relative error of fitted values; RF: with rainfall lagged at two months; SOH:
second order harmonics; *: The ‘MARE out of sample’ was calculated for the second half of the series, with the model fitted to the first half of the series only. For all
models, where applicable, the autoregressive (w1 and w2) or moving average parameters (h1 and h2) corresponding to the first two lags were omitted.
doi:10.1371/journal.pone.0065761.t002

Table 3. Parameter estimates (mean and 95% credible
interval) of selected negative binomial models.

Parameter
GARIMA(39,1,0)-SOH-
RF GSARIMA(39,1,0)6(1,0,0)12

brain 20.34 (20.66, 20.02)

bsin(2pt/12) 20.10 (20.23, 0.02)

bcos(2pt/12) 20.15 (20.28, 20.02)

bsin(2pt/6) 0.14 (0.06, 0.21)

bcos(2pt/6) 0.16 (0.07, 0.24)

w3 20.10 (20.19, 0.00) 20.13 (20.23, 20.04)

w1
* 0.12 (0.03, 0.22)

y 4.54 (3.87, 5.27) 4.32 (3.69, 5.04)

Amplitude AH
$ 0.19 (0.07, 0.32)

Amplitude SAH
$ 0.21 (0.13, 0.29)

Phase shift AH
$ 4.83 (3.30, 6.35)

Phase shift SAH
$ 20.69 (21.05, 20.34)

Legend: GARIMA(39,1,0)-SOH-RF =GARIMA(3,1,0) model with parameters for the
first two lags (w1 and w2) omitted, second order harmonics and rainfall lagged at
2 months (in m); GSARIMA(39,1,0)6(1,0,0)12 = GSARIMA(3,1,0)6(1,0,0)12 model
with parameters for the first two lags (w1 and w2) fixed to zero; AH= annual

harmonic, SAH= semi-annual harmonic;
$
=derived parameter, phase

shift = phase shift of the cosine function expressed in months.
doi:10.1371/journal.pone.0065761.t003

GSARIMA Models Applied to Case Count Time Series
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augmented with the number of effective estimated parameters as

penalty to prevent over fitting. Models with lower DIC are

considered to have a better fit. A second criterion was defined as

the mean absolute relative error of fitted values (MARE):

MARE=
Xl

f

D
yt{ŷyt
ytz1

D

,
lz1{fð Þ, where ŷyt is the fitted number

of malaria cases at discrete time interval t, and f and l are the first

and last discrete time intervals, respectively, of the time period

under consideration.

Figure 2. Posterior predictive distributions for the last 12
months of the Gampaha malaria case count series. In each panel,
representing each a month in the last year of the series, the black and
the red lines are the outline histogram of the density of the posterior
p r e d i c t i v e d i s t r i b u t i o n o f t h e n e g a t i v e b i n om i a l
GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model and a (Bayesian) Gaussian
SARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model on Box-Cox transformed data,
respectively. Models were fitted to the entire data set. In each panel,
the observed case count is represented by a blue dot.
doi:10.1371/journal.pone.0065761.g002

Figure 3. Cumulative distribution function of randomized
cumulative probabilities. The black line represents the cumulative
distribution function of randomized cumulative probabilities of the
GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model on monthly numbers of malaria
cases in Gampaha, Sri Lanka. The red line represents the cumulative
distribution function of randomized residual probabilities of the
Gaussian SARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model on Box-Cox transformed
data. The light grey diagonal line (cumulative distribution equals
randomized probability) represents on average appropriate predictive
distributions. Dotted lines represent 95% confidence boundaries for
proportions equalling probability. A: for the last 392 months in the
series. B: for the last fifty months in the series.
doi:10.1371/journal.pone.0065761.g003

GSARIMA Models Applied to Case Count Time Series
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The MARE was calculated for both the entire series (except for

the first v observations), when models were fitted to the entire time

series (f=v+1, l=n=408), and for the second half of the time

series (f=205, l=408), when models were fitted to the first half of

the time series only.

Since the (posterior) predictive distributions estimated at each

fitted data point were skewed, the median of the posterior

distribution was taken for ŷyt. The MARE is similar to the mean

absolute percentage error (MAPE), which is applicable to series for

which the variance is dependent on the mean [40]. However, since

the denominator is equal to or larger than one, this prevents

problems with large values caused by dividing by small numbers,

and a major critique of the MAPE [5]. The MARE statistic does

not have a built-in penalty to prevent over fitting, but among

models with similar value of MARE, the model with the least

number of parameters is preferred. The MARE estimate is

comparable across models with different distributional assump-

tions, in contrast to the DIC. Models were run with three Markov

chains of 11,000 iterations each including a burn-in of 1,000

iterations. Convergence was assessed by studying plots of the

Gelman-Rubin convergence statistic (on estimated parameters), as

modified by Brooks and Gelman [42].

Residual Analysis
Knowing whether the selected models and their underlying

distributions fit the variation in the data adequately is of interest. If

these models are used to predict malaria cases in a discrete time

interval (in this case, a month), then not only is the point estimate

of the posterior predictive distribution of interest, but also the

entire distribution. Let Ft be the cumulative posterior predictive

distribution function of ŷyt. The lower tail residual probability

Ft ytð Þ, i.e. the value of the cumulative posterior predictive

distribution calculated at the observed data Ft ytð Þ~P ŷytvytDyð Þ,
also called the probability integral transform, can be calculated for

each month t. A cumulative distribution function of Ft ytð Þ for all
months of interest allows for analysis of the appropriateness of the

model including the assumed underlying distribution. If the model

fits the data appropriately, this ‘cumulative distribution function of

residual probability values (C-R plot)’ will follow an approximately

straight diagonal line between the origin and point (1,1), similar to

a Probability-Probability plot. For example, when the model fits

Figure 4. Normal Q-Q plot of normalized randomized quantile
residuals of the selected GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model.
doi:10.1371/journal.pone.0065761.g004

Figure 5. Plot of normalized randomized quantile residuals of
the GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model against the logarithm of
relative change. Monthly malaria case counts were logarithmically
transformed after adding one. Then for each month, the difference
between this value and the value for the previous month was taken.
The diagonal is the fitted regression line.
doi:10.1371/journal.pone.0065761.g005

Figure 6. Plot of the autocorrelation function of normalized
randomized quant i l e res idua l s o f the se lec ted
GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12model.
doi:10.1371/journal.pone.0065761.g006

GSARIMA Models Applied to Case Count Time Series
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appropriately, 50% of observations have an associated residual

probability value of 0.5. More detail about the C-R plot is given as

supporting information [see Additional file S3]. An example is also

given in the supporting information where C-R plots are used to

assess appropriateness of models fitted to a time series with a

Poisson GARIMA(1,1,0) structure [see Additional file S4].

Thus, after fitting a model and obtaining posterior distributions,

the Ft ytð Þ was calculated for each observation. Because of the fact

that the cumulative distribution function for the negative binomial

models is discrete, the residual probability value was randomized

by drawing a random value pt from the uniform distribution in the

interval F yt{1,lt,rð Þ,F yt,lt,rð Þ½ �, following a procedure by Dunn

and Smyth [43], where Ft ytð Þ was estimated with 30,000 samples

from this distribution. This procedure is advocated by Benjamin

and colleagues [16] for discrete GARMA models. The appropri-

ateness of selected models was compared using plots of their

cumulative distribution functions of (randomized) residual prob-

ability values, both on the entire malaria case time series and on a

period comprising the last 50 observations, where case numbers

were relatively low.

It is standard practice to test time series model residuals for

remaining autocorrelation. However, standard tools presume

approximately Gaussian distributed data. Therefore, the random-

ized residual probability values were converted into normalized

randomized quantile residuals, et, using the quantile function

(inverse cumulative distribution function) of the normal distribu-

tion with zero mean and unity variance. Prior to conversion,

randomized residual probability values of zero (when all 30,000

samples from the posterior predictive distribution function were

above the observed value) were set to 0.00001 and randomized

residual probability values of one (when all 30,000 samples from

the posterior predictive distribution function were below the

observed value) were set to 0.99999. The normalized randomized

quantile residuals were analysed for remaining autocorrelation

with the Ljung-Box test [44] and visual analysis of autocorrelation

and partial autocorrelation functions.

Results and Discussion

For the purpose of Gaussian SARIMA model identification, a

Box-Cox transformation was identified by fitting to the malaria

case count time series. The fitted Box-Cox parameters were a

power of 0.249 and, given that the series contained observations

with zero counts, a constant of 0.0251 was added to each

observation prior to transformation. As observed for the original

series, the presence of long-term change in the mean level was

apparent in the transformed time series (Figure S1). Although the

changes in the mean level could potentially be related to malaria

control efforts, development of parasite and vector resistance, etc.,

such covariate data were not considered here.

The augmented Dickey – Fuller test supported the presence of a

unit-root (p = 0.14) in the Box-Cox transformed series and the

series was differenced. Plots of the auto correlation function (ACF)

(Figure S2) and the partial auto correlation function (PACF)

(Figure S3) of the differenced series showed significant (partial)

auto correlation at lags of three and twelve months. Based on the

preliminary analysis of the Box-Cox transformed series, four

Gaussian SARIMA models and two Gaussian ARIMA models

with second order harmonics (SOH) were initially selected, based

on AIC (Table 1). ARIMA-SOH models had the lower (better)

AIC compared to SARIMA models. ARIMA-SOH models

including rainfall as a covariate had a slightly lower AIC than

ARIMA-SOH models without rainfall. However, for the SAR-

IMA models, the inverse was true.

Bayesian negative binomial variants of these selected models

were built. In order to establish v, the model with the largest lag

required, w, needed to be identified for comparison of the DIC of

these Bayesian models. This was the model

GSARIMA 3,1,0ð Þ| 1,1,0ð Þ12with w=16. Models with logarith-

mic link function performed better than models with identity link.

Based on the DIC, the best negative binomial model was the

negative binomial GARIMA 3,1,0ð Þ model with parameters for

the first two lags (w1 and w2) omitted (fixed to zero), with

deterministic harmonic seasonality and with rainfall preceding

malaria with two months (Table 2). This model also had the best

overall MARE. The parameter and deviance estimates for this

model, henceforth ‘‘GARIMA 3’,1,0ð Þ-SOH-RF’’, are detailed in

Table 3. However, based on the MARE on the out of sample

predictions for the second half of the time series, when the model

was fitted to the first half, the negative binomial

GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12model (the ‘prime’ in the ‘‘3’’’
indicating that also here the parameters for the first two lags were

fixed to zero) without rainfall as covariate, was preferred. The

estimates for this model, when fitted to the entire time series, are

also detailed in Table 3.

Despite the GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model having a

higher (worse) DIC than the GARIMA 3’,1,0ð Þ-SOH-RF model,

the out of sample MARE of the GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12
model was 5.7 per cent better than the out of sample MARE of

the GARIMA 3’,1,0ð Þ-SOH-RF model, and required less than

half the number of fitted parameters. This indicates that the

GARIMA 3’,1,0ð Þ-SOH-RF model was probably over-fitting the

data, describing the random error rather than the underlying

process. The GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model was selected

for further analysis.

Figure 2 illustrates posterior predictive distributions for the last

12 months of the series by the GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12
model and those by a (Bayesian) Gaussian

SARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model on Box-Cox transformed

data, when fitted to the entire data set. Differences in the posterior

predictive distributions between the two models are apparent with

the Gaussian model predictive distributions having longer right

tails.

The C-R plot of the negative binomial

GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12model fit was compared to that of

a (Bayesian) Gaussian SARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 on Box-Cox

transformed data in Figure 3. The C-R plot on the entire series

(Figure 3A) is not entirely satisfactory for either model. For the

Gaussian SARIMA 3’,1,0ð Þ| 1,1,0ð Þ12, the posterior predictive

distribution appears to be platykurtic (for values of the residual

probability below 0.5, there are too few observations, and for

values above 0.5, there are too many). For the negative binomial

GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12model, for randomized residual

probability values below about 0.5, cumulatively fewer observa-

tions had these values than the posterior density distributions had

indicated. Therefore, on average, the part of the posterior density

distributions below the median was spread out too much to the

left. The lower boundaries of credibility intervals of the

distributions were thus on average too low. For the values above

0.5, the cumulative distribution function followed the diagonal.

Figure 3B compares both models for the last 50 months of the

series only, where numbers of monthly cases were smaller than 35.

For these low numbers, the negative binomial

GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model was much more appropri-

ate.

Figure shows the normal Q-Q plot for the normalized

randomized quantile residuals of the SARIMA 3’,1,0ð Þ| 1,1,0ð Þ12
model, for which the distribution is slightly leptokurtic. A plot of
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these normalized randomized quantile residuals against time

(Figure S4) appears a random scatter at first sight, but upon closer

inspection, extreme residuals occur more often during periods with

stronger relative changes. This is because the residuals, et, are
positively correlated with a relative change in malaria cases, with

linear regression line et~1:85 log
yt

yt{1

	 

z0:22, R2~0:93

(Figure 5).

The fact that this line does not go through the origin but has a

(small but significant; p,0.05) positive intercept is another

indication that the posterior distributions have, on average, too

much mass to the left, and therefore, on average, overestimate the

residuals. Figure 6 shows a plot of the autocorrelation function of

the normalized randomized quantile residuals of the

GSARIMA 3’,1,0ð Þ| 1,1,0ð Þ12 model. There is no indication of

significant autocorrelation in the residuals, which was confirmed

by the Ljung-Box test [44]. The Ljung-Box statistic was 19.8 based

on 24 lags, which was not significant (p = 0.65) because the

quantile corresponding to the 95th percentile of a chi-squared

distribution with 23 degrees freedom (24 degrees minus one fitted

ARMA parameter) is 35.17. The Ljung-Box test is valid under

these mild conditions of non-normality, although for stronger non-

normality, the Ljung-Box test is not robust and tends to reject the

null hypothesis of no autocorrelation too quickly [45].

Conclusions
To model a series of monthly counts of new malaria episodes in

a district in Sri Lanka, GSARIMA models and GARIMA models

with a deterministic seasonality component were developed.

GSARIMA and GARIMA models are an extension of the class

of GARMA models [16], and are suitable for parsimonious

modelling of non-stationary seasonal time series of (over dispersed)

count data with negative binomial conditional distribution.

Models were presented with a choice of identity link function or

logarithmic link function, and for the latter models, with a choice

between two transformation methods to deal with zero value

observations and using a threshold parameter. When a count time

series has many observations of zero, both transformation methods

and several threshold parameters should be explored in order to

find the best fitting model.

Bayesian GSARIMA and GARIMA models were applied to

malaria case count time series data from Gampaha District in Sri

Lanka. Both a GSARIMA and a GARIMA model with a

deterministic seasonality component were selected, based on

different criteria. The GARIMA model with deterministic

seasonality showed a lower DIC, but the GSARIMA model had

a lower mean absolute relative error on out of sample data, and

needed fewer parameters. Bayesian modelling allowed for analysis

of the posterior predictive distributions. The performance of the

selected negative binomial model was compared with that of a

Gaussian version of the model on Box-Cox transformed data.

These distributions did not perfectly mirror the distribution of the

residuals for either model. This is possibly an indication that the

assumptions about the underlying distributions were not entirely

appropriate for either case. However, analysis of the residuals

showed that the posterior predictive distributions were much

better for the negative binomial GSARIMA model than for its

Gaussian version on transformed data when counts were low. Both

models could account for autocorrelation in the data, but the

negative binomial model had an 8% better MARE than the

Gaussian version on transformed data (0.388 vs 0.423).

The fact that the cumulative distribution functions do not

perfectly match the diagonal in Figure 3A indicates that there is

room for improvement, through modelling a more complex

autocorrelation structure (e.g. through time varying SARIMA

parameters) and through the inclusion of covariates. It is also

possible that assuming an underlying negative binomial distribu-

tion is not entirely appropriate. In the latter case, the DIC, which

was based on this assumption, has less value than the MARE for

comparison between models. Apart from the fact that the MARE

does not depend on the assumption of a true underlying

distribution, it is easier to for malaria control staff to interpret.

G(S)ARIMA models may be particularly useful in the drive

towards malaria elimination, but could also be applied to other

fields. Although building and fitting Bayesian GSARIMA models

is laborious, they may provide more realistic prediction distribu-

tions for time series of counts than do Gaussian methods on

transformed data, especially when counts are low.
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