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Summary 
 

Background: Pharmaceutical manufacturing is moving towards real-time release of the 
products. This objective can only be achieved by clearly understanding the process and by 
implementing suitable technologies for manufacturing and for process control. Near-infrared 
(NIR) spectroscopy is one technology that has attracted lot of attention from the 
pharmaceutical industry since it can analyze bulk solids without any pretreatment, therefore 
reducing or eliminating wet chemistry analysis. Consequently NIR spectroscopy is a powerful 
tool for the monitoring unit operations were bulk material is involved i.e. blending of powders.  

Blending of powders is a complex and poorly understood unit operation. In the 
pharmaceutical industry blending has been performed batchwise and controlled by thief 
sampling. Thief sampling is an invasive process which is tedious and tends to introduce bias; 
therefore an alternative sampling method was highly needed. Here is where NIR found a 
perfect match with blend uniformity monitoring, thus NIR implementation offers several 
advantages: thief sampling is avoided, the process is continuously monitored, detection of 
blend-end point, and fast identification of process deviations. 

NIR spectral data need to be correlated with the parameter of interest (physical or chemical). 
These computations are done by multivariate data analysis (MVDA). MVDA and NIR are a 
powerful combination for in-process control and their use has been promoted by the health 
authorities through the Process Analytical technology (PAT) initiative by the FDA. 

Purpose: This thesis is focused on the study of powder blending, which is an essential unit 
operation for the manufacture of solid dosage forms. The purpose of this study was to 
develop two quantitative methods for the monitoring of the active ingredient concentration. 
One method was developed for the blend uniformity monitoring of a batch mixing process, 
and a second method for a continuous mixing process.  

This study also tackles the relevance of the physical presentation of the powder on the final 
blend quality, by studying the influence of the particle size and the effect of the previous 
manufacturing steps on the NIR spectral data. 

Methods: Particle size was studied by NIR in diffuse reflectance mode, using Kubelka-Munk 
function and the transformation of reflectance of absorbance values, in order to focus the 
analysis on the physical properties. Furthermore, an off-line NIR model was developed for 
the quantification of the mean particle size. The influence on segregation, that different 
particle size distribution of the formulation components, was studied.  

Blend uniformity monitoring of a batch pharmaceutical mixing was achieved through a NIR 
off-line calibration method, which was used for the in-line drug quantification of a production 
scale mixing process.  

NIR in diffuse reflectance mode was used in the study of a continuous blending system. The 
effect of the process parameters, i.e. flow rate and stirring rate, was analyzed. Moreover, a 
NIR method for the in-line drug quantification was developed.  

In addition, NIR was implemented in a powder stream, in which the mass of powder 
measured by NIR was estimated.  
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Results and discussion: Regarding particle size, incompatibilities due to different particle 
size ranges between the formulation ingredients lead to severe segregation. Particle size and 
cohesion determined the quality of the powder blend; slight cohesion and broader particle 
size distribution improved the robustness of the final blend. NIR showed high sensitivity to 
particle size variations, thus it was possible to develop a quantitative model for the mean 
particle size determination with a prediction error of 16 micrometers.  

Concerning batch mixing, an off-line calibration was generated for the quantification of two 
active ingredients contained in the formulation. The prediction errors varied from 0.4 to 2.3% 
m/m for each of the drugs respectively. Special emphasis was given on the proper 
wavelength selection for the quantitative analysis in order to focus the analysis on the active 
ingredients quantification.  

In relation to continuous blending of particulate material, a quantitative NIR model was 
developed for the in-line prediction of the active ingredient concentration. The NIR model 
was tested under different process conditions of feeding rate and stirring rate. High stirring 
rates produce higher scattering of the NIR predictions. This was directly associated with the 
acceleration of the particles at the outlet of the blender affecting the dwell time of the 
particles with the NIR probe. The NIR model showed to be robust to moderate feed rate 
increments; however the NIR model under-predicted the drug concentration under moderate 
feed rate reductions of 30 kg/h. Furthermore, the continuous blending phases were clearly 
identified by principal component analysis, moving block of standard deviation, and relative 
standard deviation, all of them giving consistent results.  

The NIR measurements in a powder stream involved the scanning of powder flowing in a 
chute. The flow of bulk solids is a complex phenomenon in which powder moves at a certain 
velocity. The motion of particles produces changes in the density and distribution of the 
voids. In this study, the velocity of the powder sliding down an inclined chute was measured 
and used for the estimation of the NIR measured mass. The mass observed during one NIR 
measurement was estimated to be 658 mg, which corresponded to less than one tablet.  

Conclusions: This study proved the feasibility of applying NIR spectroscopy for the blend 
uniformity monitoring of batch and continuous powder mixing. Understanding the critical 
parameters of powder mixing lead to a robust process and reliable analytical methods. NIR 
proved to be a valuable and versatile analytical tool in the measurement of bulk solids. 
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1 Introduction 
 

Pharmaceutical manufacturing is moving toward real-time release of pharmaceutical 

products. This goal can only be achieved by clearly understanding the manufacturing 

process and by implementing the suitable technology for manufacturing and for process 

control. Each unit operation brings challenges that need to be assessed in order to prevent 

compromising the quality of the final product. One of the technologies that has attracted a lot 

of attention from the pharmaceutical industries as well as the health authorities is near 

infrared (NIR) spectroscopy. NIR can measure bulk samples without any preceding 

treatment, thus making it a very appealing technology for the real-time monitoring of 

pharmaceutical processes. NIR spectral data needs to be correlated with the parameter of 

interest (physical or chemical); these computations are done by multivariate data analysis 

(MVDA). MVDA and NIR are a powerful combination for in-process control and their use has 

been promoted by the health authorities through the Process Analytical Technology (PAT) 

initiative of the FDA. 

This thesis is focused on the study of powder blending, which is an essential unit operation 

for the manufacture of solid dosage forms. This study tackles the relevance of the physical 

presentation of the powder on the final blend quality by studying the influence of the particle 

size and the effect of the previous manufacturing steps on the NIR spectral data. 

Blending of powders in the pharmaceutical industry has usually been performed batchwise. 

Batch blending has been traditionally controlled by thief-sampling which is tedious, quick to 

generate bias, and can potentially disrupt the blend, leaving plenty of room for improvement. 

By implementing NIR as a process analytical tool, the use of thief-sampling can be 

completely avoided. In this research a control strategy based on NIR and MVDA was 

developed for the blend uniformity monitoring of a batch process at an industrial scale. 
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Even though blend uniformity monitoring of a batch process by NIR is a huge achievement, it 

is still possible to go one step further: by employing continuous blending (CB) as a substitute 

of batch mixing. CB can handle higher production volumes and, when connected to the 

previous and following manufacturing steps, it is possible to avoid the manipulation of the 

formulation. The result is less operator interference and faster availability of the product. This 

scenario is only possible by having reliable control of the continuous blending process; as a 

result, in this study, NIR was used for monitoring the quality of the blend of the flowing 

powder at the outlet of a continuous blender. This study proved the feasibility of real-time 

monitoring of a continuous blending process of a pharmaceutical formulation. 

Powder mixing has erroneously been considered a straightforward operation. The lack of 

scientific understanding, together with strong regulations, has kept the pharmaceutical 

industry behind other industries. The art of powder mixing needs a better scientific 

understanding towards the excellence in quality, efficiency and reliability of the product in 

order to bring to a safe treatment to the patient. 
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2 Theoretical Background 

2.1 Blending 

It is well known that powder mixing is a central and extremely important unit operation that is 

practiced to a great extent whenever particulate material is processed. In the pharmaceutical 

industry, blending is involved in the manufacture of solid dosage forms, which include tablets, 

capsules, and granules. Therefore, powder blending cannot be overlooked and a correct 

control strategy is fundamental. A clear example of the importance of the assessment of the 

blend homogeneity, known as the Barr Decision (US v. Barr Laboratories, Inc., 812 F. Supp. 

458 - Dist. Court, D. New Jersey 1993), occurred in 1993. Barr laboratories faced a legal 

case against the FDA. The FDA found a series of failures during compliance inspections and, 

as a result of these investigations, blending of powders attracted a lot of interest. During the 

case special attention was placed on remixing, resampling, averaging, the importance of 

sample size and sampling locations, sampling procedures, mixing time, and particle size 

distribution. The case ended with numerous issued orders and product recalls, and a clear 

precedent was established concerning the importance of correct blending sampling and 

control. Bearing in mind that providing the best quality of the product is the main objective, 

the blend homogeneity has to be guaranteed by appropriate process control.  

Solids mixing is a key unit operation by which two or more components (active ingredients 

and excipients) are randomized (Fan et al., 1970). The mixing of powders gains more and 

more economical importance since the mixing process adds value to the product and 

incorrect blend uniformity analysis can lead to out of specification products. Rees (1977) 

emphasized the importance of building quality into the product during development and 

manufacturing processes instead of relying and waiting for the control test of the final 

product. This statement clearly refers to the Quality by Design (QbD) context defined by the 

ICH (2009), where the quality of the final product cannot be tested in the product, but rather 

should be built-in by design through the development process. 
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Lacey (1954) suggested three possible mixing mechanisms for particulate material: 

convective mixing, which involved the transfer of neighbor particles from one location to 

another, involving the movement of large masses of particles (Williams, 1972); diffusive 

mixing, which is the distribution of particles over a freshly developed surface and random 

motion at small scale; and shear mixing, with setting up of slipping planes with the mass 

(Alexander and Muzzio, 2002; Bridgwater, 1994; Manjunath et al., 2004; Staniforth, 1982).  

Mixing in tumbling blenders involves a fast convective stage followed by a slower dispersive 

or diffusive stage (Shinbrot and Muzzio, 2007). In Figure 2-1 the first stage of the mixing 

kinetic curve represents the reduction in heterogeneity. This period is associated with the 

rearrangement of large groups of particles, mainly due to convective and shear mixing 

mechanisms. The second stage corresponds to diffusive mixing characterized by the motion 

of individual particles (Massol-Chaudeur et al., 2002). 

 

Figure 2-1 Mixing kinetic curve (Massol-Chaudeur et al., 2002). 

At the end of the mixing process, two different types of blends can be obtained: 

Ordered mixture (Figure 2-2a): requires particle interaction as adsorption, chemisorption, 

surface tension, frictional, electrostatic or any other form of adhesion (Hersey, 1975). An 

example is the adhesion of the fine component to the surface of coarse carrier particles as 
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the dominant mechanism of mixture (Fan et al., 1990). Depending on the attraction forces it 

is possible to find agglomerates in these kind of mixtures (Muzzio et al., 2004). 

Random mixture (Figure 2-2b): this is the case for real mixtures, where the particles tend to 

show some heterogeneity, where the probability of a particle position is independent of the 

neighboring particles (Muzzio et al., 2004). 

 

Figure 2-2 Types of blends (a) ordered mixture and (b) random mixture (Hersey, 1974). 

In order to ensure safety and efficacy of the final product, the API needs to be uniformly 

distributed in the blend. The scale to which it needs to be homogeneously mixed is called 

scale of scrutiny. The scale of scrutiny of a product corresponds to the final unit dose in 

which the product will be commercialized, i.e. one tablet or one capsule (Train, 1959). 

Some of the reasons for determining the degree of mixing are: for monitoring a blending 

process, for indicating the blend-end point, for evaluating the mixer efficiency, for determining 

the blending time required, and for establishing if the process critical attributes (e.g. API 

level) are under control (Twitchell, 2007). 

It is important to bear in mind that there will always be some variation in composition from 

samples taken from a random mix. Thus, the objective is to keep these variations within 

acceptable limits (Twitchell, 2007). The EMEA (1996) mentioned that the acceptance limits 

should be within 95-105% of the nominal value for the active ingredients. The FDA (2003) 

established the acceptance criteria limits for a blend uniformity process (see Figure 2-3) to 

be between 90-110% of the label claim for the active ingredient as the acceptance criteria. 
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Figure 2-3 Guidance for Industry for Powder Blends and Finished Dosage Units (FDA, 
2003). 

The homogeneity or the degree of mixing is often determined by a mixing index. Most of the 

mixing indexes are founded on variance-based statistics of the component of interest; the 

reader is referred to the following reviews which cover numerous mathematical models for 

the computation of the degree of mixing (Bridgwater, 2012; Fan et al., 1970). One common 

and widely used mixing index is the Relative Standard Deviation (RSD), given in Equation 

2-1: 



7 Theoretical Background 
 

 
 

Equation 2-1   %𝑹𝑺𝑫 = 𝟏𝟎𝟎 ∗
�∑ �𝑿𝒊−𝑿��

𝟐
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𝒏
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𝑿�
=  𝟏𝟎𝟎 ∗ 𝝈

𝑿�
   

where 𝑿𝒊 is the API concentration in the sample at time point 𝑡𝑖, 𝑛 is the total number of 

samples, 𝑿� is the average of the concentration and 𝜎 is the standard deviation of the 

concentration. The lower RSD indicates less variability of the samples thus higher 

homogeneity. As a blend uniformity criteria, the FDA (2003) established the RSD limit to be 

5% (see Figure 2-3).  

2.2 Impact variables on solids mixing 

Pharmaceutical powders can be very diverse in their physical and chemical nature. The 

powders may come from a milling process after crystallization of the main active ingredient. 

Under these conditions the API may be cohesive and with bad flow behavior; an alternative 

is that the API was further processed through an agglomeration technique (such as 

granulation) resulting in bigger particles with improved flow behavior and lower cohesion. 

Therefore, the API can vary in mean particle size, particle shape, particle size distribution, 

porosity, density, flow character, etc. Moreover, the API will be blended with other 

components, either excipients or other APIs, which also possess their own physical 

characteristics. Thus, it is well known that the blending performance is largely dependent on 

the physical characteristics of the materials (Bellamy et al., 2008; Chaudhuri et al., 2006; 

Venables and Wells, 2001; Virtanen et al., 2007) and the process conditions (Sudah, et al., 

2002). This is exemplified by a fishbone diagram in Figure 2-4. It is clear that the assessment 

of a good blend quality requires a good understanding of the variables that can have a strong 

impact on the powder blend. This thesis is focused on the study of different mixing 

modalities, such as batch and continuous mixing, which differ on feeding techniques, mixing 

times, mixer geometry, blending speed, sampling rate, etc. Additionally the influence that 

different particle size distributions and agglomeration (by hot-melt granulation) exerted on the 

final blend was of primary interest.  
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Figure 2-4 Fish-bone diagram for blend uniformity. 

Segregation 

In practice, segregation or demixing is a potential issue that will have a direct influence on 

the content uniformity of the final product. The mechanisms of segregation include (Figure 

2-5): 

• Percolation: This mechanism refers to the movement of the small particles through 

the voids in the powder bed. This is considered the main mechanism of segregation 

for non-aerated blends. Percolation can appear due to differences in size and density 

between the formulation components.  

• Trajectory segregation during a free fall: Particles under motion possess kinetic 

energy. This may result in preferential separation 

• Densification: density differences of the formulation components can cause large 

particles to move to the surface of the powder bed while smaller particles move to the 
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bottom. Vibration during handling, transportation, or tableting can induce densification 

(Aiache and Beyssac, 2007). 

• Elutriation: This mechanism occurs in upwards flow, e.g. fluidized beds. Elutriation 

can also occur in pipelines in combination with trajectory segregation.  

 

Figure 2-5 Mechanisms of segregation. 

It is recommended to choose particles with similar characteristics, such as particle size and 

density, to avoid segregation (Williams, 1972). Angle of repose, coefficient of friction, and 

flow behavior are closely related. Particulate material holding small repose angles, good flow 

behavior, and small coefficient of friction may cause mixing problems, since segregation can 

occur due to their rapid movement (Fan et al., 1970). Segregation can also occur when the 

mixer is emptied, during transportation and storage, and, in general, wrong handling 

procedures can induce powder segregation.  

2.3 Batch mixing equipment 

The pharmaceutical industry has been batchwise driven. The two most common types of 

blenders are tumbling and convective blenders. Tumbling mixers are a container or vessel 
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that is rotated. Examples of these blenders (see Figure 2-6) are the cylindrical drum, double 

cone, off-center cone, V-mixer, tote mixer, and bin mixer. One tumbling mixer that is used in 

production areas is the bin blender, also known as an intermediate bulk container (IBC). 

These blenders are designed as storage vessels which are loaded with the formulation 

components, mounted into the axis and then rotated. The functionality is similar to the double 

cone mixer (Sudah et al., 2002). The bin blender has the advantage that the bin containing 

the final blend can be transported to the next production area (e.g. compaction room) and the 

powder can be discharged directly into the hopper of the tableting machine. Additionally, the 

contact of the operator to the blend is reduced.  

 

Figure 2-6 Tumbling mixers (Bridgwater, 2012).  

The second class of blenders is the convective mixers. These mixers have a stirring device 

such as paddles or impellers. Some examples are the centrifugal mixer, ribbon mixer, 

planetary mixer, and orbiting screw mixer (Nauta mixer). Many convective mixers can be 

adjusted for continuous processing of material (Bridgwater, 2012; Muzzio et al., 2004).  

2.4 Continuous mixing 

The aim of continuous mixing is to continuously feed and blend the ingredients in a single 

pass so that the resulting blend is ready for the next unit operation (Manjunath et al, 2004; 

Weinekötter and Gericke, 2006). The advantages of a continuous blender are listed below 
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(Manjunath et al, 2004; Pernenkil and Cooney, 2006; Pernenkil, 2008; Weinekötter and 

Gericke, 2006; Williams and Rahman, 1970): 

• Reduction of intermediate handling and segregation: connecting the continuous mixer 

to the previous and next unit operation is of great industrial value, since segregation 

of the powder blend may occur during the handling of the final blend. The vibrations 

during the transportation of the container from one production area to another as well 

as the storage of the blend can produce different degrees of segregation.  

• Continuity of production: the product availability is faster compared to a batchwise 

process.  

• High production capacity: continuous blenders can produce larger quantities of a 

powder mixture compared to batch mixers.  

• Better dispersion of minor components: the ingredients can be mixed more efficiently 

due to the intense mixing. 

• Better blend quality: the presence of axial and radial mixing together with better 

dispersion of the minor components lead to a better mixed product. 

• Residence time: is a critical parameter which refers to the time that the powder stays 

inside the blender.  

Low hold-up: this is achieved due to lower residence times inside the blender compared 

to batch mixing. Reduction of storage space: this is only feasible when the blender is 

connected to the previous or next processing step. 

• Automatic control: allows for the correct monitoring of the process parameters, such 

as stirring rate, mass flow rate, feeding rate of each ingredient. 

• Easier scale-up: can be achieved by extension of the blender total runtime.  

• Faster product availability by using a PAT tool: real-time monitoring of the process 

would provide a valuable way of measuring the API level as a quality attribute. 

Additionally, the product would already be tested once it arrives at the next unit 

operation. 
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• Reduce the analytical time and sampling: this can be achieved with a non-invasive 

spectroscopic technique such as NIR, so the requirements of reagents and off-line 

analytical tests are skipped.  

• Lower production and analytical costs: the continuous production combined with a 

suitable PAT tool can dramatically reduce the amount of off-line tests and production 

costs, although the continuous blender, feeding system, PAT equipment, and 

automation costs can be higher than in a batch system.  

• Less labor work: minimum operator work is needed since filling and emptying is done 

automatically and sampling can be avoided.  

Continuous blending also holds some disadvantages. Usually the continuous blender is 

product-specific and switching to another product is not a simple process. Also, the 

breakdown of the equipment or the malfunctioning of the feeding system can stop the 

production chain. In the pharmaceutical industry, the definition of a batch in a continuous 

process needs to be clearly specified. The feeding system needs to be accurate and reliable. 

Calibration of the equipment, mostly of the feeding system, requires careful and narrow 

ranges. Cohesive powders can be challenging for the feeding system. If the removal of 

samples is required, it must be done with a good sampling procedure in order to avoid biased 

and misleading results. If the control technique includes a MVDA method, this needs to be 

reliable and accurate as well. The automation system has to react quickly to any process 

deviations.  

Continuous blending characterization 

The continuous blender has to homogenize the material in the radial and axial directions. 

Radial means lateral to the direction of the material conveyance into the mixer and axial is in 

the direction of the material’s conveyance (Figure 2-7). Radial mixing can be achieved by 

paddles and axial mixing and back mixing can dampen the effect of feed fluctuations 

(Manjunath et al, 2004; Weinekötter and Gericke, 2006; Williams and Rahman, 1970). Axial 
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mixing will dampen the variability introduced by the feeders, while shear forces and radial 

mixing will homogenize the original components.  

 

Figure 2-7 Continuous mixing of two components (Weinekötter and Gericke, 2006). 

Williams and Rahman (1970) gave a list of physical parameters that can be used to 

characterize a continuous blender. These measurements include average rate of flow and 

hold-up. Average flow rate is the amount of outflow during the run, divided by the total time. 

Hold-up is the mass contained inside the blender once it has reached the steady state. 

These are important since they can be used to determine the average residence time and 

the strain underwent by the powder (Vanarase and Muzzio, 2011).  

Residence time distribution (RTD) indicates the time that the powders stay inside the 

blender. This value can be measured by injecting a tracer into the blender and measuring the 

time that it takes to leave the blender. A broad RTD indicates extensive axial mixing. On the 

other hand, RTD does not indicate the rate of shear or radial mixing applied to the powder 

bed (Portillo et al. 2009; Weinekötter and Gericke, 2006). The RTD,𝐸(𝑡), is defined 

mathematically by Equation 2-2. Gao et al. (2011) and Vanarase and Muzzio (2011) used a 

pulse-test and monitored the tracer concentration, 𝑐(𝑡) for the determination of RTD. The 

tracer concentration was measured by retrieving samples from the outlet of the blender and 

performing off-line measurements.  

Equation 2-2   𝑬(𝒕) = 𝒄(𝒕)
∫ 𝒄(𝒕)𝒅𝒕∞
𝟎
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Danckwerts (1953) proposed the variance reduction ratio (VRR) as an option for the 

evaluation of blender efficiency. The VRR is the ratio between the variances at the inlet 

(𝜎𝑖𝑛𝑙𝑒𝑡2 ) and outlet (𝜎𝑜𝑢𝑡𝑙𝑒𝑡2 ) of the mixer, see Equation 2-3. The VRR can be quantified 

experimentally by measuring a determined signal (spectroscopic methods) at the inlet and 

comparing it with the signal of the outlet. A good mixer will have a high VRR. A low 𝜎𝑜𝑢𝑡𝑙𝑒𝑡2  

VRR as well as the RTD give an insight into the performance of the blender and the blend 

quality. Conversely, in the pharmaceutical industry the acceptance criteria for determining 

the quality of the blend are given only by the RSD of the active ingredient (see Figure 2-3).  

Equation 2-3  𝑽𝑹𝑹 = 𝝈𝒊𝒏𝒍𝒆𝒕
𝟐

𝝈𝒐𝒖𝒕𝒍𝒆𝒕
𝟐  

Operating variables that influence the quality of the final blend are: the inclination of the 

blender, the rotation speed, the length-diameter ratio of the blender, the number of paddles, 

paddle inclination, filling level, and size of the inlets and outlets. The feeders are also critical 

for achieving optimum blend quality. 

In order to improve the quality of the final blend, a better understanding of the operating 

conditions is needed. Portillo et al. (2008, 2009) showed how the powder residence time and 

API concentration are highly influenced by the rotation rate, mixing angle and cohesion. 

Rotation rate influences the rate of shear, axial mixing, mean residence time, the intensity of 

the material dispersion, and the number of blade passes. All these factors will determine the 

API homogeneity in the blend. Cohesion can also influence the blending performance by 

affecting the flow rate in the feeding system.  

Feeding and weighing equipment 

A continuous blender consists of a feeding system with a feeder unit, a measurement 

section, and a control system. The ingredients can be fed gravimetrically or volumetrically. 

Volumetric feeding is used for liquids or uniform solids in which bulk density does not 

fluctuate. Gravimetric feeders are more accurate and are recommended for cohesive 

powders as well as for materials with bulk density fluctuations. In this study we used loss-in-
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weight feeders, which are a type of gravimetric feeder. The general mechanism consists of a 

feeder unit with a hopper placed over the weighing system. A load cell in the feeding system 

measures the weight at regular time intervals and the weight loss per unit time corresponding 

to the actual feed rate. The actual feed rate is compared with the set point and the feeder 

adjusts the flow in order to equal the set point (Weinekötter and Gericke, 2006). 

Accurate performance of the feeding system is essential in a continuous blending process. 

Figure 2-8 shows the curve of the mass flow (𝑚̇) over time (t). At the beginning of the 

production the mass flow (𝑚̇1 ) is in the proximity of the set point and by the end of the 

process, the mass flow (𝑚̇2) deviation from the set point is greater. This situation can appear 

when the bulk density changes over time thereby influencing the volumetric feeding.  

 

Figure 2-8 Drift in a continuous feeding system (Weinekötter and Gericke, 2006). 

2.5 Sampling 

Sampling of static powder 

The main goal of sampling is to collect an amount of powder that is representative of the 

batch. The most frequently used method for determining the performance of a mixer is by 

withdrawing samples and then using the variance of the concentration of these samples as a 

measure of mixture quality (Cooke et al., 1976).  
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Figure 2-9 Side-sampling thief (a) close position, (b) open position, and (c) close 
position with a sample inside (Brittain, 2002).  

One common technique for sampling a batch blending process is by inserting a probe, 

known as a thief sampler (Figure 2-9). A thief sampler consists of two concentric tubes, 

where the outer tube is pointed and contains holes in selected positions. The holes are 

opened or closed in order to capture material. Important parameters that need to be 

considered are sample size, number of samples and location of sampling points. The 

selection of sampling locations and sampling number can be done by following the existing 

guidelines. The thief sampling technique suffers from two main disadvantages: the samples 

withdrawn can be heavily contaminated from neighbor particles, and the thief can also have 

preferential retention of particles (Harnby, 1997). Thief sampling can disrupt the powder bed 

causing systematic errors (Muzzio et al., 1997; Schofield, 1976) as shown in Figure 2-10. 

Figure 2-10a shows the side-sampling thief which relies on free particle flow; thus the 

particles with easier mobility and better flow behavior can be overrepresented on the final 

sample. Figure 2-10b corresponds to an end-sampling thief. In this probe particles are forced 

into the cavity but can substantially disrupt the blend (Muzzio et al., 2004).  
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(a) (b) 

Figure 2-10 (a) error introduced by a side-sampling thief and by an (b) end-sampling 
thief. Layer configuration of small (dark) and large (light) particles (Muzzio, 2004).  

As Hersey (1975) mentioned, all sampling operations can lead to some degree of 

segregation. The number of samples is important and the more samples taken, the smaller 

the error. 

Here are three sampling recommendations (Allen, 2003; Harnby, 1997): 

• The powder should be sampled while in motion 

• Sample frequently and avoid a sample frequency that coincides with a process cycle 

• Sample the entire section of the powder stream 

It is clear that thief sampling does not follow all these recommendations since the blender 

needs to be stopped in order to collect the samples from the static powders and from 

selected regions. Testing the homogeneity of a blend is a challenging task that can suffer 

from inconsistencies due to bad sampling techniques, thus causing confusion on whether the 

batch is inhomogeneous or if the results are biased due to incorrect sampling. Here is where 

NIR found a generous field for improving the process analytics.  
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Sampling in powder streams 

One of the golden rules of sampling is to take the sample while the powder is in motion. This 

can be achieved easily in continuous processes. When sampling falling powders, special 

care must be used when introducing and removing the sampler. In addition, the entire stream 

needs to be considered rather than only the central or peripheral parts. Figure 2-11b shows 

correct stream sampling, in which the removal of the sample needs to be in the same 

direction upon insertion and removal in order to avoid segregation and selective particle 

sampling. Figure 2-11a shows an incorrect way of sampling which lead to an excess of 

bigger particles since the surface of the powder bed is sampled for a longer period of time 

than the rest of the stream. The surface of the powder bed could contain higher amounts of 

coarse particles compared to the lower region, thus leading to unwanted selective particle 

size sampling. The best sampling method is shown in Figure 2-11c where the sample is 

collected through the entire sample stream (Allen, 2003). Meyer (2008) developed a device 

for sampling a powder stream, in which consisted of a sampling train connected to a motor. 

The speed of the motor was adjusted according to the flowability of the powder blend 

together with the desired sampled mass. This example proved the feasibility of sampling 

while in motion together with a frequent sampling corresponding to the mixing process cycle.  

 

Figure 2-11 Sampling from falling streams. (a) bad sampling technique, (b) good 
sampling technique, (c) sampling procedure adopted for high mass flow rate (Allen, 
2003). 
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Several sampling techniques are available for sampling under powder motion (see Figure 

2-12a-d), such as sample strippers, pendulum samplers, chute sampler splitters, and spin 

riffling, among others. The selection of the best sampling method needs to be evaluated 

according to the process needs, space availability, and further analytical tests.  

 

 

Figure 2-12 sampling under dynamic conditions, (a) sample stripper, (b) pendulum 
sampler, (c) chute sample splitter, and (d) spinning riffler (Allen, 2003; Brittain, 2002; 
Sommer, 2012).  

Sampling error 

The total variance measured on a sample is given by Equation 2-4. The measured variance 

is the combination of the variance from the sampling, the variance related to the 

homogeneity of the blend and the contributed variance from the analytical method 

(Manjunath et al., 2004).  
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Equation 2-4   𝝈𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅𝟐 =  𝝈𝒎𝒊𝒙𝒕𝒖𝒓𝒆𝟐 + 𝝈𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈𝟐 + 𝝈𝒂𝒏𝒂𝒍𝒚𝒕𝒊𝒄𝒂𝒍𝟐  

The sampling uncertainties as well as the analytical variance are required values in order to 

assess the homogeneity of the blend. In an ideal situation the errors due to sampling and 

analytical method should be negligible; hence the measured variance will be equivalent to 

the variance of the process. On the other hand, sampling error should never be 

underestimated, since the physical removal of powder (in a batch or in a continuous process) 

can lead to serious misleading results if the sampling is performed incorrectly or if the wrong 

sampling technique is chosen. Muzzio et al. (1997) quantified the maximum sampling error 

for three different thief samplers: side-sampling thief (Globe Pharma Thief) can reach 100%, 

slug sampler (end-sampling thief) as much as 30%, and Rutgers (end-sampling thief) up to 

20%.  

In order to avoid physical sampling methods and also to increase the sampling rate, non-

invasive techniques are on the scope of the industries that deal with particulate materials. 

One analytical tool that is non-invasive and has shown great potential for blend uniformity is 

near infrared spectroscopy (See section 2.9 Near Infrared Spectroscopy). Using NIR will 

eliminate the term 𝜎𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
2  from Equation 2-4, thus the sample variance will be ruled by the 

variance of the mixing process as well as the uncertainty belonging to the NIR-MVDA 

method.  

2.6 Melt Granulation 

Granulation is a common pharmaceutical unit operation. During the granulation process the 

primary powder particles adhere to form larger entities called granules. Some of the reasons 

for performing a granulation step are (Kristensen and Schaefer, 1987; Summers and Aulton, 

2007): 

• To improve the flow properties by reducing cohesion, increasing particle size, and 

generating isodiametric granules. 



21 Theoretical Background 
 

 
 

• To improve compaction by better distributing the binder, thus helping the bond 

formation. 

• To improve the blending by reducing segregation due to particle differences, although 

problems due to segregation and percolation may appear if there is a pronounced 

difference between the size of the granules and the other formulation. 

• To improve the die filling. 

• To reduce dust 

• To modify the appearance 

• To improve stability during storage, reducing the cake formation. 

• To modify or control the dissolution of the API. 

Granulation can be divided in wet or dry granulation. Wet granulation includes the addition of 

a liquid containing a binder. Dry granulation involves high pressures in order to compact the 

original powders. The resulting product undergoes milling and sieving processes for 

controlling the final particle size. Table 2-1 lists dry and wet granulation methods with their 

further preprocessing.  

Table 2-1 Granulation techniques (Parikh, 2005). 

 Process Further processing 

Dry granulation Direct compression Blending 

Slugging Milling-Blending 

Roller compaction Milling-Blending 

  

Wet granulation Low-shear mixer Drying-Milling-Blending 

High-shear mixer Drying-Milling-Blending 

Fluidized bed Drying-Milling-Blending 

Extrusion/ spheronization Drying-Milling-Blending 

Spray-dryer Sieving-Blending 

Continuous mixer granulator Milling-Blending 

Continuous fluid-bed granulator Milling-Blending 
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This study is focused on a special granulation technique named melt-granulation, which in 

some aspects follows similar principles as wet granulation; the main difference is that it uses 

a molten binder as a granulation fluid. Some of the advantages of melt granulation over wet 

granulation are (Vervaet and Remon, 2009): 

• No need of solvents, thus the drying step is eliminated, reducing the process time and 

energy requirements. 

• Moisture-sensitive materials can be agglomerated, although it is not suitable for 

thermo-sensitive APIs that can suffer thermal degradation. 

Melt granulation involves the melting of the binder which will produce the particle 

agglomeration and consolidation, followed by a cooling step. Successively the resulting 

product undergoes a milling step. All the steps for melt granulation can be performed in 

sequence.  

The binder for a melt-granulation process can be hydrophilic or lipophilic. Hydrophilic binders 

will lead to immediate release while lipophilic binders can produce sustained-release forms 

(Zhang and Schwartz, 2003).  

Melt granulation can be performed in high shear mixers (Schaefer et al., 1992) and in 

fluidized bed granulators (Abberger et al., 2002), hence the granules production was batch 

wise. One manufacture alternative is to use an extruder as a granulator; in this manner melt 

granulation can be performed as a continuous unit operation. Van Melkebeke et al. (2006) 

successfully used a twin-screw extruder for preparing melt granules of an immediate release 

formulation.  

The selection of a suitable technology for each unit operation (e.g. granulation) can improve 

the quality and performance of the final product; it can also reduce the manufacturing time 

and material and manpower. Melt granulation used in a continuous modality can be linked to 

the previous and following steps, thus reducing the material handling and product storage. In 
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addition, a correct in-line process control can reduce the analytical time and characterization 

of the granules.  

2.7 Continuous manufacturing in pharmaceutics 

Continuous manufacturing is attracting interest and investment from the pharmaceutical 

industry due to two main reasons: cost reduction and quality improvement.  

Pharmaceutical manufacture of solid dosage forms often contains continuous processing 

steps; some examples for drying, granulation, and blending are given on Table 2-2.  

Table 2-2 Continuous processes in pharmaceutical manufacture. 

Unit operation Use Reference 

Granulation Continuous granulation (Review) Vervaet and Remon, 2005. 

Roller compaction Kleinebudde, 2004. 

Melt granulation in twin-screw 

extruders 

Djuric et al., 2009, Djuric and 

Kleinebudde, 2010. 

Melt Extrusion Gamlen and Eardley, 1986. 

Cold extrusion Keleb et al., 2001. 

High-shear mixer (quasicontinuous) Betz et al., 2003. 

Twin-screw high-shear granulator Fonteyne et al., 2012; Vercruysse et al., 

2012. 

Drying Fluidized bed drying Betz et al., 2003; Burgschweiger and 

Tsotsas, 2002. 

Spray drying Gonissen et al., 2008. 

Blending Continuous blending, convective 

mixers 

Pernenkil and Cooney, 2006; Portillo et 

al., 2008. 

 

Schaber et al. (2011) studied the implementation of an integrated continuous production of 

tablets and a process that can work for 335 working days per year, with 30 days for cleaning, 

maintenance, start-up and shut down. This effective working time in a continuous modality is 

higher than in batch modality, since batch manufacture needs more time for filling, emptying, 

cleaning, and transport from one process area to the next one. Schaber et al. (2011) 

estimated an overall cost savings of 9 to 40%, depending on the technology and reagents 
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selected for the manufacture. On the other hand, this estimation did not include the expenses 

associated with the analytical methods used. These savings could increase further by having 

an efficient, reliable and non-invasive in-process control.  

The continuous manufacture of a product requires a robust process that can soften raw 

material variability since the quality in the product must be constant (Remon and Vervaet, 

2007). Continuous manufacturing already takes place in the Merck facility in Elkton, Virginia 

(see Figure 2-13). In this process the operators load the material in the bulk unit load 

container and this is the only interaction that they have with the process. The correct 

implementation of a continuous process requires automation and a well-understood process. 

The transfer of the powder and the feeding into the next unit operation need to be mass 

controlled and discharged in the correct weight proportions.  

 

Figure 2-13 Flow diagram of the continuous production line of Merck. (1) Bulk unit 
load container; (2) weigh–discharge unit; (3) ethylcellulose hood; (4) Vac-U-Max 
(ethylcellulose); (5) rotary sifter; (6) bulk ethylcellulose hopper; (7) adds materials 
hood; (8) Vac-U-Max; (9) rotary sifter; (10) adds ribbon blender; (11) clear-coat make-
up tank; (12) color-coat make-up tank; (13) clear-coat use tank; (14) color-coat use 
tank; (15) purge solvent tank; (16) Nauta mixer; (17) ethylcellulose dosing hopper; (18) 
alcohol dosing tank; (19) fluid bed dryer; (20) mill feed hopper; (21) Fitzmill; (22) bulk 
granule hopper; (23) lubrication ribbon blender; (24) adds dosing hopper; (25) Manesty 
Mark III; (26) bucket conveyor; (27) bulk tablet hoppers; (28) tablet dosing hopper; (29) 
ploughed conveyor; (30) 18-in. coating columns; (31) coating dosing hoppers; (32) 
Nordson pump; (33) thermal mass flow meter; (34) spray system nozzle; (35) bucket 
conveyor; (36) coated tablet hopper–dryer; (37) conveyor (Remon and Vervaet, 2007).  
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2.8 PAT 

The process analytical technology (PAT) initiative launched by the FDA (2004) is defined as 

“a system for designing, analyzing and controlling manufacture processes with the goal of 

ensuring final product quality”. A key point of PAT is: “quality cannot be tested into products; 

it should be built-in or should be by design”. The PAT initiative has encouraged the 

pharmaceutical industry to increase its research into new analytical technologies, which 

enable the measurement or monitoring of critical process parameters. These technologies 

can be used to control and understand the manufacturing process and ensure improved 

product quality. Near-infrared (NIR) spectroscopy is one of the techniques found to be 

appropriate for a variety of PAT applications, and is the subject of many studies in the 

pharmaceutical field. Major advantages of NIR spectroscopy are its non-destructive nature 

and its immediate delivery of results. 

There are primarily three types of process measurements: 

• At-line: Measurement where the sample is removed, isolated from, and analyzed in 

close proximity to the process stream. 

• On-line: Measurement where the sample is diverted from the manufacturing process, 

and may be returned to the process stream. 

• In-line: Measurement where the sample is not removed from the process stream and 

can be invasive or non-invasive. 

2.9 Near Infrared Spectroscopy 

Historical development 

The study of light has been of high interest for scientists. The interaction of light with matter, 

the physical definition and composition of light, and its analytical applications have been 

widely studied. In 1800 Herschel published the first reference to near infrared radiation. 

Herschel was an astronomer who fabricated telescopes, and he was interested in knowing 
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which chromatic component of light was responsible for heat. He dispersed the sun rays into 

colors and measured the temperature of each color. He found that there was an invisible light 

near the red color that was releasing most of the heat.  

Coblentz (1908) studied the infrared reflection and transmission including the “extreme 

infrared”. The spectrometer that Coblentz used consisted of a wire grating made of copper 

wires, a mirror galvanometer, a thermophile, and a prism. He measured the infrared spectra 

for several substances and all gave unique spectra.  

NIR region was not considered attractive for analytical purposes, due to the overlapping 

peaks and weak intensity. Contrarily, weak NIR intensities were considered a drawback in 

the past whereas nowadays it is a valuable advantage for process monitoring.  

The fast development of the computer and important scientific developments such as the 

Kubelka-Munk theory with the possibility to measure solids, as well as Hotellings and 

Mahalanobis mathematical approaches were key events for the further implementation of 

NIR (Hindle, 2001). Multivariate data analysis, powerful software, and fast instrumentation 

development facilitated the fast evolution of NIR technology. As a result, NIR is continuously 

gaining more acceptance as an analytical technique in many sectors, including the 

pharmaceutical industry.  

Basic concepts  

Electromagnetic radiation can be considered as a stream of photons traveling at the speed of 

light. The energy of a photon (𝐸) is related to the wavelength (𝜆), frequency (𝜈), and speed of 

light (𝑐) by Equation 2-5, where ℎ is Planck’s constant (Hof, 2003).  

Equation 2-5   𝑬 = 𝒉𝝂 = 𝒉𝒄/𝝀 

In spectroscopy, the interaction of light with matter (molecules) involves energy transfer. The 

energy absorbed by the molecule is specific to the frequency of the radiation and can cause 

reorientation of nuclear or electron spin states, changes in the energy of valence electrons, 
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changes in vibrational –rotational energy, and ejection of inner electrons, among others. 

Vibrational spectroscopy, such as IR, is based on the interaction of light with molecules 

which molecular bonds will vibrate at characteristic frequencies. Molecules that exhibit a 

dipole moment will absorb in the infrared radiation. The intensity of the vibrational absorption 

is proportional to the square of the dipole moment change (Duerst, 2007). Another name for 

the dipole model is ideal harmonic oscillator; the frequency at which the ideal harmonic 

oscillator vibrates (stretches or bends) depends on the bond strength and the masses of the 

atoms. The total energy in the bond is proportional to the frequency of the vibration. 

According to the harmonic model the transitions between vibrational states can only occur 

from one level to the next (Workman and Burns, 2001). In the harmonic model, the potential 

energy curve is symmetric and the bonds displacement has a maximum dipole displacement 

(Figure 2-14B). According to the harmonic oscillator model, overtones and combinations are 

not allowed; nonetheless they appear due to anharmonicity. 

The harmonic oscillator has limits and the anharmonic oscillator allows a more realistic 

description of the overtone transitions. The anharmonic oscillator considers that two atoms in 

close proximity repel one another, and also considers that the distance between the atoms is 

important and has limits in which the bond dissociates (Figure 2-14A). Thus the anharmonic 

model is more useful to predict the behavior of real molecules (Workman and Burns, 2001).  

 

Figure 2-14 Potential energy curves for an anharmonic (A) and a (B) harmonic 
oscillators.  
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Vibrations in the near-infrared region consist of bending and stretching combinations and 

overtone bands. Stretching vibrations involve changes in the bond length and bending refers 

to a change in the bond angle between two atoms. Combination bands arise from the 

summation of fundamental bands. In Table 2-3 the wavelength regions for the IR are divided 

by the vibrational changes that can be observed, thus mid-infrared detects fundamental 

transitions and near-infrared overtones and combinations. 

Table 2-3 Spectroscopic regions for IR. 

Region Wavelength 
 (nm) 

Wavenumber 
 (cm-1) 

Characteristics 

Near-Infrared 700-2500  14,000-4000 First (2𝜈), second (3𝜈), third (4𝜈) 

overtones and combination bands 

Mid-Infrared 2500-25000 4000-400 Fundamental (𝜈) vibrations: 

stretching, bending, wagging, and 

scissoring 

Far-Infrared 25000-500000 400-20 Molecular rotation 

 

Table 2-4 contains some functional groups associated with their characteristic wavelength 

region and the type of vibration observed. Most of the peaks in the NIR region derive from 

the X-H stretching modes because of energy considerations; the overtones are 10 to 1000 

times weaker than the fundamental bands. This weak intensity was initially a drawback; 

nowadays it allows the measurement of concentrated samples and is therefore a valuable 

advantage for process analysis (Ciurczak, 2001).  

Table 2-4 NIR absorption regions. 

Group Vibration 
 (𝝂 = 𝒔𝒕𝒓𝒆𝒕𝒄𝒉𝒊𝒏𝒈,𝜹 = 𝒃𝒆𝒏𝒅𝒊𝒏𝒈) 

Wavenumber  
(cm-1) 

Wavelength  
(nm) 

Free OH 3 𝜈*  
2 𝜈 
Combination 𝜈+2𝛿 and 3𝛿 

10400-10200 
7140-7040 
5210-5050 

960-980 
1400-1420 
1920-1980 

Bound OH 3 𝜈 10000-8850 1000-1130 
C-H (CH3, CH2) 3 𝜈 

Combination 2 𝜈+2𝛿 
Combination 2 𝜈+𝛿 
Combination 𝜈+𝛿 

8700-8200 
7350-7200 
7090-6900 
4440-4200 

1150-1220 
1360-1390 
1410-1450 
2250-2380 
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Group Vibration 
 (𝝂 = 𝒔𝒕𝒓𝒆𝒕𝒄𝒉𝒊𝒏𝒈,𝜹 = 𝒃𝒆𝒏𝒅𝒊𝒏𝒈) 

Wavenumber  
(cm-1) 

Wavelength  
(nm) 

CH3 and CH2 2 𝜈 6020-5550 1660-1800 
Free NH 2 𝜈 6710-6500 1490-1540 
Hydrogen bonded NH 2 𝜈 6620-6250 1510-1600 
S-H 2 𝜈 5780-5710 1730-1750 
C=O 3 𝜈 5230-5130 1910-1950 

*𝜈= fundamental, 2𝜈= first overtone, 3𝜈= second overtone, and 4𝜈=third overtone. 

Diffuse reflectance spectroscopy  

The incident light coming from the spectrometer has an intensity of 𝐼0. This light can be 

partially reflected (𝐼𝑅), scattered (𝐼𝑆), and absorbed (𝐼𝐴) and the remaining light will be 

transmitted (𝐼𝑇) as shown in Figure 2-15. The light intensities can be detected by selecting 

the position of the detector (Steiner, 2003).  

 

Figure 2-15 Energy balance of incident light. 

Samples can be non-scattering or scattering. In a non-scattering sample, the absorbing 

power can be determined directly and it is not highly influenced by the sampling, and the 

contribution of a constituent to the total absorption is proportional to its concentration. In a 

particulate (scattering) material, such as powders, the determination of the absorption 

coefficients is complicated and the value is influenced by the properties of the sample e.g. 

size, porosity, shape, surface, etc. (Dahm and Dahm, 2007).  

According to the sample surface, the light can be specularly reflected as in polished surfaces 

or diffused as in rough surface like in the powders. Many cases are the combination of 
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diffuse and specular reflection (Figure 2-16). Diffuse reflection considers the interaction of 

light with a sample, in which the incident light is partly absorbed and scattered. 

 

Figure 2-16 Incident light in a scattering sample (powder). 

Near infrared spectra contain chemical information related to differences in bond strengths, 

chemical species, electronegativity, and hydrogen bonding. When NIR is used for solids 

measurements, information about scattering, diffuse reflectance, specular reflectance, 

surface gloss, refractive index and polarization are all superimposed on the NIR spectra 

(Workman and Burns, 2001).  

The intensity of reflected energy depends on angle of incidence, particle packaging, density, 

particle size distribution, crystalline structure, refractive index, and absorptive and scattering 

properties (Workman and Burns, 2001). 

Diffuse reflection theories 

The case of specular reflection occurring in a smooth surface is well-described by the 

Fresnel law. On the other hand, there is not a general theory that completely covers diffuse 

reflection, but most of the proposed formulas include a version of the Lambert Cosine Law 

(Dahm and Dahm, 2007).  
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According to Lambert Cosine Law, the remitted radiation has constant intensity at all angles 

of observation. In Equation 2-6 the radiation strength (𝐵) is given by the incident light (𝐼0) 

multiplied by the cosine of the angle of incidence (𝛼) and the angle of observation (𝜃).  

Equation 2-6   𝑩 = (𝑰𝟎/𝝅)𝒄𝒐𝒔𝜶𝒄𝒐𝒔𝜽 

Lambert Cosine Law considers an ideal diffuse reflector that is not used in practice, and it 

applies only when both angles (𝛼 and 𝜃) are very small (Ollinger et al., 2001). 

Another scattering theory was proposed by Rayleigh. This theory deals with the scattering of 

particles that are smaller than the wavelength of incident radiation. Mie (1908) also 

investigated the scattering phenomena in particles of any size. Some generalizations of this 

model are that for very small particles the scatter is isotropic (gives similar results as 

Rayleigh). In the case of large particles the scatter is not isotropic while for particles in the 

same order of magnitude as the wavelength, significant diffraction ripples can be observed 

(Andrews, 1999; Dahm and Dahm, 2007; Ollinger et al., 2001). 

A linear relationship for absorption and concentration is described by the Kubelka-Munk 

function, Equation 2-7. 

Equation 2-7    𝒇(𝑹∞) = 𝟏−𝑹∞
𝟐𝑹∞

= 𝒌
𝒔
 

Where 𝑅∞ is the reflectance of an infinitely thick sample (approx. 5mm or more), 𝑘 and 𝑠 

describe the absorbing and scattering properties respectively. This empirical model assumes 

that 𝑠 does not depend on the wavelength, scattering is isotropic, particles are smaller than 

the thickness of the sampled layer but larger than the wavelength of incident radiation, and 

scattering particles are distributed homogeneously over the entire sample. Because of the 

simplified solution of Equation 2-7 and it can be experimentally calculated, the Kubelka-Munk 

approximation is widely accepted (Heise, 2007; Ollinger et al., 2001; Steiner, 2003). 
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Dahm and Dahm (2007) proposed the representative layer theory which uses plane parallel 

mathematics and a two-flux approximation for describing the absorption-remission function 

expressed as fractions of incident light absorbed, remitted or transmitted.  

NIR is applied for samples with high scattering where the ratio of particle size to wavelength 

is greater than one, and the particle packaging brings interferences between scattered rays. 

No general quantitative solution exists for multiple scattering (Ollinger et al., 2001), therefore 

the use of advance statistics such as chemometrics is needed. As Dahm and Dahm 

mentioned “good statistics compensate for bad theory” or, in other words, chemometrics find 

complex and particular relationships of the highly scattering samples that up to now cannot 

be fully quantified by a single theory.  

Instrumentation 

The fast growth of NIR in the analytical area has provided a wide range of spectrometers. 

According to their spectral characteristics, the spectrometers can be classified according to 

wavelength range, accuracy, precision, photometric accuracy, noise, bandwidth (resolution), 

baseline, scan speed, signal-to-noise, and scan modes (Shaw and Mantsch, 1999; Workman 

and Burns, 2001). 

The basic configuration of a NIR reflectance spectrometer consists of a light source, a 

monochromator, a sample holder, and a detector, as shown in Figure 2-17. The most 

common light source used for NIR is the tungsten-halogen lamp due to its resistance, long 

life, and high energy delivery all over the NIR region.  

 

Figure 2-17 Basic configuration for a reflectance spectrometer. 
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There are different kinds of detectors which are applied at different frequencies (Sablinskas, 

2003): 

• Ge detector 600-1800 nm 

• Si detector 400-1100 nm 

• InGaAs detector 900-1700 nm 

• Extended InGaAs1100-2800 nm 

 

• PbS detector 1100-3500 nm 

• InAs detector 1100-2800 nm 

• InSb detector 2000-4000 nm 

• PbSe detector 1100-4000 nm 

 

The commonly used detectors are silicon photodiodes, lead sulfide (PbS) or lead selenide 

(PbSe) photoconductors, which provide good signal-to-noise ratio at room temperature. The 

InGaAs detector has fast detection; it can have an extended wavelength range at the 

expense of some sensitivity (Reich, 2005; Shaw and Mantsch, 1999).  

According to their measurement principles the NIR spectrometers can be (Sablinskas, 2003; 

Shaw and Mantsch, 1999):  

1. Scanning-grating spectrometers: These spectrometers can scan the UV/VIS region to 

the NIR region. They may have two detectors; one for each region. The advantages 

of these spectrometers are that they provide a broad spectral range, speed and 

accuracy.  

 

2. Diode array spectrometers: These spectrometers have no moving parts. They consist 

of a fixed grating that spreads the spectrum across the array of detector elements; 

thus each element senses a different wavelength. The resolution will depend on the 

number of elements in the array and the wavelength range. Diode arrays can have 

silicon photodiode detector or charge coupled device (CCD) arrays, with 

thermoelectrically cooled InGaAs arrays. A great advantage is the possibility of 

miniaturization. 
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3. Filter spectrometers: A typical instrument consist of filters mounted on a rotating 

wheel. The wheel can have selected filters for the desired wavelength region. These 

are robust and low cost spectrometers.  

 

4. AOTF (Acousto-Optical Tunable Filter): AOTF spectrometers consist of a crystal 

which is used for the wavelength selection. This is done by generating an acoustic 

wave; the frequency changes in the acoustic wave change the wavelength of the 

diffracted light in the crystal. A common set-up is a TeO2 crystal with one or more 

transducers act as a monochromator. The resolution is given by the physical size of 

the crystal, by the length of the light crystal interaction. Advantages are the high 

resolution, high speed, no moving parts, compact size, and imaging capabilities. 

 

5. LED (Light Emitting Diode) spectrometers: LED spectrometers emit radiation of 

discrete wavelengths, these spectrometers do not need a wavelength selector they 

only require a small interference filter to select the center wavelength and the 

bandwidth. Advantages of LED spectrometers are the possibility of miniaturization 

and LED sources stability.  

 

6. Fourier Transform (FT) spectrometers: FT spectrometers consist of a radiation 

source, an interferometer, a beamsplitter, a laser, a detector and other optical 

components (Figure 2-18). The interferometer is what distinguishes FT spectroscopy 

from the others. The interferometer modulates the radiation, giving a frequency of kHz 

which can be transformed to an electromagnetic frequency. A simple interferometer 

(Michelson interferometer) consists of two mutually perpendicular mirrors and a 

beamsplitter. One of the mirrors moves along its axis at a given velocity. The 

beamsplitter divides the radiation into the fixed and the moving mirror, afterwards the 

radiation is recombined and sent to the detector. A laser (Helium-Neon) is used to 

control the mirror movement to ensure the alignment with the interferometer and the 
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wavelength precision. The FT spectrometers can achieve high resolution without 

compromising signal-to-noise ratio (McCarthy and Kemeny, 2001).  

In this study three different spectrometers in reflectance mode were used. The first one was 

a NIRFlex-N500 Fourier transform spectrometer with a reflectance cell (Büchi Labortechnik, 

Switzerland). The second was a SentroPAT Blend Uniformity TL, NIR spectrometer 

(Sentronic GmbH, Dresden, Germany) based on a micro-electromechanical system, 

equipped with an onboard computer, two tunable laser sources, and Indium Galium Arsenide 

detector. The third spectrometer was a SentroPAT FO (Sentronic GmbH, Dresden, 

Germany) that includes a diode array detector and acquires data by a fiber optical connector 

from the diffuse reflectance probe SentroProbe DR LS (Sentronic GmbH, Dresden, 

Germany). The probe has tungsten halogen bulbs as its light source. 

 

Figure 2-18 Design of a FT-NIR spectrometer.  
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Process control 

A common approach in most production areas is to retrieve samples from the process stream 

followed by off-line quality control. One step further is to continuously monitor the quality and 

correct performance of the process and to monitor the intermediate steps without waiting to 

test the final product. Continuous process monitoring of a large volume production or in 

continuous manufacturing can be achieved by the correct selection of the analyzer, since it 

needs to measure over long periods of time and needs to give reliable measurements 

throughout the total duration of the unit operation. Faulty conditions can appear, such as 

bubbles in the measurement cell, clogging, and lack of sample. Therefore the implementation 

of supervisory diagnostics is fundamental (Kemeny, 2001).  

In process control the rate of analysis is highly important, because it is used to control the 

process. The data acquisition must be done fast enough to monitor and/or identify changes 

in the critical quality attribute (API concentration). NIR can perform fast measurements, which 

should be twice as fast as the frequency of expected fluctuations (Kemeny, 2001).  

 

Figure 2-19 Process control 

The integration of the analytical and process related measurements can lead to a powerful 

process control strategy. The process information, including API concentration, can be 

displayed locally and remotely in order to allow the operators to follow the process trend and 

to let them make decisions when needed (Figure 2-19). The whole production process can 
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be supervised by the remote control computer, by displaying and storing trends, computed 

statistics, outliers, deviations, etc. (Kemeny, 2001).  

One of the main aims of monitoring a process is to be able to correct a deviation in the 

process as soon as it is detected. NIR has been used for process monitoring of a wide range 

of pharmaceutical unit operations from raw material identification to the final product, greatly 

improving process understanding. NIR imaging and spectroscopy have been successfully 

applied as analytical tools in order to get a deeper understanding of the pharmaceutical 

manufacture.  

Roggo et al. (2005) used NIR as the analytical tool for getting information of the process, 

identifying qualitatively the influence of melt-granulation, compression and coating 

parameters on the tablet dissolution. Moes et al. (2008) successfully applied NIR from the 

blend uniformity monitoring through the content uniformity determination on tablets, and 

finally the thickness of the coating, thus showing the high versatility of NIR applications. The 

readers are referred to the reviews of Reich (2005), Roggo et al., (2007), and Gendrin et al. 

(2008) for an overview of NIR pharmaceutical applications. 

2.10 Blending and NIR 

As mentioned before, blending of powders is an essential unit operation that has been 

traditionally controlled by removing samples from the bulk and then analyzing these samples 

by means of an off-line method (mainly HPLC). This approach is slow and the sampling 

procedure may disrupt the blend and may also bias the measurements. Under these 

circumstances NIR is an attractive alternative for continuously monitoring the blending 

process by scanning the blend without the need of stopping the equipment, removing 

material by thief sampling, and disrupting the blend equilibrium. NIR blend uniformity 

monitoring also complies with the sampling recommendations of the health authorities (see 

Figure 2-3), since the “sampling” is performed continuously thus several measurements are 

acquired during batch or continuous blending. 
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The identification of the blending end-point has been one of the main research topics for NIR 

and powder blending. Different approaches have been developed; a summary is given in 

Table 2-5. 

Table 2-5 Summary of NIR applications on batch blend uniformity monitoring.  

Objective Description  Reference 

Blend end-point 

determination 

Identification of the homogenous state, by dissimilarity with 

the mixture spectrum, PCA. SIMPLISMA was used for the 

identification of the wavelengths with higher purity; this 

approach is based on Beer’s law.  

Cuesta-Sánchez et 

al., 1995 

Blend 

homogeneity 

determination 

Combination of NIR and Polar Qualification System (PQS). 

PQS converts the absolute pretreated values into a polar 

coordinate system. The aim is to randomly distribute the 

noise, thus reducing noise influence. 

Plugge and Vlies, 

1996 

Blend uniformity 

determination 

Determination of the blend homogeneity by the boot strap 

algorithm and chi-square analysis.  

Wargo and 

Drennen, 1996 

Blend end-point 

determination 

Homogeneity determined by the calculation of the moving 

block of standard deviation of the spectral standard deviation. 

Identification of the drop in variability as a function of time.  

Sekulic et al., 1996; 

1998. 

On-line monitoring 

of powder blending  

By means of different approaches such as: average standard 

deviation between spectra, measurements dissimilarity, 

Shewhart charts and Hotelling’s T2, and PCA. 

De Maesschalck et 

al., 1998 

Blend 

homogeneity 

Determine the mean square of differences between spectra 

for blend uniformity monitoring. This method does not require 

a reference spectrum.  

Blanco et al., 2002 

Blend end-point 

determination 

Comparison of different methods for the blend end-point 

determination: Root mean square from nominal value, 

student’s t test, API concentration profile, and moving block 

of standard deviation. Use of two sensors, for identifying 

blending variability. 

Shi et al., 2008 

Blend 

homogeneity in 

small scale 

Small batches of approximately 50 g were monitored by 

moving block of standard deviation, autocorrelation functions, 

and partial least square discriminant analysis. 

Storme-Paris et al., 

2009 

Blend 

homogeneity  

Use of Hotelling’s T2 and scores distance for monitoring the 

blend homogeneity. 

Puchert et al., 2011 

Blend end-point 

determination  

Development of a PAT method for the real-time end point 

identification, by using a Caterpillar algorithm, this method 

evaluates spectral changes by moving windows followed by 

an F test for the comparison of the signal variations.  

Flåten et al., 2012 
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Moving Block of Standard Deviation 

One method for the identification of the blend end-point is the moving block of standard 

deviation (MBSD). This technique consists of calculating the standard deviation of each 

wavelength absorbance value (or pretreated) over a certain number of measurements and is 

referred to as the window size. The computation follows several iterations so the total 

number of measurements is considered (Figure 2-20a). The results correspond to the 

standard deviation calculated at different time points and at each wavelength point (Figure 

2-20b). The standard deviations are expected to get closer to zero as homogeneity is 

approached, thus higher standard values are obtained at the beginning of the blending 

process.  

 
 

(a) (b) 

 

(c) 

Figure 2-20 (a) MBSD calculation scheme, (b) MBSD for each wavelength (Sekulic et 
al., 1996). 
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The next step corresponds to the identification of the time at which the blend is 

homogeneous; this is carried out by the computation of the standard deviation of the already 

calculated moving block of standard deviation (Sekulic et al., 1996). The final result is a 

curve that monitors the standard deviation over the mixing time (Figure 2-20c). The MBSD 

shows a decay and then the values stabilize, this steady stage corresponds to the 

homogeneity of the blend. 

Calibration approaches 

A second challenge of the NIR blend uniformity monitoring is the acquisition of calibration 

samples for the construction of the quantification model. Some studies have chosen an off-

line calibration approach (Sulub et al., 2009) since a bigger amount of blends can be 

measured and the API concentration is well-known. Another approach consists of stopping 

the blender at different time points to scan the powder bed by NIR and to take samples for 

off-line analysis (Wu et al., 2009). There are several methods for the spectral acquisitions 

which differ on the scale of mixing, the dynamic or static measurement, on-line or off-line, 

gravimetric or chromatographic reference methods, etc. Karande et al. (2010) compared 

three different methods for the calibration samples acquisition: (1) laboratory mixing and 

static spectral acquisition, (2) IBC mixing and static spectra acquisition and (3) IBC mixing 

and dynamic spectral acquisition. The calibration approach that included the variability of the 

process was by using IBC and dynamic spectral collection. Several studies have been 

performed in order to establish the best calibration procedure, the best scanning region (Shi 

et al., 2008), the optimal number of sensors (El-Hagrasy et al., 2001), etc. All these studies 

have the same objective, to develop a robust and accurate model for the blend uniformity 

monitoring.  

After choosing a calibration method, developing and validating a quantification model, and 

selecting the strategy for the blend-end point determination, the final goal is to develop an 

automated system that continuously monitors the blending process (e.g. API level and 

homogeneity state) as well as the mixer parameters (Hailey et al., 1996).  
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Continuous blending 

The study and characterization of blend uniformity monitoring of a continuous blender by NIR 

in the pharmaceutical industry has been scarcely performed. Vanarase et al. (2010) 

developed a quantification model for the real-time monitoring of a continuous blending 

process of acetaminophen, showing promising results for the industrial implementation of 

NIR as a PAT tool.  

 

Figure 2-21 Spectroscopic monitoring and sampling systems. 

Even though not many studies are available for continuous blending monitoring, there are 

some studies on the NIR implementation on powder streams or voiding of powders. Since 

the monitoring of a continuous blending is performed at the outlet of the blender when the 

blend is forming a powder stream, it is possible to gather information from relevant studies on 

powder streams. Figure 2-21 shows different set-ups for the spectroscopic measurement of 

particulate materials. Figure 2-21a shows a screw conveyer consisting of a sample trap 

where the material is slightly compacted in order to provide a constant sample (constant 

density) presentation to the NIR spectrometer. Another example, in which the sample is 

diverted from the process stream, is given in Figure 2-21b. Here the particulate material is 
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compressed by a piston and presented to the NIR probe. Figure 2-21c refers to a paddle 

wheel, in which the flowing powder is filled and analyzed through an optical window. Figure 

2-21d shows an example of non-contact spectroscopy, where a conveyor belt is continuously 

been monitored by a spectroscopic method (Kemeny, 2001). 

Ropero et al. (2009) evaluated the voiding from a funnel by NIR-scanning of the powder flow, 

gathering physical information of the flow and showing that even under flowing conditions the 

chemical attributes of the samples are detectable and could be used for further 

quantification. Barajas et al. (2007) studied the appearance of segregation and the particle 

size changes during voiding, showing that it is feasible to distinguish particle size variations.  

The study of granular materials flow is complex task where particle size, angle of repose, 

particle interactions, and process conditions such as chute design are relevant for the final 

flow of the particles. Several studies have been performed on the powder flow down inclined 

chutes (Kruyt and Verël, 1992; Santomaso and Canu, 2001; Tamara et al., 2006; Weingerl 

and Schaflinger, 2000) and the majority of industrial chute applications involve rapid or 

accelerated flow conditions in which a “thin” stream is present, where the thickness of the 

powder bed is less than the width of the chute (Roberts, 2003). Under these conditions the 

powder will have a velocity profile. Andersson et al., (2005) studied the influence of the 

particle velocity on a Fourier transform NIR spectrometer. They identified that the flow 

conditions such as particle velocity can present artifacts on the spectral data, influencing the 

quality of the results. It is important to point out that the mass flow rate as well as velocity 

variations will influence the interaction of the NIR radiation with the sample, which will impact 

the amount of powder seen by the NIR probe.  

2.11 Chemometrics  

Over the past years a transition on the analytical methods has been taking place. In the past, 

scientists had only a few measurements available which were expensive, labor-intensive, 

and time-consuming; now the analytical methods allow high-quality measurements and fast 
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and high amounts of data acquisition. This high amount of data is collected for further 

analysis. The multivariate responses of the analytical equipment and the easy access to 

computers and potent software generation allow the appearance and fast development of 

Chemometrics.  

Massart and Buydens (1988) defined chemometrics as “the chemical discipline that uses 

mathematical, statistical and other methods of formal logic to design or select optimal 

procedures and experiments and to provide maximum chemical information by analyzing 

chemical data”. Chemometrics is also defined as “how to get chemically relevant information 

out of measured chemical data, how to represent and display this information, and how to get 

such information into data” (Wold, 1995). Therefore chemometrics aim is to structure the 

chemical information into a form that can be expressed as a mathematical relation in order to 

extract the relevant information. 

Chemometrics include several approaches for the study of multivariate data such as pattern 

recognition, classification, linear and non-linear mapping, and predictive models. Multivariate 

empirical modeling (e.g. Principal Component Analysis and Partial Least Squares) shows 

unexpected patterns because of the consideration of all the variables, contrary to traditional 

analysis which often considers one or few variables at the same time (Wold, 1995). However, 

the empirical models generated through chemometric tools need to be consistent with theory, 

thus theory and chemometrics are complementary in the study of a chemical system.  

A mathematical model is designed for describing reality; all the models have an error due to 

the noise, variability, uncertainties, and non-linearity contained in the measured data (Wold, 

1995; Wold and Sjöström, 1998). This experimental error can come from known or unknown 

sources that can hide the relevant information contained in the dataset. Using calibrated 

equipment and appropriate sampling techniques for acquiring representative samples will 

reduce this error. Consequently, chemometrics tools are used for extracting the relevant 

information from the noisy data.  
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Spectral Pre-processing  

Dissimilarities on near-infrared spectral data are the result of chemical and physical sample 

variations. Mathematical preprocessing of the data is applied In order to reduce the influence 

of particle size, shape, density, particle packaging and other physical differences between 

the samples. A good data pretreatment will enhance the chemical information while a wrong 

pretreatment will diminish or eliminate the information correlated to the parameter of interest. 

Therefore the correct selection of the preprocessing technique is fundamental and should be 

carefully chosen.  

Standard Normal Variate (SNV) 

SNV was designed for reducing the undesirable multiplicative effects of particle size. SNV 

calculates the standard normal variation at each wavelength and removes the slope variation 

on a sample basis (Barnes et al., 1989). 

Equation 2-8   𝒙𝒊𝒋 =𝑺𝑵𝑽 𝒙𝒊𝒋−𝒙𝒋�

�∑ (𝒙𝒊𝒋−𝒙𝒊� )𝟐/𝑰𝒌

 

Where 𝑥𝑖𝑗𝑆𝑁𝑉  is the matrix x after SNV preprocessing, 𝒙𝑖𝑗 is the x data matrix of 𝑖 rows 

(samples) and 𝑗 columns (variables) and 𝐼 is the number of points.  

Mean centering 

This operation intends to mean-center the columns by subtracting the mean of each column 

(variable) so that: 

Equation 2-9   𝒙𝒊𝒋 =𝒎𝒄 𝒙𝒊𝒋 − 𝒙𝒋�  

where 𝑥𝑖𝑗𝑚𝑐  is the mean centered matrix. After mean centering, the score plot appears 

centered around the origin. Mean centering has a significant effect on the size of the first 

eigenvalue, which is reduced dramatically and can influence the significant number of 

principal components (PC) (Brereton, 2003). 
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Derivatives 

Derivatives are used to remove additive and multiplicative effects in the spectra. The first 

derivative removes baseline, while the second removes baseline and linear trend. In the 

second derivative the peaks appear at the same wavelengths, whereas in the first derivative 

they become zero. Simple derivation is not feasible in real measurements due to the noisy 

nature of the spectral data. Therefore derivation of spectral data normally includes a 

smoothing step. Savitzky and Golay (1964) described an algorithm that performs a local 

polynomial regression in a symmetric window in the raw data; subsequently the derivative of 

any order can be calculated.  

Orthogonal Signal Correction (OSC) 

NIR spectra often contain systematic variation that is unrelated to the response (Y). SNV and 

derivatives and other preprocessing techniques may remove information on the X matrix 

related to Y. Wold et al. (1998) proposed a method for signal correction that removes 

variation on X that is not related to Y by removing the orthogonal components to Y. This 

method is called orthogonal signal correction (OSC) and the basic format is given in Equation 

2-10: 

Equation 2-10   𝒙𝒊𝒋 =𝑶𝑺𝑪 𝒙𝒊𝒋 − 𝒕𝑶𝑺𝑪𝑷𝑶𝑺𝑪𝒕  

where 𝑥𝑖𝑗𝑂𝑆𝐶  is the matrix X after OSC, 𝑡𝑂𝑆𝐶 is the OSC scores and the 𝑃𝑂𝑆𝐶𝑡  is the transpose 

of the OSC loadings matrix.  

Pattern recognition  

PCA 

One of the aims of pattern recognition is to enable the visualization of n-dimensional data by 

reducing the n-dimensional space to two dimensional coordinates (Massart and Buydens, 

1988). Principal component analysis (PCA) is one of the multivariate tools that can be used 

for pattern recognition, to identify similarities on the data, and to detect trends and outliers; 
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this is done by the projection of the large data space into a smaller space that is easier to 

analyze (Geladi, 2003). The data matrix 𝑿 is decomposed into principal components (PCs) 

that maximize the explained variance and each successive component is orthogonal to the 

previous one (Figure 2-22), the mathematical relation is explained as the product of scores 

and loadings.  

Equation 2-11  𝑿 = 𝑻𝑷𝑻 + 𝑬 = 𝒕𝟏𝒑𝟏𝑻 + 𝒕𝟐𝒑𝟐𝑻 + ⋯+ 𝒕𝑨𝒑𝑨𝑻 + 𝑬 

Where 𝑻 are the scores and have as many rows as the original data matrix, 𝑷 are the 

loadings and have as many columns as the original data 𝑿, and 𝑬 is the residual matrix, the 

variance not explained, and 𝐴 is the number of calculated PCs.  

 

Figure 2-22 Graphic PCA representation in a three variables space. 

The aim of PCA is to explain as much as variability related to X as possible by considering 

the minimal number of PCs. The scores and loadings can also be used in line and scatter 

plots to facilitate the interpretation of the data. The noise is left in the residuals. 

The next step is to determine the number of significant PCs to be used. In an ideal case the 

number of PCs is equal to the number of substantial components, for example in a 

formulation with three ingredients, we expect three PCs. In reality noise can interfere with the 

ideal situation and then interfere with the rank determination (Brereton, 2003). The size of 

each PC can be measured and the size is referred as an eigenvalue (𝑔). The earlier PCs 

have larger eigenvalues and therefore are more significant. A simple definition of an 

eigenvalue is the sum of squares of the scores: 
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Equation 2-12    𝒈𝑨 = ∑ 𝒕𝑨𝟐 

In practice the cumulative percentage of the eigenvalue is often used to determine what 

portion of the data was modeled by the PCA (Brereton, 2003; Rajalahti and Kvalheim, 2011).  

Calibration  

NIR spectra are multivariate in nature because the detectors allow the detection of the 

reflected or transmitted radiation at many wavelengths simultaneously. Each absorption 

value at each wavelength is a variable, each variable may be correlated to different extents 

to the concentration of the substance of interest. PLS (Partial Least squares Projection to 

Latent Variables) is a quantitative multivariate method, used for developing a model that 

would relate 𝐗 and 𝐘 (Wold, 1991). 

 

Figure 2-23 Graphical representation of observations in the X-space and Y-space.  

Figure 2-23 shows an example of a matrix X and matrix Y, each one formed with three 

variables. By projecting the observations, it is possible to obtain the scores t1 and u1 for X 

and Y respectively. The correlation between both matrices X and Y can be assessed by 

plotting the scores t1 and u1 in a scatter plot (Eriksson et al., 2006). X and Y can be 

expressed according to: 

Equation 2-13 𝑿 = 𝟏𝒙′� + 𝑻𝑷′ + 𝑬  

Equation 2-14 𝒀 = 𝟏𝒚′� + 𝑼𝑪′+ 𝑭  
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Where 1𝑥′�  and 1𝑦′�  are terms originated from the preprocessing and averaging techniques, 𝑇 

and 𝑈 are the score matrices, 𝑃′ is the X-loading matrix, 𝐶′ is the Y-weight matrix, 𝐸 and 𝐹 

are the residual matrices (Eriksson et al., 2006). 

In practice it is possible to work with the one Y value e.g. concentration, thus Y will be a 

vector u, known as PLS1. If several Y variables are to be modeled at the same time, then Y 

scores will be U, known as PLS2.  

Model validation 

One of the most important aspects of calibration models is the validation. Cross-validation 

(CV) is one chemometric tool in which part of the calibration set is used for testing the model. 

CV is a useful technique for establishing the required number of PLS components. Figure 

2-24 shows the parameter R2 which indicates the explained variation in the model, where the 

higher the number of PLS components more variation will be explained. Q2 is the predicted 

variation, in other words, the prediction ability. Increasing the number of components does 

not necessary imply that the prediction ability will improve; Q2 will reach a plateau followed by 

Q2 decrease (Eriksson et al., 2006). Therefore it is important to identify an area with good fit 

and good predictive ability. CV gives an overall performance of each of the PLS components.  

 

Figure 2-24 Selection of PLS components.  
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One disadvantage of CV is that it depends on the original dataset. In order to overcome this 

situation, the use of independent test sets is recommended. The Root Mean Square Error of 

the Prediction (RMSEP) can be used for the determination of the quality of the model.  

Equation 2-15  𝑹𝑴𝑺𝑬𝑷 = �∑ (𝒚𝒓𝒆𝒇−𝒚�𝒕𝒆𝒔𝒕)𝟐𝒏
𝒊=𝟏

𝒏
 

Where 𝑛 is the number of samples, 𝑦𝑟𝑒𝑓 is the reference value, and 𝑦�𝑡𝑒𝑠𝑡 is the predicted 

value.  

DmodX 

The residuals are a diagnostic value for the quality of the model; an inspection of the 

residuals enables the detection of outliers. The standard deviation of the X- residuals is 

proportional to the distance between the data point and the model plane in the X-space. This 

value is called DModX. A DModX larger than 2.5 times the overall SD of the X-residuals 

indicates that the observation is an outlier (Wold et al., 2001). DModX is a useful tool for 

moderate outliers identification.  

Mahalanobis distance and Hotelling’s T2 

Many multivariate methods are based on the measurement of distances between objects. 

The most known distances are the Euclidean distance and the Mahalanobis distance (MD). 

In the case of Euclidean distance, each measurement assumes equal significance; therefore 

variables that may be irrelevant can considerably influence the analysis. On the other hand, 

MD of the original dataset considers the correlation of the data and is computed through the 

inverse of the variance-covariance matrix of the dataset. Figure 2-25 illustrates an example 

of the Euclidean Distance and the Mahalanobis distance for the same dataset. Euclidean 

distances in Figure 2-25a indicate that the measurements located on the outer circles have 

lower probability to occur, which is not the case. Therefore the use of MD is more accurate 

when correlated variables are under study. The ellipse in Figure 2-25b considers the 

correlation between the variables, hence the measurements that are located in the outer 
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ellipse have greater MD and the probability of new measurements landing in that area is 

lower.  

 

Figure 2-25 Plots of two variables X1 and x2. (a) The circles represent equal Euclidean 
distances to the center. (b) The ellipses represent equal Mahalanobis distances to the 
center (De Maesschalck et al., 2000).  

MD can be calculated on the principal component space, once the variable reduction has 

taken place. MD can be used for the outliers detection, selection of calibration samples, and 

for the calculation of Hotelling’s T2 (De Maesschalck et al., 2000; Brereton, 2003). The 

squared MD values are called Hotelling’s T2, which is a widely used statistical tool for 

process control charts, where the calculated T2 values are compared to the critical T2 (De 

Maesschalck et al., 2000). In the case of pharmaceutical applications concretely mixing of 

powders, T2 values have been used for the monitoring of the blend uniformity (De 

Maesschalck et al., 1998, Putchert et al., 2011). 

PAT and Chemometrics 

MVDA is a basic tool for the PAT initiative. According to the complexity of the data 

incorporated on a chemometric model, there are four levels (Figure 2-26) in which MVDA can 

be applied (Eriksson et al., 2008): 

Level 1-MVDA off-line calibration: this refers to off-line analysis i.e. concentration of API or 

impurities in the final product, moisture content. 
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Level 2-MVDA for classification and  ̸or calibration: The objective is to classify samples, i.e. 

for identifying similarities or dissimilarities. 

Level 3- MVDA on a single process step: At this level, Multivariate Statistical Process Control 

and real-time process monitoring are the main objectives. All available data are used for end-

point identification as well as unforeseen deviations. 

Level 4- MVDA on the entire process: This is the final level, in which information obtained 

from all the different unit operations are integrated, thus giving an overview of the complete 

process. Therefore, it is possible to associate the information of process deviation and its 

impact on the quality of the final product. This level of process understanding is one of the 

major achievements of the PAT initiative. 

 

Figure 2-26 Combination of all unit operations for a complete process overview 
(Eriksson et al., 2008), with special emphasis on NIR and powder mixing. 
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3 Research aims 
 

The overall aim of this study was to evaluate different factors affecting the final quality of a 

pharmaceutical blend using NIR spectroscopy in diffuse reflectance modality as the 

analytical tool.  

The first study aimed to identify segregation tendency due to physical incompatibilities 

among the formulation components by an optical tracer and by an off-line NIR-based 

method. The physical parameters under study were mean particle size, particle size 

distribution, density, and flow behavior.  

The aim of the second study was the real-time blend uniformity monitoring of two active 

ingredients in a batch mixing process by NIR, as well as to investigate the influence of melt-

granulation on the spectroscopic features of the formulation.  

The objective of the third study was to develop an analytical method based on NIR 

spectroscopy for the in-line quantification of drug content in a continuous blending process. A 

second aim was to examine the influence that the process parameters such as stirring rate 

and mass flow rate exert on the NIR measurements.  

The objectives of the fourth study include the development of a NIR calibration method for 

powder flowing down a chute, as well as to estimate the NIR sampled mass by considering 

the powder velocity.  

Overall, the four sections give an insight into the batch and continuous mixing of powders, 

and the critical factors associated to the homogeneity of a pharmaceutical formulation. 
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4.1 Abstract 

 

The aim of this study was to evaluate the influence of the granules particle size on the 

segregation of a second API. Binary blends consisting of granulated material (96 %m/m) and 

an API (4% m/m) were prepared. The granules particle size was studied by near-infrared 

(NIR) spectroscopy using Kubelka-Munk function and the transformation of reflectance 

toabsorbance values in order to focus the analysis on the physical properties. Furthermore, 

an off-line NIR model was developed for the quantification of the granules mean particle size.  

Additionally, a gravimetric procedure for the low dose drug quantification was established for 

the reference values acquisition. The method consisted of accurately weighing each 

formulation component into glass vials. Thus, the reference values were the mass weighed. 

Vials containing the powder samples were mixed and subsequently scanned in diffuse 

reflectance mode on a Fourier Transform NIR spectrometer. Partial least square regression 

was applied for correlating the spectral data with the reference values. The content of the low 

dose drug was accurately predicted. The gravimetric method was shown to be accurate, fast 

and convenient. 

 

 

Keywords 

PAT, blending, NIR, homogeneity, melt granulation, particle size, segregation, Kubelka-

Munk.  
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4.2 Introduction 

Segregation, or demixing, is a potential issue in the pharmaceutical environment. 

Segregation is associated with problems in the content uniformity of tablets. Segregation can 

occur due to vibrations during the handling and storage of the blend; it can also appear 

during the discharge of the blend. The presence of segregation is due to the separation of 

the components due to physical attributes e.g. size, shape, cohesion, density, etc. There are 

many segregation mechanisms reported in literature, examples include percolation, 

elutriation, trajectory segregation (Aiache and Beyssac, 2007), and one of the major 

segregation causes is particle size incompatibilities. The importance of particle size cannot 

be underestimated and has been widely demonstrated (Johnson, 1975; Rees, 1977; Train, 

1959; Yalkowsky and Bolton, 1990; Zhang and Johnson, 1997).  

Physical properties of the material can provide hints about possible segregation problems. 

Fan et al. (1970) reported that particulate material holding small repose angles, good flow 

behavior and small friction coefficient may have mixing problems since segregation can 

occur due to their rapid movement. 

Particle-particle interactions play an important role in the powder flow behavior. For free-

flowing mixtures it is often necessary to restrict the freedom of movement of the particulate 

material. On the other hand, for cohesive blends the problem is the opposite. A cohesive 

powder aggregate needs to be broken down in order to allow the individual particles to 

relocate (Harnby, 2000). The flow behavior of a material is associated with the surface of a 

particle; particles having large diameters (above 100 µm) behave as cohesionless blends, 

since gravitational force dominates over interparticle electrostatic forces. Under this particle 

range, cohesive powders dominate, thus interparticle interactions are significant (Fan et al., 

1990). However, it is important to point out that there is no specific classification size limit for 

free-flowing and cohesive materials.  

Granulation is a common process in the pharmaceutical industry; in most cases the aim of 

granulation is to increase the mean particle size and to improve the flow character of the 
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powder. The granules can be further blended with other excipients or APIs, thus a correct 

identification of the particle size range is fundamental in order to prevent segregation of the 

blend.  

Near-Infrared (NIR) spectroscopy has been widely applied in the measurement of particulate 

materials and the influence of physical properties on the NIR spectrum is well-known. 

Several preprocessing techniques have been developed in order to reduce the effect of 

particle size, particle shape and packaging differences. These techniques include first and 

second derivatives, standard normal variate (Barnes et al., 1989) and multiple scattering 

correction (Geladi et al., 1985; Martens and Stark, 1991), which are meant to focus the 

analysis into the chemical information contained in the spectra. It is also possible to take 

advantage of the physic-chemical nature of NIR spectra in order to extract the physical 

information of the material. NIR has been successfully applied for particle size 

measurements (Gamble and Barnett, 1937; O’Neil et al., 1998; 2003, Pasikatan, et al., 

2001), proving that NIR is a potential tool for particle size measurements.  

One of the challenges of particle size measurements by NIR is to extract the information 

referred to the size variations from the rest of the physical and chemical information. As 

mentioned before, most of the preprocessing techniques are focused on reducing this source 

of variability. In this study two different approaches were applied. The first approach was the 

transformation of reflectance to absorbance and the second was the Kubelka-Munk function 

(Kubelka, 1948).  

The aim of this study was to evaluate the influence of the particle size of granules on the 

homogeneity of a second API by NIR and visual inspection. PLS-models for the prediction of 

the granules mean particle size and quantification of the API in a lower concentration were 

developed.  
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4.3 Materials and methods 

The binary blends consisted of a granulated material (96 % m/m) and an active 

pharmaceutical ingredient (4% m/m), referred to as A2. The granulated material contained a 

polymer and an API which will be referred to as A1.  

Powder characterization 

The morphological characterization was performed by scanning electron microscopy (SEM) 

(ESEM XL 30 FEG, Philips, The Netherlands) at an applied voltage of 10 kV and 

magnifications of 100-2000 times. The sample preparation included placing the powder on 

carbon adhesive followed by gold plating.  

The average particle size was measured using a laser diffraction system (Mastersizer S long 

bed, Malvern, Worcestershire, UK). The lens range was within the particle size range of 4.2-

3500 µm. The samples were dispersed through a dry powder feeder and the measurements 

were carried out five times. The obscuration value was kept between 10-30% and the 

residual value under 1%. The analysis was set in “polydisperse” mode. The volume mean 

diameter (D [4, 3]), the mass median diameter (D [v, 0.5]) and the span values were 

recorded.  

For the flowability determination, approximately 100 g of powder were poured in a volumetric 

cylinder and the unsettled apparent volume (V0) was measured, then the sample was tapped 

until no volume changes occurred (Vf), the final volume was recorded and bulk (𝜌𝑏𝑢𝑙𝑘) and 

tapped (𝜌𝑡𝑎𝑝𝑝𝑒𝑑) densities were computed. The compressibility index and the Hausner ratio 

of the API A before and after the MG process were determined following the procedure given 

in the USP 35:  

Equation 4-1  Compressibility Index =100 x [(𝝆𝒕𝒂𝒑𝒑𝒆𝒅 -𝝆𝒃𝒖𝒍𝒌) /𝝆𝒕𝒂𝒑𝒑𝒆𝒅] 

Equation 4-2   Hausner Ratio= (𝝆𝒕𝒂𝒑𝒑𝒆𝒅 /𝝆𝒃𝒖𝒍𝒌)  



72 Particle size and segregation studied by NIR 
 

Melt-granulation and milling 

The API A was combined with a cellulose based polymer, the powders were fed into a twin 

screw extruder (Leistritz Extrusionstechnik GmbH, Nuremberg, Germany), the extrusion 

temperatures ranged from 20 to 135 °C (under the melting point of the API A), and the screw 

speed was set at 90 rpm.  

The extruded product was split into two groups. The first group was milled in a Frewitt 

hammer mill (Friburg, Switzerland) with knives forward at 2100 rpm and the screen size was 

fixed at 1000 μm, the milled extruded product was used without further particle selection in 

order to keep a broad particle size distribution, these granules will be referred as GBROAD. The 

second set of extruded API was milled in a FitzMill Type L1A (The Fitzpatrick Company 

Europe, Sint-Niklaas, Belgium) at 3000 rpm with a screen size of 1000 μm, the milled 

extruded was sieved using a sieve shaker (Vibro, Retsch, Haan, Germany) at level 40 for 15 

min with sieve openings of 90, 125, 180, 250, 315, 400, 500, and 700 μm. The sieve fraction 

of 700 μm was discarded. The granules will be referred as G90, G125, G180, G250, G315, G400, 

and G500 where the subscript indicates the sieve opening.  

Tracer preparation 

As an optical tracer, A2 was selected in order to resemble to the original component 

characteristics. The dying solution consisted of Erythorsine which was sprayed over a thin 

layer of A2 disposed in a tray. The drying phase was performed at 50°C on a static oven. 

Finally the dyed A2 powder was screened with a mesh of 300 µm. The tracer was used only 

for visual inspection and its resulting blends were not measured by NIR. 

Mixing and segregation test  

Vials with a 4 mL capacity were filled with 900 mg of different sieve fractions: G90, G125, G180, 

G250, G315, G400, and G500, extra samples corresponding GBROAD, as well as a physical blend of 

polymer and A2 (before melt-granulation) were included in the study. Subsequently 100 mg 
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of the tracer were added to each vial. The vials were blended for 0.5, 1, 2, 5, and 10 minutes. 

After each time point the distribution of the tracer in the vial was observed.  

Blending and NIR instrumentation  

All NIR measurements were performed on a NIRFlex-N500 Fourier transform spectrometer 

with a reflectance cell (Büchi Labortechnik, Switzerland). Spectral data acquisition was done 

over the wavelength range of 4000-10000 cm-1, with 4 cm-1 resolution with an illuminated 

spot of 8 mm diameter. The samples were scanned through a borosilicate vial. The vial 

dimensions were 4mm diameter and 15 mm height and the illuminated spot was 8 mm.  

The wavenumbers (1/cm) were converted to namometers according to Equation 4-3: 

Equation 4-3   𝑾𝒂𝒗𝒆𝒍𝒆𝒏𝒈𝒕𝒉 (𝒏𝒎) =  𝟏𝟎𝟕

𝒘𝒂𝒗𝒆𝒏𝒖𝒎𝒃𝒆𝒓 � 𝟏
𝒄𝒎�

 

The software used for the chemometrical analysis were Matlab (The Mathworks Inc.) version 

2012Ra with PLS_toolbox (Eigenvector Research Inc.) version 6.7.1 

Calibration samples  

Calibration model for the GBROAD granules 

The GBROAD granules were used without further selection in order to keep a wide particle size 

distribution. Sample preparation included accurately weighing (Mettler Toledo XS204 Delta 

range) GBROAD and A2, followed by a mixing step (Turbula type T2C, W. Bachofen, 

Switzerland) of 5 minutes. The binary calibration samples covered a range of 70-130% of A2 

target value (4 % m/m). Each vial was measured through the bottom of the vial by NIR, using 

the gravimetric values as reference. The reference values were matched to their spectral 

data and a PLS model was developed for A2 quantification. The validation set corresponded 

to one third of the samples previously excluded from the calibration set.  
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Calibration model for the sieve fractions of 90 and 125 µm 

The sieve fractions of the granules corresponding to G90 and G125 were collected separately. 

Binary blends from each of the sieve fractions were prepared by accurately weighing the 

granules and A2 powder into the vials. The binary calibration samples covered a range of 70-

130% of A2 target value (4% m/m). Each sample was measured through the bottom of the 

vial by NIR, using the gravimetric values as reference. Spectral data from the binary blends 

of both sieve fractions (90 and 125 µm) were used for the computation of independent PLS 

models. The gravimetric reference values were matched to their spectral data and a PLS 

model was developed for A2 quantification. The validation set corresponded to one third of 

the samples previously excluded from the calibration set.  

Mixing kinetics 

Mixing profiles were obtained under different conditions of loading order and particle size for 

the target formulation. 

In order to test the loading order influence, five vials were first filled with the granules 

followed by A2 powder, and five extra vials in the inverse filling order were similarly prepared. 

The influence of granules particle size was tested by filling ten vials first with granules from 

the 90 µm sieve fraction, followed by A2 loading. The same procedure was followed for the 

125 µm sieve fraction.  

For each condition, an extra vial with dyed A2 used instead of the normal A2 powder was 

prepared. All the vials were mixed together in a Turbula mixer. The mixer was stopped at 1, 

2, 3, 4, 5, 10, 30, 60, 90, 120 and 150 rotations, and the samples (excluding the colored 

ones) were measured by NIR at the different mixing times. A2 quantification was done at 

each time point and a concentration profile was generated.  

Figure 4-1 illustrates the method followed for this study.  
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Figure 4-1 Particle size project overview. 

4.4 Results and discussion 

Granules characterization  

The granules used in this study were formed through a melt-granulation step, in which only 

the polymer was melted-down and the temperature was kept under the melting point of A1. 

The A1 granules represented 96 % (m/m) and A2 4% (m/m) of the binary blends. Achieving a 

homogeneous blend of two components with a large difference in mass ratios is challenging 

mostly for the homogeneity of the API in lower proportion. Despite the fact that the 

homogeneity of the lower dose component is the critical parameter, the physical 

characteristics of the granules are of great importance. Table 4-1 contains the particle size 

and density values for each sieve fraction including GBROAD, A1 (raw API before melt-

granulation), and A2. The difference in densities among the formualtion ingredients can 

affect the physical stability of the mixture, since the heavier particles have the tendency to fall 

to the bottom while the lighter particles move to the top of the powder bed. In Table 4-1, the 
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densities of the granular sieve fractions as well as the raw APIs were within the range of 0.43 

to 0.55 g/cm3.  

Bulk density and tapped density were used for the calulation of the compressibility index and 

Hausner ratio, which are correlated to a flow character. A1 was identified with “fair” flow, 

therefore A1 could present inconvinients when the fast flow inside the tableting dyes is 

requiered. The flow of A1 was greatly improved to “excellent” in GBROAD after the melt 

granulation was performed. Fast or free flowing materials are desired for the tabletting 

process, on the other hand during a blending process it is desirable to have some cohesion 

in order to avoid further segregation problems. Besides, A2, did not undergo a granulation 

process and presented a “passable” flow behavior. The reasons for keeping A2 as small 

particles is that large particle populations of A2 are necessary for achieving blend 

homogeneity and small particles of A2 possess higher surface area; therefore dissolution is 

directly related to the particle size. 
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Table 4-1 Granules and A2 characterization 

 

Parameter A1 A2 GBROAD G90 G125 G180 G250 G315 G400 G500 

Sieve fraction - - - 90-125 µm 125-180 µm 180-250 µm 250-315 µm 315-400 µm 400-500 µm 500-700 µm 

Bulk density 

[g/cm3] 
0.48±0.01 0.45±0.01 0.55±0.01 0.453±0.002 0.449±0.001 0.430±0.002 0.444±0.003 0.446±0.000 0.456±0.000 0.484±0.002 

Tapped density 

[g/cm3] 
0.58±0.01 0.57±0.01 0.58±0.01 0.486±0.000 0.473±0.003 0.459±0.004 0.460±0.003 0.472±0.000 0.483±0.003 0.506±0.004 

Compressibility 

index 
17.72±1.4 20.85±0.91 6.10±1.00 6.623±0.45 4.998±0.471 6.305±0.513 3.504±0.031 5.357±0.000 5.614±0.608 4.472±0.502 

Hausner ratio 1.22±0.02 1.26±0.02 1.07±0.01 1.071±0.005 1.053±0.005 1.067±0.006 1.037±0.000 1.057±0.000 1.060±0.007 1.047±0.006 

Flow character Fair Passable Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 

Mean particle 

size d50 [µm] 
57.34±4.45 59.40±2.77 241.44±21.67 90.14±1.35 128.23±1.49 190.30±2.71 244.51±12.6 364.86±6.22 452.62±8.27 644.12±8.20 

Span 2.43±0.25 2.91±0.63 5.58 ±0.22 1.50±0.02 1.55±0.03 1.50±0.02 1.51±0.09 1.38±0.13 1.30±0.05 1.11±0.03 
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Particle size and shape are the most important characteristics in powder blending. Small 

particles have higher cohesion due to interparticular forces such as van der Waals.These 

forces reduce the freedom of motion that originates segregation. The mean particle size of 

the granules increased accordingly to their sieve fraction. Therefore, G500 has the bigger 

particle size and is expected to induce segretation of A2 particles. 

Granules characterization by NIR diffuse reflectance 

The particle size of a sample has a significant effect on the NIR spectrum. Particle size 

changes interfere with the amount of radiation scattered by the sample. Figure 4-2 shows the 

spectra for each of the sieve fractions.The spectra keep the same shape, but the spectrum 

baseline decreased with the particle size. The intensity of the reflectance signal decreased 

for bigger granules, since scattering of the radiation diminished and light can penetrate 

deeper into the powder bed.The same effect was observed in other studies (Rantanen et al., 

2000; O’Neil et al., 2003), where the reflectance exhibited an inverse relationship with the 

particle size. The highest reflectance was obtained for particles under 90 µm; in this case the 

cohesion, density and porosity played an important role, thus increasing the reflectance of 

the incidet light. An explanation is that reflectance tends to be proportional to the surface of 

the particles and smaller particles have greater surface. Additionally, when the particles are 

smaller the incident radiation changes direction more often than with longer particles.  

The spectra obtained in diffuse reflectance were transformed by means of the Kubelka-Munk 

equation or converted to absorbance values (log 1/𝑅). The Kubelka-Munk equation was 

used assuming that the radiation was isotropically distributed, that the particles were 

randomly distributed and that the layer presented diffuse reflection (Kubelka, 1948). Kubelka-

Munk function 𝑓(𝑅) is the ratio of the absorption (𝑘) and scattering (𝑠): 

Equation 4-4     𝒇(𝑹) = 𝒌/𝒔.  
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Figure 4-2 NIR reflectance spectra of granules with different mean particle size.  

Figure 4-3 shows the spectra after Kubelka-Munk transform. The values of 𝑓(𝑅) increased 

with the particle size, therefore the ratio 𝑘/𝑠 also increased. Higher k/s values represented 

lower scattering, s for the bigger granules; this is in accordance with Szalay et al (2005) who 

observed the same trend. Smaller particles have a smaller 𝑘/𝑠 ratio, and therefore have 

lower absorbance and higher reflectance.  

 

Figure 4-3 𝒇(𝑹) for the different sieve fractions. 
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A PCA was carried on the 𝑓(𝑅) spectra, showing that the first principal component carried 

92% of the variability associated with particle size differences (Figure 4-4). The second PC 

may contain the variability of chemical and physical inhomogeneities in the granules.  

In this case the Kubelka-Munk conversion was tested in order to increase the lineartity of the 

spectral measurements with the particle size of the granules. Most of the preprocessing 

techniques are focused on the correction of multiplicative and additive artifacts on the 

spectra due to differences in particle size, shape, and particle packaging. In this study, the 

aim was to enhance and extract the information due to physical varibility of the spectra.  

 

Figure 4-4 Scores plot for the 𝒇(𝑹)valuescoresponding to the different sieve fractions. 

A PLS model for the prediction of mean particle size was generated by matching 𝑓(𝑅) with 

the 𝑑50 values measured by laser diffraction for each of the sieve fractions. A second PLS 

model was generated using absorbance values instead of 𝑓(𝑅). Table 4-2 contains the 

description of each of the PLS models. It is clear that absorbance values gave lower RMSEP 

and prediction bias than 𝑓(𝑅). O’Neil et al. (2003) also found that for particle size distribution 

of microcrystalline cellulose, absorbance values gave the best performance and the lowest 

RMSEP compared with other preprocessing techniques. Out of these results, absorbance 

values are better suited for particle size measurements.  
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Table 4-2 Statistics for particle size PLS models 

Parameter PLS model for 𝒇(𝑹) PLS model Absorbance  

Xcum [%] 99.98 99.97 

Ycum [%] 97.46 98.17 

R2 0.969 0.983 

PC 4 4 

Root Mean Square Error of the 

Prediction, RMSEP [µm] 

26.7 15.9 

Prediction Bias [µm] 4.13 0.66 

Wavelength [nm] 1100-1900  1100-1900 

Particle size and segregation tendency 

Particle beds have variable particle size populations and their behavior is difficult to predict. 

Difference in inter-particulate bonds, absolute size and size distribution of the particles need 

to be controlled if a high-quality mixture needs to be produced (Chowhan et al., 1981; Fan et 

al., 1970). In order to visually identify particle size incompatibilities between A1 and A2 

granules, an experiment consisting of a colored tracer was carried out. The tracer consisted 

of A2 particles dyed with Erythrosine, producing an intense pink color. The tracer was not 

measured by laser diffraction nor by NIR due to changes in the refraction index as a result of 

the pigmentation. 

SEM micrographs showed higher content of fines for A2 (Figure 4-5a) than for the tracer 

(Figure 4-5b). Two possibilities can produce this situation: one is a non-representative 

sampling and the second reason could be that dying produced a slight agglomeration of the 

particles.  
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(a) (b) 
 

Figure 4-5 SEM micrographs of A2 (a) and the tracer (b). 

Glass vials were filled with granules and tracer, covering a total of nine different 

presentations of A2: A2 before the melt granulation process (physical blend between A2 and 

polymer), granules with a wide particle size distribution (GBROAD), and granules coming from 

different sieve fractions: G90, G125, G180, G250, G315, G400, and G500. Each vial was blended for 

30, 60 and 300 seconds as shown in Figure 4-6. From this figure it is possible to make the 

next observations: 

• GBROAD shows fast and homogenous blending of the granules with the tracer. In this 

case a good compromise between blending and flow was achieved. The small 

particles form the tracer as well as from the granules fill the inter-particular voids, 

reducing segregation tendencies.  

• Powder before melt-granulation: under these conditions the components did not 

reach the homogeneity state at 300 seconds. Here the geometry of the vial was one 

of the limiting factors together with high cohesion. In the case of highly cohesive 

particles, higher energy is needed for breaking down the clusters formed due to inter-

particular attraction forces such as van der Waals and electrostatic forces (Orr and 

Shotton, 1973; Staniforth, 1985). Mixing is generally enhanced by slight cohesion 

(Sarkar and Wassgren, 2010), on the other hand, high powder cohesion may be 

challenging for the achievement of an homogeneous blend, like in this situation. One 

of the advantages that cohesive powders possess is that once the homogeneity is 
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achieved, these blends are very stable and resistant to segregation; nevertheless 

these blends are not suitable for tableting due to bad flow behavior. 

• G90 and G125: There was no evident segregation of the tracer. The granules and the 

tracer visually formed a homogeneous blend after 30 seconds of blending. The sieve 

fractions of G90 and G125 appeared to be compatible with A2 particle size.  

• G180, G250, G315, G400, and G500, presented segregation. In these cases the tracer 

could easily percolate through the intra-granular voids formed by the big particles 

(Fan et al., 1990). Inter-particle percolation occurred due to the different physical 

nature of the granules and the tracer, failure zones were formed where the tracer 

could easily move through the interstices. This is the main problem of free-flowing 

materials: their easy motion can lead to severe segregation problems.  

 

Figure 4-6 Visual evaluation of the mixing between A2-tracer and granules with 
different sieve fractions. 
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Although the experiment with the tracer is not of a quantitative nature, the information about 

segregation is very valuable and facilitates the selection of compatible particle size ranges. 

Therefore the granules sieve fraction of 90 um and 125 um and GBROAD were chosen for 

further experimentation. Figure 4-7a shows that GBROAD granules as aggregates with 

heterogeneous shapes and sizes. Figure 4-7b corresponds to the sieve fraction of 90-125 

µm, the granules were uniform in shape and size as well as the granules from 125 to 180 µm 

(Figure 4-7 c).  

 

  

  (a)    (b)     (c) 

Figure 4-7 SEM micrographs of (a) granules without particle selection. (b) 90 µm sieve 
fraction and (c) 125 µm sieve fraction. 

 

PLS model development for A2 quantification 

Figure 4-8 shows the NIR spectra for A2 and GBROAD. A2 has a sharp peak at 1554 nm, two 

extra wider peaks appear at 1200 nm and 1700 nm. These regions are rich in information for 

A2 and can be used for quantification purposes. In this section of the study, the chemical 

information is the one of interest. Therefore, the preprocessing techniques were chosen to 

reduce the multiplicative and additive effects caused by particle size variations. The 

combination of first derivative with Savitzky-Golay smoothing of 15 points was applied for 

baseline drift correction and for the magnification of small variations due to A2 concentration 

changes. After the first derivative, SNV was applied for removing the multiplicative 

interferences of scattering and particle size (Barnes, et al., 1989). This preprocessing 

combination was applied to each of the datasets; subsequently three PLS-models were 
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generated only differing on the granules particle size used for the binary blends. Each model 

was validated through an independent prediction set containing one third of the data, 

previously excluded from the calibration set.  

 

Figure 4-8 NIR spectra for the GBROAD (dotted line) and A2 (continuous line). 

Table 4-3 contains the relevant statistics for each of the PLS-models. All of them were 

computed using four principal components, which carried more than 97 % of the variability 

for the Y variable (A2 concentration). For each model the Root Mean Square Error of the 

Prediction (RMSEP) was calculated. The lowest RMSEP was found for the binary blend with 

GBROAD, followed by G90 and the highest value was for G125 with 4.98% of the nominal value. 

The bias of the model followed the same trend as the RMSEP. Therefore, the best statistics 

were obtained for the GBROAD PLS-model. This result can be associated with a better physical 

and chemical homogeneity of the A2-GBROAD blend. The model that presented the highest 

bias and RMSEP was for the A2-G125 blend. This result could be associated with chemical 

inhomogeneities due to slight segregation by percolation of the A2 fine particles. Shaking of 

the vials was carefully avoided throughout the experiment because this mechanism of 

segregation is potentially influenced by vibrations.  
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Table 4-3 PLS-model statistics for the quantification of A2. 

 Model 1 Model 2 Model 3 

Granules type GBROAD G90  G125 

Number of latent variables 4 4 4 

Xcuma [%] 95.54 88.27 92.89 

Ycumb [%] 98.60 99.48 97.75 

RMSEP 
% Nominal 2.76 3.30 4.98 

% m/m 0.12 0.15 0.22 

R2 0.985 0.991 0.972 

Prediction Bias 0.33 0.70 2.51 

Influence of loading order 

The blending of GBROAD with A2 was studied as a function of A2 concentration changes. The 

quantification was performed by a PLS model developed for the A2-GBROAD blend. In addition, 

an extra vial containing the tracer was used for visualization of the mixing process.  

 

Figure 4-9 NIR predictions and influence of filling order, GBROAD loaded first followed 
by A2. The bars represent standard error.  
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Figure 4-10 Mixing kinetics for A2 and GBROAD blends followed by NIR and a visual 
tracer. Influence of filling order, A2 first followed by GBROAD. The bars represent 
standard error. 

Figure 4-9 shows the concentration variations for A2 at different numbers of turns. During the 

first three turns, it is mostly the granules that were in contact with the incident light from the 

NIR. The predicted level of A2 increased once the A2 particles reached the bottom of the vial 

where the blend was scanned. Turns 4 and 5 showed mainly convection mixing where the 

big aggregates of A2 were broken down and started to disperse throughout the powder bed. 

From ten turns onward, the blend seemed to reach homogeneity. 

The filling order was inverted; A2 was loaded first followed by the granules. Figure 4-10 

shows that during the first three turns, A2 was highly concentrated on the bottom of the vial, 

thus A2 was the main component in contact with the NIR light. Convection appeared at turns 

3 to 5, showing the decrease on the A2 predicted values. From turn ten onwards, the blend 

stabilized.  
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The filling order influenced the NIR predictions during the beginning of the mixing; however, 

after the convection stage the predictions showed the same behavior.  

 Influence of granules particle size 

Two different sieve fractions for the granules were selected. Figure 4-11 illustrates the mixing 

behavior of the A2-G90 blend. The mixing curve resembled the A2-GBROAD blend (Figure 4-9). 

In both cases, during the first three turns A2 was forming an aggregate due to interparticle 

attractions. Once this aggregate was broken down as a result of convection mechanism, the 

blend stabilized.  

In the case of the blend between A2 and G125 (Figure 4-12), the breakage of the initial A2-

cluster appeared on the first two turns. This is a clear indicator of the free mobility of A2 

particles among the G125 granules. The standard error was higher for this blend in 

comparison with G90 and GBROAD blends. Despite the fact that the blend reached a stable 

state after 60 turns, this blend could be the most prone to exhibit segregation as a result of 

intergranular channels where A2 could easily flow and percolate.  

 

Figure 4-11 Mixing kinetics for A2 and G90 blends followed by NIR and a visual tracer.  
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Figure 4-12 Mixing kinetics for A2 and G125 blends followed by NIR and a visual tracer.  

4.5 Conclusions 

Segregation tendencies were studied as a function of particle size incompatibilities between 

the blend components. The best blend performance was found for granules with a wide 

particle size distribution and for granules with small particle size. Big particles that exhibit 

free flowing behavior showed evident segregation due to percolation of the small particles.  

NIR was used for mean particle size determination and for the quantification of the low dose 

active ingredient. NIR showed high potential for the particle size measurement of granules. 

By correct selection of the spectral pretreatments it was possible to extract the physical 

information from the NIR spectra.  

The filling order showed no influence on the NIR predictions for the final blend. On the other 

hand, particle size was shown to influence the robustness of the final blend. Segregation 
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tendencies can be observed from the PLS model development in which higher RMSEP can 

indicate the presence of chemical and physical inhomogeneities on the calibration samples.  
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Abstract 

The aim of this study was to apply near-infrared (NIR) spectroscopy to the simultaneous in-

line monitoring of two active pharmaceutical ingredients (APIs) in a pharmaceutical batch 

blending process. The formulation under study consisted of a high load API, one polymer, a 

second API and one lubricant. The API of interest corresponded to 4% (m/m) of the 

formulation. Additionally, the effects of the presentation of high load active on the spectral 

data were evaluated. For this purpose, the high load active was blended either as a cohesive 

powder or as a free flowing material. For improving the flow behavior of the high load active a 

melt-granulation (MG) step was performed. 

The NIR spectra of the high load API before and after MG showed that the polymer 

wavelength absorption band was the most affected, this wavelength range was also 

associated with the water band region. Thus, these frequencies carried information from the 

process and could be influenced by the water content.  

For the APIs quantification, independent partial least squares (PLS-1) models for each API 

were generated. Furthermore, a PLS-2 model was also developed for the simultaneous 

quantification of each API. The PLS models were used for the in-line blend uniformity 

monitoring of both APIs. 
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PAT, blending, NIR, melt-granulation, off-line calibration, PLS2 
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5.1 Introduction 

Solid dosage forms are the most accepted forms by the patients and dominant on the 

pharmaceutical market. The manufacturing process of tablets typically involves several unit 

operations such as blending, granulation, tableting, and coating, all of which can have critical 

influences on the final quality of the pharmaceutical form. Therefore, a scientific 

understanding of the pharmaceutical formulation and the manufacturing process is of crucial 

importance. Process monitoring is an additional tool to guarantee a high and predefined 

quality standard and furthermore offers the possibility to react at any stage of the process if 

any parameters drift from the normal operating range. Near-infrared (NIR) spectroscopy 

holds great potentials for monitoring pharmaceutical manufacturing processes in-line and for 

end-product analytics. NIR spectroscopy has gained a broad range of applications in various 

industries such as fuels, food, and feed, and attracted attention during recent years also from 

the pharmaceutical side, from both the industry and the health authorities. This has brought 

up the process analytical technology initiative launched by the FDA (FDA, 2004). However, 

the pharmaceutical industry is tightly regulated and therefore the implementation of NIR 

needs careful risk assessment due to the fact that predictions are obtained by statistical 

correlations based on established assays rather than being a direct assay. Thus the 

establishment of comprehensive methodologies is needed for NIR quantification, which is 

specific for powders and solid dosage forms, with the aim of minimizing effects originating 

from the physical properties (Blanco et al., 2010; Ely et al., 2008; Saeed et al., 2009). 

In the present study, NIR spectroscopy is implemented to the blending operations of the 

manufacturing process of an immediate release formulation containing two active 

pharmaceutical ingredients (API) and several process steps including melt granulation (MG), 

milling, and blending see Fig. 1. One API (A1) is included in a polymeric matrix by MG while 

A2 is incorporated to the formulation after MG.  

 



96 Batch Mixing 
 

In the present study melt granulation was performed using a twin-screw melt extruder. Hot-

melt extrusion (HME) is a technique used increasingly in the pharmaceutical industry in 

which the drug is homogeneously embedded in a polymeric matrix and subsequently 

processed for shaping, such as milling. HME is commonly applied for controlling drug release 

(Fukuda et al., 2006; McGinity et al., 2007) to cope with solubility limitations of poorly water 

soluble drugs (Miller et al., 2007). Even though the equipment for MG and HME can be the 

same, in HME the materials are heated above their melting temperature while in MG 

temperatures are below the melting point of the API but higher than the melting point of the 

polymer. The important advantage of both techniques over other methods is the fact that the 

extrusion process (also in the melt-granulation modality) is an industrially feasible single step 

process without the use of solvents (Breitenbach 2002; Follonier et al., 1994; Follonier et al. 

1995). Among the disadvantages are the use of heat and the occurrence of shear forces on 

the material due to the screw extrusion step (Qi et al., 2008). NIR (Rohe et al., 1999) and 

Raman spectroscopy (De Beer et al., 2011; Tulumuri et al., 2008) has been applied to 

monitor the extrusion process and for drug quantification of extruded formulations, 

respectively.  

A full understanding of the physical state of the APIs in the formulations is of significant 

importance because: on the one hand, stability and dissolution behavior can be affected (Qi 

et al., 2008) and, on the other hand, robust calibration models must be developed since NIR 

spectra contain both chemical and physical information. Therefore, preprocessing techniques 

and wavelength selection ranges should be carefully chosen to extract the chemical 

information that is mainly correlated with the API concentration. 

Blending of powders is an essential unit operation in the manufacture of a wide range of solid 

dosage forms and is considered as critical when a formulation contains a small amount of 

API. Inadequate blending during the production sequence of solid dosage forms can result in 

insufficient quality of the final product. Hence, a scientific understanding of the blending 

process and the critical parameters are very important to achieve homogenous blends. In 
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most cases, the materials to be mixed are particulate materials of different size, density, 

morphology and cohesiveness and thus tend to segregate (Muzzio et al., 1997). Blending 

can be defined as a combination of three different mechanisms occurring during the process, 

such as convective, shear and diffusive mixing. Convective mixing is the movement of large 

groups of particles, the exchange of particles across the shear zones produces shear mixing, 

and random motion of particles at small scale corresponding to diffusive mixing (Alexander 

and Muzzio, 2002; Bridgwater, 1994; Manjunath, et al., 2004). Blending performance is 

largely dependent on the physical characteristics of the material (Bellamy et al., 2008; 

Chaudhuri et al., 2006; Venables and Wells, 2001; Virtanen et al., 2007) and the process 

conditions (Sudah, et al., 2002).  

In quality assurance, the resulting blend uniformity (BU) is critical to ensure compliant 

content uniformity and dissolution rate behavior of the final product. Conventional blend 

uniformity (BU) involves stopping the blender on a fixed time basis, collecting samples 

usually by thief sampling, and performing an off-line analysis using chromatographic 

methods. Conventional BU analysis is time consuming, labor intensive, prone to induced 

segregation during sampling, and homogeneity determination is focused on the active 

pharmaceutical ingredient (API) level in a static way. Application of NIR as an on-line 

monitoring tool can avoid the drawbacks of the conventional method. Assessment of 

homogeneity by NIR however is a common challenge for BU determination and different 

procedures are described in literature: principal component analysis (Cuesta-Sanchez et al., 

1995; El-Hagrasy, et al., 2001; Varanese et al., 2010), principal component scores distance 

analysis (Puchert et al., 2011), bootstrap error-adjusted single-sample technique (Wargo and 

Drennen, 1996), mean square of differences (Blanco et al., 2002) and moving block of 

standard deviation (MBSD) (Sekulic et al., 1996; Sekulic et al., 1998). Sekulic and coworkers 

determined the end-point of the blending process qualitatively by the MBSD method that 

consists of selecting a set of consecutive spectra (block or window size) then the standard 

deviation for the absorbance at the selected wavelength range is calculated, followed by the 

mean standard deviation computation of that set. Mean standard deviation is plotted against 
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time, subsequently the spectral set is shifted by one time unit and the calculations are 

repeated. 

Several strategies have been developed for the acquisition of calibration samples for the 

quantification of the API in a blending process. Some strategies involved stopping the 

blender at different time points and acquiring calibration samples by thief sampling (Wargo 

and Drennen, 1996). However, thief sampling can disturb the blend (Muzzio et al., 1997). 

Berntsson et al., (2002) prepared off-line samples for a binary mixture and performed a 

quantitative monitoring of powder blending. Shi et al. (2008) proposed to monitor the 

blending process at the top and side of the blender with two NIR sensors for a better process 

monitoring. Karande et al. (2010) exemplifies the complexity in acquiring representative 

calibration samples. They acquired the samples in static and dynamic modes, showing that 

the better predictions were obtained when the dynamic samples were employed. Sulub et al. 

(2009) used an off-line static calibration set for developing a partial least squares (PLS) 

model for on-line prediction of one API at almost 30% (m/m) drug load. The off-line PLS 

model was transferred to a production site.  

In this study the aim was to apply near-infrared (NIR) spectroscopy to the simultaneous in-

line monitoring of two active pharmaceutical ingredients (APIs) in a pharmaceutical batch 

blending process. The formulation under study consisted of a high load API, one polymer, a 

second API, and one lubricant. Additionally, the effects of the presentation of high load active 

on the spectral data were evaluated. For this purpose, the high load active was blended 

either as a cohesive powder or as a free flowing material. For improving the flow behavior of 

the high load active a melt-granulation (MG) step was performed, resulting on the active 

ingredient embedded in a polymeric matrix. Moreover, it was possible to study the influence 

that MG exerted on the physical and spectroscopic properties of the blends. Further, the 

quantification of both APIs was achieved by developing independent PLS models for each 

API and by the APIs simultaneous quantification through a PLS-2 model.  



99 Batch Mixing 
 

 
 

5.2 Materials and Methods 

The target formulation consisted of 96% (m/m) of a granular material. The granules 

contained one high load API (A1) and one cellulose based polymer, a second API (A2) 

corresponding to 4% (m/m) of the formulation, and one lubricant (1% m/m).  

The morphological characterization was performed by scanning electron microscopy (SEM) 

(ESEM XL 30 FEG, Philips, The Netherlands) at an applied voltage of 10 kV and 

magnifications of 100-2000 times. The sample preparation included placing the powder on 

carbon adhesive, followed by gold plating.  

The average particle size was measured using a laser diffraction system (Mastersizer S long 

bed, Malvern, Worcestershire, UK). The lens range was within the particle size range of 4.2-

3500 µm. The samples were dispersed through a dry powder feeder and the measurements 

were carried out 5 times. Obscuration value was kept between 10-30% and residual under 

1%. The analysis was set in “polydisperse” mode. The mean and median diameters and the 

span values were recorded.  

For the flow character determination, approximately 100 g of powder were poured in a 

volumetric cylinder and the unsettled apparent volume was measured, then the sample was 

tapped until no volume changes occurred. The final volume was recorded and bulk (𝜌𝑏𝑢𝑙𝑘) 

and tapped (𝜌𝑡𝑎𝑝𝑝𝑒𝑑) densities were computed. The compressibility index and the Hausner 

ratio of the A1 before and after the MG process were determined following the procedure 

given in the USP 35.  

Melt granulation  

The A1 was combined with the cellulose based polymer in the ratio of 10:1, the powders were 

fed into a twin screw extruder (Leistritz Extrusionstechnik GmbH, Nuremberg, Germany), the 

extruder temperatures ranged from 20 to 135 °C, under the melting point of the A1 (222°C), 

and the screw speed was set at 90 rpm. The extruded product was milled in a Frewitt 
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hammer mill (Fribourg, Switzerland) with knives forward at 2100 rpm and the screen size was 

fixed at 1000 μm. The resulting product is referred to AMG on the manuscript.  

Blending and NIR instrumentation  

All measurements were obtained using a SentroPAT Blend Uniformity TL, NIR spectrometer 

(Sentronic GmbH, Dresden, Germany) based on a micro-electromechanical system, 

equipped with an onboard computer, two tunable laser sources, and Indium Galium Arsenide 

detector. Spectra acquisition was done in reflectance mode over the wavelength range of 

1350-1800 nm at 1 nm intervals. 

The bin blender was loaded first with AMG, then the second drug (A2) was charged, followed 

by a first mixing step of 250 revolutions. The blender was stopped and the lubricant was 

loaded and a second blending step of 50 revolutions was performed. The rotational speed for 

both blending steps was 10 rpm. For on-line measurements the spectrometer was mounted 

on the top of the bin blender (Figure 5-1) and the in-line data acquisition was triggered by the 

position of the NIR spectrometer, with a trigger angle of -45° to + 45°, corresponding to the 

moment in which the powder was in contact with the spectrometer lid. One spectrum per turn 

was obtained and the data were wireless-transmitted from the SentroPAT spectrometer to a 

computer in close proximity. 

 

Figure 5-1 Process flow chart with emphasis on the blending steps monitored by NIR. 
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Off-line calibration samples  

The calibration set was designed to mimic incomplete blending in which the components 

were in varying amounts. A1 was blended either as its pure form or as a granule (AMG). AMG 

kept a constant ratio within A1 and the polymer. A2 was varied from 50-150% of the API 

target. The amount of A1 was restricted to 95% to 105% of its target value, since it is the 

dominant component of the blend and variations of its concentration were expected to be 

minimal. Thirteen calibration samples with a total weight of 15 ± 0.3 g were prepared by 

accurately weighing all components and mixed (Turbula type T2C, W. Bachofen, 

Switzerland) for 5 minutes. Each sample was placed over the spectrometer lid scanned for a 

period of 2 minutes. The resulting compositions of the samples are shown in Table 5-1. 

Table 5-1 Constituent concentrations of the target formulation for the off-line 
calibration set. 

Blend A1 
Presentation  

A1 
[% Nom] 

A2 
[% Nom] 

Polymer 
[% Nom] 

Lubricant 
[% Nom] 

B1 AMG 101.4 69.6 101.5 105.5 

B2 v PB 101.3] 73.4 105.3 53.4] 

B3 PB 105.4] 80.2 57.4 85.0 

B4 AMG 100.9 81.2 100.9 105.5 

B5 AMG 100.3 92.8 100.4 105.5 

B6 v PB 98.3 93.8 123.7] 72.4 

B7 v PB 102.9 98.6 74.5 63.2 

B8 AMG 100.0 100.0 100.0 100.0 

B9 PB 96.4 105.2 129.6 139.5 

B10 PB 95.2 109.9 146.0 71.7 

B11v AMG 99.5 110.2 99.6 105.5 

B12 AMG 99.0 121.8 99.1 105.3 

B13 PB 102.3 130.5 65.4 55.5 

 PB=Physical Blend 
v Validation samples 
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Spectral pretreatment and PLS-model building 

Different combinations of preprocessing techniques were tested for reducing the spectral 

variability associated to the physical characteristics of the samples. Under the scattering 

correction methods; standard normal variate (SNV) was selected since it corrects variations 

in particle size and density (Barnes et al., 1989). Second derivative with the Savitzky Golay 

(SG) algorithm (Savitzky and Golay, 1964) with a window size of 15 points were used in 

order to remove additive effects by correcting baseline drifts (Rinnan et al., 2009). The 

pretreated spectra were matched with the reference values of each API value and 

independent PLS models for A1 and A2 were generated. The PLS models were externally 

validated using the calibration samples 2,6,7, and 11 (previously excluded from the 

calibration set), the validation set was predicted and the determination coefficient (R2), the 

root mean square error of the prediction (RMSEP) and the prediction bias were computed.  

As a second approach for the simultaneous quantification of both APIs, a PLS-2 model was 

generated. The PLS-2 model included the nominal values (Table 5-1) of A1, A2, polymer, 

lubricant, and the physical presentation of A1. The presentation of A1 within the blend was 

handled as a covariate; AMG was matched with 1 and PB with -1. The model was externally 

calibrated with the same samples as for the PLS-1 models. 

The software used for the chemometrical analysis was Matlab (The Mathworks Inc.) version 

2009Ra with PLS_toolbox (Eigenvector Research Inc.) version 6.2.1. 

PLS-models application  

The PLS-models were applied to monitor the evolution of the formulation components in real 

scale batches in a production site. The blend uniformity was followed by the moving block of 

standard deviation computed over the wavelength range of 1500-1600 nm, with a window of 

10 points according to the method described by Sekulic et al. 1996.  
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The average of the predicted concentrations for each API corresponding the last 10 turns 

was compared to the content uniformity of the average of 10 tablets for each batch. The 

content uniformity for each API was achieved by a validated HPLC method.  

5.3 Results and Discussion 

Effect of MG on the physical properties of the A1 

SEM micrographs of the formulation components are shown in Figure 5-2. A1 particles 

(Figure 5-2a) got heterogeneous size distribution and cohesiveness was present on the 

particles surface. A1 particles stuck together, fine powder was present in the surface of the 

big particles. The cellulose based polymer (Figure 5-2b) had a fibrous and needle shaped 

aspect. After the melt granulation between A1 and the polymer, the resulting product was 

milled. In Figure 5-2c, the milled granules (AMG) showed crushed aggregates that physically 

differed from the original components. In addition, the amount of fine powder stuck on the 

surface of the clusters reduced compared to A1. A2 particles (Figure 5-2d) were mainly 

oblong; they resulted in heterogeneous particle size distribution and less fine powder stuck to 

its surface compared to A1. Lubricant (Figure 5-2e) was present as fine powder. Table 5-2 

shows the particle size distribution and flow characterization for A2 and for A1 before and 

after MG process. The particle size for A1 increased from 66 to 463 µm after the MG process 

was performed and the granulated form was obtained. The span values showed a wider 

particle size distribution for AMG compared to the pure A1 form. According to the 

compressibility and Hausner indices, the flow character of A1 improved from fair to excellent. 

Thus the granules of A1 improved the flow performance of the formulation.  
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Figure 5-2 SEM micrographs of the different powders used: A1 (a); cellulose based 
polymer (b); AMG (c); A2 (d), lubricant (e). 

Table 5-2 Powder characterization. 

Parameter A1 AMG A2 

Bulk density [g/cm3] 0.48 0.55 0.45 

Tapped density [g/cm3] 0.58 0.58 0.57 

Compressibility index 17.72 6.10 20.85 

Hausner index 1.22 1.07 1.26 

Flow character Fair Excellent Passable 

Median diameter [µm] 57.34 241.44 - 

Mean diameter [µm] 65.52 463.07 - 

Span* 2.43 5.58 - 

* Span measures the width of the distribution and is calculated as:[𝑑(0.9) − 𝑑(0.1)]/𝑑(0.5)] 

Effect of the MG on the NIR spectra 

Figure 5-3a contains the NIR spectra of the four pure components of the formulation scanned 

under static conditions. A1 broad absorption band at 1525 corresponds to the first overtone of 

the NH stretching for the primary amine of A1. At 1554 nm A2 has a characteristic peak, at 
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these frequencies both excipients presented low absorbance. The evaluation of the 

spectroscopic effect of the physical presentation of A1 was fundamental since this correlates 

with the melt granulation process influence on the formulation. Figure 5-3b shows the 

spectral characteristics of two blends containing the same components and only varying the 

presence of A1 either as a physical blend with the polymer (before MG) or in its granular state 

(after MG). The standard deviation computed from both spectra (Figure 5-3c), showed a high 

variability under 1500 nm. These frequencies corresponded to the absorption band of 

cellulose. The broad band at 1450 contained information of the hydrogen-bonded and is 

associated with the free water band, and the visible changes within the NIR spectra are due 

to changes in hydrogen bonding (Shenk et al., 2001). During melt granulation, the polymer 

passed through a glass transition temperature. This wavelength region carried the 

information of the process, and was therefore excluded from the chemometric analysis.  

The wavelength region over 1500 nm (Fig. 3b) presented a baseline shift emanating mainly 

from particle size, particle shape, and density variations among the samples. The spectra do 

not exhibit new peaks nor peak shifts. Saerens et al. (2012) identified the appearance of 

peak shifts in NIR spectra taken during a extrusion process due to the interactions of the 

polymer with the drug, and the shifts were intensified when the extrusion process was 

performed over the melting point of the drug. In our study the temperature of the twin-screw 

extruder was kept under the melting point of A1 thereby explaining the absence of peak shifts 

for the frequencies over 1500 nm.  
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Figure 5-3 (a) Spectra of the formulation ingredients, (b) spectral comparison of two 
blends, with their standard deviation (c). First blend A1, A2, and the cellulose based 
polymer and the second blend AMG and A2. The pointed lined shows the excluded 
frequencies.  

Lub

Polymer

Polymer
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Model development  

PLS-1 models for each API were computed. The wavelength range of 1350-1500 nm was 

excluded from the calibration wavelength region because this area was highly influenced by 

the information of the MG process. The preprocessing technique chosen for the reduction of 

the scattering due to physical influence on the calibration spectra was SNV with second 

derivative. In addition, for the PLS-1 model for A1, the wavelength range of 1546 to 1562 nm 

was excluded; these excluded frequencies were highly correlated with the concentration 

changes of A2.  

 

Figure 5-4 First component loadings for A1 PLS-1 model (a) and A2 PLS-1 model (b). 

Figure 5-4 contains the first loading for each API PLS-1 models. Loadings were used as a 

reference parameter for each PLS model, hence the loadings were compared with the 

second derivative of each API (Figure 5-5). A1 and A2 second derivative preprocessed 

spectra showed similarity with the loadings of the first principal component of their respective 

PLS models.  

(a) (b) 
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Figure 5-5 Second derivative for A1 (a) and A2 (b) spectra. 

The variance captured by the PLS-2 model for each Y variable (Figure 5-6a) showed that the 

first principal component mainly accounted for the presentation of A1, either as granules or as 

a physical blend. This is in agreement with the loading structure in Figure 5-6b as it 

resembles to the second derivative spectrum of A1 whereas the second latent variable 

(Figure 5-6c) carried the variability correlated to the concentration of the APIs and the 

polymer with a protruding peak at 1554 nm corresponding to A2 (Figure 5-6d). The loadings 

for the first two latent variables accounted for the variability of both APIs and the influence of 

the lubricant and polymer can be detected.  

 

(a) (b) 
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Figure 5-6 Variance captured for each variable on the first (a) and second (c) 
components for the PLS-2 model. Loadings for the first (b) and second latent variables 
(d). 

The main statistics for each PLS model are summarized on Table 5-3. From the results, it 

can be seen that the PLS-2 model requiered more latent variables for explaining almost the 

same variability as the PLS-1 models. Given that A1 is a high load active and A2 accounted 

only for 4% (m/m) of the formulation, the RMSECV and RMSEP were given in percentage of 

the target level and in mass percentage in order to be able to compare the performance of 

the different PLS models. The statistics for A1 were better for the PLS-1 model. These results 

could be explained due to wavelength selection for the PLS-1 model in which the frequencies 

correlated to the second API were excluded, thus the wavelength region was more selective 

for A1. A2 prediction errors for PLS-1 and PLS-2 models were within the same range.  
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Table 5-3 Main statistics obtained for the calibration and validation of PLS-1 and PLS-2 
models. 

  PLS-1 model  PLS-2 model 

  A1 A2  A1 A2 

Number of latent variables  3 3  5 

Xcuma [%]  97.23 97.26  98.42 

Ycumb [%]  99.17 98.22  98.95 

RMSECV  
[% Nominal]  0.255 2.486  0.261 1.566 

[% m/m]  0.220 0.107  0.225 0.067 

RMSEP 
[% Nominal]  0.428 2.261  0.843 2.296 

[% m/m]  0.369 0.097  0.726 0.099 

R2  0.987 0.981  0.969 0.990 

Prediction Bias  0.214 -0.877  0.386 -1.916 

Preprocessing 

technique 

 SNV+SGS 

 (15 pt) 2nd 

Derivative 

SNV+SGS 

(15 pt) 2nd 

Derivative 

 SNV+SGS 

(15 pt) 2nd Derivative 

Wavelength range [nm] 
 1502-1545, 

1563-1800 

1502-1800  1502-1800 

a Cumulative variance captured by the model for the X variables. 
b Cumulative variance captured by the model for the Y variables. 

BU monitoring 

The NIR spectrometer was coupled over the inspection window placed on the lid of the bin 

blender. This configuration enabled proper in-line spectral acquisition for an industrial 

blending process. The measurements were triggered according to the position of the blender 

collecting one measurement per rotation. The spectral data was fitted into the PLS-1 and 

PLS-2 models, allowing the prediction of the target level for each API. The continuous 

monitoring of the blending process gave an insight into the behavior of each of the active 

ingredients. Figure 5-7a shows the predicted A1 values for batch1. The concentration of A1 

varied at the beginning of both mixing steps due to the addition of the second active and the 

lubricant. Alexander et al. (2004) mentioned the importance of the loading order of the blend 

components in a bin blender. In our study the granules were loaded first and they accounted 
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for 94.7 % (m/m) of the formulation load. Under these conditions the A2 granules performed 

as the filler of the formulation. The high load and the excellent flow behavior of the granules 

resulted in fast mixing and minimal variations on the predicted A1 level. A visual inspection 

showed that A1 reached an equilibrium state of blend homogeneity before A2. Figure 5-7b 

corresponds to the predicted concentration of A2. In the beginning of the mixing process the 

blend was in a segregated state with A2 on the top of the mixture. The high variability at early 

blending stage corresponded to the convective mixing, followed by the diffusive blending 

over 30 revolutions for the first mixing step.  

 

Figure 5-7 PLS predicted values of A1 (a) and A2 (b) corresponding to first and second 
mixing steps for a randomly selected batch.  

In order to avoid over lubrication, which could result in dissolution problems, lubricant was 

added in a second mixing step. The second mixing stage was the previous operation before 

compaction of the blends and it was chosen for the determination of the relative standard 

deviation (RSD). The RSD of the predicted values for each API at the second mixing step 

was computed. The RSD was calculated through the standard deviation of the predicted 
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values of each API presiding over a range of five rotations and subsequently divided by their 

average. The RSD limit was established at 5%. Liew at al., (2010) successfully applied the 

RSD for the homogeneity determination of cohesive blends. They observed that the lubricant 

tended to distribute uniformly. Figure 5-8 shows that the RSD was lower for A1 compared to 

A2. The RSD values were under the 5% established limit for the predictions of PLS-1 and 

PLS-2 models.  

 

Figure 5-8 RSD for the second mixing step of (a) A1 and (b) A2. 

The MBSD was calculated with a window of 10 spectra over the wavelength range of 1500 to 

1800 nm using the SNV and second derivative pretreated spectra of both blending steps. 

Figure 5-9 shows the MBSD behavior; a clear decrease on the MBSD values at zero to 

twenty rotations corresponed to the inhomogeneous state of the blend, in which A2 spectral 

features were dominating. The same situation appeared at the early stage of the second 

mixing step with the adition of the lubricant. The addition of the lubricant disturbed the 

equilibrium of the blend followed by the recovery of the steady state after 20 rotations.  

a) b) 
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Figure 5-9 MBSD for both mixing steps. 

Finally, the independent PLS-1 models were applied to the monitoring of 5 production 

batches acquiered one year after the development of the calibration models. The average 

predicted values for the last ten revolutions corresponding to A1 and A2 are given in Table 

5-4. The NIR predicted results were confirmed by HPLC content uniformity analsysis of the 

manufactured tablets. These results probe the feasability of monitoring a complex 

formulation in which high physical variability was incorporated into the model. Overall, the off-

line calibration models showed to be a fast methodology for the simultaneous quantification 

of two active ingredients in a 20:1 mass ratio. 
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Table 5-4 BU results from the average of the last ten revolutions and CU average of ten 
tablets. 

Batch 

Number 

CU HPLC 

A1 [% Nom] 

PLS-1 

A1 [% Nom] 

CU HPLC 

A2 [% Nom] 

PLS-1 

A2 [% Nom] 

1  100.2±1.0 99.7±0.5 99.6±1.7 103.3±2.7 

2  100.7±0.6 99.7±0.2 100.1±1.2 98.5±2.7 

3  99.8±1.0 98.8±0.3 99.4±1.3 96.8±2.3 

4  99.6±0.7 97.6±0.5 98.8±0.6 103.5±1.8 

5  99.9±1.0 98.1±0.4 98.7±1.3 100.8±1.5 

5.4 Conclusions 

The experiments conducted in this study indicate that melt granulation improved the flow 

behavior of A1 by increasing the particle size and reducing the amount of fine powders. The 

NIR spectra of the A1 before and after MG showed that the polymer wavelength absorption 

band was the most affected during the melt granulation and milling processes. This 

wavelength range was also associated with the water band region. Thus, these frequencies 

carried information from the process and could be influenced by variations in the water 

content on the blends.  

The loadings showed better selectivity for the PLS-1 models; however the root mean square 

error and the APIs predictions were of a comparable magnitude. 

A1 reached an equilibrium state of blend homogeneity before A2 due to concentration 

differences of the formulation. The addition of the lubricant disturbed the equilibrium of the 

blend followed by the fast recovery of the steady state of A1.  

The loadings showed better selectivity for the PLS-1 than for the PLS-2 models; however the 

RMSEP and the APIs predictions were within the same range. 

Blend uniformity monitoring by NIR gave a deeper insight into the mixing behaviour of both 

actives. Furthermore, the method described is suggested to be extended to the monitoring of 
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blending time of lubricant in the formulation in order to avoid overlubrication problems. 

Finally, the MBSD and the RSD could be used as a basis for the blend end point 

determination.  
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Abstract 

 

The aim of this study was to develop a quantitative near-infrared (NIR) method which 

monitors the homogeneity of a pharmaceutical formulation coming out of a continuous 

blender. For this purpose, a NIR diode array spectrometer with fast acquisition parameters 

was selected. Additionally, the dynamic aspects of a continuous blending process were 

studied; the results showed a well-defined cluster for the steady-state, and the paths for the 

start-up and emptying stages were clearly identified. The end point of the start-up was 

detected by moving block of standard deviation, residual standard deviation, and principal 

component analysis, giving consistent results. 

A partial least square (PLS) model was generated for the quantification of the drug, with a 

standard error of prediction of 0.2% m/m. The PLS model was successfully applied for 

monitoring the drug level at the outlet of a continuous blender. Furthermore, the PLS model 

was tested under different flow and stirring rates. Flow and stirring rate variations caused 

different powder flow dynamics, which were reflected on the NIR measurements. Therefore, 

the PLS-model was sensitive to changes on mass flow and rotation speeds. 

 

 

 

Keywords 

PAT, continuous blending, NIR, PLS, homogeneity, moving solids, moving block of standard 

deviation 
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6.1  Introduction 

Blending of powders is an essential unit operation in a wide range of industries such as 

pharmaceutical, food, cosmetics, or construction materials. Powder mixing is a central and 

extremely important unit operation that is practiced to a great extent whenever particulate 

materials are processed. In the pharmaceutical industry, blending is involved in the 

manufacture of solid dosage forms, which includes tablets, capsules, and granules. Hence, it 

is fundamental to have a correct control strategy for powder blending. 

Mixing of solids is the process by which two or more components (active ingredients and 

excipients) are randomized (Fan et al., 1970). Lacey (1954) suggested three possible mixing 

mechanisms for particulate material: convective, shear and diffusive mixing. Convective 

mixing involves the transfer of neighbor particles from one location to another, comprising the 

movement of large masses of particles; diffusive mixing is the distribution of particles over a 

freshly developed surface with random motion at small scale; and the exchange of particles 

across the shear zones corresponds to shear mixing (Alexander & Muzzio, 2002; Bridgwater, 

1994; Manjunath et al., 2004; Staniforth, 1982; Williams, 1972,). Blending performance is 

largely dependent on the physical characteristics of the material (Bellamy et al., 2008; 

Chaudhuri et al., 2006; Venables & Wells, 2001; Virtanen et al., 2007) and the process 

conditions (Sudah, et al., 2002). 

Mixing operations of particulate solids in the pharmaceutical industry are carried out 

batchwise even when the previous or further process steps are continuous. Hence, the 

handling and storage of the blended product can lead to segregation problems. An 

alternative to batch mixing is continuous blending. Continuous blending aims to continuously 

feed and blend the ingredients thus the resulting blend is ready for the next unit operation 

(Manjunath et al, 2004; Weinekötter & Gericke, 2006). Continuous blending when connected 

to the following unit operation offers several advantages such as continuity of production, 

reduction of the intermediate handling resulting in lower segregation, less storage space, 
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high production capacity, easier scale-up, faster product availability (Pernenkil & Cooney, 

2006; Manjunath et al, 2004; Weinekötter & Gericke, 2006; Williams & Rahman, 1970). 

The mixing of powders gains more and more economical importance, since the mixing 

process adds value to the product and incorrect blend uniformity can lead to out of 

specification products. Rees (1977) emphasized the importance of building quality into the 

product during development and manufacturing processes instead of relying and waiting for 

the control test of the final product. This statement clearly refers to the Quality by Design 

(QbD) context described by the ICH Q8 (R2) (2009), where the quality of the final product 

cannot be tested in the product, but rather should be built-in by design. The FDA’s Process 

Analytical Technology (PAT) initiative (2004) also promotes the process understanding by 

encouraging the pharmaceutical industry on the implementation of new technologies and by 

predesigning the quality of the final product. One of the most widespread PAT tools is Near-

Infrared (NIR) spectroscopy, which is a fast and non-invasive analytical technique that is 

suitable for the real-time monitoring of a blending process. Another characteristic of NIR 

spectroscopy is that the sample does not require previous treatment and can be measured 

as it is. Given that, this vibrational technique is sensitive to physical and chemical attributes 

(Blanco et al., 2000; Saeed et al., 2009), the resulting spectra need to be properly analyzed 

in order to focus the study to the quality attribute of interest. 

NIR has been mostly applied to the quantification of API (Berntsson, et al., 2002; El-Hagrasy 

et al., 2001; Sulub, et al., 2009) and excipients (Liew, et al., 2010; Wu, et al., 2009) in batch 

mixing, but few has been done on the monitoring of continuous blending processes. There 

are several techniques described in the literature for assessing blend uniformity on a batch 

mixing process using NIR: principal component analysis (El-Hagrasy et al., 2001), principal 

component scores distance analysis (Puchert et al., 2011), bootstrap error-adjusted single-

sample technique (Wargo & Drennen, 1996), mean square of differences (Blanco et al., 

2002), caterpillar algorithm (Flåten et al., 2012) and moving block of standard deviation 

(MBSD) (Sekulic et al., 1996, 1998). Assessing blend uniformity in a batch process is based 
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on the determination of the blending end-point, on the other hand in continuous blending it is 

of great importance to determine when the process has reached a steady-state as well as 

the homogeneity of the blend. A common continuous mixing process can be divided into 

three sections: start-up, steady-state and emptying. In this study, we decided to choose PCA, 

MBSD, and relative standard deviation (RSD) for the steady-state identification.  

One of the challenges of measuring a blending process is that the powders are under 

continuous movement, thus the different moving dynamics (different physical presentation of 

the sample) can interfere with the acquisition of reliable results. Andersson et al. (2005), 

examined moving solids with a NIR Fourier transform spectrometer, pointing out that powder 

speed influenced the quality of the resulting spectra, later studies (Benedetti et al., 2007; 

Ropero et al., 2009) showed the feasibility of measuring flowing powders. Koller et al. (2011) 

followed the blending process in a bladed mixer by NIR, concluding that fill level had a strong 

influence on the mixing dynamics. Besides the dynamic nature of the measurement, the 

inhomogeneities due to the performance of the blender as well as the powder properties are 

critical (Marikh, et.al, 2005; Portillo et al., 2010; Sarkar & Wassgren, 2010; Sudah, et al., 

2002).  

Weinekötter & Gericke (2000) studied the powder fluctuations at the outlet of the blender; 

they periodically disturbed the continuous feeding of the powder and observed the ability of 

the blender to buffer these disruptions. Kehlenbeck (2006) applied NIR spectroscopy for the 

in-line monitoring of a continuous mixing process of calcium carbonate and maize starch, the 

blend flowed over the probe followed by a cleaning step with compressed air. The spectra 

acquisition by the Fourier transform spectrometer was challenged by the movement of the 

sample that could cause false results. Vanarase et al. (2010) developed a quantification 

model for the real-time monitoring of a continuous blending process of acetaminophen, 

showing promising results for the industrial implementation of NIR as a PAT tool. Besides, 

the complexity of powder flow makes necessary to further study the process parameters that 

could influence the reliability of a multivariate model for a continuous blending process. 
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In this study, we will present and discuss some results concerning to the influence that mass 

flow rate and stirring rate variations exerted on NIR diffuse reflectance measurements. 

Subsequently, we developed an analytical method for the in-line quantification of the drug 

content using NIR and chemometrics tools. We focused the study into the identification of the 

parameters that may interfere with the accuracy of the NIR results and the range of 

applicability of the multivariate model. Furthermore we identified the different phases present 

on the continuous blender: star-up, steady-stage and emptying. Overall, this study explores 

the potential usage of a continuous blender combined with a NIR in-line process control for a 

pharmaceutical product.  

6.2 Materials and methods 

Continuous blending 

The formulation under consideration contains two actives, one polymer and one lubricant. 

One granular ingredient containing a high dose active corresponded to 95 % (m/m). 

Subsequently, the granules were blended with the active of interest (A1). A1 represented 4% 

(m/m) of the formulation, while the lubricant accounted for 1% (m/m). The study was focused 

on monitoring the lower dose active, A1, given that the absence of the high load active would 

be gravimetrically evident. The physical characteristics and flow behavior of A1 and the 

granules are given in Table 6-1. The average particle size was measured using a laser 

diffraction system (Mastersizer S long bed, Malvern, Worcestershire, UK). The lens range 

was within the particle size range of 4.2-3500 µm. The samples were dispersed through a dry 

powder feeder and the measurements were carried out 5 times. Obscuration value was kept 

between 10-30% and residual under 1%. The Hausner index corresponds to the ratio formed 

by tapped and bulk densities. 
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Table 6-1 Properties of the A1 and granules containing a second active, A2.  

 Granules  A1 

Bulk density [g/cm3] 0.55±0.01 0.45±0.01 

Tapped density [g/cm3] 0.58±0.01 0.57±0.01 

Hausner index 1.07±0.01 1.26±0.02 

Flow character Excellent Passable 

Mean particle size 𝑑50 [µm] 241.44±21.67 59.40±2.78 

Span* 5.58±0.22 2.91±0.63 

* Span measures the width of the distribution and is calculated as [𝑑(0.9) − 𝑑(0.1)]/𝑑(0.5) 

 

Figure 6-1 Experimental set-up. A, B, and C correspond to the granules, A1, and 
lubricant feeders respectively. D is the outlet of the blender and E refers to a rotary 
valve. 

The granules, A1, and the lubricant were mixed in a continuous blender with Modulomix 

technology (Hosokawa Micron BV, NL) where the stirring speed was varied (400, 700, and 

1000 rpm). The materials were fed through a twin screw loss-in-weight feeder (K-tron). Two 

classes of feeders were used: a KT35 for higher feed rate of the granules and a KT20 for the 

low concentration materials such as A1 and the lubricant. The granules and the A1 were 

mixed over the full length of the continuous blender while the lubricant inlet position was 

chosen to be at the last third of the blender, for avoiding over lubrication of the formulation 

(Figure 6-1).  
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Table 6-2 contains the process settings for four trials designed to evaluate the influence of 

the flow rate and stirring rate. Spectral data were collected for each trial at the outlet of the 

continuous blender as shown on Figure 6-1.  

Table 6-2 Process settings for the continuous blending trials. 

 Continuous blending trial 

 T1 T2 T3 T4 

Flow rate [kg/h] 52.8 126.7 79.2 79.2 

Granules Feed rate [kg/h] 50.0 120.0 75.0 75.0 

API Feed rate [kg/h] 2.3 5.5 3.4 3.4 

LubricantFeed rate [kg/h] 0.5  1.2 0.8 0.8 

Stirring rate [rpm] 1000  1000  700  400  

Trial duration [min] 5 5 5 5 

 

NIR instrumentation  

For the measurements of the flowing powder a NIR probe was mounted at the outlet of the 

continuous blender (Figure 6-1). The NIR equipment consisted of a SentroPAT FO 

spectrometer (Sentronic GmbH, Dresden, Germany) with a diode array detector, the data 

acquisition was performed through a diffuse reflectance probe SentroProbe DR LS 

(Sentronic GmbH, Dresden, Germany) with tungsten halogen bulbs as light source. The 

blends were scanned through the sapphire window of the probe, the NIR measurements 

were triggered automatically once the powder started to slide over the probe. Spectra 

acquisition was done in diffuse reflectance mode over the wavelength range of 1100-2200 

nm at 1 nm intervals. One spectrum was obtained through the average of 60 scans and the 

scan time was 0.012 s.  
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 Calibration samples and PLS-model building 

In order to reproduce the physical conditions of the flowing powder bed, the calibration 

blends were blended directly at the continuous blender and scanned at the outlet of the 

blender. The rotation speed for the calibration samples was 1000 rpm, which corresponds to 

high shear inside the blender. Throughout the blending, the A1 level was varied according to 

the designed experiment (Figure 6-2); each concentration level was run for two minutes. The 

calibration spectra were selected from the steady state of each concentration subset. The 

feed rate for A1 varied from 0.9 to 4.3 kg/h for covering a concentration range of 25 to 125 % 

of the target value (1.1 to 5.4% m/m).The granules and lubricant feed rate were kept 

constant at 75 kg/h and 0.8 kg/h respectively.  

 

Figure 6-2 A1 level variation for the calibration samples including A1 feed rates. 

The calibration spectra were chosen from the steady zone of each A1 level, with a total of 

220 spectra. The resulting calibration spectra were preprocessed in order to remove spectral 

variation that was not correlated to A1 variations as well as to enhance the spectral 

selectivity for A1. Under the scattering correction methods; standard normal variate (SNV) 

was selected since this preprocessing technique reduces the multiplicative interferences of 

scattering and particle size (Barnes et al., 1989). Second derivative with the Savitzky Golay 

(SG) algorithm (Savitzky & Golay, 1964) were used in order to remove additive effects by 

correcting baseline drifts (Rinnan et al., 2009).  
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The wavelength range selected corresponded to 1535-1800 nm, these frequencies were 

highly correlated with A1 level variations. The pretreated spectra were matched with the 

gravimetric reference values of A1 and a PLS model was generated using random subsets 

cross-validation. The random subsets cross-validation considered 10 data splits and each 

subset was generated by random selection, such that no single object is in more than one 

test set, this procedure was repeated as much as 5 iterations. 

The software used for the chemometrical analysis was Matlab (The Mathworks Inc.) version 

2009Ra with PLS_toolbox (Eigenvector Research Inc.) version 6.2.1. 

 PLS-models application  

The PLS-model was applied to the monitoring of a long duration trial of 25 minutes. The 

settings for this trial were the same as for the calibration samples: high stirring rate (1000 

rpm), medium feeding rate for the lubricant (0.8 kg/h), A1 (3.4 kg/h) and the granules (75 

kg/h), corresponding to the medium inflow rate.  

NIR spectroscopy is well-known for containing physical and chemical information of the 

samples. Physical properties of the powder bed such as particle packaging and void 

distribution can be influenced by the process parameters, consequently, the NIR spectra and 

PLS model’s predictions may be influenced as well. In a continuous blending process, the 

rotation speed and the mass flow rate can be defined by the operator, thus these parameters 

were selected for testing the influence that may have on the measured NIR spectra. The 

process settings are given on Table 6-2 and the spectral data were collected for each trial at 

the outlet of the continuous blender as shown on Figure 6-1.  

Blending stages identification 

The start-up, steady-state and emptying phases were identified by PCA, MBSD, and RSD. 

PCA was used for data exploration and extraction of relevant information by identification of 

similarities on the data. This is done by the projection of the large data space into a smaller 
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space that is easier to analyze (Geladi, 2003). PCA in this study was used for the detection 

of clusters and gradients originated during the continuous blending process, which could be 

associated to the different blending stages. PCA was performed on mean-centered spectra 

for T1, T2, T3 and T4 trials, over the wavelength range of 1535-1800 nm.  

The MBSD analysis was performed on the preprocessed spectra of each trial. The 

wavelength range was 1535 to 1800 nm and the preprocessing combination was SNV, SG 

(15 pts) with 2nd derivative, the same techniques as for the one used for the development of 

the calibration model. The MBSD method consisted on selecting a set of 15 consecutive 

spectra then the standard deviation for the pretreated absorbance values at the selected 

wavelength range was calculated. Subsequently, the mean standard deviation of that set 

was computed. Mean standard deviation is plotted against the time, subsequently the 

spectral set was shifted by one time unit and the calculations were repeated. A full 

description of the MBSD technique can be found in Sekulic et al. 1996.  

The relative standard deviation (RSD) is a mixing index widely used in industry. The RSD of 

the NIR predicted values for A1 were computed. The RSD was calculated through the 

standard deviation of the predicted values presiding over a range of 15 predictions and 

subsequently divided by their average, the values are shifted on one unit time and the 

calculations are repeated, resulting in a moving RSD. 

Sampling 

At the outlet of the blender samples were taken manually for T1, T2, and T3 at 30, 60, 120, 

180, and 300 seconds. The long duration trial was sampled at 15, 30, 45, 60, 90, 120, 300, 

600, and 1500 seconds. The sampling was performed to the flowing powder, taking 

approximately 3 g per time point. Subsequently A1 quantification of each sample was 

performed off-line by a validated HPLC method. The results from HPLC were compared with 

the average of ten predicted NIR concentrations of the corresponding time range.  
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6.3 Results and Discussion 

Calibration model development 

The single component NIR spectra for the granules and A1 were measured off-line (Figure 

6-3). A1 is characterized by a narrow and intense peak at 1554 nm and a broader absorption 

band at 1710 nm. The wavelength region selected for the chemometric analysis was 1535 to 

1800 nm corresponding to the absorbance frequencies of A1.  

 

Figure 6-3 Raw spectra for A1 and granules containing a second API. The gray area 
corresponds to the selected wavelength region. 

Certainly, the selected frequencies showed to be highly correlated with A1 level variations as 

shown in Figure 6-4 close-ups, this is reflected on the scores plot in Figure 6-5 in which well-

defined clusters for each A1 level were presented. The scores plot shows that the first 

principal component covered 93.15% of the spectral variability, associated with the chemical 

information brought by the A1 concentration changes. Proving that the preprocessing 

combination of SNV and SG (15pt) second derivative corrected most of the physical 

variability of the calibration samples, while the wavelength range selected was correlated 

with A1 level variations.  
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Figure 6-4 Preprocessed calibration spectra at the selected wavelength range, 
including two close-ups at A1 absorbance frequencies. 

 

Figure 6-5 Scores plot for the calibration set preprocessed spectra at the selected 
wavelength region (1535-1800 nm).  

The PLS model parameters are displayed in Table 6-3. The PLS model was generated with 

one principal component, which successfully carried out the quantitative information for A1 

and showed better robustness when applied to independent data sets. The root mean square 

error of the cross validation (RMSECV) was 4.7% of A1 target value equivalent to an error of 

0.2% m/m, indicating that the NIR model has an acceptable bias. 
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Table 6-3 Description of A1 PLS model. 

Parameter PLS-model Statistics 

Number of principal components 1 

Xcuma [%] 93.15 

Ycumb [%] 97.56 

RMSECV [% Nominal] 4.7 

[% m/m] 0.2 

R2 0.975 

Preprocessing technique SNV, SG 2nd 

Derivative (15pt) 

Wavelength range [nm] 1535-1800 

a Cumulative variance captured by the model for the X variable (spectral data). 
b Cumulative variance captured by the model for the Y variable (A1 % target value). 

Results from the long duration trial 

The quantification of the compound of interest in a blending process has been restricted to 

the analysis of samples retrieved from the outlet of the continuous blender on a regular time 

basis (Gao et al., 2011; Portillo et al., 2009). Recent work (Vanarase et al. 2010) showed the 

feasibility of real-time monitoring of a continuous blending process by NIR. In a PAT 

framework, the continuous quality assurance is achieved by a continuous monitoring of a 

process (FDA, 2004), therefore in this study, the continuous blending of a pharmaceutical 

formulation was monitored continuously and the quantification of A1 was made through the 

one principal component PLS-model. 

A continuous blending trial with a total duration of 25 minutes was in-line monitored by NIR. 

The objective of this trial was to simulate a real production condition in order to evaluate the 

robustness of the PLS-model. The blending settings for the trial were the same as for the 

calibration samples: high stirring rate (1000 rpm), medium feeding rate for the lubricant, A1 

and the granules, corresponding to the medium inflow rate.  
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The high throughput of a continuous blender requires a system that can react fast in order to 

identify deviations from the process specifications. The high sampling frequency of the NIR 

allowed constant monitoring of the blending process as shown in Figure 6-6. The predicted 

concentrations for A1 and the RSD values were acquired every second. High RSD values 

were observed at the beginning of the process, which was associated to the start-up phase. 

The start-up phase corresponded to the time that the blender required to reach a constant 

hold-up mass, thus reaching a steady-state among the inlet and outlet flow rates. The RSD 

vales presented some fluctuations above 5% these fluctuations might be associated with 

chemical inhomogeneities as well as bulk variations of the powder bed. Figure 6-7 shows the 

HPLC values for the samples retrieved at different time points, A1 concentrations varied 

within the range of 90 to 110%.  

 

Figure 6-6 Results from the long duration trial each point corresponds to one NIR 
prediction, and the dotted line represents ±3 SD while the continuous line is the RSD.  
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Figure 6-7 Off-line HPLC results for the samples retrieved form the continuous blender 
at different time points.  

Influence of stirring and flow rate variations 

The trials were designed in order to test the influence that the feeding rate and stirring rate 

exerted on the A1 concentrations calculated by the PLS model. The one principal component 

PLS-model was used to predict the A1 concentration on four different trials, with different 

process parameters of flow rate and rotation speed but leading to the same expected level of 

A1 (100% of the nominal value). Figure 6-8 contains the predicted NIR concentrations for the 

four different continuous mixing trials. T2, T3 and T4 concentrations were at the target 

concentration of 100%. These trials corresponded to the medium and high flow rate (79.2 

and 126.7 kg/h) and three rotation rates (400, 700 and 1000 rpm), indicating that the PLS 

model was robust enough to cushion changes due to rotation speed changes. However, this 

was not the case for the T1 trial which was under predicted by almost 20%. T1 corresponded 

to the lowest flow rate (52.8 kg/h) and the PLS model was developed for an inflow rate 

ranging from 75 to 80 kg/h. This is directly reflected on the different amount of powder that 

passed through the probe at the same scan time. Even though the HPLC results for T1 

indicate that the off-line samples varied within the range of 90 to 110% (Figure 6-9). 

Therefore, a reduction on the mass flow over the probe had a major influence on the PLS 

predictions. This might be a result of the decrease in the interaction between the NIR incident 

light and the particles, thus less mass equals less particles and more voids. In addition, a 
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higher flow rate may generate a more stable powder bed with less physical variations of 

density and particle packaging. Therefore the PLS model cannot be applied for the blend 

uniformity monitoring of inflow rates lower than the calibration range. Consequently, the 

development of a PLS model must consider the final flow rate conditions.  

 

Figure 6-8 Predicted NIR values (♦) with RSD (continuous line) for the four trials at 
different flow rates and stirring rates. 

Figure 6-8 depicts the RSD for each of the continuous blending trials. All the trials presented 

high RSD values at the beginning of the process, corresponding to the start-up period 

followed by the steady-state. RSD is an indicator of the uniformity of the blend; lower RSD 

values are correlated with better blend uniformity. On Figure 6-8 it can also be seen that as 

the rotation rate diminished the fluctuations on the predictions as well as the RSD trend were 

more stable. Given that the flow dynamics on the chute changed at different stirring rates, a 

better sample presentation to the NIR probe was obtained at 400 rpm. RSD values for T1 

were over 5% indicating poor blend uniformity; this could be associated with the lack of 

predictability of the PLS model, thus RSD was not the indicated estimator for this trial. T2 

corresponded to the trial with high inflow rate and high rotation rate. The RSD results showed 

that under these process conditions, the predicted concentrations showed more fluctuations 
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compared to T3 and T4. In accordance with the work of Gao et al. (2011) who describe 

higher variability on the residence time distribution curve for higher feeding rates, due to 

large fill levels and less homogeneous dispersion in the axial direction. T4 accounted for the 

lowest RSD values and was blended at the lowest stirring rate (400 rpm), resulting in a 

higher residence time. According to Williams & Rahman (1970) and Portillo et al. (2009) 

examinations, the influence of the rotation rate on the quality of the blend, shows that better 

content uniformity was achieved at lower rotation rates. This explanation is suggested for the 

lower fluctuation of the T4 trial in comparison with the other blending trials.  

 

 

Figure 6-9 HPLC results for the retrieved samples for trials T1, T2, and T3.  

Influence of stirring and flow rates studied by PCA  

A principal component analysis was performed in order to find differences among the 

continuous blending trials. The start-up and emptying stage were removed and only the 

steady state spectra from each trial were selected. The same wavelength range and 

preprocessing techniques as for the PLS model were applied. Roggo et al. (2005) applied 

PCA successfully for the identification of different pharmaceutical process influence on 

spectroscopic results, showing the high value of this technique for process understanding. 

PCA was chosen as a useful qualitative tool for the identification of dissimilarities within the 

trials. We used this unsupervised classification method to identify the effect of the different 

continuous blender settings on the samples. Figure 6-10 shows the scores plot for the 



139 Continuous mixing 
 

 
 

preprocessed spectral data of the four continuous blending trials, in which the first principal 

component accounted for 82% of the spectral variability showing three clusters that were 

associated with the three different stirring rates. The loadings related to the first principal 

component are shown on Figure 6-11a. Loadings are difficult to interpret, however spectral 

signatures related to the presence of both actives can be detected. T3 and T4 were the trials 

with similar inflow rate though they differed on the rotation rate. Once the process reached 

the steady state the inflow and outflow rates were similar and did not vary with stirring rate 

changes, in agreement with Ammarcha et al. (2011). These results prove that NIR was 

sensitive to the different powder dynamics and particle packaging at the outlet of the 

continuous blender associated with the different stirring rates. This preprocessing 

combination was sensitive to stirring rate changes; hence the spectral preprocessing is 

fundamental in order to focus the analysis on the variable of interest. Previous efforts have 

shown that NIR spectroscopy could be used to identify physical variability as well as particle 

segregation on flowing blends (Barajas et al., 2007).  

 

Figure 6-10 Scores plot for the four different continuous blending trials. The arrows 
indicate the increasing direction of stirring and flow rates.  

The second principal component was linked with flow rate variations. The loadings in Figure 

6-11b show the presence of a peak correlated to A1. Presumably the flow rate could interfere 
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values for T1, in which less amount of powder was flowing over the probe per unit time. As 

Ropero et al. (2009) illustrates, the reflected radiation carried the information of the flow rate 

changes associated with the number of particles that interact with the NIR radiation.  

 

Figure 6-11 Loadings for the first and second principal components.  

Steady-state determination 

For the identification of the steady-state of each trial we applied three different qualitative 

approaches: PCA, MBSD and RSD. A continuous blending process is commonly divided into 

three phases, start-up, steady stage, and emptying (or shut down).,Each process step could 

be distinguished on a score plot. Figure 6-12 illustrates the score plot for each trial; the 

scores for the start-up and emptying were connected for showing the path that the blend 

followed. In all the cases a well-defined cluster for the steady or homogeneous state was 

observed. The results are encouraging for the application of PCA as a qualitative tool for the 

end point of the start-up determination. Subsequently, the pretreated spectra were used for 

the homogeneity determination by the MBSD with a 15 point window. MBSD was introduced 

by Sekulic et al., (1996, 1998) for the homogeneity determination of batch blending. We have 

chosen this technique due to its simplicity and fast application on the blend uniformity 

monitoring. Furthermore, MBSD is independent of a quantitative model like PLS and 

therefore does not require predicted values as RSD. On Figure 6-13, T1 and T2 showed 

higher MBSD values in addition to the presence of more fluctuations compared to T3 and T4; 

this was in accordance with the RSD of the predicted NIR values which also showed more 
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inconsistency for T1 and T2 trials. The different performances of the trials might be 

associated with several factors related to the variations on the physical presentation of the 

sample to the NIR probe, as well as factors associated with the blender performance.  

 

Figure 6-12 PCA for each trial. (○) start-up stage, (*) steady stage and (♦) emptying. S 
indicates the first measured sample. H corresponds to the homogeneous blend and E 
to the emptying stage corresponding to the first sample that is out of the 
homogeneous cluster. The plots were rotated for visualization purposes.  
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Figure 6-13 MBSD for each trial. The dotted line indicates the end of the start-up stage. 

The start-up period refers to the time that the continuous mixer required to reach a constant 

hold-up mass. Subsequently the process was considered to have reached a steady state. 

The start-up times calculated from PCA, MBSD, and RSD for each trial are given in Table 

6-4, where all the trials gave small start-up times due to the high rotation rates applied (400-

1000 rpm). All three methods gave similar results for the start-up times, showing that T1 

needed the longest (23 s) for achieving the steady state. This trial had the lowest inflow rate, 

consequently it required a few extra seconds for reaching the hold-up mass. This is in 

accordance with Ammarcha et al. (2011) and Marikh et al. (2005) who studied the hold-up 

mass as a function of the flow rate, noticing that as the inflow rate increases and the stirring 

rate decreases, the hold-up mass increases, thus influencing the start-up time. Furthermore, 

the mass associated with the start-up period was calculated by multiplying the average start-

up time by the inflow rate of each trial. Even though T1 required the highest start-up time, T2 

was the trial that needed more mass (457 g) in order to reach the steady-state. The start-up 

mass on a continuous blender needs to be determined since this amount represents a non-
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homogeneous blend and when the outlet of the blender is directly connected to a tabletting 

machine, this could lead to out of specification product.  

Table 6-4 Start-up end point determination. 

 Method   

Trial PCA 

[s] 

MBSD 

[s] 

RSD 

[s] 

Average time 

[s] 

Start-up mass * 

[g] 

T1 22 24 23 23 337 

T2 12 14 14 13 457 

T3 13 13 13 13 286 

T4 12 10 12 11 242 

* Start-up mass= (average time* flow rate) 

6.4 Conclusion 

This paper described the development of an in-line PLS model for the quantification of the 

API in a continuous blending process for a pharmaceutical formulation. The PLS model was 

successfully applied for the monitoring of a continuous blending process under real 

production conditions and no statistically significant difference was found between the off-line 

HPLC results and the in-line NIR predicted values. The influence of the inflow rate and 

stirring rate on the quality of the blend was studied by PCA and RSD, showing that lower 

stirring rates reduced the fluctuations at the outlet of the blender, while low feed rates were 

not accurately predicted by the PLS model. Hence, if high variations on the feeding rate of 

the ingredients are expected, this variability should be included in the PLS-model in order to 

increase robustness. All the trials showed three stages on the PCA: start-up, steady-state 

and emptying. PCA, MBSD and RSD showed consistent results for the determination of 

start-up and end point, thus indicating when the steady-state or homogenous blend began.  
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This work constitutes a proof of concept on the feasibility of using NIR for the real-time 

monitoring of a continuous blending process of a pharmaceutical formulation. 
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Abstract 

 

 

Near Infrared (NIR) spectroscopy is a powerful analytical tool that can be used for the 

measurement of particulate material without previous sample preparation. Spectral NIR data 

contain chemical and physical information from the samples; therefore a quantitative NIR 

model needs to be focused on the quality attribute of interest, such as active pharmaceutical 

ingredient (API) concentration. The aim of this study was to use NIR spectroscopy for the 

development of an in-line quantitative model of an API in a powder stream. Calibration 

samples with different API concentrations levels were measured by NIR under flow 

conditions in a lab-scale set-up. The complexity of the powder flow in a powder stream could 

not be fully reproduced in the lab-scale set-up. Therefore the calibration set was merged with 

selected spectral data acquired in powder stream formed during the filling of an industrial 

bulk container (IBC). The combination of both spectral data sets was performed in order to 

integrate the unaccounted variability due to different powder flow dynamics. . The 

preprocessing techniques, orthogonal signal correction, combined with second derivative and 

standard normal variate, proved to focus the analysis into the API concentration by reducing 

physical and flow variations effects on the spectra. Finally the partial least squares model 

with a prediction error of 0.2% (m/m) was applied for the prediction of unknown samples 

during the bulk container filling. The NIR predictions showed good results when compared to 

their corresponding time-point HPLC analysis.  

 

 

 

Keywords 

PAT, NIR, PLS, homogeneity, moving solids, powder stream, Orthogonal Signal Correction 
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7.1 Introduction 

NIR spectroscopy is a versatile tool that has gained lot of attention from the pharmaceutical 

industry as well as from the health authorities. The FDA launched the process analytical 

technology (PAT) initiative ( 2004), which encourages the pharmaceutical industry to improve 

process understanding, increase research into new technologies for process control (i.e. 

NIR) in order to monitor critical parameters that could potentially affect the quality of the 

product. 

NIR is a versatile tool that has been applied in a wide range of pharmaceutical unit 

operations as drying (Peinado et al., 2011), blending (Cuesta et al., 1995; Sekulic et al., 

1996; Blanco et al., 2002; Sulub et al., 2011), compaction (Saeed, et al., 2009), and more 

applications reviewed by Reich (2005) and Roggo et al.,( 2007). The major advantages of 

NIR spectroscopy are that it is non-destructive and the immediate delivery of results, also the 

technology has improved and the diode array spectrometers allow the fast acquisition of 

spectral data. Therefore, NIR can be used to characterize powders under flowing conditions 

(Benedetti et al., 2007), hence is possible to monitor a powder stream as the one existing 

during the filling of an IBC. The granular flow in an inclined chute has a complex behavior 

(Ahn et al., 1991; Santomaso & Canu, 2001), in which the granular material is surrounded by 

air thus impacting the solid fraction (density). Random motion of the particles, physical and 

chemical inhomogeneties, and velocity and flow rate fluctuations, are the main challenges 

that in-line monitoring of a powder stream faces.  

NIR spectroscopic data contain information related to physical and chemical properties of the 

sample. Andersson et al. (2005) showed how the dynamic conditions of the sample have a 

strong impact on the quality of the data acquired by a Fourier Transform spectrometer; the 

quality of the measurements can be improved by using diode array equipment hereafter 

avoiding the wavelength scanning. Diode array technology has already been tested by 

Vanarase et al. (2010), for the monitoring of a continuous blending process of a blend 

containing acetaminophen as active ingredient. The advantages of using NIR spectroscopy 
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for the in-line monitoring of powder stream is that the powder (or pharmaceutical blend) is 

analyzed without disrupting the process, the sampling stage is eliminated, and the high rate 

of measurements performed. Hersey (1970) mentioned, all sampling operations can lead to 

some degree of segregation, the number of samples is important and the more samples 

taken the smaller the error. Thus NIR is a promising PAT tool for the monitoring of a powder 

flow in a powder stream.  

The complexity of the granular flow in a chute as well as the kinematic, physical and 

chemical information contained in the NIR spectroscopic data pushes to a careful analysis of 

the results, where chemometrics has a key role for the successful development of a 

multivariate model.  

Before the development of a partial least squares (PLS) regression, it is valuable to 

mathematically pretreat the data in order to correct additive and multiplicative effects, thus 

reducing irrelevant variability due to physical influences and to enhance the chemical 

response on the spectroscopic data. The NIR data are commonly corrected by a 

differentiation and/or normalization step. Standard normal variate (SNV) is a mathematical 

pretreatment introduced by Barnes et al (1989). SNV reduces the influence of scattering and 

particle size by calculating the standard normal variation at each wavelength and removing 

slope variations on an individual sample basis. A popular differentiation method is the one 

proposed by Savitzky Golay (1964), this method includes a smoothing step, first derivative 

removes baseline while second corrects for baseline and detrend. Another preprocessing 

technique is the orthogonal signal correction (OSC), which corrects NIR spectra, by 

subtracting the variability on the X- calibration matrix that is orthogonal to the Y-matrix, this 

method was suggested for reducing differences between spectrometers during model 

transfers (Sjöblom et al., 1998). OSC minimizes the variability that is not referred to the y 

values (concentration of the analyte), has been applied for reducing the differences between 

the spectra of production and lab-scale samples (Blanco et al., 2001). 
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In the present work, near-infrared spectroscopy was used for the monitoring of an IBC filling. 

The API level was predicted through a PLS regression model, the model was developed by 

with synthetic samples obtained at lab-scale and samples acquired during the IBC filling. 

Different preprocessing approaches including SNV, differentiation and OSC were employed 

in order to correct the differences between both set-ups. Finally the model was used for the 

prediction of unknown spectra during an IBC filling. 

7.2 Materials and methods 

Powder characterization 

The formulation under consideration contains two actives, one polymer and one lubricant. 

One active (A2) was agglomerated in a ratio of 10:1 with the polymer. Subsequently, the 

granules were blended with another active (A1). A1 represented 4% (m/m) of the formulation, 

while the lubricant accounted for 1% (m/m). The study was focused on the monitoring of the 

lower dose active, A1.  

Experimental set-up 

For the measurements of the flowing powder a NIR probe was mounted on a chute (Figure 

7-1), the inclination of the chute was 54° to the vertical. This angle allowed the continuity of 

the powder flow without undesirable powder jams. The blends were filled into a hopper with a 

capacity of 100 cm3, which was attached to the chute.  
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Figure 7-1 Experimental set-up for the off-line calibration samples. 

We used a SentroPAT FO spectrometer (Sentronic GmbH, Dresden, Germany) that includes 

a diode array detector and acquires the data by a fiber optical connector from the diffuse 

reflectance probe SentroProbe DR LS (Sentronic GmbH, Dresden, Germany). The probe has 

tungsten halogen bulbs as the light source. The blends were flowed from the hopper and 

were measured through the sapphire window of the probe. The probe diameter was 1.9 cm, 

with an illuminated spot with a diameter of 5 mm (𝐷). The NIR measurements were triggered 

automatically when the powder slid over the probe. Spectra acquisition was done in 

reflectance mode over the wavelength range of 1100-2200 nm at 1 nm intervals. A single 

spectrum was acquired with a scan time (𝑡𝑠𝑐𝑎𝑛) of 0.007 s and a total number (𝑛) of 60 single 

spectra were automatically averaged and saved as an average spectrum. The NIR 

penetration depth (ℎ) was assumed to be 0.1 cm. The blend bulk density (𝜌𝑏𝑢𝑙𝑘) was 0.55 

g/cm3. The velocity of the powder (𝑣) was 57 cm/s. This velocity value corresponded to the 

length of the chute divided by the time that the powder needed for sliding over the chute. The 

time was measured by video recording the powder flow over the chute. Subsequently frame 

by frame video analysis was performed. Finally the sampled mass (𝑚) corresponding to 

0.658 g was estimated by Equation 7-1. 
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Equation 7-1  𝒎 = 𝑫𝒗𝒉(𝝆𝒃𝒖𝒍𝒌)(𝒕𝒔𝒄𝒂𝒏)𝒏  

The value of 658 mg was compared with the computed sample mass excluding the temporal 

variables of scan time and powder velocity. In this case the volume of powder over the 

illuminated spot was calculated and multiplied by the total scans, then correlated with the 

bulk density for the mass calculation by Equation 7-2. Thus the sampled mass corresponded 

to 648 mg.  

Equation 7-2   𝒎 = 𝝅(𝑫/𝟐)𝟐𝒉(𝝆𝒃𝒖𝒍𝒌)𝒏  

 

The estimated sampled mass by Equation 7-1 and 8-2 was in the same order of magnitude 

for these powder flow conditions corresponding to less than one unit dose of the product 

under study.  

Calibration samples and PLS-model building 

The calibration samples were prepared by varying the concentration range of 70 to 130 % of 

A1 target value, the lubricant concentration was kept constant at 1% m/m, and each 

calibration blend of 500 g was mixed for 10 minutes (Turbula type T50A, W. Bachofen, 

Switzerland) at 32 rpm. Each calibration blend was emptied from the hopper (Figure 7-1) and 

the calibration spectra were acquired as the material flowed down the chute. The spectra 

were chosen from the steady stage of each run, with a total of 300 spectra. 

Three extra calibration samples corresponding to blends with 75, 100, and 125% nominal 

API value were measured by NIR during the filling of the bulk container (Figure 7-2). For the 

spectral data acquisition during the filling of the bulk container a second SentroPAT FO 

spectrometer was used with a scanning time set to 0.012 s and a total of 60 single spectra 

were averaged. All the spectral data were selected under steady flow conditions, therefore 

the spectra corresponding to the beginning and at the end of each run were discarded since 

they were not representative of normal operating conditions. The mass flow rate was 79 kg/h. 
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The calibration set contained 120 spectra selected from the normal operating conditions over 

the three concentration levels.  

 

Figure 7-2 NIR measurements during the filling of a bulk container 

The wavelength range selected corresponded to 1150-1900 nm since these frequencies 

were highly correlated with A1 level variations. Subsequently, the spectra were 

mathematically pretreated by standard (SNV) correction, Savitzky-Golay (11pt) with second 

derivative and orthogonal signal correction. The pretreated spectra were matched with the 

gravimetric reference values of A1 and a PLS model was generated. Validation was done 

through an independent vatidation set corresponding to one third of the spectra, previously 

excluded from the calibration dataset.  

The software used for the chemometrical analysis was for principal component analysis, 

Matlab (The Mathworks Inc.) version 2009Ra with PLS_toolbox (Eigenvector Research Inc.) 

version 6.2.1. For the PLS regression model Simca P+ version 12.0 (Umetrics AB) was used.  

PLS-model application 

The PLS-model was applied to the monitoring of the continuous powder flow during 25 

minutes, under the target flow rate of 79 kg/h. At the outlet of the pipe, samples were 

retrieved at 15, 30, 45, 60, 90, 120, 300, 600, 900, and 1500 seconds. The sampling was 

performed on the flowing powder, taking approximately 3 g per time point. Subsequently A1 
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quantification of each sample was performed off-line by a validated HPLC method. The 

results from HPLC were compared with the average of ten predicted NIR concentrations at 

the corresponding time range.  

7.3 Results and Discussion 

Figure 7-3 shows the NIR spectra for the granules and for A1. The wavelength range 

selected was 1150-1900 nm and was used for further chemometric analysis.  

 

Figure 7-3 Raw spectra for A1 and the granules containing a second active. The grey 
area corresponds to the selected wavelength region.  

The calibration model was developed for the quantification of A1 under flowing conditions in 

a powder stream. The raw NIR spectra from the calibration set (Figure 7-4a) showed 

scattering due to the difference on particle size and particle packaging on the chute, such as 

quantity and distribution of voids. Dahm & Dahm (2007) studied the effect of voids and 

particle size on the remitted light from a scattering material, thus the importance to 

mathematically correct the spectral information in order to focus the analysis on the chemical 

attributes. These multiplicative and additive effects are due to the physical variability 

encountered on the particulate material and were reduced by second derivative and SNV as 

the preprocessing techniques (Figure 7-4b). Second derivative was used in order to remove 

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200
0

0.1

0.2

0.3

0.4

0.5

Wavelength (nm)

A
bs

or
ba

nc
e

 

 
Granules
A1

Selected 
wavelength 

region

 

 

 
Granules
A1



158 NIR in a powder stream 
 

additive effects by correcting baseline drifts (Rinnan et al., 2009); the differentiation was 

linked with a smoothing algorithm by the Savitzky Golay procedure (Savitzky & Golay, 1964). 

SNV as shown by Barnes et al. (1989) removes the multiplicative interferences of scattering 

and particle size. After performing this combination of mathematical pretreatments, the 

spectral differences were attenuated (Figure 7-4b).  

 

Figure 7-4 (a) Raw calibration spectra (b) SNV and 2nd derivative preprocessed spectra. 

Before developing a quantitative model for the prediction of a chemical attribute, such as the 

API concentration level, it is useful to analyze the information contained in the spectral data 

by an unsupervised technique, such as PCA. PCA is helpful for the identification of patterns 

or trends in the data (Cowe & McNicol, 1985, Wold, et al., 1987). Figure 7-5 displays the 

scores plot with the first three principal components for the calibration samples after second 

a

b
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derivative and SNV pretreatment for the selected wavelength range. The first PC accounted 

for 86.55% of the variability contained in the spectral data. The first PC divided the scores in 

two main clusters (A) and (B) which were related to the two different experimental designs. 

Thus, even after applying the different mathematical pretreatments, the spectral differences 

were reduced, but not fully corrected. This difference between the lab-scale and the ones 

acquired during the filling of the bulk container was attributed to the different dynamics of the 

powder flow inside both chutes. As Roberts (2003) highlighted, chutes in industrial 

applications involves rapid or accelerated flow conditions in which a thin flow is present 

(thickness of the powder bed is less than the width of the chute), thus the flow dynamics can 

vary according to the chute design and the process conditions. In our case the flow rate was 

within the same magnitude for both experimental designs, on the other hand, different 

particle packaging, different NIR equipments, and different particle speed were the main 

factors that accounted for the presence of clusters (A) and (B) on Figure 7-5. This is in 

agreement with Karande et al. (2010), who mentioned that the laboratory synthesized 

calibration samples are highly accurate but they do not fully represent the samples under the 

actual processing parameters. Farrell et al., (2012) also showed how to improve the 

prediction model performance by using a lab prepared set of samples and including samples 

from production, this was done in order to bring into the model the unaccounted variability 

from the synthetic sample set. Thus, one strategy is to collect process samples that contain 

the process signature and to combine them with the synthetic lab samples to provide a 

higher variability of the component of interest, in this case A1 concentration. The A1 

concentration was contained in the second PC, which carried 8.57% of the spectral 

variability. On the second PC, the different sub-clusters associated to the concentration 

variations of A1, were clearly identified.  
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Figure 7-5 Scores plot showing two clusters (A) refers to the calibration samples 
acquired during the filling of the bulk container and (B) to the off-line calibration 
samples from the lab-scale samples. 

 

Figure 7-6 Scores plot after OSC. 

Methods such as SNV proposed by Barnes (1989) or multiplicative scattering projection 

proposed by Geladi et al., (1985) and Martens & Stark (1991), do not use orthogonal 

projections to correct multiplicative effects, therefore the removal of the remaining 

undesirable systematic variation on the spectral data was performed by OSC. OSC corrects 

the spectral data (x) by removing the information that is orthogonal to response y (A1 

concentration). The method was first introduced by Wold et al (1998) for the correction of 
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NIR spectra; while Sjöblom et al (1998) evaluated the OSC as well as the combination of 

second derivative followed by OSC, showing that low RMSEP values were obtained by this 

sequence of mathematical pretreatments. Thus the decision to apply the OSC to the 

differentiated and SNV corrected spectra. By a PCA analysis shown in Figure 7-6, we 

confirmed that by including the OSC preprocessing, the difference between the two 

experimental set-ups was corrected and that now only one principal component was 

explaining the A1 concentration changes. The preprocessed spectra were mean centered 

before the multivariate calibration and a PLS regression model was generated. The 

validation was performed by the prediction of one third of the spectra previously excluded 

from the calibration model. The main statistics for the A1 PLS model are summarized in 

Table 7-1. The PLS model was developed with one component and the captured variability of 

y was 0.976 and that the RMSEP was 3.6 % of the nominal A1 value which is equivalent to 

0.2 % (m/m) error.  

Table 7-1 Main statistics obtained for the A1 PLS model. 

Parameter PLS-model Statistics 

Number of principal components 1 

Xcuma (fraction) 0.975 

Ycumb (fraction) 0.976 

RMSEP % Nominal 3.6 

% m/m 0.2 

R2 0.965 

Preprocessing technique 2nd Derivative (11pt), SNV and OSC 

Wavelength range (nm) 1150-1900 

a Cumulative variance captured by the model for the X variables. 
b Cumulative variance captured by the model for the Y variables. 
 
One challenging step during multivariate calibration is the prediction of unknowns, thus a fully 

independent continuous blending trial was performed in order to test the prediction capability 

of the A1 PLS regression model. Figure 7-7 illustrates NIR predictions of the A1 levels for the 
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monitoring of a 25 minutes run, each point corresponds to one predicted value as well as the 

relative standard deviation (RSD). RSD is a mixing index widely used in industry and was 

calculated through the standard deviation of the predicted values presiding over a range of 

10 predictions and subsequently divided by their average, the values are shifted on one unit 

time and the calculations are repeated, resulting in a moving RSD. RSD is an indicator of the 

uniformity of the blend; lower RSD values are correlated with better blend uniformity. At the 

beginning of the process, during the start-up stage, falling RSD values showed the steadying 

of the process. The RSD values as well as the in-line NIR predictions presented fluctuations 

during the process that could be related to inhomogeneities in the A1 level of the blend as 

well as artifacts in the NIR predictions. As an external evaluation, the in-line NIR predictions 

were compared with the measured A1 concentration obtained by the sampling of the process 

at different time points followed by an off-line HPLC quantification. The HPLC values 

indicated that the concentrations of A1 % varied within the 90-110% of the target value. This 

was in accordance with the observed behavior for the NIR predictions (Figure 7-8).  

 

Figure 7-7 In-line NIR predicted values, the dotted line indicates ± 3SD and the 
continuous line refers to RSD of the predictions.  
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Figure 7-8 Off-line HPLC values () and average of 10 NIR predictions (), with error 
bar representing three standard deviations.  

7.4 Conclusion 

This paper described the development of an in-line PLS-model for the quantification of the 

API in a powder stream. The off-line calibration samples acquired in a lab-scale experimental 

set-up, allowed us to measure different concentrations levels of the active ingredient under 

dynamic conditions, on the other hand, the complexity of the powder flow at the during the 

filling of a container could not be fully reproduced. In order to incorporate the unaccounted 

variability, selected samples from the process were added to the calibration set. As the 

preprocessing techniques, OSC combined with second derivative and SNV, proved to focus 

the analysis into the chemical attribute by reducing physical and kinematic variations as well 

as the difference between the two NIR spectrometers. Finally the PLS model was applied to 

the prediction of unknown samples during the monitoring of the process under normal 

conditions. The NIR predictions showed good results when compared to their corresponding 

time-point from the off-line HPLC results. This work is a probe of concept of the feasibility of 

using NIR under thin flow conditions present in a process stream. 
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8 Conclusions and Perspectives 
 

This research was focused on the mixing of particulate materials. Different aspects of powder 

blending were studied, from particle size incompatibilities between the formulation 

ingredients and segregation tendencies. Pointing out the importance of a well-designed 

formulation and how a scientific understanding of the physicochemical properties of the 

formulation can deeply improve the quality of the final blend.  

Near-infrared spectroscopy was the selected analytical tool for this research. NIR as a major 

PAT tool was a valuable technique for the blend uniformity monitoring in batch and 

continuous mixing. NIR offered three great advantages for blend monitoring, one was to 

avoid the use of thief sampling which is known to introduce bias on the measurements. The 

second advantage was that off-line and wet and destructive analytical methods can be 

eluded. The third advantage was fast data acquisition.  

NIR showed great applicability for the measurement of solid samples. On the other hand 

careful selection, development, and application of the statistical tools is fundamental. In this 

research, special emphasis was given to the correct implementation of the chemometric 

methods in order to develop robust models for the monitoring of the quality attribute (mostly 

API concentration).  

Continuous mixing of powders is a new technology in the pharmaceutical industry. In this 

study we showed the feasibility of monitoring the continuous blending of a pharmaceutical 

formulation. An insight into the parameters that can influence the analytical measurements 

was provided. Due to the novelty of NIR monitoring of a continuous blending process, there 

is plenty of material for future research. Some examples are: the influence of the flowing 

powder-layer on the quality of the spectra, the influence of high cohesion, the reliability of the 

system after a long process, the possibility to identify segregation issues on the flowing 

powder, the robustness of a the MVDA method, and validation of the final MVDA model. 
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Figure 8-1 illustrates the final goal of process control for a continuous blender, in which the 

critical variables from the continuous blender, the feeding system, and the NIR spectrometer 

would be all included in a general MVDA model.  

 

Figure 8-1 Process control for a continuous blender. 

The need to produce high quality products in a short time is pushing towards continuous 

manufacturing. Despite the precedents of continuous manufacturing in other industries, the 

pharmaceutical industry is just beginning to shift to continuous production. This research is a 

step forward to the development of reliable systems for the control a continuous blending 

process in a pharmaceutical formulation. Throughout, it was observed that understanding the 

process, the technology, and the formulation can lead to powerful results reflected in higher 

efficiency and cost savings.
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9 Appendix 1: Supplementary Discussion to Chapter 6 

9.1 Objective 

The objective of this section is to cover the parameters that may be relevant on the 

performance of the NIR spectrometer as well as for the continuous blending system. Among 

the studied parameters were the influence of high rotation rate on the mechanical stability of 

the granules, the selection of acquisition times and averaging of NIR spectra, and the 

influence of mass flow rate on the spectroscopic data. 

9.2 Materials and methods 

Attrition Evaluation 

The morphological characterization was performed by scanning electron microscopy (SEM) 

(ESEM XL 30 FEG, Philips, The Netherlands) at an applied voltage of 10 kV and 

magnifications of 100-2000 times. The sample preparation included placing the powder on 

carbon adhesive, followed by gold plating.  

The average particle size was measured using a laser diffraction system (Mastersizer S long 

bed, Malvern, Worcestershire, UK). The lens range was within the particle size range of 4.2-

3500 µm. The samples were dispersed through a dry powder feeder and the measurements 

were carried out 5 times. Obscuration value was kept between 10-30% and residual under 

1%. The analysis was set in “polydisperse” mode. The mean and median diameters and the 

span values were recorded.  

NIR and feeding system 

In order to identify the best acquisition parameters for the NIR data and also for testing the 

influence of different feedings rates on the quality of the spectroscopic results, a set-up 

including a feeding system coupled with an NIR probe was implemented. Figure 9-1 

illustrates the full experimental set-up. This set-up consisted of a K-Tron T35 gravimetric 
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feeder, fixed with twin concave screws. The NIR equipment was a SentroPAT FO 

spectrometer (Sentronic GmbH, Dresden, Germany) that includes a diode array detector and 

acquires the data by a fiber optical connector from the diffuse reflectance probe SentroProbe 

DR LS (Sentronic GmbH, Dresden, Germany). The probe has tungsten halogen bulbs as the 

light source. 

All the experiments were performed by pouring a target blend into the hopper followed by the 

adjustment of the feeding rate. Subsequently the hopper was emptied at different mass flow 

rates and the powder was continuously measured by NIR. The target blend was 4% m/m of 

A1, 1% m/m of the lubricant and 95 % (m/m) of granules containing a second API.  

 

Figure 9-1 Experimental set-up consisting of a feeding system and a NIR probe.  

NIR acquisition settings 

This test was performed by pouring 2 kg of the target blend in the hopper. The feeding rate 

was kept constant at 79.2 kg/h. The material was emptied and scanned at four different 

acquisition parameters given in Table 9-1. These experiments were performed by triplicate. 
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The scan time (𝑡) refers to the time in milliseconds in which the spectrometer measures one 

single spectrum, then a number 𝑛 of single spectra are collected an averaged in order to get 

a single averaged spectrum. It is important to point out that each average spectrum required 

extra time in order to be stored in a file. One average spectrum was stored each 1.7 seconds 

for T7A60 and this time increased up to 4 seconds for T12A240.  

Table 9-1 NIR acquisition settings. 

Trial Code Scan Time 
(𝒕) 

[ms] 
 

Total of Single 
averaged 

spectra (𝒏) 

Average spectrum  
NIR measurement time (𝒏 ∗ 𝒕) 

 [ms] 

Total time* 
[s] 

T7A60 7 60 420 1.7 

T7A240 7 240 1680  2 

T12A60 12 60 720 3 

T12A240 12 240 2880 4 

* Time in which an average spectrum is measured and stored into a file.  

The final results were qualitatively evaluated through a PCA. Furthermore, the Mahalanobis 

distance by means of the Hotelling’s T2 was used for comparing the four trials. The outliers 

corresponding to the start-up period of the feeder were removed and only the steady-state 

period for each trial was used for the comparison. Hotelling’s T2 values were For the PCA 

and the wavelength region of the combination bands was excluded; therefore the analysis 

was performed over the NIR frequencies of 1200 to 1900 nm.  

Mass flow rate experiments 

A total mass of 2 kg of the target formulation was emptied through the feeding system at 

different mass flow rates. Subsequently the flowing powder was scanned at two different 

scan times of 7 and 12 milliseconds with a total of 60 single spectra averaging. The mass 

flow rate (𝑚̇) was varied from 20 to 140 kg/h, in steps of 20 kg/hr. Table 9-2 contains the list 

of experiments performed.  
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Table 9-2 Flow rate experiments. 

Trial Code Flow rate, 𝒎̇  

[kg/h] 

Single spectrum scan time 

 [ms] 

F20T7 20 7 

F20T12 20 12 

F40T7 40 7 

F40T12 40 12 

F60T7 60 7 

F60T12 60 12 

F80T7 80 7 

F80T12 80 12 

F100T7 100 7 

F100T12 100 12 

F120T7 120 7 

F120T12 120 12 

F140T7 140 7 

F140T12 140 12 

 

The resulting spectra were qualitatively analyzed through a PCA, using the wavelength range 

of 1200 to 1900 nm.  

9.3 Results and Discussion 

Attrition evaluation 

Particulate materials such as the granules can suffer attrition due to mechanical stress. 

Attrition has different effects like changes in the internal angle of friction, particle size 

distribution, surface area, bulk density, fluidizing velocity, and dust release (Bemrose and 

Bridgwater, 1987). Changes on the particle properties can also influence the quality 

attributes of the final dosage form such as tensile strength, porosity, and dissolution profile. 

Therefore, it is preferable to avoid significant damage of the particles during the manufacture 

unit operations.  
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In this study, the particles were blended at 1000 rpm inside a continuous blender. In order to 

qualitatively evaluate the damage to the particles, samples from a reference blend mixed at 

10 rpm were compared to the blend mixed at 1000 rpm. The micrographs of the reference 

blends are given in Figure 9-2 and Figure 9-3, showing different shapes and particle 

dimensions. The particles of interest are the granules, which correspond to 95 % m/m of the 

formulation. The granules are the big aggregates with amorphous shape. Visually in Figure 

9-4 the granules do not show significant breakage nor apparent damage after the blending 

process under high shear forces.  

 

Figure 9-2 SEM micrograph for reference blend mixed at 10 rpm. 

 

Figure 9-3 SEM micrograph for reference blend mixed at 10 rpm. 
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Figure 9-4 SEM micrograph for blend mixed at 1000 rpm.  

The granules and the blends were measured through laser diffraction and the mean particle 

size was registered. The mean particle size in Figure 9-5 indicates that the blends mixed at 

10 rpm had bigger particles than the particles blended at 1000 rpm. This situation may be 

caused by slight attrition experienced by the particles mixed at 1000 rpm which was not 

evident through the SEM micrographs. 

 

Figure 9-5 Mean particle size measured by laser diffraction.  

Determination of NIR acquisition parameters 

After the removal of the start-up phase for each of the trials, a PCA was performed. Figure 

9-6 shows the scores plot for all the trials. There was no evidence of the formation of 

individual clusters, and the samples from each of the trials were distributed around the origin.  
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Figure 9-6 PCA for NIR spectra under different acquisition parameters. 

Hotelling’s T2 are associated with the distance to the center of the scored plot, thus the 

values are always positive. Figure 9-7 shows the Hotelling’s T2 values for each of the 

acquisition parameters. Even though the start-up phase for each trial was previously 

excluded, it is possible to observe several outliers.  

 

Figure 9-7 Hotelling’s T2 plot for each of the trials.  
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Figure 9-8 contains the Hotelling’s T2 values divided by quartiles; this plot does not assume a 

specific distribution of the data and it is useful for analyzing results that are not normally 

distributed as the Hotelling’s T2. The size of the boxes refers to the width of the distribution; 

therefore the values for T7A240 indicate more dispersed values which is in accordance with 

the interquatile range of 2.99 (Table 9-3). The * marks denote the outliers of each trial. The 

outliers differ from the rest of the samples and do not represent the normal conditions of the 

process. The higher amount of outliers was found for T7A60, which is attributed to the higher 

acquisition time of each single spectrum, and as a result this trial included more noise. The 

trial that had the lowest amount of outliers was T12A240. This trial represented the highest 

averaging and highest acquisition time. T12A240 had a narrow interquartile range of 1.15 

and few outliers. On the other hand the number of measured spectra reduced considerably. 

Another disadvantage is that variation in the process or API levels could go unnoticed.  

 

Figure 9-8 Boxplot for Hotelling’s T2 values of the different NIR acquisition parameters.  

Table 9-3 gives the quartile values for each trial. Evaluation was done considering that 

values close to zero were closer to the center of the main cluster. Indicating less spectral 

variability. T7A60 has the lowest values for the first quartile and the median. T7A60 had a 

single spectrum acquisition time of 7 milliseconds, as a result higher amount of spectra were 

collected under the same conditions. These acquisition parameters would be useful when 
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fast spectra collection is required. In general, the averaging of 240 spectra increases the total 

time for each measurement. The high number of averaged spectra were correlated with a 

decrease of noise and in the case of T12A240 the smoothing of the signal could lead to 

unnoticed chemical variations.  

Table 9-3 Results for the Hotelling’s T2 values divided by quartiles.  

Trial Number of 

samples 

First Quartile Second Quartile 

(Median) 

Third Quartile Interquartile 

range 

T7A60  177 0.43 1.01 1.75 1.75 

T7A240 65 1.12 2.02 4.11 2.99 

T12A60 110 0.55 1.13 2.08 1.52 

T12A240  39 0.47 1.19 1.61 1.15 

 

The results suggest that the best NIR conditions were achieved with a 60 single spectra 

averaging. In relation to the acquisition time s, 7 ms would collect higher amount of spectra 

faster than with 12 ms settings. Additionally 7ms had higher sensitivity to noise and to 

chemical and physical variations than 12 ms.  

Influence of mass flow rate 

Mass flow rate is a main parameter that can be easily controlled on the continuous blender 

and it is directly associated with the yield of the process. This section was focused on the 

influence that the mass flow rate exerted on the NIR spectra. From the previous section 

(Determination of NIR acquisition parameters), it was observed that the 60 single spectra 

averaging showed good performance. On the other hand, the best scan time was not fully 

identified. Therefore a qualitative comparison of the mass flow trials scanned at 7 and 12 ms 

was performed. Figure 9-9 shows the scores plots for the feeding rates ranging from 40 to 

140 kg/hr. The spectra from the 20 kg/hr trials were excluded due to highly scattered data. 

The scores plot clearly demonstrates that the spectra from the 7 ms scan time, was more 

scattered than the scores for 12 ms. These results confirm that a scanning time of 7 ms was 
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more sensitive to noise. In contrast the scores from 12 ms scan time were clustered together, 

were more homogeneous, and were more robust to flow rates variations. The scan time of 12 

ms may be the optimal value for the identification of the steady-state of the continuous 

blending process. 

 

Figure 9-9 Scores plot for the flow rate trials (40 to 140 kg/h) under different scanning 
times () 7 ms and (*) for 12 ms.  

The total amount of measurements per trial is given in Table 9-4. At low feed rates, the time 

needed for emptying the feeder’s hopper was longer, therefore greater number of spectra 

were collected.  
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Table 9-4 Number of measurements for each trial.  

Trial Code Total spectra Trial time [s] 

F20T7 176 300 

F20T12 142 306 

F40T7 83 142 

F40T12 81 159 

F60T7 56 104 

F60T12 48 103 

F80T7 45 78 

F80T12 38 76 

F100T7 33 58 

F100T12 31 62 

F120T7 28 49 

F120T12 25 51 

F140T12 22 44 

 

The target blend was emptied through the feeder at 20 kg/h and it was measured by NIR at 7 

or 12 ms of scanning time. The measured spectra of each trial were individually analyzed by 

PCA. Figure 9-10 shows the first PC for the trials F20T12 and F20T7., The scores of both 

trials showed periodic fluctuations. The trial with scan time of 7 ms (F20T7) presented 

fluctuations with higher frequency than the trial with 12 ms scan time. The relevance of these 

experiments was to identify the fluctuations due to the feeding process. The high frequency 

fluctuations are meant to be damped by the continuous blending process, while low 

frequency fluctuations can lead to inhomogeneities on the final blend. Figure 9-11 shows the 

scores for the first PC of the 40 kg/h trials. It was clear that the high frequency fluctuations 

diminished however the process did not steady.  
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The NIR scanning time can be adjusted in order to identify the high frequency variations. The 

use of NIR can lead to a better characterization of a feeding system, thus giving an insight 

into the performance and reliability of the equipment.  

 

Figure 9-10 Scores for the first PC for the trials F20T7 andF20T12. 
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Figure 9-11 Scores for the first PC for the trials F40T7 and F40T12. 

9.4 Conclusions and perspectives 

Bulk solids processing is challenging as variations on the physical properties of the particles 

can lead to quality variations.  

Part of this study consisted of assessing the impact that high rotation speed can have on the 

physical stability of the particles. The granules did not show significant physical damage, but 

slight attrition was present. In order to fully avoid the appearance of attrition, lower stirring 

rates may be used.  

For the development of robust processes and analytical methods, it is fundamental to 

understand the process variables that determine the quality of the final product. These 

experiments showed that fluctuations in the mass flow rate could be observed on the NIR 
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spectral data. This study demonstrated that NIR acquisition settings could be defined 

according to the experimental needs. Lower scan times were more sensitive to noise, while 

high averaging and long scan times were less sensitive to noise and to process changes. 

Therefore a compromise between scan time and averaging is fundamental for the 

development of an NIR analytical method.  
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10 Appendix 2. Matlab codes 
 

10.1 Matlab code for coloring spectra 

Objective: To generate a Graphical User Interface (GUI) for the visualization of NIR spectra.  

The spectra were color coded according to the reference values (Y matrix). The GUI allows 

the user to apply the main preprocessing techniques: original data (without preprocessing), 

SNV, first derivative (15 pt. smoothing), second derivative (15 pt. smoothing), autoscale and 

their combinations. This GUI is a useful tool for the identification of the wavelength regions 

associated with the reference values allowing the user to focus the analysis on the 

frequencies of interest. The GUI appearance together with the preprocessing techniques is 

shown in Figure 10-1.  

 

Figure 10-1 GUI for NIR spectra visualization.  
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GUI main code 

 

function varargout = ColorsGUI(varargin) 
% COLORSGUI MATLAB code for ColorsGUI.fig 
%     COLORSGUI, by itself, creates a new COLORSGUI or raises the existing 
%   singleton*. 
% 
%      H = COLORSGUI returns the handle to a new COLORSGUI or the handle to 
%      the existing singleton*. 
% 
%      COLORSGUI('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in COLORSGUI.M with the given input 
arguments. 
% 
%      COLORSGUI('Property','Value',...) creates a new COLORSGUI or raises 
the 
%      existing singleton*.  Starting from the left, property value pairs 
are 
%      applied to the GUI before ColorsGUI_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to ColorsGUI_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help ColorsGUI 
  
% Last Modified by GUIDE v2.5 14-Nov-2012 16:11:04 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @ColorsGUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @ColorsGUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before ColorsGUI is made visible. 
function ColorsGUI_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to ColorsGUI (see VARARGIN) 
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load x; 
load y; 
load NIR; 
run colors 
% Choose default command line output for ColorsGUI 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes ColorsGUI wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = ColorsGUI_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on button press in SNV. 
function SNV_Callback(hObject, eventdata, handles) 
% hObject    handle to SNV (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
load x; 
load y; 
load NIR; 
run colorsSNV 
  
% --- Executes on button press in MSC. 
function MSC_Callback(hObject, eventdata, handles) 
% hObject    handle to MSC (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes on button press in Der1. 
function Der1_Callback(hObject, eventdata, handles) 
% hObject    handle to Der1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
load x; 
load y; 
load NIR; 
run colorsDer1 
  
% --- Executes on button press in Der2. 
function Der2_Callback(hObject, eventdata, handles) 
% hObject    handle to Der2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
load x; 
load y; 
load NIR; 
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run colorsDer2 
  
% --- Executes on button press in Der1SNV. 
function Der1SNV_Callback(hObject, eventdata, handles) 
% hObject    handle to Der1SNV (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
load x; 
load y; 
load NIR; 
run colorsDer1SNV 
  
% --- Executes on button press in Der2SNV. 
function Der2SNV_Callback(hObject, eventdata, handles) 
% hObject    handle to Der2SNV (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
load x; 
load y; 
load NIR; 
run colorsDer2SNV 
  
% --- Executes on button press in Autoscale. 
function Autoscale_Callback(hObject, eventdata, handles) 
% hObject    handle to Autoscale (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
load x; 
load y; 
load NIR; 
run colorsauto 
  
% --- Executes on button press in original. 
function original_Callback(hObject, eventdata, handles) 
% hObject    handle to original (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
load x; 
load y; 
load NIR; 
run colors 
  
  
% -------------------------------------------------------------------- 
function Untitled_1_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 

Scripts for the Call back functions of the GUI 

SNV Callback (SNV preprocessing) 

NIRSNV=snv(NIR); 
colorsets=10; %How many color subgroups do I want to create 
limits=linspace(min(y),max(y)+100*eps,colorsets+1); 
[n,group]=histc(y,limits); 
colours=jet(colorsets); 
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h=plot(x,NIRSNV); %NIR must be an array of number without axis and 
description of the observations. x is the wavelength array 
for i=1:length(h)% i is the wavelength accuracy, in this case 1 nm 
set(h(i),'Color',colours(group(i),:)) 
end 
colormap(colours) 
caxis([min(y) max(y)]) 
colorbar 
xlabel('Wavelength (nm)') 
ylabel('Absorbance') 

Der1 Callback (First derivative with SG 15 points smoothing) 

NIR1st=savgol(NIR,15,2,1); 
colorsets=10; %How many color subgroups do I want to create 
limits=linspace(min(y),max(y)+100*eps,colorsets+1); 
[n,group]=histc(y,limits); 
colours=jet(colorsets); 
h=plot(x,NIR1st); %NIR must be an array of number without axis and 
description of the observations. x is the wavelength array 
for i=1:length(h)% i is the wavelength accuracy, in this case 1 nm 
set(h(i),'Color',colours(group(i),:)) 
end 
colormap(colours) 
caxis([min(y) max(y)]) 
colorbar 
xlabel('Wavelength (nm)') 
ylabel('Absorbance') 

Der2 Callback (Second derivative with SG 15 points smoothing) 

NIR2nd=savgol(NIR,15,2,2); 
colorsets=10; %How many color subgroups do I want to create 
limits=linspace(min(y),max(y)+100*eps,colorsets+1); 
[n,group]=histc(y,limits); 
colours=jet(colorsets); 
h=plot(x,NIR2nd); %NIR must be an array of number without axis and 
description of the observations. x is the wavelength array 
for i=1:length(h)% i is the wavelength accuracy, in this case 1 nm 
set(h(i),'Color',colours(group(i),:)) 
end 
colormap(colours) 
caxis([min(y) max(y)]) 
colorbar 
xlabel('Wavelength (nm)') 
ylabel('Absorbance') 
 

Der1SNV Callback (First derivative with SG 15 points smoothing followed by SNV) 

NIR1st=savgol(NIR,15,2,1); 
NIR1stSNV=snv(NIR1st); 
colorsets=10; %How many color subgroups do I want to create 
limits=linspace(min(y),max(y)+100*eps,colorsets+1); 
[n,group]=histc(y,limits); 
colours=jet(colorsets); 
h=plot(x,NIR1stSNV); %NIR must be an array of number without axis and 
description of the observations. x is the wavelength array 
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for i=1:length(h)% i is the wavelength accuracy, in this case 1 nm 
set(h(i),'Color',colours(group(i),:)) 
end 
colormap(colours) 
caxis([min(y) max(y)]) 
colorbar 
xlabel('Wavelength (nm)') 
ylabel('Absorbance') 

Der2SNV Callback (Second derivative with SG 15 points smoothing followed by SNV) 

NIR2nd=savgol(NIR,15,2,2); 
NIR2ndSNV=snv(NIR2nd); 
colorsets=10; %How many color subgroups do I want to create 
limits=linspace(min(y),max(y)+100*eps,colorsets+1); 
[n,group]=histc(y,limits); 
colours=jet(colorsets); 
h=plot(x,NIR2ndSNV); %NIR must be an array of number without axis and 
description of the observations. x is the wavelength array 
for i=1:length(h)% i is the wavelength accuracy, in this case 1 nm 
set(h(i),'Color',colours(group(i),:)) 
end 
colormap(colours) 
caxis([min(y) max(y)]) 
colorbar 
xlabel('Wavelength (nm)') 
ylabel('Absorbance') 
 

Autoscale Callback (Autoscale data) 

NIRauto=auto(NIR); 
colorsets=10; %How many color subgroups do I want to create 
limits=linspace(min(y),max(y)+100*eps,colorsets+1); 
[n,group]=histc(y,limits); 
colours=jet(colorsets); 
h=plot(x,NIRauto); %NIR must be an array of number without axis and 
description of the observations. x is the wavelength array 
for i=1:length(h)% i is the wavelength accuracy, in this case 1 nm 
set(h(i),'Color',colours(group(i),:)) 
end 
colormap(colours) 
caxis([min(y) max(y)]) 
colorbar 
xlabel('Wavelength (nm)') 
ylabel('Absorbance') 
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