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The greatest challenge to any thinker is stating the problem in a
way that will allow a solution
Bertrand Russell

My definition of an expert in any field is a person who knows
enough about what’s really going on to be scared
Phillip James Plauger

If the facts don'’t fit the theory, change the facts
Albert Einstein

There are no such things as applied sciences, only applications of
science
Louis Pasteur

If mankind minus one were of one opinion, then mankind is no
more justified in silencing the one than the one - if he had the
power - would be justified in silencing mankind

John Stuart Mill

Data is not information, information is not knowledge, knowledge
is not understanding, understanding is not wisdom
Clifford Stoll

How much easier it is to be critical than to be correct
Benjamin Disraeli

You've achieved success in your field when you don’t know
whether what you’re doing is work or play
Warren Beatty
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Abstracts

Generation and validation of a free-energy model for carbohydrate binding. Carbohy-
drates play a key role in a variety of physiological and pathological processes and, hence,
represent a rich source for the development of novel therapeutic agents. Being able to
predict binding mode and binding affinity is an essential, yet lacking, aspect of the stru-
cture-based design of carbohydrate-based ligands. To this end, we assembled a diverse data
set of 316 carbohydrate-protein crystal structures with known binding affinity. We eval-
uated the prediction accuracy of a large collection of well-established scoring and free-
energy functions, as well as empirical combinations thereof. Unfortunately, the tested func-
tions were not capable of reproducing carbohydrates binding affinities in our complexes. To
simplify the complex free-energy surface of carbohydrate-protein systems, we classified
the studied complexes according to the topology and solvent exposure of the carbohydrate-
binding site into five distinct categories. A free-energy model based on the proposed classi-
fication scheme reproduced binding affinities in the carbohydrate data set with an r? of 0.69
and root-mean-squared-error of 1.36 kcal/mol. The improvement in model performance
underlines the significance of the differences in the local micro-environments of carbo-
hydrate-binding sites and demonstrates the usefulness of calibrating free-energy functions
individually according to binding-site topology and surface exposure.

Simulating the binding of Lewis-type ligands to DC-SIGN. Dendritic cells (DCs) have the
function of presenting antigens to other processing cells of the immune system, particularly
T-cells. DC-SIGN (DC-specific intercellular adhesion molecule-3-grabbing non-integrin) is
one of the major receptors on DCs involved in the uptake of pathogens and has gained
increasing interest over the last decade as it is crucially involved in infections caused by
HIV-1, Ebola virus, Mycobacterium tuberculosis, and various other pathogens. High-
mannosylated N-glycans or L-Fuc-containing trisaccharide motifs such as the Lewis (Le)
blood group antigens Le2 and Le*, which are surface components of these microorganisms,
mediate binding to DC-SIGN. Crystallographic data for DC-SIGN in complex with a Lex*-
containing pentasaccharide suggest that the terminal sugar residues, L-Fuc and D-Gal, are
predominantly involved in binding. We elucidated the interaction of DC-SIGN with Le2 and
Lex bearing two different aglycones. Binding assays together with STD NMR analysis,
molecular modeling and mutagenesis studies revealed distinct binding modes dependent
on the nature of the aglycone. Introduction of phenyl aglycones at the Le trisaccharides
offers the establishment of an additional hydrophobic contact with Phe313 in the binding
site of DC-SIGN, which entails a switch of the binding mode. Based on this information a
new series of DC-SIGN antagonists can be designed.

Developing a molecular modeling toolbox for medicinal chemists. In the current era of
high-throughput drug discovery and development, molecular modeling has become an
indispensable tool for identifying, optimizing and prioritizing small-molecule drug
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candidates. The required background in computational chemistry and the knowledge of
how to handle the complex underlying protocols, however, might keep medicinal chemists
from routinely using in silico technologies. Our objective is to encourage those researchers
to exploit existing modeling technologies more frequently through easy-to-use graphical
user interfaces. In this account, we present two innovative tools (which we are prepared to
share with academic institutions) facilitating computational tasks commonly utilized in
drug discovery and development: (1) the VirtualDesignLab estimates the binding affinity of
small molecules by simulating and quantifying their binding to the three-dimensional
structure of a target protein; and (2) the MD C(lient launches molecular dynamics
simulations aimed at exploring the time-dependent stability of ligand-protein complexes
and provides residue-based interaction energies. This allows medicinal chemists to identify
sites of potential improvement in their candidate molecule. As a case study, we present the
application of our tools towards the design of novel antagonists for the FimH adhesin.
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Aim of the thesis

This thesis explores the use of computational methodologies for studying carbohydrate-
protein binding and its potential applications in drug design. The increasing numbers of
structurally and functionally characterized carbohydrate-binding proteins provide the basis
for structure-based design tools, e.g. docking and scoring, virtual screening, and de novo
design, and could thereby accelerate rational design and optimization of carbohydrate
leads. Moreover, carbohydrate-protein complexes are of highly dynamic nature. Therefore,
proper sampling of their conformational space, e.g. by molecular dynamics simulations,
could provide valuable clues for medicinal chemists and guide the lead optimization
process. Employment of molecular modeling tools in synergy with experimental techniques
is the key to successful design and development of novel carbohydrate-based therapeutics.

This thesis is organized in three separate parts:

Generation and validation of a free-energy model for carbohydrate binding. Despite
the great advances in molecular modeling methodologies, prediction of carbohydrate
binding affinity from structural information remains largely unsolved. Here, we assembled
and verified the experimental binding affinities of a large data set of carbohydrate-protein
complexes with known crystal structures. We performed a thorough analysis of empirical
free-energy functions to uncover the potential difficulties in deriving reliable structure-
affinity relationships for carbohydrate ligands. We aimed to develop an improved treatment
for predicting binding free energies in carbohydrate-protein systems, which can be used in
structure-based design applications.

Simulating the binding of Lewis-type ligands to DC-SIGN. DC-SIGN (Dendritic Cell-
specific intercellular adhesion molecule-3-grabbing non-integrin) is an interesting target
for anti-infective treatments as it is involved in infections caused by HIV-1, Ebola virus,
Mycobacterium tuberculosis, and various other pathogens. Binding assays together with STD
NMR analysis, molecular modeling and mutagenesis studies were used to study the
interaction of DC-SIGN with Lewis? and Lewis* bearing two different aglycones. The
improved understanding of structure-dependent binding modes could guide the design of a
new series of DC-SIGN antagonists.

Developing a molecular modeling toolbox for medicinal chemists. Employment of
molecular modeling techniques to solve drug design problems can be facilitated by
medicinal chemist-oriented interfaces to powerful computational tools. In this regard, we
developed two innovative utilities targeting commonly required tasks: (1) the
VirtualDesignLab for simulating and quantifying binding of small molecules to the three-
dimensional structure of a target protein; and (2) the MD Client for launching molecular
dynamics simulations to explore the time-dependent behavior of ligand-protein complexes
and calculating residue-based interaction energies.
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I. Generation and validation of a free-energy model for
carbohydrate binding

I.1. Abstract

Carbohydrates play a key role in a variety of physiological and pathological processes and,
hence, represent a rich source for the development of novel therapeutic agents. Being able
to predict binding mode and binding affinity is an essential, yet lacking, aspect of the struc-
ture-based design of carbohydrate-based ligands. To this end, we assembled a diverse data
set of 316 carbohydrate-protein crystal structures with known binding affinity. We evalu-
ated the prediction accuracy of a large collection of well-established scoring and free-
energy functions, as well as empirical combinations thereof. Unfortunately, the tested func-
tions were not capable of reproducing carbohydrates binding affinities in our complexes. To
simplify the complex free-energy surface of carbohydrate-protein systems, we classified
the studied complexes according to the topology and solvent exposure of the carbohydrate-
binding site into five distinct categories. A free-energy model based on the proposed classi-
fication scheme reproduced binding affinities in the carbohydrate data set with an r? of 0.69
and root-mean-squared-error of 1.36 kcal/mol. The improvement in model performance
underlines the significance of the differences in the local micro-environments of carbohy-
drate-binding sites and demonstrates the usefulness of calibrating free-energy functions
individually according to binding-site topology and surface exposure.
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I.2. Introduction

The design of small-molecule ligands that can bind firmly to their biological target is the
heart of rational drug design. The term structure-based design (SBD) is used to describe
drug-design studies where the three-dimensional structure of the macromolecular target
(typically a protein) is available at high resolution. Structures of macromolecules are either
solved by experiments such as X-ray crystallography and NMR spectroscopy, or generated
by modeling techniques such as homology modeling. Our knowledge of the structures of
functional proteins and other biomolecules is expanding at an unprecedented rate with
thousands of new structures being deposited every year into the Protein Data Bank
(Bernstein et al.,, 1977) (Figure I-1). Structure-based design tools such as virtual screening
(Wildman, 2012) and de novo design (Hartenfeller and Schneider, 2011) play a key role in
the initial stages of drug design, particularly lead identification and lead optimization. Many
research efforts seek to boost the reliability and efficiency of these methodologies by means
of innovative high-speed algorithms, improved theoretical treatments for molecular inter-
actions, as well as exploiting the superior computational capability of high- performance
computers. A central issue in this regard is the ability to infer binding affinities from three-
dimensional configurations of ligand-protein complexes with acceptable speed and accu-
racy.

100 Newly added records Total records
90
80
70
60
50
40

30

Number of records (x 10-3)

20

10

1990

Figure I-1: The total number of records stored in the Protein Data Bank and the number of new
records deposited every year (updated Dec 2012).

This thesis is focused on the structure-based design of carbohydrate and glycomimetic
ligands, along with the quantification of their binding to macromolecular targets. We will
begin our introduction by elucidating the potential of carbohydrates as sources for the
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design of novel therapeutics. Afterwards, the challenges responsible for slowing the pace of
carbohydrate-based drug discovery will be highlighted, particularly those in the area of
structure-based design. This is followed by an overview of the thermodynamics principles
governing bimolecular associations and the computational methods employed to simulate
and quantify ligand-protein recognition and binding. Then, the reported attempts of
development of carbohydrate-specific functions for prediction of binding free energy are
briefly reviewed. In closing, we outline the strategy employed in this study for construction
and validation of predictive models for carbohydrate-protein binding free energy.

L1.2.1 Carbohydrates in drug design and development

Carbohydrates are ubiquitous in nature as they represent one of the three main categories
of biomolecules, besides proteins and nucleic acids. They are involved in a broad spectrum
of pathophysiological processes ranging from protein folding, bacterial adhesion, viral
infection, cancer metastasis, inflammatory reactions, cell proliferation, and cell-cell
communication (Cummings, 2009). Carbohydrate research has gained considerable
momentum in the past decade due to its potentially rewarding applications in therapeutics,
diagnosis and vaccine development. The following paragraphs outline some examples for
employment of carbohydrates in drug targeting and drug delivery and as novel therapeutic
agents.

Drug targeting. Numerous glycoprotein and glycopolymer-based systems have been
developed to deliver drugs selectively to their intended site of action, thereby reducing the
unwanted side effects and employing smaller dose of the active principle (Davis and
Robinson, 2002). Such systems take advantage of the specific nature of carbohydrate-
protein interactions and the wide variety of cellular receptors that can be potentially
targeted by such systems. This could be particularly useful, for instance, in reducing
cytotoxic effects of anti-cancer drugs on non-cancerous cells (Singh et al., 2008). The lectin-
directed enzyme activated prodrug therapy (LEAPT) is another example, where sugar
patterns were manipulated to control the site of release of sugar-capped prodrugs via a cell-
or tissue-specific synthetic enzyme (Garnier et al, 2010). An M-cell targeted oral mucosal
immunization against Hepatitis B was successfully achieved via a-L-Fucose-specific lectin as
homing device for drug nano-carriers (Mishra et al., 2011). Successful delivery of HIV DNA
vaccine particles has been reported using mannose as a DC (Dendritic Cells)-directed ligand
(van den Berg et al, 2010). Extensive investigation of mannose-conjugated drug delivery
vehicles showed that in many cases such conjugates exhibit high macrophage uptake, good
activity, and fewer side effects (Kumar et al,, 2006; Verma et al.,, 2008). As and application,
mannose-conjugated solid lipid nanoparticles were used for effective and targeted delivery
of antituberculosis drug, rifabutin, to alveolar macrophages (Nimje et al., 2009).

Drug delivery. Conjugation of custom-made glycan epitopes to proteins or biocompatible
non-immunogenic polymeric scaffolds produces neoglycoconjugates with purpose-
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adaptable properties (Yamazaki et al, 2000). Lectins were employed as vehicles for
mucosal drug delivery (Clark et al, 2000) and were shown to be useful as natural
bioadhesives useful in mucosal vaccine delivery (Baudner and O'Hagan, 2010). Lectin
(wheat-germ agglutinin) conjugated micro-particles were used for enhancing oral delivery
of insulin due its superior mucoadhesive properties (Kim et al, 2005). Similarly,
Gal/GalNAc decorated LPD (liposomes/protamine/DNA) particles demonstrated improved
efficiencies and lower toxicity as hepatocellular gene transfer vectors (Lu et al, 2010).
Lectin-conjugated nanoparticles improved efficiency of triple therapy (amoxicillin,
clarithromycin and omeprazole) in eradicating H. pylori infections from gut due to selective
release of triple therapy for a longer period of time (Ramteke et al, 2008). Use of
galactosylated liposomes as delivery vehicles for azidothymidine significantly reduced its
hematopoietic toxicity and enhanced cellular uptake by lectin-bearing macrophages (Garg
and Jain, 2006).

Therapeutic applications. Discovery and functional characterization of an increasing
number of carbohydrate-related targets and biological pathways have paved the way for
the development of several therapeutic agents (Figure I-2). Ernst and Magnani reviewed
marketed carbohydrate-derived products in a handful of disease areas (Ernst and Magnani,
2009). Vancomycin, first isolated in1953, is probably the first carbohydrate-containing
therapeutic agent. It was originally indicated for the treatment of penicillin-resistant
Staphylococcus aureus infections (Levine, 2006). Kaplan et al. showed that the sugar
residues in vancomycin enhance its binding affinity by restricting conformational flexibility
of the aglycon part (Kaplan et al, 2001). Another early therapeutic application of
carbohydrate derivatives is the use of acarbose, an a-glucosidase inhibitor, for treatment of
type 2 diabetes (Hoffmann and Spengler, 1997; Scheen, 1998). Two more products belong
to the same pharmacological class of acarbose; miglitol (Scott and Spencer, 2000) and
voglibose (Chen et al., 2006).

Furthermore, zanamivir (von Itzstein et al, 1993) and oseltamivir (Kim et al, 1997) are
examples of carbohydrate-based drugs with potent anti-influenza activity. The discovery
and clinical development of low-molecular-weight heparins, which are glycosaminoglycans,
marks a major breakthrough in the field of antithrombotic treatment (Weitz, 1997). Other
examples of carbohydrate-based drugs include miglustat for type 1 Gaucher disease
(Weinreb et al.,, 2005), topiramate for epilepsy (Maryanoff et al., 1987), and hyaluronan for
osteoarthritis (Puhl and Scharf, 1997). In addition, some glycomimetic drugs are currently
in the clinical development stages, e.g. GMI-1070 for treatment of vaso-occlusive crisis of
sickle cell disease. Examples presented above barely scratch the surface of the great
pharmaceutical potential of carbohydrate-based therapeutics. Research is being actively
conducted in several disease areas where carbohydrates play pivotal roles, e.g.
inflammatory diseases, neuronal regeneration (Yang and Schnaar, 2008), antitumor
vaccination (Liu and Ye, 2012; Ouerfelli et al., 2005; Ragupathi, 1996), and cancer therapy
(Salatino et al., 2008).
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Figure I-2: Examples of carbohydrate-based drugs in the market (trade name in brackets).

Challenges of carbohydrate drug research. Despite the tremendous pharmaceutical
potential, only a limited number of carbohydrate-based drugs have reached the market up
to date. Carbohydrates are, thus, still considered to be relatively untapped as a promising
source for new therapeutic agents (Ernst and Magnani, 2009). Development of carbo-
hydrate-targeting therapeutics is more challenging compared to other chemical classes due
to a multitude of factors. Firstly, despite the development of more efficient synthetic routes
and separation and analysis technologies (Boltje et al., 2009; Muthana et al., 2009; Zhu and
Schmidt, 2009), synthesis of complex carbohydrate structures still requires considerable
effort and careful planning, and it might take up to weeks or even months (Galan et al,
2011). Moreover, naturally occurring carbohydrates are rich in polar functional groups and
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very water soluble, which hampers their absorption by passive diffusion through lipid
membranes (Magnani and Ernst, 2009). In addition to such undesirable pharmacokinetic
characteristics, bioactive carbohydrates typically have low binding affinities (in the milli- to
micro-molar range) towards their targets. However, multivalent binding of natural carbo-
hydrates leads to higher avidity, which enables them to perform their biological functions.
Thus, the success of rational design of drug-like carbohydrate derivatives requires correct
identification and subsequent removal of the unnecessary polar groups from lead stru-
ctures without compromising any of the pharmacophoric elements essential for recognition
(Cipolla et al., 2010; Ernst and Magnani, 2009). Furthermore, carbohydrates present a
distinctive set of challenges to contemporary molecular-modeling methodologies due to
their unique structural features. The following section investigates the causes in more
detail.

L1.2.2  Challenges in carbohydrate modeling

In early biomolecular investigations, carbohydrates and carbohydrate-protein interactions
were overlooked in favor of peptides, proteins, and nucleic acids (Neumann et al., 2004). In
comparison to other classes of biologically relevant molecules, carbohydrates present a
unique group of structural and energetic features that makes accurate modeling of their
properties a daunting task. When simulating carbohydrates, some intra- or intermolecular
interactions might require special treatments in the employed potential-energy functions to
generate meaningful results. Over the past two decades, the increased awareness of the
tremendous biological significance of carbohydrates motivated the development of compu-
tational tools specifically tuned for carbohydrate simulations. Below is a brief outline of
some important carbohydrate-related modeling challenges (Figure 1-3), as well as reported
approaches for dealing with them.

Chemistry and stereochemistry. Carbohydrates are densely packed with polar functional
groups relative to the small size of their monomeric building blocks. In aqueous solution,
individual sugar units consist of small ring systems holding together a set of highly polar
bonds separated by a bond or a single atom. As such, sugars are hardly distinguishable from
clusters of water molecules (Kubik, 2012); hence proteins or other macromolecules would
have no apparent reason to prefer binding sugar molecules over bulk solvent. However, the
small hydrophobic patches on the two faces of sugar rings are sufficient to set them apart
from water clusters, presumably by engaging in specific types of intermolecular contacts
such as C-H---m interactions (Kubik, 2012). Moreover, certain phenomena, e.g. the anomeric
and exoanomeric effects, are more frequently observed in carbohydrates because they
normally possess the necessary structural motifs. The anomeric effect, for instance, is a
stereoelectronic effect observed when an electronegative atom one bond away from the
ring oxygen of the sugar shifts the conformational preference towards an otherwise
sterically disfavored conformer (Tvaroska and Carver, 1998). Accounting for such effects
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requires the addition of specialized terms to the potential energy function (Kirschner et al.,
2008; Lii et al., 2003). An accurate description of the electronic effects in carbohydrates is
further complicated by their stereochemistry. Subtle variations of spatial charge dist-
ributions between stereoisomers, and even within different conformers of a single mono-
saccharide, might have substantial consequences on intra- and intermolecular interactions
(Foley et al, 2012). Fortunately, however, force fields specifically tuned to handle the
peculiar geometrical and electrostatic features of carbohydrates are increasing in number
and quality. Such carbohydrate force fields are being adopted more frequently in bio-
molecular simulations involving carbohydrate-macromolecule interactions (Foley, et al,

2012).
Glycosidic linkage
C=H--Tt — highly dynamic interactions
interactions — configurational complexity
1 :
a-hydrophobic face
5

Chiral centers

— numerous stereoisomers
— difficult modeling of Polar hydroxyl groups

electrostatics — highly polar molecule

— configurational complexity — extensive hydrogen bonding
— variable branching patterns

Figure I-3: Structure of a disaccharide (lactose) highlighting computationally challenging features of
carbohydrate ligands and illustrating the common numbering scheme for pyranosyl sugar units.

Configurational complexity. Typical saccharide monomers have five sites of attachment
for additional biomolecular units, two of which generate linear chains while the remaining
three result in branched structures. Each glycosidic linkage between two sugar monomers
has two torsional degrees of freedom, or three if one unit is linked via its 6’-hydroxyl group
(Figure I-3). In some cases, however, the rotameric states of glycosidic bonds are not well
defined (Bohne et al, 1998). Combined with the fact that, in most monosaccharaides, all but
one carbon center are chiral, the outcome is an enormous number of conformational and
configurational possibilities (Foley, et al, 2012). It is, thus, excessively difficult to simulate
the complicated conformational space of carbohydrate molecules in reasonable time.

Electrostatic interactions. Most carbohydrates are very flexible and have a high number
of hydroxyl groups, which enable them to make extensive hydrogen-bond networks and
strong electrostatic interactions (Agostino et al., 2009). The binding sites of carbohydrate-
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binding proteins, in turn, commonly contain charged residues and/or ions (Boraston et al.,
2004; Fadda and Woods, 2010; Quiocho, 1986). Moreover, numerous biologically relevant
glycans contain charged moieties, e.g. N-acetylneuraminic acid and sulfated glycosamino-
glycans. Consequently, charge-dependent interactions are commonly cited as major cont-
ributors to binding enthalpy in carbohydrate-protein systems (Fadda and Woods, 2010).
Accurate handling of these interactions by docking and force field methods requires a
proper treatment of charges for both ligand and protein atoms, which represents a signi-
ficant bottleneck in development of force fields for biomolecular simulations (Fadda and
Woods, 2010).

Hydrogen bonds. Hydrogen-bonds are crucial in defining carbohydrate-binding specificity.
In general, lectins bind specifically to monosaccharide possessing the proper configuration
of hydrogen-bonding partners (Rini, 1995), and loss or alteration of even a single group can
lead to a significant drop in affinity (Drickamer, 1992; Lemieux, 1989; Sigurskjold and
Bundle, 1992). It is difficult, however, to determine the actual reason for the importance of
hydrogen bonds in carbohydrate-protein binding. Despite the obvious substantial enthalpic
gain expected from hydrogen bonding between the ligand and protein, it is typically
balanced, or sometimes even exceeded, by the corresponding cost of desolvating the polar
H-bonding partners. In principle, however, the release of bound water molecules upon
carbohydrate binding is associated with gain in entropy (Shimokhina et al, 2006; Williams
et al, 1992), which could contribute for the overall free energy gain from H-bonding.
Entropy has indeed been shown to be a major contributor to carbohydrate-protein binding
(Lammerts van Bueren and Boraston, 2004).

C-H-m interactions. Contacts between C-H bonds on the hydrophobic face of
carbohydrates and aromatic side chains of the protein residues are distinctive features of
carbohydrate-protein interactions (Laughrey et al, 2008). Based on their geometric
parameters, C-H-*1t interactions are considered as weak hydrogen bonds (Brandl et al,
2001), and experimental studies verified their importance in stabilizing lectin-sugar
complexes (Muraki et al, 2002). Lack of adequate treatment for C-H---m interactions in
commonly used docking tools could negatively impact the quality of simulations of
carbohydrate-protein systems (Agostino, et al, 2009; Kerzmann et al., 2006). Therefore,
special treatment of C-H--m interactions has been incorporated into some force fields
(Macias and Mackerell, 2005) and scoring functions (Kerzmann et al, 2008; Kerzmann, et
al., 2006).

Dynamic and weak nature of interactions. Carbohydrates bind to their protein targets
with relatively low affinity (Laederach and Reilly, 2005), most often in the millimolar to
micromolar range (Ramkumar and Podder, 2000; Ramkumar et al, 1995; Schwarz et al,
1993). A significant fraction of carbohydrate-binding proteins (e.g. lectins) have shallow
and un-structured binding sites in comparison to other binding pockets (Taroni et al,
2000). As a consequence, carbohydrate-protein interactions are intrinsically more dynamic
than many other ligand-protein systems (Fadda and Woods, 2010). Water molecules that
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bridge carbohydrate-protein interactions atoms show a high degree of dynamic exchange
(Caffarena et al., 2002; Tempel et al.,, 2002). This inherently high mobility of carbohydrates
makes approximating their binding to proteins by a single static configuration insufficient
and calls for more computationally demanding methods, e.g. molecular-dynamics (MD)
simulations. The timescale of MD simulations attainable on modern computers is typically
sufficient for covering internal motions in glycans (Gonzalez-Outeirifio et al, 2006;
Kirschner and Woods, 2001). MD simulations can be employed to increase accuracy of
docking results and provide ensemble averaging to aid in generating robust affinity and
specificity predictions (Alonso et al, 2006; Jorgensen, 2004; Taft et al, 2008). MD
simulations usually cost more time, though, and are typically reserved for cases where
higher accuracy is necessary, e.g. the fine-tuning stage of lead optimization.

L1.2.3 Thermodynamics of ligand-protein binding

Most, if not all, biological processes are tightly coupled to some binding event, where a
macromolecular target, typically a protein, recognizes and selectively binds to its ligand.
The non-covalent association of two (macro-) molecules is a reversible process governed by
the laws of equilibrium thermodynamics. Like any other spontaneous process, this asso-
ciation happens if, and only if, it is accompanied by a negative change in Gibb’s free energy
of the system, which, in turn, has enthalpic and entropic components (equation I-1).
Favorable (negative) enthalpic contributions in bimolecular associations are results of
interactions between the binding partners, such as halogen and hydrogen bonds,
electrostatic, van der Waals, and ionic interactions. Some events in the binding process,
however, incur an enthalpic penalty, such as breaking of established hydrogen bond
networks in the unbound partners or stripping molecules from their solvation shells.
Entropic changes are related to alterations in overall dynamics of the system. Freezing of
degrees of freedom (translational, rotational, and configurationally) of the binding partners
or the solvent result in unfavorable (negative) entropic changes. On the other hand,
entropic cost of binding could be partially compensated by releasing tightly-bound water
molecules (De Lucca et al, 1997), or increased protein mobility in response to ligand
binding (MacRaild et al, 2007). The currently prevalent thinking is that van der Waals
interactions contribute the most to affinity, while hydrogen bonds and electrostatic inter-
actions are more important to selectivity (Gilson and Zhou, 2007; Gohlke and Klebe, 2002;
Smith et al, 2012; Xu et al., 1999). The smaller impact of the latter interactions on affinity
stems from the fact that, when unbound, both ligand and protein can establish these
interactions with water molecules and counterions (Gilson and Zhou, 2007; Gohlke and
Klebe, 2002).
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AG = AH —TAS I-1

AG  Gibb’s free energy of ligand-protein association
AH  Enthalpic change upon ligand-protein association
AS Entropic change upon ligand-protein association
T Absolute temperature

Ligand-protein binding results from a delicate balance between favorable and unfavorable
contributions from the different free-energy components. Finding an appropriate scheme to
decompose the binding free energy into quantifiable components, as well as the precise
calculation of these components, have given rise to significant obstacles in the development
of fast and accurate structure-based design techniques (Smith, et al, 2012). Despite the
abundance of methodologies for predicting binding affinities from atomic configurations,
the problem is so far considered unsolved. Table I-1 provides a brief overview the different
types of methods for predicting binding free energy and highlights their primary strengths
and weaknesses. These methods vary in the level of approximation used from rigorous
statistical mechanics-based methods employing MD simulations in explicit solvent for
sampling, e.g. FEP and TI, to the comparatively simple and computationally efficient ligand-
based methods such as pharmacophore modeling and QSAR. The mixed-model approach
lies in the middle between rigorous but time consuming methods (e.g. FEP) and fast but less
accurate methods (e.g. classical QSAR), which do not account for important phenomena
such as induced-fit and solvation. The mixed model approach combines automated flexible
docking and multidimensional-QSAR by taking into consideration multiple ligand orien-
tations (4D), induced-fit scenarios (5D) and solvation models (6D) (Vedani and Dobler,
2002; Vedani et al, 2005; Vedani and Zbinden, 1998). Since docking and scoring are of
highest relevance to the work presented in this thesis, they are discussed in more details in
the following section. However, several review articles discussing the current status and
future directions of the different approaches for binding affinity prediction can be found in
the literature (Audie and Swanson, 2013; Bissantz et al.,, 2010; DeMarco and Woods, 2008;
Ferrara et al., 2004; Gilson and Zhou, 2007; Gohlke and Klebe, 2002; Grosdidier et al., 2009;
Parenti and Rastelli, 2012).
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Table I-1: Comparison of computational approaches for predicting the binding affinity of ligand-
protein complexes.

Comparison Free energy Direct AG Docking and Mixed-model Ligand-based
pathway calculation scoring approaches approaches

Examples FEP, TI MM/GBSA, Glide, AutoDock Quasar (mQSAR)  QSAR, CoMFA

MM/PBSA, LIE

Computational Low Moderate High Moderate-High High

efficiency

Protein structure = Required Required Required Optional Not required

Fitting to Not required Required Required Required Required

training set

Ligands to Close structural Can be diverse Can be diverse Can be diverse Can be diverse

predict affinity analogues only

Water model

Accuracy mainly
dependent on

Explicit

Sampling, force
field

Implicit

Water model,
force field,

Implicit

Compounds used
for calibration

Explicit

Compounds used
for calibration

Implicit

Compounds used
for calibration

sampling

FEP: free-energy perturbation (Jorgensen and Thomas, 2008; Zwanzig, 1954), TI: thermodynamic integration
(Rodinger et al,, 2005), LIE: linear interaction energy (Nicolotti et al, 2012), MM: molecular mechanics, GBSA:
generalized Born/surface area, PBSA: Poisson-Boltzmann/surface area, QSAR: quantitative structure-activity
relationship (Verma et al., 2010), mQSAR: multidimensional-QSAR(Lill et al., 2004; Vedani and Dobler, 2002; Vedani,
etal, 2005; Vedani and Zbinden, 1998), COMFA: comparative molecular field analysis (Cross and Cruciani, 2010).

Experimentally determined binding affinities of ligand-protein complexes are of central
importance in the development and validation of computational methodologies. Equation
[-2 delineates the relationship between the experimentally determined binding affinity and
the association free energy of ligand-protein complexes. The binding process is an equi-
librium reaction between the ligand-protein complex and the unbound partners:

[L] + [P] = [L: P]

Typically, experimental binding affinities are reported as K,, Kq, Kj, ICs0, or ECso (equation
[-3). The equilibrium association constant (K, sometimes written as Ky for binding
constant) and dissociation constant (Kq) are determined directly in a binding assay, e.g. by
isothermal titration calorimetry (ITC). The equilibrium inhibition constant (K;) is usually
measured in an inhibition assay, where the compound of interest displaces a radiolabelled
reference compound. The three constants (K, Kg, and K;i) are true thermodynamic equi-
librium constants. On the other hand, ICso and ECso are measures of potency classically
defined as ‘the concentration of the ligand that produces 50% of the maximal response or
reduces that response to 50% of its maximal value’. The interpretation of ICso depends on
the experimental setup and the employed inhibition model, but in most cases it has the
same meaning as Ki.
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ST I3

AG  Gibb’s free energy of ligand-protein association

T Absolute temperature

R Universal gas constant

K,  Association constant

K4  Dissociation constant

K; Inhibition constant

[L: P] Equilibrium concentration of the ligand-protein complex
[P]  Equilibrium concentration of the unbound protein

[L]  Equilibrium concentration of the unbound ligand

L.2.4 Scoring functions and prediction of binding affinity

Molecular docking has become an integral component in structure-based drug design
projects. Accurate and fast prediction of the binding modes of hypothetical molecules to
macromolecular targets helps modelers and medicinal chemists understand the structural
determinants of strong binding and hence guide and accelerate the hit finding and hit-to-
lead optimization processes. The primary role of docking programs is to identify native
binding modes of the ligand, typically a small molecule, within the binding site of the
macromolecular target, typically a protein. Docking workflows consist primarily of two
consecutive stages, docking and scoring. In the first stage, the docking algorithm generates a
large number of poses, which should adequately cover potential solutions to the problem.
Poses are defined by the conformation of the modeled ligand and its orientation in the
binding site. Subsequently, the generated poses pass through one or more stages of scoring
where unrealistic and unfavorable poses are excluded, and the remaining ‘reasonable’
poses are rank ordered. The prioritization step is carried out by the scoring function, which
should ideally rank the poses more likely to occur in nature higher than it ranks decoy
poses.

Although a fairly large number of scoring functions are available, none so far provides
optimal performance in terms of both prediction accuracy and general applicability (Huang
et al, 2010). Development of rigorous and accurate scoring functions is still, thus, an active
area of research with a sizeable room for improvement. Comprehensive coverage of avai-
lable docking and scoring approaches is, however, beyond the scope of this introduction. A
number of excellent reviews covering scoring and free-energy functions, their application in
structure-based design, as well as critical assessment of their performance can be found in
the literature (Cheng et al., 2009; Ferrara, et al.,, 2004; Gohlke and Klebe, 2001; Gohlke and
Klebe, 2002; Grosdidier and Fernandez-Recio, 2009; Guimaraes, 2011; Hou et al., 2011b;
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Huang and Zou, 2010a; Huang, et al., 2010; Jain, 2006; Kitchen et al., 2004; Mooij and
Verdonk, 2005; Nufiez et al., 2010; Perola et al., 2004; Rajamani and Good, 2007; Rastelli et
al., 2010; Schulz-Gasch and Stahl, 2004; Warren et al., 2006). In this section we will shed
some light on the three fundamental aspects of scoring functions: types, applications, and
criteria used for performance assessment. In the following section carbohydrate-specific
scoring approaches will be discussed in more detail.

12.4.1 Types of scoring functions

According to the theoretical foundations and mathematical form of the energy function,
scoring functions are roughly classified into three categories: force field scoring functions,
empirical scoring functions, and knowledge-based scoring functions.

Force field scoring functions. In molecular mechanics, the potential energy of molecular
systems is decomposed into bonded (stretching, bending and torsional) and non-bonded
(van der Waals and Columbic) terms. The use of the non-bonded energy components from
force fields in docking and scoring dates back to the first docking program DOCK (Kuntz et
al., 1982) whose energy parameters were taken from the AMBER force field (Weiner et al,
1984). The scoring function in DOCK comprises two energy terms; Lennard-Jones van der
Waals term and an electrostatic term:

non—bonded
T ) ()
riz o HGDLT
iz) ij ij j/7°i
where A;; and Bj are the vdW parameters, ry is the distance between the non-bonded atoms
i and j, qi and g; are the atomic charges. The Coulombic term employs a distance-dependent
dielectric constant ¢(rj;) to account for the shielding effect of the solvent. Force field
parameters are typically optimized to reproduce experimental or theoretical ab initio data.
The use of simple physical model for non-bonded interactions makes interpretation of force
field-derived scores straightforward. Moreover, the high computational efficiency of force
field scoring functions makes them suitable for fast pose ranking as well as database
screening. Examples of docking programs using force field terms in their scoring functions
include YETI (Vedani, 1988), DOCK 4.0 (Ewing et al, 2001), GOLD (Jones et al, 1997),
SYBYL/D-Score (Meng et al, 1992), SYBYL/G-Score (Jones, et al, 1997), and AutoDock
(Huey et al.,, 2007; Rosenfeld et al., 2003).

The major limitation of the force field model is the lack of proper treatment for solvent
effects. In addition to the inaccuracy of modeling shielding effect via simple a distance-
dependent dielectric constant, the approach employed in DOCK (discussed above) does not
take desolvation effects into account. A direct undesirable consequence of ignoring desol-
vation effects is overestimation of electrostatic interactions and biasing the scoring function
towards highly charged molecules (Huang, et al, 2010). Accurate treatment of solvation
effects is indeed a persistent challenge in modeling free-energy changes in molecular
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systems. Rigorous methods such as free energy perturbation (FEP) (Jorgensen and Thomas,
2008; Zwanzig, 1954) or thermodynamic integration (TI) (Rodinger, et al., 2005) simulate
the solvent molecules explicitly, but they are usually associated with a substantial increase
in computation time. A reasonable compromise, however, is offered by implicit solvent
models which treat the solvent as a continuum electrostatic, e.g. Poisson-Boltz-
mann/surface area (PB/SA) model (Baker et al, 2001; Grant et al, 2001; Rocchia et al,
2002; Tjong and Zhou, 2008) and the generalized-Born/surface area (GB/SA) model
(Hawkins et al.,, 1995; Qiu et al, 1997; Still et al., 1990). Several studies have successfully
employed the PB/SA (Huang and Caflisch, 2004; Kuhn et al., 2005; Kuhn and Kollman, 2000;
Pearlman, 2005; Sims et al., 2003; Thompson et al, 2008; Wang et al.,, 2001a) and GB/SA
(Cecchini et al.,, 2004; Cho et al., 2005; Guimaraes, 2011; Guimaraes, 2012; Guimaraes and
Cardozo, 2008; Liu et al., 2004; Liu et al., 2009; Liu and Zou, 2006; Lyne et al., 2006; Zou et
al., 1999) approaches for relative potency predictions and virtual screening.

Despite the well-documented successes, the implicit solvent approaches suffer from a
couple of limitations. For example, Zou and colleagues pointed out that in spite of the
accurate reproduction of solvation energies of both ligand and protein; the implicit solvent
models are not necessarily suitable for binding affinity calculation (Liu, et al,, 2009; Liu and
Zou, 2006). The authors attributed the inaccuracy in affinity prediction to improper
treatment of phenomena such as partial desolvation of ligand and/or protein and proposed
an improved GB multiscale approach optimized for virtual screening. In this approach a
subset of atoms, which are more critical to binding electrostatics, are calculated using
accurate GB model at the cost of increased computation time (Liu, et al, 2009). Another
limitation of the GB/SA approach stems from the inaccurate modeling of protein electro-
statics and protein-solvent interactions by the approximations used in the GB model
(Guimardes and Mathiowetz, 2010). Moreover, MM/GBSA scores tend to have a wide
dynamic range probably due the application of a protein dielectric constant of 1 in a model
where protein motions and polarization are not taken into account (Guimaraes and
Mathiowetz, 2010). These limitations were addressed in some improved GB/SA models
such as the VSGB 2.0. The VSGB 2.0 model employs the Surface Generalized Born (SGB)
model (Ghosh et al., 1998; Yu et al, 2006) in conjunction with a variable dielectric (VD)
treatment to account for polarization effects from protein side chains by varying the
internal dielectric constants from 1.0 to 4.0 (Zhu et al., 2007).

Empirical scoring functions. The molecular mechanics model employed by in force field
scoring functions lacks specific terms accounting for important energy components in
molecular associations such as entropic changes and ligand/protein strain penalties. The
second type of scoring functions, empirical scoring functions, employs a more adaptable
functional form to estimate binding free energy using a weighted sum of energy terms:

AG = Z Wl'AGi
i
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Empirical scoring functions employ a suitable decomposition scheme to break down the
free energy of binding, AG, into a set of additive energy components, AG;, such as vdW
energy, electrostatics, solvation, entropic penalty, ligand strain penalty, etc. The empirical
weighting coefficients are typically derived by fitting experimental binding affinity data for
a set of ligand-protein complexes with known three-dimensional structures. As a result of
employing simple energy terms, empirical scoring functions are generally faster than force
field scoring functions (Huang, et al, 2010). Examples of empirical scoring functions include
FlexX (Rarey et al, 1996), Glide (Friesner et al, 2006; Friesner et al., 2004; Halgren et al,
2004), ICM (Abagyan et al., 1994), LUDI (Bohm, 1994; Bohm, 1998), PLP (Gehlhaar et al,
1995), ChemScore (Eldridge et al, 1997), Surflex (Jain, 2003), MedusaScore (Yin et al.,
2008), AlScore (Raub et al., 2008), and SFCscore (Sotriffer et al., 2008).

Development of generally applicable empirical scoring functions is faced by three major
challenges (also common to force field scoring functions):

* Accurate calibration of weighting coefficients. Weighting coefficients are necessary
because different energy components might come from unrelated methods and,
hence, have very different scales (Huey, et al, 2007; Liu, et al, 2004; Morris et al,
1998; Zou, et al., 1999). Although it is relatively easy to obtain appropriate empirical
coefficients for a specific protein or protein family, it is rather difficult to obtain a
universal training set of diverse ligand-protein complexes (Huang, et al., 2010).

* Non-additivity of energy components. Empirical free-energy models are based on the
additivity assumption, i.e. the notion that the total free energy can be expressed as a
sum of independent free-energy components. This concept, albeit it tremendous
utility, does not always hold to careful scrutiny. For a set of free energy components
to be truly additive they need to be fully independent of each other, which is not
always the case in energy components commonly used in empirical free-energy
functions (Dill, 1997). Several studies have shown that non-covalent interactions are
often mutually reinforcing (positively cooperative) or mutually weakening (nega-
tively cooperative) rather than additive (Baum et al., 2010; Dill, 1997; Williams et al.,
1993; Williams et al., 2004).

* Holes in the free-energy landscape. Hill and Reilly used the term ‘holes’ to describe
the apparent ‘lack of [experimental] energetics data for atomic configurations that
deviate from optimality’ (Hill and Reilly, 2008). The absence of non-optimal geome-
tries in the training data used to fit empirical functions could reduce the sensitivity
of the resultant models towards penalizing bad structural motifs. Unfortunately, this
problem cannot be solved by increasing the number or quality of experimentally
determined structures, as their atomic configurations are found only in optimal
states (Hill and Reilly, 2008).

Knowledge-based scoring functions. Knowledge-based scoring functions (also known as
statistical potential-based scoring functions) model intermolecular interactions as a sum of
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atom-pair potentials derived from the occurrence frequencies of atom pairs in databases of
experimentally determined structures (Miyazawa and Jernigan, 1985; Sippl, 1990; Tanaka
and Scheraga, 1976). The pairwise potentials are calculated using the inverse Boltzmann
relation (Koppensteiner and Sippl, 1998; Thomas and Dill, 1996a):

P Tij)
p*(r))

where w(rj) is the pairwise potential associated with finding atoms i and j at some distance

W(Tij) = —kBTln[

r, kg is the Boltzmann constant and T is the absolute temperature of the system, and p(r)
and p*(r) are the occurrence density functions for the ligand-protein atom pair in crystal
structures of the training set and in a reference state where the interatomic interactions are
zero. Examples of knowledge-based scoring functions include ITScore (Huang and Zou,
2006a; Huang and Zou, 2006b; Huang and Zou, 2010b), PMF (Muegge, 2006; Muegge and
Martin, 1999), DrugScore (Gohlke et al., 2000; Velec et al., 2005), DFIRE (Zhang et al., 2005),
BLEEP (Mitchell et al., 1999a; Mitchell et al., 1999b), MScore (Yang et al., 2006), and KScore
(Zhao et al., 2008).

Since knowledge-based scoring functions are derived from large and diverse data sets of
structural data rather than by reproducing a limited set of binding affinities, they are typic-
ally more robust and less sensitive to the training set (Huang and Zou, 2006a; Huang and
Zou, 2006b; Muegge, 2006; Muegge and Martin, 1999). Due to their pairwise characteristic,
the scoring process could be as fast as empirical scoring functions. The primary challenge in
deriving knowledge-based scoring functions, however, is the proper definition of the
reference state. Knowledge-based scoring functions commonly approximate the reference
state with an atom-randomized state. Such approximations, however, ignore some impor-
tant structural features of ligand-protein systems such as excluded volume and interatomic
connectivity (Thomas and Dill, 1996b). Moreover, the fact that knowledge-based scoring
functions are trained using structural data only and no binding affinity data could
compromise their prediction accuracies. Interestingly, however, a knowledge-based
quantitative structure-activity relationship approach has been introduced to fill in this gap
by using the atom-pair occurrences as descriptors and fitting them to binding affinities in
the training set (Ballester and Mitchell, 2010; Deng et al, 2004). In general, knowledge-
based scoring functions do not explicitly account for solvation or entropy effects; a
deficiency yet to be fully addressed in new knowledge-based approaches (Huang and Zou,
2010b).

Consensus scoring. In consensus scoring, a combination of the scores from several scoring
functions is employed to increase the chances of finding the correct answer to docking and
binding affinity problems (Charifson et al., 1999). Several consensus scoring strategies can
be used to combine the different scores, e.g. vote-by-number, rank-by-number, linear
combination, etc.; and the choice of the appropriate strategy is essential to obtain accurate
predictions and for computational tractability (Oda et al., 2006).
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12.4.2 Applications and performance assessment of scoring functions

Scoring functions are employed to achieve three related goals: identifying native binding
mode, predicting binding affinity and finding active hits in database screening. At the most
basic level, a reliable scoring function should be able to distinguish native docking modes
from decoys by assigning better scores to the former. Success of docking/scoring
applications is classically defined by the RMSD values between top-ranked ligand pose(s)
and the experimentally determined configuration. Typically, if one of the highly ranked
poses (ideally the top-ranked pose) exhibits RMSD value < 2.0 A, the docking prediction is
deemed accurate. However, the use of RMSD for judging prediction accuracy might give
misleading results in small and symmetrical ligands as well as in large ligands where an
irrelevant (e.g. solvent-exposed) part of the molecule is incorrectly predicted (Huang, et al.,
2010). Thus, alternative metrics have been proposed to overcome this limitation, e.g.
relative displacement error (Abagyan and Totrov, 1997), interaction-based accuracy
classification (Kroemer et al, 2004), and Generally Applicable Replacement for rmsD
(Baber et al., 2009).

Although a multitude of docking/scoring programs have achieved considerable success in
reproducing crystal poses, accurate prediction of binding affinity from these poses is still
largely elusive (Huang and Zou, 2010b; Warren, et al., 2006). Scores calculated by scoring
and free-energy functions are generally of different scales than experimental binding affi-
nity and a scaling factor is typically required to reproduce the absolute experimental values.
Therefore, instead of comparing scores to the exact values of experimental data, it is
common to employ a correlation metric to evaluate the prediction accuracy of scoring
functions. For example, the Pearson product-moment correlation coefficient r, is used to
assess the linear correlation between calculated (y;) and experimental (x;) values:

RO S €T C)IC e 2)
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The Spearman’s rank correlation coefficient ry is typically used in cases where accurate rank
ordering of ligands is more important, e.g. in database screening applications:

6 Y.L, Df
r,=1- m, D; = Xirank — Yirank

The third application of scoring function is to mine compound chemical databases for
potentially active hits against a specific protein target. Lead identification in drug discovery
studies is probably the most important application of docking/scoring functions as virtual
screening tools (Wildman, 2012). Conventionally, an enrichment factor is employed in the
assessment of scoring functions performance in this virtual screening. Enrichment factors
estimate the accumulated rate of correctly identified actives as opposed to the number of
compounds hypothetically found if compounds were screened randomly (Bender and Glen,
2005). A higher enrichment factor for certain scoring methods is an indication that this
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method can correctly rank the molecules in the screened database distinguishing active

from decoy molecules. The area under the receiver operating characteristics (ROC) curve is

another commonly employed measure for virtual database screening efficiency (Jain, 2000;
Warren, et al., 2006).

Examples of critical assessments and comparison of the performance of commonly used

scoring functions, along with some relevant review articles, were given in the beginning of

this section. A detailed discussion of the results of these studies is certainly beyond the

scope of this introduction. It is necessary, however, to emphasize a couple of common attri-

butes of scoring functions that are relevant to this study:

Lack of universal validation set. Collections of ligand-protein complexes used to
construct training and/or test sets for scoring functions are typically extracted from
databases such as and Binding MOAD (http://www.bindingmoad.org/) (Benson et
al, 2008; Hu et al., 2005), BindingDB (http://www.bindingdb.org/) (Chen et al,
2001; Liu et al, 2007), AffinDB ((http://www.agklebe.de/affinity) (Block et al,
2006) and PDBbind (Wang et al., 2004; Wang et al., 2005). However, every scoring
function and every performance comparison done on several scoring functions

employ different collections of complexes. In absence of a standardized and unified
set of ligand-protein complexes across docking scoring studies, it is rather difficult
to use the results of one study in another or to draw general conclusions about
certain scoring function or families of scoring functions.

Target-dependent performance. Another commonly observed feature of scoring
and free-energy functions is the fluctuation of their prediction accuracies among
different protein families (Ferrara, et al, 2004; Huang, et al, 2010; Mooij and
Verdonk, 2005; Perola, et al, 2004; Warren, et al, 2006). A scoring function that
accurately predicts affinities of ligands to a certain target does not necessarily
perform equally well on other targets. Marsden et al, for instance, demonstrated
that scoring functions generally perform better on the training sets used in their own
publications than on other, apparently similar, sets (Marsden et al., 2004). They also
pointed out that the correlation between scores and binding affinities are better
within family-specific subsets in comparison to the whole data set.
Application-dependent performance. Most of the existing scoring functions per-
form well in only one or two of the three applications discussed above and fail in
others (Huang and Zou, 2010a; Huang, et al, 2010). This is somewhat counter-
intuitive, since all three applications (pose selection, binding affinity, and database
ranking) are governed by the same physical laws. Warren et al. performed an
extensive assessment of 37 different scoring functions for their performance in each
of the three applications (Warren, et al., 2006). The authors reported that although
docking algorithms could essentially perform virtual crystallography (i.e. generate
experimental small molecule conformations), scoring functions could not reliably
identify the best-docked pose in all cases. Moreover, they observed a surprising
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discrepancy between the ability of some scoring functions to rank poses and/or
predict binding affinity in some target and their ability to correctly identify actives in
database screening. This result led them to a rather radical statement: ‘under certain
circumstances scoring functions are not ranking compounds based on structural
information’. Nevertheless, the study was concluded with a recommendation that
the quality and reliability of docking/scoring programs could be improved by the
intervention of a ‘skilled computational chemist’.

L.2.5 Carbohydrate-specific scoring functions

To the best of our knowledge, three methods are reported that deal specifically with
quantification of carbohydrate-protein interactions. These studies have two main charac-
teristics in common. First, all of them report the development and assessment of two
functions; a computationally efficient scoring function for ranking of putative binding modes
produced by docking software and a free-energy function for prediction of binding affinity
from docking poses. The latter function typically features an improved treatment of
solvation and entropy that makes it less suited for fast prioritization of docking poses, but
more suitable for accurate binding free-energy prediction. The second common trait in
these studies is that the free-energy functions therein comprised a linear combination of
terms adopted from another previously reported scoring function or force field, with linear
weighting coefficients derived by fitting to a training set of carbohydrate-protein
complexes with known structure and affinity. The proposed free-energy functions differ,
however, in the way they decompose the binding free energy and in the included special
treatment for some of the free-energy components.

In the first study, Laederach and Reilly (2003) employed a set of 30 carbohydrate-protein
complexes to optimize a docking protocol for prediction of structure and affinity of carbo-
hydrate-protein complexes. The authors employed an empirical formulation based on
AutoDock scoring function (Morris, et al., 1998):

AG = foaw 12 - 6 + frbona E(t) 12 - 10 + Eppona | +
iJj Y

i) i ij ij

4i9; o
felec Z (#> + AGtorNtor + fsolv Z(Sivj + SjVi)e( Tij/20 )
iLj

T g(rij)rij

The first three terms (Lennard-Jones 6-12 potential, hydrogen bonding, and electrostatic
interactions) represent intermolecular interaction energy. The Lennard-Jones parameters
are based on the AMBER force field (Pearlman et al., 1995) for protein and metals and on
GLYCAM_93 force field (Woods et al, 1995) for the carbohydrate. E(t) is a directional
attenuation factor used to enforce optimum hydrogen bonds geometries (Goodford, 1985).
The Coulomb electrostatic term is evaluated using a distance-dependent dielectric constant
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g(rij) (Mehler and Solmajer, 1991). The last term accounts for the solvation contribution
from the change in solvent accessible surface area of non-polar ligand atoms as defined in
(Morris, et al., 1998). This term does not model polar atoms, however, as they should be
covered in the explicit hydrogen bonding term.

The Enpona energy was added to the second (hydrogen-bond) term to compensate for the
penalty associated with disruption of ligand-water hydrogen bond network when the
ligand leaves the solvent and binds to the protein. The authors assessed six different
approaches to model this energy using three base values for the average H-bond energy
(Enp=5.0, 2.5, and 1.0 kcal/mol) and two ways of counting ligand groups that should receive
this penalty:

Enpona = (M4 +npg)Epp or Enpona = (g + ng —noy)Epp

where ny, np, and non are the numbers of H-bond acceptors, donors and hydroxyl groups in
the ligand. The latter formula assumes that a hydroxyl group cannot simultaneously
function as hydrogen bond acceptor and donor in the solvent. Additionally, the authors exa-
mined three methods to count the number of torsions (N:r) used to estimate entropy: using
the number of heavy atom torsions, the total number of torsions in the molecule, and the
number of glycosidic bond torsions. In total, 18 (6 x 3) different models were tested for the
ability to reproduce affinities of the training set by fitting the equations to the binding
affinities in the training set using linear regression.

The best performing model, with Ex, = 1.0 kcal/mol and counting heavy-atom torsions only,
exhibited a residual standard error of 1.4 kcal/mol in the training set, clearly out-
performing the standard AutoDock function, which showed an standard error of 2.2
kcal/mol (Morris, et al, 1998). The authors applied the suggested free-energy function to
predict affinities of a test set of 17 Aspergillus niger glucoamylase inhibitors for which
binding energies had been determined experimentally. The model predicted the free
energies of the test set with 1.1 kcal/mol residual error, which further confirmed its
validity. The authors noticed that the coefficient for the electrostatic term is significantly
larger compared to AutoDock scoring function, which they suggested as an indication of its
higher relative importance in determining carbohydrate binding affinities.

Later, Hill and Reilly expanded this study to a much larger data set (Hill and Reilly, 2008).
They followed the same approach starting from AutoDock scoring function and examined
more alternative methodologies to calculate free-energy components. In their extended
analysis, the Lennard-Jones and hydrogen-bonding parameters from AMBER99 (Pearlman,
et al, 1995), CHARMM22 (Brooks et al, 1983), MM3PRO (Ponder and Case, 2003), and
AutoDock (Morris, et al., 1998) force fields were compared. For the solvation term, two sets
of parameters were also tested using either heavy atoms or carbons only. Four rational
values for En, were used: 0.0, 1.0, 2.5, and 5.0 kcal/mol. Finally, they introduced a novel
entropic term that accounts for ligand’s translational and rotational degrees-of-freedom via
an empirical coefficient, &, to couple them with torsional DoF according to the formula
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ENtOTS

ASping = —k [In(6 + ENpors) — 64N, .

lnf]

where Niors are the number of freely rotatable bonds in the ligand and k is the Botlzmann
constant. Four values for this coupling coefficient were examined: £€=0.1, 0.33, 0.67, and 1.0,
in addition to the three methods of counting rotatable bonds described in the previous
study (Laederach and Reilly, 2003). In total, 288 different models were evaluated.

The final training set employed for computing the linear regression comprised 115 unique
carbohydrate-protein pairs for which AutoDock found a docking solution within 1.0 A of
the crystal structure pose. The best model (JA model) achieved a root-mean-squared-error
of 2.0 kcal/mol. The JA model utilizes the AutoDock force field and uses heavy-atoms to
compute the solvation parameter and to count the torsional angles. Surprisingly, the
entropy term in JA model did not use the novel treatment proposed by the authors in this
study. The authors also noted that the models they assessed were most sensitive to the
choice of force field, AutoDock being the best, and less sensitive to the choice of entropy or
solvation treatments. The authors used jackknife analysis (leave-one-out cross-validation)
to confirm the robustness of the suggested model, however, they did not report the use of a
test set for validation.

The third approach in this regard was the SLICK (Sugar-Lectin Interactions and DoCKing)
scoring functions introduced by Kerzmann et al. (2006). SLICK has two variants, SLICK/
score for rescoring structures generated by docking programs and the more extended
SLICK/energy for estimating binding free energy. SLICK/energy estimates AG as a sum of
five weighted components:

AG = Co + CCHnAGCHn + CthGhb + CvdWAGvdW + CnpAan + Ces(AGseglv + AGi‘ift

solv

The AGcur term accounts for C-H---m interactions, which are important mediators of
carbohydrate-protein interactions (Fernandez-Alonso et al, 2005). The authors employ the
model described by Brandl et al. (2001) to compute C-H:--m interactions, which uses three
simple geometric parameters analogous to those used for H-bonds: dcx, the distance from
the carbon atom to the center of the ring X, acux, the angle between the C—H bond and the
line connecting the hydrogen to the center of ring X, and dy_x, the distance of the H-atom to

the ring center projected into the ring plane (Kerzmann, et al., 2006). The authors combine
the parameters suggested by Brandl et al. for locating C-H:-m interactions with a sigmoidal
switching function to reduce sensitivity to small experimental errors in structure.

Hydrogen-bonds (AGry) were treated by a modified version of the model described by Bohm
(Bohm, 1994) with the parameterization of Eldridge and co-workers (Eldridge, et al., 1997).
The van der Waals contribution was computed using a modified version of the AMBER force
field (Cornell et al., 1995). The authors used a softened Lennard-Jones potential in the van
der Waals calculation to improve tolerance for minor structural reorganization (Ferrari et
al, 2004). Lennard-Jones 6-12 parameters were taken from the Glycam2000a force field
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(Basma et al.,, 2001). Electrostatic interactions were computed using Coulomb’s law. Finally,
the solvation term was computed using the solvation model of Jackson and Sternberg
(Jackson and Sternberg, 1995).

The authors employed a data set of 20 lectin-sugar complexes with affinities measured by
Isothermal Titration Calorimetry (ITC) to calibrate and validate the empirical free-energy
function. The set was divided equally into a training set (10 complexes) used to derive the
linear weighting coefficients and a test set (10 complexes) used to assess the quality of
binding affinity prediction. SLICK/energy predicted binding affinities in with a maximum
absolute error of 2.8 k]J/mol (0.7 kcal/mol), and a mean absolute error of 3.3 kJ/mol (0.8
kcal/mol) in a randomized five-fold cross-validation run. According to the authors, the
hydrogen-bonding and C-H-:t terms are most important for the identification of binding
conformations. The authors noted, however, that prediction quality was size-dependent,
with the smaller ligands predicted more accurately. They attributed this to the confor-
mational complexity associated with numerous glycosidic linkages in oligomers compared
to monomers, and to the need for a more robust, possibly explicit, treatment of water
molecules in the binding site.

Notably, the authors warned against the danger of over-fitting due to the relatively small
size of the calibration set employed in the study. In a later study, the authors employed a
larger data set (18 training and 22 test complexes) to improve the performance of SLICK in
both docking and binding affinity predictions (Kerzmann, et al, 2008). The new approach
has been implemented in the freely available docking program BALLDock (Kohlbacher and
Lenhof, 2000). The results of the docking study confirmed the superior quality the new
approach in comparison to another docking program, FlexX (Rarey, et al., 1996). Out of 18
training complexes, 17 could be successfully redocked with an average rmsd of 0.85 A and
an average absolute error of 3.6 k]/mol in the binding free-energy estimate. However, the
study did not comment on the quality of free-energy predictions in the test set, probably
because only five complexes in the test set had known experimental binding affinities.

L2.6 Aim and strategy

The foundation of structure-based design is the notion that all properties of a given ligand-
protein complex, such as the binding free energy, could be inferred from the atomic
configuration. However, the development of computational methods to accurately account
for the enthalpic and entropic components of the binding process remains a central
challenge in molecular modeling. Although numerous successful examples are reported for
quantifying one or more of the AG components, these approaches are not always
transferrable. Thus, the relationship between the structure of the ligand-protein complex
and free-energy components has essentially remained elusive so far.

34



L(aq., nat.) + P(aq., nat.)

A
i AGL conf. l A GP, conf.

.

ay

A GL:P, solv.

L(aq., bioact.) + P(aq., bioact.)

lT A GL, solv. lT A GP, solv.

oy

AG,

intr.

L(aq., bioact., desolv.) + P(aq., bioact., desolv.) @&——=> L: P(aq., bioact., desolv.)

Figure I-4: Thermodynamic cycle of ligand-protein binding in water. Abbreviations: L=Ligand,
P=Protein, L:P=Ligand-Protein complex, aq.=aqueous, nat.=native, conf.=conformational,
bioact.=bioactive, solv.=solvation, desolv.=desolvated, intr.=intrinsic.

The ultimate goal of this study is to formulate and validate an empirical scoring function to
quantify binding of small carbohydrate ligands to their macromolecular targets. Each term
in this scoring function should represent a component of the free energy of binding. (Note:
throughout this thesis, the terms equation, model, and scoring function will be used
interchangeably). The free energy of ligand-protein binding was decomposed into calc-
ulable components according to the thermodynamic cycle shown in Figure I-4. Since Gibb’s
free energy (G) is a state function, it is dependent only on the specific state of the system not
the path taken to reach this particular state (equation I-4). Therefore, the observable free
energy of binding (AGrina) is path-independent, allowing it to be represented as a sum of
free-energy changes in any closed thermodynamic cycle such as the one presented in Figure
I-4.

AGbind = G(L: P)aq.,native - [G(L)aq.,native + G(P)aq.,native] 1-4

AGpina Gibb’s free energy change upon ligand-protein association
G(L:P),G(L),G(P)
Standard Gibb'’s free energies of the ligand-protein complex,
free ligand, and free protein in their native aqueous states at
equilibrium, all of which are path-independent state functions
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Since the sum of AG changes in any closed thermodynamic cycle equals zero, we can
calculate binding free energy as a sum of AG components according to equation I-5 by
rearranging the terms from Figure [-4. Same arguments apply to the enthalpy and entropy
components of Gibb’s free energy, since both of them are state functions as well.
Consequently, equation I-5 remains valid if we replace AG’s by AH’s or AS’s.

AGbind = AGintr. + AGL,(:onf. + AGP,conf. + AGL,solv. + AGP,solv. - AGL:P,solv. I-5
AGpina Gibb’s free energy change upon ligand-protein association
AGiner. Intrinsic binding free energy of ligand-protein complex in

vacuum (direct intermolecular interactions)
AGp cony. Conformational free energy of ligand induced-fit

AGp cony. Conformational free energy of protein induced-fit
AGy g1, Desolvation free energy of the ligand
AGp so1p. Desolvation free energy of the protein

AGy.p sotv. Solvation free energy of the ligand-protein complex

Equation I-5 separates solvation effects (the last three terms) from the potential energy of
interaction (AGins.), which represents direct ligand-protein intermolecular interactions in
vacuo. These interactions are mediated via familiar contacts, e.g. van der Waals and
electrostatic interactions, H-bonds, m-m stacking, etc.,, which are described in traditional
force fields and scoring functions. Moreover, empirical free-energy functions commonly
employ yet another separation of terms; where enthalpy and entropy contributions are
split up. This approximation is done primarily for pragmatic reasons, since formal
treatment of entropy is very computationally demanding. Entropy is typically accounted for
by a single empirical term, or sometimes even neglected. In this study, we adopted a similar
scheme to construct and assess empirical functions for binding free-energy prediction. The
following generic formula (the Master Equation) was employed as the basis of our
investigations.

Master Equation
AGbind = ClAGinter + CZAGsolv + C3AGstrain + C4ASlig + CSAGreward/penalty

, where AGjy;., is the ligand-protein interaction energy, AG,,;, is the desolvation penalty
associated with binding, AGgy4i, is the conformational strain penalty, AS;, is the entropy
lost by the ligand upon binding, and AG,ewara/penaity represent special rewards and

buried—on—binding

penalties, e.g. SASA;; and

. Each one of these terms can be computed using a number
of methods found in the literature. For example, ligand-protein interaction and ligand
conformational strain can be calculated using several force fields and solvation treatments.
The empirical weighting coefficients, c;’s, are determined by fitting to a training set of
carbohydrate-protein complexes with known structure and binding affinity. The use of
linear regression models, or linear response models, is a recurring theme with several
successful examples in the development of free-energy functions (Aqvist and Marelius,
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2001; Hansson et al., 1998; Hill and Reilly, 2008; Kerzmann, et al, 2006; Laederach and
Reilly, 2003; Lamb et al., 1999; Marelius et al., 2001; Morris, et al., 1998; Rizzo et al., 2002;
Smith et al.,, 1998; Wesolowski and Jorgensen, 2002).

Scanning literature reveals a staggering number of methods for computing each term in the
proposed Master Equation. These methods vary in their theoretical derivation, degree of
sophistication, and associated computational cost. They could vary from a simple integer
representing the number of freely rotatable bonds in the ligand up to a fully-blown free-
energy function employing advanced implicit solvent model such as MM /GBSA. Factoring in
the number of possible treatments for each term in the Master Equation, the result is a huge
number of combinations comprising free-energy components computed using different
methods, referred to as complex descriptors within this thesis. The descriptors employed in
this study to estimate the various free-energy components and details of their computation
are described in the Methods section (page 51).

From this point two routes can be followed: (1) mine the existing pool of descriptors to find
a valid free-energy function, or (2) develop new descriptors offering alternative methods to
calculate one or more of the components of the binding free energy. We decided to initially
follow the first route; i.e. start by assessing models of increasing levels of complexity, yet
composed of established energy terms, before resorting to the development of more
rigorous descriptors or case-specific penalties and/or rewards and incorporate them into
completely new models. Moreover, the investigated systems were sampled via molecular
dynamics (MD) simulations in explicit solvent to account for conformational flexibility of
both ligand and protein and for solvent effects, in a manner analogous to multidimensional
(6D-) QSAR concept developed in our group. Customization of free energy terms to
compensate for discrepancies in one or more carbohydrate-protein complexes could be
viewed as introducing bias to the free energy model, which in turn carries the risk of
building an artificial and non-generalizable model. Moreover, there is a huge collection of
techniques and algorithms that can simulate and quantify several constituents of molecular
interactions, from force fields based on simple ball-and-spring models to the more robust
thermodynamic integration methods. Therefore, it seems less likely that, in the search for a
free-energy function for carbohydrates, we are more lacking in methodologies for compu-
tation of free-energy components. What seems more lacking, in our opinion, is a better
understanding of why the traditional free-energy functions do not produce good correlation
with experimental results.

Therefore, this study started by investigating the exhaustively enumerated combinations of
free-energy terms in the Master Equation and evaluating the ability of the resultant models
to predict experimental binding affinities in a data set of carbohydrate-protein complexes,
which was carefully compiled and refined beforehand. The primary intention is to search
for the right blend(s) of well-established computational tools that could serve as an
objective free-energy function for carbohydrate-protein complexes, if such a blend exists.
In case of failure, the reason(s) behind this failure were to be thoroughly investigated: is it
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the improper or complete lack of treatment of one or more free-energy components, or
some other reason? We devoted more time trying to find the underlying reasons for the
failures and limitations, rather than to come up with a neat arrangement of points in a
binding affinity prediction plot.

This study also addressed three relevant issues: (1) target-dependence of scoring functions
(Ferrara, et al., 2004; Mooij and Verdonk, 2005; Perola, et al, 2004; Warren, et al., 2006);
why is it that certain scoring functions could predict binding affinities accurately in some
protein families and fail in others, (2) dynamic nature of carbohydrate-protein interactions,
and (3) external validation of the proposed empirical scoring functions. In the end,
however, it is necessary to reassert that formulating models to describe and quantify
molecular interactions is only possible within certain boundaries, largely due to the highly
non-additive nature of the components of interaction energy (Bissantz, et al, 2010).
Recognition of the boundaries and limitations of a given binding-affinity model is a
fundamental prerequisite for its successful employment in structure-based drug design.
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I.3. Methods

1.3.1 Compiling the carbohydrate-protein data set

The assembled collection of carbohydrate-protein complexes, along with their
experimental affinities and important metadata (e.g. PDB resolution, molecular weights,
corresponding publications, etc.) was stored in a relational database to facilitate searching
and filtering later on. The initial goal was to collect as many carbohydrate-protein complexes
as possible for which experimental binding affinities are available. From this master
database we could select a suitable set of entries fulfilling certain criteria for use in our
development and validation of scoring functions for predicting binding affinities.

In the start, a large pool of ligand-protein complexes was gathered by mining three

databases: the Protein Data Bank (http://www.pdb.org) for structural information, and
Binding MOAD (http://www.bindingmoad.org/) (Benson, et al., 2008; Hu, et al, 2005) and
BindingDB (http://www.bindingdb.org/) (Chen, et al, 2001; Liu, et al, 2007) for binding
affinities (Figure I-5). The starting query included general substructure search for ligands

having a pyran or furan moieties. The results were combined with those of a keyword
search for terms such as “carbohydrate”, “sugar”, and “lectin”. Complexes used previously in
similar studies were also included (Hill and Reilly, 2008; Kerzmann, et al.,, 2006; Laederach
and Reilly, 2003). This initial stage resulted in a large collection of over 8’000 entries, which

ended up in a crude collection of 6’398 candidate entries after removing redundancies.
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Database Mining

www.bindingmoad.org www.pdb.org www.bindingdb.org
Binding M Y = 39,.; ‘
Mother of All Databases  pROTEIN DATA BANK
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Substructures: O , [ \ + Keywords: carbohydrate, sugar, lectin, ...
o (0]
v J

6’398 raw entries

4

Exclude non-carbohydrate ligands
Cross-check experimental affinities

\ ¢

526 Carbohydrate—protein binding affinity entries
353 Non-redundant entries

\ 4

Structure preparation and inspection

316

Final dataset

Figure I-5: Construction of the carbohydrate-protein affinity database

All the entries were inspected to confirm the existence of a carbohydrate ligand (i.e.

excluding co-factors and other co-crystallized compounds) correctly linked to experimental

binding affinity measurement(s) in Binding MOAD and/or BindingDB. For each ligand-

protein pair, the original publication of the experimental affinity was checked to verify the

reported value. The crude collection was refined by deleting improper entries such as:

Entries lacking a carbohydrate ligand

Entries where the carbohydrate molecule was not the biologically relevant ligand
Entries where the ligand is covalently bound to the protein

Entries for which the reported affinity measurement for the carbohydrate-protein
pair was incorrectly linked to the carbohydrate ligand in the complex, and the
correct value was not found

Entries for which the reported affinity was ECsp

Redundant entries

In the end, the database included 526 entries of reviewed experimental affinities for

carbohydrate-protein complexes. Binding affinities in our collection were Kq's (dissociation

constants), Ki's (association constants), Ki’s (inhibition constants), or ICs¢’s (concentrations

resulting in 50% enzyme inhibition). It is important to note that the number 526 includes

redundant entries for the complexes measured by isothermal titration calorimetry (ITC);
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since for these complexes the values of thermodynamic components of AGping; i.e. AH and
TAS, were stored in the database as separate entries. All binding affinity values were
converted to binding free energies (AG, kcal.moll) using the thermodynamic master
equation AG = - RTInK (equation I-2, page 24). The non-redundant set comprised 353
unique carbohydrate-protein complexes with experimental binding affinities (Figure 1-6);
which were carried forward to the structure preparation step (below). The complete listing
of the 353 non-redundant entries is given in Appendix 1, along with references to the
primary literature of the affinity measurements and important preparation notes.
Structures of the carbohydrate ligands in the studied complexes are listed in Appendix 2.
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Figure I-6: Histograms of the non-redundant set of carbohydrate-protein binding affinity data
(N=353) prior to the structure preparation stage: (a) type of experimental binding affinity, (b)
experimental —~AGjing in kcal/mol, (c) PDB resolution in A, (d) molecular weight of the ligand

In the final preparation step, where the complexes were scrutinized one-by-one, some
problems that had not been noticed earlier were revealed:

* Multiple copies of the same ligand in complex differing significantly in conformation
and orientation in the binding site, as judged by their heavy-atom RMSD’s (see
‘Preparing ligand-protein complexes’ section for details)

* Polyvalent carbohydrate-binding protein with several ligand recognition subsites,
e.g. Fucose-specific lectin (PDB: 10FZ) and Concanavalin A (PDB: 2D7F)

* Very large ligands (MW > 1'000) that will be troublesome to handle in subsequent
modeling stages, e.g. B-cyclodextrin (PDB: 1DMB) and Eritoran (PDB: 2Z65)
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* Ligands with missing atoms, i.e. atoms not resolved in the X-ray crystal structure, e.g.
digoxin (PDB: 11G])

* Rare atom types; e.g. Selenium in glycosidic linkage of the ligand (PDB: 109V) and
Copper bound to Belomycin (PDB: 2A4W), that cannot be properly handled by most
force fields due to lack of appropriate parameterization

* The same ligand-protein combination deposited in the PDB more than once, e.g. D-
gluconhydroximo-1,5-lactam in complex with myrosinase (PDBs: 1E72 and 1E6S), in
which case the complex with the higher resolution was used

Nevertheless, these problems do not mean that the binding affinity associated with a
particular carbohydrate-protein complex was invalid. Instead, these problems indicate
uncertainties in geometry or inability of common force fields to handle some ligand atoms.
Thus, these ‘problematic’ entries were kept in the database but excluded from the final data
set. The final data set, thus, consisted of 316 unique carbohydrate-protein complexes
(Figure I-7), which were used to test, develop, and validate all scoring functions discussed
here for predicting affinities of putative carbohydrate-protein complexes.

353 325 316
Starting Complexes > Prepared Complexes I Final Complexes
Unique ligand+protein excluded 28 complexes excluded 9 more complexes
Experimental Affinities - multjple ligand copies - non-carbohyarate ligand
IC, 507 /(/ . K 4 /(a - same ligand in 2 or more sites - very big (e.g. cyclodextrin)
- crystal structure redundnacy - missing atoms (e.g. digoxin)

- atom-type problems (e.g. Se-glycoside)

J
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¢ A 7 !
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Anomeric Big ligands Warnings
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Figure [-7: Categorization of the final data set of prepared carbohydrate-protein complexes
highlighting important structural and crystallographic sub-classes.

Electron-density maps for all crystal structures were interactively checked using the online
Astex Viewer™ Viewer (Hartshorn, 2002). Ligand’s electron density was described as ‘poor
if not all ligand atoms in the crystal structure had corresponding electron densities in the
EDS map. We found no trends in the relationship between ligand size (molecular weight),

)
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protein size, or crystal-structure resolution of a given complex and the quality of the
electron density mapping of its ligand atoms (Figure I-8).
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Figure I-8: Quality of EDS mapping of ligand atoms for the studied carbohydrate-protein complexes
and its relation to ligand’s molecular weight, protein size, and crystal structure resolution. The
protein size was calculated for the final prepared complex used in this study.

1.3.2 Preparing ligand-protein complexes

Preprocessing. All ligand protein complexes were downloaded from the Protein Data Bank
(www.pdb.org) and processed using Maestro’s Protein Preparation Wizard (Maestro,
2011). All hydrogens in input structures were deleted, then bond orders were automatically
assigned and hydrogens were added accordingly. Water molecules within 5.0 A from non-
standard residues (e.g. ligands, cofactors, metals) were kept and all other water molecules
were deleted. Missing side chains were completed and optimized using Prime (Prime,
2011). Metals in some complexes had zero-order bonds to their ligands; in such cases these
bonds were deleted.

Multiple ligand copies. When a complex exhibited multiple chains with several copies of
the ligand molecule in the asymmetric unit, the individual chains were superimposed and
heavy-atom RMSDs were computed for the ligand and the surrounding residues. In most
complexes all the copies had RMSD values within 1.0 &; in which case the first chain having
a resolved ligand was used and its chain identifier was noted. Complexes where ligand
copies differed significantly in conformation and/or orientation in the binding site, i.e.
RMSD > 1.0 A were discarded (examples: 1A0T and 1JZ7). In some complexes, the ligand
had two overlapping representations, mostly resulting from the o- and B-anomers being
simultaneously resolved in the binding pocket. Unless the affinity measurement explicitly
refers to the B-anomer, the a-anomer was used in subsequent computations and the -
anomer copy was deleted. In some complexes there was a ligand copy in an allosteric
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binding site, as indicated in the original publication of the PDB structure. In such cases, we
confirmed that the measured affinity was competitive by revisiting the respective pub-
lication, and subsequently deleted the allosteric copy of the ligand (examples:2QN8 and
2QNB). Before proceeding, we made sure that each complex had one, and only one, ligand
copy with a unique residue number. Not all complexes had a single chain, however; since in
some cases the ligand lies in close proximity to and, hence, could interact with residues
from two or more adjacent chains. All processing notes —e.g. retained chains in case of
multiple-chain PDB'’s, deleted ligand copies, etc. — are given in Appendix 1.

Covalent structure and protonation. Each ligand’s chemical structure was cross-checked
against the corresponding primary citation and inconsistencies resulting from incorrect
bond order assignments were corrected manually. Protonation and tautomeric states for all
HET groups were automatically assigned using Epik (Shelley et al, 2007). We used the
protonation state of the ligand whenever it was explicitly mentioned in the original
publication; otherwise the top-ranked state from Epik was used. At this stage we have a
fully-atomistic model of the ligand-protein complex, each with a unique ligand molecule
with revised chemical structure and protonation state.

Geometry optimization. The last processing step was to optimize the geometry of the
ligand-protein complexes. First, the geometry and orientation of all added hydrogen atoms
was exhaustively sampled for optimal H-bond formation, including any necessary flipping
of glutamine, asparagine, and histidine side chains. Finally, each complex was refined by full
minimization using OPLS_2005 force field as implemented in Schrédinger’s MacroModel
(MacroModel, 2011). Minimization was set to converge within heavy-atom RMSD of 0.3 A
from the input geometry to avoid significant deviations from the experimental geometry.

1.3.3 The NeoScore platform

In the course of this study, several empirical functions varying in degree of sophistication
were assessed, aiming to improve our understanding of the relationship between binding
affinities of carbohydrates-protein complexes and their geometries, and hence provide a
way to reliably predict the former from the latter. We built a computation and statistical
analysis platform tailored specifically for this purpose, the NeoScore platform. NeoScore
has two main modules; the first is the NeoScore Computation Engine, which processes
ligand-protein complexes to extract useful descriptors quantifying the relevant geometric
and energetic features. The second module, the NeoScore Analysis Engine, is equipped with
a variety of statistical methodologies to facilitate building models for predicting binding
affinities from the aforementioned descriptors, as well as assessment and validation of these
models. The NeoScore platform was programmed using Python Programming Language

(www.python.org) and employing object-oriented programming style to present a simple
calling interface to users.
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13.3.1 The NeoScore Computation Engine

The input for the NeoScore Computation Engine (Figure 1-9) is a ligand-protein complex in
any recognized format. The PDB, SD, and Maestro structure file formats are supported
natively, and more formats are supported through automated conversion into one of the
native formats using the Open Babel Package (Babel, 2012; O'Boyle et al., 2011). Basic
information about the processed ligand-protein complex (e.g. PDB ID, ligand identifier,
experimental binding affinity type and value) can be automatically extracted from the input
file, or provided by the user. The NeoScore Engine stores complexes and associated
properties in a special format; the Complex Descriptors file (cdr file).

Ligand + Protein
Structure file (PDB, SD, Mae)

Complex Descriptors
cdr file

Structure

PDB ID

Ligand HetID
Ligand Res. No.
Affinity Type
Exp. deltaG

Compute
cdr files

mol. wt. total Ligand Protein
# heavy atoms to-receptor
# rot.bonds to-water Free

Polar/Non-polar
I\Gﬁy l\MM/GBSA/I Bound

Queue Manager W

docking score dG_Bind
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Figure 1-9: Flowchart of the NeoScore Computation Engine. The flow starts by reading structure file
of the ligand-protein complex to be processed and storing the coordinates and associated properties
in a Complex Descriptors file (CDR) native to NeoScore. The NeoScore Computation engine provides
interfaces to a multitude of geometric and energetic properties of the studied complex.

The Computation Engine offers simple interfaces to calculate numerous geometric and
energetic properties of ligand-protein complexes. The currently supported properties are
summarized in Figure I-9, and they will be discussed in more details in a subsequent
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section. Architecture of the NeoScore platform, including the Computation Engine, is highly
modular, allowing for easy extension to support more structure-based descriptors or
additional statistical analysis tools. Thus, virtually any property calculated from the
coordinates of ligand-protein complexes can be easily plugged into our NeoScore platform.
Moreover, NeoScore Computation Engine has a built-in queue manager capable of running
multiple computations jobs in parallel. NeoScore can, thus, achieve higher computational
efficiency on multi-core processors available in most affordable computers nowadays.

1.3.3.2 The NeoScore Analysis Engine

In the realm of developing scoring function for carbohydrate-protein modeling, the
complex descriptors calculated by the NeoScore Computation Engine can be considered as
predictor (independent) variables, while the experimental affinity (AG) plays the role of the
dependent variable. The aim of this work could be summarized as trying to find a
mathematical relationship (an equation) capable of predicting the latter quantity (AG’s)
given the former (complex descriptors). In addition to its predictive power, this equation
should be statistically valid and physicochemically meaningful, in order to have any useful
application in structure-based drug design. All the equations examined in the course of this
study consist of a linear combination of terms, or complex descriptors, characterizing
components of the free energy of the ligand-protein binding process.

To achieve this goal, it was necessary to evaluate many, thousands in fact, mathematical
formulations varying in composition (terms) and degree of sophistication. The central idea
of the NeoScore Analysis Engine is to make this process of hypothesis testing as fast and
convenient as possible. It does this by providing a simple interface for statistical
investigations on a combination of (a subset of) ligand-protein complexes and (a subset of)
their descriptors (Figure I-10). Moreover, the Analysis Engine can compute new descriptors
from existing ones, such as buried-SASA-weighted desolvation penalties. It can also create
categories by applying user-defined classification criteria based on available descriptors,
e.g. surface-exposed vs. buried binding sites based on receptor SASA buried-upon-binding.
Additionally, the Analysis Engine has integrated support for genetic algorithm optimization,
which is discussed in more details below.
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Figure [-10: Flowchart of the NeoScore Analysis Engine.

1.3.3.3 Genetic algorithm

The search space in our study could be described as a collection of entries (ligand-protein
complexes) and their associated properties (complex descriptors). The solution would, thus,
be an equation incorporating a suitable number of terms that can satisfactorily describe the
variation in binding affinities of the set of complexes being considered. We can demonstrate
the complexity of trying to find this solution by drawing an example. The pool of descriptors
we have at our disposal is close to 250; each is a viable candidate term in the free-energy
equation we want to construct. Assuming that this equation has 10 terms, the number of
possible combinations from the pool of 250 terms would be 250Co, roughly 200 million
billion possibilities. Thus, an exhaustive brute force search, i.e. evaluating each and every
one of these possibilities, is practically intractable. Luckily, there are a number of ways to
approach similar problems; genetic algorithm is one of them.
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Figure I-11: Genetic algorithm starts by a randomly generated population of chromosomes
representing the problem being solved. This population is evolved through several generations to
improve quality of the solution. Selecting the best-fit individuals creates the necessary evolutionary
pressure. New child members are introduced from fit parents by crossover and mutation mimicking
natural genetic evolution.

Genetic algorithm (GA) is an iterative optimization technique inspired by the natural
evolutionary processes associated with passing genetic material from parents to their
offspring. The basic idea is to randomly generate an initial population, whose members are
candidate solutions to the problem, and evolve that population under appropriate selection
pressure to obtain a better solution. The process starts by representing the search domain
by chromosomes that can be mutated and altered (Figure I-11). In our case the
chromosomes were binary, i.e. consisting of strings of zero’s and one’s, with the zero
denoting an ignored descriptor and/or ligand-protein complex. Putative solutions (also
called individuals) are rank-ordered using a fitness function. A new population is then
created starting by the top-ranked individuals from the previous population. This process is
called elitism, and it insures survival of the fittest parents from one generation to the next.

Although elitism is sufficient to create the necessary evolutionary pressure, it does not
introduce any diversity to newer generations. Novel members are introduced in a new
generation by mutating and breeding highly-ranked members of the preceding generation.
Mutation is small simple random change involving one gene in the chromosome, e.g. by
changing a zero into a one or vice versa. Breeding, on the other hand, is accomplished by
combining two parent chromosomes to create a new child chromosome by a crossover
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operation, where a number of genes is taken from one parent and the rest of the genes is
taken from the other parent. The whole process of selection, mutation, and crossover
repeats either for a preset number of cycles, or until no improvement in the fitness function
is observed for a number of generations (Figure I-11).

Fitness functions. The NeoScore Analysis Engine provides two options for the fitness
function; the adjusted-r? (¥2) and the root-mean-square-error (RMSE). The adjusted-r?
penalizes models that have more explanatory terms than necessary (equation I-6). Unlike r?
(coefficient of determination), the adjusted-r? does not increase unless a new term in the
equation improves the model more than would be expected by chance. The adjusted-r? can
have negative values, and its value is always less than or equal to the corresponding r2. In
the context of GA, evolutionary pressure is applied in the direction of maximizing the
adjusted-r?, whereas it aims to minimize the RMSE (equation I-7).

2 _ 1 N-1 1 )
r TNk —1d7TY) -6
K Total number of independent (estimator) variables
N Sample size
N 2
RMSE = i=1(AGi,exp - AGi,c:alc)
N I-7

AGjexp Actual value for the i-th observation
AG; cqic Estimated value for the i-th observation
N Sample size

Application of GA in our study. In essence, GA is a solution-finding algorithm. In this
study, the solution is a combination of equation terms (complex descriptors) capable of
predicting binding affinities for a specific set of carbohydrate-protein complexes. GA is
implemented in the framework of the NeoScore Analysis Engine to perform model mining
in three different modes or directions. The first “forward mode” reads a fixed set of
complexes (observations) and searches the pool of available complex descriptors (predictor
variables) for the best subset that describes the variation in observed affinities.
Additionally, we customized the GA module to perform a “reverse mode” search, i.e. find the
best subset of complexes (observations) whose affinity can be accurately predicted by a
pre-defined set of predictor variables. The third mode, the “2D-search mode”, is a
combination of the two previous modes, where the selections of a subset of complexes and
a subset of complex descriptors are optimized simultaneously.
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Figure I-12: Genetic algorithm can mine data for solutions in three different directions depending on
what's being omitted (grey shading) to improve prediction; Forward: omitting predictor variables
(complex descriptors), Reverse: omitting observations (complexes), and 2D-search: omitting both.
The solution is a combination of observations and predictor variables, in which the latter can
accurately predict values of the former.

Excluding outliers and risk of over-fitting. The “Reverse” and “2D-search” modes in
NeoScore GA implementation are somewhat non-typical ways of using GA. They were
employed in this work for one purpose: detecting outliers. In statistics, an outlier is a data
point that deviates significantly from the other members of the studied population or
sample. In the framework of our study, however, and outlier could be better defined as a
carbohydrate-protein complex that causes significant deterioration in the performance of an
otherwise predictive model. Outliers are automatically identified and excluded during the GA
evolution as an intended side-effect of the applied pressure towards improving adjusted-r?
and/or RMSE. All statistics textbooks sound a clear warning against the practice of
excluding outliers to boost model performance or enhance data consistency. In our case,
automated exclusion of outliers poses the risk of generating artificially over-fit models
(scoring functions) lacking predictive power and/or physicochemical soundness.

One of the common reasons for existence of outliers are experimental or measurement
errors. When such errors are confirmed, e.g. by repeating the measurement, the
corresponding observation (the outlier) can be safely excluded without fear of being
frowned upon by statisticians. In this study, however, reevaluating any data point is rather
infeasible, since this would require repeating the X-ray crystallography and/or the binding
affinity measurement. That's why we needed to implement the non-classical GA modes
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(reverse and 2D-search) as efficient means of detecting outliers. To minimize the associated

risk of data over-fitting, we used GA for outlier identification only as a last resort and

always adhered to the following self-restraints:

1.3.4

First and foremost, the primary objective for using GA to find outliers was to
investigate rather than to improve. Many thermodynamically sound equations that
were tested showed only modest ability to predict binding affinities of the provided
data set. The question of ‘which complexes are not adequately explained by this
model/equation?’ cannot be answered by trial and error, since the number of
possible combinations resulting from all possible omissions is prohibitively large.
Therefore, GA offered an attractive and efficient alternative for identifying these
“outliers”. The outlier ligand-protein complexes were interactively inspected to look
for any peculiar structural components or special inter- or intra-molecular
interactions both favorable and unfavorable, which gave us insight into deficiencies
of the scoring function being investigated.

The number of excluded complexes was kept to a minimum. In most cases, a 10%
threshold was used for outlier exclusion.

All models were subjected to rigorous validation using traditional statistical
methods; including cross-validation r? (q?), scrambling of response variable (binding
affinity), as well as random allocation of complexes to sub-categories (see
Topological classification of binding sites section, page 66).

In all cases, models lacking physicochemical sense were not accepted. Examples
include models where binding affinities and favorable ligand-protein interactions
(e.g. number of hydrogen-bonds) are negatively correlated, as well as models where
unfavorable binding events (e.g. desolvation) have positive impact on binding
affinities.

Performance of the final models was validated using an external test set comprising
106 FimH ligands and compared against a well-established predictive 6D-Quasar
model published recently (Eid et al., 2013).

Complex descriptors

A complex descriptor is a quantity measuring some energy-based or geometric feature of a

given ligand-protein complex. In the context of this study, they serve as the building blocks

of our empirical scoring functions. Such terms are abundantly available from well-

established force fields, scoring functions, and free-energy functions; and they can be

employed as complex descriptors right out-of-the-box. These terms cover a fairly wide

range of physiochemical and energetic features of ligand-protein complexes, and many of

them have been explored in similar binding affinity studies with varying degrees of success.

In our investigation, we employed several terms describing components of the binding free

energy according to the thermodynamic decomposition shown in Figure 1-4 (page 35).
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More time was spent investigating (combinations of) existent descriptors, varying in
theoretical derivation and degree of sophistication, rather than inventing novel or more
sophisticated descriptors. This decision was made in an attempt to seek an improved
understanding of the factors governing the strength of carbohydrate-protein binding, which
is likely more lacking than deriving new terms quantifying one or more aspects of that
binding process. Complex descriptors employed in our study will be discussed in the
following sections, highlighting their underlying theoretical foundations and details of the
employed computational procedures.

1.3.4.1 Non-bonded interactions from force fields

Employment of the non-bonded interaction terms from molecular mechanics force fields in
docking and scoring could be traced back to the earliest docking program, DOCK (Kuntz, et
al., 1982). The AMBER force field (Weiner, et al, 1984), for instance, provides the basis for
scoring functions in DOCK 4.0 (Ewing, et al, 2001) and AutoDock (Huey, et al, 2007;
Rosenfeld, et al., 2003). Molecular mechanics force fields typically model non-bonded
interactions as a sum of van der Waals and Columbic terms:

non—bonded

_ Aij  Byj q:9;

Enon—bonding - 12~ 6 + T

= Tij Tij ij
where A;; and Bjj are the vdW parameters, ry is the distance between the non-bonded atoms
i and j, gi and g; are the atomic charges, and ¢; is the dielectric constant of the medium.
Force fields differ in the way they account for solvent effects; some use a distance-

dependent dielectric constant, while others employ more rigorous implicit solvent models,
e.g. generalized-Born/surface area (GB/SA) model (Still, et al., 1990).

Over the past few decades, an increasing number of force fields developed and/or
optimized for modeling carbohydrates have been reported (Foley, et al, 2012).
Carbohydrate force fields can be roughly classified according to their design philosophy;
some force fields are developed for the purpose of simulating large biomolecular systems,
e.g. OPLS-AA (Damm et al., 1997; Kony et al.,, 2002) and GLYCAMO6 (Kirschner, et al., 2008),
while others are more tuned for small organic molecules, e.g. MM3 (Allinger et al., 1990).
The former class of force fields is obviously more suited for the purpose of our study.

The first force field employed in our study was OPLS_2005, the MacroModel
implementation of the OPLS-All-Atom force field (Kaminski et al,, 2001; MacroModel, 2011).
The OPLS (Optimized Potentials for Liquid Simulations) force field was originally optimized
for protein simulations (Jorgensen and Tirado-Rives, 1988) and updated later to an All-
Atom variant, OPLS-AA (Jorgensen et al, 1996). Shortly afterwards, it was extended to
carbohydrates by refitting some of the parameters to ab initio results for complete
hexopyranoses (Damm, et al, 1997) and by applying additional scaling factors for the 1,5
and 1,6 electrostatic interactions (Kony, et al., 2002). OPLS-AA-driven molecular dynamics
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simulations have been successfully employed for studying carbohydrate-protein
interactions (Margulis, 2005; Sharma and Vijayan, 2011). It is important to note, however,
that the OPLS force field does not use explicit terms to describe hydrogen bonds and has no
additional interaction sites for lone pairs (Jorgensen and Tirado-Rives, 1988). Neverthless,
the proven success of OPLS in reproducing experimental and ab initio parameters of small
organic molecules as well as larger biomolecules gives confidence in the reliability of the
non-bonded interaction terms employed in the potential energy function, especially when
used in conjuction with TIP3P and TIP4P water models (Damm, et al., 1997; Jorgensen et al.,
1983; Jorgensen and Madura, 1985; Jorgensen, et al, 1996; Jorgensen and Tirado-Rives,
1988).

Moreover, the non-bonded interaction terms from MMFFs, the MacroModel implementation
of the MMFF94s force field, were included (Halgren, 1996a; Halgren, 1996b; Halgren,
1996¢; Halgren, 1996d; Halgren, 1999a; Halgren, 1999b; Halgren and Nachbar, 1996). The
Merck molecular force field (MMFF) was parameterized using a wide variety of chemical
systems, and targets simulation of small molecules as well as proteins and biological
systems. The MMFF94s variant enforces planarity around sp? hybridized nitrogens. The
chemical classes included in MMFF94 core parameterization do not include carbohydrates,
though. We included MMFFs as a general-utility biomolecular force field to compare
performance against OPLS-AA, which is optimized for carbohydrates. In analogy to the
OPLS-AA force field, the MMFFs force field describes hydrogen-bonding interactions by
adjusting key vdW and electrostatic parameters to better fit scaled intermolecular-
interaction energies and geometries obtained from high level ab initio calculations
(Halgren, 1996a; MacKerell and Karplus, 1991).

Non-bonded interaction energy descriptors employed in our study are listed in Table I-2.
Each component was calculated by performing a single-point energy calculation using the
respective force field on the ligand-protein complex, the protein alone, and the ligand alone.
Subsequently, the non-bonded interaction energies were calculated from the single-point
energy components (electrostatic, van der Waals, and solvation) using the formula:

Enon—bonded = Ecomplex - (Eligand + Ereceptor)
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Table I-2: Complex descriptors from the non-bonded interaction energy components from two
force fields, OPLS_2005 and MMFFs. Energy values are in kcal/mol.

Descriptor Meaning

NB_OPLS_2005_Electrostatic_Energy Coulomb interaction component from OPLS_2005 force
field

NB_OPLS_2005_Van_der_Waal_Energy Van der Waals interaction component from OPLS_2005
force field

NB_OPLS_2005_Solvation_Energy Solvation component from OPLS_2005 force field,

computed using GS/SA implicit solvent approximation and
water as the solvent

NB_OPLS_2005_Total Sum of electrostatic, van der Waals and solvation non-
bonded interaction energies from OPLS_2005

NB_MMFFs_Electrostatic_Energy Coulomb interaction component from MMFF94s force field

NB_MMFFs_Van_der_Waal_Energy Van der Waals interaction component from MMFF94s force
field

NB_MMFFs_Solvation_Energy Solvation component from MMFF94s force field, computed

using GS/SA implicit solvent approximation and water as
the solvent

NB_MMFFs_Total Sum of electrostatic, van der Waals and solvation non-
bonded interaction energies from MMFF94s

13.4.2 MM/GBSA free-energy function

Treatment of solvent effects in ligand-protein simulations is a major challenge for force
field-based methods (Huang, et al, 2010). The solvent effect could be modeled implicitly
using a distance-dependent dielectric constant, e.g. in the Amber-based DOCK scoring
function (Meng, et al., 1992). Although computationally efficient, this approach neglects the
desolvation effect and could potentially over-estimate binding of highly charged ligands. At
the other end of the spectrum, rigorous methods such as free energy perturbation (FEP)
(Jorgensen and Thomas, 2008; Zwanzig, 1954) or thermodynamic integration (TI)
(Rodinger, et al,, 2005) simulate the solvent molecules explicitly. The high computational
demand of these methods, however, makes them inadequate for high-throughput virtual
screening.

The combined Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) approach
offers a good compromise between computational efficiency and prediction accuracy. In
MM/GBSA, the solvent is considered as a continuum electrostatic. Polar interactions of the
solutes (ligand and protein) are computed using the generalized Born model of Still et al
(Still, et al., 1990), where solute molecules (bearing discrete atomic charges) as considered
as regions of low dielectricity embedded in a medium of high dielectric constant (Still, et al,
1990; Warshel and Papazyan, 1998). The non-polar contribution to desolvation is
considered to be proportional to the solvent-accessible surface area of the binding partners
buried upon binding. Finally, the free energy of binding is calculated according to the
following equation:
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AGbind = AEMM + AGGBSA —-T. AS
= AEbonded + AEvdW + AEcoul + AGsolv,p + AGsolv,np — TAS

where AEyu is the difference in molecular-mechanics energy between the complex and its
individual components, ligand and protein, decomposed into bonded contributions, AEponded
from bond, angle, and torsion terms of the employed force field and non-bonded
contributions, AEvew and AEcu. The AGsowp and AGsownp are the polar and non-polar
contributions, respectively, from the GBSA solvation model. The entropy term, T.AS, is
sometimes discarded in congeneric series and in relative free-energy calculations (Hou et
al, 2011a; Hou, et al., 2011b; Rastelli, et al., 2010).

The MM/GBSA approach has been employed as an end point approach to post-score docking
poses (Ewing, et al., 2001; Moustakas et al., 2006; Zou, et al., 1999). Recently, Greenidge et
al. assessed the quality of binding free-energy predictions of MM/GBSA on a set of 855
ligand-protein complexes extracted from the PDBbind data set (Greenidge et al, 2013).
They showed that, despite the huge diversity in the employed set, MM/GBSA achieved
reasonable correlation (r?=0.63) with experimental binding affinities. However, the study
highlighted some limitations of applying MM /GBSA to estimate binding affinity; including
sensitivity to imperfections in input structures, need for accurate treatment of entropy and
ligand strain, and inability to handle metal ions and water-bridged interactions. The use of
ensemble averages from MD simulations could help overcome some of these limitations.
There are numerous examples of successful employment of molecular-dynamics in
conjunction with MM /GBSA to study the thermodynamics of ligand-protein binding (Hou,
et al, 2011a; Hou, et al., 2011b; Rastelli, et al, 2010; Sadiq et al, 2010; Srivastava and
Sastry, 2012).

In this study, MM/GBSA calculations were done in Prime (Prime, 2011) considering
residues within 8.0 A zone from the ligand as flexible. Prime implementation calculates the
GBSA contribution using the VSGB 2.0 energy model (Li et al., 2011) and calculates the
molecular-mechanics energy using the OPLS-AA force field (Damm, et al., 1997; Jorgensen,
et al., 1996; Kony, et al, 2002). The VSGB 2.0 model includes physics-based correction
terms for improved handling of m-m stacking, hydrogen-bonding interactions, hydrophobic
interactions, and self-contacts of the side chains of certain residues. The VSGB 2.0 model
employs the Surface Generalized Born (SGB) model (Ghosh, et al, 1998; Yu, et al., 2006) in
conjunction with a variable dielectric (VD) treatment to account for polarization effects
from protein side chains by varying the internal dielectric constants from 1.0 to 4.0 (Zhu, et
al, 2007). The MM/GBSA-derived AGpina and its components were included as complex
descriptors in this study (Table I-3).
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Table I-3: Complex descriptors from Prime MM/GBSA calculation (Prime, 2011) employing
corrections in the VSGB 2.0 energy model (Li, et al., 2011).

Descriptor

Meaning

mmgbsa-dG_Bind
mmgbsa-dG_Bind(NS)

mmgbsa-dG_Bind_Coulomb
mmgbsa-dG_Bind_Covalent
mmgbsa-dG_Bind_vdW
mmgbsa-dG_Bind_Solv
mmgbsa-dG_Bind_Lipo
mmgbsa-dG_Bind_Hbond

mmgbsa-dG_Bind_Packing

mmgbsa-dG_Bind_SelfCont

mmgbsa-Lig_Strain_Energy

mmgbsa-Rec_Strain_Energy

MM-GBSA free energy of binding, including strain energy

MM-GBSA free energy of binding, without including strain energy
Contribution of Coulombic interactions to the MM-GBSA free energy of
binding

Contribution of covalent interactions (i.e. bonded force field terms) to
the MM-GBSA free energy of binding

Contribution of van der Waals interactions to the MM-GBSA free energy
of binding

Contribution of the generalized Born electrostatic solvation energy to
the MM-GBSA free energy of binding

Contribution of the solvation energy from non-polar surface area to the
MM-GBSA free energy of binding

Hydrogen-bonding corrections to the MM-GBSA free energy of binding
(Li, etal,2011)

Corrections for m-m interactions to the MM-GBSA free energy of binding
(Li, etal,2011)

Corrections to the MM-GBSA free energy of binding due to self-contacts
between side chains of Asn, Gln, Ser, and Thr and with their own
backbone nitrogen or oxygen atoms (Li, et al., 2011)

Ligand strain energy (compared to the energy minimized geometry)

Receptor strain energy (compared to the energy minimized geometry)

mmgbsa_total_strain Sum of Ligand + Receptor strain energies

13.4.3 Glide XP Score

Glide (Grid-based Ligand Docking with Energetics) is a widely used software package for
docking small-molecule ligands to macromolecular protein targets (Friesner, et al., 2004;
Glide, 2011; Halgren, et al, 2004). Several studies have shown Glide’s superiority in
predicting and properly ranking binding configurations of carbohydrate ligands to their
protein targets (Agostino, et al, 2009; Alexacou et al., 2008; Nurisso et al, 2008). Glide
employs a rigid-receptor approximation where ligands are docked into a single static
representation of the binding site residues. Glide allows for induced-fit effects either
modestly via down-scaling of the van der Waals radii of non-polar ligand/protein atoms or
through a specialized induced-fit protocol (Farid et al, 2006; Sherman et al., 2006). The
Glide docking algorithm uses a series of hierarchical filters to search for optimal poses of
the ligand in the active-site region of the receptor (protein), collectively referred to as the
“Glide docking funnel” (Friesner, et al, 2004). The automatically generated set of initial
conformations is pre-screened to reduce the number of poses undergoing the subsequent
energy and gradient-evaluations steps, which are more computational expensive. The
authors claim that this design approximates an exhaustive systematic search within
acceptable computation time (Friesner, et al., 2004).
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The starting point for scoring in Glide is the empirical ChemScore scoring function, which
encompasses lipophilic, hydrogen-bonding, and metal terms as well as a penalty term for
freezing rotatable bonds of the ligand (Eldridge, et al., 1997). Glide implements a modified
and expanded version of the ChemScore scoring function, GlideScore, to predict binding
affinity and to rank order ligands in database searches. As shown in equation -8, GlideScore
embodies ChemScore components in the first six terms. The lipophilic term is defined as in
ChemScore, while the hydrogen-bonding term is separated into three differently weighted
components based on the nature of the hydrogen-bonding partners. The authors claimed
that hydrogen-bonds between neutral donors and neutral acceptors contribute more
strongly to binding than the when both partners are charged; and that the neutral-charged
one lies in-between (Friesner, et al., 2004). GlideScore also modifies the form of the metal
interaction term in ChemScore to ensure rewarding those metal-ligand contacts that
contribute favorably to binding.

AGbind,Gll’deScore = Clipo—lipto(rlp) +
Chbond-neut-neut 29 (Ar)h(Aa) +
Chbond—neut—chargedzg (Ar)h(Aa) +
Chbond—charged—chargedzg (Ar)h(Aa) +

Cmax—metal—ioan(Tlm) +
Crothrotb +

Cpolar—phoprolar—phob +
CcoulEcoul + CvdWEvdW + Esolv I-8

AGbind,GlideScore
Clipo—lipo,rotb,...
rlp

Tim

f,9.h

Hrotb
Vpolar—phob

E coul
E vdW
E solv

GlideScore predicted Gibb’s free energy of binding

Empirical weighting coefficients

Sum over all ligand-atom/protein-atom lipophilic pairs according to
ChemScore atom classification

Sum over all ligand-atom/metal pairs

Functions that give a full score (1.00) for distances or angles that lie
within nominal limits and a partial score (1.00-0.00) for distances or
angles that lie outside those limits but inside larger threshold values

Entropic penalty for frozen rotatable bonds (ChemScore)

Reward for polar but non-hydrogen-bonding atoms in a hydrophobic
region

Weighted OPLS-AA ligand-protein Columbic interactions

Weighted OPLS-AA ligand-protein van der Waals interactions
GlideScore desolvation penalty

The seventh term (Cpoiar—phobVpotar—phob) 1S calculated by the Schrédinger’s active-site
mapping facility to reward instances in which a polar but non-hydrogen-bonding atom (as
classified by ChemScore) is found in a hydrophobic region (Friesner, et al, 2004; Glide,
2011). Moreover, GlideScore encompasses appropriately weighted gas-phase non-bonded
interactions (Columbic and van der Waals) derived from the OPLS-AA force field
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(Jorgensen, et al., 1996). Finally, Glide computes the desolvation penalty term (E,;,) using
a robust solvation model, where waters are docked explicitly to competitive ligand poses.
Subsequently, these waters are evaluated by a specialized scoring function, which measures
exposure of various groups to the explicit waters. The use of explicit waters has obvious
advantages over implicit solvation models, but the required sampling is time-consuming,.

Glide employs three related classes of scoring functions to achieve different goals. Selecting
the correct docking poses is done via the Emodel score, which incorporates GlideScore, the
ligand-receptor molecular mechanics interaction energy, and the ligand strain energy.
Additionally, Glide employs two forms of GlideScore; namely, Glide SP (for Standard
Precision) and Glide XP (for eXtra Precision). Although both Glide SP and Glide XP use
similar terms, they are optimized to serve two different roles in Glide. Glide SP is softer and
more forgiving; hence it finds ligands that could potentially bind to the target, even if their
poses have slight imperfections. Glide SP’s tendency to minimize false negatives and fast
performance makes it more suitable for use in database screening. In contrast, Glide XP is a
harder function that employs more terms, enhanced sampling, and exacts severe penalties
for poses that violate established physical principles. Glide XP, thus, is more efficient at
minimizing false positives and is more suitable for lead optimization or for a higher quality
prediction on smaller number of ligands.

The goal of the XP Glide methodology is to semi-quantitatively rank the ability of candidate
ligands to bind to a specified conformation of the protein receptor (Friesner, et al., 2006). In
comparison to Glide SP, the XP Glide scoring is characterized by two key features, (1) it
applies a large desolvation penalties to both ligand and protein polar and charged groups in
appropriate cases and (2) it has specialized routines to identify specific structural motifs
that provide exceptionally large contributions to enhanced binding affinity. Glide XP special
terms are derived from theoretical physical chemistry of ligand-protein interactions and
tuned to match observations from a wide range of ligand-protein test cases. The beneficial
contributions of these terms are not fully accounted for by the generic terms frequently
employed scoring function, including those of GlideScore. For example, the standard score
assigned by ChemScore lipophilic protein/ligand atoms pair function underestimates the
favorable contribution of lipophilic ligand groups enclosed in a tight binding pocket. In such
cases, a special hydrophobic enclosure term is necessary to confer a higher contribution to
this motif.

Special terms included in Glide XP and the physicochemical principles and experimental
results that led to their inclusion in the scoring function are described in the original article
(Friesner, et al., 2006). Glide XP is tuned for prediction of binding affinities, and hence it was
chosen for the purpose of this study. In contrast to the Glide SP or Emodel scoring functions,
Glide XP has numerous specialized reward and penalty terms and covers a wider range of
ligand-protein interaction motifs. Table I-4 lists the complex descriptors calculated by Glide
employed in our study. This includes the total GlideScore and its components, which give a
more detailed picture of the features of ligand-protein interactions. Moreover, Glide
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supports two modes for scoring ligand-protein complexes: (1) the in place mode, where the
input ligand coordinates are used directly for scoring, and (2) the refine input mode, where
the input ligand coordinates are optimized in the field of the receptor prior to scoring
(Glide, 2011). Both modes were employed in our study; the in place mode to assess Glide XP
performance on unperturbed experimentally determined structures and the refine input
mode to assess its sensitivity to relatively imperfect geometries.
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Table I-4: Complex descriptors from the Glide XP scoring function. The X denotes the Glide docking
mode employed to calculate the respective values, either ‘inplace’ or ‘refineinput’.

Descriptor

Meaning

Glide_X-score

Glide_X-ecoul

Glide_X-evdw

Glide_X-energy
Glide_X-einternal®
Glide_X-emodel@®
Glide_X-HBond

Glide_X-nbrot
Glide_X-RotPenal

Glide_X-formalcharge
Glide_X-nsalt
Glide_X-LowMW
Glide_X-LipophilicEvdW

Glide_X-PhobEn
Glide_X-PhobEnHB
Glide_X-PhobEnPairHB
Glide_X-Electro
Glide_X-Sitemap

Glide_X-EposPenal
Glide_X-Penalties

Glide_X-HBPenal®
Glide_X-ClBr(®)

Glide_X-PiStack®
Glide_X-PiCat

Total Glide XP score, sum of GlideScore components, desolvation penalty,
and special penalty and reward terms.

Non-bonded Coloumb energy from OPLS-AA force field. Calculated with
50% reduced net ionic charges on groups with formal charges, such as
metals, carboxylates and guanidiniums.

Non-bonded van der Waals energy from OPLS-AA force field. Reduced for
the atoms with formal charges (as in Glide_X-ecoul).

Glide_X-ecoul + Glide_X-evdw
Internal torsional energy of the ligand.
Emodel score, used to rank order docking poses.

Hydrogen-bonding term from ChemScore, divided into three differently
weighted components depending on nature of the donor and acceptor:
neutral-neutral, neutral-charged, or charged-charged.

Number of rotatable bonds in the ligand.

Penalty for freezing rotatable bonds of the ligand, defined in ChemScore
(Eldridge, et al.,, 1997) by the function:

Hrot =1+ (1 - 1/Nrot)2r[Pnl(r) + P’nl(r)]/z
where Ny is the number of frozen rotatable bonds, the summation is over
frozen rotatable bonds and Pp(r) and P’y(r) are the percentages of non-
lipophilic heavy atoms on either side of the rotatable bond.

Net charge on the ligand.
Number of ionized acidic or basic groups in the ligand.
Reward for the ligands with low molecular weight

Lipophilic term from the hydrophobic grid potential and fraction of the
total ligand-protein van der Waals energy

Reward for hydrophobic enclosure.

Reward for hydrophobically packed hydrogen-bond.

Reward for hydrophobically packed correlated hydrogen-bonds.
Electrostatic rewards; includes Coloumb and metal terms from ChemScore.

Reward polar but non-hydrogen-bonding atom found in a hydrophobic
region.

Penalty for solvent exposed ligand groups; cancels van der Waals terms.

Polar atom burial and desolvation penalties and penalty for intra-ligand
contacts.

Penalty for ligands with large hydrophobic contacts and low H-bond scores

Reward for Cl or Br in a hydrophobic environment that pack against Asp or
Glu

Reward for m-m stacking

Reward for m-cation interactions

(@ Not applicable in case of ‘in place’ scoring, since in this mode neither conformational sampling nor pose
generation are performed.
(b) Special structural motifs pertaining to these rewards/penalties were not encountered in any of the

complexes in our data set
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1.3.4.4 Entropic penalty

Change in entropy upon ligand-protein association is probably the most elusive component
of the binding free energy. Thermodynamically robust methods for calculating entropy, e.g.
mining minima (Head et al, 1997), typically require efficient sampling of the
conformational space e.g. by molecular dynamics. Nonetheless, the high computational cost
renders such approaches impractical for database screening or lead optimization purposes.
On the other hand, scoring functions usually employ an empirical form to estimate entropic
penalties of ligand binding. These empirical formulations vary according to the underlying
physical model and degree of approximation, and hence in computational cost (Chang et al.,
2007). At the most basic level only the restriction of internal conformational degrees of
rotatable bonds is considered. Consequently, a constant penalty is assigned for each freely
rotatable bond in the ligand, ranging in value from 0.4 to 1.0 kcal/mol (Galzitskaya et al.,
2000; Gilson and Zhou, 2007; Hossain and Schneider, 1999; Page, 1973; Page, 1977a; Page,
1977b; Page and Jencks, 1971; Pickett and Sternberg, 1993; Raha and Merz, 2005; Searle
and Williams, 1992). However, this approximation is valid only under three basic
assumptions: (1) loss in translational and rotational degrees of freedom (DoF’s) of the
ligand (and protein) are of little or no consequence on entropy, (2) the bound ligand retains
no residual mobility, and (3) there is no change in vibrational DoF upon binding. We
implemented three more treatments for ligand entropy addressing one or more of these
assumptions; below is a brief discussion thereof.

The first assumption could be valid in a congeneric series of similarly-sized ligands, where
the losses in translational and rotational DoF’s upon binding are of comparable magnitudes.
However, this is not always the case in structure-based design. Consequently, an empirical
treatment of translational and rotational DoF’s is highly desirable. For instance, the
carbohydrate-specific free-energy function proposed by Hill and Reilly (Hill and Reilly,
2008) estimates ASpina according to the following formula:

ENtOTS

ASping = —k [In(6 + ENpors) — 64N, .

lnf]

where k is the Boltzmann constant, Nrs is the number of torsional DoF (i.e. rotatable
bonds), the 6 denotes the loss of three translational and three rotational DoF’s, and £ is an
empirical coupling constant introduced by the authors to link the movement in
transformational DoF to that in torsional DoF. We implemented the four values of &
investigated by the authors (0.1, 0.33, 0.67 and 1.0) in our study. We also included the
entropic penalty term employed in Glide scoring function, which accounts for the residual
ligand mobility by applying the penalty only to bonds expected to be frozen in the bound
conformation (Eldridge, et al, 1997). Finally, we used the rigid-rotor harmonic oscillator
approximation to estimate the changes in vibrational, rotational, and translational
components of ligand’s entropy upon binding (MacroModel, 2011).
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Table I-5: Complex descriptors estimating the entropic penalty associated with the degrees of
freedom of the ligand upon binding.

Descriptor

Meaning

lig_rot_bonds

Number of freely rotatable bonds in the ligand

Hill_dS_0_10 Entropic penalty for freezing ligand’s movement (translational, rotational,
conformational) according to Hill and Reilly (Hill and Reilly, 2008), £€=0.10

Hill_dS_0_33 As above, £€=0.33

Hill_dS_0_67 As above, £=0.67

Hill_dS_1_00 As above, £=1.00

Glide_X-RotPenal GlideXP’s penalty for freezing rotatable bonds of the ligand, defined in

ChemScore (Eldridge, et al., 1997) by the function:

Hrot =1+ (1 - 1/Nrot)2r[Pnl(r) + P’nl(r)]/z
where N, is the number of frozen rotatable bonds, the summation is over
frozen rotatable bonds and Pp(r) and P’y(r) are the percentages of non-
lipophilic heavy atoms on either side of the rotatable bond.

rrho-TdS_rot Entropic penalty for the rotational degrees of freedom, calculated using

the rigid-rotor harmonic oscillator approximation

rrho-TdS_trans Entropic penalty for the translational degrees of freedom, calculated

using the rigid-rotor harmonic oscillator approximation

rrho-TdS_vib Entropic penalty for the vibrational degrees of freedom, calculated using

the rigid-rotor harmonic oscillator approximation

rrho-TdS_total Sum of RRHO entropic penalty components

1.3.4.5 Solvent-accessible surface area descriptors

Changes in the solvent-accessible surface areas (SASA) of two binding partners could
contribute to the association free energy in a number of ways. Most notably, burial of
hydrophobic surfaces is associated with a gain in free energy. This effect, dubbed the
hydrophobic effect, is a major driving force for one of the most important biological events,
protein folding (Chothia, 1974; Chothia and Janin, 1975). Several studies employed the
buried (hydrophobic) surface area to compute free energies pertinent to the hydrophobic
effect and solvation free energies in general (Eisenberg and McLachlan, 1986; Ooi et al,
1987; Pace, 1992; Wang et al, 2001b). On the other hand, burial of a polar/hydrophilic
surface upon binding is associated with an enthalpic cost. Removal of a polar/hydrophilic
surface from bulk solvent into the ligand-protein interface involves breaking of established
hydrogen-bonds from the protein and the ligand sides alike. In rational design this cost is
typically compensated by functionalizing the ligand, so that it can reestablish the same, or
even better, H-bond networks upon binding.

In this study, SASA descriptors for the studied complexes were computed to measure the
relevant SASA changes upon ligand-protein association. The solvent-accessible surface is
defined as the surface traced by the center of spherical probe rolled over the analyzed
molecule such that it touches but does not overlap with the van der Waals radii of atoms in
that molecule. In our study, SASA components were calculated using a water-sized spherical
probe (radius1.4 A) scanning the surface of the analyzed molecule(s) at 0.1 A spaced grid
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points. The NeoScore platform, however, supports adjustment of probe radius and scanning
resolution in SASA computations. We took advantage of this option in developing a
classification scheme for binding site geometries (see Topological classification of binding
sites section below). SASA descriptors employed in our study are listed in Table I-6 and
schematically illustrated in Figure I-1.

Table I-6: Solvent-accessible surface area (SASA) descriptors, computed using 1.4 A probe and a
grid spacing (resolution) of 0.1 A. An atom is classified as polar if the absolute value of its partial

charge is more than 0.25e.

Descriptor Meaning
_ complex
sasa-complex_total SASA 1 atoms
complex
sasa-complex_non_polar SASAL onpolar atoms
l
sasa-complex_polar SASALOTPIEY

sasa-complex_receptor
sasa-complex_receptor_non_polar
sasa-complex_receptor_polar
sasa-receptor_free
sasa-receptor_free_non_polar
sasa-receptor_free_polar
sasa-receptor_buried_total
sasa-receptor_buried_non_polar
sasa-receptor_buried_polar
sasa-complex_ligand
sasa-complex_ligand_non_polar
sasa-complex_ligand_polar
sasa-ligand_free
sasa-ligand_free_non_polar
sasa-ligand_free_polar
sasa-ligand_buried_total
sasa-ligand_buried_non_polar

sasa-ligand_buried_polar

polar atoms

SASAin complex

receptor atoms

SASAin complex

non—polar receptor atoms

SASAin complex

polar receptor atoms

SASAf:Seeptor atoms

SASArfLZfLe—polar receptor atoms

SASA{)Z?Z?” receptor atoms

SASAi;Seeptor atoms SASAiZCC:;r;giegtoms

SASArfLZfLe—polar receptor atoms SASAZ:J;O—n;IUJLe; receptor atoms
SASAfree _ SASAin complex

polar receptor atoms polar receptor atoms

SASAin complex

ligand atoms

SASAin complex

non—polar ligand atoms

SASAin complex

polar ligand atoms

sAsATTee

ligand atoms

sAsATTee

non—polar ligand atoms

sAsATTee

polar ligand atoms

_ SASAin complex

ligand atoms

_ SASAin complex

non—polar ligand atoms

sAsATTee

ligand atoms

sAsATTee

non—polar ligand atoms

_ SASAin complex

polar ligand atoms

sAsATTee

polar ligand atoms
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SASAin complex SASAburied—on—binding

TECE‘ptOT atoms receptor
SASAm complex SASAburied—on—binding
ligand atoms ligand

Figure [-13: Schematic representation of SASA components employed in our study for binding
affinity prediction.

1.3.4.6 Ligand descriptors

A number of ligand-derived descriptors were included to represent potentially relevant
structural and energetic features, in our descriptor pool (Table I-7). Below are a brief
description of them and an explanation of their relevance to scoring ligand-protein
interactions. Two basic measures of molecular size were considered: molecular weight and
number of heavy atoms of the ligand. Their significance was first underlined in the classical
work by Kuntz et al. who demonstrated that for strong binders the free energy of binding
increases by ~ -1.5 kcal/mol for each non-hydrogen atom up to a limit of 15, where it
reaches a plateau (Kuntz et al, 1999). Employing additive terms in scoring functions is
known to have a biasing effect; larger ligands receive higher scores (Balius et al., 2011;
Ferrara, et al, 2004). It might, therefore, be necessary to compensate for this bias by
penalizing large ligands and/or rewarding relatively smaller ligands (Friesner, et al., 2006).

We also included descriptors to account ligand internal strain, which is defined as the
energetic cost paid for forcing the relaxed unbound conformation of the ligand to assume
the bioactive conformation. The relaxed conformation could be taken to be the nearest local
minimum found in by typical energy minimization or to the global minimum (Perola and
Charifson, 2004). The global minima for the studied carbohydrate ligands, were obtained
through an exhaustive conformational search using MacroModel (MacroModel, 2011),
setting the maximum number of generated conformers to 5000 and a wide energy window
(40.0 kcal/mol) for conformer rejection. In addition, the SM8 quantum mechanical aqueous
continuum solvation model (Marenich et al, 2007) was employed to estimate ligands’
desolvation penalties. The computation was carried out on the crystallographic ligand
conformation using B3LYP density functional and the 6-31G** basis set in Jaguar (Jaguar,
2011). We also employed SM8 solvation free energy weighted according to the ligand’s
buried surface area to account for partial ligand desolvation, particularly for ligands bound
close to the surface.
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Table I-7: Complex descriptors measuring important structural and energetic features of the ligand

molecule.
Descriptor Meaning
lig_mol_wt Molecular weight of the ligand

lig_heavy_atoms

lig_rot_bonds

lig_local_strain

lig_global_strain

desolvation_gqm_sm8

fraction_ligand_exposed

wt_desolv_gm_sm8_buried

hbonds-to_receptor

hbonds-to_water

Number of non-hydrogen atoms in the ligand

Number of freely rotatable bonds in the ligand, used as estimate for the
conformational entropic cost of binding

Difference in force field potential energy (OPLS-AA) between the bound
conformation of the ligand and its nearest local energy minimum

Difference in force field potential energy (OPLS-AA) between the bound
conformation of the ligand and its global minimum obtained from an
exhaustive conformational search

Solvation free energy from quantum mechanical SM8 model (Marenich, et
al., 2007)

in complex free
SASAligand /SASAligand

(1- fraction_ligand_exposed)-desolvation_qm_sm8

Number of hydrogen bonds between ligand and protein in the energy-
minimized crystal structure

Number of hydrogen bonds between ligand and binding site waters

resolved in the crystal structure, zero if the crystal structure had no
waters

hbonds-total hbonds-to_receptor + hbonds-to_water

1.3.4.7 Dynamic Properties

The use of static representation of ligand-protein complexes to calculate bulk properties
such as binding free energies is a widely used approximation, primarily due to
computational efficiency. In reality, however, thermodynamic observables arise from of an
ensemble of microstates of the system, not a single configuration. Rigorous methods for
prediction of binding affinity, such as free energy perturbation (Jorgensen and Thomas,
2008; Zwanzig, 1954) and thermodynamic integration (Rodinger, et al, 2005), require
converged and sufficient sampling of the system’s configurational space. Such configuration
ensembles are typically generated from physics-based simulations of the system such as
molecular dynamics (Deng and Roux, 2009) or Monte Carlo simulations (Price and
Jorgensen, 2001). Alternatively, frames from molecular dynamics trajectories are used as
input for end point methods such as MM/GBSA or MM /PBSA (Hou, et al., 2011a). Evidently,
adequate conformational sampling is particularly important in case of carbohydrate-
protein complexes due to their natural high mobility (Bradbrook et al., 2000). Moreover, it
has been reported that water molecules bridging ligand-protein interactions in relatively
open binding pockets are being exchanged constantly (Caffarena, et al., 2002; Tempel, et al.,
2002), which makes modeling them explicitly imperative.

To account for the dynamic nature of molecular interactions in our carbohydrate-protein
data set, all ligand-protein complexes were subjected to 5.0 ns long molecular-dynamics
simulations. Desmond software package from D. E. Shaw’s group (Bowers et al., 2006) was
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used to perform these simulations. For the purpose of this study, we employed the
OPLS_2005 force field as implemented in the Schrédinger 2011 Suite (Damm, et al., 1997;
Jorgensen, et al., 1996; Jorgensen and Tirado-Rives, 1988; Kaminski, et al, 2001; Kony, et
al, 2002; Maestro, 2011). Each system was solvated using an orthorhombic, TIP3P water
box (Jorgensen, et al, 1983) extending at least 10 A away from the complex. Sodium and
chloride ions (0.15 M) were added to neutralize the charges and to approximate
physiological conditions. Long-range electrostatic interactions were handled using the
Particle mesh Ewald summation (Darden et al,, 1993). All systems were equilibrated using
the default relaxation protocol (Desmond, 2011) and simulated over the span 5.0 ns with a
time step of 2.0 fs. The SHAKE algorithm (Ryckaert et al.,, 1977) was applied to all heavy-
atom bound hydrogens. Production runs were carried out in the Martyna-Tobias-Klein
(Martyna et al., 1994) NPT ensemble (constant pressure, temperature, and total number of
particles) and employing the Nose-Hoover barostat (Nosé, 1984) to maintain a constant
temperature of 300 K. Molecular energies and trajectories (atomic coordinates and
velocities) were recorded in 5.0 ps intervals resulting in a total of 1000 frames per
simulation. When the simulation was finished, we extracted 25 equally spaced frames (200
ps apart) from the output trajectory. These frames were used to compute the time-
dependent values for non-bonded force field interactions (OPLS_2005 and MMFFs) and
MM/GBSA free energy functions following the same procedures used to compute the static
descriptors. Finally, dynamic averages of these descriptors were added to the complex
descriptors pool.

L1.3.5 Topological classification of binding sites

Binding sites differ in the shape and degree of exposure to the bulk solvent; some are
shallow depressions on the protein surface while others are completely buried pockets.
(Note: We will use the terms ‘receptor’ and ‘protein’ interchangeably in the following
discussion to refer to the macromolecular target to which a small molecule ligand binds,
which includes enzymes, membrane-bound receptors, nuclear receptors, etc.). In the course of
our investigation, we observed interesting trends in the relationship between binding
affinity and certain topological features of binding sites. The plot in Figure [-14 is an
illustrative example of the clues we encountered for the existence of such trends. A simple
relationship between the receptor SASA that becomes buried upon ligand binding and the
exposed portion of ligand’s SASA in the complex roughly separates ligand-protein
complexes into clusters with different relative distributions of high/low binding affinities.
This relationship (along with several comparable relationships) indicated that SASA
components could be, somehow, useful in our quest for a reliable free-energy function.
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Figure 1-14: The ratio of ligand exposed SASA (%) to receptor SASA buried on binding (vertical axis)
versus the receptor SASA buried on binding on the (horizontal axis). Points are colored according to
experimental AG of the corresponding complex (color bar). Zone A is enriched in complexes with low
to moderate affinity, while zone B is enriched in moderate to high-affinity complexes. Zone C doesn’t
show any specific affinity-based enrichment.

Molecular surface area components are widely used in modeling molecular properties such
as hydrophobic interactions (Chothia, 1974; Chothia and Janin, 1975) and solvation effects
(Wang, et al., 2001b). Despite the fairly predictable nature of the relationship between SASA
components and these properties, no such relationship exists between SASA and binding
affinities. In our data set, experimental binding affinities were not correlated to SASA
buried-on-binding of the ligand (r=0.32) nor the receptor (r=0.17). This lack of correlation
precludes the possibility of directly employing SASA components as terms in free energy
function; and consequently calls for a more thorough investigation to understand the
nature of the trends described in the previous paragraph. The investigation was continued
under the assumption that SASA components could -in a useful way- categorize the studied
carbohydrate-protein complexes based on binding site shape and degree of solvent
exposure.
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1.3.5.1 Preliminary investigation

We started the investigation by using a rather simple descriptor to measure the degree of
solvent exposure of the binding site; namely the percent ligand exposed (PLE):

SASAi?} complex
PLE = ( foand ) 100(%)

free
SASAligand

Complexes with higher PLE values are expected to have a binding site fairly close to the
protein surface allowing for a larger portion of the bound ligand to be solvent exposed. We
then examined the use of various cut-offs to distinguish surface-accessible pockets (high
PLE) from buried inaccessible cavities (low PLE) (Figure I-15). It became readily apparent
that this approach is inadequate, as complexes with PLE as low as 5% have fairly surface-
accessible binding sites (Figure I-16). Moreover, the use of ligand-based property only
obscures relevant protein features, such the size of the binding site.
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Figure I-15: Number of proteins with a surface-accessible binding site using different cutoffs for the
percentage of ligand SASA exposed in complex.
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10IF

PLE = 3.6 % SASATEceptor = 82.3 A2

buried—on—binding

8ABP

receptor
PLE = 0% SASAburizegd—on—binding = 61.8 AZ
Figure I-16: Stereo view of the solvent-accessible surface representation of 10IF (top) and 8ABP
(bottom), grey: protein, blue: ligand. Although a small fraction of the ligand SASA in 10IF is exposed
in complex, the binding site of the protein is fairly surface-accessible in comparison to 8ABP. Protein
surface for 8ABP is rendered transparent to show the buried ligand.
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The receptor SASA buried upon ligand binding (SASAjereear™ """} could serve as a direct
measure of the size and solvent-accessibility of the binding site. Using this value alone,
however, is not sufficient to decide whether the binding site is surface-accessible or buried
as can be seen from comparison in Figure I-17. Although the 2JLB complex has a relatively
big binding surface (462.0 A?), the entrance of the binding site is comparatively smaller and,
thus, only a small portion of the ligand surface (10%) is solvent accessible in the complex.
On the other hand, the 2W4X complex has a significantly smaller binding surface (218.0 A2)
despite the obvious similarity shared between its binding-site topology and that of the 2JLB
complex (both are accessible via a relatively small opening). Therefore, it became obvious
that the use of simple ligand-based and/or protein-based properties is not sufficient for
geometrical classification of protein binding sites. In addition, visual inspection of the gross
topological features of ligand-protein complexes confirmed that it is not accurate to think
of binding sites according to the surface-accessible vs. buried dichotomy; and it is necessary
to introduce more categories to account for the in-between cases. With the failure of simple
approaches, we turned to literature searching for more rigorous approaches for deriving
topological classifications of binding sites.
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2JLB

PLE = 10.0 % SASATEcertor = 462.9 A2

buried—on—binding

2W4X

PLE = 6.6 % SASATecertor = 218.0 A?

buried—on—binding

Figure 1-17: Stereo view of the solvent-accessible surface representation of 2JLB (top) and 2W4X
(bottom), grey: protein, blue: ligand. There is a substantial difference between the two complexes in
the surface area buried-on-binding (size of the binding pocket), although the two binding sites are
comparable in shape and degree of surface exposure.
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1.3.5.2 Reported methods for binding site characterization

A number of methods for characterization of binding sites are described in literature. Early
approaches focused on the morphological classification of antibody combining sites. Rees et
al. identified -by visual inspection- three classes of antibody-combining-site topology:
cavity, groove, and planar (Webster et al, 1994; Webster and Rees, 1995). Thornton et al
employed a more quantitative approach to classify antibody-binding sites using Kuhn’s
fractal atomic density measurement as an estimate of the surface curvature (MacCallum et
al, 1996). Based on the relative degree of surface concavity and convexity antibodies
structures were sorted into four categories: concave, moderately concave, ridged, and
plane. Lee et al. employed a larger data set of antigen-antibody complexes to develop a
heuristic classification algorithm (Lee et al, 2006). Antibodies were allocated to one of five
topographic classes based on computerized analysis of certain geometric characteristics of
the binding site. The topographical classes were named after familiar geological features:
cave, crater, canyon, valley, and plain.

Furthermore, several tools are available analysis of binding pockets and cavities that are
not limited to surface binding pockets. CASTp server, for instance, is an online tool for
identification and measurement of surface accessible pockets and interior cavities (Dundas
et al, 2006). It employs an analytical approach to calculate the area and volume of each
pocket and cavity, and reports relevant features of mouth openings, e.g. number, area, and
circumference of mouth lips. The current version of CASTp, however, does not encompass
shallow depressions. The creators of BindingMOAD online database (Benson, et al., 2008)
developed a tool, GoCAV (Smith et al., 2006), to calculate and display molecular surfaces for
the ligand and for protein cavities and incorporated it into their the online portal
(http://www.BindingMOAD.org). More programs have been developed to calculate surfaces
and cavities, including POCKET (Levitt and Banaszak, 1992), SURFNET (Laskowski, 1995),
CAST (Liang et al., 1998), and PASS (Brady and Stouten, 2000).

All of the aforementioned programs have definite advantages, such as the ability to identify
and describe pockets without needing bound ligands to locate them. However, they are
primarily aimed at the characterization of geometrical features of these pockets, rather than
classifying them into defined categories. Moreover, they cannot handle certain binding site
configurations properly, e.g. antibody-specific approaches are tuned for surface-exposed
binding sites and not applicable for buried binding sites while CASTp excludes shallow
depressions from calculation. In all cases, special software is required to perform binding
site analysis, which might not be convenient for all users. Therefore, we decided to develop
a SASA-based empirical method for binding site characterization and classification that can
be easily implemented using commonly used modeling software. This method, the BOB-PR
plots, is described it in the following section.
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1.3.5.3 The BOB-PR plots

To construct the BOB-PR plots, the receptor SASA that becomes buried upon binding
(SAsADried on=binding) was calculated using probes with varying radii, from 1.0 to 10.0 A.
Then, we plot the values of the SASA buried-on-binding (BOB) vs. the corresponding probe
radius (PR). Receptor BOB-SASA is calculated as a difference between two receptor-based
SASA components:

buried—on-binding __ freereceptor in complex
SASAreceptor - SASAreceptor atoms SASAreceptor atoms

This difference maps the patch of the receptor surface accessible to the solvent in the free
receptor, and when the ligand binds the patch is no longer solvent accessible. The basic idea
of the BOB-PR plots is that smaller probes can roll into deeper and less accessible binding
sites while larger probes cannot. As the probe size increases, its ability to gain access to
partially buried pockets is reduced and consequently the difference in the equation above
decreases. When the probe is too big to access the interior surface of ligand binding site, it
will essentially map the same surface in presence and absence of the ligand; i.e. the receptor
exterior surface, and the difference above becomes zero (Figure 1-18). On the other hand, a
fully solvent exposed binding site, e.g. a shallow surface depression, can be equally sampled
by small and large probes (Figure I-19).

A > 3 B

Figure I-18: Schematic representation of the principle of BOB-PR plots. (A) When the ligand is bound
the solvent probe (red circles) cannot sample the entire surface of the receptor. (B) When the ligand
is not present the probe maps a new surface (blue circles) that was not visible, i.e. buried, when the
ligand was bound in A. (C) A medium-sized probe maps a smaller interior surface of the receptor
which is buried when the ligand is bound (fewer blue circles). (D) A large probe cannot map the
interior receptor surface, i.e. the presence or absence of the ligand has no effect on the calculated
receptor SASA. Consequently, the difference between receptor SASA with and without ligand
becomes zero.
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Figure I-19: BOB-PR in case of shallow surface exposed binding site. The receptor SASA buried when
the ligand (blue dotted trapezoid) binds can be mapped, virtually equally, by small (filled blue
circles) and fairly large (empty blue circles) probes.

We visually inspected BOB-PR plots of a few examples cases and interactively analyzed the
molecular surface representations of the corresponding complexes Figure I-20. There are a
number of ways to describe BOB-PR curves: a given curve is roughly either pointing up (e.g.
2VMC) or down (e.g. 3HDQ); it might be steep (e.g. IW9W) or flat (e.g. 1BB8); and it might
go down to zero relatively fast (e.g. 1lUWU), slowly (e.g. 2]J0), or not at all (e.g. 1RDK). From
the many geometrical features that can be derived from BOB-PR plots, two were found to be
most useful for developing scheme to classify binding sites: where the curve BOB curve
reaches zero and the slope of the longest uniform tail of the curve (Figure 1-21). The probe
size at which value of receptor BOB vanishes can be obtained directly from the plot if it is
less than 10 A, otherwise it is calculated by extrapolating the curve’s tail portion.
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Figure 1-20: BOB-PR plots for eight test cases (PDB codes in the legend) and the solvent-accessible
surface representations of the corresponding ligand-protein complexes.
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Figure I-21: Two key features of BOB-PR plots employed for categorization of binding sites.

The rules for defining binding site anatomical classes and allocating complexes to them
were derived and optimized iteratively. Initially three binding site classes were proposed:
shallow, partially buried, and fully buried. We then realized that the partially buried
category is too heterogeneous, so we introduced a fourth class, groove, which is halfway
between shallow and partially buried. Finally, the groove can be further divided into two
classes based on the relative size of groove mouth opening: big mouth and small mouth. The
process of defining the classes and setting the boundaries between them was guided by (1)
visual inspection of complexes and comparing binding site morphological features to those
reported in literature, and (2) assessment of the influence of the proposed set of rules on
the performance of several empirical free-energy functions, by fitting the empirical function
to the resultant categories separately. Eventually, our data set was sorted into five non-
overlapping classes based on geometry and degree of solvent exposure of the binding site:
fully buried, partially buried, small mouth groove, big mouth groove, and shallow (Table I-8
and Figure 1-22).
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Table I-8: Topological classification of binding sites.

Category Members  touches_zero_at tail_slope SASAZ'gZOn'Z”lex

Fully buried 72 <4A n.a. <11A2

Partially buried 52 <4A n.a. >11 A2

Small mouth (groove) 43 <8A <0 n.a.

Big mouth (groove) 63 >8A4 <0 n.a.

Shallow 86 <04 >0 n.a.

Fully Partially Big Shallow
Buried Buried Mouth

8ABP 10IF 2H1H 1BB7 2VMC

Figure 1-22: Complexes were classified into five categories based on topology and solvent exposure
of the carbohydrate-binding site. From top to bottom the figure shows: category name; schematic
representation of the category; PDB code for an example carbohydrate-protein complex; BOB-PR
plot: Receptor SASA buried on binding (A2, vertical axis) vs. probe size (A, horizontal axis) for the
example complex; and the solvent-accessible surface representation of the example complex (blue:

ligand, grey: protein). In the left-most complex, the protein surface is rendered transparent to show
the completely buried ligand.
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1.3.6 Statistical validation

Empirical free-energy models investigated in this study are linear combinations of terms
each represents a component of the free-energy change associated with binding.

AGbind = ClAGl + CzAGZ + .-

The experimental binding affinity, AGping, is the dependent (or response) variable (y) while
the complex descriptors, AG/’s, constitute the independent (or predictor) variables (x’s).
Standard multiple linear regression was used to derive the weighting coefficients, c¢/s, by
fitting the linear equation(s) to experimental binding affinities. In the following paragraphs
we briefly outline the metrics employed to assess the quality and statistical validity of the
developed models.

r2

The coefficient of determination, r?, is the portion of variance in the observations explained
by the model. It is calculated using the formula:

2
SSErr —1— Iivzl(AGi,calc - AGi,exp)

r2=1- 2
SSTot ?’zl(AGi’exp — (AG))

where SSgrr is the sum of squared errors (residuals), SSto: is the total sum of squares, AG; ¢y,
is the experimental (actual) binding affinity, (AG) is the average of binding affinities in the
training set and AG; .4 is the binding affinity predicted by the model. A perfect model, one
that explains all the variance in the experimental affinities using the proposed equation, has
an r2 of 1.0. The value of r2 should be interpreted carefully, since it only measures the ability
of the model to reproduce the binding affinities in the training set, and has no relation to the
predictive power of the model. A variant of r2, the adjusted-r?, was used as a fitness function
to rank models in genetic algorithm searches (cf. page 47). The adjusted-r? is more suitable
for that purpose because it penalizes overly complex models.

RMSE and MUE

The root mean square error (RMSE) and mean unsigned error are measures of absolute
accuracy of estimation, i.e. how accurately can the model predict the experimental binding
free energies.

2
RMSE = j Iiv=1(AGi,exp B AGi,calc)
a N

?I:l |AGi,exp - AGi,calc |
N

MUE =
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qZ

In cross-validation, a number of modified subsets is created by repeatedly removing one or
more points (complexes) from the original training set, such that each complex is removed
only once. Each modified subset is then used to estimate the coefficients of the equation,
and the resultant model is used to predict the binding affinity of the complexes that were
left out. The cross-validation r?, r2., or g2, is calculated according to the equation:

2
qz —1_ PRESS —1— ( ?I:l(AGi,exp - AGi,calc) >
- - 2

N (AG;erp — (AG))

TSS
where PRESS is the prediction error sum of squares, and TSS is total sum of squares of

response variable in the training set. If one data point is removed in each cycle, the process
is termed leave-one-out (LOO) cross-validation. In such case, the data structure might be
perturbed only slightly, especially if the original data set is large. An alternative approach
could be used to perturb the data more significantly, namely the “leave-several-out” or
“leave-k-out”. It is recommended to choose the number of points to be left out such that
seven subgroups are created to around 7 (Lavine, 1996). It is important to note that g2
should be regarded as a measure of internal consistency of the derived model rather than as
a true indicator of the predictability (Verma, et al.,, 2010).

pZ
The predictive correlation coefficient, r?,.q or p?, measures the ability of the model to

forecast the affinities of an external test set of complexes using the model derived from the
training set.

pz _ ]iv=1(AGi,exp - <AG>)2 B Iivzl(AGi,calc - AGi,exp)2
Iiv=1(AGi,exp - <AG>)2

In our study, the external test set comprised 106 FimH adhesin inhibitors with known

experimental binding affinities. We also compared the predictive quality of the proposed
free-energy functions to the recently reported mQSAR model for this data set (Eid, et al,
2013).
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I.4. Results and Discussion

1.4.1 Layout

The primary aim of this thesis is to develop and validate a predictive scoring function to
calculate the binding affinity of carbohydrate-protein complexes from their three-
dimensional structures. Typically, scoring functions and free-energy functions model the
binding free energy as a mathematical relationship to the atomic coordinates of the ligand-
protein system under investigation.

AGbind = f(x' Y, Z)3N—6

The question dealt with in this thesis could, therefore, be viewed as a classical quantitative
structure activity relationship (QSAR) problem. In such a theme, atomic configurations of
carbohydrate-protein complexes are first transformed into meaningful quantities referred
to as descriptors. The required scoring function uses a combination of these descriptors to
predict binding affinities. The solution space of hypothetical free-energy functions can be
schematically represented as shown in Figure I-23. A scoring function, which can be used in
structure-based applications, should employ a minimal number of descriptors and predict
binding affinities with acceptable accuracy (e.g. within 1 order of magnitude from
experiment); and they should do so in a physically meaningful and statistically robust
manner. In good QSAR practice, models relying on large number of descriptors to achieve
satisfactory performance should be avoided. Such models are potentially over-fitted and
usually have no useful predictive power.
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Figure [-23: Solution space for potential carbohydrate-protein free-energy functions.

79



To achieve the aforementioned goal, a diverse data set of carbohydrate-protein complexes
with known three-dimensional structure and experimental binding affinities was collected
and refined. A large number of molecular descriptors were calculated to quantify relevant
geometrical and physicochemical features of the assembled complexes. The gathered pool
of carbohydrate-protein binding affinities and the corresponding complex descriptors
should, in principle, contain the solution to the problem at hand, i.e. the relationship
between binding affinity and atomic configuration. The process of uncovering and
understanding this relationship went through iterative stages of investigation and analysis
(Figure I-24). This section discusses the fundamental issue(s) dealt with at each stage and
the corresponding outcomes in the same arrangement presented in Figure 1-24.

Carbohydrate—protein complexes

Atomic configuration €—> Complex descriptors €——> Binding affinity

V

Traditional approaches
e.g. GlideScore, MM/GBSA, buried surface area, molecular weight

|

Empirical functions
Combining free energy components from different modeling approaches

|

Automated exclusion of outliers

Dead End?

Topological classification of ligand binding site
Could the problem be too heterogeneous?

l

Find best model
Statistical validity and physical soundness

l

Final remarks
Other models, influence of dynamic simulations, external test set

Figure 1-24: Principal stages of the study and layout of the results section. Complex descriptors were
used as a proxy to investigate the relationship between binding affinity and three-dimensional
structure of carbohydrate-protein systems.
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1.4.2 Preliminary investigation using traditional approaches

Two well-established methods presumably capable of predicting binding affinities of
ligand-protein systems were employed in this study; namely the Glide XP scoring function
and the Molecular Mechanics/Generalized-Born surface area (MM/GBSA) free-energy
function. Comparative docking studies on carbohydrate ligands have shown Glide to
outperform other docking programs in reproducing the experimentally determined binding
modes (Alexacou, et al., 2008; Nurisso, et al., 2008). On the other hand, several studies have
demonstrated the usefulness of MM/GBSA predicting binding affinities of a relatively
homogenous set of protein systems (Rastelli, et al., 2010; Srivastava and Sastry, 2012) as
well as in large data sets comprising diverse protein families (Greenidge, et al, 2013).
Therefore, it seemed reasonable to start our investigation by assessing the performance of
both approaches on our carbohydrate-specific data set.
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Figure I-25: Correlation plots of experimental free energies in the carbohydrate-protein data set vs.
GlideXP scoring function (left) and MM/GBSA free-energy function (right), points are color-coded
according to the ligand’s molecular weight (N=316).

As shown in Figure I-25, scores of both free-energy functions do not correlate well with the
experimental binding affinities in our carbohydrate data set (r?=0.05 and 0.12 for Glide XP
score and MM/GBSA, respectively). Although this finding is disappointing, it is not by any
means surprising. Despite the reported success of Glide in reproducing crystallographic
conformations and database screening, it was shown to yield inaccurate binding affinity
predictions in several protein families (Warren, et al, 2006). In general, the prediction
accuracy of scoring functions employed in widely used docking programs is known to be
system-dependent (Ferrara, et al, 2004; Mooij and Verdonk, 2005; Perola, et al., 2004;
Warren, et al, 2006). On the other hand, performance of MM/GBSA in free-energy
predictions was in most cases assessed on uniform data sets of ligands binding to the same
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protein (Rastelli, et al., 2010; Srivastava and Sastry, 2012) or on relatively small data set of
different proteins (Hou, et al, 2011a). In the latter case MM/GBSA was shown to exhibit
target-dependent variation in prediction accuracy in a manner similar to scoring functions
employed in docking (Guimarades and Mathiowetz, 2010; Hou, et al, 2011a).

However, the apparent lack of correlation in Figure I-25 is not dependent on the molecule
size; i.e. the Glide XP and MM/GBSA energies incorrectly describe small rigid ligands and
larger and more flexible ligands alike. It is worth noting that despite the lack of trends in the
horizontal direction (experimental binding affinity), there is a clear trend in the vertical one
(calculated interaction energy). Obviously, both energy models were, at least to some
extent, biased towards larger ligands awarding them higher scores (i.e. more negative
values) in comparison to smaller ligands. This bias would be useful for the purpose of
affinity prediction if a paralleling correlation existed between the sizes of the ligands (or the
ligand-protein contact areas) and binding affinities. It has been reported, for instance, that
binding free energy increases by ~ -1.5 kcal/mol for each non-hydrogen atom in the ligand
up to a limit of 15, where it reaches a plateau (Kuntz, et al, 1999). The binding free energy
of carbohydrate ligands in particular has been shown to increase quickly for the first few
carbohydrate subunits then tapers off (Neumann, et al, 2004). On the other hand, the
solvent accessible surface that becomes buried when the ligand and protein associate (i.e.
contact area) is a major determinant of strength of interaction (Eisenberg and McLachlan,
1986; Kerzmann, et al., 2008; 0oi, et al., 1987; Pace, 1992; Wang, et al., 2001b). In our data
set, however, such correlations between binding affinity and ligand size or contact area
were not found (Figure I-26). This was somehow expected given the large diversity and the
wide affinity range of the studied carbohydrate-protein complexes.

1000””HHHH‘HHW.H‘HHHH 2000 T T —
L i 70
L]
60
F 1 P
800 . 8 g
) S
- I . ] 1500 =40 I
:'ED e . . 1 O g 30
o r ° [ '. . . °< =
% 600 e Tt . = T2
L o o - z
k= | o .:.: .. 2 10
= . . B F ° 4
3 N Sl 51000 0 .
= . '3 ) ) 2
I . s z
54007 ° o....o." oo.. ] <°'3 [
= I IR Y s o . x i
g o % e pESe Ly St <
= o°=.°o.":i. wae ‘o S . N [ g
— .o ::..:..Q'Q ° .o.:.. . . 500 ..:. , °
R i “ ce
2000 oo, 2t bn Steme o 7 i Y N k. S
r (1] o ®e0 l'
1 ° e oy
¥ =0.05] ¥ =0.07
0 | | | | P L T O 1 | | | 1 1
0 25 5 75 10 125 15 175 0 25 5 7.5 10 12.5 15 175
AGexp Achp

Figure I-26: Correlation plots of experimental free energies in the carbohydrate-protein data set vs.
ligand’s molecular weight (left) and total SASA (ligand + protein) buried upon binding (right), points
are color-coded in the plot on the right according to the number of non-hydrogen atoms in the ligand
(N=316).
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The underlying physical model and mathematical formulation of the empirical scoring
function in GlideXP differ significantly from those in the MM /GBSA free-energy function
(details are given in the Methods section). Surprisingly, however, the energy scores of both
methods correlate well with each other and suffer similarly from size-dependent bias in the
calculated energies (Figure I-27). As pointed out previously, both methods, as examples of
“mature” free-energy functions, failed to predict binding affinities in carbohydrate-protein
systems (Figure I-25). It is important to note, however, that in the preliminary assessments
above both methods were used as black boxes and the calculated energies were used “as is”
without parameter fitting to the carbohydrate data set. Previous studies on similar prob-
lems highlighted the difference in relative importance of certain components of binding free
energy in carbohydrate-protein interactions. For example, Laederach and Reilly (2003)
reported that electrostatic interactions play a more important role in determining the
affinity between a carbohydrate and a protein. Since the MM/GBSA model uses equal
weights for the different energy components (electrostatic, vdW, etc.), it is crucial to
introduce empirical weighting coefficients when applying it for carbohydrate-protein
systems. Similarly, the coefficients employed in GlideXP scoring function were optimized to
reproduce the experimental affinities of a training set of 198 complexes (Friesner, et al.,
2006). Since the proteins employed to train GlideXP energy model are not necessarily
carbohydrate binders, it might also be beneficial to recalibrate the GlideXP coefficients for
our carbohydrate-specific set.
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Figure [-27: Correlation plot of GlideXP scores vs. MM/GBSA free-energy estimates in the
carbohydrate-protein data set, points are color-coded according to the ligand’s molecular weight
(N=316).

In addition to the mismatch of the empirical weighting coefficients, GlideXP and MM /GBSA
free-energy models have other limitations that must be addressed in order to have a
reliable free-energy model for carbohydrate ligands. First of all, both methods would seem
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to lack corrections for the size-dependent bias described above. Moreover, MM/GBSA does
not have a term to estimate the entropic changes associated with ligand-protein binding.
Additionally, it might be necessary to correct the solvation treatment by accounting for
partial desolvation of ligand and protein upon binding. The poor prediction could also be
caused by inaccuracies in the underlying force-field model, which would warrant the
employment of alternative force fields to compute non-bonded interactions. Finally, the
highly dynamic nature of carbohydrate-protein interactions might necessitate calculating
energies as an ensemble average from configurations generated MD simulations for
instance. Combining all the possible formulations of the free-energy components leads to a
large number of empirical formulations, each having the potential of accurately describing
the binding affinities in our carbohydrate-protein data set. These empirical formulations
are discussed in the following section.

1.4.3 Empirical free-energy functions

A common theme in development of scoring and free-energy functions is the representation
of the binding free energy as a sum of weighted energy terms each representing a physically
meaningful component of the binding process, e.g. electrostatics, vdW interactions,
hydrogen bonds, entropy, etc.

AGbind = Z W;. AGl
i

The empirical weighting coefficients, w/’s, are typically derived by least-squares fitting to a
training set of ligand-protein complexes for which the three-dimensional structures and
experimental binding affinities are known. All reported carbohydrate-specific scoring
functions are, in fact, empirical functions derived by recalibrating the terms of an existing
scoring functions on training sets of carbohydrate-protein complexes, with the addition of
terms to improve treatment of special interaction motifs such as C-H---m interactions (Hill
and Reilly, 2008; Kerzmann, et al, 2008; Kerzmann, et al, 2006; Laederach and Reilly,
2003).

The following Master Equation was employed as a testing device in the search for a carbo-
hydrate-specific free-energy model. The Master Equation is basically a generic formulation
of empirical scoring functions:

Master Equation
AGbind = ClAGinter + CZAGsolv + C3AGstrain + C4ASlig + CSAGreward/penalty

Here AG;,ter is the ligand-protein interaction energy, AGg,;,, is the desolvation penalty
associated with binding, AGgy4i, is the conformational strain penalty, AS;, is the entropy
lost by the ligand upon binding, and AG;ewara/penaity represent special rewards and

buried—on—binding

penalties, e.g. SASA;, .

. The empirical weighting coefficients c¢/'s are obtained by
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fitting the equation, using multiple linear regression, to the experimental binding affinities
in our carbohydrate-protein data set.

To broaden the coverage of the potential solution space, we employed various well-
established methodologies to describe each term in the Master Equation. The ligand-
protein interaction energy, for instance, was estimated using GlideXP scoring function,
MM/GBSA free-energy model, and the non-bonded interaction terms from MMFF (general
utility force field) and OPLS-AA (force field optimized for carbohydrates). The GlideXP
scores were calculated for the unchanged input structures (in place mode) and after short
geometry optimization (refine input mode). Additionally, MM/GBSA and non-bonded force
field energies were calculated from the static input structure as well as from an ensemble of
configurations extracted from 5.0 ns long MD simulations. The conformational strain was
calculated for the ligand alone or for ligand and receptor; and the former was calculated
with respect to the closest local energy minimum or to the global minimum obtained from
an extensive conformational search. The same applies for the remaining terms in the Master
Equation: each term was represented by descriptors varying in the underlying theoretical
approximation, degree of sophistication, as well as associated computational cost. The goal
was to investigate, as thoroughly as possible, the ability of the available repertoire of
methodologies for modeling molecular interactions to formulate a reliable free-energy
model for carbohydrate-protein systems. Figure 1-28 shows all possible permutations
obtainable using different complex descriptors at all the positions of the Master Equation.
Computational protocols for the employed complex descriptors are discussed in greater
detail in the Methods section.
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AGbind = ClAGinter + CZAGsolv + C3AGstrain + C4ASlig + CSAGreward/penalty
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Figure [-28: Overview of the combinations of complex descriptors used to represent empirical free-

energy terms in the Master Equation.

A total of 27,215 models were exhaustively enumerated and evaluated by linear fitting to

the training set comprising 316 carbohydrate-protein complexes. The adjusted coefficient

of determination (adjusted-r?) was used to assess the quality of the resultant models. The

examined empirical models ranged in complexity from simple equations using a single

predictor variable to complex equations using 21 variables. Models using relatively small

number of predictor variables (complex descriptors) and exhibiting high adjusted-r? would

be good candidates for more thorough investigation and statistical validation. Given the
reasonable coverage of the solution space provided by the employed pool of complex
descriptors, we had high hopes of finding a reliable free-energy model for carbohydrate-

protein systems. However, the results did not match the initial expectations.
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Figure 1-29: Statistical assessment of the free-energy models resulting from the combinations of
complex descriptors shown in Figure I-28 in the Master Equation. Number of independent variables
in the model is plotted on the horizontal axis, while the adjusted-r? as a measure of model predictive
quality is plotted on the vertical axis. The dotted line marks the value of adjusted-r?=0.5, which can
be used as an arbitrary threshold delineating potentially predictive models from non-predictive
models.

The picture portrayed by Figure I-29 would seem to be quite clear; none of the assessed
free-energy models, not even those employing more than 20 descriptors, could predict the
carbohydrate-binding affinities in our data set. In other words, the search for a free-energy
function to quantify carbohydrate-protein binding, which was conducted by mining most of
the well-established, highly-regarded, and widely-used computational approaches, turned
up empty. It could be argued that in the world of scientific research a negative result is a
result nonetheless. In fact, peer-reviewed journals dedicated to publishing negative results
do exist; the Journal of Negative Results in Biomedicine serving as an example. Therefore, it
would be reasonable (and rather tempting) to state the following as the outcome of this
study, at least up to this stage: the contemporary molecular modeling methodologies with
low to moderate computational cost, i.e. excluding thermodynamic integration and free-
energy perturbation methods, cannot be used reliably to predict binding affinity of
carbohydrate-protein complexes.

Nevertheless, scientific research does not stop at the first negative outcome. The study,
thus, continues to investigate the potential causes responsible for the inability of the
evaluated methodologies, and combinations thereof, to predict the binding free energy in
the studied carbohydrate-specific data set. This lack of explanatory power could be
attributed to one (or more) of following reasons:

1. Inadequacy of computational methods. All computational approaches for
quantification of intermolecular interactions, except for robust statistical mechanical
methods such as TI and FEP, rely to varying degrees on approximations in the
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employed free-energy functions. Although these approximations typically have
sound theoretical foundation, they always involve simplifying the description of, or
even completely ignoring crucial aspects of molecular interactions to reduce
computational costs. As a consequence, these approximations could eventually lead
to fundamentally inaccurate physical description of molecular interactions in
particular molecular systems. Nonetheless, it can be demonstrated by examining the
literature that a significant number of studies have successfully employed these
methods, along with the implied approximations, for binding affinity predictions in a
wide variety of molecular systems. Therefore, although the impact of these approxi-
mations on the prediction accuracy is undeniable, this factor alone cannot explain
the observed lack of predictive power of all free-energy models evaluated in this
study. For example, inaccuracies in modeling electrostatic interactions could, in
principle, be resolved by including a directional hydrogen-bonding term and a
special metal-center function (Vedani and Huhta, 1990) or by using a polarizable
force field (Halgren and Damm, 2001). However, the anticipated gain in accuracy
from improved treatments (of electrostatics) is probably insufficient to compensate
for the substantial prediction errors observed in the assessed free-energy models.
Uncertainty of experimental measurements. The development of usable free-
energy models relies to a great extent on the accuracy of the two experimental
measurements associated with each ligand-protein complex; namely its geometry
and binding affinity. In a critical assessment of errors associated with several crystal
structures, DePristo et al. (2004) stated that ‘the accuracy of X-ray crystal structures
has been widely overestimated’ and consequently that ‘analyses depending on small
changes in atom position may be flawed’. Moreover, Sgndergaard et al. (2009)
reported that 36% of ligands in the PDBbind refined data set (Wang, et al, 2005)
have artifacts resulting from crystal contacts and that these artifacts detrimentally
influence the performance of scoring functions. On the other hand, experimentally
determined binding affinities are infamous for the substantial variability resulting
from inter-person as well as inter-lab variations (Brown et al, 2009; Kramer et al,
2012). In a recent study by Kramer et al., the experimental uncertainty of hetero-
geneous public K; data available in public databases was reported to have a standard
deviation of 0.54 log units (Kramer, et al.,, 2012). Since the data set employed in this
study is large and heterogeneous, it is unavoidably prone to outliers due to
uncertainties in crystal geometry and/or binding affinity.

Heterogeneity of the carbohydrate-protein data set. An approximate treatment,
or even complete disregard of some components of binding free energy, e.g. entropy,
have less negative impact on prediction quality in homogeneous data set of related
ligands binding to the same target as compared to heterogeneous sets. The well-
documented success of methods such as Linear Interaction Energy (LIE) in binding
affinity prediction (Nicolotti, et al, 2012) is a good example that commonly-used
computational tools, despite the approximations employed therein, can yield useful

88



predictions especially in homogeneous problems. On the contrary, heterogeneity in
the data set for which a predictive scoring function is required could aggravate the
consequences of the physical approximations employed in the free-energy models.
Development of a scoring function of general applicability is, therefore, a formidable
challenge. In case of heterogeneous sets it is more crucial to properly account for all
the parameters of molecular interactions. The use of robust methods such as TI and
FEP, which employ minimal approximations, is however unaffordable in applications
such as virtual database screening and lead optimization. In this case improving the
free-energy model by including more terms might be a viable solution. In our case,
however, this was found to be of little help as discussed above.

The remaining part of this thesis deals with the investigation of the hypotheses described in
points 2 and 3 above, i.e. the potential deleterious effect of outliers and the possible
existence of subgroups within the potentially non-homogeneous data set of carbohydrate-
protein complexes used in this study.

1.4.4 Exclusion of outliers

In an ideal world, one where financial and human resources are unlimited, the formally
correct course of action when outliers are suspected is to repeat the experiment. Applying
this to our case would mean producing sufficient amounts of the 316 carbohydrate-binding
proteins, synthesizing or purchasing all carbohydrate ligands, repeating the biological
assays, growing the co-crystals, and finally solving the structures of the 316 complexes.
Clearly, this approach is unfeasible. Alternatively, we resorted to mathematics, more speci-
fically to data mining techniques in statistics, for a cheaper and more practical solution. The
Genetic Algorithm module in the NeoScore analysis engine described in the Methods section
(page 47) was used for automated detection of outliers. In the context of this study, outliers
are perceived to be carbohydrate-protein complexes with inherent flaws in geometry
and/or affinity measurement. Such complexes poison the data set and preclude the
possibility of building meaningful free-energy relationships. Statistical assessment of the
scoring functions resulting from combinations of free-energy terms according to the
scheme described in Figure [-29 was repeated in conjunction with GA-guided exclusion of
outliers (Figure I-30).
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Figure I-30: Results of statistical assessment with automated exclusion of 10% and 20% outliers via
the GA module of NeoScore Analysis Engine. Plot description matches that of Figure I-29.

The results shown in Figure I-30 (with outlier exclusion) are not essentially different from
those of the models evaluated on the entire data set (Figure 1-29). The few models
exhibiting adjusted-r? slightly values above 0.5 wither did not pass statistical validation
tests such as cross-validation or were not physically sensible, e.g. positively correlating
entropic penalties with binding affinity. A higher threshold of 30% for outlier exclusion
resulted in numerous statistically valid free-energy models for the remaining 70% of the
data set (222 carbohydrate-protein complexes). These models, however, carry a substantial
risk of representing artificial relationships with no real predictive power, so they are not
presented here and will not be discussed further. At this point, the study seemed to have
reached a dead end; a fairly large pool of well-established computational methods for
modeling molecular interaction failed to produce valid free-energy models for the studied
carbohydrate-protein systems, even when potential outliers were eliminated from the
training set. In other words, the problem seems to be too heterogeneous to be adequately
described by common free-energy models and/or within tractable computational time.

1.4.5 Topological classification of carbohydrate-binding sites

Accounting for solvation effects in molecular interactions of is one of the most challenging
issues in structure-based design. Most scoring and free-energy functions rely on certain
approximations to account for solvation effects thereby trading accuracy for computational
efficiency. Methods combining force fields with implicit solvation model such as MM/PBSA
and MM/GBSA are examples of rigorous methods with numerous successful applications in
a variety of ligand-protein systems. Their performance, however, is known to be largely
system-dependent (Kuhn, et al,, 2005; Pearlman, 2005). The physical model employed by
both methods pictures the interacting molecules as zones of low dielectricity embedded in a
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continuum of high-dielectricity, i.e. the solvent. One of the factors that limit the accuracy of
this model, among others, is the difficulty in accurately defining the boundary between the
two zones of differing dielectric properties (Bordner and Huber, 2003; Boschitsch and
Fenley, 2004; Davis and McCammon, 1991; Fogolari et al, 2002; Neves-Petersen and
Petersen, 2003). Moreover, Hou et al. demonstrated that MM /GBSA predictions are quite
sensitive to the solute dielectric constant (Hou, et al, 2011a). The authors recommended
that the dielectric parameter ‘should be -carefully determined according to the
characteristics of the protein/ligand binding interface’. Inaccuracy in treatment of dielectric
properties could result in errors in the final estimates of solvation contribution to the
binding free energy. In principle, these errors would be more or less uniform in homo-
geneous sets and consequently have less negative impact on final free-energy estimates. In
heterogeneous sets, however, binding sites exhibit larger variations in shape and solvent-
accessibility. In such cases, the errors introduced by inaccurate dielectric boundary
assignment will significantly vary with the topological features of the binding site, and
hence have more detrimental effect on accuracy of the calculated free energies.

The next stage of this thesis was based on the following assumption: the extent to which the
carbohydrate-binding site is in continuity with the solvent bulk is governed by its shape and
solvent accessibility. This, in turn, influences key parameters of the micro-environment
where the intermolecular interaction takes place, e.g. dielectric properties. Nevertheless,
analytical treatment of these parameters requires long converged conformational sampling
in explicit solvent, e.g. by molecular dynamics simulations, which are practically unfeasible.
However, the complexity of the free-energy landscape could, in principle, be simplified by
defining families of binding site topologies within which the binding micro-environments
are roughly identical. Such topological classification could reduce the large and hetero-
geneous problem to a set of smaller more homogenous problems, for which simple free-
energy formulations could be applied.

Therefore, a heuristic method was developed for allocating complexes in our data set into
non-overlapping categories based on the geometry of the carbohydrate-binding site. The
classification scheme employed in this study was inspired by previously reported methods
for characterization of binding site geometries and refined by visual inspection of binding
sites in the studied complexes (cf. page 66 for details). Carbohydrate-protein complexes
were allocated to one of five topological categories based on shape and degree of surface
exposure of the binding site: fully buried, partially buried, small-mouth groove, big-mouth
groove, and shallow (cf. Figure [-22, page 76). Figure [-31 shows the distribution of
important properties within the different binding site categories in our data set.
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Figure I-31: Distribution of key properties within binding-site categories of the studied carbohydrate
data set (non-shaded box plots) and the entire uncategorized data set (shaded box plot). Median
indicated by black bar, average indicated by the (x) marker. Boxes indicate the first (25%) and third
(75%) quartiles. Whiskers plotted at 1.5 x interquartile range, roughly encompassing 99.7% of the
data (mean * 30). Circles represent individual outliers larger than the upper/lower whiskers.
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As seen from the topmost plot in Figure 1-31, the proposed classification did not segregate
complexes according to binding affinity, i.e. carbohydrate ligands could exhibit high or low
affinity to their targets regardless of the binding-site topology. Complexes in the fully-
buried category span similar range of binding affinities to those in the shallow category.
There are, however, differences in molecular weight distributions among the different
categories. Fully-buried binding sites tend to accommodate smaller ligands while the three
middle categories bind medium-sized ligands. On the other hand, fully exposed shallow
binding sites can accommodate a wide range of ligand sizes including relatively large
molecules. The size of the contact surface, however, follows a qualitatively different trend
with the middle three binding categories exhibiting relatively larger interaction surfaces.
The smaller average contact surfaces in fully buried binding sites could be justified by the
small sizes of bound ligands in this category. Surprisingly, shallow binding sites show on
average contact surfaces of the same scale observed in case of fully buried sites, although
the former bind larger ligands. This could be an indication that in shallow carbohydrate-
recognition sites, ligands require relatively smaller contact areas to bind to their targets.
This observation matches the picture of carbohydrate-binding proteins involved, for
instance, in cell-cell communication, e.g. lectins, where the carbohydrate ligand is typically a
large biopolymer interacting via a small di- or tri-saccharide motif at its tip. Finally, GlideXP
seems to mirror the trends seen in molecular weights and contact surface areas. GlideXP
tends to assign lower scores on average to ligands in the fully buried category (smaller
ligands) and to those in the shallow category (small contact surface). This trend matches
our earlier observation of the size-dependent bias in GlideXP scores.

The influence of categorization on the prediction accuracy of empirical scoring functions is
presented in Figure [-32 (right) and compared to the models developed for the entire data
set without categorization (left, basically summarizing the results shown in Figure 1-29 and
Figure 1-30). It is quite apparent that independent training of the empirical free-energy
functions for individual categories results in substantial improvement in prediction
accuracy. A significant proportion of evaluated empirical scoring functions (nearly 20% at
10%-outlier threshold) were capable of reproducing binding affinities of the training set
with acceptable accuracy (adjusted-r? > 0.7). This result agrees with our initial assumption:
the problem we are looking at; predicting carbohydrate-protein binding affinities, is likely a
collectively heterogeneous problem of smaller internally more homogeneous sub-problems.
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Figure I-32: Comparison of the performance of free-energy models derived from the Master Equation
on the uncategorized data set (left) and after categorization according to binding-site topology
(right). The vertical axis shows the fraction of all assessed models with adjusted-r? in the range
defined in the horizontal axis. Models were assessed on the entire set (or the entire category) and
with GA-guided automated exclusion of outliers at 10% and 20% thresholds.

1.4.6 Finding the best model

Although a significant number of category-specific free-energy models showed acceptable
prediction accuracy in the exhaustive search depicted in Figure 1-32 (at both 10% and 20%
outlier thresholds), not all of them could be used as objective scoring functions for
carbohydrate binding due to a number of reasons. Firstly, a scoring function showing good
prediction accuracy in one category did not necessarily perform equally well in other
categories. Secondly, fitting of some models in to the binding free energy in certain
categories produced regression coefficients that made no physical sense for a subset of the
free-energy terms, e.g. entropic penalty or ligand strain energy contributing favorably to
affinity. Finally, some of the models that performed well across the five categories and had
no physically senseless coefficients did not pass subsequent statistical validation tests such
as cross-validation and y-scrambling. Therefore, to find a physically and statistically valid
model, it was necessary to filter the pool of evaluated free-energy models (136,075 models
resulting from 27,215 x 5 categories). Results of the statistical quality-based and physics-
based filtering are presented in Figure I-33.
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Figure I-33: Filtering the pool of free-energy models resulting from applying the combinations of
free-energy terms in the Master Equation to individual binding site topological categories and
employing 15% threshold for outlier exclusion.

A total of 23 models survived the statistics and physics-based screens. They were
individually subjected to more thorough statistical validation. The model exhibiting the best
balance between complexity and performance was designated as the GA1 model. The GA1
model has the following functional form:

Model GA1

~AGping = ¢1ESHE + ¢, EGLde + ¢ SASATOT PO 4 ¢, SASAVOT 4 coNyoy + C6Quig

Coul vdw buried buried

The model comprises Columbic and van der Waals interaction energies from the Glide
scoring function, two solvent-accessible surface area terms accounting for the non-polar
and polar SASA that becomes buried on binding, and two reward/penalty terms for the
number of rotatable bonds (N.:) and formal charge of the ligand (Qigy). Statistical
performance of the model is summarized in Table 1-9. The GA model reproduced binding
free energies within topological categories with r? values ranging from 0.64 to 0.71, RMSE
from 1.19 to 1.57 kcal/mol and mean unsigned error of 0.99 to 1.33 kcal/mol in the
predicted free energies. Results of leave-one-out and leave-k-out cross-validation confirm
robustness and internal consistency of the model. In the leave-k-out cross-validation, the k
is chosen such that in each cycle one seventh of the training set is removed then predicted
using the model trained for the remaining complexes. The perturbation introduced by
removing one seventh of the complexes is more significant compared to removing a single
complex in leave-one-out cross-validation. The leave-k-out cross-validation, therefore, is a
more stringent test for model robustness. Finally, randomization of experimental affinities
across carbohydrate-protein complexes in each category resulted in a substantial drop in
quality prediction.
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Table 1-9: Results of statistical validation for the GA1 free-energy model.

Category N rz RMSE MUE 4100 q1ko y-scrambling
Fully buried 62 0.64 1.29 1.08 0.55 0.54 -0.10 (-0.44,0.20)
Partially buried 44 0.67 1.57 1.33 0.55 0.54 -0.02 (-0.37,0.32)
Small mouth 37 0.68 1.19 1.00 0.58 0.57 -0.15 (-0.48,0.20)
Big mouth 54 0.71 1.44 1.09 0.61 0.60 -0.23 (-0.81,0.32)
Shallow 75 0.71 1.29 0.99 0.63 0.62 -0.33 (-0.61,0.12)
Pooled 272 0.69 1.36 1.09 0.59 0.57 n/a
Uncategorized 272 0.24 2.14 1.64 0.17 0.16 n/a

N: number of carbohydrate-protein complexes in the category after outlier exclusion, r?: coefficient of
determination, RMSE: root-mean-squared error (kcal/mol), MUE: mean unsigned error (kcal/mol), g2: cross-
validation rZ, LOO: leave-one-out cross-validation, LKO: leave-k-out cross-validation (k chosen so that the data
set is divided into seven subsets), y-scrambling: r2 values resulting from randomly assigning experimental free
energy values amongst the training set complexes, average(minimum, maximum) r2 values from 100
scrambling cycles.

Prediction errors were pooled from the five binding site topological categories to calculate
the values in the pooled row in Table I-9. The pooled statistical metrics measure the overall
performance of the GA1l free-energy model. The GA1 model reproduces binding free
energies in the entire data set within RMSE of 1.36 kcal/mol, which corresponds to a factor
of 10-off from experimental values. Prediction accuracy of GA1l model is substantially
reduced when applied to the entire uncategorized data set as seen from the last row in
Table I-9. Figure 1-34 presents the influence of the proposed categorization scheme on the
performance of the GA free-energy model. The GA1 Model does not seem to exhibit syste-
matic over- or under-estimations in the predicted AG values. However, it shows a slight bias
in the plot of residuals against experimental AG values (Figure 1-35), i.e. some high affinity
ligands are underestimated while some low affinity ligands are overestimated. On the other
hand, in the range 3.0 < AGpina < 12.0 kcal/mol, the residuals are more evenly distributed
with no clear bias.
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Figure 1-34: Distributing the carbohydrate-protein data set into binding site topological categories
according to the proposed classification scheme leads to a substantial improvement in the
performance of the GA1 empirical free-energy model (N=272). Dashed lines mark 10-fold deviations
from experimental binding affinity.
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Figure I-35: Residual plot for Model GA1 (N=272), horizontal axis: experimental binding free energy,
vertical axis: prediction error (AGcalculated = AGexperimental)-

The improvement in the performance of the GA1 model could be a mere consequence of
reducing the dimensionality of the problem from the total of 272 complexes in the complete
data set to smaller subsets of 37 to 75 complexes per category. To examine this possibility,
carbohydrate-protein complexes were randomly allocated to five dummy categories having
the same sizes of the binding-site topological categories disregarding the actual binding-site
anatomy. The GA1 model was then applied to the resultant categories and its performance
was evaluated. Average performance results from 100 category-randomization runs are
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presented in Table I-10. The apparent deterioration of the GA1l model performance
confirms that mixing complexes with differing binding site topologies in small categories is
not alone sufficient to yield useful free-energy correlations. This further confirms the
relevance of actual binding site topology in defining the free-energy response surface with-
in categories and also verifies the validity of the proposed classification scheme.

Table I-10: Statistical validation for GA1 model when complexes are randomly allocated to binding

site topological categories (average of 100 runs). See the remarks below Table I-9 for description of
column headings.

Category N rz RMSE MUE 4100 qixo
Fully buried 62 0.28 2.03 1.60 -0.03 -0.06
Partially buried 44 0.33 1.93 1.53 -0.09 -0.12
Small mouth 37 0.36 1.88 1.50 <-1 <-1
Big mouth 54 0.33 1.96 1.55 -0.01 -0.04
Shallow 75 0.33 1.99 1.57 0.11 0.09
Pooled 272 0.34 1.98 1.56 <-1 <-1

Since the GA1 free-energy model was fitted five times, once for each binding site topological
category, five sets of empirical weighting coefficients were obtained. The empirical coe-
fficients are listed in Table I-11 after multiplying each of them by the mean and standard
deviation of the corresponding energy components for each category. The resulting values
are the mean (* standard deviation) of the free energy contributed by each component in
the GA1 model to the total binding free energy within individual categories. As seen from
Table I-11, the values of the average energy contributions (and the underlying empirical
weighting coefficients) show evident category-dependent variations. It is difficult, however,
to provide concise physical interpretation or draw general conclusions from the observed
variations for two main reasons:

1. Unavoidable data set dependence. It is important to remember that all empirical
weighting coefficients are in fact linear-regression coefficients derived by fitting an
equation to some training set, either the entire carbohydrate-protein data set or
subsets thereof in our case. Any training set is essentially limited to what could have
been gathered at the time of study. In absence of universal data sets, it is practically
impossible to avoid some degree of training set dependence. Therefore, one should
be very wary of hasty generalization of ‘findings’ obtained from a limited data set to
the entire population it is assumed to represent. It would be inaccurate to assume
that the 37 carbohydrate-protein complexes in the small-mouth category, for
instance, constitute a sufficiently representative sample of the entire population of
“carbohydrate binding proteins with small-mouth binding-site topology”.

2. Inherent complexity of the free-energy landscape. Empirical free-energy models
are based on the additivity assumption, i.e. the total free energy, a rather complex
many-body macroscopic quantity, can be expressed as a sum of independent free-
energy components. It is well-known, however, that the free-energy components
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commonly used to decompose binding free energy are cooperative rather than
additive (Baum, et al., 2010; Dill, 1997; Williams, et al, 1993; Williams, et al., 2004).
In our case it is nontrivial, for instance, to associate the contribution of the

SASAP%T  component in model GA1 with a specific free-energy component, since it

is employed as proxy for a multitude of, sometimes opposing, binding events, e.g.
desolvation costs, favorable (or unfavorable) electrostatic interactions or hydrogen

bonding, release of bound water molecules, etc.

Table 1-11: Average contributions of individual free-energy components in the GA1l free-energy
model to the total binding free energy in different binding site topological categories. Values are
given as mean # standard deviation in kcal/mol.

Category ESlide ESlide SASAROTPOlAT  gagAPOlT N, Quig

Fully buried 458+1.83 7.85+287 -1.62+083 -1.96%0.57 -1.61%0.61 -0.72+1.89
Partially buried 3.60+1.20 593+2.66 0.66+031  -2.88%0.84 -0.27+0.11 -0.64+239
Small mouth -6.58+3.24 390+248 1027+469 4.66%1.54 -3.87+189 -1.47%152
Big mouth 7824330 4.73+159 -0.15%0.07 -481+135 -149%075 0.05%0.34
Shallow 2224140 385134 1.05%056  144+046 -241+132 -0.02+0.12

Despite the apparent difficulty in uncovering the exact physical interpretation for the
differences in empirical coefficients across different categories, a couple of interesting
trends can be noted. Firstly, the contribution of electrostatic interactions to the total free
energy is relatively larger in the fully buried and partially buried categories. This could be
attributed to the differences in rewards for releasing the more trapped water molecules in
these two categories compared the relatively more freely exchangeable waters in the
remaining categories. Secondly, existence of charged groups (reflected by the formal charge
of the ligand, Q) is associated with moderate penalty in the fully buried, partially buried
and small mouth categories. In the big mouth and shallow categories, however, the
contribution of Q4 to binding free energy is nearly negligible. This could be justified by the
expected higher cost for removing charges from bulk solvent to the protein interior in the
former three categories, while in the latter two categories the formal charge could interact
with the solvent to some extent. It is also noteworthy that the contribution of electrostatic
interactions to the binding free energy is roughly similar to those of vdW interactions,
which is in agreement with the JA model reported by Hill and Reilly (2008) on an expanded
carbohydrate data set, which disagrees, however, with the free-energy model reported
earlier by Laederach and Reilly (2003) on the smaller dataset.
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1.4.7 Final remarks

14.7.1 Other free-energy models

Several empirical free-energy models exhibited comparable prediction accuracy to the
Glide-based GA1 free-energy model. Three exemplary models are briefly discussed here,
MMFF-based GA2 model (Table I-12), OPLS-based GA3 model (Table I-13), and MM /GBSA-
based GA4 model (Table I-14). Changing the potential energy function used to calculate
non-bonded interactions only slightly decreased model performance in most of the cases.
The MMFF-based model performed slightly better than the OPLS-based model. On the other
hand, the MM /GBSA-based model (using the largest number of descriptors) exhibited the
lowest quality in comparison to the former two.

Model GA2
— MMFF MMFF MMFF non—polar
_AGbind - ClECoul + CZEvdw + C3Esolvation + C4SASAburied +
polar
CSSASAburied + C6Nrot + C7Ninonized groups

Table 1-12: Results of statistical validation for the GA2 free-energy model. See the remarks below
Table I-9 for description of column headings.

Category N rz RMSE MUE 4100 q1ko y-scrambling
Fully buried 62 0.61 1.32 1.09 0.44 0.43 -0.15 (-0.48,0.18)
Partially buried 44 0.74 1.32 1.07 0.62 0.60 -0.07 (-0.47,0.34)
Small mouth 37 0.67 1.33 1.11 0.45 0.43 -0.32 (-0.80,0.11)
Big mouth 54 0.64 1.67 1.33 0.50 0.47 -0.05 (-0.43,0.34)
Shallow 73 0.79 1.12 0.88 0.73 0.70 -0.21 (-0.49,0.07)
Pooled 270 0.70 1.35 1.08 0.55 0.53 n/a
Uncategorized 270 0.21 2.23 1.72 0.10 0.10 n/a
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Model GA3

— OPLS OPLS OPLS non—polar
_AGbind - ClECoul + CZEvdw + C3Esolvation + C4SASAburied +

polar
CSSASAburied + ¢6Nyot + €7 Ninonizea groups

Table 1-13: Results of statistical validation for the GA3 free-energy model. See the remarks below
Table I-9 for description of column headings.

Category N rz RMSE MUE 4100 q1ko y-scrambling
Fully buried 61 0.57 1.37 1.09 0.44 0.42 -0.18 (-0.48,0.14)
Partially buried 44 0.67 1.56 1.30 0.54 0.52 0.11 (-0.51,0.36)
Small mouth 37 0.71 1.25 0.99 0.56 0.55 -0.27 (-0.87,0.35)
Big mouth 54 0.74 1.40 1.12 0.63 0.61 -0.08 (-0.40,0.26)
Shallow 73 0.79 1.10 0.91 0.73 0.72 -0.26 (-0.57,0.15)
Pooled 269 0.70 1.33 1.07 0.58 0.56 N/A
Uncategorized 269 0.11 2.35 1.78 0.02 0.01 N/A
Model GA4
_ MM /GBSA MM /GBSA MM /GBSA MM /GBSA
—AGping = ClAGCovalent + CZAGCoul + C3AGvdW + C4AGPacking +
MM /GBSA MM /GBSA MM /GBSA
C5AGSelfCont + C6AGLipo + C7AGsolvation +
non—polar polar
CSSASAH_bond + C9SASAburied + ClONrot + C11Ninonized groups

Table 1-14: Results of statistical validation for the GA4 free-energy model. See the remarks below
Table I-9 for description of column headings.

Category N rz RMSE MUE 4100 q1ko y-scrambling
Fully buried 61 0.67 1.22 1.04 0.46 0.42 -0.12 (-0.47,0.19)
Partially buried 44 0.65 1.64 1.35 0.21 0.12 0.05 (-0.33,0.49)
Small mouth 37 0.74 1.11 0.94 0.48 0.41 0.13 (-0.51,0.59)
Big mouth 54 0.64 1.68 1.28 0.34 0.30 0.06 (-0.23,0.45)
Shallow 74 0.79 1.13 0.92 0.64 0.61 -0.09 (-0.46,0.24)
Pooled 270 0.69 1.36 1.09 0.43 0.37 N/A
Uncategorized 270 0.07 2.43 1.88 -0.07 -0.07 N/A

14.7.2 Influence of molecular dynamics simulations

In reality molecules are not static, and interesting macroscopic quantities such as binding
free energies are in fact ensemble averages over a large number of microstates. In principle,
efficient sampling of the phase space of the carbohydrate-protein system is necessary to
build a realistic model thereof. To account for their configurational flexibility, the studied
systems were subjected to 5.0 ns molecular dynamics simulations. Snapshots were taken at
fixed time intervals from the MD trajectory and used to calculate dynamically averaged
(4D) interactions. Fluctuations in non-bonded interaction energies from three different
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methods (MMFF and OPLS non-bonded interactions and the MM/GBSA AG estimates) were
calculated as the coefficient of variations, i.e. standard deviation divided by mean, along the
MD trajectory of each system. Figure I-36 shows the distribution of dynamic fluctuations in
the values (from the three methods) in carbohydrate-protein complexes grouped according
to binding site topological categories. Expectedly, ligands bound in buried binding sites
(fully-buried and partially-buried categories) exhibited smaller fluctuations in the
calculated interaction energies along MD simulations than ligands in relatively more
exposed sites (small-, big-mouth, and shallow categories).
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Figure I-36: Distribution of dynamic fluctuations of interaction energies calculated by three different
methods (MMFF and OPLS non-bonded interactions and MM/GBSA AG estimates) within binding-
site categories of the studied carbohydrate data set. Dynamic fluctuations are represented as
coefficient of variation of the calculated values in the extracted MD frames for each complex. Median
indicated by black bar, average indicated by the (x) marker. Boxes indicate the first (25%) and third
(75%) quartiles. Whiskers plotted at 1.5 * interquartile range, roughly encompassing 99.7% of the
data (mean * 30). Circles represent individual outliers larger than the upper/lower whiskers.
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To investigate the significance of the dynamic nature of carbohydrate-protein interactions,
energy terms in GA2, GA3, and GA4 models were replaced by their corresponding molecular
dynamics-derived averages. Subsequently, prediction accuracy of the resulting models
GA2d, GA3d, and GA4d were evaluated and compared to the corresponding static models
(Table I-15).

Model GA2d

—pol
—AGping = C1<E£/(I)A1§fF>MD + C2<EII)\/1111\\:IVFF>MD + C3<E%%I$ion>MD + C4SASAn0n PR

buried
polar
C55ASA + C6NTOt + C7Ninonized groups

buried
Model GA3d
—pol
~AGping = C1{ECoui Yup + C2{Epaw Yup + C3{Eqpivation)mp + CaSASAL T +
l
CSSASAng%:d + C6Nrot + C7Ninonized groups
Model GA4d
MM /GBSA MM /GBSA MM /GBSA
MM /GBSA MM /GBSA MM /GBSA
C4<AGPacl£ing >MD + C5<AGSelf/Cont >MD + C6<AGLipo/ >MD +
MM /GBSA —pol l
C7 <AGsolv{u:ion >MD + CSSASATI?IO—TZOZZL(; “ + C9SASAIIZZT‘§Zd +

CloNrot + CllNinonized groups

Table I-15: Comparison of the performance of models using static interaction energies (GAZ2, 3, and
4) to models using average interaction energies from MD simulations (GA2d, 3d, and 4d). The
values given here represent the pooled performance of the evaluated models in the five topological
categories. Column headings are described in the remarks below Table I-9.

Model N r? RMSE MUE %100 q1ko
GA2 270 0.70 1.35 1.08 0.55 0.53
GA2d 270 0.47 1.83 1.40 0.17 0.12
GA3 269 0.70 1.33 1.07 0.58 0.56
GA3d 269 0.45 1.87 1.47 0.13 0.08
GA4 270 0.69 1.36 1.09 0.43 0.37
GA4d 270 0.48 1.80 1.37 <-1 <-1

According to the results shown in Table I-15, using dynamic averages of interaction
energies instead of the values calculated from a fixed geometry had a negative impact on
the prediction quality of the free-energy models. Although this result seems counter-
intuitive, it is not without precedence. Studies comparing static and MD-based free energy
predictions using MM /GBSA (Hou, et al., 2011a) and MM/PBSA (Hou, et al., 2011a; Kuhn, et
al, 2005) reached similar conclusions. It was even observed that in some ligand-protein
systems, such as neuraminidase, the predictions based on relatively short MD simulations
are slightly better than those based on longer MD simulations (Hou, et al, 2011a).
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Genheden and Ryde (Genheden and Ryde, 2010) suggested that the observed drop in
prediction accuracy upon using MD averages could be caused by the relatively large var-
iations in the free-energy components among snapshots from MD simulations (Gohlke and
Case, 2004; Pearlman, 2005; Stoica et al., 2008). According to an analysis by Genheden and
Ryde, to achieve accuracy in the range of experimental results and draw statistically
significant conclusions, a substantially larger number of energy calculations might be
necessary (Genheden and Ryde, 2010). According to their calculations, 400-22,500 separate
energy calculations are required rather than 10-200, which are traditionally employed.
They also indicated that MD simulations runs of 10 ns are too short to achieve good
convergence.

MD averages in this study were calculated from 25 snapshots extracted from 5 ns long MD
simulations, clearly below the recommended (and rather impractical) ranges. It might be
important to point out that MD simulations in explicit solvent for the 316 complexes
studied in this work required a total of 56’564 CPU hours (6.5 CPU years on a single core).
Fortunately, however, the MD simulations were performed on an in-house cluster compris-
ing 96 processors. Indeed, if it were not for the availability of sufficient computational
resources and the use of parallel computing, the MD simulations used in this study would
not have been finished within the time frame of the study itself. From the application
perspective, the use of relatively long MD simulations is quite impractical: on average, MD
simulation for a single carbohydrate-protein system (5 ns) requires 179 hours to finish on
a single 3.0 GHz processor. In the light of these results, MD simulations of reasonable length
do not seem to offer any real advantage in binding-affinity predictions. They are more likely
to just introduce counter-productive fluctuations in the calculated interaction energies, not
to mention adding a long and unnecessary computational time. MD simulations lengths
necessary to achieve acceptable accuracy and convergence are simply too computationally
expensive for use in lead optimization or database screening applications.

14.7.3 Application to external test set

To further test the predictive power of the GA1 model, it was applied to an external test set
comprising 106 mannose-based ligands whose binding affinities to bacterial FimH adhesin
were experimentally determined in our group (Eid, et al, 2013). Results of the external
validation were, however, unsatisfactory (Figure [-37). Although the p? calculated with
respect to the training set variance was 0.64, this value is not an accurate indication of the
true predictive power of the GA1 model. Conversely, the value of p? calculated with respect
to the smaller variance in the test set was 0.0 only. This disparity is a result of the larger
number of complexes and the narrow range of affinities of the test set ligands in
comparison to the training set. It could be argued, however, that despite the low p?, the
model is satisfactorily predictive in the higher affinity range of the test set molecules.
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Figure I-37: Plot of experimental binding free energy (horizontal axis) vs. free energy prediction
from the GA1 model using the regression coefficients of the big mouth category. Black and red points
represent complexes of the training set (54 carbohydrate-protein complexes in the big mouth
category) and the test set (106 FimH ligands from Eid et al. 2013), respectively. Dashed lines are
drawn at factors of 10 from the experimental value.

It is worth noting, however, that despite the inaccuracies in the absolute values of predicted
binding affinities of the training set (p? = 0.0), the scores from GA1 model showed good
correlation with experimental values (linear correlation r = 0.57). Therefore, although the
GA1 free-energy model cannot be used to predict absolute FimH binding affinities, it can
provide good ranking of a set of related lead structures, which makes it useful for lead
optimization and database mining purposes. As a final remark, the lower prediction quality
of the GA model could be justified by the fact that it was developed and optimized for a
diverse set of carbohydrate-protein complexes. It might, thus, be less capable of accurately
mapping the subtle differences in a set of very similar ligands binding to a single target,
which is indeed the case in the test set molecules. In cases where proper identification of
the finer details of ligand-protein interactions is crucial, a specifically calibrated model, e.g.
multidimensional-QSAR model (Vedani and Dobler, 2002; Vedani, et al, 2005; Vedani and
Zbinden, 1998) such as the one employed by Eid et al, would give more accurate
predictions.
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I.5. Summary and conclusion

Carbohydrates are the most abundant natural products. They are involved in a wide
spectrum of biological processes including energy production and storage, protein folding,
cell-cell communication, and modulating immune response. Moreover, some carbohydrate-
binding proteins are connected to infectious diseases both viral, e.g. DC-SIGN, and bacterial,
e.g. FimH adhesin. The discovery and functional characterization of carbohydrate-related
biomolecules over the past three decades highlighted their tremendous potential as drug
targets in numerous disease areas. However, only a limited number of carbohydrate-based
drugs have reached the market so far and carbohydrates are still considered untapped
sources for new therapeutic agents. The increasing numbers of experimentally determined
3D-structures of carbohydrate-binding proteins provide the basis for structure-based
design tools, e.g. virtual screening and de novo design, and could thereby accelerate rational
design and optimization of carbohydrate leads. Nonetheless, well-established modeling
methodologies for biomolecules, e.g. force fields, docking, scoring functions, etc.,, were
optimized for peptides, proteins and nucleic acids and relatively neglecting carbohydrates.
Thus, there is an urgent need for alternative methodologies or adaptation of current
methodologies to improve their accuracy in modeling carbohydrate-protein interactions.

Carbohydrates are generally considered to be a molecular-modeling challenge due to
certain peculiarities in their structure and the way they interact with protein targets and
water molecules. Only a handful of attempts specifically dealing with quantification of
carbohydrate-protein binding are reported. The earlier studies, however, would seem to
have two major limitations: the small size of the employed training set and the lack of an
external validation for the proposed scoring function(s). Moreover, the question of the
target-dependence of scoring functions has not yet been addressed: why is it that certain
scoring functions could predict binding affinities accurately in some protein families and
fail in others? Towards this end we gathered and refined a large and diverse data set of 316
carbohydrate-protein complexes with experimentally determined binding affinities. We
thoroughly investigated empirical formulations of structure-based descriptors with the aim
of developing a reliable scheme for prediction of binding affinities of carbohydrate-protein
associations. The investigated descriptors included non-bonded interaction energies from
MMFF (general utility) and OPLS (carbohydrate optimized) force fields, Glide score and its
components, solvation free energy from the quantum-mechanical SM8 model, the
MM/GBSA free-energy model, ligand internal strain (local and global), various entropy
estimates including the rigid-rotor harmonic-oscillator (RRHO) approximation, as well as
several solvent-accessible surface area (SASA) values covering different aspects of the
ligand-protein association process. The descriptor pool (~200 descriptors), thus, extends
across a significant portion of the potential solution space. All possible permutations of
relevant descriptors were exhaustively enumerated and the performance of the resultant
empirical functions was evaluated. To our surprise, none of the assessed functions
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satisfactorily predicted binding affinities in our data set, even functions with more than 20
terms. This was rather disappointing, since the employed pool of descriptors covered a very
wide scope of structural and energetic features. This could lead to the conclusion that the
current repertoire of structure-based properties is not sufficient for quantifying carbo-
hydrate-protein binding.

The investigation was extended under the assumption that the extent to which the
carbohydrate-binding site is in continuity with the solvent bulk is governed by its shape and
solvent accessibility. This in turn influences key parameters of the micro-environment
where the intermolecular interaction takes place, e.g. dielectric properties. In principle, the
complexity of the free energy landscape could be simplified by defining families of binding
site topologies within which the binding micro-environments are roughly identical. Such
topological classification could reduce the large and heterogeneous problem to a set of
smaller more homogenous problems, for which simple free energy formulations could be
applied. Therefore, a heuristic method was developed for allocating complexes in our data
set into non-overlapping categories based on the geometry of the carbohydrate-binding
site. The classification scheme employed in this study is based on previously reported
methods for characterization of binding site geometries and refined by visual inspection of
binding sites in the studied complexes. Carbohydrate-protein complexes were allocated to
one of five topological categories based on shape and degree of surface exposure of the
binding site: fully buried, partially buried, small-mouth groove, big-mouth groove, and
shallow.

We assessed the influence of the suggested classification scheme on the performance of
several empirical free energy functions by fitting the empirical function to each category
separately. The results clearly indicated that the independent training of the empirical free
energy functions for individual categories results in substantial improvement in prediction
accuracy. A significant proportion of evaluated empirical scoring functions (nearly 20% at
10%-outlier threshold) were capable of reproducing binding affinities of the training set
with acceptable accuracy (adjusted-r? > 0.7). This result agrees with our initial assumption:
the problem we are looking at; predicting carbohydrate-protein binding affinities, is likely a
collectively heterogeneous problem of smaller internally more homogeneous sub-problems.
The best performing free energy model (GA1 model) exhibited an overall r? of 0.69 and a
root-mean-squared-error (RMSE) of 1.36 kcal/mol in the predicted binding affinity
(corresponding to a factor of 10 in the affinity). This represents a substantial improvement
in comparison to using the same model on the entire data set, i.e. without categorization.
Variation of empirical weighting coefficient between binding site geometrical classes
reflects differences in the binding micro-environments, probably due to varying degrees of
shielding of the ligand (and binding pocket residues) from bulk solvent depending on the
shape of the binding site.

Moreover, the studied carbohydrate-protein complexes were subjected to MD simulations
to investigate the influence of using dynamic averages rather than static values for inter-
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action energy components on the accuracy of free-energy models. Models using a single
carbohydrate-protein conformation performed better than models based on averages of
multiple frames from MD trajectories. This result, albeit counterintuitive, is in agreement
with previous free energy-modeling studies reporting analogous deterioration in prediction
accuracy when MD averages were employed. This could be attributed, at least in part, to the
need for much longer simulation times to achieve reasonable sampling and convergence in
free-energy calculations. On the other hand, the proposed free-energy model (GA1 model)
showed only modest prediction accuracy when applied to an external test set of closely
related inhibitors of the bacterial FimH adhesin. This suggests that the proposed model is
better at predicting free energies when the structural and geometrical differences between
tested carbohydrate-protein complexes are large. When the structures of the ligands vary
only slightly, however, it is better to use a specifically calibrated model capable of correctly
mapping the subtle differences between the complexes, e.g. multidimensional-QSAR model.

Despite the known difficulties in calculating binding affinities for carbohydrate-protein
complexes, this study have achieved three important goals. First, a high-quality binding
affinity data set for a large and diverse collection carbohydrate-protein complexes has been
compiled and thoroughly revised. Second, we proposed a rigorous function for predicting
binding affinity from the atomic configuration of carbohydrate-protein complexes. Finally,
we propose a scheme for classification of carbohydrate-binding proteins according to the
topology and surface exposure of the binding site. Differences between the free-energy
models individually calibrated for each topological class reflect the differences in the nature
of the local binding micro-environments. Although it might be difficult to fully explain how
such differences might affect the shape of the free-energy response surface, the results of
this study show how these differences complicate the free-energy prediction problem and
demonstrate the usefulness of calibrating free-energy functions individually according to
binding-site topology and surface exposure.
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II. Simulating the binding of Lewis-type ligands to DC-SIGN

I1.1. Abstract

Dendritic cells (DCs) have the function of presenting antigens to other processing cells of
the immune system, particularly T-cells. DC-SIGN (DC-specific intercellular adhesion
molecule-3-grabbing non-integrin) is one of the major receptors on DCs involved in the
uptake of pathogens and has gained increasing interest over the last decade as it is crucially
involved in infections caused by HIV-1, Ebola virus, Mycobacterium tuberculosis, and various
other pathogens. High-mannosylated N-glycans or L-Fuc-containing trisaccharide motifs
such as the Lewis (Le) blood group antigens Le?2 and Le¥, which are surface components of
these microorganisms, mediate binding to DC-SIGN.

Crystallographic data for DC-SIGN in complex with a Le*-containing pentasaccharide
suggest that the terminal sugar residues, L-Fuc and D-Gal, are predominantly involved in
binding. We elucidated the interaction of DC-SIGN with Le? and Le* bearing two different
aglycones. Binding assays together with STD NMR analysis, molecular modeling and
mutagenesis studies revealed distinct binding modes dependent on the nature of the
aglycone.

Introduction of phenyl aglycones at the Le trisaccharides offers the establishment of an
additional hydrophobic contact with Phe313 in the binding site of DC-SIGN, which entails a
switch of the binding mode. Based on this information a new series of DC-SIGN antagonists
can be designed.

The work in this section was done in collaboration with Katharina
Mayer, Meike Scharenberg, Katrin Lemme, Arjan Odedra, Brian
Cutting, Said Rabbani, Angelo Vedani, and Beat Ernst.

At the time of writing this thesis, the manuscript was in the final
reviewing stage and was ready for submission.
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I1.2. Introduction

Immature dendritic cells (DCs), found in peripheral tissues throughout the body, play an
essential role in triggering the immune response as they are antigen-presenting cells (Hart
et al, 1997; Banchereau and Steinman, 1998). DCs recognize and capture a broad variety of
pathogens including viruses (Geijtenbeek et al., 2000a), bacteria (Geijtenbeek et al, 2003),
and yeasts (Cambi et al, 2003) by pathogen recognition receptors (PRRs). Pathogen uptake
by PRRs as well as inflammatory cytokines and chemokines (e.g. IL-4) trigger DC
differentiation and migration to the lymphoid organs where the mature DCs present
pathogenic peptides on the major histocompatibility complex (MHC) to resting T cells.

Dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) is
one of the main receptors on DCs for recognition and uptake of pathogens. Since its first
discovery by Geijtenbeek et al. in 2000 DC-SIGN gained popularity, particularly because a
variety of pathogens exploit DC-SIGN to infect their host, including HIV, Ebola virus, and
SARS (Geijtenbeek et al., 2000b; Alvarez, 2002; Marzi et al, 2004). The fact that different
pathogens have capitalized on this infection strategy makes DC-SIGN an interesting target
for a new class of anti-infectives (Anderluh et al, 2012). In a study on the binding and
transfer of HIV in human rectal mucosa cells, DC-SIGN* cells accounted for more than 90%
of bound viruses although they represented only 1-5% of the total mucosal mononuclear
cells. Furthermore, anti-DC-SIGN antibodies blocked more than 90% of HIV binding
(Gurney et al., 2005).

DC-SIGN is a type II transmembrane protein with a C-terminal carbohydrate recognition
domain (CRD). It is part of the C-type lectin family, which implies that ligand binding is Ca?*-
dependent. The majority of pathogens bind with N-linked high-mannose oligosaccharides to
DC-SIGN (Feinberg et al., 2001; van Kooyk and Geijtenbeek, 2003), e.g. mannan structures
on the gp120 envelope protein of HIV-1 (Geijtenbeek et al., 2000b; Hong et al, 2002).
Besides oligomannosides, L-Fuc-containing blood group antigens, such as Lewis* (Le¥,
GalB(1-4)[Fuca(1-3)]GlcNAc) and Lewis? (Le?, Galf(1-3)[Fuca(1-4)]GIcNAc) that are also
commonly found on pathogens, are recognized by DC-SIGN (Van Die et al. 2002; 2003,
Appelmelk et al., 2003; Naarding et al, 2005). Le* and Le? bind to DC-SIGN in the low
millimolar range, with Le2 exhibiting a slightly higher binding affinity than Le* (Timpano et
al, 2008; van Liempt et al., 2006). Since pathogens present these rather low-affinity sugar
motives in a multimeric form to the DC-SIGN tetramers, high binding avidities are observed
(Mitchell et al., 2001; Feinberg et al., 2005).
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Figure II-1: A) X-ray of LNFP III/CRD of DC-SIGN (PDB 1SL5).22 The equatorial 3-OH and the axial 4-
OH of L-Fuc coordinate the calcium ion. The interaction of 4-OH with Glu358 is mediated by a water
molecule. The 6-OH of D-galactose forms a H-bond with Asp367 which on its part is stabilized by an
interaction with Lys373. B) X-ray of Mans [Mana(1-6)[Mana(1-3)]Mana(1-6)Man]/CRD of DC-SIGN
(PDB 1SL4) (Feinberg et al., 2001; Guo et al., 2004). The calcium ion is coordinated by the equatorial
3-OH and the equatorial 4-OH of the terminal o(1-3)-linked D-Man. In addition, a hydrophobic
contact of the terminal a(1-6)-linked D-Man further stabilizes the interaction.

\

Crystallographic data (PDB: 1SL5) (Guo et al., 2004) obtained from the CRD of DC-SIGN co-
crystallized with lacto-N-fucopentaose III (LNFP III, GalB(1-4)[Fuca(1-3)]GlcNAcB(1-
3)GalB(1-4)Glc) suggest that the equatorial 3- and axial 4-OH of the L-Fuc moiety coordinate
the calcium ion (Figure II-1A). For the 4-OH of the D-Gal moiety a water-bridged H-bond
with Glu358 is proposed. In addition, a H-bond of 6-OH of D-Gal to Lys373, bridged by
Asp367 is assumed (Guo et al, 2004). For the CRD of DC-SIGN co-crystallized with
oligomannosides (Mans and GlcNAczMans3) a comparable binding mode was obtained where
the equatorial 3- and 4-OH of the o(1-3)-linked D-Man moiety complex the calcium ion
(Figure 1I-1B). In addition, Mans (PDB 1SL4) addresses a second binding site lined by
Phe313, contributing to selectivity as well as affinity (Feinberg et al., 2001; Guo et al., 2004).
Only recently, Bernardi et al. took advantage of this additional hydrophobic contact for their
design of glycomimetic DC-SIGN antagonists (Obermajer et al., 2010; Andreini et al., 2011).

In our program directed to the identification of high-affinity DC-SIGN antagonists, a large
library of carbohydrates and mimetics thereof was screened. One interesting finding was
the unexpectedly improved affinity discovered for Le* and Le? antigens with aromatic
aglycones (—3,4) compared to the corresponding methyl glycosides (—1,2). When these
derivatives adopt a binding mode similar to LNFP III (Guo et al, 2004), the aglycones
should point to the solvent and therefore not contribute to binding. To clarify whether a
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modified binding mode is responsible for the increased affinity, the binding epitopes of the
Le? and Lex derivatives 1-4 were analyzed by STD NMR and docking studies.
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I1.3. Results and discussion

I1.3.1 Binding Affinities for Lewis Structures

For the determination of the affinities of methyl Le* (1), methyl Le? (2), phenyl Lex (3) and
phenyl Le? (4) (Table II-1) a cell-free competitive binding was developed. It is based on the
competition of a biotinylated polyacrylamide glycopolymer (Gal3(1-3)[Fuca(1-4)]GlcNAcp-
polyacrylamide, Le2-PAA) and the ligand of interest for the CRD of DC-SIGN. A soluble
recombinant protein consisting of the DC-SIGN CRD-Fc (amino acid residues 250-404) was
expressed in CHO-K1 cells and purified by affinity chromatography (protein A- and L-Fuc-
sepharose column). For the determination of ICso values, a microtiter plate coated with DC-
SIGN CRD-Fc was incubated with biotinylated Le2-PAA polymer conjugated to streptavidin-
horseradish peroxidase and the DC-SIGN antagonist in a serial dilution. The assay was
performed in duplicates and repeated three times for each compound. To ensure
comparability of different ligands, the reference compound L-Fuc was tested in parallel on
each individual microtiter plate.

Table II-1: The cell-free competitive binding assay is based on the competition of a biotinylated Lea-

PAA with the antagonist of interest for the CRD of DC-SIGN. The assay was performed in duplicates

and repeated three times for each compound. To ensure comparability of different ligands, the

reference compound L-Fuc was tested in parallel on each individual microtiter plate. ITC

experiments were performed at 25 °C. Thermodynamic parameters were calculated according to
the equation AG = RTInKp = AH - TAS; n.d. not determined.

Ligand Cf)ml')etitive Isoth?rmal titration
binding assay, ICso calorimetry, Kp

D-Man 9.1 +1.3mM n.d.

L-Fuc 7.6 £2.6 mM n.d.

Methyl Lex (methyl GalB(1-4)[Fuca(1-3)]BGIlcNAc) (1) 2.3+0.1 mM n.d.

Methyl Le2 (methyl GalB(1-3)[Fuca(1-4)]BGIcNAc) (2) 2.9+0.5mM n.d.

Phenyl Lex (phenyl Gal(1-4)[Fuca(1-3)]BGIlcNAc) (3) 1.2+ 0.5 mM n.d.

Phenyl Lea (phenyl Gal(1-3)[Fuca(1-4)]BGIlcNAc) (4) 0.9 £0.3 mM 582 + 40 uM

L-Fuc and D-Man were used as reference compounds showing ICso values of 7.6 mM and 9.1
mM, respectively. These affinities correlate well with published data (Mitchell et al. 2001).
Phenyl Lex (3) (ICso 1.2 mM) and phenyl Le2 (4) (ICso 0.9 mM) showed a two- to threefold
increase in affinity compared to corresponding methyl derivatives [IC50 2.3 mM for methyl
Lex (1) and 2.9 mM for methyl Le? (2)]. For phenyl Le? (4), the best antagonist in this series,
we also performed isothermal titration calorimetry (ITC) experiments. The Kp of 582 uM
for phenyl Le? (4) confirms the results of the polymer binding assay with affinity in the high
micromolar range. As observed for the majority of carbohydrate-lectin interactions (Toone,
1994; Ambrosi et al., 2005; Dam and Brewer, 2002), the binding is enthalpy driven (AH = -
28.0 2.0 kJ/mol, TAS = - 9.5 = 2.1 k] /mol).
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When the Le*- and Le2-motifs bind comparable to LNFP III (Guo et al.,, 2004), only the L-Fuc
and D-Gal moiety participate in binding, whereas the D-GlcNAc moiety as well as the
aglycone point to the solvent. Therefore, the observed beneficial effect of the aromatic
aglycone was unexpected.

I1.3.2 Saturation Transfer Difference (STD) NMR Analysis

For the interpretation of the unexpected higher affinities correlated with the phenyl
aglycone of antagonists 3 and 4, the binding epitopes of the Le2 and Le* derivatives were
characterized by STD NMR (Figure II-2A-D), which is particularly suited for epitope
mapping of ligand receptor couples with weak interactions (Mayer and Meyer, 1999; Meyer
and Peters, 2003; Mayer and Meyer, 2001; Haselhorst et al, 2009). STD NMR experiments
are based on spin magnetization transfer from a macromolecule, the protein, to a smaller
binding molecule, the ligand. The saturation transfer proceeds through space via dipolar
coupling and is therewith dependent on the distance (r-°¢) of ligand hydrogens to the
protein surface.
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Figure II-2: Binding epitopes of the Lewis antigens 1-4 interacting with DC-SIGN CRD-Fc determined
by STD NMR. The contribution of each hydrogen to the STD epitope is quantified by forming the ratio
of the signal intensities in the STD to those in the reference spectrum. These values are normalized
to H-6 of L-Fuc (in red, 100%) to give the percentage epitope. STD values greater than 100%
represent proximity to DC-SIGN CRD-Fc closer than that of the H-6 of L-Fuc. The letter size used for
the hydrogens expresses the proximity to the protein, i.e. the relative amount of saturation transfer.
The STD epitope for methyl Lex (1) is consistent with recently published data with respect to
experimental accuracy (Guzzi et al. 2011). Further details regarding the percentage epitope, sample
preparation and parameters for the STD NMR measurement are available in the experimental
section.

In the STD NMR analysis significantly higher STD values for the aromatic hydrogens (3 and
4, Figure 1I-2C&D) compared to the methyl groups (in 1 and 2, Figure 1I-2A&B) were found.
This clearly indicates spatial proximity of the aromatic aglycones to DC-SIGN. However, a
comparison of the binding epitopes reveals further differences going beyond aglycones. For
the D-GIcNAc moieties of methyl Lex (1) and Le? (2) the maximal STD values for ring
hydrogens are smaller than for H-6 of L-Fuc (up to 75%), whereas for the phenyl
derivatives 3 and 4 the values reach up to 165%. Especially for phenyl Le2 (4), and to a
lesser extend for phenyl Lex (3), high STD values (80-220%) are equally distributed over
the entire structure. In contrast, for methyl Le* (1), methyl Le2 (2) high STD values are
predominantly located on the L-Fuc moiety. The latter finding corresponds with X-ray data
when the Le*-containing LNFP III is co-crystallized with DC-SIGN (Guo et al, 2004),
indicating the dominant role of the L-Fuc moiety in these binding epitopes.
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I1.3.3 Molecular Modeling Studies

Overall, the correlation of increased affinity with the presence of aromatic aglycones as well
as the STD NMR data suggest a spatial proximity of the phenyl substituent to DC-SIGN. This
is in contrast to the structural information deduced from the co-crystallization of LNFP III
with the CRD of DC-SIGN (Guo et al, 2004). For a possible solution of this riddle, docking
studies were initiated. The crystal structure 1SL5 (Guo et al, 2004) was used as starting
point for the docking studies. The replacement of the internal D-Gal moiety in LNFP III by a
methyl aglycone [LNFP III — methyl Lex (1)] is not expected to have a significant influence
on its binding mode as indicated by the small STD value of the aglycone in 1 (Figure 1I-2A).
In addition, the proximity of the N-acetyl of the D-GlcNAc moiety to Val351 as proposed by
the crystal structure (inter-proton distance of 2.5 A) (Guo et al, 2004) is reflected by the
increased STD value.

Automated docking of methyl Le* (1) positions the Le* subunit in close agreement (RMSD
0.7A) with its orientation in the crystal structure (Guo et al., 2004) as shown in Figure II-3A.
In the docking pose of methyl Le? (2), on the other hand, the D-GlcNAc residue is flipped
along its C1-05 axis, thereby positioning L-Fuc moiety similar to the LNFP III crystal
structure. Calcium coordination and H-bond network to L-Fuc are thus maintained (Figure
3B). In this new orientation D-Gal can establish the same characteristic H-bond to Asp367
as well. However, N-acetyl group of D-GIcNAc no longer forms a hydrophobic contact with
Val351 but with Phe313 instead, with a much longer inter-proton distance of ~ 4.5 A. This
is in good agreement with the lower intensity of the STD NMR signal of the N-acetyl group
of GlcNAc in methyl Le? (2, Figure 1I-2B).
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Figure II-3: A) Docking modes of methyl Lex (1) and B) methyl Lea (2). Contacts between the N-acetyl
groups and closest protein residues are highlighted with double-headed arrows.
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A binding mode for phenyl Lex (3) where the Le* subunit adopts an analogous orientation to
LNFP III (Figure II-1A) is inconsistent with the significant saturation transfer observed for
the aromatic protons, since the aglycone would point to the solvent with no close contacts
to the protein (Figure 1I-4A). The top-ranked pose from Glide XP induced-fit docking (Glide,
version 5.7, Schrodinger, LLC, New York, NY, 2011) presents an alternative pose where the
ligand lies “flat” on the receptor and the phenyl aglycone makes a close contact with a
hydrophobic cavity formed by the side chains of Phe313 and Leu371 (Figure 11-4B). This
docking pose perfectly explains the large STD values of the aromatic protons of phenyl Le*
(3, Figure 1I-2C), indicating a close proximity to DC-SIGN.

A ? B
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Figure I1-4: A) When phenyl Lex (3) binds to DC-SIGN in a manner comparable to methyl Lex (2)
(Figure 1I-3A) and LNFP III (Figure II-1A), the phenyl aglycone points to the solvent (black arrow),
not exhibiting an apparent protein contact. B) The induced-fit docking pose for phenyl Le* (3) shows
an interaction of the phenyl aglycone with the hydrophobic cleft formed by Phe313 and Leu371,
rationalizing the strong aromatic proton signals in STD NMR.

Leu371
Lys373

Because of smaller overlaps of the resonances in the TH-NMR spectrum of phenyl Le? (4), its
STD NMR analysis is more detailed. The automated docking pose of phenyl Le?2 (Figure I1-5)
is similar to phenyl Lex (3) where L-Fuc coordinates to Ca?* via the two equatorial hydroxyl
groups at the 2- and 3-position. In addition, H-bonds from 2-OH to both Glu354 and Asn365
and between 3-OH and Glu347 are formed. The D-Gal moiety lies close to the primary
binding site forming two H-bonds from 6-OH to Glu347 and from 2-OH to Ser360 (not
shown). The phenyl aglycone occupies the same hydrophobic pocket (Phe313 and Leu371)
as phenyl Lex (3) (Figure 1I-4B), rationalizing the large STD values for the aromatic protons
(Figure 1I-2D). Moreover, D-GIcNAc also interacts via a H-bond between its 6-OH and
Asp367, which in turn bridges this H-bond to Lys373. In the proposed orientation, the D-
GlcNAc moiety of phenyl Le? (4) is in closer contact with the receptor compared to methyl
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Le2 (2) (Figure II-3B), which explains the observed larger STD values for the D-GIcNAc

protons.
! ’ 3‘ L-Fuc
Phe313 =}

Caz*

d

|Glu354

D-GIcNAc

2.0
GQW
Lys373 Leu371

Figure II-5: Binding mode of phenyl Le2 (4) to DC-SIGN. Binding of the phenyl aglycone in the
hydrophobic cleft formed by Phe313 and Leu371 and proximity of the D-GlcNAc moiety to protein
surface coincides with the measured STD NMR values (Figure 2D).

Dynamic stability of this novel binding mode was confirmed by molecular dynamics (MD)
simulation. Analysis of MD trajectories revealed that the interactions of phenyl Le? (4) with
key residues in the DC-SIGN binding site were maintained throughout the simulation
(Figure I1-6A). Particularly, the favorable interaction of phenyl Le2 with Phe313 was stable
during the simulated time span (Figure II-6B). Despite the alteration in binding mode in
comparison to the crystal structure of LNFP III, the Ca?* coordination via Fuc-0O2 and Fuc-
03 of phenyl Le? (4) is of comparable stability as reflected by the variation in the distance
between Ca2* and its two coordinating oxygens (Figure II-6C&6D). Additionally, throughout
the MD simulation all protons of the phenyl in phenyl Le2 exhibited one or more contacts
with a proton from a nearby protein residue, consistent with the observed STD signals
(Figure 11-7).
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Figure II-6: Results of molecular dynamics simulations. A) average interaction energies between
phenyl Le?2 (4) and some binding site residues during a 6 ns MD simulation, standard deviations are
indicated by error bars. B) time evolution of interaction energy between phenyl Le2 and Phe313
residue throughout the MD simulation. C) and D) time evolution of the distances between Ca2* and L-
Fuc oxygens (20, 30, 40) along MD simulations starting from LNFP III (in 1SL5 crystal structure) and

the docking mode of phenyl Le?, respectively. The third (non-Ca%*-coordinating) oxygen is shown for
comparison.
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Figure II-7: Time evolution of inter-proton distance between each of the phenyl protons of phenyl
Le? (4) and the closest proton of neighboring protein side chains in a 6 ns MD simulation.
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11.3.4 Mutagenesis Studies

To further confirm the proposed hydrophobic interaction between Phe313 and the
aromatic aglycone, the known DC-SIGN CRD F313A (Guo et al, 2004) was expressed and
the binding affinities for methyl Le2 (2) and phenyl Le? (4) were determined. Table II-2
summarizes the results of the competitive binding assay with wild type and mutant
DC-SIGN CRD. L-Fuc was included as reference compound. The F313A mutation should not
have an impact on binding affinity of L-Fuc since the monosaccharide is assumed to bind
exclusively in the primary binding site (Guo et al,, 2004). However, L-Fuc showed a lower
ICso value for the mutant protein (ICso 3.9 mM) than for the wild type (ICso 7.6 mM). This
can be explained by the lower affinity of Le2-PAA for the F313A mutant, reflected by the
ECso value (Table II-2). For a better comparison we state relative 1Cso values (rICso) with L-
Fuc as reference (Table II-2).

Table II-2: Results of the competitive binding assay for L-Fuc, methyl Le2 (2), and phenyl Le2 (4)
with wild type and mutant DC-SIGN. The observed differences in the absolute inhibitory potencies
between wild type and mutant are due to different binding affinities to Le2-PAA reflected by a
higher ECso value (half maximal effective concentration) in case of the mutant protein. The rICso
values of methyl Le2 (2) and phenyl Le2 (4) with L-Fuc as reference were determined by dividing
the respective ICso values by the ICso of L-Fuc; a value below 1 resembles higher affinity than L-Fuc.
Detailed information on protein expression and competitive binding assay is given in the
experimental section.

Ligand D'C-SIGN DC-SIGN
wild type F313A mutant

ECso Lea-PAA 669 +0.3ng/ml 111.2+0.2ng/ml

rlCso L-Fuc 1 1

rICso methyl Le2 (2)  0.38 0.46

rICso phenyl Le2 (4) 0.12 0.43

Factor of 2 to 4 3.2 1.1

In Figure II-8, inhibition curves for methyl Le? (2) and phenyl Le? (4) with wild type and
mutant DC-SIGN CRD-Fc are shown. Graph A visualizes the aforementioned difference in
binding affinity of methyl Le2 (2) and phenyl Le? (4) to wild type DC-SIGN (factor 3.2). In
contrast, both compounds exhibited near identical binding affinities (factor 1.1, Figure II-
8B) for the F131A mutant, which indicates the omission of the beneficial hydrophobic
contact of Phe313 with the phenyl aglycone.
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Figure II-8: Inhibition curves for methyl Le2 (2) and phenyl Le2 (4) obtained from the competitive
binding assay, with (A) wild type DC-SIGN and (B) F313A mutant.
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I1.4. Conclusions

STD NMR spectroscopy and molecular modeling supplemented with a protein mutation
study were used to rationalize diverging binding modes of Le2 and Le* antigens to DC-SIGN
induced by the nature of the aglycone. The originally found improved binding affinity of
phenyl Lex (3) and phenyl Le? (4) indicated a contribution of the phenyl aglycone to
binding, presumably by a hydrophobic contact with the protein. Strong STD NMR values
further confirmed this assumption. Docking and MD studies finally revealed a favorable
interaction of the phenyl aglycone with a hydrophobic pocket formed by Phe313 and
Leu371. With a single-point mutation of the DC-SIGN CRD the proposed interactions of the
phenyl aglycone of 4 with Phe313 could be verified.

Here, we report an interesting example, illustrating how flexible binding modes on shallow
protein surfaces can be, especially when the starting affinity is low, a situation often present
in carbohydrate-lectin interactions. Therefore, improved affinities induced by structural
modifications should be carefully analyzed regarding possible reorientations of binding
modes. STD NMR experiments (Mayer and Meyer, 1999; Meyer and Peters, 2003) represent
an excellent tool for this endeavor.

Based on the new binding mode of phenyl Lex (3) and phenyl Le? (4), the interaction within
the hydrophobic pocket formed by Phe313 and Leu371 provides a promising rational for
the design of more potent DC-SIGN antagonists. Therewith, our findings support recent
approaches from other researches with the objection of using this interaction for the design
of glycomimetic DC-SIGN ligands (Andreini, 2011).

Our findings that introduction of a hydrophobic moiety at Lewis trisaccharides induces a
switch in the binding mode in order to establish an additional contact with the protein
demonstrates the value of this interaction. In fact, recently Bernardi et al. made use of this
interaction for the design of glycomimetic DC-SIGN antagonists (Andreini, 2011).
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I1.5. Experimental section

IL.5.1 Ligands

Methyl Lex (1) and methyl Le? (2) were purchased from Toronto Research Chemicals Inc.
Phenyl Lex (3) was prepared according to Su et al. (2009) and phenyl Le? (4) was prepared
using standard procedures.

11.5.2 Cloning of DC-SIGN CRD-IgG(Fc)

Plasmids containing the full-length cDNA of DC-SIGN were kindly provided by Daniel A.
Mitchell (Glycobiology Institute, Department of Biochemistry, University of Oxford).
Standard molecular techniques (Sambrook et al, 1989) were used for the cloning of the
carbohydrate recognition domain of DC-SIGN (DC-SIGN CRD; aa residues 250-404, GenBank
accession no. M98457). The DC-SIGN CRD encoding insert was amplified by PCR using
specific forward and reverse primers containing the restriction sites EcoRI and Ncol (New
England BioLabs, Allschwil, Switzerland), respectively. The insert was ligated into the
corresponding cloning site of the pFUSE-hIgG2-Fc2 expression vector (Invivogen, Toulouse,
France). The construct was amplified in chemocompetent DH5« E. coli (Novagen, Lucerne,
Switzerland). After plasmid minipreparation and restriction control, the construct
correctness was confirmed by DNA sequencing.

11.5.3 Expression and purification of DC-SIGN CRD-Fc

CHO-K1 cells (American Type Culture Collection No. CCL-61™) were cultivated in Ham’s
Nutrient Mixture F-12 (Invitrogen, Paisley, UK) supplemented with 2 mM L-glutamate, 10%
fetal calf serum (FCS, Invitrogen, Paisley, UK), 100 U/mL penicillin, and 100 pg/mL
streptomycin (Sigma-Aldrich, Basel, Switzerland). The cells were cultivated as monolayers
in tissue culture flasks (Nunc, Roskilde, Denmark). The CHO-K1 cells were transfected with
the DC-SIGN CRD expression vector using the FUGENE® HD transfection reagent (Roche
Applied Science, Rotkreuz, Switzerland) following to the instructions of the supplier. Stably
transfected CHO-K1 cells were selected by treatment with Zeocin™ (0.5 pg/ml, Invitrogen,
Paisley, UK) and single clones were obtained by limiting dilution. For DC-SIGN CRD-Fc
production the cells were cultivated as described above and the culture medium, containing
the secreted DC-SIGN CRD-Fc chimera was harvested weekly, adjusted to pH 7.6 and sterile
filtrated (conditioned medium).

The purification of the recombinant protein was achieved by applying conditioned medium
on a protein A-sepharose column (BioVision, Mountain View, CA, USA) attached to a fast
protein liquid chromatography apparatus (BioLogic (FPLC) system, BioRad, Reinach BL,

141



Switzerland), which was previously equilibrated with loading buffer I (20 mM Tris/HCI, pH
7.6, 150 mM NacCl, 0.05% (v/v) Tween-20T™). The protein was eluted with elution buffer I
(0.5 M acetic acid/ammonium acetate, pH 3.4). The collected protein was further purified
on a L-Fuc-sepharose column (prepared in house) using loading buffer II (20 mM Tris/HCI,
pH 7.8, 0.5 M NaCl, 25 mM CaClz) and elution buffer I (20 mM Tris/HCI, pH 7.8, 0.5 M Nac(l,
2 mM EDTA). For long-term storage, the protein was frozen at -80 °C.

I1.5.4 Cloning of the F313A DC-SIGN CRD mutant

The PCR overlap extension method (Ho et al. 1989) was used for the substitution of the
codon TTC against CGC at cDNA bp 968-970, resulting in the mutation of phenyl alanine 313
to an alanine. In a first step, two overlapping DNA fragments were generated separately,
both using wild type DC-SIGN cDNA as template (PCR 1: primer fw: 5° g gaa ttc cat atg gaa
cgc ctg tge cac ccc 3° and primer F313A rv: 5°tcc aga agt aac cgc gcg acc tgg atg gga 3°; PCR
2: primer F313A fw: 5'aag tcc cat cca ggt cgc gcg gtt act tct 3° and primer rv: 5° cgc gga tcc
tta cta cgc agg agg ggg gtt tgg g 3°). The two internal primers contained a mismatch for the
site-directed base substitution (bold). In a second step, both overlapping DNA fragments
were elongated to the full-length gene, containing the single point mutation. The Ndel and
BamHI (New England BioLabs, Allschwil, Switzerland) treated insert was ligated into the
corresponding cloning site of the expression vector pET-3a. After E.coli DH5a
transformation, plasmid minipreparation, the mutation was confirmed by DNA sequencing.
Finally, for protein expression the construct was transformed into BL21 E.coli (Novagen,
Lucerne, Switzerland).

11.5.5 Expression and purification of F313A DC-SIGN CRD mutant

Protein expression was carried out in TB medium (terrific broth) containing 100 pg/mL
ampicillin (Applichem, Darmstadt, Germany). The bacteria were cultured at 37 °C until an
ODsoo of 1.0 was reached. The expression was induced by the addition of isopropyl-f-D-
thiogalactoside (IPTG, Applichem, Darmstadt, Germany) at the final concentration of 0.4
mM. The cells were further cultivated for 12 h, prior to harvesting by centrifugation at 4000
rpm for 20 min at 4 °C. For bacterial lysis, the pellet was dissolved in 20 mM Tris-HCl buffer,
pH 7.8, 0.5 M Na(l, containing 1 mg/mL lysozym (Sigma, Buchs, Switzerland) and incubated
for 30 min at 4 °C under shaking. The inclusion bodies were solubilized by addition of -
mercaptoethanol (0.01 % v/v), urea (8 M), and brief sonication followed by gentle rotation
for 30 min at 4 °C. The mixture was centrifuged at 22000 rpm for 1 h at 4°C and the
supernatant was diluted by slow addition of the fivefold volume loading buffer II. The
mixture was dialyzed against 6 volumes of loading buffer Il with 6 buffer exchanges. After
dialysis, insoluble precipitate was removed by centrifugation at 22000 rpm for 1 h at 4°C.
The protein was purified using a L-Fuc-sepharose column as described above.
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Protein purity was confirmed by standard SDS-PAGE analysis (Laemmli 1970) followed by
Coomassie Brilliant Blue G-250 staining (Bio-Rad laboratories, Hercules, CA, USA). Protein
concentration was determined either by the Bradford method (Bio-Rad laboratories,
Hercules, CA, USA) or with HPLC (Bitsch et al., 2003).

I1.5.6 Competitive binding assay

Biotinylated Le2-PAA polymer (20 pL, 1 mg/mL, GlycoTech, Gaithersburg, MD, USA) was
mixed with 80 uL assay buffer (20 mM HEPES, 150 mM NaCl, 10 mM CaClz, pH 7.4), 20 uL
FCS and 80 uL streptavidin-horseradish peroxidase-conjugate (500 U/mL, Roche,
Mannheim, Germany) and incubated for 2 h at 37 °C. The complex was stable for several
weeks when stored at 4 °C.

Flat-bottom 96-well microtiter plates (F96 MaxiSorp, Nunc) were coated with 100 pL/well
of a 2.5 pg/mL solution of DC-SIGN CRD-Fc protein in assay buffer overnight at 4 °C in a
humidified chamber. The coating solution was discarded and the wells were blocked with
200 pL/well of 3% bovine serum albumin (BSA, Sigma-Aldrich, Buchs, Germany) in assay
buffer for 2 h at 4 °C. After three washing steps with assay buffer (150 puL/well), a serial
dilution of the test compound (25 pL/well) in assay buffer and streptavidin-peroxidase
coupled Le2-PAA (25 pL/well, 0.25 pg/mL final concentration) were added. Subsequent to
an incubation of 3 h at room temperature and 350 rpm the plate was carefully washed four
times with 200 pL/well assay buffer. Le2-PAA binding was detected by addition of 100
uL/well of ABTS-substrate (2,2’-azino-bis-(3-ethylbenzthiazoline-6-sulfonic  acid,
Invitrogen, Paisley, UK). The colorimetric reaction was allowed to develop for 2 min, then
stopped by the addition of 2% aqueous oxalic acid before the optical density (OD) was
measured at 415 nm on a microplate-reader (Spectramax 190, Molecular Devices, Ca, USA).
The ICso-values were calculated using the Prism software (GraphPad Software, Inc, La Jolla,
USA). The ICso (half maximal inhibitory concentration) defines the molar concentration of
the test compound that reduces the maximal specific binding of carbohydrate-polymer to
DC-SIGN-CRD-Fc by 50%.

For ECso determination (half maximal effective concentration) of the Lea-PAA, the assay was
performed as described above with a serial dilution of Lea-PAA (0-3 pg/mL) in absence of
antagonist.

I1.5.7 Isothermal titration Calorimetry

ITC experiments were performed at 298 K and a reference power of 10 pcal/sec under
constant stirring speed of 307 rpm using a MicroCal VP-ITC instrument (MicroCal,
Northampton, MA). The concentration of DC-SIGN CRD-Fc was determined by HPLC-UV
against a standard curve of BSA at 210 nm (Bitsch et al, 2003) after extensive dialysis
against 10 mM HEPES, 150 mM NacCl, 10 mM CaClp, pH 7.4. The ligand was diluted in the
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dialysat. Injections of 3-5 pl ligand solutions were added from a syringe at an interval of 5
min into the sample cell solution containing DC-SIGN CRD-Fc (cell volume 1.4523 ml).
Control experiments were performed, where identical ligand solutions were injected into
buffer without protein, and showed insignificant heat of dilution. The experimental data
were fitted to a theoretical titration curve (one site binding model) using Origin software
(version 7, MicroCal). The quantity c=Mt(0)/Kp with Mt(0) as initial macromolecule
concentration, is of importance in titration microcalorimetry (Wiseman et al, 1989). The
experiments were performed with c values below 1. The stoichiometry was fixed to 1
(concentration expressed in terms of binding site) to allow reliable determination of Kp and
AH (Turnbull and Daranas, 2003; Tellinghuisen, 2008). Thermodynamic parameters were
calculated from the following equation,

AG° = AH° — TAS° = —RTInK, = RTInK,

where AG®, AH®, and AS° are the changes in free energy, enthalpy, and entropy of binding,
respectively. T is the absolute temperature, and R = 8.314 ] /mol/K.

I1.5.8 STD NMR

Experiments were performed on a Bruker 11.7 T spectrometer with an Avance III console
at a temperature of 298 K. Shigemi NMR tubes with a sample volume of 250 uL. were used
for the measurements. Each sample contained 20-30 uM DC-SIGN CRD-Fc (dimer) and 1-
2 mM ligand. A d-Tris buffer was used as solvent containing 20 mM d-TRIS (98% Cambridge
Isotope Libraries), 4 mM CaCl; and 150 mM NaCl in D20 (99.8% Sigma-Aldrich) adjusted to
a pH of 8.1 with HCL

Using a pulse sequence modified from Mayer and Meyer (1999) allows simultaneous
saturation of the protein at two frequencies, which leads to a more intense STD epitope. The
cosine modulated E-Burp-1 pulse (Geen et al. 1989) for the on-resonance spectrum was
centered at 1555 Hz and resulted in two sidebands at 0 and 3110 Hz with a power of 53 dB
(Cutting et al.,, 2007). The duration of each of the 40 E-Burp-1 pulses used to saturate the
protein was 50 ms with a 1 ms recovery between the pulses.

Off-resonance excitation was set to 26000 Hz. STD NMR experiments were performed
applying a Watergate solvent suppression. Specific parameters were determined via
preliminary experiments including negative control experiments with only ligand-
containing sample to avoid artifacts from direct excitation. Scaling each STD signal on an
off-resonance reference spectrum resulted in a relative binding epitope (Mayer and Meyer,
2001). Ligand resonances were assigned by using 2D NMR and 1D selective TOCSY
experiments. Not all protons could be assigned doubtlessly, due to solvent suppression and
partial signal overlap.

Detailed conditions: STD NMR of methyl-bearing compounds: 2 mM ligand with 20 uM
DC-SIGN CRD-Fc, STD NMR of phenyl Le2: 1mM ligand with 20 uM DC-SIGN CRD-Fc,
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STD NMR of phenyl Lex: 1 mM with 30 uM DC-SIGN CRD-Fc; number of scans was typically
14k for on-resonance spectra and 512 for off-resonance spectra.

Experiments with different saturation times were performed for phenyl Le2 These data
indicate an overall consistent epitope at either saturation times of 0.7, 1, 2, and 3 s and
exclude misinterpretation due to T1 bias for different proton species.

IL.5.9 Molecular Modeling

All ligands were manually built using Maestro (Maestro, version 9.2, Schrodinger, LLC, New
York, NY, 2011), and optimized using standard procedures. Model for DC-SIGN in complex
with LNFP III was downloaded from the Protein Data Bank (code: 1SL5). Hydrogens were
added and water molecules were removed using Maestro Protein Preparation Wizard.
Partial charges were calculated from OPLS2005 force field while protonation states and
oxidation states for metals were assigned by Epik (Shelley et al, 2007). Orientation of
added hydrogens was sampled for optimal H-bond formation and the model was then
refined by minimization within RMSD of 0.3A.

GlideXP (version 5.7, Schrodinger, LLC, New York, NY, 2011) was used for docking of novel
ligands to DC-SIGN. To account for the possibility of side chain re-organization upon ligand
binding the Induced-Fit Docking (IFD) methodology was employed (Sherman et al., 2006).
The binding site was defined to include residues within 5 A radius around the co-
crystallized ligand LNFP III in the prepared complex. In the initial stages of IFD protocol
amino acids within 5 A radius around any found pose were considered as flexible, and their
side chain conformations were optimized. Up to 50 poses were retained for each calculation
within an energy window of 40 kcal/mol to allow for larger diversity in output poses.
Prioritization was done by Standard Precision (SP) (Friesner et al., 2004) scoring function
in the initial soft-docking stage followed by more rigorous Extra Precision (XP) (Friesner et
al, 2006) scoring in the redocking stage. Output poses were then visually inspected for
agreement with STD NMR experiment, and those showing considerable discrepancy were
disregarded.

Stability of the proposed modes was assessed using molecular dynamics. Docking poses and
crystal structure (PDB 1SL5) were used as a starting point for 6 ns MD simulations using
Desmond package from D. E. Shaw Research lab (Bowers et al., 2006). The protein-ligand
complex was soaked in an orthorhombic TIP3P water box extending 10 A away from the
complex. Counter-ions were added to make it neutral and 0.15 M sodium and chloride ions
were added to approximate physiological conditions. The complex was then minimized to a
convergence threshold of 1.0 kcal/mol/A. MD experiments were carried out using the
OPLS2005 force field and the NPT ensemble (constant number of particles, pressure and
temperature) at 300 K with periodic boundary conditions. Default parameters were used
and snapshots recorded every 1.2 ps. Output files were analyzed using component-
interactions script in Maestro to compute interaction energies between the ligand and
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individual amino acids defining the binding site as well as the conserved calcium along the
MD simulations. Interaction energies were computed as the sum of OPLS2005 Van der
Waals and electrostatic terms.

146



I1.6. Acknowledgements

The authors gratefully acknowledge the financial support by the Swiss National Science
Foundation (grant no.) and by GlycoMimetics Inc., Gaithersburg, MD, USA.

I.7. References

Alvarez, C. P. (2002). J. Virol, 76, 6841-6844.
Ambrosi, M.; Cameron, N. R.; Davis, B. G. (2005). Org. Biomol. Chem., 3, 1593-1608.
Anderluh, M;; Jug, G.; Svajger, U.; Obermajer, N. (2012). Curr. Med. Chem., 19, 992-1007.

Andreini, M.; Doknic, D.; Sutkeviciute, I.; Reina, ]. ]J.; Duan, J.; Chabrol, E.; Thepaut, M,;
Moroni, E.; Doro, F.; Belvisi, L.; Weiser, ].; Rojo, ].; Fieschi, F.; Bernardi, A. (2011). Org.
Biomol. Chem., 9, 5778-5786.

Appelmelk, B. J.; van Die, I,; van Vliet, S.; Vandenbroucke-Grauls, C.; Geijtenbeek, T.; van
Kooyk, Y. (2003). J. Immunol., 170, 1635-1639.

Banchereau, J.; Steinman, R. M. (1998). Nature, 392, 245-252.

Bitsch, F.; Aichholz, R.; Kallen, J.; Geisse, S.; Fournier, B.; Schlaeppi, J.-M. (2003). Anal
Biochem., 323, 139-149.

Cambi, A.; Gijzen, K.; de Vries, ]. M.; Torensma, R.; Joosten, B.; Adema, G. J.; Netea, M. G.;
Kullberg, B. ].; Romani, L.; Figdor, C. G. (2003). Eur. J. Inmunol., 33, 532-538.

Cutting, B.; Shelke, S. V.; Dragic, Z.; Wagner, B.; Gathje, H.; Kelm, S.; Ernst, B. (2007). Magn.
Reson. Chem., 45, 720-724.

Dam, T. K;; Brewer, C. F. (2002). Chem. Rev., 102, 387-429.
Feinberg, H.; Mitchell, D. A.; Drickamer, K.; Weis, W. 1. (2001). Science, 294, 2163-2166.

Feinberg, H.; Guo, Y.; Mitchell, D. A.; Drickamer, K.; Weis, W. 1. (2005). J. Biol. Chem., 280,
1327-1335.

Friesner, R. A,; Banks, ]. L.; Murphy, R. B.; Halgren, T. A;; Klicic, J. ].; Mainz, D. T.; Repasky, M.
P.; Knoll, E. H.; Shelley, M.; Perry, ]. K;; Shaw, D. E.; Francis, P.; Shenkin, P. S. (2004). J.
Med. Chem., 47,1739-1749.

Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R,; Halgren, T. A.;
Sanschagrin, P. C.; Mainz, D. T. (2006). J. Med. Chem., 49, 6177-6196.

Geen, H.; Wimperis, S.; Freeman, R. (1989). J. of Magn. Reson., 85, 620-627.

Geijtenbeek, T. B. H.; Torensma, R.; van Vliet, S. ].; van Duijnhoven, G. C. F.; Adema, G. ].; van
Kooyk, Y.; Figdor, C. G. (2000a). Cell, 100, 575-585.

147



Geijtenbeek, T. B. H.; Kwon, D. S.; Torensma, R. ; van Vliet, S. J.; van Duijnhoven, G. C. F.;
Middel, J.; Cornelissen, I.; Nottet, H.; KewalRamani, V. N.; Littman, D. R.; Figdor, C. G.;
van Kooyk, Y. (2000b). Cell, 100, 587-597.

Geijtenbeek, T. B. H.; van Vliet, S. ].; Koppel, E. A.; Sanchez-Hernandez, M.; Vandenbroucke-
Grauls, C.; Appelmelk, B.; van Kooyk, Y. (2003). J. Exp. Med., 197, 7-17.

Guo, Y.; Feinberg, H.; Conroy, E.; Mitchell, D.; Alvarez, R.; Blixt, O.; Taylor, M.; Weis, W. L,
Drickamer, K. (2004). Nat. Struct. Mol. Biol., 11, 591-598.

Gurney, K. B. ; Elliott, J.; Nassanian, H.; Song, C.; Soilleux, E.; McGowan, I.; Anton, P. A.; Lee, B.
(2005).J. Virol., 79,5762-5773.

Guzzi, C.; Angulo, J.; Doro, F.; Reina, J. J.; Thepaut, M.; Fieschi, F.; Bernardi, A.; Rojo, ].; Nieto,
P.M. (2011). Org. Biomol. Chem., 9, 7705-7712.

Hart, D. N. J,; Clark, G. ].; Dekker, ]. W.; Fearnley, D. B.; Kato, M.; Hock, B. D., McLellan, A. D.;
Neil, T.; Sorg, R. V., Sorg, U.; Summers, K. L.; Vuckovic, S. (1997). Dendritic Cells in
Fundamental and Clinical Immunology, Vol 3,417, 439-442.

Haselhorst, T.; Lamerz, A.-C.; von Itzstein, M. (2009). Methods Mol Biol, 534, 375-387.

Ho, S. N.; Hunt, H. D.; Horton, R. M.; Pullen, J. K; Bell, M. P.; McKean, D. |.; Pease, L. R. (1989).
FASEB]., 3, A519.

Hong, P. W.; Flummerfelt, K. B.; de Parseval, A.; Gurney, K; Elder, J. H.; Lee, B. (2002). J.
Virol., 76, 12855-12865.

Bowers, K. ].; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.; Klepeis, ]. L.;
Kolossvary, 1.; Moraes, M. A.; Sacerdoti, F. D.; Salmon, J. K,; Shan, Y.; Shaw, D. E.
(2006). Scalable algorithms for molecular dynamics simulations on commodity
clusters, in Proceedings of the 2006 ACM/IEEE conference on Supercomputing, ACM,
Tampa, Florida, p. 84.

Laemmli, U. K. (1970). Nature, 227, 680-685.

Marzi, A.; Gramberg, T.; Simmons, G.; Moller, P.; Rennekamp, A. J.; Krumbiegel, M.; Geier, M.;
Eisemann, J.; Turza, N.; Saunier, B.; Steinkasserer, A.; Becker, S.; Bates, P.; Hofmann,
H.; Pohlmann, S. (2004). J. Virol, 78, 12090-12095.

Mayer, M. ; Meyer, B. (1999). Angew. Chem.,, Int. Ed., 38, 1784-1788.

Mayer, M.; Meyer, B. (2001). J. Am. Chem. Soc., 123(25), 6108-6117.

Meyer, B.; Peters, T. (2003). Angew. Chem., Int. Ed., 42, 864-890.

Mitchell, D. A.; Fadden, A. ].; Drickamer, K. (2001). J. Biol. Chem., 276, 28939-28945.

Naarding, M. A.; Ludwig, I. S.; Groot, F.; Berkhout, B.; Geijtenbeek, T. B. H.; Pollakis, G.;
Paxton, W. A. (2005). J. Clin. Invest., 115, 3256-3264.

148



Obermajer, N.; Sattin, S.; Colombo, C.; Bruno, M,; gvajger, U.; Anderluh, M.; Bernardi, A.
(2010). Mol. Diversity, 1-14.

Sambrook, J.; Fritsch, E. F.; Maniatis, T. (1989). Cold Spring Harbor Laboratory Press, NY.

Shelley, J. C.; Cholleti, A.; Frye, L. L.; Greenwood, J. R.; Timlin, M. R.; Uchimaya, M. (2007). J.
Comput.-Aided Mol. Des., 21, 681-691.

Sherman, W.; Day, T.; Jacobson, M. P.; Friesner, R. A;; Farid, R. (2006). J. Med. Chem., 49, 534-
553.

Su, Z.; Wagner, B.; Cocinero, E. ].; Ernst, B.; Simons, J. P. (2009). Chem. Phys. Lett., 477, 365-
368.

Tellinghuisen, J. (2008). Anal. Biochem., 373, 395-397.

Timpano, G.; Tabarani, G.; Anderluh, M.; Invernizzi, D.; Vasile, F.; Potenza, D.; Nieto, P. M,;
Rojo, ].; Fieschi, F.; Bernardi, A. (2008). ChemBioChem, 9, 1921-1930.

Toone, E. ]. (1994). Curr. Opin. Struct. Biol., 4, 719-728.
Turnbull, W. B.; Daranas, A. H. (2003). J. Am. Chem. Soc., 125, 14859-14866.

Van Die, I.; Van Vliet, S. J.; Schiphorst, W.; Bank, C. M. C,; Appelmelk, B.; Nyame, A. K;
Cummings, R. D.; Geijtenbeek, T. B. H.; Van Kooyk, Y. (2002). Glycobiology, 12, 3.

Van Die, I.; van Vliet, S. ].; Nyame, A. K;; Cummings, R. D.; Bank, C. M. C.; Appelmelk, B,;
Geijtenbeek, T. B. H.; van Kooyk, Y. (2003). Glycobiology, 13, 471-478.

van Kooyk, Y.; Geijtenbeek, T. B. H. (2003). Nat. Rev. Immunol., 3, 697-709.

van Liempt, E.; Bank, C. M. C.; Mehta, P.; Garcia-Vallejo, ]. ].; Kawar, Z. S.; Geyer, R.; Alvarez, R.
A.; Cummings, R. D.; van Kooyk, Y.; van Die, I. (2006). FEBS Lett., 580, 6123-6131.

Wiseman, T.; Williston, S.; Brandts, J. F.; Lin, L. N. (1989). Anal. Biochem., 179, 131-137.

149






III. Developing a molecular modeling toolbox for medicinal
chemists

Abstract

In the current era of high-throughput drug discovery and development, molecular modeling
has become an indispensable tool for identifying, optimizing and prioritizing small-
molecule drug candidates. The required background in computational chemistry and the
knowledge of how to handle the complex underlying protocols, however, might keep
medicinal chemists from routinely using in silico technologies. Our objective is to encourage
those researchers to exploit existing modeling technologies more frequently through easy-
to-use graphical user interfaces. In this account, we present two innovative tools (which we
are prepared to share with academic institutions) facilitating computational tasks
commonly utilized in drug discovery and development: (1) the VirtualDesignLab estimates
the binding affinity of small molecules by simulating and quantifying their binding to the
three-dimensional structure of a target protein; and (2) the MD Client launches molecular
dynamics simulations aimed at exploring the time-dependent stability of ligand-protein
complexes and provides residue-based interaction energies. This allows medicinal chemists
to identify sites of potential improvement in their candidate molecule. As a case study, we
present the application of our tools towards the design of novel antagonists for the FimH
adhesin.

This work has been published: Eid S., Zalewski A., SmieSko M.,
Ernst B., Vedani A. Int. J. Mol. Sci. 2013; 14: 684-700.

A copy of the article is attached in Appendix 3.
A copy of the MD Client Quick Start Guide is attached in Appendix 4.
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Appendices

Appendix 1: List of carbohydrate-protein complexes

Flags Fields

(14 Overlapping anomers in crystal structure; PDBID 4-letter unique PDB accession code for
the a-anomer was used the complex

B Overlapping anomers in crystal structure; HET ID 3-letter ligand unique identifier, codes
the 3-anomer was used starting with an underscore, e.g. _NAL,

are non-standard codes

X Complex was excluded from the study; Affinity Type of experimental binding affinity
reason indicated by one of the flags (M, O, R, (Ka, Kg, Ki, or ICsp)
T) or explained in the comments column

M Multiple ligand copies in crystal structure; - AGexp Experimental Gibb’s free energy of
either the protein is polyvalent or the binding in kcal/mol, calculated from
ligand is several copies of the ligand were binding affinity using the
resolved which differ significantly in thermodynamic master equation:
orientation and/or conformation AGexp = RTInK

0 High molecular weight ligand (> 1000 Res. Resolution of the crystal structure in A
Dalton)

T Missing important atoms Mol. Wt. Molecular weight of the ligand

R Redundant entry Formula Molecular formula of the ligand

H The ligand HET ID used by Protein Data References Original publication(s) reporting the
Bank was overwritten; either because it experimental binding affinity
was incorrect or because the ligand consists C N h . ¢
of several residue that were identified omments hotle-s ondt € stru.cture plieparatlon 0
individually in the PDB (Refer to the ; € ligan .—pr?lteln COTp X rea.son.s
Comments column for the HET ID’s of the or rejecting the complex, warnings;
constituent residues) etc.

P The ligand contains phosphate group

W  Warning; check the Comments Column
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) — — = @ -~ Protein Ligand Name Formula Reference Comments S
o o < B = 2
XM 1A0T SuUC Kd 1.8 24  Sucrose-Specific Porin Sucrose 342.3 C12H22011 Nat Struct Biol. 1998, 5(1): 37-46 Two non-overlapping sucrose binding P
Mol. Microbiol. 1995, 17: 757-767 sites, and two bound sucrose moieties with
0.7 and 0.8 occupanices
1A81  GLS Kd 7.5 1.78 Glycogen Phosphorylase B Glucopyranose Spirohydantoin 248.19  CsH12N207 Bioorg Med Chem Lett. 2008, 18: 5680-3 PDB: 1GGN has the same ligand—-protein A
Bioorg Med Chem Lett. 1999, 9: 1385-90 combination, discarded due to lower
Protein Science 1998, 7: 915-927 resolution (2.39 A)
Tetrahedron Letters 1995, 36(12): 2145-2148
a 1ABF FCA Kd 74 1.9 L-Arabinose-Binding Protein Alpha-D-Fucose 164.16  CeH120s Nature. 1989, 340(6232): 404-7 A
J Biol Chem 1983, 258 (22): 13665-72
1ADD 1DA Ki 9.2 24  Adenosine Deaminase 1-Deaza-Adenosine 266.26  C11H14N4O4 Biochemistry 1992, 31(1): 39-48 A
Biochemistry 1993, 32(7):1689-94
J Med Chem 1997, 40: 3336-3345
H 1AF6  SUC Kd 25 24  Maltoporin Sucrose 3423 C12H22011 J Memb Biol 1987, 100: 21-29 GLC+FRU A
J Mol Biol 1997, 272(1): 56-63
1AJ6  NOV Kd 81 23 Gyrase Novobiocin 612.63  C31HasN2011 Biochemistry 1997, 36(32): 9663-73
H 1ANF  MAL Kd 7.4 1.67 Maltodextrin-Binding Protein Maltose 342.3 C12H22014 Structure 1997, 5(8): 997-1015 GLC+GLC
B 1APB FCA Kd 7.9 1.76 L-Arabinose-Binding Protein Alpha-D-Fucose 164.16  CeH120s J Biol Chem 1990, 265(27):16592-16603
1AX0  A2G Ka 43 19 Lectin N-Acetyl-2-Deoxy-2-Amino- 221.21  CgH1sNOs J Biol Chem 1996, 271: 17697-17703
Galactose J Mol Biol 1998, 277: 917-932
H 1AX1  LAT Ka 45 195 Lectin Beta-Lactose 342.3 C12H22011 J Biol Chem 1996, 271: 17697-17703 GAL+BCG
J Mol Biol 1998, 277: 917-932
H 1AX2 _NAL Ka 54 195 Lectin N-Acetyl-Lactosamine 383.35  Ci14H2sNO14 J Biol Chem 1996, 271: 17697-17703 GAL+NDG
J Mol Biol 1998, 277: 917-932
1AXR HTP Ki 45 23  Glycogen Phosphorylase 4,5,6-Trihydroxy-7-Hydroxymethyl-  202.19  C7H12N3Oa4 Helv Chim Acta 1998, 81: 853-864
4,5,6,7-Tetrahydro-1H-
[1,2,3]Triazolo[1,5-A]Pyridin-8-
Ylium
B 1AXZ GAL Ka 44 195 Lectin Beta-D-Galactose 180.16  CeH1206 J Biol Chem 1996, 271: 17697-17703
J Mol Biol 1998, 277: 917-932
1B4D CRA Ki 65 2 Protein (Glycogen 1-Deoxy-1-Methoxycarbamido- 280.23  CoH16N20s Bioorg Med Chem. 2010, 18: 1171-80
Phosphorylase B) Beta-D-Gluco-2-
Heptulopyranosonamide
a 1BAP ARA Kd 9.3 1.75 L-Arabinose-Binding Protein Alpha-L-Arabinose 150.13  CsH100s J Biol Chem 1990, 265(27):16592-16603
1BB6 UMG Ka 78 2 Lysozyme Methyl-Umbellifertl-N-Acetyl- 785.76  C34Ha7N3O1s Acta Crystallogr D Biol Crystallogr. 1999, 55(Pt
Chitotriose 1): 60-6
J Biochem 1980, 87 (4): 1003-1014
1BB7 GUM Ka 57 2 Lysozyme 4-Methyl-Umbelliferyl-N-Acetyl- 582.56  C26H3aN2013 Acta Crystallogr D Biol Crystallogr. 1999, 55(Pt
Chitobiose 1): 60-6
J Biochem 1980, 87 (4): 1003-1014
1BCH NGA Ki 50 2 Mannose-Binding Protein-A N-Acetyl-D-Galactosamine 221.21  CgH1sNOs J Biol Chem. 1998, 273(31):19502-8. 2
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1BYK T6P Kd 6.8 2.5 Protein (Trehalose Operon Trehalose-6-Phosphate 422.28  C12H23014P Protein Sci. 1998, 7(12): 2511-21 A
Repressor) J Biol Chem 1997, 272(20): 13026-32
1CTT DHZ Ki 6.2 22  Cytidine Deaminase 3,4-Dihydro-1H-Pyrimidin-2-One 230.22  CoH14N20s Biochemistry 1995, 34: 4516-4523
Nucleoside Biochemistry 1989, 28(24): 9423-30
1CTU ZEB Ki 16.3 2.3  Cytidine Deaminase 4-Hydroxy-3,4-Dihydro-Zebularine  246.22  CoH14N20s Biochemistry 1995, 34: 4516-4523
Biochemistry 1989, 28(24): 9423-30
X0 1DMB BCD Kd 7.8 1.8 D-Maltodextrin Binding Protein  Beta-Cyclodextrin 1134.99  Ca42H7003s Biochemistry. 1993 Oct 12, 32(40):10553-9
J Biol Chem 1983, 258 (22): 13665-72
1DMT RDF IC50 10.3 2.1 Neutral Endopeptidase N-Alpha-L- 543.51  Caz3H34N3O10P J Med Chem. 2010, 53: 208-20 Two different IC50 values available: 2.4
Rhamnopyranosyloxy(Hydroxyphos J Mol Biol 2000, 296: 341-349 and 27 nM from the 2000 and 2010
phinyl)-L-Leucyl-L-Tryptophan articles, respectively; the most recent was
used
M 1DOG NOJ Ki 55 23  Glucoamylase-471 1-Deoxynojirimycin 163.17  CeH13NO4 Biochemistry 1993, 32: 161 The neutral form is used as reported by
Angew Chem Intel Ed Eng 1981, 20(9): 744-761 authors., although Epik suggests the
Natunvissenschaften 1979, 66(11): 584-5 doubly protonated species to be dominant
We deleted a second copy of the ligand in
what's described by authors to be a "low
affinity subsite"
1DRJ RIP Kd 10.1 2.5 D-Ribose-Binding Protein Ribose 150.13  CsH100s J Biol Chem 1994, 269(48): 30206-11
1DRK RIP Kd 93 2 D-Ribose-Binding Protein Ribose 150.13  CsH100s J Biol Chem 1994, 269(48): 30206-11
H 1E55 _DHR  Ki 56 2 Beta-Glucosidase Dhurrin 311.29  C44H17NO7 Proc Natl Acad Sci USA 2000, 97: 13555 DHR+GLC B
J Biol Chem 2000. 275: 2000220011
1E6Q NTZ Ki 43 1.35 Myrosinase Nojirimycine Tetrazole 202.17  CesH10N4O4 J Biol Chem 2000, 275: 39385
1E6S GOX Ki 4.4 1.35 Myrosinase Ma1 (28,38,4R,5R)-6-(Hydroxyamino)-  192.17  CeH12N20s J Biol Chem 2000, 275: 39385
2-(Hydroxymethyl)-2,3,4,5-
Tetrahydropyridine-3,4,5-Triol
XR 1E72  GOX Ki 44 16  Myrosinase (28,38,4R,5R)-6-(Hydroxyamino)-  192.17  CeH12N20s J Biol Chem 2000, 275: 39385 redundant, 1E6S
2-(Hydroxymethyl)-2,3,4,5-
Tetrahydropyridine-3,4,5-Triol
H 1EEF _PEPG IC50 4.0 1.8 Heat-Labile Enterotoxin B 2-Phenethyl- 7-(2,3- 44443  CzH2N20s Acta Crystallogr D Biol Crystallogr 2001, 57(Pt.  GLA+I06 G
Chain Dihydrophthalazine-1,4-Dione)- 2):201-212
Alpha-D-Galactoside
1EEI  GAA IC50 43 2 Cholera Toxin B Metanitrophenyl-Alpha-D- 301.25  C12H1sNOg Acta Crystallogr D Biol Crystallogr. 2001, 57 (Pt D
Galactoside 2):201-12.
1EFI  GAT IC50 2.6 1.6 Heat-Labile Enterotoxin B 4'-Aminophenyl-Alpha-D- 271.27  Cy2H17NOs Acta Crystallogr D Biol Crystallogr 2001, 57(Pt. D
Chain Galactopyranoside 2):201-212
1EOU SMS Kd 10.9 21 Carbonic Anhydrase I Sulfamic Acid 2,3-O-(1- 361.34  CoH15NO10S2 J Med Chem 2006, 49: 3496-500
Methylethylidene)-4,5-O-Sulfonyl-
Beta-Fructopyranose Ester
X 1EXV 700 IC50 10.0 2.4  Liver Glycogen Phosphorylase  [5-Chloro-1H-Indol-2-Carbonyl- 425.87  Cz2H20CIN3O4 Chem Biol 2000, 7: 677-682 non-carbohydrate ligand

Phenylalaninyl]-Azetidine-3-
Carboxylic Acid
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1F4X  MGS Ka 46 23 Antibody S-20-4, Fab 1,2-O-Dimethyl-4-[2,4-Dihydroxy- ~ 293.32  C12H23NO7 Proc Natl Acad Sci USA, 2000, 97(15):8433-8 H
Fragment, Heavy Chain Butyramido]-4,6-Dideoxy-Alpha-D-
Mannopyranoside
1F8B  DAN Ki 74 1.8  Neuraminidase 2-Deoxy-2,3-Dehydro-N-Acetyl- 291.26  C41H17NOs Protein Sci 2001, 10: 689
Neuraminic Acid Nature 1993, 363: 418
1F8C  4AM Ki 10.1 1.7 Neuraminidase 4-Amino-2-Deoxy-2,3-Dehydro-N-  290.27  C41H1sN207 Protein Sci 2001, 10: 689 Protonated state used (Epik)
Neuraminic Acid Nature 1993, 363: 418
1F8D 9AM Ki 46 1.4  Neuraminidase 9-Amino-2-Deoxy-2,3-Dehydro-N-  290.27  C11H1sN207 Protein Sci 2001, 10: 689 Protonated state used (Epik)
Acetyl-Neuraminic Acid Nature 1993, 363: 418
1F8E  49A Ki 6.6 1.4  Neuraminidase 4,9-Amino-2,4-Deoxy-2,3-Dehydro- 289.29  C41H19N3Os Protein Sci 2001, 10: 689 Protonated state used (Epik)
N-Acetyl-Neuraminic Acid Nature 1993, 363: 418
1FD7 Al IC50 2.5 1.8  Heat-Labile Enterotoxin B N-Benzyl-3-(Alpha-D-Galactos-1- ~ 389.4 C20H23NO7 Acta Crystallogr D Biol Crystallogr. 200, 57 (Pt D
Chain Yl)-Benzamide 2):201-12.
H 1FH7 _XDNJ Ki 7.1 1.82 Beta-1,4-Xylanase Xylobiodeoxynojirimycin 265.26  C1oH19sNO7 Biochemistry 2000, 39: 11553-63 XYP+XDN
J Am Chem Soc 2000, 122: 2223-2235 Protonated state used (Epik + article)
H 1FH8 _XIFG Ki 9.4 1.95 Beta-1,4-Xylanase 1,5-Imino-1,4,5-Trideoxy-3-O- 249.26  CyoH19NOs Biochemistry 2000, 39: 11553-63 XYP+XIF
(Beta-D-Xylopyran- Osyl)-D-Threo- J Am Chem Soc 2000, 122: 2223-2235 Protonated state used (Epik + article)
Pentitol
H 1FH9 _XLOX Ki 8.8 1.72 Beta-1,4-Xylanase D-Xylobiono-(Z)-Hydroximo-1,5- 294.26  C1oH1sN20s Biochemistry 2000, 39: 11553-63 XYP+LOX
Lactam J Am Chem Soc 2000, 122: 2223-2235 Protonated state used (Epik + article)
H 1FHD _XXIM  Ki 9.3 1.9 Beta-1,4-Xylanase (6R,7S,8S)-7,8-Dihydroxy-6-(Beta- 302.28  C12H18N207 Biochemistry 2000, 39: 11553-63 XYP+XIM
D-Xylopyranosyloxy)-5,6,7,8-Tet- J Am Chem Soc 2000, 122: 2223-2235 Protonated state used (Epik + article)
Rahydroimidazo[1,2-A]Pyridine
1FU8 CR6 Ki 4.8 235 Glycogen Phosphorylase 1-Deoxy-1-Acetylamino-Beta-D- 264.23  CoH16N207 Proteins 2005, 61: 966-983
Gluco-2-Heptulopyranosonamide Bioorg Med Chem. 2010, 18: 1171-80
M 1GA8 DEL Ki 24 2 Galactosyl Transferase Lgtc 4-Deoxylactose 326.3 C12H22010 Nat Struct Biol 2001, 8(2):166-75 Two carbohydrate ligands with known
binding affinities under this PDB code
M 1GA8 UPF Ki 78 2 Galactosyl Transferase Lgtc Uridine-5'-Diphosphate-2-Deoxy-2- 568.3 C15H23FN2016P2  Nat Struct Biol 2001, 8(2):166-75 Two carbohydrate ligands with known
Fluorogalactose binding affinities under this PDB code
1GAH ACR Kd 164 2 Glucoamylase-471 Alpha-Acarbose 645.61  Cz5HasNOss Biochemistry. 1996, 35(25): 8319-28 Three complexes of acarbose with
Carbohyd Res 1992, 227: 29-44 glucoamylase are available; 1AGM (2.3A),
J Biol Chem 1994, 269: 15631-9 1LF9 (2.2A), and 1GAH (2.0A)
Protonated state of acarbose (NH2+) is
used as suggested by Epik and described
in article
1GAl  GAC Ki 10.9 1.7  Glucoamylase-471 Dihydro-Acarbose 647.63  CzsHasNO1s Biochemistry 1996, 35(25): 8319-28 Protonated state (NH2+) suggested by
Epik
1GCA GAL Ki 9.1 1.7  Glucose/Galactose-Binding Beta-D-Galactose 180.16  CeH1206 J Mol Biol 1993, 233(4): 739-52
Protein
1GG8 GLG Ki 4.7 231 Protein (Glycogen Alpha-D-Glucopyranosyl-2- 207.18  C7H13NOs Biochemistry 1994, 33(19): 5745-58
Phosphorylase) Carboxylic Acid Amide
1GPY G6P Kd 6.3 24  Glycogen Phosphorylase B Alpha-D-Glucose-6-Phosphate 260.14  CesH1309P J Mol Biol 1993, 232(1): 253-67
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H 1GX4 _NAL Kd 4.4 1.48 N-Acetyllactosaminide Alpha-  N-Acetyl-Lactosamine 383.35  Ci14H2sNO14 J Biol Chem 2002, 277: 28310-28318 GAL+NAG
1,3-Galactosyltransferase
1GYM MYG IC50 3.7 2.2  Phosphatidylinositol-Specific Glucosaminyl-(Alpha-6)-D-Myo- 341.31  C12H23NO1o Biochemistry 1996, 35(29):9496-504 Protonated form (NH3+) suggested by
Phospholipase C Inositol Epik
H 1GZ9 _FLAC Ka 4.8 1.7  Erythrina Crista-Galli Lectin 2'-Alpha-L-Fucosyllactose 488.44  CigH32015 J Mol Biol 2002, 321(1): 69-83 FUC+LAT
1GZC LAT Ka 4.8 1.58 Erythrina Crista-Galli Lectin Beta-Lactose 342.3 C12H22014 J Mol Biol 2002, 321(1): 69-83
1GZT FUC Ka 7.1 1.3  Fucose-Specific Lectin Alpha-L-Fucose 164.16  CeH120s Proteins 2005, 58: 735-746 A
H 1HEW _NAG3 Ka 6.8 1.75 Hen Egg White Lysozyme Tri-N-Acetylchitotriose 627.59  C26HasN3O16 J Mol Biol 1992, 224(3): 613-28 NAG+NAG+NAG
1HLF GL4 Ki 7.7 226 Glycogen Phosphorylase 8,9,10-Trihydroxy-7- 264.25  CsH12N206S Bioorg Med Chem 2002, 10(2): 261-8
Hydroxymethyl-2-Thioxo-6-Oxa- Bioorg Med Chem Lett. 1999, 9: 1385-90
1,3-Diaza-Spiro[4.5]Decan-4-One
H 113H _2MAN Ka 6.3 1.2 Concanavalin A Alpha(1,2)-Dimannose 3423 C12H22014 J Mol Biol 2001, 310: 875-84 MAN+MAN
Biochemistry 1994, 33: 1149-56
H 1182  CBI Ka 87 1.9 Endo-14-Beta-Xylanase A Cellobiose 342.3 C12H22011 Biochemistry 2001, 40, 6248 BGC+BGC
Biochemistry 2001, 40, 6240
118A  BGC Ka 56 1.9 Endo-1,4-Beta-Xylanase A Beta-D-Glucose 180.16  CsH1206 Biochemistry 2001, 40, 6248 AB
Biochemistry 2001, 40, 6240
XTO 11GJ DGX Kd 13.6 2.5 Igg2A-Kappa 26-10 Fab (Heavy Digoxin 780.95  Cs1He4O14 Proc Natl Acad Sci USA 1993, 90(21): 10310-4  Although the missing atoms are solvent AB
Chain) exposed and not interacting with binding
site residues, they all belong to the
carbohydrate part of the glycoside digoxin
1J01  XIL Ki 88 2 Beta-1,4-Xylanase 3-Hydroxy-4-(3,4,5-Trihydroxy- 263.25  CyoH17NO7 J Am Chem Soc 2000, 122: 4229
Tetrahydro-Pyran-2-Yloxy)-
Piperidin-2-One
WT 1J8V LAM Ki 49 24  Beta-D-Glucan Glucohydrolase 4'-Nitrophenyl-S-(Beta-D- 641.6 C24H3sNO+17S Plant Cell. 2002, 14(5):1033-52
Isoenzyme Exo1 Glucopyranosyl)-(1-3)-(3-Thio-
Beta-D-Glucopyranosyl)-(1-3)-
Beta-D-Glucopyranoside
1JAC AMG Ka 6.3 243 Jacalin Alpha-Methyl-D-Galactoside 194.18  C7H1406 J Mol Biol 2003, 332: 217-228 AB
1JAK IFG Ki 7.6 1.75 Beta-N-Acetylhexosaminidase (2R,3R,4S,5R)-2-Acetamido-3,4- 204.23  CgH16N204 J Biol Chem 2001, 276: 42131-7 Protonated state (NH2+) is used as
Dihydroxy-5-Hydroxymethyl- suggested by Epik and described in article
Piperidine
141l 383 IC50 12.3 3.2  Tyrosyl-Trna Synthetase [2-Amino-3-(4-Hydroxy-Phenyl)- 413.38  C17H23N3O9 Protein Sci 2001, 10: 2008-16 Protonated state (NH3+) is used as
Propionylamino]- (2,4,5,8- suggested by Epik and described in article
Tetrahydroxy-7-Oxa-2-Aza-
Bicyclo[3.2.1]Oct-3-YI)- Acetic Acid
1JJ 629 IC50 11.6 3.2  Tyrosyl-Trna Synthetase [2-Amino-3-(4-Hydroxy-Phenyl)- 415.4 Ci7H25N309 Protein Sci 2001, 10: 2008-16 Protonated state (NH3+) is used as

Propionylamino]-(1,3,4,5-
Tetrahydroxy-4-Hydroxymethyl-
Piperidin-2-YI)- Acetic Acid

suggested by Epik and described in article
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1JIK 545 IC50 13.2 2.8  Tyrosyl-Trna Synthetase [2-Amino-3-(4-Hydroxy-Phenyl)- 4715 C21H33N3O9 Protein Sci 2001, 10: 2008-16 Protonated state (NH3+) is used as
Propionylamino]-(1,3,4,5- suggested by Epik and described in article
Tetrahydroxy-4-Hydroxymethyl-
Piperidin-2-YI1)- Acetic Acid Butyl
Ester
1JIL 485 IC50 11.4 2.2  Tyrosyl-Trna Synthetase [2-Amino-3-(4-Hydroxy-Phenyl)- 384.39  C17H24N20s Protein Sci 2001, 10: 2008-16 Protonated state (NH3+) is used as
Propionylamino]- (3,4,5-Trihydroxy- suggested by Epik and described in article
6-Methyl-Tetrahydro-Pyran-2-YI)-
Acetic Acid
H 1JLX _TDSC 1IC50 7.9 2.2  Agglutinin Benzyl T-Antigen Disaccharide 473.47  C21H31NO1 Nat Struct Biol 1997, 4(10): 779-783 GAL+A2G+MBN AB
J Biol Chem 19889, 264: 16123-16131 Ligand interacts with residues from the two
chains, ligand's copy in chain B was
deleted
1JQYy  A32 Kd 6.7 214 Heat-Labile Enterotoxin B (3-Nitro-5-(3-Morpholin-4-YI- 47146 C20H29N3O10 Chem Biol 2002, 9(2): 215-24 Ligand interacts with residues from the two DE
Chain Propylaminocarbonyl)Phenyl)- chains, ligand's copy in chain D was
Galactopyranoside deleted
1JRO  A24 Kd 6.7 1.3 Cholera Toxin B Subunit (3-Nitro-5-(2-Morpholin-4-YI- 457.44  Cy9H27N30O10 Chem Biol 2002, 9(2): 215-24 Ligand interacts with residues from the two DE
Ethylaminocarbonyl)Phenyl)- chains, ligand's copy in chain D was
Galactopyranoside deleted
XM 1JZ7  GAL Ki 0.5 1.5 Beta-Galactosidase Beta-D-Galactose 180.16  CsH1206 Biochemistry 2001, 40(49): 14781-94 Multiple ligand copies, substantially
different in binding poses
Complex of intermediates along interaction
coordinates
H 1JZN  LAT Ki 56 2.2  Galactose-Specific Lectin Beta-Lactose 3423 C12H22014 Biochemistry 2004, 43: 3783-92 BGC+GAL A
1JZS MRC Ki 9.0 25 Isoleucyl-Trna Synthetase Mupirocin 500.63  C26H4409 J Biol Chem 2001, 276(50): 47387-93
M 1K06 BZD Ki 7.3 1.8  Glycogen Phosphorylase N-Benzoyl-N'-Beta-D- 326.3 C14H1sN207 Bioorg Med Chem 2009, 17: 4773-85 Two ligand copies, one in the catalytic site
Glucopyranosyl Urea Eur J Biochem 2002, 269 :1684-96 and the other in a "new" allosteric site (cf.
1KTI)
Affinity measurement pertains to the
allosteric inhibition, thus the former copy
was deleted
1K1Y ACR Ki 44 24  4-Alpha-Glucanotransferase Alpha-Acarbose 645.61  Cz5HasNO1s J Biol Chem 2003, 278(21): 19378-86 A
HM 1K7T _NGGA Ka 54 24  Agglutinin Isolectin 3 Glcnac-Beta-1,6-Gal 383.35  Ci14H2sNO14 Biochim Biophys Acta 2002, 1569: 10-20 NAG+GAL AB
Ligand copy in chain B deleted
HM 1K7U _2NAG Ka 53 22  Agglutinin Isolectin 3 Glcnac-Beta-1,4-Glcnac 424.4 C16H25N2011 Biochim Biophys Acta 2002, 1569: 10-20 NAG+NAG AB
Ligand copy in chain B deleted
1KTI  AZC Ki 4.7 1.97 Glycogen Phosphorylase, N-Acetyl-N'-Beta-D-Glucopyranosyl 264.23  CoH1sN207 Bioorg Med Chem 2009, 17: 4773-85 Unlike 1K06, only one resolved ligand in
Muscle Form Urea Eur J Biochem 2002, 269 :1684-96 the "new" allosteric site, to which the
affinity measurement is ascribed
1KZN CBN Ka 122 2.3  Dna Gyrase Subunit B Clorobiocin 697.14  Ca3sH37CLN2011  Biochemistry 2002, 41(23): 7217-23 Neutral form used as indicated in article,

although Epik suggested the deportonated
form
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HWM 1LAX MAL Kd 7.8 1.85 Maltose-Binding Protein Mutant Maltose 342.3 C12H22011 Protein Sci 2003, 12(3): 577-85 GLC+GLC
Male31
H 1LZB _NAGT Kd 6.7 1.5 Hen Egg White Lysozyme Tri-N-Acetylchitotriose 627.59  C24H41N3O16 J Mol Biol. 1995 Mar 24, 247(2):281-93. NAG+NAG+NAG
1M01  NAG Kd 34 21 Beta-N-Acetylhexosaminidase ~ N-Acetyl-D-Glucosamine 221.21  CgH1sNOs J Biol Chem 2002, 277(42):40055-65
H 1M26 _TANT Ka 6.9 1.62 Jacalin (6R,7S,8S)-7,8-Dihydroxy-6-(Beta- 383.35  C14H25NO11 J Mol Biol 2003, 332: 217-228 GAL+A2G AB
D-Xylopyranosyloxy)-5,6,7,8-Tet-
Rahydroimidazo[1,2-A]Pyridine
1M6P  M6P Kd 7.0 1.8 Cation-Dependent Mannose-6- Alpha-D-Mannose-6-Phosphate 260.14  CgsH1309P Cell 1998, 93(4): 639-48 A
Phosphate Receptor J Biol Chem 1989, 264(14): 7962-9
iMOQ GLP Ki 4.7 1.57 Glucosamine 6-Phosphate Glucosamine 6-Phosphate 259.15  CeH14aNOgP Structure 1998, 6(8): 1047-55 Protonated amino group suggested by
Synthase Biochemistry 1988, 27(7): 2282-7 Epik making an extra H-bond, used
IN3W  MAL Kd 95 26  Maltose-Binding Periplasmic Maltose 342.3 C12H22011 J Biol Chem 2003, 278(36): 34555-67
Protein
M 1NAA ABL Ki 49 1.8 Cellobiose Dehydrogenase (2R,3R,4R,5R)-4,5-Dihydroxy-2- 339.3 C12H21NO1o J Biol Chem 2003, 278(9): 7160-6 Ligand copy in chain B was not deleted AB
(Hydroxymethyl)-6-Oxopiperidin-3-
Y| Beta-D-Glucopyranoside
INF3 GNP Kd 10.0 21 G25K Gtp-Binding Protein, Phosphoaminophosphonic Acid- 522.2 C1oH17NeO13P3  EMBO J 2003, 22: 1125-33 A
Placental Isoform Guanylate Ester
M 1IN GET Ki 2.9 245 Ornithine Decarboxylase Geneticin 496.56  C20H10NsO10 J Biol Chem 2003, 278: 22037-43 Copies of the two ligands (GET and ORX) AB
in chain B were deleted
Epik suggested a state with a total charge
of +3, used
XM 1NJJ  ORX Kd 4.9 245 Ornithine Decarboxylase N~2~-((3-Hydroxy-2-Methyl-5- 363.3 C13H22N307P J Biol Chem 2003, 278: 22037-43 non-carbohydrate ligand
[(Phosphonooxy)Methyl]Pyridin-4-
YI)Methyl)-D-Ornithine
INOI  NTZ Ki 5.8 25  Glycogen Phosphorylase Nojirimycine Tetrazole 202.17  CsH10N4O4 Biochemistry 1996, 35: 7341-55 A
1NOJ NTZ Ki 5.8 24  Glycogen Phosphorylase Nojirimycine Tetrazole 202.17  CsH10N4O4 Biochemistry 1996, 35: 7341-55
INOK NTZ Ki 43 24  Glycogen Phosphorylase Nojirimycine Tetrazole 202.17  CsH10N4O4 Biochemistry 1996, 35: 7341-55
XMH 1INPL _MAN2 Ka 37 2 Protein (Agglutinin) Alpha-1,3 Mannobiose 356.32  Ci3H24011 J Mol Biol 1999, 290(1): 185-99 MAN+MAN
Multiple ligand binding sites
1070 LAT Kd 3.5 1.97 N-Acetyllactosaminide Alpha-  Beta-Lactose 3423 C12H22011 Biochemistry 2003, 42(46): 13512-21 A
1,3-Galactosyltransferase
X 109V SNG Ka 50 1.75 F17-Ag Lectin Methyl 2-Acetamido-1,2-Dideoxy-1- 298.2 CoH17NOsSe Mol Microbiol 2003, 49: 705-15 Atom-type problem: ligand is a seleno-
Seleno-Beta-D-Glucopyranoside glycoside
109W NAG Ka 4.0 165 F17-Ag Lectin N-Acetyl-D-Glucosamine 221.21  CgH1sNOs Mol Microbiol 2003, 49: 705-15
H 10CQ _GIFG Ki 7.1 1.08 Endoglucanase 5A Glc-Beta(1,4)-Ifg 309.31  Cy2H23NOs J Am Chem Soc 2003, 125: 7496-7 IFM+BGC

Protonated state (NH2+) used as
suggested by Epik and described in article
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XMH 10D8 _XIF2 Ki 6.9 1.05 Endo-1,4-Beta-Xylanase A (3S,4R)-3-Hydroxy-4- 263.24  C1oH17NO7 Chem Commun (Camb). 2003 (8): 944-5 XYP+XDL
(((2S,3R,4S,5R)-3,4,5- Two ligand molecules bound in two
Trihydroxytetrahydro-2H-Pyran-2- adjacent subsites
Y1)Oxy)Piperidin-2-One
XM 10FZ FUL Kd 6.3 1.5 Fucose-Specific Lectin Beta-L-Fucose 164.16  CeH120s J Biol Chem. 2003, 278(29): 27059-67
10GD RIP Kd 4.1 1.95 High Affinity Ribose Transport  Ribose(Pyranose Form) 150.13  CsH100s J Biol Chem 2003, 278(30): 28173-80 A
Protein Rbsd
10IF IFM Kd 9.8 212 Beta-Glucosidase 5-Hydroxymethyl-3,4- 14717  CeH13NO3 J Am Chem Soc 2003, 125: 14313-23 Protonated state (NH2+) is used as A
Dihydroxypiperidine suggested by Epik and described in article
10IM  NOJ Kd 6.9 215 Beta-Glucosidase A 1-Deoxynojirimycin 163.17  CeH13NO4 J Am Chem Soc 2003, 125: 14313-23 Protonated state (NH2+) is used as A
suggested by Epik and described in article
B 10KO GAL Ka 6.2 1.6 PA-l Galactophilic Lectin Beta-D-Galactose 180.16  CeH1206 FEBS Lett 2003, 555(2): 297-301
a 10XC FUC Ka 7.1 1.2  PA-LIl (LecB) Alpha-L-Fucose 164.16  CeH120s Proteins 2005, 58: 735-746
1P4G CGF Ki 3.7 21 Glycogen Phosphorylase, C-(1-Azido-Alpha-D- 250.21  C7H14N4Os Biocatal Biotransfor 2003, 21: 233-242
Muscle Form Glucopyranosyl) Formamide
1P4H CR6 Ki 4.8 2.06 Glycogen Phosphorylase, 1-Deoxy-1-Acetylamino-Beta-D- 264.23  CoH16N207 Biocatal Biotransfor 2003, 21: 233-242
Muscle Form Gluco-2-Heptulopyranosonamide
1P4J CBF Ki 42 2 Glycogen Phosphorylase, C-(1-Hydrogyl-Beta-D- 223.18  C7H13NOy Biocatal Biotransfor 2003, 21: 233-242
Muscle Form Glucopyranosyl) Formamide
1PX4 IPT Ki 44 16  Beta-Galactosidase Isopropyl-1-Beta-D-Thiogalactoside 238.3 CoH150sS Biochemistry 2003, 42: 13505-13511 AD
WT 1PZI 1DM Kd 58 1.99 Heat-Labile Enterotoxin B N-(2-Morpholin-4-YI-1-Morpholin-4-  556.57  C24H3sN4O11 Bioorg Med Chem 2004, 12(5):907-20 Ligand copy in chain E was deleted DE
Subunit Yimethyl-Ethyl)-3-Nitro-5-(3,4,5-
Trihydroxy-6-Hydroxymethyl-
Tetrahydro-Pyran-2-Yloxy)-
Benzamide
XM 1PZJ 15B IC50 4.8 1.46 Cholera Toxin B Subunit N-(3-[4-(3-Amino-Propyl)- 527.57  Ca3H37NsOg Bioorg Med Chem 2004, 12(5):907-20 Two very differently positioned anomers in
Piperazin-1-YI]-Propyl)-3-Nitro-5- crystal structure
(Galactopyranosyl)-Beta-
Benzamide
XM 1PZJ  J15 IC50 4.8 1.46 Cholera Toxin B Subunit N-(3-[4-(3-Amino-Propyl)- 527.57  Ca3H37NsOg Bioorg Med Chem 2004, 12(5):907-20 Two very differently positioned anomers in
Piperazin-1-YI]-Propyl)-3-Nitro-5- crystal structure
(Galactopyranosyl)-Alpha-
Benzamide
WT 1PZK J12 IC50 5.0 1.35 Cholera Toxin B Subunit N-(3-[4-(3-Amino-Propyl)- 621.75  C20H43Ns0sS Bioorg Med Chem 2004, 12(5):907-20 Ligand copy in chain E was deleted DE

Piperazin-1-YI]-Propyl)-3-(2-
Thiophen-2-YI-Acetylamino)-5-
(3,4,5-Trihydroxy-6-Hydroxymethyl-
Tetrahydro-Pyran-2-Yloxy)-
Benzamide
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XTO 1RCV BV1 IC50 6.2 1.6 Cholera Toxin B Protein (Ctb)  [3-(4-(3-[3-Nitro-5- 1133.17  Cs0H72N10020 Chem Biol 2004, 11(9):1205-15 Bivalent ligand with a very long flexible
(Galactopyranosyloxy)- linker whose atoms are not fully resolved
Benzoylamino]-Propyl}-Piperazin-1-
Y1)-Propylamino] -2-(3-{4-[3-(3-
Nitro-5-[Galactopyranosyloxy]-
Benzoylamino)-Propyl]-Piperazin-1-
Y1) -Propyl-Amino)-3,4-Dioxo-
Cyclobutene
XTO 1RD9 BV2 IC50 6.7 1.44 Cholera Toxin B Protein (Ctb)  1,3-Bis~([3-(4-(3-[3-Nitro-5- 1198.25 Cs1H79N11022 Chem Biol 2004, 11(9):1205-15 Bivalent ligand with a very long flexible
(Galactopyranosyloxy)- linker whose atoms are not fully resolved
Benzoylamino]-Propyl)-Piperazin-1-
Y1)-Propyl-Amino]-Carbonyloxy)-2-
Amino-Propane
1RDI  MFU Ki 2.8 1.8 Mannose-Binding Protein-C Alpha-L-Methyl-Fucose 178.18  C7H140s J Biol Chem 1996, 271(2):663-74 1
1RDJ MFB Ki 23 1.8 Mannose-Binding Protein-C Beta-L-Methyl-Fucose 178.18  C7H140s J Biol Chem. 1996 Jan 12, 271(2):663-74. missing the glycosidic methyl group, 1
manually added in preparation step
1RDK GAL Ki 1.3 1.8  Mannose-Binding Protein-C Beta-D-Galactose 180.16  CeH1206 J Biol Chem. 1996 Jan 12, 271(2):663-74. 1
1RDL MMA Ki 3.1 1.7  Mannose-Binding Protein-C 0O1-Methyl-Mannose 194.18  C7H1406 J Biol Chem 1996, 271(2):663-74 missing the glycosidic methyl group, 1
manually added in preparation step
H 1RDN _MNDG Ki 25 1.8 Mannose-Binding Protein-C Alpha-Methyl-D-N- 235.23  CoH17NOs J Biol Chem 1996, 271(2):663-74 missing the glycosidic methyl group, 1
Acetylglucosaminide manually added in preparation step
XTO 1RDP BV3 IC50 6.9 1.35 Cholera Toxin B Protein (Ctb)  1,3-Bis~([[3-(4-(3-[3-Nitro-5- 14745  Ce3Ho1N15026 Chem Biol. 2004 Sep, 11(9):1205-15. Bivalent ligand with a very long flexible
(Galactopyranosyloxy)- linker whose atoms are not fully resolved
Benzoylamino]-Propyl)-Piperazin-1-
Yl)-Propylamino-3,4-Dioxo-
Cyclobutenyl]-Amino-Ethyl]-Amino-
Carbonyloxy)-2-Amino-Propane
XTO 1RF2 BV4 IC50 6.5 1.35 Cholera Toxin B Protein (Ctb)  1,3-Bis~([3-[3-[3-(4-(3-[3-Nitro-5- 1794.92  C79H123N15032 Chem Biol. 2004 Sep, 11(9):1205-15. Bivalent ligand with a very long flexible
(Galactopyranosyloxy)- linker whose atoms are not fully resolved
Benzoylamino]-Propyl)-Piperazin-1-
Yl)-Propylamino-3,4-Dioxo-
Cyclobutenyl]-Amino-Propoxy-
Ethoxy-Ethoxy]-Propyl-JAmino-
Carbonyloxy)-2-Amino-Propane
1RO7 CSF Ki 43 1.8  Alpha-2,3/8-Sialyltransferase Cytidine-5'-Monophosphate-3-(A)-  632.45  CzoH30FN4O1P  Nat Struct Mol Biol 2004, 11: 163-170 Second suggested protonaion state from A
Fluoro-N-Acetyl-Neuraminic Acid Epik used to match chemical strucutre
reported in article
1RPJ ALL Kd 88 1.8 Protein (Precursor Of D-Allopyranose 180.16  CeH1206 J Mol Biol 1999, 286(5): 1519-31
Periplasmic Sugar Receptor)
1814 NOV Ki 95 2 Topoisomerase |V Subunit B Novobiocin 612.63  C31H3sN2011 Antimicrob Agents Chemother 2004, 48: 1856-  Neutral state used (Epik) A

1864
J Med Chem. 2008, 51: 5243-63
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1SEU SA3 IC50 10.3 3 DNA Topoisomerase | 2,10-Dihydroxy-12-(Beta-D- 519.47  C26H21N309 J Med Chem 2005, 48: 2336-45
Glucopyranosyl)-6,7,12,13-
Tetrahydroindolo[2,3-A]Pyrrolo[3,4-
C]Carbazole-5,7-Dione
XM 1SZ0 M6P Kd 123 21 Cation-Independent Mannose  Alpha-D-Mannose-6-Phosphate 260.14  CesH1309P J Biol Chem 2004, 279(32): 34000-9 Binding site not well-defined, two ligand
6-Phosphate Receptor molecules close to each other
1TLG GAL Ki 46 22  Polyandrocarpa Lectin Beta-D-Galactose 180.16  CsH1206 J Mol Biol. 1999, 290(4): 867-79 A
1U33  LM2 Ki 6.3 1.95 Alpha-Amylase, Pancreatic 4'-O-Methyl-Maltosyl-Alpha (1,4)-  530.48  C19H34N2015 J Biol Chem 2004, 279(46): 48282-91
(Z, 35,4S,5R,6R)-3,4,5-Trihydroxy-
6-Hydroxymethyl-Piperidin-2-One
1UDA UFG Kd 4.0 1.8 UDP-Galactose-4-Epimerase Uridine-5'-Diphosphate-4-Deoxy-4- 568.3 C15H23FN2016P2  Biochemistry 1997, 36: 6294-6304
Fluoro-Alpha-D-Galactose J Org Chem 1994, 59: 6994- 6998
H 1UDB _UFGC Kd 3.9 1.65 UDP-Galactose-4-Epimerase Uridine-5'-Diphosphate-4-Deoxy-4- 568.3 C15H23FN2016P2  Biochemistry 1997, 36: 6294-6304 UFG (galactose in PDB) corrected to
Fluoro-Alpha-D-Glucose J Org Chem 1994, 59: 6994- 6998 glucose
1UGW GAL Ka 42 1.7 Jacalin Beta-D-Galactose 180.16  CeH1206 J Mol Biol 2003, 332: 217-228 AB
H 1UGX _MTNT Ka 8.1 1.6 Jacalin Galactose-Beta(1-3)-N-Acetyl-D- 397.37  CisH27NO14 J Mol Biol 2003, 332: 217-228 GAL+MGC AB
Galactosamine-Alpha-O-Me
H 1UGY _GAGC Ka 5.1 24 Jacalin Galacose-Alpha(1-6)-Glucose 342.3 C12H22014 J Mol Biol 2003, 332: 217-228 GLA+GLC AB
1UHO MGC Ka 6.6 28 Jacalin Alpha-Methyl-N-Acetyl-D- 235.23  CoH17NOs J Mol Biol 2003, 332: 217-228 AB
Galactosamine
H 1UH1 _NGMG Ka 7.5 2.8 Jacalin N-Acetyl-Galactosamine-Beta(1-3)- 397.37  CisH27NO11 J Mol Biol 2003, 332: 217-228 AMG+NGA CD
Galacose-Alpha-O-Me
H 1ULC LAT Kd 55 26  Galectin-2 Beta-Lactose 342.3 C12H22011 Structure 2004, 12: 689-702 GAL+BGC A
H 1ULD _BLDH Kd 7.3 21  Galectin-2 Blood Group H Type Il 529.49  CzoH3sNOss Structure 2004, 12: 689-702 GAL+NAG+FUC A
H 1ULE _LNB2 Kd 8.1 215 Galectin-2 Linear B2 Trisaccharide 54549  CzoH3sNOse Structure 2004, 12: 689-702 GLA+GAL+NAG A
H 1ULG _TFAN Kd 5.7 22  Galectin-2 Thomsen-Friedenreich Antigen 383.35  C14H2sNO11 Structure 2004, 12: 689-702 GAL+NAG A
1URG MAL Kd 79 1.8 Maltose-Binding Protein Maltose 342.3 C12H22011 J Mol Biol 2004, 335(1): 261-74
J Bacteriol 2000, 182(22): 6292-301
1UWF DEG Kd 9.3 1.69 Fimh Protein Butyl Alpha-D-Mannopyranoside 236.26  C1oH2006 Mol Microbiol. 2005, 55(2): 441-55
1UWT GTL Ki 8.1 1.95 Beta-Galactosidase D-Galactohydroximo-1,5-Lactam 192.17  CeH12N20s Biochemistry 2004, 43: 6101-9
1UWU GOX Ki 8.2 1.95 Beta-Galactosidase (28,38,4R,5R)-6-(Hydroxyamino)-  192.17  CeH12N20s Biochemistry 2004, 43: 6101-9
2-(Hydroxymethyl)-2,3,4,5-
Tetrahydropyridine-3,4,5-Triol
1UzZv  FUC Ka 71 1 Pseudomonas Aeruginosa Alpha-L-Fucose 164.16  CeH120s Proteins 2005, 58: 735-746 AB
Lectin li
H 1VOK _XDNJ Ki 6.0 1.03 Endo-1,4-Beta-Xylanase A Xylobiodeoxynojirimycin 265.26  C1oH19sNO7 Chem Commun 2004, 3(16): 1794-5 XYP+XDN

Protonated state (NH2+) used (Epik)
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H 1VoL  _XIFG Ki 8.6 0.98 Endo-1,4-Beta-Xylanase A 1,5-Imino-1,4,5-Trideoxy-3-O- 249.26  C1oH19NOs Chem Commun 2004, 3(16): 1794-5 XYP+XIF
(Beta-D-Xylopyran- Osyl)-D-Threo- Protonated state (NH2+) used (Epik)
Pentitol
1vZT UDP Kd 6.1 2 N-Acetyllactosaminide Alpha-  Uridine-5'-Diphosphate 404.16  CoH1aN2012P2 Biochemistry 2003, 42(46): 13512-21 A
1,3-Galactosyltransferase
1W3J OXZ Kd 86 2 Beta-Glucosidase Tetrahydrooxazine 149.15  CsH11NO4 J Biol Chem 2004, 279: 49236-42 A
H 1W3K _CELB Ki 59 1.2  Endoglucanase 5A Cellobio-Tetrahydrooxazine 311.29  C41H21NOg J Biol Chem 2004, 279: 49236-42 BGC+OXZ
H 1W3L _CELT Ki 8.6 1.04 Endoglucanase 5A Cellotrio-Tetrahydrooxazine 473.43  Cy7H31NO14 J Biol Chem 2004, 279: 49236-42 BGC+BGC+OXZ
Water molecules overlapping with ligand
were removed
1W60 LAT Ka 46 1.9 Galectin-1 Beta-Lactose 342.3 C12H22011 J Mol Biol 2004, 343(4): 957-70
H 1W6P _GAND Ka 55 1.8 Galectin-1 N-Acetyl-Lactosamine 383.35  Ci14H2sNO14 J Mol Biol 2004, 343(4): 957-70 NDG+GAL
WTH 1W8F _LNPV Ka 84 1.05 Pseudomonas Aeruginosa Lacto-N-Neo-Fucopentaose V 853.77  Ca2HssNO2s Biochem J 2005, 389 (2): 325-32 FUC+BGC+GAL+GAL+NAG AC
Lectin Il Ligand copy in chain C deleted
XMH 1W8H _LEWA Ka 9.1 1.75 Pseudomonas Aeruginosa Lewis A Trisaccharide 529.49  CzoH3sNOss Biochem J 2005, 389 (2): 325-32 NDG+FUC+GAL or NAG+FUC+GAL
Lectin Il Ligand copies positioned differently in
binding site
XMH 1WOT _XYLB Ka 4.7 1.62 Bh0236 Protein Beta-1,4-Xylobiose 282.24  C1oH1809 J Biol Chem 2005, 280: 530-7 XYP+XYP or XYP+XYS
Multiple ligand binding sites
H 1WOW _LMHX Ka 74 21 Bh0236 Protein Laminarihexaose 990.86  CssHe2031 J Biol Chem 2005, 280: 530-7 BGC+BGC+BGC+GLC+BGC+BGC
1WS4 GYP Ka 4.1 1.9  Agglutinin Alpha Chain Methyl-Alpha-D-Glucopyranoside 194.18  C7H1406 J Mol Biol 2005, 347(1): 181-8 AB
1WS5 MMA Ka 4.1 1.9  Agglutinin Alpha Chain 0O1-Methyl-Mannose 194.18  C7H1406 J Mol Biol 2005, 347(1): 181-8 AB
1WW2 NBG Ki 6.1 1.9  Glycogen Phosphorylase, 1-N-Acetyl-Beta-D-Glucosamine 221.21  CgH1sNOs Bioorg Med Chem 2006, 14: 181-189
Muscle Form
1WW3 NTF Ki 5.6 1.8  Glycogen Phosphorylase, N-Trifluro-Acetyl-Beta-D- 275.18  CgH12F3NOs Bioorg Med Chem 2006, 14: 181-189
Muscle Form Glucopyranosylamine
1X9D SMD Kd 54 1.41 Endoplasmic Reticulum Methyl-2-S-(Alpha-D- 372.39  C13H24010S J Biol Chem 2005, 280(16): 16197-207
Mannosyl-Oligosaccharide 1,2- Mannopyranosyl)-2-Thio-Alpha-D-
Alpha-Mannosidase Mannopyranoside
1XC7 GL6 Ki 3.0 1.83 Glycogen Phosphorylase, (3,4,5-Trihydroxy-6-Hydroxymethyl- 287.21  CgH1sNOgP Bioorg Med Chem 2005, 13(3): 765-72
Muscle Form Tetrahydro-Pyran-2-YI)-
Phosphoramidic Acid Dimethyl
Ester
1XD0 ARE Ki 97 2 Alpha-Amylase Acarbose Derived Pentasaccharide 807.75  C3iHs3sNO2s Biochemistry 2005, 44(9): 3347-57 Neutral state used (Epik + article)
1XD1 6SA Ki 10.8 2.2  Alpha-Amylase Acarbose Derived Hexasaccharide 969.9 Cs7He3NO2s Biochemistry 2005, 44(9): 3347-57 Neutral state used (Epik + article)
XM 1XKX  IMK Ki 6.9 1.93 Glycogen Phosphorylase, 2-(Beta-D-Glucopyranosyl)-5- 294.31  C14H1sN20s Protein Sci 2005, 14(4): 873-88 Multiple binding sites, and multiple ligand
Muscle Form Methyl-1-Benzimidazole molecules bound
1XLO  OX2 Ki 5.2 1.92 Glycogen Phosphorylase, 2-(Beta-D-Glucopyranosyl)-5- 246.22  CoH14N20s Protein Sci 2005, 14(4): 873-88

Muscle Form

Methyl-1,3,4-Oxadiazole
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H 1XL1 TH1 Ki 56 2.1 Glycogen Phosphorylase, 2-(Beta-D-Glucopyranosyl)- 297.33  Cy3H1sNOsS Protein Sci 2005, 14(4): 873-88 Incorrect HET record in PDB, the ligand
Muscle Form Benzothiazole has no 5-methyl group (article)
XLl GLT Ki 2.0 25 D-Xylose Isomerase 5-Deoxy-5-Thio-Alpha-D-Glucose ~ 196.22  CeH1205S J Mol Biol 1990, 212: 211-35 A
WT 1IXNK XS2 Ka 55 1.55 Endoxylanase 11A Methyl4,411,4111,41V-Tetrathio-Beta-  756.86  C26Ha4017S4 FEBS J 2005, 272(9): 2317-33 Missing two solvent-exposed sugar units,
D-Xylopentoside which do not have direct interactions with
binding site residues
XM 1XOl 288 IC50 9.9 21 Glycogen Phosphorylase, Liver 5-Chloro-1H-Indole-2-Carboxylic 365.85  C1sH24CIN3O3 Bioorg Med Chem Lett 15: 459-465 Two ligand molecules binding at the dimer
Form Acid([Cyclopentyl-(2-Hydroxy- interface
Ethyl)-Carbamoyl]-Methyl)-Amide
1YFZ  IMP Ki 5.9 2.2 Hypoxanthine-Guanine Inosinic Acid 348.21  C1oH13N4OgP J Mol Biol 2005, 348: 1199-210 A
Phosphoribosyltransferase
1Z3T CBI Kd 54 1.7 Cellulase Cellobiose 342.3 C12H22011 FEBS J 2005, 272(8): 1952-64
w 123V LAT Kd 56 1.61 Cellulase Beta-Lactose 342.3 C12H22011 FEBS J 2005, 272(8): 1952-64 Incorrect glucose geometry in crystal
structure (very flat), corrected manually
1240 GL1 Ki 6.2 1.9 Beta-Phosphoglucomutase 1-O-Phosphono-Alpha-D- 260.14  CsH1309P J Am Chem Soc. 2005 Apr 20, 127(15):5298-9 A
Galactopyranose
XO 2A4W BLM Kd 11.3 1.5  Mitomycin-Binding Protein Bleomycin A2 1416.56 CssHssN17021S3  J Mol Biol 2006, 360(2): 398-408 Very bing ligand, with a bound copper
atom
2AAC FCB Ki 3.0 16 Arac Beta-D-Fucose 164.16  CeH120s J Mol Biol 1997, 273(1): 226-37 A
2ADD SUC Ki 3.3 25  Fructan 1-Exohydrolase lia Sucrose 342.3 C12H22011 New Phytol 2007, 174: 90-100
2AM4  U2F Ki 5.1 1.7  Alpha-1,3-Mannosyl- Uridine-5'-Diphosphate-2-Deoxy-2- 568.29  C1sH23FN2016P2  J Mol Biol 2006, 360: 67-79
Glycoprotein 2-Beta-N- Fluoro-Alpha-D-Glucose
Acetylglucosaminyltransferase
2APC UDM Ki 6.2 1.5 Alpha-1,3-Mannosyl- Uridine-Diphosphate-Methylene-N-  605.39  C1gH29N3O16P2  J Mol Biol 2006, 360: 67-79
Glycoprotein 2-Beta-N- Acetyl-Glucosamine
Acetylglucosaminyltransferase
2ARC ARA Kd 4.1 1.5  Arabinose Operon Regulatory  Alpha-L-Arabinose 150.13  CsH100s Science 1997 , 276(5311):421-5 A
Protein
2ARE MAN Ka 45 18 Lectin Alpha-D-Mannose 180.16  CeH1206 FEBS J 2006, 273 : 2407-2420 A
2B1Q TRE Ki 22 22 Hypothetical Protein SIr0953 Trehalose 3423 C12H22014 Proteins 2007, 68: 796-801
2B1R CBI Ki 14 22  Hypothetical Protein SIr0953 Cellobiose 3423 C12H22014 Proteins 2007, 68: 796-801
A 2B3B GLC Kd 9.7 1.95 Glucose-Binding Protein Alpha-D-Glucose 180.16  CeH1206 J Mol Biol 2006, 362: 259-270
2B3F GAL Kd 8.2 1.56 Glucose-Binding Protein Beta-D-Galactose 180.16  CeH1206 J Mol Biol 2006, 362: 259-270
XM 2BMZ XLM Kd 50 24 Ripening-Associated Protein Methyl 3-O-Beta-D-Xylopyranosyl-  326.3 C12H22010 Glycobiology 2005, 15(10): 1033-42 Four ligand molecules in the "binding
Alpha-D-Mannopyranoside Glycobiology 2005, 15 (10) 1043-50 interface" between two protein chains
XMH 2BNO _LAMI Kd 4.1 2.8 Ripening-Associated Protein Laminaribiose 342.3 C12H22011 Glycobiology 2005, 15(10): 1033-42 GLC+GLC
Glycobiology 2005, 15 (10) 1043-50 Four ligand molecules in the "binding
interface" between two protein chains
2BOI MFU Ka 65 1.1 CV-Ill Lectin Alpha-L-Methyl-Fucose 178.18  C7H140s Biochemistry 2006, 45: 7501-10 A
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2BOJ ARW Ka 7.9 1.8 Pseudomonas Aeruginosa Methyl Beta-D-Arabinopyranoside  164.16  CeH120s FEBS Lett 2006, 580: 982-7
Lectin li
XMH 2BS5 _FLAC Kd 8.7 2.1 Lectin 2'-Alpha-L-Fucosyllactose 488.44  CigH32015 J Biol Chem 2005, 280(30): 27839-49 FUC+LAT
Two ligand molecules per protein in
different binding sites
XMH 2BS6 _XXFG Kd 7.6 1.8 Lectin Xyloglucan Fragment 458.41  C17H30014 J Biol Chem 2005, 280(30): 27839-49 FUC+GAL+XYS
Six ligand molecules per protein in different
binding sites
XM 2BT9 MFU Kd 84 0.94 |Lectin Alpha-L-Methyl-Fucose 178.18  C7H140s J Biol Chem 2005, 280(30): 27839-49 Six ligand molecules per protein in different
binding sites
2BV4  MMA Ka 51 1 Lectin Cv-lil 0O1-Methyl-Mannose 194.18  C7H1406 Biochemistry 2006, 45: 7501-10 A
2BVD ISX Ki 8.2 1.6 Endoglucanase H Glucose Beta-1,3-Isofagamine 309.31  C12H23NOg J Biol Chem 2005, 280(38): 32761-7 Protonated state (NH2+) is used as
suggested by Epik and described in article
2BVE PH5 IC50 5.0 2.2 Sialoadhesin 2-Phenyl-Prop5Ac 413.42  C19H27NOg J Mol Biol 2007, 365: 1469-79 A
2BZD GAL Kd 45 2 Bacterial Sialidase Beta-D-Galactose 180.16  CsH1206 Acta Crystallogr Sect. D 2005, 61: 1483-91
J Mol Biol 2003, 327: 659-669.
2CB3 MLD Kd 10.3 24  Peptidoglycan-Recognition Glcnac(Beta1-4)-Murnac(1,6- 921.91  Ca7HsoN7O20 J Biol Chem 2006, 281(12): 8286-95 Ligand copies in chains B and D deleted AB
Protein-Le Anhydro)-L-Ala-Gamma-D-Glu- D
Meso-A2Pm-D-Ala
2CBJ OAN Ki 11.3 2.35 Hyaluronidase O-(2-Acetamido-2-Deoxy D- 353.33  CisH19N3O7 Embo J 2006, 25 :1569-78 A
Glucopyranosylidene) Amino-N-
Phenylcarbamate
2CCV  A2G Kd 53 1.3 Helix Pomatia Agglutinin N-Acetyl-2-Deoxy-2-Amino- 221.21  CsH1sNOs J Biol Chem 2006, 281: 20171-80
Galactose
2CEX DAN Kd 6.4 22  Protein Hi0146 2-Deoxy-2,3-Dehydro-N-Acetyl- 291.26  C41H17NOs J Biol Chem 2006, 281(31): 22212-22 B
Neuraminic Acid
2CHN NGT Ki 9.1 1.95 Glucosaminidase 3Ar,5R,6S,7R,7Ar-5- 219.26  CsH13NO4S Nat Struct Mol Biol 2006, 13(4): 365-71 A
Hydroxymethyl-2-Methyl-5,6,7,7A-
Tetrahydro-3Ah-Pyrano[3,2-
D]Thiazole-6,7-Diol
2D2V  MAL Ki 14 25  Hypothetical Protein SIr0953 Maltose 342.3 C12H22011 Proteins 2007, 68: 796-801
XM 2D7F MMA IC50 4.7 2.31 Concanavalin A 0O1-Methyl-Mannose 194.18  C7H1406 Bmc Struct Biol 2007, 7: 52-52 Multiple ligand copies and binding sites
Bioorg Med Chem Lett 2008, 18: 6573-5
2DRI  RIP Kd 94 1.6 D-Ribose-Binding Protein Ribose(Pyranose Form) 150.13  CsH100s J Biol Chem 1994, 269(48): 30206-11
w 2E22 MAN Ki 0.1 24  Xanthan Lyase Alpha-D-Mannose 180.16  CeH1206 Biochemistry 2007, 46(3): 781-91 Extremely low affinity (confirmed from
article, though)
2F2H XTG Ki 7.8 1.95 Putative Family 31 Glucosidase 4-Nitrophenyl 6-Thio-6-S-Alpha-D- 449.43  C47H23NO11S J Am Chem Soc 2006, 128(7): 2202-3 A
Yici Xylopyranosyl-Beta-D-
Glucopyranoside
2F3P 4GP Ki 4.3 1.94 Glycogen Phosphorylase, N-(Beta-D-Glucopyranosyl)Oxamic  251.19  CgH13NOs Bioorg Med Chem 2006, 14(11): 3872-82

Muscle Form

Acid
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2F3Q 6GP Ki 5.0 1.96 Glycogen Phosphorylase, Methyl-N-(Beta-D- 265.22  CoH1sNOg Bioorg Med Chem 2006, 14(11): 3872-82
Muscle Form Glucopyranosyl)Oxamate
2F3S 7GP Ki 4.1 1.96 Glycogen Phosphorylase, Ethyl-N-(Beta-D- 279.25  CyoH17NOs Bioorg Med Chem 2006, 14(11): 3872-82
Muscle Form Glucopyranosyl)Oxamate
2F3U 8GP Ki 3.9 1.93 Glycogen Phosphorylase, N-(Beta-D-Glucopyranosyl)-N'- 290.27  C41H1sN207 Bioorg Med Chem 2006, 14(11): 3872-82
Muscle Form Cyclopropyl Oxalamide
2F5T MAL Kd 7.0 1.45 Archaeal Transcriptional Maltose 342.3 C12H22011 J Biol Chem 2006, 281(16): 10976-82 X
Regulator Trmb
2FKF  G16 Kd 40 2 Phosphomannomutase/Phosph  Alpha-D-Glucose 1,6-Bisphosphate 339.11  CeH13012P2-1 J Biol Chem 2006, 281(22): 15564-71 Prime side chain addition didn't complete
oglucomutase Biochemistry 2003, 42: 9946-51 succesfully
Missing side chains far from binding site
2GGU MLR IC50 4.1 1.9  Pulmonary Surfactant- Maltotriose 504.44  CigH32016 J Biol Chem 2006, 281(26): 18008-14 A
Associated Protein D
2GGX NPJ IC50 4.8 1.9  Pulmonary Surfactant- 4-Nitrophenyl 4-O-Alpha-D- 463.39  C1gH2sNO13 J Biol Chem 2006, 281(26): 18008-14 A
Associated Protein D Glucopyranosyl-Alpha-D-
Galactopyranoside
2GPB GLC Ki 3.7 23  Glycogen Phosphorylase B Alpha-D-Glucose 180.16  CsH1206 Biochemistry 1990, 29(48): 10745-57
Biochemistry 1982, 21: 5364-71
2H15 B19 Kd 6.3 1.9 Carbonic Anhydrase 2 N-([(3As,5Ar,8Ar,8Bs)-2,2,7,7- 338.38  C12H22N207S J Med Chem 2006, 49: 3496-500 A mercury atom (residue 263) far away
Tetramethyltetrahydro-3Ah- from the binding site was deleted
Bis[1,3]Dioxolo[4,5-B:4',5'-D]Pyran-
3A-YI]Methyl)Sulfamide
2H1H AFH IC50 6.2 24  Lipopolysaccharide Adenosine-5'-Diphosphate-2- 621.36  C47H26FNsO1sP2  J Mol Biol 2006, 363: 383-394 lonized phosphate used (Epik) A
Heptosyltransferase 1 Deoxy-2-Fluoro Heptose
2H44 7CA IC50 7.9 1.8  Cgmp-Specific 3',5'-Cyclic 5,7-Dihydroxy-2-(4- 516.54  Ca7H32010 J Biol Chem 2006, 281: 21469-79
Phosphodiesterase Methoxyphenyl)-8-(3-Methylbutyl)-
4-Ox0-4H-Chromen-3-Y| 6-Deoxy-
Alpha-L-Mannopyranoside
2HL4 BO1 Ki 10.4 1.55 Carbonic Anhydrase 2 N-[4-(Aminosulfonyl)Phenyl]-Beta-  334.34  C12H1sN207S Bioorg Med Chem Lett 2007, 17: 1726-1731 A mercury atom (residue 266) far away
D-Glucopyranosylamine Bioorg Med Chem Lett 2010, 20: 2178-82 from the binding site was deleted
2IHJ  CSF Ki 63 2 Alpha-2,3/2,6- Cytidine-5'-Monophosphate-3-(A)-  632.45  C20H30FN4O16P  Biochemistry 2007, 46: 6288-6298 Tautomric state chosen to match the one
Sialyltransferase/Sialidase Fluoro-N-Acetyl-Neuraminic Acid reported in the article
H 2IHK _CSFE Ki 6.8 1.9 Alpha-2,3/2,6- Cytidine-5'-Monophosphate-3-(E)-  632.45  C20H30FN4O1P  Biochemistry 2007, 46: 6288-6298 the e-(F) isomer of CSF
Sialyltransferase/Sialidase Fluoro-N-Acetyl-Neuraminic Acid
XR  2HZ CSF Ki 63 2 Alpha-2,3/2,6- Cytidine-5'-Monophosphate-3-(A)-  632.45  C20H30FN4O16P  Biochemistry 2007, 46: 6288-6298 redundant, 2IHJ
Sialyltransferase/Sialidase Fluoro-N-Acetyl-Neuraminic Acid
2IXH TRH Ka 55 2 Dtdp-4-Dehydrorhamnose 3,5-  2'-Deoxy-Thymidine-Beta-L- 548.33  C16H26N2015P2  J Mol Biol 2007, 365: 146-59 A
Epimerase Rhamnose
2J0D ERY IC50 9.2 2.75 Cytochrome P450 3A4 Erythromycin A 733.93  CarHe7rNO13 J Med Chem 2009, 52: 1180-9 A
2J1A  GAL Ka 4.1 1.49 Hyaluronidase Beta-D-Galactose 180.16  CeH1206 J Biol Chem 2006, 281(49): 37748-57
H 2J1IE  _GAND Ka 5.5 24  Hyaluronidase N-Acetyl-Lactosamine 383.35  C14H2sNO14 J Biol Chem 2006, 281(49): 37748-57 NDG+GAL
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(s)ureyo

GDV

Glucosaminidase

(5R,6R,7R,8S)-8-(Acetylamino)-
6,7-Dihydroxy-5-(Hydroxymethyl)-
N-Phenyl-1,5,6,7,8,8A-
Hexahydroimidazo[1,2-A]Pyridine-
2-Carboxamide

361.37

C17H21N4Os

Chem Commun 2006, 42: 4372-4

2J4G

NB1

9.0

225

Hyaluronoglucosaminidase

(3Ar,5R,6S,7R,7Ar)-5-
(Hydroxymethyl)-2-Propyl-5,6,7,7A-
Tetrahydro-3Ah-Pyrano[3,2-
D][1,3]Thiazole-6,7-Diol

247.31

C10H17NO4S

J Am Chem Soc 2007, 129(3): 635-44

2J62

GSsz

Ki

15.5

2.26

Hyaluronidase

N-[(5R,6R,7R,8S)-6,7-Dihydroxy-5-
(Hydroxymethyl)-2-(2-Phenylethyl)-
1,5,6,7,8,8A-
Hexahydroimidazo[1,2-A]Pyridin-8-
YI]-2-Methylpropanamide

374.45

Ca20H2sN304

J Am Chem Soc 2006, 128(51): 16484-5

Protonated imidazole used (Epik + article)

2J7TM

_BLDH

Ka

42

23

Hyaluronidase

Blood Group H Type Il

529.49

C20H35NO1s

J Biol Chem 2006, 281(49): 37748-57

NDG+GAL+FUC

2JDM

MFU

Kd

7.4

17

Fucose-Binding Lectin PA-IIL

Alpha-L-Methyl-Fucose

178.18

C7H140s

BMC Struct Biol 2007, 7: 36

beta-Fucose in chain A deleted

AB

2JDN

MMA

Kd

7.6

1.3

Fucose-Binding Lectin PA-IIL

0O1-Methyl-Mannose

194.18

C7H1406

BMC Struct Biol 2007, 7: 36

Ligand copy in chain A deleted

AB

2JDP

MFU

Kd

9.0

1.3

Fucose-Binding Lectin PA-IIL

Alpha-L-Methyl-Fucose

178.18

C7H140s

BMC Struct Biol 2007, 7: 36

Ligand copy in chain A deleted

AB

2JDU

MFU

Kd

9.2

15

Fucose-Binding Lectin PA-IIL

Alpha-L-Methyl-Fucose

178.18

C7H140s

BMC Struct Biol 2007, 7: 36

CD

2JDY

MMA

Kd

6.0

17

Fucose-Binding Lectin PA-IIL

0O1-Methyl-Mannose

194.18

C7H1406

BMC Struct Biol 2007, 7: 36

Ligand copy in chain A deleted

AB

2JF4

VDM

Kd

111

22

Periplasmic Trehalase

Validoxylamine

335.35

C14H25NOg

Angew Chem Int Ed Engl 2007, 46(22): 4115-9

Neutral state (NH) used (article)

2JGO

T7Z

Kd

10.7

15

Periplasmic Trehalase

N-[(3As,4R,5S,6S,6As)-4,5,6-
Trihydroxy-4-(Hydroxymethyl)-
4,5,6,6A-Tetrahydro-3Ah-
Cyclopenta[D][1,3]Thiazol-2-YI]-
Alpha-D-Glucopyranosylamine

382.39

C13H22N206S

Angew Chem Int Ed Engl 2007, 46(22): 4115-9

Neutral state (NH) used (article)

2JIW

BEU

Ki

6.3

1.95

O-Glcnacase Bt_4395

N-[(1S,2R,5R,6R)-2-Amino-5,6-
Dihydroxy-4-
(Hydroxymethyl)Cyclohex-3-En-1-
Yl]Acetamide

216.23

CoH16N204

Org Biomol Chem 2007, 5: 3013-19

Neutral state (NH2) used (article)

2JJO

EY5

Kd

7.4

1.99

Cytochrome P450 113A1

(3R,4S5,55,6R,7R,9R,11R,12S,13R
,14R)-4-([(2R 4R,5S,6S)-4,5-
Dihydroxy-4,6-Dimethyltetrahydro-
2H-Pyran-2-YI]Oxy)-6-
([(2S,3R,4S,6R)-4-
(Dimethylamino)-3-Hydroxy-6-
Methyltetrahydro-2H-Pyran-2-
YI]Oxy)-14-Ethyl-7,12-Dihydroxy-
3,5,7,9,11,13-
Hexamethyloxacyclotetradecane-
2,10-Dione

703.9

CasHesNO12

J Biol Chem 2009, 284(42): 29170-9

Neutral state (tertiary-N) used (article)

2JLB

UDM

Kd

7.3

25

Xcc0866

Uridine-Diphosphate-Methylene-N-
Acetyl-Glucosamine

605.39

C1gH29N3016P2

Embo J 2008, 27: 2780-8

Ligand copy in chain B deleted

AB
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H 2NMO LAT Kd 50 1.35 Galectin-3 Beta-Lactose 342.3 C12H22011 Acta Crystallogr, Sect.D 2007, 63: 415-419 GAL+BGC
Bioorg Med Chem Lett 2005, 15: 2343-5 Glycerol molecule (GOL) overlapping with
ligand, deleted
209R TCB Ki 23 23 Beta-Glucosidase B Thiocellobiose 358.36  C12H220108 J Mol Biol 2007, 371(5): 1204-18
20YK 9MR Ki 7.2 1.5 Endoglycoceramidase Il (3R,4R,5R)-3-Hydroxy-5- 309.32  C12H23NOg Angew Chem Int Ed Engl 2007, 46(24): 4474-6  Neutral state used (article) A
(Hydroxymethyl)Piperidin-4-Y|
Beta-D-Glucopyranoside
20YL IDC Ki 8.6 1.8  Endoglycoceramidase Il 5-Hydroxymethyl-5,6,7,8- 362.34  C1sH22N209 Angew Chem Int Ed Engl 2007, 46(24): 4474-6  Neutral state used (article) A
Tetrahydro-Imidazo[1,2-A]Pyridin-
6YI-7,8-Diol-Glucopyranoside
20YM MNI Ki 6.8 1.86 Endoglycoceramidase Il 1-(4-Dimethylamino)Benzoylamino- 309.36  C1sH23N304 Angew Chem Int Ed Engl 2007, 46(24): 4474-6  Neutral state used (article) A
1,2,5-Trideoxy-2,5-Imino-D -
Mannitol
2PRI  D6G Ki 4.0 23 Glycogen Phosphorylase B 2-Deoxy-Glucose-6-Phosphate 24414  CeH1308P J Mol Biol 1995, 254(5): 900-17
2PRJ NBG Ki 6.1 23  Glycogen Phosphorylase 1-N-Acetyl-Beta-D-Glucosamine 221.21  CgH1sNOs Protein Sci 1995, 4(12): 2469-77
2PYD GLC Ki 3.8 1.93 Glycogen Phosphorylase, Alpha-D-Glucose 180.16  CeH1206 Proteins 2007, 71(3): 1307-23
Muscle Form
2PYl DL8 Ki 5.1 1.88 Glycogen Phosphorylase, N-[(4-Phenyl-1H-1,2,3-Triazol-1- 364.36  CisH20N4Os Proteins 2007, 71(3): 1307-23
Muscle Form Yl)Acetyl]-Beta-D-
Glucopyranosylamine
2QLM F68 Ki 7.7 21  Glycogen Phosphorylase, N-([(4- 340.33  CisH20N207 Bioorg Med Chem 2009, 17: 4773-85
Muscle Form Methylphenyl)Carbonyl]Carbamoyl)
-Beta-D-Glucopyranosylamine
2QMJ  ACR Ki 57 1.9 Maltase-Glucoamylase, Alpha-Acarbose 645.61  C25HasNOss J Mol Biol 2008, 375(3): 782-92 Neutral state used (article)
Intestinal
2QN7 HBZ Ki 7.1 1.83 Glycogen Phosphorylase, N-([(4- 342.3 C14H18N20g Bioorg Med Chem 2009, 17: 4773-85
Muscle Form Hydroxyphenyl)Carbonyl]Carbamo
yl)-Beta-D-Glucopyranosylamine
2QN8 NBY Ki 75 1.9  Glycogen Phosphorylase, N-([(4- 371.3 C14H17N3O9 Bioorg Med Chem 2009, 17: 4773-85 Two ligand copies, catalytic and allosteric
Muscle Form Nitrophenyl)Carbonyl]Carbamoyl)- (article)
Beta-D-Glucopyranosylamine Affinity measurement was competitive, so
allosteric copy deleted
2QN9 NBX Ki 71 2 Glycogen Phosphorylase, N-([(4- 341.32  CisH19N3O7 Bioorg Med Chem 2009, 17: 4773-85
Muscle Form Aminophenyl)Carbonyl]Carbamoyl)
-Beta-D-Glucopyranosylamine
2QNB BZD Ki 7.3 1.8  Glycogen Phosphorylase, N-Benzoyl-N'-Beta-D- 326.3 C14H1sN207 Bioorg Med Chem 2009, 17: 4773-85 Two ligand copies, catalytic and allosteric

Muscle Form

Glucopyranosyl Urea

(article)
Affinity measurement was competitive, so
allosteric copy deleted
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2QRG MO7 Ki 7.1 1.85 Glycogen Phosphorylase, (5R,7R,8S,9S,10R)-7- 325.32  CisH19NO7 Bioorg Med Chem 2009, 17: 7368-80
Muscle Form (Hydroxymethyl)-3-(4-
Methoxyphenyl)-1,6-Dioxa-2-
Azaspiro[4.5]Dec-2-Ene-8,9,10-
Triol
2QRH M08 Ki 6.4 1.83 Glycogen Phosphorylase, (5R,7R,8S,9S,10R)-7- 295.29  Cy4H17NOs Bioorg Med Chem 2009, 17: 7368-80
Muscle Form (Hydroxymethyl)-3-Phenyl-1,6-
Dioxa-2-Azaspiro[4.5]Dec-2-Ene-
8,9,10-Triol
2QRM M09 Ki 55 1.9  Glycogen Phosphorylase, (1R)-3'-(4-Nitrophenyl)-Spiro[1,5- 3423 C14H18N20g Bioorg Med Chem 2009, 17: 7368-80
Muscle Form Anhydro-D-Glucitol-1,5'-
Isoxazoline]
2QRP S06 Ki 8.5 1.86 Glycogen Phosphorylase, 1R)-3'"-(2-Naphthyl)-Spiro[1,5- 347.36  C1sH21NOs Bioorg Med Chem 2009, 17: 7368-80
Muscle Form Anhydro-D-Glucitol-1,5'-
Isoxazoline]
2QRQ S13 Ki 7.0 1.8  Glycogen Phosphorylase, (1R)-3'-(4-Methylphenyl)-Spiro[1,5- 311.33  C1sH21NOs Bioorg Med Chem 2009, 17: 7368-80
Muscle Form Anhydro-D-Glucitol-1,5'-
Isoxazoline]
2QWB SIA Ki 37 2 Neuraminidase, R292K Mutant  O-Sialic Acid 309.27  C41H19NOg Structure 1998, 6: 735-46 An extra SIA molecule in a secondary site
J Virol 1998, 72: 2456-2462 probably under crystal conditions (article),
deleted
2QWC DAN Ki 48 1.6  Neuraminidase, R292K Mutant 2-Deoxy-2,3-Dehydro-N-Acetyl- 291.26  C41H17NOs Structure 1998, 6: 735-46
Neuraminic Acid J Virol 1998, 72: 2456-2462
2QWD 4AM Ki 66 2 Neuraminidase, R292K Mutant ~ 4-Amino-2-Deoxy-2,3-Dehydro-N-  290.27  C11H1sN207 Structure 1998, 6: 735-46 Neutral state (NH2) used (article)
Neuraminic Acid J Virol 1998, 72: 2456-2462
2QWE GNA Ki 102 2 Neuraminidase, R292K Mutant  2,4-Deoxy-4-Guanidino-5-N-Acetyl- 334.33  C12H22N4O7 Structure 1998, 6: 735-46
Neuraminic Acid J Virol 1998, 72: 2456-2462
2QWF G20 Ki 7.7 1.9 Neuraminidase, R292K Mutant  4-Acetyl-4-Guanidino-6- 341.37  C14H23NsOs Structure 1998, 6: 735-46
Methyl(Propyl)Carboxamide-4,5- J Virol 1998, 72: 2456-2462
Dihydro-2H-Pyran-2-Carboxylic
Acid
2QWG G28 IC50 5.0 1.8 Neuraminidase, R292K Mutant 5-N-Acetyl-4-Amino-6- 301.34  Ci3H23N30s Structure 1998, 6: 735-46
Diethylcarboxamide-4,5-Dihydro- J Virol 1998, 72: 2456-2462
2H-Pyran-2-Carboxylic Acid
2QWH G39 IC50 6.7 1.8  Neuraminidase, R292K Mutant  (3R,4R,5S)-4-(Acetylamino)-5- 284.35  C14H2aN204 Structure 1998, 6: 735-46
Amino-3-(Pentan-3- J Virol 1998, 72: 2456-2462
Yloxy)Cyclohex-1-Ene-1-Carboxylic
Acid
2QwWI G20 Ki 114 2 Neuraminidase, Wild-Type 4-Acetyl-4-Guanidino-6- 341.37  C14H23NsOs Structure 1998, 6: 735-46

Methyl(Propyl)Carboxamide-4,5-
Dihydro-2H-Pyran-2-Carboxylic
Acid

J Virol 1998, 72: 2456-2462
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2QWJ  G28 IC50 9.1 2 Neuraminidase, Wild-Type 5-N-Acetyl-4-Amino-6- 301.34  Ci3H23N30s Structure 1998, 6: 735-46
Diethylcarboxamide-4,5-Dihydro- J Virol 1998, 72: 2456-2462
2H-Pyran-2-Carboxylic Acid
2QWK G39 IC50 11.9 1.8  Neuraminidase, Wild-Type (3R,4R,58)-4-(Acetylamino)-5- 284.35  C14H2aN204 Structure 1998, 6: 735-46 Neutral state (NH2) used (article)
Amino-3-(Pentan-3- J Virol 1998, 72: 2456-2462
Yloxy)Cyclohex-1-Ene-1-Carboxylic
Acid
2ROH CTO Ka 48 1.9 Cgl3Lectin Triacetylchitotriose 627.6 C24H41N3016 J Mol Biol 2008, 379(1): 146-59
2RFY CBI Kd 7.1 1.7 Cellulose 1,4-Beta- Cellobiose 3423 C12H22011 Protein Sci 2008, 17(8): 1383-94
Cellobiosidase
H 2RI9 _LYM Ki 4.4 195 Mannosyl-Oligosaccharide Methyl-A-D-Lyxopyranosyl-(1' ,2)-  326.3 C12H22010 Acta Crystallogr D Biol Crystallogr 2008, 64(Pt LDY+MMA A
Alpha-1,2-Mannosidase A-D-Mannopyranoside 3): 227-36 Glycerol molecule (GOL) overlapping with
ligand, deleted
2RIA 289 IC50 3.5 1.8  Pulmonary Surfactant- D-Glycero-Alpha-D-Manno- 210.18  C7H14O7 Biochemistry 2008, 47(2): 710-20 A
Associated Protein D Heptopyranose
2RIB  GMH IC50 3.8 1.8  Pulmonary Surfactant- L-Glycero-D-Manno- 210.18  C7H140O7 Biochemistry 2008, 47(2):710-20. A
Associated Protein D Heptopyranose
2SIM  DAN Ki 47 1.6  Sialidase 2-Deoxy-2,3-Dehydro-N-Acetyl- 291.26  C41H17NOs J Biochem (Tokyo) 1991, 110(3): 462
Neuraminic Acid J Biol Chem 2000, 275: 39385
H 2UVH _DADA Ka 6.5 22  Abc Type Periplasmic Sugar- Di-Galactouronic Acid 370.26  Ci12H1s013 J Mol Biol 2007, 369(3): 759-70 ADA+ADA
Binding Protein
2UVI  UNG Ka 7.2 23  Abc Type Periplasmic Sugar- 4-O-(4-Deoxy-Beta-L-Threo-Hex-4- 352.25  Ci2H16012 J Mol Biol 2007, 369(3): 759-70
Binding Protein Enopyranuronosyl)-Alpha-D-
Galactopyranuronic Acid
H 2UVJ _TADA Ka 5.1 1.8  Abc Type Periplasmic Sugar- Tri-Galactouronic Acid 546.39  CigH26019 J Mol Biol 2007, 369(3): 759-70 ADA+ADA+ADA
Binding Protein
2V4V  XYP Ka 44 15 Gh59 Galactosidase Beta-D-Xylopyranose 150.13  CsH100s Biochemistry 2009, 48(43): 10395-404
2V72  GAL Ka 4.3 225 Exo-Alpha-Sialidase Beta-D-Galactose 180.16  CsH1206 Biochemistry 2007, 46(40): 11352-60
2VEZ G6P Ki 3.5 1.45 Putative Glucosamine 6- Alpha-D-Glucose-6-Phosphate 260.14  CesH1309P FEBS Lett 2007, 581: 5597-5600
Phosphate Acetyltransferase
2VFZ UPF Ki 49 24  N-Acetyllactosaminide Alpha-  Uridine-5'-Diphosphate-2-Deoxy-2- 568.3 C15H23FN2016P2  J Mol Biol 2007, 369(5): 1270-81 A
1,3-Galactosyl Transferase Fluorogalactose
a 2VMC A2G Kd 4.0 1.9 Discoidin-2 N-Acetyl-2-Deoxy-2-Amino- 221.21  CsH1sNOs Proteins 2008, 73(1): 43-52
Galactose
2VMD MBG Kd 4.1 1.9 Discoidin-2 Methyl-Beta-Galactose 194.18  C7H1406 Proteins 2008, 73(1): 43-52
2VMG MBG Ka 3.7 1.9 Fibronectin Type lii Domain Methyl-Beta-Galactose 194.18  C7H1406 J Biol Chem 2008, 283(18): 12604-13
Protein
2VNV  MMA Kd 76 1.7 Bcla 0O1-Methyl-Mannose 194.18  C7H1406 Biochem J 2008, 411(2): 307-18 Ligand copy in chain A deleted AB
2VUR YX1 IC50 6.2 2.2  O-Glcnacase Nagj 2-Deoxy-2-([(2-Hydroxy-1- 267.24  CgHi17N3O7 Chem Biol 2008, 15(8): 799-807 A

Methylhydrazino)Carbonyl]JAmino)-
Beta-D-Glucopyranose
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2VVN NHT Kd 10.0 1.85 O-Glcnacase Bt_4395 (3Ar,5R,6S,7R,7Ar)-2- 248.3 CoH16N204S Nat Chem Biol 2008, 4(8): 483-90
(Ethylamino)-5-(Hydroxymethyl)-
5,6,7,7A-Tetrahydro-3Ah-
Pyrano[3,2-D][1,3]Thiazole-6,7-Diol
2VWO A6P IC50 3.7 1.85 Ribose-5-Phosphate Isomerase 6-O-Phosphono-Alpha-D- 260.14  CsH1309P J Mol Biol 2008, 382(3): 667-79 Ligand copy in chain B deleted AB
B Allopyranose
2VVS OAN Ki 10.0 2.24 O-Glcnacase Bt_4395 O-(2-Acetamido-2-Deoxy D- 353.33  CisH19N3O7 J Biol Chem 2008, 283(50): 34687-95
Glucopyranosylidene) Amino-N-
Phenylcarbamate
2VZR GCU Ka 58 1.95 Exo-Beta-D-Glucosaminidase  D-Glucuronic Acid 194.14  CeH1007 Proc Natl Acad Sci USA, 2009, 106(9): 3065-70 A
2W4X STZ Ki 6.6 242 O-Glcnacase Bt_4395 Streptozotocin 265.22  CgHisN3O7 Carbohydr Res 2009, 344(5): 627-31
2WCV FUC Kd 38 1.9 L-Fucose Mutarotase Alpha-L-Fucose 164.16  CeH120s J Mol Biol 2009, 391(1): 178-91 Ligand copies in chains E and H deleted AE
H
H 2XG3 _BNAL Kd 6.5 1.2  Galectin-3 3'-Benzamido-N-Acetyllactosamine  486.47  C21H30N2011 J Am Chem Soc 2010, 132(41): 14577-89 UNU+GAL+NAG
XO 27265 E55 IC50 12.0 2.7  Lymphocyte Antigen 96 3-O-Decyl-2-Deoxy-6-O-(2-Deoxy- 1313.67 CesH126N2019P2  Cell 2007, 130(5): 906-17 Very big ligand, mostly aglycone AC
3-0-[(3R)-3-Methoxydecyl]-6-O- J Med Chem 2008, 51: 6621-6
Methyl-2-[(11Z)-Octadec-11-
Enoylamino]-4-O-Phosphono-Beta-
D-Glucopyranosyl)-2-[(3-
Oxotetradecanoyl)Amino]-1-O-
Phosphono-Alpha-D-
Glucopyranose
XM 3A22 ARA Ka 3.0 1.9 Putative Secreted Alpha- Alpha-L-Arabinose 150.13  CsH100s J Biol Chem 2009, 284(37): 25097-106 Multiple ligand copies per protein chain
Galactosidase Biochem J 2000, 350(3): 933-41
XM 3A23 GAL Ka 3.8 1.9 Putative Secreted Alpha- Beta-D-Galactose 180.16  CeH1206 J Biol Chem 2009, 284(37): 25097-106 Multiple ligand copies per protein chain
Galactosidase Biochem J 2000, 350(3): 933-41
3B50 SLB Kd 10.3 1.4  Sialic Acid-Binding Periplasmic 5-N-Acetyl-Beta-D-Neuraminic Acid 309.27  C11H19NOg J Biol Chem 2008, 283(2): 855-65
Protein Siap
3BCS CJB Ki 74 2 Glycogen Phosphorylase, 1-Beta-D- 274.23  CyoH14N207 Bioorg Med Chem 2010, 18: 3413-25 Curr Med
Muscle Form Glucopyranosylpyrimidine- Chem 2008, 15: 2933-2983
2,4(1H,3H)-Dione
3BD8 C3B Ki 7.0 21 Glycogen Phosphorylase, 4-Amino-1-Beta-D- 273.24  C1oH1sN3Os Bioorg Med Chem 2010, 18: 3413-25 Curr Med
Muscle Form Glucopyranosylpyrimidin-2(1H)- Chem 2008, 15: 2933-2983
One
3BXF FBP Kd 7.6 1.7  Central Glycolytic Gene Beta-Fructose-1,6-Diphosphate 340.12  CeH14012P2 Mol Microbiol 2008, 69(4): 895-910 chain B has a different ligand A
Regulator
3BXG BG6 Kd 6.8 1.8 Central Glycolytic Gene Beta-D-Glucose-6-Phosphate 260.14  CsH1309P Mol Microbiol 2008, 69(4): 895-910 A
Regulator
3BXH F6P Kd 55 1.85 Central Glycolytic Gene Fructose-6-Phosphate 260.14  CgsH1309P Mol Microbiol 2008, 69(4): 895-910 A

Regulator
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WM 3DCQ 2G0 IC50 7.1 1.8  Fucose-Binding Lectin PA-IIL (2S)-1-[(2S)-6-Amino-2- 543.65  Czs5HasNsOs Chem Biol 2008, 15(12): 1249-57 Missing a flexible tail, solvent exposed and AB
(([(2S,3S,4R,5S,6S)-3,4,5- not interacting with binding site residues
Trihydroxy-6-Methyltetrahydro-2H- Ligand copy in chain B deleted
Pyran-2-
Yl)Acetyl)Amino)Hexanoyl]-N-[(1S)-
1-Carbamoyl-3-
Methylbutyl]Pyrrolidine-2-
Carboxamide
3DJE FSA Ki 7.2 1.6  Fructosyl Amine: Oxygen 1-S-(Carboxymethyl)-1-Thio-Beta-  254.25  CsH1407S J Biol Chem 2008, 283(40): 27007-27016 A
Oxidoreductase D-Fructopyranose
3DWB RDF IC50 8.4 2.38 Endothelin-Converting Enzyme N-Alpha-L- 543.51  C23H34N3O10P J Mol Biol 2009, 385(1): 178-87
1 Rhamnopyranosyloxy(Hydroxyphos
phinyl)-L-Leucyl-L-Tryptophan
3E6Y CW1 Kd 76 25  14-3-3-Like Protein C Cotylenin A 652.78  Ca4Hs2012 J Mol Biol. 2009, 386(4): 913-9 A
3F8F DM1 Kd 9.0 2.2  Transcriptional Regulator, Daunomycin 527.53  Ca7H29NO1o EMBO J 2009, 28(2): 156-66 Neutral state (NH2) used (article) AB
Padr-Like Family
3G2H KOT Ki 5.2 2.03 Glycogen Phosphorylase, 1-Beta-D-Glucopyranosyl-4- 307.3 C14H17N3Os Bioorg Med Chem 2010, 18: 1171-80
Muscle Form Phenyl-1H-1,2,3-Triazole
3G2l RUG Ki 63 2 Glycogen Phosphorylase, 1-Beta-D-Glucopyranosyl-4- 261.23  CoH15N3O0s Bioorg Med Chem 2010, 18: 1171-80
Muscle Form (Hydroxymethyl)-1H-1,2,3-Triazole
3G2J 9GP Ki 6.4 2.14 Glycogen Phosphorylase, N-(Hydroxyacetyl)-Beta-D- 237.21  CgH1sNO7 Bioorg Med Chem 2010, 18: 1171-80
Muscle Form Glucopyranosylamine
3G2K SKY Ki 6.1 2 Glycogen Phosphorylase, 1-Beta-D-Glucopyranosyl-4- 357.36  CisH19N3Os Bioorg Med Chem 2010, 18: 1171-80
Muscle Form Naphthalen-2-YI-1H-1,2,3-Triazole
3G2L LEW Ki 5.3 23  Glycogen Phosphorylase, 1-Beta-D-Glucopyranosyl-4- 357.36  CisH19N3Os Bioorg Med Chem 2010, 18: 1171-80
Muscle Form Naphthalen-1-YI-1H-1,2,3-Triazole
3G2N OAK Ki 52 21  Glycogen Phosphorylase, N-(Phenylcarbonyl)-Beta-D- 283.28  Cy3H17NOs Bioorg Med Chem 2010, 18: 1171-80
Muscle Form Glucopyranosylamine
3GA5 RGG Kd 7.5 1.87 D-Galactose-Binding (2R)-2,3-Dihydroxypropyl Beta-D- ~ 254.24  CoH10s FEBS J 2009, 276(7): 2116-24 A
Periplasmic Protein Galactopyranoside Eur J Biochem 1969, 10: 66-73
3GF4 UPG Kd 4.3 245 Udp-Galactopyranose Mutase  Uridine-5"-Diphosphate-Glucose 566.3 C15H2aN2047P2  J Mol Biol 2009, 391: 327-40 A
3GPB G1P Kd 28 2.3 Glycogen Phosphorylase B Alpha-D-Glucose-1-Phosphate 260.14  CesH1309P Biochemistry 1990, 29(48): 10745-57 Two ligand copies, catalytic and allosteric
Mol Cell Biochem 1976, 11: 35-50 (article)
Affinity measurement was competitive, so
allosteric copy deleted
XM 3H2K BOG Kd 56 21 Esterase B-Octylglucoside 292.37  Ci14H2806 Plant Cell 2009, 21(6): 1860-73 Two very close ligand molecules, one in
the catalytic site and the other very close
interacting with the former
3HDQ GDU Kd 5.0 2.36 UDP-Galactopyranose Mutase Galactose-Uridine-5-Diphosphate  566.3 C15H2aN2047P2  J Mol Biol 2009, 394: 864-77 Protonation state from Epik (oxidized form A
of the protein)
3HDY GDU Kd 57 24  UDP-Galactopyranose Mutase Galactose-Uridine-5-Diphosphate  566.3 C15H2aN2047P2  J Mol Biol 2009, 394: 864-77 Protonation state from Epik (reduced form

of the protein, cf. 3HDQ)
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3HKN MFS Ki 7.3 1.8  Carbonic Anhydrase 2 (1S)-2,3,6-Tri-O-Acetyl-1,5- 699.63  C26H37NO19S J Med Chem 2009, 52: 6421-32
Anhydro-1-Sulfamoyl-4-0-(2,3,4,6-
Tetra-O-Acetyl-Beta-D-
Galactopyranosyl)-D-Glucitol
3HKQ 1SD Ki 7.3 1.7  Carbonic Anhydrase 2 (2S,3R,4S,5R,6R)-3,4,5- 243.23  CeH13NO7S J Med Chem 2009, 52: 6421-32
Trihydroxy-6-
(Hydroxymethyl)Oxane-2-
Sulfonamide
3HKT 2SD Ki 7.3 236 Carbonic Anhydrase 2 (1S)-1,5-Anhydro-4-O-Alpha-D- 405.38  C12H23NO12S J Med Chem 2009, 52: 6421-32
Galactopyranosyl-1-Sulfamoyl-D-
Galactitol
3HKU TOR Ki 11.3 1.8  Carbonic Anhydrase 2 Topiramate 339.36  C12H21NOsS J Med Chem 2009, 52: 6421-32
XM 3HP8 SUC Kd 29 2 Cyanovirin-N-Like Protein Sucrose 342.3 C12H22011 Proteins 2009, 77(4): 904-15 Two ligand molecules per protein chain, in
on-identical binding sites
XM 3HP8 SUC Kd 25 2 Cyanovirin-N-Like Protein Sucrose 342.3 C12H22011 Proteins 2009, 77(4): 904-15 Two ligand molecules per protein chain, in
on-identical binding sites
3JH  KO2 Kd 55 21 Immunoglobulin Heavy Chain  Prop-2-En-1-Y| D-Glycero-Alpha-D- 294.26  C11H180s Glycobiology 2010, 20(2): 138-47 AB
(lgg3) Talo-Oct-2-Ulopyranosidonic Acid
H 3y _KDAO Kd 8.2 2.85 Immunoglobulin Heavy Chain Kdo(2-8)Kdo 498.44  Ci9H30015 Glycobiology 2010, 20(2): 138-47 KDA+KDO AB
(lgg3)
H 3IKC _KDKM Kd 10.2 2.6  Immunoglobulin Heavy Chain Kdo(2-8)7-O-Me-Kdo 51246  Cz0H32015 Glycobiology 2010, 20(2): 138-47 KDO+KME AB
(lgg3)
3L79 DKX Ki 34 1.86 Glycogen Phosphorylase, 1-(3-Deoxy-3-Fluoro-Beta-D- 276.22  C1oH13FN20s Bioorg Med Chem 2010, 18: 3413-3425
Muscle Form Glucopyranosyl)Pyrimidine-
2,4(1H,3H)-Dione
3L7A DKY Ki 5.9 1.9  Glycogen Phosphorylase, 1-(3-Deoxy-3-Fluoro-Beta-D- 379.34  Ci7H18FN3Os Bioorg Med Chem 2010, 18: 3413-3425
Muscle Form Glucopyranosyl)-4-
[(Phenylcarbonyl)Amino]Pyrimidin-
2(1H)-One
3L7B DKz Ki 33 2 Glycogen Phosphorylase, 4-Amino-1-(3-Deoxy-3-Fluoro-Beta- 275.23  C1oH14FN3Os Bioorg Med Chem 2010, 18: 3413-3425
Muscle Form D-Glucopyranosyl)Pyrimidin-2(1H)-
One
3L7C DK4 Ki 3.3 1.93 Glycogen Phosphorylase, 1-(3-Deoxy-3-Fluoro-Beta-D- 294.21  CyoH12F2N20s Bioorg Med Chem 2010, 18: 3413-3425
Muscle Form Glucopyranosyl)-5-
Fluoropyrimidine-2,4(1H,3H)-Dione
3L7D DK5 Ki 3.0 2 Glycogen Phosphorylase, 1-(2,3-Dideoxy-3-Fluoro-Beta-D- 363.34  Ci7H18FN3Os Bioorg Med Chem 2010, 18: 3413-3425
Muscle Form Arabino-Hexopyranosyl)-4-
[(Phenylcarbonyl)Amino]Pyrimidin-
2(1H)-One
3LXE TOR Ki 9.0 1.9 Carbonic Anhydrase 1 Topiramate 339.36  C12H21NOsS Org Biomol Chem 2010, 8: 3528-33 A
H 3MBP MLR Kd 9.3 1.7  Maltodextrin-Binding Protein Maltotriose 504.44  CigH32016 Structure 1997, 5(8): 997-1015 GLC+GLC+GLC
H 30Y8 _LBA Kd 50 219 Galectin-1 Lactobionic Acid 358.3 C12H22012 Cancer Letters 2010, 299(2): 95-110 GAL+GCO A
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30YW TDG Kd 56 25 Galectin-1 Thiodigalactoside 358.36  C12H22010S Cancer Letters 2010, 299(2): 95-110
4MBP  MTT Kd 7.7 1.7  Maltodextrin Binding Protein Maltotetraose 666.58  C24H42021 Structure 1997, 5(8): 997-1015 GLC+GLC+GLC+GLC
A 5ABP GLA Kd 9.1 1.8 L-Arabinose-Binding Protein Alpha D-Galactose 180.16  CeH1206 Nature 1989, 340(6232): 404-7
5CNA  MMA IC50 4.7 2 Concanavalin A 0O1-Methyl-Mannose 194.18  C7H1406 Acta Crystallogr Sect D 1994, 50: 847-858 A
Bioorg Med Chem Lett 2008, 18: 6573-5
a 6ABP ARA Kd 8.7 1.67 L-Arabinose-Binding Protein Alpha-L-Arabinose 150.13  CsH100s Biochemistry 1991, 30(28): 6861-6
a 7ABP FCA Kd 88 1.67 L-Arabinose-Binding Protein Alpha-D-Fucose 164.16  CeH120s Biochemistry 1991, 30(28): 6861-6
8A3H IDC Ki 5.5 0.97 Protein (Endoglucanase) 5-Hydroxymethyl-5,6,7,8- 362.34  C1sH22N209 J Am Chem Soc 1999, 121: 2621-22
Tetrahydro-Imidazo[1,2-A]Pyridin-
6YI-7,8-Diol-Glucopyranoside
a 8ABP GLA Kd 10.9 1.49 L-Arabinose-Binding Protein Alpha D-Galactose 180.16  CeH1206 Biochemistry 1991, 30(28): 6861-6
XR  9ABP GLA Kd 9.1 1.97 L-Arabinose-Binding Protein Alpha D-Galactose 180.16  CeH1206 Biochemistry 1991, 30(28): 6861-6 redundant, 5ABP
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Appendix 2: Structures of carbohydrate ligands in the studied
complexes

Ligands are grouped according to molecular weight:

*  Group 1: Mol. Wt. <370
* Group 2: 370 < Mol. Wt. <700
*  Group 3: Mol. Wt. > 700

Within each group, ligands are arranged alphabetically according to the corresponding PDB
code.
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HET: GAT
Mol.Wt.: 271.272

PDB: 1F8C
HET: 4AM
Mol.Wt.: 290.275

HO
) 0,

W "oy \O H"
HO OH

OH

PDB: 1FH8
HET: _XIFG
Mol.Wt.: 250.274

HO
o N
H H
HO oH
o
o “OH
OH
H

PDB: 1GA8
HET: DEL
Mol.Wt.: 326.303

OH

HO' ‘ H
PDB: 1GYM
HET: MYG

Mol.Wt.: 342.326

HO,,, OH
\©\ .. ow
= OH O~ I
o" o J o

AT
(o)

PDB: 1EOU
HET: SMS
Mol.Wt.: 361.349

PDB: 1F8D
HET: 9AM
Mol.Wt.: 290.275
OH
o) ©) ; OH
Ho““quH N7
H I
OH OH
PDB: 1FH9
HET: XLOX
Mol.Wt.: 294.264
QH
HO”""UOH
O o
PDB: 1GCA
HET: GAL

Mol.Wt.: 180.159

PDB: 1GZC
HET: LAT
Mol .Wt.: 342.303
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Group 1 (continued)

PDB: 1GZT
HET: FUC
Mol.Wt.: 164.16

HO
N OH
H H
i o, i OH
0

H O\\a"go?o H

OH

HO!

PDB: 1182
HET: CBI
Mol .Wt.: 342.303

W
@] H/ZI\O---“ \O H
)I\N : "o
H

OH

PDB: 1JAK
HET: IFG
Mol.Wt.: 205.236

PDB: 1LAX
HET: MAL
Mol.Wt.: 326.303

PDB: 1IN3W
HET: MAL
Mol.Wt.: 342.303

PDB: 1HLF
HET: GL4
Mol.Wt.: 265.267

PDB: 1)J01
HET: XIL
Mol.Wt.: 263.249

HO.
OH N\
i

HO (0) o A OH

D\ o N
HO! Y o™ oK

OH OH

PDB: 1JZN
HET: LAT
Mol.Wt.: 342.303

HOL, O U

OH

PDB: 1IMO1
HET: NAG
Mol.Wt.: 221.212

PDB: 1NAA
HET: ABL
Mol.Wt.: 339.302

HO, OH
OH N
OH
. OH OH W
H O/ ", = o O
) ] HO.
K v "oH ! OH
OH OH OH

PDB: 1I3H
HET: _2MAN
Mol.Wt.: 342.303

OH
OH
HO' OH

PDB: 1)8V
HET: LAM
Mol.Wt.: 358.367

OH

HO, ]

H
(0]

PDB: 1K06
HET: BZD
Mol.Wt.: 326.309

o

o/
N
A

PDB: 1IM6P
HET: M6P
Mol.Wt.: 258.123

OH

'

PDB: 1NOI
HET: NTZ
Mol.Wt.: 202.171

HO
(o] 11,
)I\N | | B
N /o) "y N )k
H H N N
H H

PDB: 1I18A
HET: BGC
Mol.Wt.: 180.159

OH
Ho,, A OH
HO EI
N 0 (o) /

PDB: 1JAC
HET: AMG
Mol.Wt.: 194.186

PDB: 1KTI
HET: AZC
Mol.Wt.: 264.237

PDB: 1IMOQ
HET: GLP
Mol.Wt.: 258.146

PDB: 1NOJ
HET: NTZ
Mol.Wt.: 202.171
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Group 1 (continued)

OH

¢ AN 0 HOiOi\\\OH
N ; OH 1o, HOu, HO, -
{ b )‘\ :O
\N¢©ZQH HO/:QI H : oH HO H i
OH HO & ” HO o =\OH
PDB: 1INOK PDB: 1070 PDB: 109W PDB: 10CQ
HET: NTZ HET: LAT HET: NAG HET: GIFG
Mol.Wt.: 202.171 Mol.Wt.: 342.303 Mol .Wt.: 221.212 Mol.Wt.: 310.327
OH C=)H gH
O, Ho\(j/ori HO,,, UOH
HOL . . ]
HO b N N, N 0~ "oH
PDB: 10GD PDB: 10IF PDB: 10IM PDB: 10KO
HET: RIP HET: IFM HET: NOJ HET: GAL
Mol.Wt.: 150.132 Mol.Wt.: 148.183 Mol.Wt.: 164.183 Mol.Wt.: 180.159
H(=) ) {OH o (E)H
HO i WOH \. NP :(NH -
HO 0 NG "~ & "
PDB: 10XC PDB: 1P4G PDB: 1P4H PDB: 1P4)
HET: FUC HET: CGF HET: CR6 HET: CBF
Mol.Wt.: 164.16 Mol.Wt.: 250.213 Mol .Wt.: 264.237 Mol.Wt.: 223.184
HO N O Q o HC§)

HO n, HOo H o HzNJI\O/ D“.\“‘\OH HO ; .“‘\\\OH
)\ OH Ho\\\\“‘...()j:o P HO C%H “non \O:(Oj-.,%’
PDB: 1PX4 PDB: 1PZI PDB: 1P/ZK PDB: 1RDI
HET: IPT HET: 1DM HET: J12 HET: MFU
Mol.Wt.: 238.305 Mol.Wt.: 329.266 Mol.Wt.: 299.283 Mol.Wt.: 178.187

N

HO\O..‘\\“OH HO"«:.._ O/OH HO : A.‘\\\‘OH HO, NH

\O‘“‘w 5 A.""’I/ HO\\\\“‘..- o o HO\\\“\“.- o o - HO\\:EOIO _
PDB: 1RDJ PDB: 1RDK PDB: 1RDL PDB: 1RDN
HET: MFB HET: GAL HET: MMA HET: MNDG

Mol.Wt.: 178.187

Mol.Wt.: 180.159

Mol.Wt.: 194.186

Mol.Wt.: 235.239
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Group 1 (continued)

9H QH OH
Ho, A OH HO,, A OH \ij:
Ej/ O/ o /:Q:‘\O\‘"ﬁ o
HO\\\\\\‘_.‘ o .,,'”,OH HO\\\\\“". o """IOH HO' T OH
PDB: 1RPJ PDB: 1TLG PDB: 1UGW PDB: 1UGY
HET: ALL HET: GAL HET: GAL HET: GAGC
Mol.Wt.: 180.159 Mol.Wt.: 180.159 Mol.Wt.: 180.159 Mol.Wt.: 342.303
OH on on OH
Ho? . e o HO\i):jH o ) Ho? o
CQ\MJI\ HV:QjIé HO/:@:O © 0K
O\ H H \/\/O
PDB: 1UHO PDB: 1ULC PDB: 1URG PDB: 1UWF
HET: MGC HET: LAT HET: MAL HET: DEG

Mol.Wt.: 235.239

OH
HO,, A OH
HO.
H I
OH

PDB: 1UWT
HET: GTL
Mol.Wt.: 192.173

HO HO OH
O, (o) A HO i HO,, HQ%‘\ y
HO NH H
OH N N o ou

PDB: 1VOL
HET: _XIFG
Mol.Wt.: 250.274

mQ

PDB: 1WS4
HET: GYP
Mol.Wt.: 194.186

H
HO, OH
HO \(I
N 0 O/

Mol.Wt.: 342.303

Mol.Wt.: 342.303

Mol.Wt.: 236.267

oH HO OoH
HO ; OH H HO i on B
HO ; WOH \O/
v
(!H HO ¢} “u HO

PDB: 1UWU
HET: GOX
Mol.Wt.: 192.173

PDB: 1W3]
HET: OXZ
Mol.Wt.: 149.148

HO

HO
\\\‘\“ O (6]

PDB: 1WS5
HET: MMA
Mol.Wt.: 194.186

PDB: 1UZV
HET: FUC
Mol.Wt.: 164.16

PDB: 1W3K
HET: _CELB
Mol.Wt.: 311.291

PDB: 1VOK
HET: _XDNJ
Mol .Wt.: 266.273

PDB: 1W60
HET: LAT
Mol .Wt.: 342.303

PDB: 1WW2
HET: NBG
Mol.Wt.: 221.212

PDB: 1WW3
HET: NTF
Mol .Wt.: 275.183



\ . i OH
o
N/ Q/
/7 SN oK
§ OH \<N/N
PDB: 1XC7 PDB: 1XLO
HET: GL6 HET: OX2
Mol.Wt.: 287.208

Mol.Wt.: 246.222

Group 1 (continued)

OH
P HO OH
) \EI

OH N OH
PDB: 1XL1 PDB: 1XLI
HET: TH1 HET: GLT
Mol.Wt.: 297.332

Mol.Wt.: 196.224

o

fo—U—of
Ho/:q;[.@é
PDB: 1YFZ PDB: 1Z3T PDB: 173V PDB: 1740
HET: IMP HET: CBI HET: LAT HET: GL1
Mol.Wt.: 346.195 Mol.Wt.: 342.303 Mol.Wt.: 342.303 Mol.Wt.: 258.123
HO oH OH OH
HO, H OH OH H §
HO,,, A OH :
wo' 0 “oH
PDB: 2AAC PDB: 2ADD PDB: 2ARC PDB: 2ARE
HET: FCB HET: SUC HET: ARA HET: MAN
Mol.Wt.: 164.16 Mol.Wt.: 342.303 Mol.Wt.: 150.132

HO,
oH N
HO, OH OH
\(I I
HO
NN N “"OH
OH

Mol.Wt.: 180.159
OH

OH
HO\(IOH HO,, UQH
/:QI o 0 OH N, 0 "oH
PDB: 2B1Q PDB: 2B1R PDB: 2B3B PDB: 2B3F
HET: TRE HET: CBI HET: GLC HET: GAL
Mol.Wt.: 342.303 Mol.Wt.: 342.303 Mol.Wt.: 180.159 Mol.Wt.: 180.159
HO HO OH oH
H H H i Hy
HO AOH HO AOH HO WOH '
o 0 o 0 N\ N0 o oH
PDB: 2BOI PDB: 2BOJ PDB: 2BV4 PDB: 2BVD
HET: MFU HET: ARW HET: MMA HET: ISX
Mol.Wt.: 178.187 Mol.Wt.: 164.16 Mol.Wt.: 194.186

Mol.Wt.: 310.327
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OH

HO,, A OH
N\ N7 Moy
PDB: 2BZD

HET: GAL
Mol.Wt.: 180.159

PDB: 2CHN
HET: NGT
Mol.Wt.: 219.261

PDB: 2F3P
HET: 4GP
Mol.Wt.: 250.187

PDB: 2F5T
HET: MAL
Mol .Wt.: 342.303

OH

HO,

HO,

PDB: 2HL4
HET: BO1
Mol.Wt.: 334.35

(0)
\ A

OH
o
"""N
H

Group 1 (continued)

HQ HO o

o} HOmH Q IJ“““‘\\\
)LNH 0 (j )I\N 7 on
N\O)\H " HO
PDB: 2CBJ PDB: 2CCV
HET: OAN HET: A2G

Mol.Wt.: 353.335 Mol.Wt.: 221.212

PDB: 2D2V
HET: MAL
Mol.Wt.: 342.303

PDB: 2DRI
HET: RIP
Mol.Wt.: 150.132

HO

PDB: 2F3Q PDB: 2F3S
HET: 6GP HET: 7GP
Mol.Wt.: 265.222 Mol.Wt.: 279.249
QH
o?/io HO\(IOH
HO \\\“\“‘. O OH
PDB: 2FKF PDB: 2GPB
HET: G16 HET: GLC
Mol.Wt.: 336.087 Mol.Wt.: 180.159
OH
HO , A OH N,
HO\\\\“"'. 0 "o .
PDB: 2J1A PDB: 2J4G
HET: GAL HET: NB1

Mol.Wt.: 180.159 Mol.Wt.: 247.315

OH

H Olln
o .
H
OH N
\/ ﬁ
o

PDB: 2CEX
HET: DAN
Mol.Wt.: 290.252

PDB: 2E22
HET: MAN
Mol.Wt.: 180.159

PDB: 2F3U
HET: 8GP
Mol.Wt.: 290.275

PDB: 2H15
HET: B19
Mol.Wt.: 338.382

HO!

PDB: 2J47
HET: GDV
Mol.Wt.: 360.373
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HO
HoIgj WOH
N0 N
PDB: 2)JDM

HET: MFU
Mol.Wt.: 178.187

mQ

HO.
N 0

PDB: 2)DY
HET: MMA
Mol.Wt.: 194.186

PDB: 209R
HET: TCB
Mol.Wt.: 358.367

OH

PDB: 2PRI
HET: D6G
Mol.Wt.: 242.124

Group 1 (continued)

OH

HO,

HO

PDB: 2JDN
HET: MMA
Mol.Wt.: 194.186

PDB: 2JF4
HET: VDM
Mol.Wt.: 335.357

\\\\\\"" 0 0

WOH

HO
HO:(] WOH
N0 N0
PDB: 2JDP

HET: MFU
Mol.Wt.: 178.187

H OH HO
N i oH
HO WOH HO HO )
Ho™" “oH "OH )I\
H
v OH H
(¢) HO HaN

PDB: 2JIW
HET: BEU
Mol.Wt.: 216.239

N
"y
OH

HO
HO:E?j WOH
o 0
PDB: 2JDU

HET: MFU
Mol.Wt.: 178.187

PDB: 2NMO
HET: LAT
Mol.Wt.: 342.303

HO, HO

OH o

i H
Hoﬁoj\/)‘ H s " : NN

Q H
HO? N N0 Ny o OH Hoﬁgj\ -
8 -\o HO o |
H

PDB: 20YK
HET: 9MR
Mol.Wt.: 309.319

HO

PDB: 2PRJ
HET: NBG
Mol.Wt.: 221.212

H

PDB: 20YL
HET: IDC
Mol.Wt.: 362.339

PDB: 2PYD
HET: GLC
Mol.Wt.: 180.159

PDB: 20YM
HET: MNI
Mol.Wt.: 309.368

OH
H HO
OH W o
HO H
N N0 NoH

PDB: 2PYI
HET: DL8
Mol.Wt.: 364.361

HO OH OH OH
HO OH HO WwOH HO, WOH HO, ; OH
I I iij‘\“/ O 1 :@\\/ I i 5 I I
OH /'\% o )\‘ OH  Ho i .
§ § m ! : : ) © ” H
HO! HN

PDB: 2QLM
HET: F68
Mol.Wt.: 340.336

PDB: 2QN7
HET: HBZ
Mol.Wt.: 342.308

PDB: 2QN9
HET: NBX
Mol.Wt.: 341.323

PDB: 2QNB
HET: BZD
Mol.Wt.: 326.309
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PDB: 2QRG
HET: MO7
Mol .Wt.: 325.321

HO OH

PDB: 2QRQ
HET: S13
Mol.Wt.: 309.322

PDB: 2QWE
HET: GNA
Mol.Wt.: 332.316

A,
v

PDB: 2QWI
HET: G20
Mol.Wt.: 341.37

PDB: 2RI9
HET: _LYM
Mol.Wt.: 326.303

Group 1 (continued)

HO OH

PDB: 2QRH
HET: MO8
Mol.Wt.: 295.295

Ol

ol
SN
PDB: 2QWB

HET: SIA
Mol.Wt.: 308.267

A
Y

~N

PDB: 2QWF
HET: G20
Mol.Wt.: 341.37

PDB: 2QW]
HET: G28
Mol.Wt.: 298.321

HO,,

" O“‘\h.

PDB: 2RIA
HET: 289
Mol.Wt.: 210.185

PDB: 2QRM
HET: M09
Mol.Wt.: 340.292

PDB: 2QWC
HET: DAN
Mol.Wt.: 290.252

r

b

PDB: 2QWG
HET: G28
Mol.Wt.: 298.321

o kH
0
-0 o
NJ\
H
H.N

PDB: 2QWK
HET: G39
Mol.Wt.: 283.35

OH

PDB: 2RIB
HET: GMH
Mol.Wt.: 210.185

PDB: 2QRP
HET: SO6
Mol.Wt.: 345.355

PDB: 2QWD
HET: 4AM
Mol.Wt.: 289.267

0
-0 o
NJ\
H
HN

PDB: 2QWH
HET: G39
Mol.Wt.: 283.35

PDB: 2RFY
HET: CBI
Mol.Wt.: 342.303

OH
OH
o]
Y 'OH
NH
T L

PDB: 2SIM
HET: DAN
Mol .Wt.: 290.252
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PDB: 2UVH
HET: _DADA
Mol.Wt.: 368.254

PDB: 2VEZ
HET: G6P
Mol .Wt.: 258.123

PDB: 2VNV
HET: MMA
Mol.Wt.: 194.186

PDB: 2VVS
HET: OAN
Mol.Wt.: 353.335

OH
OH
HO
0 "% o
'OH
“NH
T L

PDB: 3B50
HET: SLB
Mol.Wt.: 308.267

Group 1 (continued)

-0 0

o Y

HO OH A
. 0
OH
OH
o .

PDB: 2UVI
HET: UNG
Mol.Wt.: 352.254

HO, o) N
0 Ij o
/I‘\N o
Ho 2
HO

PDB: 2VMC
HET: A2G
Mol.Wt.: 221.212

HO,
OH
Q
HO' OH
Hi

PDB: 2VUR
HET: YX1
Mol.Wt.: 267.241

et

“10H

PDB: 2VZR
HET: GCU
Mol.Wt.: 193.134

PDB: 3BCS
HET: CJB
Mol.Wt.: 274.232

OH

HO\UOH
0" "on
PDB: 2V4V

HET: XYP
Mol.Wt.: 150.132

OH
HO,, ; OH
HO O/
\\\\“ o) ¢ O/

PDB: 2VMD
HET: MBG
Mol.Wt.: 194.186

PDB: 2VVN
HET: NHT
Mol.Wt.: 248.303

N
N

HO, OH
OH
HO"

PDB: 2W4X
HET: STZ
Mol.Wt.: 265.225

OH
HO, OoH
U I
HO
NN %NJI\N
K)kNHz

PDB: 3BD8
HET: C3B
Mol.Wt.: 273.248

OH

HO, o, A OH
HO “‘O./
\\\““

0™ ™o

PDB: 2V72
HET: GAL
Mol.Wt.: 180.159

OH
HO,, ; OH
HO (j/
N 0 ’IO/

PDB: 2VMG
HET: MBG
Mol.Wt.: 194.186

PDB: 2VVO
HET: A6P
Mol .Wt.: 258.123

HO
HO:(j“‘“\OH
Ho? o7
PDB: 2WCV

HET: FUC
Mol.Wt.: 164.16

-0
\ O
BN g

o-

OH

PDB: 3BXF
HET: FBP
Mol.Wt.: 337.095
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OH

PDB: 3BXG
HET: BG6
Mol.Wt.: 258.123

Ho—-tN
OH
o o
HO,
H

OH

PDB: 3G2I
HET: RUG
Mol.Wt.: 261.236

OH

PDB: 3G2N
HET: OAK
Mol.Wt.: 283.284

RN
/

™0

Owe 2
T~ TN

PDB: 3HKU
HET: TOR
Mol.Wt.: 339.367

PDB: 3L7D
HET: DK5
Mol.Wt.: 363.349

N
/
N

H>

(e]

Group 1 (continued)

PDB: 3BXH
HET: F6P
Mol.Wt.: 259.131

PDB: 3G2J
HET: 9GP
Mol.Wt.: 237.211

OH
HO, A OH
HO "
N Q/lqo/Y\OH
OH

PDB: 3GA5
HET: RGG
Mol.Wt.: 254.239

PDB: 31JH
HET: KO2
Mol.Wt.: 295.269

PDB: 3L79
HET: DKX
Mol.Wt.: 276.223

PDB: 3DJE
HET: FSA
Mol.Wt.: 253.253

S—OH
NgN\‘ Oy’
_ Q‘@H

PDB: 3G2K
HET: SKY
Mol.Wt.: 357.369

HO' O, =
HO™ “OH

OH

PDB: 3GPB
HET: G1P
Mol.Wt.: 258.123

Hy

PDB: 3L7B
HET: DKZ
Mol.Wt.: 275.239
o\ /NH2
s"‘O/ \O
owe Gl
A
PDB: 3LXE
HET: TOR

Mol.Wt.: 339.367

HO,,,.

PDB: 3G2H
HET: KOT
Mol.Wt.: 307.309

PDB: 3G2L
HET: LEW
Mol.Wt.: 357.369

OH

PDB: 3HKQ
HET: 1SD
Mol .Wt.: 243.237

Y
0 H
N Y
HO™” O

PDB: 3L7C
HET: DK4
Mol.Wt.: 294.214

o  OH OH

O A OH
'OH
H
HO

PDB: 30Y8
HET: _LBA
Mol.Wt.: 357.294
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Group 1 (continued)

HO,
o N o g" on
HO,,_ Q/OH o WOH Ho,, ; OH HO ; WwOH ;
HOL _ -
N Q OH HO ‘EI HO
OH N\ 0 OH

HO,,,"'(‘j/OH
NN o/ 0" “"oH
PDB: 30YW PDB: 5ABP PDB: 5CNA PDB: 6ABP

HET: TDG HET: GLA HET: MMA

Mol.Wt.: 358.367 Mol.Wt.: 180.159

HET: ARA
Mol.Wt.: 194.186 Mol.Wt.: 150.132

HO,,

HO oH HO\= QH
. OH N oH OH HO,,, A OH
\ o "OH HO [j:
H O\\\“‘. O H o \\\\“"l'
PDB: 7ABP

O

OH
PDB: 8A3H PDB: 8ABP

HET: FCA HET: IDC HET: GLA

Mol.Wt.: 164.16 Mol.Wt.: 362.339

Mol.Wt.: 180.159
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HO éH OH Ho/é OH
PDB: 1AJ6 PDB: 1AX2 PDB: 1BB7
HET: NOV HET: _NAL HET: GUM
Mol.Wt.: 612.639 Mol.Wt.: 383.355 Mol.Wt.: 582.566
0
_O_LILO_ N0 oH o
il O\g [ H HQ’% (OH HOn A" H
HOUOHO e | N . N>P<O\O; FOG" N0~ I
N N o N -0 M O / OH
OH ;
PDB: 1BYK PDB: 1DMT PDB: 1EEF
HET: ToP HET: RDF HET: _PEPG
Mol .Wt.: 420.267 Mol.Wt.: 541.499 Mol .Wt.: 444.445

OH
9 rd OH - OH
H H H H H
O O o i i i 2 H
N . ] 5 O OH " OH
H O/
| o ¥ I
HO " ""OH 2 HO' "™OH (e ™OH OH
: OH OH
OH OH HO

PDB: 1FD7 PDB: 1GA8 PDB: 1GAH
HET: All HET: UPF HET: ACR
Mol.Wt.: 389.409 Mol.Wt.: 566.284 Mol.Wt.: 646.625

0 HO
OH HQ Y HO, ) OH
v OH - OH wNH "

¥ H 1 Hy % 0
A 200 A _OH AN, A _OH o
o o o Q oH
o t HO Xe) OH
OH OH - o
OH HO HO ™ | of

H >  HO
OH Ho”

PDB: 1GAI PDB: 1GX4 PDB: 1GZ9
HET: GAC HET: _NAL HET: _FLAC
Mol.Wt.: 648.641 Mol.Wt.: 383.355 Mol.Wt.: 488.447
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HO, A OH

PDB: IHEW
HET: _NAG3
Mol.Wt.: 627.605

PDB: 1JIK
HET: 545
Mol.Wt.: 472.52

O O
A g OH
o /\[ HO,, OH
s
N OH
o™ No
o

PDB: 1JQY
HET: A32
Mol .Wt.: 471.468

OH
Ve OH - OH
i H i H
A 40, AL LOH _A N A LOH
o o
o)
HO! OH o) OH " OH
OH OH
OH HO!

PDB: 1K1Y
HET: ACR
Mol.Wt.: 646.625

Group 2 (continued)

HO

PDB: 1JlI
HET: 383
Mol.Wt.: 413.388

"HaN
HO

PDB: 1JIL
HET: 485
Mol.Wt.: 384.389

Oy OH §
/\/H OH
(\N 0" o
o\) o

PDB: 1JRO
HET: A24
Mol.Wt.: 457.441
HO o
HO... OH HNJ\
Oal A JOH
HO” o
OH
PDB: 1K7T
HET: _NGGA

Mol.Wt.: 383.355

HO

PDB: 1J1J
HET: 629
Mol.Wt.: 415.404

(1Y
Ty
PDB: 1JLX
HET: TDSC

Mol.Wt.: 473.481

9} 9}

PDB: 1JZS
HET: MRC
Mol.Wt.: 499.627

o
HOT
H

o, o
HO.

PDB: 1K7U
HET: _2NAG
Mol.Wt.: 424.408
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faten>ediuut

PDB: 1KZN
HET: CBN
Mol.Wt.: 697.145

PDB: 1NF3
HET: GNP
Mol.Wt.: 518.169

PDB: 1514
HET: NOV
Mol.Wt.: 612.639

PDB: 1UDA
HET: UFG
Mol.Wt.: 566.284

Group 2 (continued)

HO

Hoﬁi
j\N
H H
OH N,
9 \(j
HO,
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Abstract: In the current era of high-throughput drug discovery and development,
molecular modeling has become an indispensable tool for identifying, optimizing and
prioritizing small-molecule drug candidates. The required background in computational
chemistry and the knowledge of how to handle the complex underlying protocols,
however, might keep medicinal chemists from routinely using in silico technologies. Our
objective is to encourage those researchers to exploit existing modeling technologies more
frequently through easy-to-use graphical user interfaces. In this account, we present two
innovative tools (which we are prepared to share with academic institutions) facilitating
computational tasks commonly utilized in drug discovery and development: (1) the
VirtualDesignLab estimates the binding affinity of small molecules by simulating and
quantifying their binding to the three-dimensional structure of a target protein; and (2) the
MD Client launches molecular dynamics simulations aimed at exploring the
time-dependent stability of ligand—protein complexes and provides residue-based
interaction energies. This allows medicinal chemists to identify sites of potential
improvement in their candidate molecule. As a case study, we present the application of
our tools towards the design of novel antagonists for the FimH adhesin.
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1. Introduction

Molecular modeling has become an integral part of drug discovery and development, with
numerous documented examples of successful employment of computational approaches to answer
key questions in the field of molecular design. For instance, structure-based design techniques,
including small-molecule docking and scoring, can provide structural and energetic information on
ligand—protein binding and, hence, guide the design of more potent candidate molecules [1,2].
Additionally, quantitative structure-activity relationships (QSAR) models can provide reliable
estimates of binding affinities, particularly of hypothetical ligands—prior to their laborious and costly
synthesis and biological testing [3,4]. Molecular dynamics (MD) simulations address more challenging
questions regarding the dynamic nature of ligand-receptor interactions [5—11]. Overall, virtual
screening can increase the efficiency and reduce time and cost of lead identification [12,13]. A number
of commercially available software packages handle one or more of these tasks, e.g., the Schrodinger
Suite [14], the Accelrys Discovery Studio [15], the SYBYL-X Suite [16] or the Molecular Operating
Environment [17]. Furthermore, a wealth of modeling tools are available free-of-charge, including
AutoDock for automated docking [18], Quasar™ for multi-dimensional QSAR [19], Desmond for
molecular dynamics simulations [20] and DOCK Blaster for virtual screening [21].

Medicinal chemists involved in design of new ligands for some macromolecular target are
nowadays knowledgeable of the binding site’s topology at the molecular level. This degree of
familiarity with the target provides valuable guidance for modeling techniques, such as docking
proposed ligands to that target or developing a QSAR for predicting binding affinities. Such optimized
modeling methodologies could, in turn, guide the medicinal chemists’ decision making. However,
making the best use of these and other modeling techniques requires a tedious and repetitive process of
setting and calibrating parameters, as well as collecting and organizing the results. Designing an
intuitive interface that encapsulates and hides the complexity of the underlying technologies from the
end-user would, thus, motivate medicinal chemists to use modeling tools more frequently.

In this article, we present two novel platforms addressing commonly required tasks in modern drug
design workflow: the VirtualDesignLab for predicting binding mode and affinity and the MD Client
for investigating interaction dynamics of ligand—protein complexes (Figure 1). We discuss the
development of the underlying models and technologies used in both tools and demonstrate their
recent employment in our lab for the design and optimization of novel antagonists for FimH [22-24], a
bacterial lectin playing a crucial role in the initial stages of urinary tract infections. Since the goal of
the present work is to develop versatile tools that can be easily tuned for any structure-based drug
design project, we will conclude with reviewing the steps required to apply/extend our tools for use
with other protein targets.
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Figure 1. Tools presented in this article handle two common tasks in modern
computer-aided drug design workflow. The VirtualDesignLab predicts binding mode and
estimates the associated binding affinity of prospective ligands. The MD Client facilitates
simulation and analysis of the dynamics in ligand—protein complexes. In concert with other
software predicting pharmacokinetic (e.g., QikProp [25]) and toxicological profiles
(e.g., the VirtualToxLab [26]), our tools equip medicinal chemists with a multi-purpose
molecular-modeling kit.
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2. Methods
2.1. VirtualDesignLab

The VirtualDesignLab is an in silico tool developed at our institute (based on the VirtualToxLab
framework [26] shared by the Biographics Laboratory 3R) simulating and quantifying the binding of
small molecules to a macromolecular target. The technology employs automated, flexible docking
combined with multi-dimensional quantitative structure-activity relationships (mQSAR). Controlled
by an easy-to-use interface, the VirtualDesignLab allows medicinal chemists to perform quick and
straightforward design, screening and structural inspection of any compound of interest [27].

In order to provide a reliable in silico affinity estimate for a given system, it is necessary to account
for protein-ligand interactions, solvation and entropic phenomena. In our example system, FimH
adhesin, we utilized a set of 108 compounds, along with their experimental affinity data, to develop
and validate a corresponding mQSAR model (Table 1). When generating the model, the initial
compound structures were constructed using the integrated model-building tool and then optimized
with MacroModel [28]. Atomic partial charges were computed using the AMSOL package [29]. All
structures were subjected to the conformational-searching algorithm ConfGen [30], resulting in sets of
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low-energy conformations for each molecule in aqueous solution. Energetically feasible binding
conformations (within 10 kcal/mol from the lowest-energy structure) were identified by means of
automated docking to two three-dimensional structures (“in” and “out” state, cf. below) of the FimH
carbohydrate-binding domain. The employed alignment (Alignator) [31] and docking (Cheetah) [32]
protocols allowed for flexibility of both ligand and the protein (induced fit), as well as dynamic
solvation. Several templates (based on experimental structures) were used for the pre-alignment in
order to account for distinct modes of binding to FimH (referred to as “in” and “out”) reported
previously [23,33]. The underlying protein structures were retrieved from the Protein Data Bank (PDB
codes IUWF and 3MCY available at 1.69 A and 2.90 A resolution, respectively) and pre-processed
(calculation of hydrogen-atom positions, hydrogen-bond network optimization, energy minimization)
with the Protein Preparation Wizard in Maestro [34]. A total of 282 docking poses (allowing for
multiple poses per ligand) comprising a 4D data set were then used as input (84 training and 24 test
substances) for the mQSAR software Quasar [35] to generate a series of quasi-atomistic binding-site
models. The underlying model families (comprising 200 members) were evaluated in
consensus-scoring mode—along with a direct force-field scoring in Cheetah [32] and the comparison
of a molecule’s interaction energy in a box of pre-equilibrated water and in the binding site. For
validation, we additionally employed an alternative receptor-modeling concept, Raptor [28], featuring
a substantially different scoring function.

Table 1. Structures and binding affinities (pIC50: negative logarithm of ICsy [M]) for
52 compounds employed to develop the QSAR model. The remaining data cannot be

disclosed at this time, due to pending patent applications.
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Table 1. Cont.
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Every compound submitted to the VirtualDesignLab server (by means of imported PDB files or the
integrated model builder) is subjected to identical protocols as those employed to train and validate the
underlying mQSAR model(s) (Figure 2). The affinity is calculated based on multiple components of
the binding energy (Figure 3). Protein-ligand interaction and internal strain energies (Cheetah and
Quasar) are obtained using a directional force field with polarization terms [36]. The desolvation costs
are calculated for the global minimum obtained from the conformational search, using a continuum
solvation model. Loss of entropy is approximated from the number of rotatable bonds constrained
upon binding to the protein. Induced-fit energy calculation is an inherent function of the Quasar
algorithm. The affinity predictions are based on (up to) eight docking poses as obtained from
Alignator/Cheetah (4D) and take into account (up to) six induced-fit mechanisms (5D) and two
solvation (6D) scenarios in order to account for the unique properties of certain binding sites (e.g., the
surface-exposed FimH binding pocket). Protein—ligand structures may be viewed (binding pocket)
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and/or downloaded (in PDB format) upon job completion. The latter files also serve as input for other

software, including the MD Client.

Figure 2. VirtualDesignLab flowchart (left) and an example of a typical workflow based

on the FimH receptor (right). The compound of interest is designed using the built-in 3D

model builder or imported from an external file. The main step involves the conformational

sampling of the ligand in the protein’s binding pocket, where all feasible poses are retained
and used as input for the subsequent mQSAR. Structure management options and job

controls are all accessible from a central interface window. References to the individual

pieces of software are given in text.
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Figure 3. The equation for calculating the binding energy wused in the
VirtualDesignLab/VirtualToxLab and the directional force field employed in Cheetah and
Quasar [32]. The individual terms—quantifying experimentally accessible quantities, such
as bond lengths, bond angles, torsion angles, van der Waals contacts, geometries of
hydrogen bonds, electrostatic and metal-ligand interactions, as well as ligand—protein
polarization—are described in greater detail in the software documentation found at
http://www.biograf.ch/index.php?id=software.
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2.2. MD Client

In addition to binding affinities estimated from mQSAR based on the docking simulations,
medicinal chemists might wish to analyze the kinetic stability of ligand—protein interaction used by
means of molecular-dynamics (MD) simulations. MD has been successful in studying structural
fluctuations in proteins [37-39], lipids [40—42] and nucleic acids [43,44], as well as in the refinement
of structures solved by X-ray crystallography and NMR [5]. Despite the availability of a wealth of
software packages for performing MD simulations, (e.g., Desmond [20], Amber [45], CHARMM [46],
GROMOS [47] and GROMACS [48]), the lengthy setup and laborious post-processing act as a barrier,
preventing users from routinely utilizing these simulations. We therefore developed the MD Client to
overcome this limitation by requiring as few settings as possible to quickly and reliably highlight basic
features of the dynamics of the studied protein-ligand complex. Our MD Client is designed specifically
for use by bench medicinal chemists interested in exploring ligand—protein interaction dynamics.

2.2.1. The MD Client Interface

The MD Client utilizes a simple and intuitive GUI front-end and a more sophisticated back-end that
handles all “under-the-hood” tasks, from cleaning the input structure to post-processing MD trajectory
and gathering energy results. Both front- and back-end programs were developed in python 2.6
(http://www.python.org) using standard extensions, such as the Tkinter GUI package and the
matplotlib library for rendering interactive 2D plots. The front-end has been compiled for Mac OS X,
Linux and Windows operating systems. The communication between the front-end and the back-end
on the remote server is carried out via a Secure Shell (SSH) protocol. A molecular dynamics
simulation of a ligand—protein complex (as obtained, for instance, from the VirtualDesignLab) is
launched by a single-click in the MD Client interface. The MD Client provides control over the basic
parameters of submitted MD simulation: namely its length and frequency of taking snapshots for
subsequent energy analysis and movie production (Figure 4). The “Advanced Options”, button enables
the user to control more details of the MD simulation; yet the default options are adequate in most
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cases. A list box keeps track of jobs currently on the server and their current status. The user can
monitor the progress of running jobs or, when needed, terminate them at any stage.

Figure 4. Appearance of the user interface of MD Client; top-left: list of jobs currently on
remote server; bottom: basic simulation settings; and right: results download and analysis.
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MD simulations require different types of data input. The most important is the structure file
containing input geometries of the ligand—protein complex. Currently, the MD Client accepts files with
Protein Data Bank (PDB) format [49]. The VirtualDesignLab output structures (i.e., ligand-protein
complexes) can be directly used as input for the MD Client. When an MD simulation is completed, the
user can download extracted frames as standard PDB files for viewing. For the 3D visualization of
structures, several free 3D-rendering tools, such as Visual Molecular Dynamics (VMD) [50], are
available. To facilitate the importing of MD trajectories into VMD, we added a functionality that
automatically generates a VMD visualization-state file linked to the downloaded frames. The user can
choose between different pre-defined visualization styles and simply click on “Generate VMD Movie”
in the MD Client interface (Figure 4) to produce a file that can be loaded directly into VMD. This
spares the user the time and effort needed to load individual PDB files and set up the view options in
VMD. Most importantly, the user can use MD Client’s built-in plotting tool to analyze ligand—protein
interaction dynamics (cf. Figure 7) and compare them amongst multiple systems, which we are going
to demonstrate in the results section on selected antagonists binding to the FimH receptor.

2.2.2. The MD Client Back-end

The MD Client back-end resides on the remote server, where all computational jobs are to take
place. It utilizes Schrodinger’s Python API (http://www.schrodinger.com/pythonapi) for reading
structures, launching MD simulations and computing per-residue interaction energies. It receives input
structure and primary simulation settings from the front-end. Figure 5 shows how the MD Client
back-end processes input structures into useful quantities. It starts by constructing atom connectivity
and bond orders for the submitted structure and doing a short energy minimization to relieve structural
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inconsistencies in bond lengths, angles, steric clashes, etc. The MD Client back-end automatically
identifies the ligand-like molecule and defines binding site residues as all residues within 8 A (default)
from ligand atoms. This definition is employed for subsequent use in energy computations and
movie production.

Figure 5. Workflow of the MD Client and communication between front-end and

back-end.
MD Client
Front-end i Back-end
(Virtual Structure —— Starting Geometry
DesignLab) (PDB format) ‘

Clean and minimize (250 steps)
Identify ligand and binding site
Build simulation box (add solvent, salt, etc.)

Relaxation protocol

Simulation length (ns) ‘
>—g—> Molecular Dynamics Run

Recording Interval

VMD Movie 4— Extract frames from trajectory

Download (csv) Compute per-residue interaction energies
Interactive plot : between ligand and binding-site residues

Save output and cleanup

The MD Client back-end employs the Desmond package from the D. E. Shaw Research laboratory
to perform the MD simulations [51,52]. Desmond and its source code are distributed under free license
to non-commercial and academic users. It uses novel parallel algorithms and numerical techniques to
achieve high performance and accuracy on platforms containing a large number of processors, but may
also be executed on a single-processor computer [20]. Desmond’s System Builder soaks the submitted
ligand—protein complex into a TIP3P water box extending 10 A beyond any of the complex’s atoms. It
adds counter ions to neutralize the simulation box and 0.15 M sodium and chloride ions to
approximate physiological conditions. The complex is first minimized to a convergence gradient
threshold of 1.0 kcal/(mol-A). The molecular-dynamics protocol utilizes the OPLS2005 force field and
the NPT ensemble (constant number of particles, pressure and temperature) at 300 K, with periodic
boundary conditions. The production run of the user-defined length is preceded by 24 ps of the
Desmond default relaxation protocol. After completion of the MD simulation, the MD Client back-end
extracts frames at the user-defined intervals and saves them as standard PDB files. The user can
download these frames for later viewing and analysis. Finally, the extracted frames are analyzed using
the component-interactions script in Maestro [34] to compute interaction energies between the ligand
and individual amino acids defining the binding site along the MD simulations. Ligand-residue
interaction energies are calculated as the sum of the (OPLS2005) van der Waals and electrostatic
terms. This dynamic-interaction profile is saved as a time series in a comma-separated-values (csv) file
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for subsequent download by the user or for interactive plotting and analysis using the MD Client
front-end interface.

3. Results and Discussion
3.1. VirtualDesignLab

The current FimH Quasar model for the VirtualDesignLab was established based on structural and
biological data of 108 mannose-based inhibitors (with I1Csy values ranging from 220 uM to 2.4 nM)
displaying diverse PK/PD profiles. Compound synthesis, biological assays [53] and model
development were performed in-house, ensuring consistency of all results. Table 1 shows the
structures, experimental and predicted affinities of compounds used for developing the model. The
QSAR model based on a genetic algorithm converged at a cross-validated 7> of 0.805 and yielded a
predictive 7° of 0.596 (Figure 6a). The only modest value of the predictive  is a consequence of the
relatively narrow range of test compound affinities (as some substances were necessary for the training
set due to their structural uniqueness). The performance of the model is therefore better reflected by
the individual predictions (23 out of 24 test substances within a factor of 10 from their experimental
affinity). We further challenged the FimH model by using Y-scrambling and consensus scoring with
the software Raptor (dual-shell 5D-QSAR; Figures 6b and S1) [54]. All tests, including the
processing of additional external compounds, confirmed the predictive power of the mQSAR
model-based framework.

Figure 6. Comparison between experimental (horizontal axis) and predicted pK values
(vertical axis) for (a) the Quasar model and (b) the Raptor model. Black and red points
represent compounds of the training and test set, respectively. Vertical bars indicate the
estimated standard deviations of the prediction. Dashed lines are drawn at factors of 10
from the experimental value.
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The VirtualDesignLab is aimed at predicting the binding affinity for a given compound within a
factor of 10 from the experimental value. Currently, the affinity prediction for a single compound
requires approximately one hour of CPU time—a good balance between accuracy and processing time.
Special treatment may, however, be required for compounds retaining flexibility upon binding. In such
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cases, improved entropy estimation (a method is currently in development at our institute) or a
non-static approach, such as the one offered by the MD Client (cf. below), may be necessary. We
would like to emphasize that the framework is independent of the FimH mQSAR model (presented
here), as it only requires the generation and validation of a new QSAR model for any target protein of
interest. This can be developed using by freely available software, e.g., Quasar [35].

3.2. MD Client

In the MD Client, the outcome of an MD simulation includes a set of frames extracted from the MD
trajectory and a dynamic-interaction profile comprising per-residue interaction energies between
ligand and protein for all time points. An interactive plot of computed interaction profiles is readily
accessible from the MD Client interface (Figure 7). The plot created by the matplotlib python
extension is cumulative, i.e., it can incorporate dynamic profiles from several simulations in the same
plot with automated coloring and legend generation. Comparing dynamic profiles of different
simulations may provide valuable clues, for instance, about interaction modes of different ligands
and/or key residues in ligand recognition and binding. We chose five structurally distinct FimH ligands
(9, 17, 18, 28 and 37) to demonstrate the usefulness of dynamic-interaction profiles. Examination of
their dynamic interaction energies with two key FimH residues (GIn133 and Phel) indicates that these
interactions are maintained throughout the entire simulation and that they don’t significantly differ
among different ligand classes (Figure 7a,b). These residues are typically involved in an extended
hydrogen-bond network with the mannose moiety common to FimH binders. The profiles also show
that the interaction with the N-terminal NH;" moiety of Phel results in a considerably larger
contribution to the binding enthalpy compared to GInl133. Automated docking of FimH ligands
typically predicts a hydrogen bond from the 3-OH of the mannose moiety to the Asp140 residue to be
thermodynamically favorable. Interestingly, this hydrogen bond does not seem to be kinetically stable,
since it is broken within the first 0.5 ns and is never re-established throughout the entire simulation as
can be observed in the profiles of all studied compounds (Figure 7c).

Figure 7. Dynamic per-residue interaction plots for five FimH ligands generated by the
interactive plotting feature of MD Client; (a) GIln133, (b) Phel, (¢) Asp140 and (d) Tyr48.
Vertical axis: protein-ligand interaction energies (kcal/mol); horizontal axis: molecular
dynamics simulation time (ns). The colors mark the individual compounds shown above.
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The various classes of FimH ligands differ in their interaction patterns with the so-called #yrosine
gate lined by Tyr48 and Tyr137 located at the entrance to the mannose-binding site (Figure 8) [23].
The interaction dynamics show that compound 28 exhibits the strongest interaction with Tyr48, which
could be explained by its unique scaffold that allows a preferred interaction with the tyrosine side
chain (Figure 7d). Compounds 9 and 18 display a favorable interaction with Tyr48, yet of lower
magnitude than 28, which explains the superior affinity of the latter (see Table 1). Finally, two ligands
seem to lack this favorable interaction with Tyr48; namely 17 and 37, which also coincides with their
relatively lower affinities. This could be rationalized by the lack of a side chain capable of interacting
with the Tyr48 in 17 and the inherent rigidity of 37 due to a lack of glycosidic oxygen in the linker

between mannose and the aromatic aglycone.

Figure 8. Illustration of (a) in binding mode of 18 and (b) out binding mode of 28, within
the tyrosine gate of FimH binding site. References to different binding modes of FimH

ligands are given in the methods section.
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4. Software Extension/Repurposing

The philosophy behind all our software is to allow for extendibility, as well as redirection,
towards different targets of interest. In the following, we provide a brief overview of the
corresponding requirements.

4.1. VirtualDesignLab

Assuming that a decent number of ligands with experimental affinity data are available for the
given target, a three-dimensional protein-ligand structure that will serve for automated, flexible
docking is required. These are usually obtained by means of crystallography or homology modeling
and must typically be further refined (addition of hydrogen atoms, completion of missing amino-acid
residues or their side chains, completion/generation of the solvent shell, energy minimization). These
tasks can be accomplished through numerous, freely accessible computational tools. With the structure
at hand, potential binding poses of all tested compounds need to be obtained. For this step, any
flexible-docking software may be employed, including Alignator/Cheetah discussed in this article. The
ensemble of potential binding modes can be compiled into a 4D data set to serve as input for the
generation of the binding site surrogate. Though this task is best handled using the Quasar software, a
QSAR model of different origin could also potentially be utilized. It should be noted, however, that
even though structure preparation and pose generation are relatively simple tasks requiring no more
than a few days of work, developing and validating a robust and reliable QSAR model is a complex
and lengthy procedure. Also, given the vast diversity of the computational methods, personal
communication with the authors of this article would likely be necessary in order to integrate a QSAR
model with the VirtualDesignLab framework.

4.2. MD Client

The MD Client relies on the Desmond package at its back-end terminal to perform MD simulations.
Desmond can be obtained free of charge for academics and non-commercial users. Once a working
Desmond installation is available, the user needs to point the MD Client to where the back-end is
located by providing the necessary SSH credentials. The MD Client can basically take it from there,
since it has internal routines for identifying protein and ligand, job submission and monitoring, as well
as calculating, organizing and plotting the interaction energy results.

5. Conclusions

Over the past three decades, much progress has been made in developing and validating innovative
computational algorithms for common drug design-related tasks. In their perspective on the future of
medicinal chemistry, Satyanarayanajois and Hill [55] stated that emerging medicinal chemists should
additionally acquire “computational and cheminformatics acumen considerably greater than in years
past”. In a related analysis, Ritchie and McLay [56] concluded that the goal of encouraging medicinal
chemists to rely more on computational chemistry tools could be best achieved via specially designed

3

tools that are “well-thought-out, suitable for their needs, able to generate useful, timely and valid
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results”. Similarly, we trust that adopting this strategy will ultimately maximize the benefit of
state-of-the-art modeling technologies in the field of drug design and development.

To this end, we designed versatile single-click tools to assist medicinal chemists in performing two
routine modeling tasks: the VirtualDesignLab for predicting binding mode and affinity of potential
drug candidates and the MD Client for investigating dynamic behavior and energetics of ligand-protein
complexes. Thanks to their modular design based mainly on self-developed algorithms, our tools allow
easy modification, extension, as well as reorientation towards other targets and platforms of interest.
Our group previously introduced the OpenVirtualToxLab for prediction of the toxic potential of drug
candidates and made it freely available to academic organizations [57]. The two new tools introduced
in this article, VirtualDesignLab and MD Client, can also be made available on request. Our future
plans for MD Client include adding support for more molecular dynamics packages, as well as more
analysis functionalities (for instance, surface area and entropy computations) to give more insight into
ligand—protein interaction processes.

In closing, we wish to emphasize that our tools are not intended to, neither can they, replace the
expert molecular modeler. In fact, their main purpose is to facilitate handling routine drug-design
related tasks, thus leaving the more time-consuming detailed investigation only for interesting cases.
Our vision is to place our interfacing technologies right on the medicinal chemists’ workbench and
keep all the complicated ‘machinery’ on a transparently maintained server. However, the simplicity of
such tools, although tempting, should never cloud the medicinal chemists’ judgment. On the contrary,
medicinal chemists should always employ their expertise to question the results obtained from
such tools.
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Appendix 4: The MD Client Quick Start Guide

Molecular Dynamics
Client

1.0.4b

Quick Start Guide

Starting MD simulations

Job Management

Analyzing dynamic interaction energies
Producing a movie

Advanced Options
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Starting MD simulations

1. Click Browse to choose PDB file containing your ligand-protein complex.
New Job Options

PDB File: (Browse ) ( Submit )

2. Select required MD length (ns)" and frequency of taking snapshots.

MD Run Length Recording

(100 ps (~2 hrs) (O Coarse (100 ps)

@® 1ns (~ 12 hrs) @ Intermediate (20 ps)
() 4 ns (~ 2 days) () Eine (5 ps)

() Other: ns () Other: ps

3. Ifnecessary, provide an alternative job name (spaces are not allowed).

New Job Name (optional)

Name:

If a name is entered it will be used as job name,
otherwise submitted PDB file name will be used.

4. Click Submit.

) ( i Y
vse ( Submit )

5. Click Refresh to update job list.

Refresh ( Kill/Delete Job ) ( View Logfile ) ( Quit ...

" Time requirements were estimated based on FimH (PDB: 1TUWF). MD simulations for other
proteins might take longer (or shorter) if they differ in size from FimH.

MD Client, Quick Start 2
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Job Management

MD Simulations Manager lists jobs currently available on the server. Four
functions can be performed using buttons at its bottom:

MD Simulations Manager

Job Name Status Submission Date

111 2011-07-06, 07:11
222 Completed successfully 2011-07-06, 07:22
333 Stage 4/6 (computing interaction energies) 2011-07-06, 07:33
555 Problem in stage 1 2011-07-06, 11:07
examplel Stage 4/6 (computing interaction energies) 2011-07-06, 14:33
example2_short Stage 3/6 (extracting frames) 2011-07-08, 15:52
example3_long Completed successfully 2011-07-08, 16:06
example4 Completed successfully 2011-07-11, 10:21
example5 Completed successfully 2011-07-11, 15:22
example6_heptyl_man Completed successfully 2011-07-12, 07:38
example7_biphenyl_man Completed successfully 2011-07-12,07:39

Refresh ) Kill/Delete Job ) ( View Logfile ) ( Quit ... )

1. Refresh
updates list of jobs from server and their current status

2. Kill/Delete Job
stops running simulation and/or deletes all files associated with it
keep in mind: this action can NOT be reversed

3. View Logfile
reads and displays the job log file from server

4. Quit...
closes MD Client

MD Client, Quick Start 3
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Analyzing dynamic interaction energies

1.

After MD simulation is finished and frames are harvested, interaction
energies between ligand and surrounding protein residues are calculated
and saved in a comma-separated values (.csv) file on the server.

2. Click Download results (.csv) to save a copy of this file locally.
Results
( Download results (.csv) )
Energy Plots
[ Tyr48 ]
( Plot energy )
3. Selectaresidue and click Plot Energy to preview how its interaction with
the ligand evolves along the MD simulation.
-3.0
-35 /,\ ‘1'\ /\
-40 [, ‘U‘ 0/\\‘ / \ )
-45 \' \ \\/x
z -5.0 ,"\ I\ " ) \ f
g A I r\ | \’\L, L\ /\v \},
g5t (V| I\ \\.f
=l || ‘y / \H/ 1
ol | Y \
-6/ | iy
10| ' W ‘\NJ“
736 02 0.4 06 0.8 10
Simulation Time (ns)
200+ 8 H

4. Any subsequent clicks on Plot Energy will add to the already existing plot,
as long as its window is still open.

5. You can use this feature to compare interaction with certain residue
across two (or more) simulations, ...
or to compare strengths of ligand interaction with two (or more) residues
in the same simulation.

[ —— Tyras (examples) —  Tyras uxnznz,our,.nnn)] [ ——  Tyr48 (Heptyl_ Mannoside.i) — wyn .W_uu.mm_u]
-1 1
-2 e |
- -1 \
| : .‘
st A \ |
§ ‘\"““ [ W I \ “‘“ A d| \\\
2-f\// V) o
. J v v
%o 52 ] 06 o8 To "o 02 [ 6 () To
Simulation Time (ns) Simulation Time (ns)

6. You can save your plots to a variety of formats depending on the file
extension you provide. The default output is PNG, but you can also save in
SVG, PDF, EPS and high-quality PS formats.
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Producing a movie

1. Select a completed simulation, choose the output stylet and click
Generate VMD movie, then provide a path to save the movie.

Movie Movie

®102030405 0102030405

(" Generate VMD movie ) ( Generate VMD movie )

2. In the path you provided you will find a folder named ‘frames’ and a.vmd
file. Open this file in VMD using File | Load State ...

fa¥eve VMD Main POO VMD 1.8.7 OpenGL Display

-ummmm Mouse Extensions Help

rad’:)atalmli ul s s
- - o-frame 2410 51 0

Save Coordinates.
Log Tel to Console
|Log Tal toFile... -1
Jumofloggng P dT i spesd |
| Render... 1
Quit

3. Use VMD movie control options to play your MD movie.
@ | 1]
4] zoom™  [loop =] sep [ 1 Y speed[ W I

4. Keep in mind that the location where you saved the movie matters!
If you move the movie folder to another location it will not work.

5. In cases where you want to place the movie folder somewhere else,
simply re-issue the Generate VMD movie command, and provide the
new location; MD Client will take care of the rest.

t Note that some styles work only with FimH.
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Advanced Options

1. Inaddition to standard job settings, some advanced options are available
to fit some purposes.

‘ otherwise submitted PDB file name will

(" Advanced Options ... )

2. Default values are optimized to work fine in most cases. You can restore
them at any time by clicking Restore Defaults.
1800 AdiancerOntines

; ] Keep waters in input pdb file

;BAuloma(ically add hydrogens (discard hydrogens in input pdb)
| Warning: keeping hydrogens of input pdb might lead to job failure

: BAu(oma(icalIy correct bond orders of ligand

E Automatically create disulfide bonds when appropriate

"] Keep MD trajectory after job completion
Warning: This will use up a considerable disk space on server

** Cutoff (A) for calculating per-residue interaction energies with ligand: 6.0
Note: Interaction energy calculation will be skipped if a ligand is not found

Restore Defaults Apply

MD Client, Quick Start

220



