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Summary 
 

Malaria is an important cause of death and illness in children and adults, 

particularly in the tropics. The World Health Organization (WHO) estimated that, 

worldwide, there were 655,000 malaria deaths in 2010, of which 91% were in 

Africa, and 216 million cases, of which 91% were due to Plasmodium falciparum 

(P.falciparum). However, case estimates are particularly uncertain, due to the 

ambiguous definition of a malaria case and methods used for their quantification. 

 

Efficacious interventions against malaria exist, but it is not clear what their full 

impact will be or how they could be most efficiently implemented. A cornerstone 

of malaria strategies is case management, which consists primarily of 

administering drug treatment to cure the disease, and was the focus of this thesis. 

Currently, the aim of most countries in sub-Saharan Africa is to control malaria 

and reduce the disease burden by increasing coverage of effective preventive and 

curative interventions. However, in some places successes in reducing disease 

burden have lead countries to consider whether and how local interruption of 

malaria transmission could be achieved and maintained. In these settings, 

improved surveillance is critical, but it is not clear what it should consist of.  It is 

important to consider the long-term effects of intervention and intervention 

combinations, such as the dynamic effects on population immunity, which are not 

captured within the time frame of intervention trials, and their impact in real health 

systems. Mathematical models can offer guidance in these situations.  

 

In 2006, Smith and colleagues presented individual-based stochastic simulation 

models of the biology and epidemiology of P. falciparum malaria. As part of this 

project, a model for the case management of malaria was developed which 

permitted simulation of the dynamic effects of treatment on transmission. For this 
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thesis, these models were extended to low-transmission settings and used to 

predict the levels of passive case detection and treatment that would be needed to 

prevent local re-establishment of transmission in different settings. We assessed 

the uncertainties in model predictions resulting from stochastic variation and from 

the assumptions in our model formulations. We found that, even at rather low 

levels of receptivity, case management alone could not reliably prevent re-

establishment of P. falciparum malaria transmission in the face of medium to high 

importation rates. Model assumptions regarding rates of decay of natural immunity 

resulted in significantly different odds of transmission re-establishment, 

highlighting the urgent need for research in this area. 

 

We also developed a literature-based estimate of the per-person cost of screening 

an entire population for P.falciparum infection using diagnostic tests. We used this 

cost estimate along with simulation model outputs to analyse the cost-

effectiveness of mass screening and treatment (MSAT) as a burden-reducing 

intervention, relative to the cost-effectiveness of scaling up case management or 

insecticide-treated net (ITN) coverage. We found that MSAT may be a cost-

effective strategy at medium to high transmission levels and at moderate ITN 

coverage. This finding is in contrast to the current focus on MSAT as an 

intervention for low or near-elimination settings. Future analyses comparing the 

cost-effectiveness of case management with that of preventive interventions 

should include both disability and deaths averted (expressed in DALYs) as an 

outcome measure.  The analysis also highlighted the need for alternative measures 

of uncomplicated malaria burden to capture the impact of case management in 

simulation models of its cost-effectiveness. An approach to do this, using data 

available in community surveys, is presented in this thesis. 

 

Finally, the previous case management model was extended to allow a finer-

grained simulation of health systems and a drug action model was integrated to 
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allow simulation of the effects of case management on parasite densities. The 

development and parameterization of the new case management model, and its 

potential future uses and limitations, are presented in the last sections of this 

thesis.
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1. Introduction 
 

1.1. Epidemiology of malaria 
 

Malaria results from infection with a protozoan parasite transmitted by species of 

the mosquito genus Anopheles. Five species of the Plasmodium parasite can infect 

humans. The most serious form of the disease, and that which most affects Sub-

Saharan Africa, is caused by Plasmodium falciparum. P. vivax, ovale, and 

malariae cause milder forms of the disease. A fifth species, P. knowlesi, primarily 

affects monkeys but infection in humans has been reported [1].  

 

Malaria parasites, which at this stage are called sporozoites, are inoculated into the 

human host by a feeding female mosquito. After several stages of development 

within the human, sexual-stage parasites, called gametocytes, are taken up by a 

mosquito feeding on an infective person, and the malaria transmission cycle is 

complete. These parasites develop within the mosquito and are injected into 

another person at a subsequent feed. 

 

After a period spent in the liver, the inoculated parasites start to multiply in red 

blood cells of the infected host, often leading to symptoms which include 

headache, fatigue, and muscle and joint aches, usually followed by fever, chills, 

vomiting and worsening malaise. In general, uncomplicated malaria is a curable 

disease if diagnosed and treated promptly and effectively. If left untreated, parasite 

burden continues to increase and may lead to severe malaria, particularly in the 

case of P.falciparum. Severe malaria usually manifests with one or more of the 

following: coma (cerebral malaria), metabolic acidosis, severe anaemia, 

hypoglycaemia, acute renal failure or acute pulmonary oedema. If untreated, 

severe malaria is usually fatal [1].  
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The geographical distribution of malaria has been reduced significantly since 

1900, due both to concerted control efforts and to broader socio-economic 

development.  The estimated area of human malaria risk was reduced by around 

half, from 53% to 27% of the Earth’s land surface [2]. An estimated 3.3 billion 

people were at risk of malaria in 2010, with populations in sub-Saharan Africa 

having the highest risk of acquiring malaria. During 2010, there were 106 

countries in which malaria was considered endemic [3].  

 

Malaria is an important cause of death and illness in children and adults, 

particularly in the tropics. The clinical consequences of malaria infection depend 

to a great extent on the level of the individual’s acquired immunity to malaria. In 

areas of stable transmission, clinical malaria affects primarily children under five 

years of age and pregnant women, as immunity acquired through previous 

exposure renders infections largely asymptomatic in older children and adults. In 

areas of low or unstable transmission, the risk of clinical malaria is high across all 

age groups [1].   

 

Determination of morbidity and mortality from malaria is fraught with difficulty, 

due in part to low health facility use and deficient systems for collection of vital 

statistics. The World Health Organization (WHO) estimated that, worldwide, there 

were 655,000 malaria deaths in 2010, of which 91% were in Africa, and 216 

million cases, of which 91% were due to P. falciparum [3]. Case estimates are 

particularly uncertain, due to the ambiguous definition of a malaria case and 

methods used for their quantification. Using alternative methods, Hay et al 

concluded that there were 451 million cases of P.falciparum malaria globally in 

2007; their distribution is shown in Figure 1.1 below [4]. 
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Figure 1.1 Global clinical burden of P.falciparum in 2007 

(Source:[4]) 

 

Malaria disproportionately affects poor people, who are the least able to afford 

prevention and treatment, and places enormous strain on national resources, those 

of both government and households. There is evidence that it reduces productivity 

and impairs the cognitive development of children, negatively impacting economic 

growth [5]. 

 

1.2.  Case management and integrated malaria control 
 

Effective malaria control requires an integrated approach. Preventive measures 

against malaria include preventive chemotherapy (e.g. intermittent preventive 

treatment (IPT) in pregnancy), prevention of mosquito bites (e.g. distribution of 

insecticide-treated nets (ITNs)), or interventions to reduce the vector population 

(e.g. indoor residual spraying (IRS) of insecticides and ITNs). A malaria vaccine 

has shown promise in Phase 3 clinical trials [6] and could be available as early as 

2015. Curative interventions consist primarily of administering drug treatment 

with the objective of completely eliminating from the body the parasites that 

caused the symptoms. Effective treatment can also curtail malaria transmission by 

reducing the parasite reservoir in the population.  
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Most symptomatic malaria is diagnosed and treated in communities, peripheral 

health facilities, and in informal health structures. Malaria can be diagnosed in one 

of several ways. Historically, most diagnosis of malaria in Africa has been based 

on symptoms, primarily fever. However, the accuracy of malaria diagnosis based 

on clinical symptoms is quite low. Microscopy is an alternative which involves 

collection and staining of a blood smear and examination of the red blood cells 

under a microscope for malarial parasites. Diagnosis using microscopy requires 

laboratory equipment, and its accuracy depends to a great extent on the quality of 

the blood smear and experience of laboratory personnel; therefore, it is only 

available in limited locations in sub-Saharan Africa. The advent of rapid 

diagnostic tests (RDTs) offers the possibility to extend parasite-based diagnosis to 

areas where microscopy is not available. RDTs are immunochromatographic tests, 

often dipsticks, which detect circulating parasite antigens in a finger-prick blood 

sample; they require no electricity or additional equipment and can be performed 

with limited training [7].  

 

In 2010, WHO recommended that all suspected malaria cases receive 

parasitological confirmation where possible [1]. The advantages of confirmatory 

diagnosis are improved management of febrile disease, both parasite-positive and 

parasite-negative, as the correct drugs can be prescribed for the illness; reduction 

of side effects, selection pressure for drug resistance and costs of antimalarial 

drugs; and better public trust in the case management system. The risks of such a 

strategy are primarily that some true malaria cases may be missed due to false-

negative test results and thus antimalarial treatment withheld when it is indicated; 

however, several recent studies suggest that restricting antimalarial treatment to 

parasitologically confirmed cases of malaria is safe, as morbidity and mortality did 

not increase in patients who were not treated with an antimalarial drug following a 

negative RDT result [8;9]. Another concern is whether satisfactory adherence to 

the test result by health workers can be achieved [10]. The use of RDTs also adds 
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costs to case management which may outweigh cost savings from reduced 

antimalarial consumption; these cost savings depend to a large extent on 

prevalence of parasitaemia in the clinical population and adherence of clinicians to 

the test result [11]. 

 

A variety of antimalarial medications are available. Two drugs, chloroquine (CQ) 

and sulfadoxine pyremethamine (SP), were until recently the mainstay of 

treatment for uncomplicated P.falciparum malaria. These drugs, given orally, were 

affordable and widely available [12]. However, resistance to these compounds has 

developed, rendering them ineffective. Fortunately, an alternative exists – 

artemisinin-based combination therapies (ACTs). ACTs are the most effective 

treatments currently available for uncomplicated P.falciparum malaria and in 

2006, the WHO recommended ACTs as the first-line treatment for P.falciparum 

malaria worldwide [13]. ACTs are given orally, and must be taken daily, usually 

for three days. Five ACTs are currently recommended for use by the WHO: 

artemether plus lumefantrine, artesunate plus amodiaquine, artesunate plus 

mefloquine, artesunate plus sulfadoxine-pyrimethamine, and dihydroartemisinin 

plus piperaquine. Artemisinin and its derivatives should not be used as oral 

monotherapies for the treatment of uncomplicated malaria due to their potential to 

foster emergence and spread of drug resistance [1].  

 

Young children and pregnant women are particularly vulnerable to severe malaria. 

Severe malaria requires treatment with parenteral quinine, artesunate or 

artemether, followed by a complete course of an effective ACT as soon as the 

patient is able to take oral medications. Intravenous (IV) artesunate is currently 

preferred to quinine for the treatment of severe malaria in adults and children. If 

complete treatment of severe malaria is not available, WHO recommends that 

patients be given pre-referral treatment with rectal artesunate, quinine 

intramuscular (IM), artesunate IM, or artemether IM and referred immediately to 
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an appropriate facility for further treatment. Intensive nursing care and supportive 

interventions as indicated (such as fluid replacement and blood transfusion) are 

strategies to reduce mortality from severe malaria [1].  

 

1.3. Case management in elimination and pre-elimination settings 
 

Successes in reducing malaria disease burden in some places have placed the 

prospect of eventual malaria eradication back on the international agenda [14] and 

have prompted a consultative process to identify of a set of research and 

development priorities for worldwide eradication of malaria [15]. An estimated 1 

billion people live in areas of low P.falciparum malaria risk, where elimination 

could be epidemiologically feasible [16].  

 

WHO defines malaria elimination as the interruption of local mosquito-borne 

malaria transmission, or zero incidence of locally contracted cases, and eradication 

as the permanent reduction to zero of the worldwide incidence of infection. 

However, the definition of elimination is still shifting, given the recognition that a 

small number of secondary cases will be inevitable as long as eradication has not 

been achieved, since infections will continue to be imported [17]. Malaria 

elimination should also include P.vivax and other strains [15;18], which will be 

more challenging due to the ability of P.vivax to relapse [19]. 
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Figure 1.2 Phases of malaria control through prevention of reintroduction 

(Source: [20]) 
 

WHO has established programme phases and milestones on the path to malaria 

elimination, moving from control, to elimination, to prevention of reintroduction 

(Figure 1.2). The transition from each phase to the next requires a programme re-

orientation and different interventions. In the control phase, the goal is to reduce 

the malaria disease burden to a level at which it is no longer a public health 

problem, through achieving high coverage with current interventions. In the pre-

elimination stage, it is critical to perfect the quality and targeting of case 

management and vector control operations, and to reduce the onward transmission 

from existing cases in residual and new active foci. Establishment of a strong 

surveillance system is essential at this stage. Finally, once elimination is achieved, 

the focus is on preventing onward transmission of imported cases [20].   

 

In programmes which aim at reducing transmission, the WHO recommends that a 

single dose of primaquine (PQ), a drug which kills gametocytes, be added to ACT 

treatment. In addition, PQ is one of few drugs which are effective against 

hypnozoites, or liver-stage parasites, that cause relapse in P.vivax. However, in 

individuals that have glucose-6-phosphate dehydrogenase (G6PD) deficiency, 
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primaquine can cause haemolysis. These risks need to be considered when giving 

PQ; they also make PQ an imperfect tool for mass administration in elimination 

programmes [1].  

 

Where the aim is to interrupt local transmission or prevent its re-establishment, 

prompt and effective diagnosis and treatment of all malaria cases is critical. 

Therefore, in pre-elimination and elimination settings, surveillance is an 

intervention in and of itself which involves detection of infections and includes a 

timely and effective health system response. Although there is consensus around 

the need for improved surveillance for elimination, it is not clear what this 

intervention should consist of.  

 

Individuals can be infected with malaria, and capable of transmitting the disease, 

without showing clinical symptoms. Programmes transitioning to low transmission 

conditions need advice on when and under which conditions it would be optimal 

for them to add active case and infection detection to their response strategies, and 

the effects of combining it with vector control interventions [21;22]. One option 

that is being considered, but has not yet been empirically tested, is mass screening 

and treatment (MSAT), which involves screening the whole population of interest 

and only treating those who test positive, regardless of symptoms. This approach 

could be useful to reduce the parasite reservoir in the targeted area [1]. 

 

Prior to embarking on malaria elimination, countries need to assess the technical, 

operational and financial feasibility of achieving and maintaining interruption of 

malaria transmission. Such an exercise was recently carried out in Zanzibar [14]. 

An understanding of malaria resurgence risks and the interventions that will be 

needed to prevent re-establishment once malaria transmission has been locally 

interrupted,  is of critical importance to malaria control programmes when setting 

objectives and planning malaria strategies. 
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1.4.  Global malaria targets and intervention coverage levels 
 

The Roll Back Malaria (RBM) Partnership comprises hundreds of partners, 

including malaria endemic countries, their bilateral and multilateral development 

partners, the private sector, nongovernmental and community-based organizations, 

foundations, and research and academic institutions. Its overall aim is to provide a 

coordinated global response to the disease. Current RBM Partnership goals and 

targets call for reducing global malaria deaths to near-zero by the end of 2015; 

reducing global malaria cases by 75% from 2000 levels by the end of 2015; and 

eliminating malaria by the end of 2015 in 10 new countries since 2008. These 

targets will be met by achieving and sustaining universal coverage for all 

populations at risk of malaria using locally appropriate interventions for 

prevention and case management, and accelerating the development of 

surveillance systems [23]. 

 

In recent years, disbursements for malaria control have increased dramatically, 

from an estimated US$ 200 million in 2004 to approximately US$ 2 billion in 

2010, much of it from the Global Fund to Fight AIDS, Tuberculosis and Malaria 

(GFATM), the U.S. President’s Malaria Initiative (PMI) and the World Bank [3]. 

This is a great improvement, although it still falls short of the approximately US$ 

6 billion estimated to be needed in 2010 [23].  Concerns about stagnating donor 

aid for malaria have led to calls to donors to sustain funding and to countries to 

find alternative financing strategies to reduce reliance on donor aid [24]. This 

situation also calls for more efficient use of scarce resources [3].  

 

Funding increases have made possible remarkable decreases in morbidity and 

mortality due to P. falciparum malaria in a range of settings across Sub-Saharan 

Africa. These decreases have been achieved primarily by the application of IRS 

and ITNs and the introduction of ACTs [25-27]. Coverage of preventive 
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interventions, primarily ITNs, has increased dramatically in the last decade. It is 

estimated that 50% of all households in sub-Saharan Africa owned at least one net 

in 2011, compared to 3% in 2000 [3]. However, increases in malaria prevalence 

and incidence have been recorded of late, despite increasing intervention coverage, 

in some sub-Saharan African countries ([28],A.Bennett, personal communication).  

This Red Queen phenomenon, in which malaria interventions need to improve 

over time just to maintain the effect on prevalence or incidence they had when first 

introduced, is due to the interaction between transmission and immunity [29]. This 

reality must be considered when planning interventions and predicting their 

impact. Also, in such a situation, increasing access to effective medicines to avert 

severe illness and mortality becomes ever more imperative.  

 

By 2010, ACTs had been adopted as national policy for first-line treatment in 42 

out of 43 malaria-endemic countries in Africa [3]. However, although public 

sector procurement of ACTs has increased greatly in recent years, data suggest 

that case management coverage with effective medicines is still low in many 

countries. The mean proportion of children under five years of age with fever that 

were treated with an antimalarial drug was 32%, and less than 15% received an 

ACT, in 11 of 13 countries for which survey data were available in 2007-2008 

[30].  

 

In 2010, 37 of 43 malaria-endemic countries in the WHO African Region reported 

having adopted a policy of providing parasitological confirmation for all age 

groups.  The percentage of reported suspected malaria cases in the public sector 

receiving a parasitological test has increased from 20% in 2005 to 45% in 2010, 

but overall is still low in most African countries. In 2010, the number of ACTs 

distributed by national malaria control programmes in Africa was more than 

double the number of tests carried out, indicating that a large proportion of the 

suspected malaria cases are treated with ACTs without confirmatory diagnosis [3]. 
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Little data is available about the extent of parasitological testing outside the public 

sector, but in a recent study from six countries, it was found to be less widespread 

in the private than in the public sector [31]. 

 

Limited availability, acceptability and affordability of ACTs are major reasons 

why, following change of national policies to ACTs, use of these drugs remains 

low in many high-burden countries [32]. Problems include high use of the 

informal sector, where first-line drugs, if available, are often unaffordable and 

product quality is low [31;33]; breakdowns in supply chains [34] and poor 

diagnostic and prescribing practices in public health facilities [35;36]; and sub-

optimal patient compliance to treatment regimens [37].   

 

Strategies to improve the quality of malaria case management and increase 

coverage include engaging and training community members and informal 

providers. The Affordable Medicines Facility– malaria (AMFm) is an initiative to 

make subsidized ACTs available in the private sector. Others have focused on 

improving care-seeking and quality of care in the public sector. A systematic 

review of current evidence to identify those provider and user behavior 

interventions that are most effective in improving prompt and effective treatment 

of malaria was published in 2009. It concluded that very little is known about what 

interventions work [38].   

  

1.5.  Integrated models of malaria case management 
 

As noted above, many efficacious interventions against malaria exist, but it is not 

clear what their full impact will be. Intensifying resource constraints make 

increasing the efficient use of resources and demonstration of intervention cost-

effectiveness ever more important. Policy-makers require guidance as they make 



1. Introduction  

 

12 

choices on which interventions to implement in different settings. It is important to 

consider the long-term effects of intervention and intervention combinations, such 

as the dynamic effects on population immunity, which are not captured within the 

time frame of intervention trials, and their impact in real health systems. It is not 

financially or operationally feasible to conduct field studies of a large number of 

interventions and intervention combinations in every possible location, and 

mathematical models can offer guidance in these situations.  

 

For accurate predictions, models of the impact of malaria interventions should 

consider the prevailing level of case management. Effective case management 

modifies disease burden (uncomplicated, severe and death) as well as influencing 

transmission by decreasing host infectivity. In addition, interventions modify the 

demands on the health system, resulting in cost savings from reduced health 

system use that need to be accounted for in cost-effectiveness analysis. Moreover, 

case management is an intervention in its own right and the health and economic 

implications of scaling up coverage are critical questions. 

 

Malaria models in the last few decades of the 20th century focused in large part on 

morbidity and mortality, rather than transmission. These models used empirical 

estimates of the effectiveness of interventions, studies on disease burden, and unit 

costs to quantify morbidity and mortality and likely cost-effectiveness of 

interventions. Impact estimates generally came from field trial results, which 

assess only short-term effects under well-controlled conditions, with no explicit 

consideration of the dynamics of transmission and immunity [39].  

 

To address this gap, in 2006, Smith and colleagues presented individual-based 

stochastic simulation models of the biology and epidemiology of P. falciparum 

malaria, which were developed to study long-term impacts and cost-effectiveness 

of intervention strategies [40] (Figure 1.3). These models simultaneously capture 
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the dynamics of infection, acquired immunity, parasite densities, the consequences 

of infections (morbidity, mortality and infectivity to mosquitoes), the health 

system and economics. The integrated models were formally fitted to numerous 

datasets from different ecologic and epidemiologic settings. As part of this project, 

a model for the case management of malaria was developed  which permitted 

simulation of the dynamic effects of treatment on transmission [41].  

 

 

Figure 1.3 Key causal factors and outcomes in the models of malaria 
epidemiology and interventions. 

Abbreviations: BSV: blood stage vaccine; MSTBV: mosquito stage transmission blocking 
vaccine; PEV: pre-erythrocytic vaccine; ITNs: insecticide treated nets; IRS: indoor residual 
spraying.  

(Source: [39]) 
 

The case management model was appropriate for the purpose of that study, which 

was to predict the impact and cost-effectiveness of a pre-erythrocytic malaria 

vaccine. Case management coverage level was varied resulting in different 

parasitological cure rates, and a model for the costs of case management, based on 

data from Tanzania, was developed. These models, applied to low-transmission 

settings, were also suitable for simulating the effect of varying levels of passive 
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case detection (PCD) on local re-establishment of transmission and were extended 

to enable simulation of MSAT. The results of these studies are described in this 

thesis. 

 

Evaluation of intervention effects requires quantification of the malaria burden in 

the absence and presence of the intervention. Current estimates of uncomplicated 

P.falciparum malaria burden are problematic as a result of imprecise terminology 

and estimation techniques that do not allow for the complexity of the natural 

history of the disease. In practice, and in our models, the definition of a malaria 

episode attempts to capture the illness caused by a single P.falciparum malaria 

infection. However, this definition is deficient as a measure of disease burden 

because the amount of illness that an infection causes depends to a great degree on 

the timing and effectiveness of treatment. The effectiveness of improved case 

management is thus likely to be underestimated if malaria burden is reported in 

this way, and estimates of malaria burden will be biased. Therefore, this thesis 

presents an alternative measure and estimation method for quantifying 

uncomplicated malaria burden using recalls of illness from cross-sectional surveys 

carried out in the community. 

 

Additionally, the Tediosi et al case management model [41] was extended to allow 

a finer-grained simulation of health systems and their impact on coverage for 

predicting the cost-effectiveness of case management interventions, such as 

improved diagnosis. Also, a drug action model was integrated as an additional 

model component to allow simulation of the effects of case management on 

parasite densities, which is needed to simulate sub-curative treatment.  
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Figure 1.4 How interventions lose traction in health systems 

(Source: D. de Savigny) 
 

A number of factors affect the level of case management. Taking the example of 

ACTs in Rufiji, Tanzania, Figure 1.4 shows how apparently very efficacious 

interventions can lose their effectiveness under real-life conditions due to a variety 

of health system factors. Sub-optimal access, targeting accuracy, provider 

compliance and consumer adherence can all reduce the impact of an intervention. 

Evidence suggests that these health system factors are major obstacles to progress 

in a number of malaria endemic countries (unpublished data, INDEPTH 

Effectiveness and Safety Studies of Antimalarials in Africa). Human behaviour is 

shaped by the particular social, economic, cultural and health systems context, 

which can help explain the burden of malaria and inform the design and planning 

of case management interventions [42]. Furthermore, health systems are dynamic, 

and feedback effects of changes to one part of the system can be substantial [43]. 

A P. falciparum malaria case management model, integrated with 

pharmacodynamics, was developed to enable inclusion of these factors.  
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1.6.  Objectives of this thesis 
 

• Use an existing set of models of P.falciparum malaria case management 

and transmission to predict the impact of passive case detection (PCD) and 

treatment (Chapter 2) and cost-effectiveness of mass screening and 

treatment (MSAT) (Chapter 3) in varying transmission and health system 

settings. 

• Present an alternative method for estimation of uncomplicated P.falciparum 

malaria burden (Chapter 4). 

• Develop a model for P.falciparum malaria case management that, when 

integrated with dynamic models of the natural history and transmission of 

the disease, permits simulation of the impact of health system factors on 

treatment coverage, the effects of drug treatment on parasite densities and 

the impact of changes in the case management system (Chapter 5) on 

human behavior and health outcomes. Parameterize this model with data on 

current case management and the costs and effects of alternative delivery 

strategies (Chapter 6).
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2.1.  Abstract 
 

Recent declines in malaria burden in many parts of the world have prompted 

consideration of how interruption of Plasmodium falciparum transmission could 

be maintained, if achieved, and notably whether large-scale vector control could 

be replaced with surveillance. This information is essential for elimination 

feasibility assessments and planning. The risk of re-establishment of transmission 

depends mainly on vectorial capacity (receptivity), likely to rebound once vector 

control is removed, the rate of importation of infections (vulnerability), the 

capacity to detect and treat infections and the level of immunity in infected 

individuals. Timely detection and removal of new infections is likely to be critical 

to prevent re-establishment of transmission. We assess, through mathematical 

modeling and simulation, which levels of case detection and treatment (case 

management) are required to prevent re-establishment of transmission of P. 

falciparum after local interruption of transmission has been achieved, in settings 

with varying receptivity and vulnerability. We find that, even at rather low levels 

of receptivity, case management alone cannot reliably prevent re-establishment of 

P. falciparum malaria transmission in the face of medium to high importation 

rates. Thus, if vector control is to be discontinued, preventing the importations by 

controlling transmission in source areas will generally be necessary for preventing 

reintroduction in such settings, and cannot be substituted by very high levels of 

case management coverage.  
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2.2.  Background 
 

Recent years have seen remarkable decreases in morbidity and mortality due to 

Plasmodium falciparum malaria in a range of settings across Sub-Saharan Africa. 

These decreases have been achieved primarily by the application of effective 

vector control tools, such as indoor residual spraying (IRS) and insecticide-treated 

nets (ITNs), and the introduction of artemisinin combination therapies (ACTs) 

[25-27]. Such successes, which have been made possible by increased donor 

commitment to malaria control, have prompted national health policy-makers and 

their partners to consider how interruption of transmission could be maintained, if 

achieved [14].  

 

Evidence suggests that in some areas with a relatively low endemicity, local 

transmission could be [44], or may already have been [45], interrupted. In such 

places, for example the Kenyan highlands and Zanzibar, vector control was critical 

to bringing about substantial decreases in transmission and continues to be widely 

applied. However, it is likely to be difficult to sustain the will to maintain high 

levels of these interventions, particularly after malaria has ceased to be a public 

health problem [46]. Policy makers will need guidance on when it is safe to scale 

down large-scale vector control operations aimed at achieving interruption of 

transmission and on when to proceed with a policy that relies mostly on 

surveillance. Maintenance of transmission interruption without large-scale vector 

control has been possible in several areas with moderate vectorial capacity, such as 

Reunion Island [47] and Singapore [48]. In other places, such as Mayotte in the 

Comoros Islands, interruption of P. falciparum transmission has proved elusive 

even when it seemed imminent, despite intensive control efforts, and it seems that 

vector control will need to be maintained to prevent resurgence of malaria [49]. 
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Understanding malaria resurgence risks is of critical importance to malaria control 

programmes when setting objectives and planning malaria strategies.  

 

In closed systems, interruption of transmission would be maintained automatically 

once achieved. However, in reality, human populations are connected to each 

other, and as long as local vectors have sufficient capacity to transmit malaria, 

local transmission can be reintroduced through immigration of infected people or 

infective mosquitoes. The greater the magnitude of this immigration, the more 

likely malaria transmission will resurge, all else equal. Evidence indicates that 

current control strategies, even applied at very high coverage, will be insufficient 

to interrupt transmission in much of Sub-Saharan Africa [50], so importation of 

infections will remain a major challenge for the foreseeable future for countries in 

the region which seek to maintain local interruption of transmission. 

 

Health systems which deploy methods for timely detection and removal of 

imported infections can prevent re-establishment of transmission. For instance, 

Singapore, which reported elimination of malaria in 1982, saw a large cluster of 

imported P. falciparum malaria infections in 2005, but local onward transmission 

was prevented through early diagnosis, treatment and screening [51]. Likewise, in 

the United States of America, outbreaks of locally transmitted malaria have been 

detected and contained on several occasions since certification of the country’s 

malaria-free status [52]. 

 

Individuals can be infected with malaria, and capable of transmitting the disease, 

without showing clinical symptoms. Intervention strategies based on case 

detection and treatment target individuals with clinical disease, whereas others, 

such as mass drug administration or screening and treatment, include individuals 

without signs of illness. Although the latter types of approaches may identify a 

larger proportion of infections, screening or diagnosis with methods appropriate 



2. Case management and prevention of re-establishment  

 

21 

for use in the field, notably rapid diagnostic tests or microscopy, may still miss a 

significant number of infections with low or sub-patent parasite densities [53;54]. 

These types of approaches may also be less sustainable long-term, because of their 

costs and organizational requirements, potential to accelerate development of drug 

resistance, and refusal of healthy individuals to participate in repeated screenings 

[55-57]. 

 

After interruption of transmission, individuals’ naturally-acquired immunity will 

decay in the absence of exposure to malaria. Although the mechanisms involved 

are poorly understood, this decay in immunity could be expected to influence re-

establishment of transmission in two ways. First, an infected individual with a 

lower anti-parasite immunity is more likely to be infective to mosquitoes. Second, 

an infected individual with a lowered immunity is more likely to show clinical 

symptoms and thus, given access to appropriate care, to be treated promptly, 

reducing the parasite reservoir. Both these effects need to be considered in 

assessing the likely outcomes of different strategies. 

 

The vectorial capacity is the capacity of the combined vector populations present 

in an area to transmit disease agents, expressed as the potential number of 

inoculations per time unit originating from an infective person with no prior 

immunity. In the absence of major structural environmental or socio-economic 

changes, it is probable that, after withdrawal of large-scale vector control 

operations, the vectorial capacity will revert quickly to the same level as prior to 

control. As the vectorial capacity is difficult to measure, the pre-intervention 

entomological inoculation rate (EIR) may be a good proxy measure for the 

receptivity. 

 

The risk that transmission will re-establish in an area thus depends mainly on the 

local receptivity, or vectorial capacity, the local vulnerability, or infection 
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importation rate (IIR), the capacity to detect and treat infections, and the level of 

immunity in infected individuals. The purpose of this paper is to assess, through 

mathematical modeling and simulation, which levels of case detection and 

treatment (case management) are required to prevent re-establishment of 

transmission of P. falciparum after local interruption of transmission has been 

achieved, in settings with varying receptivity and vulnerability. 

 

2.3. Methods 
 

Individual-based stochastic simulation models of the biology and epidemiology of 

P. falciparum malaria were developed to study long-term impacts and cost-

effectiveness of intervention strategies, and have been described elsewhere 

[39;40]. Briefly, there is a simulated population of humans who are updated at 

each five-day time step via model components representing new infections, 

parasite densities, acquired immunity, uncomplicated and severe episodes, direct 

and indirect malaria mortality, infectiousness to mosquitoes, and case 

management. Simulated immunity to asexual parasites, derived from cumulative 

exposure to both inoculations and parasite densities and maternal immunity, acts 

mainly by controlling parasite densities [58]. The probability of a clinical attack of 

malaria depends on the current parasite density and a pyrogenic threshold [59]. 

Severe malaria comprises two categories of episodes: those that occur as a result 

of overwhelming parasite densities, and those that arise when an uncomplicated 

malaria episode coincides with non-malaria co-morbidity. Mortality can be either 

direct (following severe malaria) or indirect (uncomplicated malaria in conjunction 

with co-morbidity, or during the neonatal period as a result of maternal infection) 

[60]. There is also a model of the dynamics of malaria in mosquitoes [61]. 
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Infectivity of hosts to mosquitoes at a given time point is modeled as a function of 

asexual parasite densities 10, 15 and 20 days previously, allowing for the delay 

resulting from the time course of gametocytemia [62]. Effective treatment 

completely clears parasites by the next time step, ending the infection, while 

ineffective treatment has no impact on asexual parasite densities. By clearing 

asexual parasites, case management renders individuals uninfectious to vectors at 

later time points. Given sufficiently high case management coverage, this lowered 

infectivity translates into a future reduction in EIR. We do not model the effects of 

drug treatment on gametocytemia.  

 

Previous studies using these models [63;64] focused on settings of medium to high 

transmission intensity, for which the model outcomes could be presumed to be 

insensitive to importation of infections. We have now extended these models to 

include importation of infections, and applied them to low and medium 

transmission settings. 

 

We used three different pre-intervention EIRs of two, 20, and 50 infectious bites 

per adult per annum (ibpapa), with a pattern of seasonality as observed in 

Namawala, Tanzania [65]. The infection status and immune status at the start of 

the simulation are determined by exposing the simulated population to the same 

annually recurring pattern of inoculations for a lifetime-long burn-in at the start. 

The level of case management coverage was set at zero during the burn-in period 

in all simulations in order to ensure that the simulated vectorial capacity was the 

same across all scenarios. Case management coverage was changed to the 

appropriate level at the beginning of the main simulation. 

 

We used a population size of 1,000, with underlying demography based on East 

African life tables [66]. In our simulations, to interrupt transmission, we applied 

mass drug administration at 100% coverage and cleared all infections from vector 
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mosquitoes over a period of 30 days at the beginning of year 2. These 

interventions are not intended to be realistic, but were a convenient way to locally 

eliminate malaria in our simulations. Achievement of such high coverage of mass 

drug administration would be nearly impossible in a real-life setting, nor do we 

consider the mechanism by which all infections could be simultaneously cleared 

from vector mosquitoes.  

 

The case management component [41] models a health system using ACT. 

Individuals with uncomplicated malaria were assigned a probability of accessing 

treatment over the next five-day period, expressed as percent coverage, which was 

varied between 0% and 100% at 10% intervals. These probabilities were constant 

over the entire time period of the simulation. We considered only case detection 

and treatment based on clinical symptoms. Compliance to the drug was set at 90% 

[67], and the drug was assumed to be 98% effective. In patients who did not 

comply, the drug was assumed to have an effectiveness of 20%. All severe cases 

were assigned a probability of receiving treatment as an inpatient of 48%, and 

parasites were cleared in all hospitalized cases who survived [41]. 

 

Imported infections were simulated by assigning infections to individuals in the 

population stochastically every 30 days at a constant average rate throughout the 

simulation period. No infected mosquitoes entered the local system. The rate of 

imported infections was Poisson distributed with mean of 0, 0.02, 0.2, 2, or 20 

imported infections per 1,000 persons per annum. These rates compare to 

estimates of infection importation rates in Zanzibar ranging from 2 to 8 infections 

per 1,000 inhabitants per annum in 2008 [14;68] and cases reported as imported in 

South Africa from 1981 to 1999 ranging from about 0.02 to about 0.17 per 1,000 

population [69]. The IIR of 0 was included as a reference scenario to check that 

transmission had indeed been interrupted by mass drug administration and clearing 

infections from vectors.  
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We evaluated the impact of all possible combinations of these scenarios on the 

number of malaria episodes expected over the last 14.75 years of the simulations. 

For each IIR, we chose a threshold number of cases over the 14.75-year period 

after interruption of transmission, above which we considered transmission to have 

re-established. This threshold was calculated by taking the 97.5 percentile of the 

Poisson distribution of the number of imported cases that would be expected over 

the period, and multiplying this by 3, thus allowing each imported infection to give 

rise to a maximum of 2 secondary infections before classifying the simulation as 

one where transmission was re-established. The reason for using the 97.5 

percentile was to establish a very generous threshold for re-establishment. If 

malaria is considered to have re-established under these conditions, it is not likely 

to be kept out under more strict definitions.  

 

We assessed the uncertainties in model predictions resulting from stochastic 

variation and from the assumptions in our model formulations by using 100 

different seeds for the random number generator and an ensemble of 14 model 

variants as described in Table 2.1. The ensemble consists of a base model, used in 

previous publications [63;64], and thirteen variants on that model, with each one 

representing a different set of assumptions about malaria transmission and 

epidemiology. The motivation for using model ensembles is to assess how our 

understanding of a particular phenomenon is affected by uncertainty in model 

assumptions. Our ensemble of stochastic simulation models of malaria 

epidemiology incorporates different assumptions about decay of immunity and 

about heterogeneities in exposure, co-morbidity and access to treatment [70].  

 

While the base model assumes that, in a given transmission setting, entomological 

exposure depends only on age, the model variants for heterogeneities in exposure 

include random variation in the availability of the human host to mosquitoes. 
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Thus, the expected number of entomological inoculations is additionally a function 

both of the individual and of log-normal noise. Three different parameterisations 

were considered - R0063 assigns most variation to be inter-host, R0068 assigns the 

variation predominantly to within host variation, and R0065 is intermediate.  

 

The model for natural immunity used in the base model, developed primarily for 

simulating the epidemiology of malaria in endemic settings, does not allow for any 

decay of immunity in the absence of exposure. To allow for such decay, the base 

model was extended by two alternative algorithms. In both cases, the model 

variants were parameterised so that in the absence of new exposure, the decayed 

value is some fixed proportion of that at the previous five-day time step. The half 

life of the decay is either fixed at 10 or 1,000 years or estimated during the model 

fitting process.  

 

Finally, the model variants for heterogeneities in co-morbidity and access to 

treatment assign each simulated individual a status for each of the two kinds of 

heterogeneity at birth, which they carry throughout their life, structured in each 

case so that 50% of the population are assigned to each of the high and low status 

categories, with the values in the base model multiplied by either 1.8 or 0.2. Two 

of the model variants simulate these heterogeneities singly, while the third 

simulates both, where they are assigned to individuals independently of each other. 

  

Analyses were conducted using R statistical software version 2.11.1 [71].  

 

2.4. Results 
 

Figure 2.1 illustrates the use of model ensembles to simulate clinical episodes over 

time, in a setting with a pre-intervention EIR of 2 ibpapa. Model variant medians 
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for simulated incidence post-intervention were higher at 20% (a) case management 

coverage than at 80% (b), indicating the effect of higher case management 

coverage in reducing transmission. In these scenarios, where IIR=2 per 1,000 

persons per annum, the higher case management coverage level seems to prevent 

the resumption of transmission in most simulations, in contrast to the lower case 

management coverage level. There was a much larger variation among model 

variant outcomes post-intervention at the lower case management coverage level. 

 

Figure 2.1 Simulated clinical incidence by model variant with 20% (a) and 
80% (b) case management coverage 

IIR=2 per 1,000 persons per annum, and pre-intervention EIR=2 ibpapa.  
Black lines: model variant medians; gray shading: 95% probability interval around each median. 
Results are smoothed to remove the effect of seasonality. The arrow indicates the time point 
where transmission is interrupted with mass drug administration and clearing infections from 
vectors. 
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Figure 2.2 depicts the proportion of model variant simulations in which 

transmission remained interrupted as a function of case management coverage at 

different IIRs. In the lowest transmission setting with a pre-intervention EIR of 2 

ibpapa (Figure 2.2a), there was a positive relationship between case management 

coverage and the proportion of simulations in which transmission remained 

interrupted for all IIR levels except at 0.02 imported infections per 1,000 persons 

per annum. At IIR=0.2 per 1,000 persons per annum, 60% case management 

coverage resulted in maintenance of interruption of transmission in 86% of 

simulations of the median model variant. At IIR=2 and 20 per 1,000 persons per 

annum, predicted success was much lower; at IIR=2, at 60% case management 

coverage, transmission remained interrupted in only 66% of simulations of the 

median model variant, while at IIR=20, transmission remained interrupted in only 

15% of simulations of the median model variant at 60% case management 

coverage. At IIR=0.2 and 2 per 1,000 persons per annum, most of the benefits 

from increasing case management coverage seem to be gained at lower coverage 

levels; at 70% case management coverage, the imaginary curve through the 

median model variant results flattens off . As seen from the boxplot, variation in 

probability of success over the model variants was relatively large at the IIR levels 

2.0 and 20. At the lowest IIR, 0.02 per 1,000 persons per annum, case 

management coverage level had little effect on the probability of success; 

however, at this low IIR level, the probability that no infections were imported 

during the observation period in a simulation was 74%. At IIR=0.2 per 1,000 

population per annum, this probability was approximately 5%.  

 

In the higher transmission settings (Figures 2.2b and 2.2c), at IIR= 0.2 per 1,000 

persons per annum, higher case management coverage slightly increased the 

proportion success in preventing re-establishment, but even with perfect passive 

case detection, transmission returned in at least half of simulations of the median 
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model variant. In these settings, at IIR= 2 or 20 per 1,000 persons per annum, 

interruption of transmission was never, or almost never, maintained.  
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Figure 2.2 Boxplot of the proportion of simulations in which transmission 
remains interrupted by model variant at a pre-intervention EIR of 2 ibpapa 
(a), 20 ibpapa (b) and 50 ibpapa (c).  

Fill colours: white: Infection importation rate (IIR) = 0.02, light gray: IIR = 0.2, medium gray: 
IIR = 2, dark gray: IIR = 20 
Boxplot shows the median, maximum, minimum, and interquartile ranges. 

 

Figure 2.2 primarily serves to show the trends among case management coverage, 

IIR, and the proportion of simulations in which transmission remains interrupted, 

and where most model variants agree and where there is a wider range in 

predictions. The median proportion of simulations in which transmission remains 

interrupted may be biased and should not be over-interpreted, as it is unclear how 
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to weight the fourteen model variants to allow for plausibility, goodness of fit 

and correlations both in structure and parameter values. 

 

In general, at low case management coverage, the model variants for 

heterogeneities in exposure resulted in a higher proportion of simulations in which 

transmission remained interrupted. At medium to high case management coverage, 

it was the decay of immunity model variants which resulted in a higher proportion. 

The model variants with heterogeneities in access to treatment usually resulted in a 

lower proportion of simulations in which transmission remained interrupted.  

 

For each pre-intervention EIR, we fitted a logistic regression model to the 

probability of success in preventing re-establishment of transmission, with 

covariates in case management coverage, the natural logarithm of the infection 

importation rate, and each of the fourteen model variants as categorical variables. 

Backward stepwise regression showed that removing any of the independent 

variables from the model was found to significantly decrease the model’s 

goodness of fit at the 95% confidence level, so all covariates were kept. We then 

tested for interaction between case management coverage and the natural 

logarithm of the infection importation rate. From the likelihood ratio test, the 

interaction term was found to be significant (p<0.001), although it has only a slight 

effect.  

 

The fitted relationships between case management coverage and the probability 

that transmission remains interrupted, for the base model and at different IIRs, are 

shown in Figure 2.3 (EIR = 2 ibpapa) and Figure 2.4 (EIR = 20 ibpapa). The 

figure at EIR = 50 ibpapa looks very similar to that at EIR = 20 ibpapa and is not 

shown. At EIR = 2 ibpapa, the odds ratio that transmission remains interrupted 

associated with a tenfold decrease in IIR is 16.6 (95% ci: 15.6, 17.6). At EIR = 20 

ibpapa, the corresponding odds ratio is 23.7 (95% ci: 21.5, 26.3).  
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Figure 2.3 Best-fitting regression model predictions for the probability that 
transmission remains interrupted, as a function of case management coverage 
and infection importation rate, at pre-intervention EIR of 2, using the base 
model 

Thin line: IIR=20, Dotted line: IIR= 2, Dashed line: IIR= 0.2, Thick line: IIR=0.02 imported 
infections per 1,000 per annum. 
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Figure 2.4 Best-fitting regression model predictions for the probability that 
transmission remains interrupted, as a function of case management coverage 
and infection importation rate, at pre-intervention EIR of 20, using the base 
model 

Thin line: IIR=20, Dotted line: IIR= 2, Dashed line: IIR= 0.2, Thick line: IIR=0.02 imported 
infections per 1,000 per annum. 

 

Table 2.1 shows that, at a pre-intervention EIR of 2 ibpapa, the model variants 

which included decay of immunity with a shorter half-life were found to have a 
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relatively large positive effect on the odds that transmission remained interrupted 

relative to the base model. By contrast, model variants R0674, which assumes 

uncorrelated heterogeneity in co-morbidity and access to treatment, and R0678, 

which assumes heterogeneity in access to treatment, were found to have a 

relatively large negative effect on the odds that transmission remained interrupted 

relative to the base model.  

 

At the higher pre-intervention EIRs of 20 ibpapa and 50 ibpapa (not shown), the 

model variants had much smaller effects on the odds that transmission remained 

interrupted relative to the base model. This is evidenced by the much narrower 

range in the odds ratios. Moreover, in these transmission settings, it was the model 

variants that assumed heterogeneity in entomological exposure that had the largest 

positive effects on the odds that transmission remained interrupted.  
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Table 2.1 Descriptions of model variants and predicted odds ratio that transmission remains interrupted for each 
model variant relative to the base model, at pre-intervention EIR of 2 and 20 ibpapa. 

Model 
identifier 

Description Half-life of decay (years) odds 
ratio, 
EIR=2 

95% 
confidence 

interval 

odds 
ratio, 
EIR= 20 

95%  
confidence 

interval 
  

1/2

ln(2)

b

t
α

−
=  

1/2

ln(2)

c

t
α

−
=        

R0125 Fixed decay in immune proxies ∞ 10 a 4.57 4.02 5.21 1.47 1.27 1.71 

R0132 Estimation of decay in immune proxies ∞ 14 4.31 3.79 4.90 1.29 1.11 1.49 

R0115 Fixed decay in effective cumulative exposure 10 a ∞ 4.17 3.67 4.74 1.29 1.11 1.50 

R0133 Estimation of both decay parameters 250 19 3.89 3.42 4.42 1.37 1.18 1.59 

R0131 Estimation of decay in effective cumulative 
exposure 

1187 ∞ 2.42 2.14 2.74 1.36 1.17 1.58 

R0065 Mass action:             varies between and within 
hosts 

∞ ∞ 2.18 1.93 2.47 1.89 1.63 2.20 

R0670 Heterogeneity in susceptibility to comorbidity ∞ ∞ 2.03 1.80 2.30 1.22 1.05 1.41 

R0063 Mass action:            varies mainly between hosts ∞ ∞ 1.86 1.64 2.10 2.04 1.75 2.37 

R0121 Fixed decay in immune proxies ∞ 1000a 1.63 1.45 1.84 1.18 1.02 1.37 

R0068 Mass action:             varies mainly within hosts ∞ ∞ 1.44 1.27 1.62 1.53 1.32 1.78 

R0111 Fixed decay in effective cumulative exposure 1000a ∞ 1.30 1.15 1.46 1.14 0.98 1.33 

R0674 Uncorrelated heterogeneities in access to 
treatment and susceptibility to comorbidity 

∞ ∞ 0.63 0.56 0.71 1.04 0.89 1.21 

R0678 Heterogeneity in access to treatment ∞ ∞ 0.56 0.50 0.63 0.87 0.75 1.02 

Ea (i,t) : the expected number of entomological inoculations, adjusted for age and individual factors . 
α b : decay applied to the two measures of the effective cumulative exposure. 
α c : decay applied to the function representing the immune status. 
 a These parameters were fixed, in other models the decay parameters were estimated. Decays shorter than the shortest fixed values gave 
unacceptable fits to the data. 

( , )
a

E i t

( , )
a

E i t

( , )
a

E i t
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2.5. Discussion 
 

Although maintaining interruption of malaria transmission would bring benefits, it 

would also require reorientation of programmatic strategies, significant long term 

financial commitments, and major operational preparations. Therefore, the 

decision to pursue transmission interruption and prevention of re-establishment of 

transmission is not trivial. Prior to embarking on such a course a thorough 

evaluation of the likelihood of success, and what will be required to maintain it, is 

desirable.  

 

Early detection and treatment of infections is critical to prevent onward 

transmission in the face of renewed vectorial capacity. However, our findings also 

suggest that, even where vectorial capacity is low, maintaining interruption of 

transmission is likely to require continued vector control at or above moderate 

levels of vulnerability (IIRs on the order of 0.2 per 1,000 population per annum or 

higher). Even perfect passive case detection will fail to identify imported 

asymptomatic infections, which under these circumstances will be sufficiently 

numerous to result in a considerable probability of resumption of transmission. 

The chances that an imported infection is asymptomatic will depend on the 

immunity profile of the immigrant/visitor, which in these analyses was assumed to 

match that of the simulated population.  

 

Statistical analysis revealed that modeled outcomes were sensitive to several of the 

model assumptions. At low pre-intervention EIR levels, decay of natural immunity 

is an important driver of whether or not interruption of P.falciparum malaria 

transmission can be maintained. This is because, as immunity decays, more 

infections are likely to be symptomatic, and therefore detectable and treatable by 

the passive case management system. Also, in the base model, individuals are 
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assumed to have homogenous access to treatment and to be at similar risk of co-

morbidity. In this analysis, introducing heterogeneities in these factors increased 

the risk of re-establishment. These findings suggest that areas with these kinds of 

differentials among population sub-groups may face specific challenges in 

maintaining transmission interruption.  

 

In higher transmission settings, variations in these assumptions did not have as 

large an effect on the odds that transmission remained interrupted. At higher pre-

intervention EIRs, the vectorial capacity is the dominant determinant of re-

establishment. In these settings, immunity was much higher post-interruption than 

in the low-transmission setting, and thus even with decay, a large number of 

infections remain asymptomatic.   

 

The perhaps counter-intuitive finding that the models assuming heterogeneity in 

force of infection had positive effects on the odds that transmission remained 

interrupted could be explained in several ways. First, if infections are concentrated 

in the same people, a given level of case management coverage will result in a 

higher proportion of infections being treated than if infections are spread more 

evenly across the population (because a single treatment will terminate all co-

infections in that host). Second, this finding may be due to the way we have 

constructed our outcome variable. Where certain individuals have higher 

availability to mosquitoes than others, this may result in a lower number of 

episodes (as multiple infections can give rise to only one episode at a time). 

 

There are several factors that are likely to affect the probability of success in 

preventing re-establishment which were not considered here. Characteristics of the 

population under consideration, for example the size of the population and the 

degree of interaction between individuals, were not studied. Interruption of 

transmission is easier to achieve and maintain in smaller populations than in large 
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ones, ceteris paribus, as re-introduction of transmission is an infrequent, and 

hence highly stochastic, event. Our results, using a population of 1,000, therefore, 

offer an optimistic estimate of the probability for prevention of re-establishment, 

and make predictions at very low IIRs problematic. Also, our models assume 

perfect mixing within each mosquito population across all humans. Patch models 

may offer a way forward to more accurately capture the phenomena of 

heterogeneity in interactions, as well as spatial heterogeneity in transmission.  

 

The probability that transmission remains interrupted or conversely, re-establishes, 

is also likely a function of geographical and temporal heterogeneities in 

importation of infections. We assume that imported infections mix uniformly with 

the simulated population and enter at a constant rate; however, in reality, 

individuals bringing malaria infections into an area may concentrate in a particular 

place. If this effect is important, we expect transmission to spread more slowly, 

and to be easier to arrest, provided that such foci can be located. Also, rates of case 

importation may not be constant over time. Our models could incorporate this, but 

refining these assumptions would require temporal data on human migration 

patterns. This is an important area of further research [49;72].  

 

Our rapid method of interrupting transmission likely had an effect on chances of 

maintaining interruption, as even with the model variants which capture immunity 

decay, immunity levels remained relatively high in the population for a certain 

time. In reality, interruption of transmission would take longer and immunity 

would be lower upon its achievement, resulting in a higher proportion of 

secondary (locally transmitted) infections manifesting clinically. The level of 

immunity in the population at the time of interruption, which drives the proportion 

of infections in the population which are asymptomatic, is an important 

determinant of the probability of success in preventing re-establishment. This may 
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lead our models to overestimate the probability of re-establishment of 

transmission. 

 

On the other hand, our method of importing infections may have led us to 

underestimate the probability of re-establishment of transmission. We assign 

imported infections randomly to individuals in the simulated population, who are 

exposed to the same transmission and therefore have the same immunity profile. 

However, it is likely that transmission in source areas is substantially higher than 

in the simulated population, and thus individuals importing infections would be 

expected to have higher immunity. Our current models do not offer the possibility 

to simulate this immunity differential readily; however, if this were the case we 

could expect a lower probability that imported infections are symptomatic and 

therefore detectable by the case management system.  

 

There is a need to extend these models to capture other features of real health 

systems [73-75]. It would be important to assess the importance of the capacity of 

the system to react to outbreaks by temporarily improving case management 

coverage or by implementing emergency vector control operations when outbreaks 

occur. In countries which succeed in actively interrupting transmission, the health 

system will likely have strong surveillance and epidemic response capacity, which 

could contain outbreaks and reduce local transmission again to zero. Screening of 

potential asymptomatic carriers would likely be a part of this response and was not 

modeled here. It is also possible that, following interruption of transmission, the 

case management system would be strengthened to enable more intensive routine 

detection of cases. Under these conditions, interruption of transmission would be 

more likely to be maintained, but probability of success would, again, depend to a 

great degree on the immunity profile of the population concerned.  
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The case management model offers a very simple description of the health system 

and does not consider diagnosis, provider practices or patient behaviour which 

could alter coverage. For a better understanding of the role of case management in 

achievement and maintenance of transmission interruption, a more realistic case 

management model is needed. 

 

Thus, there remains a significant unfinished research agenda to increase the 

understanding of the relationship between case management coverage, 

vulnerability, receptivity and prevention of re-establishment of P. falciparum 

malaria transmission. Nevertheless, we believe that the results described here 

provide important input into the discussions surrounding the feasibility of 

maintaining interruption of malaria transmission in various contexts.  

 

2.6. Conclusion 
 

Even at rather low levels of receptivity, case management alone cannot reliably 

prevent re-establishment of P. falciparum malaria transmission in the face of 

medium to high importation rates, even if all clinical cases are treated. Thus, if 

vector control is to be discontinued, preventing the importations by controlling 

transmission in areas from which imported cases originate is a precondition for 

preventing reintroduction in such settings. Achieving very high levels of case 

management coverage does not appear to substitute for this. Alternatively, a 

system of active surveillance to prevent importation, including screening of all 

potential carriers at points of entry, could be considered, but in most areas this 

strategy is not likely to be feasible.  

 

Model variants assuming decay of natural immunity resulted in lower odds of 

transmission re-establishment, relative to the base model that assumed no such 
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decay. These findings highlight the urgent need for research into the mechanisms 

and rate at which naturally- acquired immunity to P.falciparum malaria decays in 

the absence of exposure, to inform current and future malaria elimination efforts. 

Certain characteristics of the population, in particular heterogeneities in co-

morbidity and access to treatment, also appeared to influence simulated probability 

of success. There is a need for further analysis of effects of different population 

sizes and patterns of within-population interaction and of geographical and 

temporal heterogeneity of imported infection rates.  

 

A key issue that has not been addressed here is the related economic analysis. 

Interruption of transmission and prevention of re-establishment, whether through 

increased case management coverage or other strategies, will carry significant 

costs, which need to be evaluated together with appropriate outcome measures and 

compared to other possible uses of funds to optimize resource use. A recent study 

found that malaria elimination is unlikely to be cost-saving in most cases, even 

over a time frame of 50 years, but may bring additional benefits that would make 

it a worthy investment [76].  

 

The costs and effects of screening asymptomatic individuals, either in response to 

a detected case or indiscriminately in at-risk populations, will likely need to be 

considered in addition to case management. Data from field studies are needed to 

determine the most cost-effective surveillance and response models in different 

settings and to inform future modeling efforts [22]. Importantly, the costs of 

surveillance are unlikely to increase linearly with coverage; isolated or 

marginalized populations are usually the last to be reached and the most expensive 

to serve, resulting in significant diseconomies of scale at the higher coverage 

levels. In addition, the appropriate outcome measure to use in settings where 

malaria burden is already very low, as would be the case in places which are close 

to or have recently achieved elimination, is unclear. Further methodological 
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developments to quantify the benefits of transmission interruption are needed to 

apply economic evaluation usefully.  

 

The results of these analyses need to be taken into account in global and national 

discourse and in feasibility assessments of and planning for elimination of malaria 

[14]. Failure to plan for prevention of re-establishment could result in loss of the 

last decade’s tremendous gains towards rolling back malaria.  
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3.1. Abstract  
 

Background 

Past experience and modelling suggest that, in most cases, mass treatment 

strategies are not likely to succeed in interrupting Plasmodium falciparum malaria 

transmission. However, this does not preclude their use to reduce disease burden. 

Mass screening and treatment (MSAT) is preferred to mass drug administration 

(MDA), as the latter involves massive over-use of drugs. This paper reports 

simulations of the incremental cost-effectiveness of well-conducted MSAT 

campaigns as a strategy for P. falciparum malaria disease-burden reduction in 

settings with varying receptivity (ability of the combined vector population in a 

setting to transmit disease) and access to case management. 

 

Methods 

MSAT incremental cost-effectiveness ratios (ICERs) were estimated in different 

sub-Saharan African settings using simulation models of the dynamics of malaria 

and a literature-based MSAT cost estimate. Imported infections were simulated at 

a rate of two per 1,000 population per annum. These estimates were compared to 

the ICERs of scaling up case management or insecticide-treated net (ITN) 

coverage in each baseline health system, in the absence of MSAT.  

 

Results 

MSAT averted most episodes, and resulted in the lowest ICERs, in settings with a 

moderate level of disease burden. At a low pre-intervention entomological 

inoculation rate (EIR) of two infectious bites per adult per annum (IBPAPA) 

MSAT was never more cost-effective than scaling up ITNs or case management 

coverage. However, at pre-intervention entomological inoculation rates (EIRs) of 
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20 and 50 IBPAPA and ITN coverage levels of 40 or 60%, respectively, the ICER 

of MSAT was similar to that of scaling up ITN coverage further.  

 

Conclusions 

In all the transmission settings considered, achieving a minimal level of ITN 

coverage is a “best buy”. At low transmission, MSAT probably is not worth 

considering. Instead, MSAT may be suitable at medium to high levels of 

transmission and at moderate ITN coverage. If undertaken as a burden-reducing 

intervention, MSAT should be continued indefinitely and should complement, not 

replace, case management and vector control interventions.  
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3.2. Background 
 

Mass drug administration (MDA), where the entire population is treated with anti-

malarial drugs, was tried on a number of occasions during the malaria eradication 

efforts of the last century, and sporadically since then. Mass screening and 

treatment (MSAT), which involves screening the whole population of interest and 

only treating those who test positive, has not been empirically tested, although an 

upcoming clinical trial in Burkina Faso aims to evaluate it [77]. Another variant 

proposed is “focal screening and treatment”, which involves screening all people 

living in a defined geographical area [78]. This approach is now being used in an 

attempt to contain emerging artemisinin-resistant falciparum malaria in western 

Cambodia [79]. 

 

Unfortunately, MDA has proved disappointing in most instances for the objective 

of interrupting transmission. A review of experiences with anti-malarial drug mass 

administrations was carried out in 2003; these projects undertook MDA with 

varying frequencies and numbers of rounds [80]. The authors found that MDA has 

almost always failed to interrupt transmission, although it often led to a marked 

reduction in parasite prevalence and probably a transient effect on malaria-related 

morbidity and mortality. The authors concluded that direct MDA with a full 

therapeutic drug dose might have a role to play in circumstances such as the 

control of epidemics, or in relatively low transmission areas or in those with a 

short transmission season. However, it is not likely to have a sustained effect in 

most malaria-endemic areas.  

 

These discouraging findings are echoed by several recent model-based 

investigations of MDA and MSAT. Mathematical malaria transmission models are 

useful tools to synthesize data and make predictions about intervention impact 
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where trials are not feasible. One study found that only in areas with low 

transmission of less than 10 infectious bites per adult per annum (IBPAPA) could 

parasite prevalence be reduced to less than one percent with annual MSAT and 

insecticide-treated nets (ITNs) at 80% coverage [81]. Additional investigations of 

the impact of MDA and MSAT using different drugs, at different timings, and 

with correlation in probability of participating in successive rounds, in varying 

initial endemicity settings, were undertaken using a similar model [82]. 

Transmission was found to rebound to previous levels within about two years after 

one round of the intervention in a low-endemicity setting. However, repeating the 

intervention or combining it with vector control enhanced and extended the 

impact. 

 

Even if it could be achieved, a major challenge to maintaining local transmission 

interruption would be the importation of Plasmodium falciparum infections. 

Human populations are connected to each other, and as long as local vectors have 

sufficient capacity to transmit malaria, local transmission can be sustained or re-

introduced through immigration of infected people or infective mosquitoes. A 

recent modelling study [83] found that, even at relatively low receptivity levels, 

case management alone could not reliably prevent P. falciparum transmission re-

establishment in the face of medium to high importation rates. These findings 

suggest that achieving and maintaining local transmission interruption without 

large-scale vector control across most of sub-Saharan Africa will be difficult for 

the foreseeable future. 

 

Although MDA or MSAT rounds can be expected to have only an ephemeral 

effect on prevalence, it may be a viable strategy to reduce malaria disease burden 

if carried out regularly. Intermittent preventive treatment in pregnant women, 

children and infants are targeted, continuous MDA forms that have been found to 

reduce burden in specific population groups [84;85]. To evaluate the potential role 
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of MDA or MSAT for burden reduction, it is important to consider both the 

expected effectiveness and intervention cost. 

 

The effectiveness of both MDA and MSAT strategies may be compromised by the 

difficulty of achieving sufficient coverage due to refusal of populations to 

participate in repeated screenings and/or treatments and population movements. A 

further disadvantage of MSAT is that sub-patent parasitaemia will be missed, and 

if this contributes significantly to the infectious reservoir, the intervention effect 

will be limited. Experience indicates that the success of these approaches is 

predicated on the ability to deploy them multiple times at high coverage levels and 

together with vector control measures [78]. Mass treatment is thought likely to be 

more effective if introduced following reductions in transmission due to other 

interventions, such as distribution of ITNs and indoor residual spraying (IRS) [86]. 

 

Due to concerns about the potential for MDA to contribute to the spread of drug 

resistance [80], MSAT is currently preferred to MDA, as it avoids the massive 

over-use of drugs [57]. However, it is bound to be more difficult and costly to 

organize and implement than MDA. There is no known evaluation to date of the 

possible cost-effectiveness of MSAT for reducing malaria disease burden.  

 

This paper’s objective is to predict the incremental cost-effectiveness of well-

conducted MSAT campaigns as a strategy for P. falciparum malaria disease-

burden reduction in sub-Saharan African settings with varying receptivity (ability 

of the combined vector population in a setting to transmit disease) and access to 

case management, compared to the same setting in the absence of MSAT.  
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3.3. Methods 
 

Simulation model 
 

A dynamic, individual-based, stochastic model of malaria biology and 

epidemiology was used. The model corresponds to the base model in an ensemble 

of stochastic simulation models that has been developed recently [70]. Briefly, a 

simulated human population was updated at each five-day time step via model 

components representing new infections, parasite densities, acquired immunity, 

uncomplicated and severe episodes, direct and indirect malaria mortality, 

infectiousness to mosquitoes, and case management. Simulated immunity to 

asexual parasites, derived from cumulative exposure to both inoculations and 

blood stage parasites and transferred maternal immunity, acted mainly by 

controlling parasite densities [58]. The probability of a clinical malaria attack in a 

simulated individual depended on the current parasite density and a pyrogenic 

threshold [59]. Severe malaria comprised two episode categories: those that 

occurred as a result of overwhelming parasite densities, and those that arose when 

an uncomplicated malaria episode coincided with non-malaria co-morbidity. 

Mortality could be either direct (following severe malaria) or indirect 

(uncomplicated malaria in conjunction with co-morbidity, or during the neonatal 

period as a result of maternal infection) [87]. Malaria dynamics in mosquitoes was 

also modelled [61;88]. 

 

Transmission settings 
 

The vectorial capacity, or receptivity, is the ability of the combined vector 

population in a setting to transmit disease, expressed as the potential number of 

inoculations per time unit originating from one infective person with no prior 

immunity. A setting has a baseline vectorial capacity, which can be altered by 

interventions undertaken by the health system, such as vector control. The 
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effectiveness of MDA and MSAT in terms of burden reduction is likely related to 

the actual vectorial capacity (the baseline modified by interventions), which co-

determines, together with immunity, the parasitaemia prevalence in the population 

and the proportion of asymptomatic infections. An infected individual with lower 

immunity is more likely to show clinical symptoms and thus, given access to 

appropriate care, to be treated promptly by the health system, reducing the parasite 

reservoir to be addressed by MSAT. 

 

The pre-intervention entomological inoculation rate (EIR) was used as a good 

proxy for the baseline receptivity. Three pre-intervention EIRs of two, 20 and 50 

IBPAPA were simulated, with a seasonality pattern as observed in Namawala, 

Tanzania [65]. These EIRs correspond to parasite prevalence in children under 

five years of age of approximately 16%, 50%, and 62% [58]. The infection status 

and immune status at the start of the simulation were determined by exposing the 

simulated population to the same annually recurring pattern of inoculations for a 

lifetime-long burn-in at the start. The case management coverage level was set at 

zero during the burn-in period in all simulations in order to ensure that the fitted 

vectorial capacity was the same across all scenarios. Case management coverage 

was changed to the appropriate level at the beginning of the main simulation. 

 

ITNs were distributed at 40%, 60% or 80% population coverage at the beginning 

of years 1, 4, 7 and 10. Imported infections were assigned to individuals in the 

population via a Poisson process every 30 days at a constant average rate of two 

imported infections per 1,000 population per year throughout the simulation 

period. This rate was chosen because it is on the lower end of the infection 

importation rate range (two to eight infections per 1,000 inhabitants per annum in 

2008) estimated in Zanzibar, one of the few places from which preliminary data 

are available [14;68]. No infected mosquitoes were imported. 
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Case management models 
 

The effectiveness of MSAT is probably related to case management coverage, 

which determines the proportion of symptomatic infections that gets treated. The 

case management component [41] models a health system using artemether-

lumefantrine (AL), an artemisinin-based combination therapy (ACT), as treatment 

for uncomplicated malaria. Individuals with uncomplicated malaria fevers were 

assigned a probability of accessing treatment over the next five-day period of 20, 

35 or 55%. These probabilities were constant over the entire simulation period. 

They represent the fever treatment-seeking behaviour range recorded in children 

under five years of age, using 14-day recall, in nationally representative surveys 

conducted in malaria endemic countries in sub-Saharan Africa [89;90], converted 

to five-day probabilities for use in the model. Compliance to the treatment regimen 

was set at 90% [67], and the drug was assumed to be 85% effective [91]. In 

patients who did not comply with the full regimen, the drug was assumed to have 

20% effectiveness [92]. All severe cases were assigned a 48% probability of 

receiving treatment as an in-patient [93], and parasites were cleared in all 

hospitalized cases who survived. 

 

Infectivity of hosts to mosquitoes at a given time point was modelled as a function 

of asexual parasite densities 10, 15 and 20 days previously, allowing for a delay 

resulting from the time course of gametocytaemia [62]. Effective treatment 

completely cleared parasites by the next time step, ending the infection, while 

ineffective treatment had no impact on asexual parasite densities. By clearing 

asexual parasites, treatment rendered individuals un-infectious to vectors at later 

time points. Given sufficiently high treatment coverage, this lowered infectivity 

translated into a reduction in EIR. Neither drug treatment effects on 

gametocytaemia nor prophylactic drug effects were modelled, but as AL has a 
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relatively short half-life, and few treatments were given after the first MSAT 

round, this is likely to be of limited consequence. 

 

MSAT timing, coverage and compliance 
 

Five different timings for MSAT were simulated, according to the seasonal 

transmission pattern – at the month before the peak of EIR, at the peak of EIR, at 

the month before the trough of EIR, at the trough of EIR, and at the month after 

the trough of EIR. The intervention was conducted annually in years 5 to 12, for a 

total of eight rounds. In the base case, MSAT was applied at 85% coverage, which 

is the level that was achieved in a well-conducted mass drug administration for 

malaria in the Gambia [56]. ACT was given simultaneously to all individuals with 

a level of parasitaemia at or above 40 parasites/µl. A detection limit of 40 parasites 

per µl corresponds to the nominal value for standard microscope procedures that 

count parasites against 200 leukocytes, assuming a white cell count of 8,000 

leukocytes per µl. Therefore, rapid diagnostic tests (RDTs) were assumed to have 

about the same level of detection as microscopy. All those who were screened and 

tested positive by RDT took the drug and complied fully with the regimen, while 

none of those who tested negative took the drug. Correlation among individuals in 

participation in different MSAT rounds was not considered. 

 

The optimal day of the calendar year to conduct an MSAT campaign was defined 

as the one, among the days considered, which minimized the number of episodes 

from the beginning of the intervention year to the end of the simulation period. 

This occurred one month before the trough in transmission, defined as the lowest 

EIR, consistent with other modelling studies [81]. This timing was used to 

evaluate the MSAT cost-effectiveness in settings of varying baseline receptivity, 

ITN and case management coverage.  
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All scenarios had a population size of 100,000, with underlying demography based 

on East African life tables [66], and were run 10 times, each time with a different 

seed for the random number generator.  

 

Estimating the cost of MSAT 

 

Methods used to estimate the costs per person screened are described in detail in 

supplementary information (see Additional file 1). 

 

For costing purposes, MSAT was assumed to be conducted through house-to-

house visits by village volunteers or community health workers (CHWs). Two 

situations were considered: 1) a village of 1,000 inhabitants where a cadre of 

CHWs, trained to manage fever presumptively, existed and 2) a similar village 

where volunteers were newly selected from the local population and had no 

previous training or experience with managing illness. In situation 2, the MSAT-

attributable costs of selecting and training village volunteers for the MSAT 

intervention may be lower if the volunteers proceed to take on roles beyond that of 

the MSAT intervention; however, this was not considered 

 

The marginal cost consists of the additional costs that would be incurred when 

undertaking an MSAT campaign, based on new resources that would need to be 

used to deliver the intervention. When spare capacity in the health system exists, 

the use of that spare capacity is not included in the marginal analysis. By contrast, 

the average cost includes all those costs involved in delivering a health 

intervention, whether resources are shifted away from other activities, or whether 

spare capacity is used. In a generalized costing, an average cost analysis is 

problematic, as countries differ in their level of infrastructure, structure of the 

health system and capacity use. Therefore, other than the two starting points 
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considered (with (situation 1) and without (situation 2) an existing network of 

CHWs), only the marginal intervention cost was estimated.  

 

Based on a literature review of similar interventions, costs included in the estimate 

were household enumeration, social mobilization, delivery (comprising volunteer 

or CHW remuneration and supplies), training and supervision of village volunteers 

or CHWs. For the delivery, training and supervision costs, an ingredients approach 

was used, which involved building up a cost estimate by considering the quantity 

and value of each resource used. For the other costs, per-person costs were 

borrowed from similar interventions described in the literature.  

 

Systems costs from the district level upwards and in health facilities were not 

included. A functioning health system was assumed to be able to accommodate an 

annual MSAT intervention without hiring additional staff or making further 

investments at these levels. Clearly, if the health system were poor, further 

investments might be needed in order for MSAT to be successful, and this could 

greatly increase the costs. 

 

In this analysis, costing was conducted from a provider perspective. It was 

assumed that there were no direct costs to individuals and that indirect costs were 

negligible, since the intervention was infrequent and conducted at individuals’ 

homes.  

 

Some of the costs presented here are relatively fixed and thus sensitive to the scale 

at which the intervention is conducted. For example, the average costs of a 

sensitization campaign would likely decrease as more people are included in the 

target population. However, for the MSAT intervention, most of the costs are 

variable and significant economies of scale are unlikely. Therefore, economies and 

diseconomies of scale were not explicitly considered in this analysis.  



3. Cost-effectiveness of mass screening and treatment  

 

53 

 

The intervention was undertaken over a period of six days, with the first five days 

for initial visits and one additional day for return visits to cover those not found at 

the first visit. During initial visits, each team, which consisted of three volunteers 

or CHWs, could complete on average one household visit per hour, at an average 

household size of five people [94]. This included time for administering a 

questionnaire, conducting RDTs, waiting for the results, and prescribing ACT to 

any who tested positive. At this rate, eight household visits could be done in a day 

during initial visits (assumption 1), allowing five teams to cover a population of 

1,000 in a five-day period if every member of the population were present during 

the first (and only) visits. The first drug dose was assumed to be taken under 

supervision by the CHW, and the remaining doses were left with the households to 

be taken without supervision. 

 

In the absence of data relating coverage to number of follow-up visits, 40% of 

target households were assumed to have at least one member absent on the first 

visit, with 20% having all members missing and 20% having one member missing. 

A repeat visit was thus required to 40% of the households. Fifty percent of 

members missing on the first visit were assumed to be found on the second visit. 

Return visits were assumed to take half the time, as some of the houses would 

already have been screened and there would be fewer people to screen and treat. 

Thus, five teams would be needed for the second visits to achieve approximately 

85% population coverage.  

 

Nv, the number of volunteers or CHWs needed, is dependent upon factors like the 

population density, infrastructure, and the time it takes for a household visit. 

Therefore, an alternative, assumption 2, was considered, where only five 

household visits could be accomplished in a day during initial visits. In this case, 

eight teams would be required for the first and second visits. 
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Per diems were assumed to be given to volunteers or CHWs as incentives and to 

cover transport. The role of incentives in improving performance and encouraging 

sustainability of interventions is a subject of debate; in a number of settings, 

interventions relying on community volunteers have suffered from a lack of 

financial and non-financial support [95]. Salaries that may be paid to CHWs for 

performing their roles were not included as this was not considered an incremental 

cost incurred by the MSAT intervention. 

 

Each supervisor was assumed to be able to supervise three volunteer or CHW 

teams and received per diems according to the length of the intervention. Training 

costs in situation 1 comprised only the cost of an additional training on using and 

interpreting RDTs, while in situation 2, volunteers needed to be recruited and 

trained in all aspects of the intervention.  

 

All costs were converted to 2007 US$, using the US$ average market exchange 

rate in the study year and the US$ GDP deflator for the appropriate year [96].  

 

The total cost per person screened per MSAT campaign was approximately 2007 

US$5–11, depending on different health system scenarios and assumptions about 

the number of houses that could be visited per day. These costs were added to the 

age-dependent ACT presented in Table 3.1.  

 

 

 

 

 

 



3. Cost-effectiveness of mass screening and treatment  

 

55 

Table 3.1 Estimated costs per person screened by cost category and ACT 
costs by age group 

Screening cost category Costs per person screened (2007 US$) 
Household enumeration (Ep) 0.29 

Social mobilization (Mp) 0.27 

Delivery (Dp)  

Remuneration (Wp)  

Assumption 1 1.06 

Assumption 2 1.70 

Supplies (Up) 1.78 

Supervision (Ip)  

Assumption 1 0.48 

Assumption 2 0.76 

Training (Tp)  

Situation 1, Assumption 1 1.20 

Situation 1, Assumption 2 1.92 

Situation 2, Assumption 1 3.92 

Situation 2, Assumption 2 6.28 

Total costs (Sp)  

Situation 1, Assumption 1 5.08 

Situation 1, Assumption 2 6.72 

Situation 2, Assumption 1 7.80 

Situation 2, Assumption 2 11.08 

ACT costs Cost per course + 25% wastage (US$) 
Age  

<3 years 1.260 

3–9 years 1.960 

10–14 years 2.660 

15+ years 3.360 

 

The model for the cost of MSAT is separate from the epidemiological and case 

management models. Case management coverage may be higher where a network 

of trained CHWs exists. However, in this analysis the MSAT cost model was used 

to develop a plausible range for MSAT cost, and these costs were applied to all the 

health system scenarios. Clinical cases were costed as treated in health facilities 

using the case management model [41], and the proportion of episodes treated in 

facilities was presumed unaffected.  
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Incremental cost effectiveness ratio 
 

The health care costs for malaria episodes were calculated for each intervention 

scenario and its comparator, where MSAT was omitted. The case management 

cost inputs are described in detail elsewhere [41], and were updated with the costs 

of an ACT, artemether-lumefantrine (AL), as first line treatment for 

uncomplicated malaria [97]. Case management costs included direct costs for 

patient care, but not patient indirect costs (notably loss of productive time due to 

illness) since inclusion of these in cost-effectiveness analysis remains 

controversial and methods for valuing them vary widely [98]. The cost savings to 

the case management system associated with adding MSAT to the comparator 

scenario were computed as DCcmnoMSAT -  DCcmMSAT, where DCcmnoMSAT are the 

direct costs of case management in the scenario without MSAT and DCcmMSAT are 

the direct costs of case management in the case of MSAT. These cost savings were 

subtracted from the direct MSAT intervention cost, DCMSAT, to give a net MSAT 

intervention cost, NCMSAT, computed as follows: NCMSAT=DCMSAT – (DCcmnoMSAT- 

DCcmMSAT). The savings to the case management system constituted only the 

marginal cost of averted cases, and fixed costs remained constant.  

 

Table 3.2 Determinants of intervention costs 

Determinant of cost 
Intervention cost 

category 
ITN 

coverage 
MSAT Case management 

coverage 
Vectorial 
capacity 

 

ITN X    
MSAT X X X X 
Case management X X X X 
 

 

Table 3.2 shows the determinants of total health system costs in each scenario. . 

ITN costs were fixed per person costs, assuming single occupancy, and therefore 
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were determined only by the ITN coverage level in the population. MSAT costs 

constituted primarily the fixed cost of screening individuals, but also depended on 

patent parasitaemia prevalence in the population, which in turn was driven by the 

vectorial capacity and ITN and case management coverage levels. Case 

management costs were a function of the health system use by the population (case 

management coverage) as well as the disease burden, which was determined by 

the vectorial capacity, ITN coverage, MSAT coverage and case management 

coverage itself (through its effect on recurrences and transmission).  

 

The net intervention effects were expressed as the number of episodes averted, i.e. 

the difference in the number of episodes between intervention and comparator 

scenarios. An incremental cost-effectiveness ratio (ICER), expressed as dollars per 

case averted, was calculated for each scenario with MSAT compared to the same 

scenario without MSAT, as the net cost (NC) of the intervention divided by the net 

effects (NE) of the intervention: ICERMSAT= NCMSAT/ NEMSAT. If the ICER is 

lower, the intervention is more attractive.  

 

The ICER value is sensitive to the time horizon over which it is calculated [99]. 

Therefore, to investigate how the ICER changed over the time period of the 

intervention, an annual ICER was calculated for each year of the intervention as 

ICERMSATn=NCMSATn/NEMSATn, where n is the year of intervention, beginning from 

the time the intervention starts.  

 

The cost-effectiveness of scaling up case management coverage or ITN coverage 

from a given level to one level higher was assessed in each health system, in the 

absence of MSAT. The objective of this analysis was to compare, roughly, the 

relative cost-effectiveness of undertaking one or another intervention, in different 

settings. Cost per ITN distributed was set as US$7, which is similar to the 

US$7.03 median financial cost per ITN distributed reported in a recent cost and 
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cost-effectiveness review of malaria control interventions [100]. Case management 

costs were as previously described; fixed infrastructure costs remained constant 

and scale-up costs included only the marginal costs of treating additional cases. 

 

Costs and effects were both discounted at an annual rate of 3% in the analysis 

[101]. The practice of discounting adjusts the value of future costs and effects to a 

present value, according to the timing at which they are incurred or occur. This is 

done to reflect the individual and societal preference to have resources and money 

now rather than in the future [102]. 

 

3.4. Results  
 

Figure 3.1 illustrates how all-age parasite prevalence evolved in a selected 

scenario. In this scenario, the pre-intervention EIR was 20 IBPAPA, case 

management coverage was 20% and ITN coverage was 40% at each distribution 

round. Prevalence began to decrease after the first ITN distribution, dropped 

considerably after the first MSAT round, and reached near zero by the fifth MSAT 

round. However, it returned to and exceeded pre-intervention levels about three 

years after all interventions were discontinued; the higher post-intervention 

prevalence is due to reduced immunity in the population. Prevalence never 

reached zero in any of the simulations, even during the time when MSAT was 

conducted. An analysis of the probability of interruption of transmission is outside 

the scope of this paper.  
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Figure 3.1 Median all-age parasite prevalence over the simulation period 

MSAT was conducted annually one month before the trough of transmission in years 5–12, at a 
pre-intervention EIR of 20 ibpapa, case management coverage of 20%, two imported infections 
per 1,000 population per annum, and ITN coverage of 40%. Circles indicate ITN distributions and 
arrows indicate MSAT campaigns. 

 

In Figure 3.2, the average number of episodes averted by MSAT is plotted against 

the average number of episodes per 1,000 population per year in the comparator 

scenario, for each factorial combination over the intervention time period. The 

number of episodes in the all age population in the comparator scenario with no 

ITNs or case management was greatest at the intermediate transmission level (EIR 

of 20 IBPAPA). Although infection prevalence increased with increasing 

transmission over almost all of the age range, the incidence of acute malaria 

attacks in older children and adults was substantially greater at lower transmission 

levels than at higher ones. This is because immunity levels rise with increasing 

transmission, so a smaller proportion of infections are symptomatic than at lower 

transmission levels. Therefore, reductions in transmission may actually lead to an 

increased incidence of disease due to P.falciparum [59].  
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The three panels combined show a bell-shaped curve; MSAT averted the most 

episodes where the number of episodes in the comparator was intermediate. This 

level was reached with different combinations of interventions at each pre-

intervention EIR. At a pre-intervention EIR of two IBPAPA, MSAT averted the 

most episodes when the coverage of the other interventions, ITN and case 

management, was zero. As case management coverage increased, MSAT averted 

fewer episodes since transmission was lower and some episodes had already been 

averted by case management. With any non-zero level of ITN coverage, 

transmission was so low that there was essentially no disease for MSAT to avert. 

At pre-intervention EIRs of 20 and 50 IBPAPA, the number of episodes averted 

by MSAT was maximized at ITN coverage of 40% and 80% in each distribution 

round, respectively, without case management. These levels of ITN coverage 

reduced transmission sufficiently to allow MSAT to have a sustained effect. 

MSAT was more effective if this optimal transmission level was reached via ITNs 

rather than case management because MSAT and ITNs have different modes of 

action and thus complement rather than duplicate each other. Without ITNs, 

vectorial capacity remained high and individuals became re-infected very soon 

after treatment with MSAT, limiting the intervention’s effectiveness.  
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Figure 3.2 Number of episodes averted as a function of number of episodes in 
the comparator scenario  

Number of episodes averted per 1,000 population per year over the 12.75 years from the 
beginning of the simulation period until one year after the last MSAT campaign are plotted 
against the number of episodes in the comparator scenario over the same time period, for each 
factorial combination averaged over 10 unique seeds. Colors indicate levels of case management 
coverage: Yellow: 0%, Pink: 20%, Blue: 35%, Black: 55%. Plotting characters indicate levels of 
ITN coverage: Squares: 0%, Stars: 40%, Circles: 60%, Triangles: 80%. 

 

The natural logarithm of the ICER for adding MSAT to scenarios with varying 

levels of case management and ITN coverage at different pre-intervention EIRs is 

shown in Figure 3.3. The average ICER over the 10 seeds for each factorial 

combination is plotted against the average number of episodes in the comparator 

scenario over the same time period. This figure suggests that MSAT was most 

cost-effective in settings with a moderate disease burden. At a pre-intervention 

EIR of two IBPAPA, this level of disease burden was achieved without case 

management and ITNs. MSAT was least cost-effective where case management 

and ITN coverage were at their highest levels. The lowest (best) ICER at pre-

intervention EIR of 20 IBPAPA occurred where ITN coverage was 40% at each 

distribution round, and the number of episodes was approximately 700 per 1,000 
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population per year. At the highest pre-intervention EIR, 50 IBPAPA, the lowest 

(best) ICER was achieved where case management and ITN coverage levels were 

at or near their maximum, and the disease burden level was similar to that of the 

best-ICER scenarios in the other pre-intervention transmission settings. MSAT 

was never cost-saving in any of these scenarios. 

 

0
2

4
6

8
1
0

0 500 1000 1500

2

0 500 1000 1500

20

0 500 1000 1500

50

Number of episodes per 1,000 pop. per year in the comparator scenario

L
n
(I
C

E
R

($
 p

e
r 
e

p
is

o
d
e

 a
v
e

rt
e
d

))

Entomological inoculation rate

 

Figure 3.3 Logarithm of MSAT ICER as a function of number of episodes in 
the comparator scenario 

Costs and effects were aggregated over the 12.75 years from the beginning of the simulation 
period until one year after the last MSAT campaign, using the high MSAT cost estimate. The 
natural logarithm of the MSAT ICER was plotted against the number of episodes in the 
comparator scenario over the same time period, for each factorial combination averaged over 10 
unique seeds. Colors indicate levels of case management coverage: Yellow: 0%, Pink: 20%, Blue: 
35%, Black: 55%. Plotting characters indicate levels of ITN coverage: Squares: 0%, Stars: 40%, 
Circles: 60%, Triangles: 80%. 

 

Figure 3.3 is a close, inverted, reflection of Figure 3.2, demonstrating that the 

variation in ICER was driven in large part by the net effects of the intervention. 

However, the ICER considers, in addition to the net effects, its net costs, or the 

difference between the MSAT intervention costs and the case management savings 

due to the intervention. In some scenarios, particularly at the lowest pre-

intervention EIR, increased case management reduced the net effects of MSAT but 

also its net costs, so the difference in ICERs was smaller than the difference in net 
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effects. Thus, the curves of ICERs in Figure 3.3 are less linear than those 

representing numbers of episodes averted in Figure 3.2.  

 

Figure 3.4 illustrates the average ICER in each year from the start to the end of the 

intervention, for each health system and transmission setting. At a pre-intervention 

EIR of two IBPAPA, with no ITNs and the lowest three case management 

coverage levels, the ICER showed a decreasing trend, indicating that the 

intervention became more cost-effective over time. The same was true at a pre-

intervention EIR of 20 IBPAPA and ITN coverage of 40 to 80%, and at a pre-

intervention EIR of 50 IBPAPA with ITN coverage of 80%. The opposite was 

observed in the other scenarios; at an EIR of 50 IBPAPA and without ITNs and 

case management, there were actually more episodes in scenarios with MSAT than 

in the comparator scenarios in later years. This resulted in a negative ICER (not 

plotted), and suggests that under these circumstances, doing MSAT would be more 

costly and less effective than not doing it. This is probably because MSAT 

interfered with acquired immunity in this fairly high transmission setting. The 

bumps in the curves observed in scenarios with ITNs are due to reductions in the 

number of episodes averted by MSAT in years 3 and 6 of the intervention, with 

ITNs distributed several months before. As in Figure 3.3, the net effects of the 

intervention were the main driver of the year to year variation in the ICER, 

including through their effects on case management costs. 
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Figure 3.4 Logarithm of MSAT ICER in each year of the intervention 

The natural logarithm of the annual MSAT ICER was calculated using the high MSAT cost 
estimate and averaged over 10 unique seeds, in different transmission and health system settings. 
Lines indicate levels of case management coverage: Yellow: 0%, Pink: 20%, Blue: 35%, Black: 
55%.
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Table 3.3 Incremental cost-effectiveness ratio (ICER) for different interventions 

 
Annual EIR in the absence of interventions Baseline 

interventions  2 20 50 
CM 
coverage 
(%) 

ITN  
coverage 
(%) 

MSAT 
11$ 

MSAT 
5$ CM ITN  

MSAT 
11$ 

MSAT 
5$ CM ITN  

MSAT 
11$ 

MSAT 
5$ CM ITN  

0 0 9.5 4.3 2.9 0.9 56.3 26.6 11.2 2.8 177.1 84.1 14.9 7.0 
20 0 12.4 4.7 1.0 -0.3 42.0 19.2 15.3 1.3 105.2 49.3 22.1 4.1 
35 0 18.0 6.7 -0.6 -0.8 37.3 16.5 22.2 0.4 91.0 42.1 39.2 2.9 
55 0 34.4 13.6 – -0.8 33.1 13.9 – -0.6 78.4 35.6 – 1.7 
0 40 523.6 238.0 2.3 22.8 12.5 5.7 5.0 5.1 30.9 14.4 7.6 11.7 

20 40 1932.3 877.4 2.4 41.3 12.5 4.9 5.8 3.6 25.0 10.9 10.0 8.8 

35 40 3276.3 1487.8 2.8 51.2 12.9 4.6 5.9 2.8 22.5 9.3 13.5 7.5 

55 40 4668.5 2120.1 – 61.6 13.6 4.4 – 1.9 19.9 7.6 – 6.2 

0 60 1817.6 826.3 2.9 76.7 14.1 6.4 3.0 6.0 17.7 8.1 5.7 12.3 

20 60 5496.8 2497.7 2.9 120.8 20.0 8.2 2.6 6.2 15.4 6.3 6.9 9.8 

35 60 7654.3 3477.7 3.8 153.7 25.4 10.2 2.2 6.8 14.2 5.3 8.4 8.8 

55 60 11003.4 4999.7 – 178.4 34.2 13.8 – 7.8 13.3 4.4 – 7.4 

0 80 3565.8 1620.9 3.1  – 27.7 12.6 2.0 –  13.4 6.1 4.1 –  

20 80 9669.7 4394.5 4.0  – 68.3 30.2 2.1 –  14.1 5.6 4.6 –  

35 80 14505.9 6592.2 4.6  – 111.7 49.5 2.9 –  14.8 5.5 4.2 –  

55 80 17126.3 7782.7 –   – 165.6 73.5  –  – 16.0 5.5 –  –  

 
Comparison of ICERs of conducting MSAT with ICERs of increasing case management or ITN coverage in different baseline health system 
settings (two leftmost columns), at different pre-intervention EIRs. ICERs for case management and ITNs refer to scaling up coverage from the 
baseline to the next highest coverage level, holding coverage of the other intervention constant. Negative ICERs indicate that the intervention is 
cost-saving due to reductions in case management costs. Bold figures represent settings where MSAT may have comparable or lower ICERs to 
either scaling up ITNs or case management coverage to the next level. 
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Table 3.3 compares the ICERs for the three interventions undertaken separately in 

each baseline health system setting, using high and low estimates for the per-

person cost of the MSAT screening component (see Additional file 1). At a pre-

intervention EIR of two IBPAPA MSAT was never the most cost-effective 

intervention. Increasing ITN coverage from 0 to 40% appeared to be the most 

cost-effective intervention and in fact, was cost saving where a health system was 

in place (hence the negative ICER). From a baseline of 40% ITN coverage and 

above, scaling up case management coverage was the most cost-effective option 

and, as expected, the MSAT ICERs became very large. 

 

At a pre-intervention EIR of 20 IBPAPA, scaling up ITN coverage to the next 

level was the most cost-effective intervention in settings of 0 and 40% ITN 

coverage. At 60% ITN coverage, scaling up case management coverage became 

the most cost-effective intervention. However, at 40% ITN coverage, the MSAT 

ICER was in a similar range to that of scaling up ITN and case management 

coverage. At a pre-intervention EIR of 50 IBPAPA, the ICERs of scaling up ITN 

coverage from 0 or 40% were the lowest. Interestingly, at an ITN coverage of 

60%, MSAT was similarly cost-effective to scaling up ITN coverage further.  

 

3.5. Discussion 
 

To date, MSAT for malaria has been considered almost exclusively as an 

intervention to interrupt local transmission of the parasite, or as a response to an 

epidemic in a previously malaria-free area. Even if MSAT does not result in 

sustained interruption of transmission, it may be a cost-effective strategy to reduce 

the malaria burden in some areas that are pursuing disease control. If used in this 

way, MSAT should be continued indefinitely, similar to ITN distribution.  
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Where prevalence is very low, infections are more likely to be symptomatic and 

thus detected by the passive case management system. The addition of mass 

treatment, therefore, will probably not have a large effect on the incidence of 

disease, particularly where case management coverage is high. Where prevalence 

is high, a greater population proportion will harbour asymptomatic infections, 

increasing the effectiveness of mass treatment relative to passive case detection. 

However, under these circumstances, individuals may become re-infected very 

soon after treatment through MDA or MSAT, limiting the intervention impact in 

averting disease. Of course, the effectiveness will also depend on characteristics of 

the intervention itself, such as the frequency with which it is carried out, 

population coverage and compliance to diagnostic tests and treatment regimens.  

 

These results suggest that, in all the transmission settings considered, achieving a 

minimal level of ITN coverage is always a “best buy”, and in low transmission 

settings, MSAT is probably never worth considering for burden reduction from a 

cost-effectiveness perspective. This finding is in contrast to the current focus on 

MSAT as an intervention for low transmission or near-elimination settings. 

Instead, MSAT may be more suitable at medium to high transmission levels and at 

moderate ITN coverage. In these settings, the cost-effectiveness of MSAT may be 

comparable to that of scaling up case management and ITN coverage.  

 

An interesting finding from this preliminary analysis, and one that merits further 

investigation, is that achieving 80% ITN coverage across all settings, as per 

current global malaria strategies [23], may not be an efficient use of resources, 

particularly in low-transmission settings. Given stagnating donor funding for 

malaria, and the fact that ITNs account for the largest share of most malaria 

programme expenditure [3], this finding may be important for malaria programme 

managers’ decisions. 
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The judgment as to whether or not an intervention is cost-effective rests upon the 

decision maker’s valuation of a unit of health gain, or the ceiling ratio. Values 

used in practice are usually quoted per disability-adjusted life-year (DALY) 

averted, and are based on affordability expectations (such as $US150 per DALY), 

some multiple of gross national income or gross domestic product, or preference-

elicitation methods [103]. This study’s results, presented in 2007 $US per episode 

averted, do not refer to a ceiling ratio and thus do not allow assessment of whether 

MSAT is cost-effective or not. Rather, they provide an initial indication of the 

conditions under which this strategy may be worth pursuing.  

 

The effects of correlations in intervention coverage, either between repeat 

distributions of the same intervention or between receiving MSAT, ITNs and case 

management, have not been analysed. In principle such correlations may result in 

either under- or overestimation of the effects of the interventions. Positive 

correlation between interventions is similar to adding new interventions 

preferentially into population subgroups with relatively high pre-existing 

coverage. This may be efficient when effectiveness is greater at low transmission, 

but in general might be expected to make the intervention package overall less 

cost-effective. 

 

The estimate of the cost-effectiveness of MSAT relies on the per-person cost of 

the intervention, which was estimated from secondary data on costs for similar 

interventions. To account for this uncertainty, a high and a low cost estimate were 

used. All campaign costs incurred were attributed to the MSAT intervention. 

However, MSAT could be more cost-effective if delivered jointly with other 

interventions, since household visits constitute most of the intervention costs. 

Notably, the MDA costs for neglected tropical diseases have been shown to be 

reduced where programmes are integrated in places where diseases co-exist [104] 

and evidence suggests this integration can be effective [105]. An ITN distribution 
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programme was successfully integrated with MDA for lymphatic filariasis and 

onchocerciasis in Central Nigeria [106]. Also, costs per person screened were 

assumed constant and incentives to community health workers were included; this 

cost might vary depending on the implementation stage, the use of volunteers, or 

the programme scale [107] 

 

On the other hand, achieving good MSAT implementation may incur costs that 

were not considered in the cost estimate and presupposes a fairly strong health 

system capable of organizing such an endeavour; otherwise, control programmes 

for other diseases may suffer. In this analysis, MSAT population coverage in each 

round was assumed to be 85% and compliance to be perfect. A well-conducted 

MSAT campaign will require careful planning, social mobilization, community 

involvement, and improvement of health care infrastructure, as was documented in 

Vanuatu [108]. This is not trivial; for example, the difficulties of maintaining an 

effective census record in a past MDA campaign in Tanzania have been described 

[109]. While achieving these high levels of MSAT compliance and coverage may 

be challenging, the aim of this study was to predict the cost-effectiveness of the 

intervention under optimal conditions; future analyses could explore the sensitivity 

of ICERs to reduced coverage and compliance. 

 

The estimate of cost savings from averted case management due to MSAT 

comprised only the marginal costs, assuming that the fixed costs remained 

unchanged. However, a much lower malaria burden may free up capacity for other 

interventions, boosting the cost-effectiveness of MSAT. If this spare capacity can 

be used, it could have significant benefits for the control of other diseases.  

 

In these simulations, MSAT was conducted using existing diagnostic and 

pharmaceutical tools. Microscopy and the current generation of RDTs fail to 

detect many low-density infections, thus a number of sub-patent infections is 
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missed. More sensitive diagnostic tools appropriate for use in the field are a target 

for future development [110], and if these become available, the MSAT impact 

could be enhanced. There could be benefits of other drug regimens, for example 

adding primaquine (PQ) to ACT regimens, which would make MDA/MSAT more 

effective in reducing transmission [22], although a recent study found that addition 

of PQ to ACT did not improve elimination of parasitaemia and prevention of 

gametocyte carriage in carriers with low-density parasitaemia in the dry season in 

Sudan [111]. 

 

As in the case of MSAT, economies or dis-economies of scale were not considered 

in the costs of scaling up case management and ITN coverage. The model for the 

costs of scaling up case management coverage does not account for investments in 

infrastructure that would need to be made when increasing coverage. In reality, 

scaling up case management may be more costly than it appears in this analysis. 

Moreover, a single estimate of distribution cost per ITN (with single occupancy) 

was used; these vary depending on scale, mode of distribution and other factors 

[112]. This analysis could be extended by varying unit costs at different coverage 

levels and assessing the sensitivity of results. Also, if each ITN were assumed to 

cover more than one person, the cost-effectiveness of ITNs would increase.  

 

In addition, the model used for ITNs, where the killing effect of the net decayed 

exponentially with a half-life of 2.64 years, is quite simple. Estimating the cost-

effectiveness of ITNs and case management was not this paper’s focus, and it 

aimed only to compare ICERs in orders of magnitude. Understanding of the cost-

effectiveness of ITNs and case management relative to each other and to other 

interventions could be improved using more complex models; one such model for 

ITNs is currently being developed [113].  
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The comparison of MSAT ICERs with those of scaling up ITN and case 

management coverage should not be construed as pitting the interventions against 

one another, as combinations of the interventions may well be an appropriate 

strategy. Improvements in case management, in particular, represent investments 

in the wider health system; they are valuable on that basis alone and cannot be 

directly compared with preventive interventions such as ITNs and MSAT. 

Furthermore, the use of episodes as the measure of effects resulted in a biased 

ICER for case management relative to the other two interventions. Case 

management’s impact was considered only in terms of reduced host infectivity 

(and thus reductions in future transmission) and decreased recurrences of illness 

due to one infection. However, as a curative intervention, the most important 

effect of case management is to reduce severe disease and mortality, and this was 

not captured in the ICER denominator presented here. Scaling up case 

management is thus likely to appear much less cost-effective in this analysis than 

it would be in reality. Future analyses comparing the cost-effectiveness of case 

management with that of preventive interventions should include both disability 

and deaths averted (expressed in DALYs) as an outcome measure.   

 

3.6. Conclusion 
 

Mass screening and treatment (MSAT) for malaria may be worth considering as a 

burden-reducing intervention in certain areas that possess adequate resources and 

health system capacity to implement it well. If undertaken, it should be as a 

complement, and not a replacement, for case management and vector control 

interventions, like insecticide-treated nets (ITNs). Also, policy-makers and 

planners should be prepared to continue it indefinitely, until new interventions 

become available or other developments make local transmission interruption a 

real possibility.  
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MSAT is at the high end of a case management continuum that goes from passive 

case detection, to screening only febrile or clinically suspected malaria in a small 

radius around a confirmed case, to screening all individuals at a large radius 

around a confirmed case, to MSAT and mass drug administration (MDA). One or 

another of these options may ultimately be a better use of resources than MSAT. 

More data is needed to determine the most cost-effective surveillance and 

response strategies in different settings. 
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3.9. Additional file 1. Estimating the cost of MSAT 

 

This Additional file presents a literature-based costing of MSAT campaigns for 

malaria, delivered through house-to-house visits via a community-based approach. 

Intervention delivery through house-to-house visits by village volunteers or 

community health workers (CHW) is likely to achieve high coverage rates. This is 

how mass drug administration (MDA) for malaria was usually done during the 

historic eradication campaigns [109],  

 

In Vanuatu, communities were enlisted to conduct MDA and community-based 

surveillance and self-monitoring [114]. In Zanzibar, the success of the MDA 

campaign against lymphatic filariasis (LF) has been attributed to the drug 

distributors, or “filarial prevention assistants”, who were selected based on their 

experience, residence in and acceptance by the communities where they worked 

[115]. 

 

Literature on operations and cost of similar interventions was reviewed to identify 

major cost items, variables, and assumptions needed, and to get an idea of the 

order of magnitude of per-person cost that has been estimated for these 

interventions. Total cost per person screened was built and its range explored in a 

sensitivity analysis. Limitations of the methodology were explored as well. 

 
Previous studies on the costs of community-based interventions 
 

Home-based management of malaria 

 

Delivery of treatment for suspected malaria through home-based management of 

malaria (HMM) has been applied in sub-Saharan Africa [116]. The average net 

intervention cost to promote HMM in rural Burkina Faso, including training, 
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purchase of the first drug stock, bags, labels and packing of drugs, incentives to 

CHWs, and supervision and drug distribution, was 1994 US$ 0.06 per resident 

child [117]. The cost of HMM in a trial in urban Ugandan children, including the 

cost of artemether-lumefantrine, was estimated at about US$ 34 per child per year 

[118]. In a study in Nigeria, the cost of design and implementation of a strategy on 

use of CHWs for HMM of malaria, including consumer and provider costs, was 

between US$ 1.40 and US$ 1.70 per villager. Recruitment and training of CHWs 

contributed the highest proportion of these costs [119]. Unfortunately, these 

studies are not directly comparable due to differences in the intervention design, 

collection and inclusion of cost data, and size and composition of the study 

population. Furthermore, HMM is quite different from MSAT in that it does not 

involve household visits; instead, individuals generally visit the CHW when they 

are ill.  

 

Recently, interest in whether CHWs can use RDTs prior to prescribing 

antimalarial treatment has increased. Since parasitological testing with RDTs 

would be an integral MSAT component, literature on this topic was reviewed. A 

cluster randomized trial in Zambia found that CHWs were able to successfully use 

RDTs, ACTs and amoxicillin to manage both malaria and pneumonia in the 

community [120]. A study of a 3-hour training course for CHWs in Zambia on 

how to use and interpret RDTs estimated that the course cost approximately 2006 

US$ 175 per CHW, including supplies (job aids), transportation, lodging, salaries, 

and per diems for CHWs, trainers, observers and MOH personnel. If only supplies, 

transportation, and lodging for CHWs were included, the cost was 2006 US$ 66 

per CHW trained. Significantly more trained CHWs conducted and read the test 

results correctly compared to CHWs who had received only the manufacturer’s 

instructions or job aids [121].  
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Neglected tropical diseases 

 

Preventive chemotherapy is used as a key approach in control and elimination 

programmes for neglected tropical diseases (NTDs), notably LF, schistosomiasis, 

onchocerciasis, soil-transmitted helminths and trachoma [122]. These diseases are 

often found in areas which are co-endemic for malaria. Many components of 

MDA programmes against these diseases could be quite similar to those of MSAT 

programmes against malaria. Therefore, the costing literature for MDA for these 

NTDs were reviewed, with a focus on African settings. A major difference 

between the costs of MDA for NTDs and malaria is that drugs for MDA are often 

donated, and thus incur zero financial costs to the control programme. In addition, 

distribution often relies on unpaid volunteers, which are also not included in 

estimates of financial costs.  

 

LF is currently targeted for elimination by the World Health Organization (WHO), 

and the principal strategy relies on concurrent administration of a drug 

combination, albendazole with diethylcarbamazine or albendazole with 

ivermectin, once-yearly for four to six years. A multi-country cost analysis of 

MDA for LF published in 2007 revealed that financial costs per person treated per 

round (not including drugs or volunteer time) in the sub-Saharan African 

programmes ranged 2002 US$ 0.06 – 0.54, with coverage rates ranging 65% – 

91%. However, when the cost of donated materials, notably drugs, was included, 

cost per person treated was around US$ 5 [107].  

 

All of these programmes involved house-to-house visits by volunteers, with or 

without additional distribution through distribution posts. Cost categories were: 

training, mapping, mobilization and education, drug distribution, adverse reaction 

monitoring, surveillance/laboratory (e.g. tracking of community members in MDA 

area, laboratory work for case identification, testing, etc.), and administration. 



3. Cost-effectiveness of mass screening and treatment  

 

76 

Input categories were: medications and laboratory supplies, personnel, transport, 

general supplies, and recurrent and capital costs for facilities and equipment. The 

analysis was conducted from a national program perspective and, as many inputs 

were shared among multiple programmes, costs were apportioned accordingly. 

Drug distribution generally represented the largest proportion of financial 

expenditures. The principal determinants underlying variability in the lymphatic 

filiariasis costing appeared to be the number of years that the programme had been 

running; the use of volunteers; and the size of the population treated [107]. 

 

Mean financial cost of the African Programme for Onchocerciasis Control was 

2008 US$ 0.58 per person treated, not including volunteer time, which was valued 

at 2008 US$ 0.16. Again, drugs were donated so are not included in the cost. The 

scale and stage of the program made a large difference to unit costs [104].  

 

MDA for malaria 

 

Only one article with information on the cost of MDA for malaria was found in a 

literature search. A weekly MDA in Vanuatu, conducted by trained village 

volunteers for nine weeks (together with ITN distribution and implementation of 

larvivorous fish), cost US$ 9 per person: US$ 5.6 for the impregnated bednets, 

US$0.7 for antimalarials, US$0.4 for materials for microscopical diagnosis, and 

US$2.3 for transportation and travel allowances for the staff and volunteers. About 

90% coverage was achieved in the first three rounds [108]. This MDA was 

conducted on a small island at short intervals, which is quite different from annual 

MSAT scenarios in mainland Africa.  

 

Some other studies contained useful information about the operational 

considerations when undertaking MDA for malaria, such as on how the 

intervention was carried out, on the number of households that could be visited in 
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a day, and on realistic coverage levels. For example, a report from an MDA in 

Tanganyika (present-day Tanzania) described the detailed individual census 

system that was drawn up before the trial and continually updated, and noted the 

need for repeated household visits and community participation to achieve high 

population coverage [109]. One study gave an indication of the time that would be 

needed to cover a particular population with MDA in an area of north Nigeria with 

reasonably good accessibility [123]. A report on the Garki project in northern 

Nigeria stated that in compact villages, each two-person team covered between 

150 – 180 people per day, whereas in scattered villages, they covered around 90 – 

100 persons per day [124]. Of course, these interventions did not involve 

screening prior to treatment. 

 

Although these costs give a useful indication of what could be expected with 

MSAT for malaria, the interventions are so different that they cannot be applied 

directly to MSAT for malaria; screening prior to treatment, as in the case of 

MSAT for malaria, is a more complex and time-intensive intervention than mass 

treatment alone and will require additional training of volunteers or CHWs.  

 

Algorithm 
 
The screening cost per person screened (

p
S ) in an MSAT campaign round was 

estimated according to the formula: 

p p P p p p
S E M D I T= + + + +  

 

where 
p

E  is the household enumeration cost per person screened, 
P

M  is the social 

mobilization cost per person screened, 
p

D  is the delivery cost per person screened, 

p
I  is the volunteer or CHW supervision cost per person screened, and 

p
T  is the 

volunteer or CHW training cost per person screened.  
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For those that test positive and receive a drug, the drug cost needs to be added. 

These costs will depend on the total prevalence level in the population and the 

relationship of prevalence to age.  

 

Household enumeration 

 

Costs of surveying and conducting a census of the target population were assumed 

to be borne every time that a mass treatment campaign was planned. In reality, 

costs in subsequent years might be lower if only updating of an existing census 

were required.  

 

Household enumeration costs were borrowed from a study which estimated the 

per-person cost of conducting a national census in Tanzania [125] (Table 3.4).  

 

Social mobilization 

 

Costs for social mobilization are programme costs which are relatively fixed 

irrespective of the covered population size; as such the per-person costs are quite 

sensitive to the intervention scale. Social mobilization costs were borrowed from a 

cost study of introducing ACTs [126] (Table 3.4). This study reported the costs of 

development and production of information, education and communication 

materials and communication and publicity in a rural Tanzanian district of 

approximately 200,000 population over three years. While the ACT introduction 

study assumes that the cost of these activities declines in subsequent years, for the 

MSAT programme, a constant per person cost per round (as in year 1) was 

assumed, given the more intense communication efforts that would be required 

with a MSAT programme (owing to the need to achieve high coverage and the fact 

that the target population is not ill).  
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Delivery costs 

 
Delivery costs per person screened per round was estimated as the sum of the 

volunteer or CHW per diem per person screened per round, 
p

W , plus the cost of 

supplies per person screened per round, 
p

U . The cost of transport of volunteers or 

CHWs was assumed to be negligible, as they would be based in the community 

and would travel only short distances, and in any case this could be covered by the 

per-diem remuneration.  

 

p p p
D W U= +  

 
Remuneration 

 
Remuneration per person screened per round, 

p
W , was estimated as: 

, ,

1

r

dv vt d r t r

p

p

W N N N

W
N

⋅ ⋅ ⋅

=
∑

 

 

Where 
dv

W  is the daily per diem for the volunteers or CHWs, 
vt

N  is the number of 

volunteers or CHWs in each team, Np is the number of people screened, 
,d r

N  is the 

number of days for visit r  of the MSAT campaign, and 
,t r

N  is the number of 

teams participating in visit r , with 

, 1

,

, ,

a r

t r

h d r h r

P p
N

S N N

−⋅
=

⋅ ⋅
 

 

Where P  is the total population targeted for the intervention, 
h

S  is the average 

household size, 
,h r

N  is the number of households that a team of volunteers or 

CHWs can visit per day in visit r , and 
,a r

p  is the proportion of households with at 

least one member (still) absent on visit r , with 
,0 1

a
p = . 
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Assumptions made in the calculation of remuneration costs are summarized in 

Table 3.5 and per-person costs under assumptions 1 and 2 are presented in Table 

3.1. 

 
Supplies  

 

The cost of supplies per person screened per round, 
p

U , is estimated as 

p p p p p p
U R L G A Y= + + + +  

where 
p

R  is the cost of an RDT, 
p

L  is the cost of a lancet, 
p

G  is the cost of a pair 

of gloves, 
p

A  is the cost of an alcohol swab, and 
p

Y  is the cost of paper and 

printing per person. Sources for these prices are given in Table 3.4. 

 

RDT costs were calculated with an additional 12% added for transport, insurance 

and delivery [97] and another 25% for wastage [127]. For the other supplies, we 

did not cost delivery but did assume the 25% wastage rate. 

 

Per-person cost of supplies is presented in Table 3.1. 

 
Supervision 

 

Cost of supervision per person screened per round, 
p

I , was estimated as 

, ,

1

r

ds d r t r

p

p ts

W N N

I
N N

⋅ ⋅

=
⋅

∑
 

 

where 
ds

W  is the daily remuneration of the supervisor, 
p

N  is the number of people 

screened, 
ts

N  is the number of teams per supervisor, here taken to be three, ,d r
N  is 
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the number of days for the visit r of the MSAT campaign, and ,t r
N  is the number 

of teams participating in the visit, as given under delivery costs, remuneration. 

 

Per-person cost of supervision under assumptions 1 and 2 is presented in Table 

3.1. 

 
Training 

 
Training of volunteers or CHWs is needed before each round. In situation 1, the 

CHWs have already been trained in presumptive management of febrile illness. 

However, they need to be instructed in the MSAT intervention and trained in 

conducting and interpreting RDTs and record-keeping. RDT training costs were 

borrowed from a study in Zambia [121].  

 

In situation 2, where no network of community health workers yet exists, 

volunteers need to be recruited and trained in all aspects of the intervention (RDT, 

ACT administration, etc). Recruitment and training costs were borrowed from a 

study of a community health worker strategy in Nigeria [119].  

 

Training costs per person screened per MSAT round for situation 1 are thus 

estimated as  

v p

p

p

N C
T

N

⋅
=  

 

where 
v

N  is the total number of CHWs participating in the campaign, 
p

C  is the 

cost of the RDT training course per CHW, and 
p

N  is the number of people 

screened.  
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Training costs per person screened per MSAT round for situation 2 are estimated 

as  

2 1

v pt

p p

p

N C
T T

N

⋅
= + .  

where 
v

N  is the total number of CHWs participating in the campaign, 
pt

C  is the 

cost of recruiting and training per CHW, and 
p

N  is the number of people screened.  

 

Training costs per CHW or volunteer are sensitive to the scale of the training 

programme. Costs for recruiting and training in situation 2 were modified in an 

attempt to adjust for this (see Table 3.4), but this remains a source of uncertainty 

in our costing estimate.   

 

Sources for training costs are presented in Table 3.4 and per-person cost of 

training in situations 1 and 2 and under assumptions 1 and 2 is presented in Table 

3.1. 

 

Artemisinin-based combination therapy 

 
Prices for ACTs were as described in a previous publication [97]. Costs were 

calculated with an additional 12% added for transport, insurance and delivery [97] 

and another 25% for wastage [127]. ACT costs are presented in Table 3.1. 

 

Calculation of total costs 

 

The cost estimates are summarized in Table 3.1. In situation 1, cost per person 

screened per round is estimated as US$ 5.08 under assumption 1, and US$ 6.72 

under assumption 2. In situation 2, cost per person screened per round is estimated 

as US$ 7.80 under assumption 1, and US$ 11.08 under assumption 2.  
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Discussion  

 

To date, MSAT has not been implemented anywhere, so there were no actual costs 

that could be used for this analysis. However, it is encouraging that the estimate of 

roughly US$5–11 per person screened (including RDT costs but excluding drug 

cost) is in a similar range to the cost per person treated in a once-yearly MDA for 

LF (US$5, including drug cost, no screening) [107]. This analysis suffers from the 

inevitable limitations of a generic costing based on secondary data. First, the cost 

of non-tradable inputs (e.g. personnel) could be expected to vary significantly 

among countries, for example according to level of income [128], which was not 

considered. Second, this cost estimate included primarily the marginal costs of 

MSAT, assuming that the health system could accommodate the intervention 

without, for example, hiring additional staff in health facilities or expanding the 

drug supply system. The validity of that assumption will depend very much on 

whether there is spare capacity in the health system. Two situations were 

considered; one where CHWs were already managing febrile illnesses and another 

where a system of village volunteers needed to be set up. Since training costs for 

volunteers or CHWs constitute about a quarter of the total costs of the 

intervention, this is likely to be a major component of the costs of investing into 

the health system. As mentioned above, efficiencies of scale or scope that could be 

achieved by expanding MSAT or integrating MSAT with other disease control 

programmes were not considered. However, as the majority of costs are variable, 

this is unlikely to change the estimate significantly. 

 

It is not clear how the costs of an intervention involving household visits would 

vary with population density: e.g. the difference between rural and urban settings. 

Distances between households are shorter in cities so transport and time costs will 

likely be lower, but it may also be harder to find people at home in large cities 

than in villages [129] and thus more repeat visits may be necessary in cities. Two 
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different assumptions about the number of household visits that could be 

accomplished in a day were made in an attempt to account for this. Transport for 

the village volunteers or CHWs was assumed to be negligible, since they live 

within the community, but for very spread-out villages these could be more 

substantial.  

 

More data is needed on the operations and costs of interventions involving 

household visits in sub-Saharan Africa, as these may be necessary to reach the 

high levels of intervention coverage called for in global malaria control targets. It 

is hoped that the work described here contributes to discussions about the costs, 

feasibility and efficiency of these types of interventions.  
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Table 3.4 Cost parameters, values and sources 

Cost Parameter Symbol Cost 
(2007 US$) 

Source 

Household enumeration    

Household enumeration cost 
per person  

 

Ep 0.29 

[125] 

Social mobilization    

Social mobilization cost per 
person 

 

Mp 0.27 
[126] 

Remuneration Wp   

Daily remuneration of 
volunteers or CHWs 

 

Wdv 10 

[130]; G. Ferrari, personal 
communication 

Supplies Up   

Price of 1 pair of sterile gloves  

Gp 0.23 
G. Ferrari, personal 
communication 

Price per lancet Lp 

0.03 
G. Ferrari, personal 
communication 

Price of 1 alcohol swab Ap 

0.19 
G. Ferrari, personal 
communication 

Price of black ink printer 
cartridge 

 

115 
G. Ferrari, personal 
communication 

Price per ream of paper   

2.39 

http://eetd.lbl.gov/paper/coun
ting/html/purchasing.htm 

Price of Paracheck RDT per 
test 

 

Rp 0.61 

[131] 

Supervision    

Daily remuneration of 
supervisors 

 

Wds 40 
G. Ferrari, personal 
communication 

Training Tp   

Situations 1 and 2: Cost of 
RDT training course per 
volunteer or CHW 

 

Cpr 

68 

[121] 

Situation 1: Cost of recruiting 
and training village volunteers 
per volunteer 

Cpt 

154 

[119]; estimate is half of the 
cost due to assumed 
economies of scale 
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Table 3.5 Input parameters, values and sources 

Input Parameter Symbol Assumption 
1 

Assumption 
2 

Source 

Total population targeted for MSAT P 1000  Assumption 

Number of people screened Np 850  [56] 

Average household size Sh 5  [94] 

CHWs or volunteers per team Nvt 3  G. Ferrari, personal 
communication 

Number of CHWs or volunteers - 
first and second round 

Nv,1 

Nv,2 

 

15 24 Calculation 

Number of households visited per 
team per day - first round 

Nh,1 8 5 Assumption 

Number of houses visited per team 
per day - second round 

Nh,2 

 

16 10 Assumption 

Number of days per MSAT 
campaign 

Nd 6  Assumption 

Number of days - first round Nd,1 5  Assumption 

Number of days - second round Nd,2  1  Assumption 

Proportion of households with at 
least one member missing on first 
visit pa,1 

0.4  Assumption 

Proportion of households with all 
members missing on first visit  

0.2  Assumption 

Proportion of households with only 
one member missing on first visit 

 0.2  Assumption 

Proportion of members missing on 
first visit that are found on second 
visit 

 0.5  Assumption 

Number of teams per supervisor Nts 3  Assumption 

Number of printer cartridges used 
per MSAT campaign 

 2  Assumption 

Number of reams of paper per 
MSAT campaign 

 5  Assumption 

Distribution costs as percentage of 
the RDT price 

 12%  [97] 

Wastage rate of drugs and supplies  25%  [128] 
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4.1. Summary 
 

Malaria disease burden is modified by treatment.  While this is the primary reason 

for treating malaria, the dynamic effects of treatment are generally ignored in 

estimates of burden of disease, which is usually presented in terms of numbers of 

clinical cases or episodes [3] with the main sources of data being reporting of 

clinical cases from health facilities and parasite prevalence surveys.  The failure to 

include the dynamic effects of treatment in estimates of burden leads to 

misunderstanding of measures of burden.  It also leads to bias in both empirical 

estimates of the impact of changes in case management, and in simulation models 

of cost-effectiveness of malaria interventions. 

 

This paper examines these challenges in detail, and considers how they can be 

overcome.   

It proposes an approach for measuring burden of disease that recognizes the 

distinction between burden and counts of episodes.  This technique makes use of 

data available from standard designs of community surveys, together with analyses 

of patterns of fever in malaria therapy patients and data on recall bias from 

Asembo, Kenya.  Application of this approach to data from Zambia for 2010 gave 

an estimate of 2.6 (1.5, 3.8) malaria attributable fever days per child-year.  To 

obtain valid estimates of the overall malaria burden using these methods, there 

remains a need for surveys to include the whole range of ages of hosts in the 

population and for patterns of seasonality in confirmed cases to be available.   
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4.2. Introduction 
 

Malaria continues to be a major cause of disability and death in countries where it 

is endemic.  Accurately estimating the burden of morbidity due to the disease1  is 

critical for guiding programmatic strategies and resource allocation, and 

evaluating the impact of malaria control measures. However, commonly-used 

approaches for estimating malaria burden are problematic as a result of imprecise 

terminology and estimation techniques that do not allow for the complexity of the 

natural history of the disease.  

 

When promptly and effectively treated, malaria illness is of short duration, but if 

untreated a single P.falciparum malaria infection can last for many months, 

causing recurring clinical attacks interspersed with asymptomatic periods [132] 

during which parasitaemia is often sub-patent.  This can be clearly seen in the time 

courses of parasitaemia and fever observed when malaria was used for treating 

neurosyphilis (Figure 4.1).  

 

 

 

                                                 
1 Here we consider only the morbidity burden, though most of the malaria burden, measured in terms of 
disability-adjusted life years (DALYs) or quality adjusted life years (QALYs) is  contributed by mortality 
[41] 
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Figure 4.1 Pattern of parasitaemia and febrile illness in a malaria-therapy 
patient (Patient S-519) 

○—○: Parasite densities; ■indicates a day on which fever (core temperature >=103. °F) was 
recorded. 

 
The full histories of many untreated malaria infections were recorded when 

artificial inoculations of malaria parasites were used for treating neurosyphilis 

[133]. Figure 4.1 shows the time pattern of parasitemia and fever in a 

neurosyphilis patient treated with P.falciparum. In this figure, this single 

(untreated) infection gives rise to five periods of high parasitaemia. The first two 

of these are each associated with several bouts of fever indicated by the black bars 

at the top (see definitions in Table 4.1). 

 

This sporadic pattern of clinical symptoms of untreated disease complicates the 

definition of clinical incidence. For many infectious diseases, for instance 

influenza, each incident infection leads to one and only one period of illness, or 

episode. Burden can thus be estimated from the incidence of disease and the 

duration of episodes, with an appropriate weighting used to convert numbers of 

episodes into DALYs or QALYs. By contrast, with malaria, one incident infection 

may lead to multiple periods of illness (or may be asymptomatic throughout, 

though this may be infrequent [134]). Malaria burden is often expressed as 

numbers of episodes, but it is not clear whether one episode is intended to refer to 
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(i) all illness resulting from a single infection event; (ii) one uninterrupted period 

of illness; or (iii) all malaria illness within a given period.  Infections that are 

treated promptly and effectively when they first lead to symptoms unambiguously 

contribute one episode to this total, but when treatment is delayed, or if the 

infection remains untreated, it is unclear how many periods of illness can result 

from a single infection event.  This matters because the disability caused by the 

disease (and the risk of life-threatening complications) are clearly less when it is 

treated promptly, but these benefits may be invisible, depending on how incidence 

is calculated.  The term episode clearly refers to some of set of bouts, but just how 

many and which bouts make up an episode is not clear.  In Table 4.1 we propose a 

definition that captures this ambiguity.  

 

Statements about incidence of malaria disease are consequently often vague or 

misunderstood. For instance, the World Health Organization (WHO) estimate of 

225 million cases in 2009 [135] is widely interpreted as the number of people 

infected although it is intended to refer to the total number of clinical episodes. 

Confusion is not limited to lay interpretations, for the relationship between a 

malaria infection and the amount of illness it causes is far from straightforward.  

 

In many countries, mostly outside Africa, burden is reported using passive case 

detection data, and in WHO statistics, estimates of morbidity rates for these 

countries are corrected for reporting completeness, diagnostic error, and 

attendance rates [3;136]. In most of sub-Saharan Africa, presumptive treatment 

has been the norm, so that reporting of the numbers of treatments has not been 

used to estimate disease burden.  Instead, maps of P.falciparum prevalence 

determined from surveys have been combined with information on climate 

suitability for malaria transmission and population density in order to classify 

populations into different endemicity levels.  Estimates of clinical incidence for 

different endemicity levels have been derived primarily from longitudinal surveys 
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of febrile malaria episodes in children, detected either actively or passively 

[30;137;138]. The estimates of populations at risk and endemicity-specific 

estimates of disease rates have together been used to produce national and 

continent-wide estimates of the number of clinical malaria episodes [4]. 

 

Longitudinal studies of malaria must always involve treating the acute episodes 

that are discovered, and thus all the burden of disease subsequent to effective 

treatment of an infection is averted2. In several longitudinal studies [65;139], 

dramatic decreases in fever rates over time have been observed, presumably for 

this reason. Intensive research studies are therefore likely to substantially 

underestimate clinical attack rates in the general population.    

 

An alternative to these approaches is to use recalls of illness from cross-sectional 

surveys carried out in the community.  An increasing body of data is available 

from Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys 

(MICS), and Malaria Indicator Surveys (MIS), which include ask respondents to 

provide a recall of illness during the previous two weeks for each of their children.  

We show here how these data can be used to estimate the burden of malaria 

disease, and suggest how improved estimates might be obtained.  

 

 

 

 

 

 

 

 

                                                 
2 Treatment also reduces onward transmission to mosquitoes, but this effect is not relevant to the present 
discussion. 
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 Table 4.1 Definitions used in this paper 

Term Meaning in this paper 
Malaria 
infection 

Those parasites descended from a single inoculation of 
sporozoites3 

Incidence of 
infection 

The number of new infection events in a population in unit time 

Bout of illness An uninterrupted set of days during which a patient is 
considered, or considers themselves, to be ill for at least part of 
each day  

Malaria episode A set of bouts of malaria illness considered by the patient or 
carer to be of common malaria aetiology* 

Incidence of 
clinical malaria 

The number of malaria episodes in a population in unit time 

(Point) 
prevalence of 
clinical malaria 

The proportion of the population suffering from symptoms of 
malaria aetiology at any one time 

Malaria burden The morbidity or disability associated with malaria (ideally 
measured by days of illness, DALYs, or QALYs) 

*This definition is intended to capture the way in which the word episode is used, whereby 
intermittent fever bouts, within a period of continual high parasitaemia characteristically lasting a 
few weeks (Figure 1), are likely to be thought of as part of a single episode.  

 

4.3. Methods 
 

Data sources  
 

The method involves using four distinct sources of data for different quantities 

required in the overall estimate of burden. 

 

1. Incidence of disease in the community: Malaria Indicator Survey data from 

Zambia 

 

Data on history of fever in the last fourteen days from the 2010 Malaria Indicator 

Survey from Zambia [140] were used. Just over 34% of children under five 

                                                 
3 It is debatable whether co-inoculated but genetically distinct parasites should be considered part of the 
same infection. 
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reported a fever in the last two weeks. This is period prevalence of fever, biased by 

recall. Of these 34% took an antimalarial drug. 

 

2. Recall bias in community surveys of incidence: daily prevalence of fever, 

Asembo, Western Kenya 

 

For analysis of recall bias in recalls of fever, data of Feikin et al [141] for children 

from Asembo, Kenya were used.  These comprise recalls of fever, elicited 

separately for each day in a 14-day recall period, in a survey of approximately 

25,000 people in Asembo, Bondo District, Kenya (Figure 4.2). (We found a 

similar pattern in the data of Genton et al [142] from Papua New Guinea.) 

 

Figure 4.2 Daily prevalence of fever calculated as percentage of persons 
reporting symptoms on each day in the 2 weeks prior to home visit, Asembo, 
Western Kenya  

Source: [141]   

 

3. Seasonality of fever: Health Management Information System (HMIS) records 

of Malaria Indicator Survey data from Zambia 
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4. Patterns of fever in untreated hosts: malaria-therapy data 

 

Patterns of fever in untreated and inadequately treated malaria patients were analysed 

using the data of 330 neurosyphilis patients treated with P. falciparum in the National 

Institutes of Health laboratories in Columbia, South Carolina and Milledgeville, Georgia 

in the United States of America [132]. For each of these patients, the days on which fever 

(core temperature >=103. °F) occurred was recorded. 

 
 
Estimation of recall bias as a function of recall period 
 

Two-week morbidity recalls do not elicit complete information about illness 

during the reference period, and the usual survey procedures do not directly 

provide any information about recall bias.  However recall bias can be estimated 

when respondents are asked individually about illness on each distinct day during 

the recall period.  This is because independence of the timing of the survey and the 

illness justifies the presumption that variations in fever rates by recall period 

reflect recall bias.   

   

The relative frequencies of fever reports by day of recall in the Asembo data 

provide a direct estimate of the recall bias associated with a specific period of 

recall. Assuming that a fever on the previous day is reported with 100% 

sensitivity, an estimate of the recall probability for a fever i days prior to interview 

is 1î i
r F F=  where Fi is the fever prevalence recorded in the survey for the single 

day, i days prior to interview. ( 0 0 1
ˆ 1r F F= <  because surveys are usually carried 

out early in the day, before all fevers are yet evident.) 
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Estimation of recall bias in two-week morbidity recalls 
 

The probability that a survey respondent reports fever, conditional on fever having 

occurred during a two week recall period, differs from 
î

r  because fever bouts 

extend over multiple days (Figure 4.4a), and there may be multiple bouts during a 

single recall period (Figure 4.1).  The overall recall probability for a two week 

period, allowing for these effects, was estimated by applying the estimates of 
î

r  

obtained from the Asembo study to simulated interviews of malariatherapy 

patients.  

 

The recorded follow-up periods were divided into fourteen-day intervals during 

which there was daily monitoring, leading to a total of 3715 fourteen-day 

intervals, during 755 of which there was one or more day of fever.  Data were 

discarded for days that could not be included in these intervals because of gaps in 

or termination of the monitoring of the patients.   

 

For the analysis of recall in the absence of treatment, each day of follow-up 

(j=1,2..14) in each of these intervals was evaluated as though the patient had been 

interviewed at j=14.  Each day of fever was assumed recalled with probability 14
ˆ

j
r −  

so that the probability that any fever was recalled in the simulation was 

( )
14

14

1

ˆ1 1 j j

j

r I r −

=

= − −∏ɶ  where 1
j

I =  if there was fever on day j and 0
j

I =  if there was 

no fever on day j.   

 

The true treatments administered to the malaria-therapy patients (predominantly 

sub-therapeutic doses) were ignored in this analysis.  To estimate the effects of 

treatment on survey recalls, simulated treatments were assigned stochastically to 

each day of fever with probability t0 corresponding to the probability of prompt 

and effective treatment.  Where treatment was assigned, it was assumed that this 
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would be reported, so that intervals with treatment were always reported in the 

simulated surveys as including fever days. To estimate the values of t0. in Zambia, 

the simulations were repeated with different values of t0. The proportion of recalls 

reporting treatment, among those reporting illness, tɶ , was plotted as a function of 

t0 and the value of t0 corresponding to the observed proportion in the Zambian 

MIS, was read off the graph, thus providing an estimate of the daily treatment rate 

in Zambia.   

 
 
Estimation of period prevalence of clinical malaria from survey data 
 

MIS use two week recalls to elicit histories of both illness and of treatment.  The 

signs and symptoms of malaria are common to those of other diseases, so 

interviews alone perform poorly in assigning malaria as the cause of illness. To 

determine the proportion of recalled illness that is due to malaria, parasitological 

testing is needed. Using 14-day recalls, individuals with reported fever may not be 

parasitaemic at the time of the survey, however Rapid Diagnostic Tests (RDTs) 

based on the presence of the P.falciparum Histidine Rich Protein 2 (PfHRP2) to 

determine the prevalence of malaria infections.  As PfHRP2 persists in the 

bloodstream for up to a month following parasite clearance [143;144], PfHRP2 

positivity (unlike blood slide positivity) can be used to estimate the malaria-

attributable fraction of the recalled fevers and hence the period prevalence of 

clinical malaria. 

 

The processes determining both questionnaire and RDT outcomes can be 

represented by the branching process shown in Figure 4.3, where the columns 

RDT, Fever, Treated indicate the outcomes recorded at the survey, and the 

branches correspond to a classification of respondents according to whether they 

are parasite positive by RDT, whether they suffered a malaria or non-malaria fever 
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in the reporting period, whether they received treatment, and whether the fever 

was reported at the survey.    

 

 

Figure 4.3 Events underlying cross-sectionally recorded outcomes 

p is the RDT positivity; m is the probability of clinical malaria during any two week period, 
conditional on infection; n is the probability of non-malaria fever during any two week period; t is 
the probability of treatment with an antimalarial conditional on being both infected and febrile 
during the two-week period; and r is the probability that an untreated fever is reported. 

 

Malaria fevers and non-malaria fevers are not distinguishable at the individual 

level in field data, so the ten branches shown in Figure 4.3 correspond to five 

observable categories of outcomes, with probabilities 1 2 3 4 5{ , , , , }P P P P P P=  as in 

Table 4.2.  We use a Bayesian approach to estimate the parameters p; m; n; t by 

fitting these probabilities to the data from Luangwa, Zambia (Table 4.2).  t is 

slightly lower than tɶ , the reported proportion of RDT positive febrile children 

who had been treated, because of the under-reporting of untreated fevers.  Because 

the available data from Luangwa did not provide a precise estimate of tɶ  we use 

data from the national MIS survey to estimate the distribution of this variable, and 

incorporate this distribution into the Bayesian model, noting that the expected 

value of tɶ  is:   
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( )
( ) ( ) ( ) ( )

1

1 1 1 1

mt m nt

mt m nt m t r m n t r

+ −

+ − + − + − −
 

 

The reporting probability, r, is not identifiable from the field data.  By making a 

series of assumptions we can use the distribution of  rɶ  estimated from the 

malariatherapy data, as a prior distribution for r in the Bayesian analysis.  This 

makes all the parameters in the decision-tree identifiable.  In addition to assuming 

the same duration and frequency of bouts of fever in untreated individuals in the 

two datasets, we also consider treatment with anti-malarial drugs only in parasite 

positive individuals, assume that treatment never occurs in the absence of illness, 

and that respondents who fail to report illness are otherwise indistinguishable from 

those that report.  We further assume that recall bias in treatment is negligible, but 

that untreated fevers are recalled with some probability, r<1.   

 

To complete the specification of the Bayesian model we use uninformative 

( (0,1)Uniform ) priors for p, m, n, and t.  A Markov chain Monte Carlo method was 

then used to estimate these parameters assuming the probabilities 

1 2 3 4 5{ , , , , }P P P P P P=  to follow a multinomial distribution. 

 

Estimation of numbers of days of illness  
 

The same analyses of malaria-therapy patients, with simulation of surveys and 

treatments, were used to estimate the numbers of days of illness associated with 

each recall of fever, conditional on the proportion of recalled fevers reporting 

treatment, tɶ .  For this analysis, days of fever in the true malaria-therapy dataset, 

subsequent to the simulated treatments, were not counted in the total days of 

illness, thus simulating effective therapy that truncated the illness on the date of 

treatment. Since the MIS surveys were conducted only at one time of the year, the 

incidence estimates needed to be adjusted for the effect of seasonal variation in 
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clinical incidence. This was achieved by scaling the estimate of the clinical 

incidence recorded in the HMIS data during the survey period to the annual 

average incidence. 
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Table 4.2 Outcomes at survey and their probabilities 

RDT 
positive 

Reports 
fever 

Reports 
treatment 

Probability Frequency in 
district 
survey 

Frequency in 
national 
MIS* 

No No No ( ) ( ) ( )( )1 1 1 1P p n n r= − − + −  355 

No Yes No ( )2 1P p nr= −  131 

Yes No No ( )( ) ( ) ( ) ( ) ( )( )( )3 1 1 1 1 1 1P p m t r m n n t r= − − + − − + − −  35 

 

Yes* Yes No ( ) ( ) ( )( )( )4 1 1 1P p m t r m n t r= − + − −  686 

Yes* Yes Yes ( )( )5 1P p mt m nt= + −  

46 

353 

*The report of the national MIS does not distinguish antimalarial drug used by RDT positive children from use by RDT negative children.  Since 
only 16.7% of children with fever reported use of a diagnostic test, we assume for the present analysis that antimalarial drug use was independent 
of RDT positivity.  
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4.4. Results 

 

Duration of bouts and recall bias 
 

The daily prevalences of fever reported by Feikin et al [141]  clearly indicate the 

fevers a few days prior to survey are much less likely to be recalled than those the 

previous day.  If each recalled period with illness only entailed only day of fever, 

then a simple mean of the recall-day specific probabilities, 14
ˆ

j
r − , could be used to 

estimate the overall recall bias, which would be substantial.  However, bouts of 

fever in malaria-therapy patients (as defined in Table 4.1) frequently last several 

days (Figure 4.4a), and if these are not treated, there may be several bouts in one 

recall period, so that, while the proportion of days with fever is 5.4%, only 17.8% 

of two week periods include one or more days of fever (Figure 4.4b).    
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Figure 4.4 Effect of bout length on period prevalence in the malaria-therapy 
data 

a: distribution of durations of bouts of fever in the malaria-therapy data; b: period prevalence of 
fever in the malaria-therapy data, as a function of the duration of the period. 

 

Each additional day of fever adds to the probability that the illness will be 

recalled, leading to a recall probability that is much higher than the daily recall 
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probabilities reported in the Asembo study, so that when we apply the recall 

probabilities from the Asembo study to the patterns of fever occurrence in the 

malaria-therapy data, we estimate that 612 out of 755 (81%) of 14-day intervals 

with fever days would have been recalled, corresponding to 19% underreporting 

and a value of rɶ=0.81 (Figure 4.3).We use this as the value of r in the estimation 

of tɶ  (see above). 

  

The probability that fever will be recalled is further complicated by the effects of 

treatment.  While Figure 4.4 provides a description of the actual malaria-therapy 

data, simulation of treatments under the assumption that a treated fever will 

always be recalled increases the simulated probability that morbidity will be 

recalled, while decreasing the corresponding number of days of fever (Figure 4.5).  
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Figure 4.5 Proportion of recalls of fever also reporting treatment 

The plots were constructed by simulating effective treatments applied to malaria therapy data (see 
Methods) with 14 day morbidity recalls, with recall bias based on the Asembo data.  The arrows 
correspond to the observed proportion of morbidity recalls reporting treatment in the Zambian 
MIS survey. 

 

The proportion of recalls mentioning treatment has a non-linear relationship with 

the daily probability of treatment, because recurrent fevers provide multiple 
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opportunities to treat, so even a modest rate of prompt treatment will result in a 

very high proportion of recalled fevers being treated. The 34% of recalls in the 

Zambian MIS data that reported treatment (Table 4.3) thus corresponds to only 

about 7% treatment per day of fever (Figure 4.5a). The proportion of treatments 

delivered promptly on the same day is also not the same as the daily probability of 

treatment because prompt treatment (as defined in the MIS questionnaire) may 

occur on either the same day, or the day after onset of fever.  A 7% daily 

probability that a fever will be treated consequently corresponds to a probability 

almost twice as high as this that treatment will occur in the first two days, which is 

comparable with, though somewhat lower than, the 18.7% of fever reports that 

indicated receipt of prompt anti-malarial treatment in the survey, te.   

 

Numbers of days of fever associated with each recall 
 

As the treatment rate increases, the number of fever days corresponding to each 

report decreases (Figure 4.5b).  In the absence of treatment, the 755 two-week 

periods of malaria-therapy with at least one day of fever averaged 4.3 days of 

fever each.  Allowing for the estimate of 19% underreporting of two-week periods 

with untreated fever in the model of ascertainment, each report of fever 

corresponds to 5.3 days of fever in this model.  As treatment rates increase, the 

number of days of fever corresponding to each report decrease, since an increasing 

proportion is averted by the treatments, until in the limiting case of 100% prompt 

and effective treatment, each report corresponds to exactly one day with fever 

(Figure 4.5b).   

 

Estimation of total burden of uncomplicated malaria 
 

Table 4.2 gives the numbers of respondents in the Luangwa district malariological 

survey in each of the four classes categorized by RDT positivity and reports of 

fevers.  The recalled treatment rate by RDT positivity is estimated from the 
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national level data (right hand column of Table 4.2).  The Bayesian estimation 

procedure provides interval estimates for p, m, and n, conditional on the 

distribution for rɶ  assembled from the Asembo and malaria-therapy data (Table 

4.3).  
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Table 4.3 Parameter estimates and their origins 

 Name Source of 
estimate 

Estimate (95% 
credible interval)* 

p Period prevalence of malaria 
infection 

Bayesian model 0.14 (0.12, 0.17) 

m Probability of malaria fever 
conditional on infection 

Bayesian model 0.48 (0.29, 0.67) 

pm Period prevalence of malaria 
fever 

Bayesian model 0.07 (0.04, 0.10) 

n Period prevalence of non-malaria 
fever 

Bayesian model 0.33 (0.29, 0.39) 

rɶ  Probability that fever is recalled  Asembo and 
malaria therapy 
data 

0.81 (0.78, 0.84) 

t Proportion of periods with 
malaria fever that were treated 

Bayesian model 0.29 (0.27, 0.32) 

tɶ  Proportion of malaria positive 
recalls where treatment was 
received 

MIS data 0.340 (0.31, 0.37) 

t0 Daily probability of treatment Asembo and 
malaria therapy 
data and MIS data 

0.07 

te Probability of prompt and 
effective treatment 

MIS data 0.187 

d Days of malaria fever during 
recall period among those who 
report malaria fever 

Read from Figure 
4.5b as a function 
of t 

3.7 

I  Annual average incidence of 
confirmed clinical malaria at 
health facility (cases per month) 

HMIS data from 
Luangwa District 
(Figure 4.6) 

102.3 

I  Incidence of confirmed clinical 
malaria at health facility (cases 
per month) during period of MIS 
survey 

HMIS data from 
Luangwa District 
(Figure 4.6) 

258.0 

b Days of malaria fever per person-
year at risk  

365

14

I
b dpm

I
=  

2.6 (1.5, 3.8) 

*Bayesian credible intervals for data derived quantities were computed assuming (0,1)Uniform  

priors for proportions.  For derived quantities, the credible intervals were computed by sampling 
from the joint posterior densities of the individual parameters.  Where no interval estimates are 
shown, fixed values were included in the calculations, so the uncertainty in these variables is not 
included in the final estimate. 
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Of the 14% of children with evidence of malaria parasites, half of them (7%) are 

estimated to have suffered malaria fevers during the interval.  Only 29% of 

children with fever were treated at some point in the interval.  This is lower 

(because of recall bias in the fever data) than the observed proportion of recalls 

mentioning treatment (34%) among those who mentioned fevers.  

Figure 4.6 Average number of confirmed cases by month in Luangwa District 
Zambia 2009-2010 
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The dashed line corresponds to the annual average incidence and the double headed arrow to the 
survey period and the corresponding average incidence. 

 

Figure 4.6 shows the seasonality in confirmed malaria cases at all health facilities 

in Luangwa district, Zambia.  The MIS surveys in Luangwa were typically 

conducted during peak transmission season (April-May) and thus the annual 

burden estimate needs to be scaled by the ratio of malaria fever incidence over the 

whole year, relative to the incidence during this period (Table 4.3). It is assumed 

that this district is representative in terms of the degree of seasonality, and the 

targeting of the MIS surveys to the peak season of incidence.  This provides an 
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estimate of the average days of malaria fever per person-year in Zambian children 

of 2.6 (1.5, 3.8) days of malarial fever per person at risk per year. 

 

This estimate seem plausible, though the credible intervals (which capture most of 

the uncertainties in the data) do not capture the full level of uncertainty implied by 

the assumption that patterns of fever in Zambian children may be similar to those 

in malaria-therapy patients, or that recall patterns in Kenya can be applied to 

Zambia.  

 

4.5. Discussion 
 

Definitions and methods for estimating rates of uncomplicated malaria morbidity 

depend on the purposes for which the information is needed. Thus, WHO 

estimates of malaria burden refer in principle to the amount of disease that is 

eligible for anti-malarial treatment4.  This is different from the level of 

transmission (which is addressed in a companion paper)5, and from the amount of 

disease that would be averted by eradicating the infection.  The economic burden 

of the disease includes the costs of diagnosing malaria negative patients, of 

preventive measures in visitors, and of investments lost because of concerns about 

the disease. These considerations lead to the conclusion that proliferation of 

measures is unavoidable. This paper focuses specifically on measures of health 

burden, defined in terms of the experience of the sick individual.   

 

                                                 
4 Under this definition, all febrile illness with incidental parasitaemia should be included in the burden 
calculations.  This, however, leads to double-counting in overall disease burden statistics, since much of 
this illness should also be recorded as respiratory infections 
5 A variety of methods are being developed for measuring transmission, in particular serological 

approaches [145] and model-based approaches combining parasitological and clinical data [146]. MIS 
provide data relevant to many of these approaches and may well prove key to measuring transmission as 
well as disease burden, but the two objectives should be clearly distinguished. 
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Unfortunately, current practice in measuring burden in this sense is not 

satisfactory.  From the clinical perspective, it is good enough to identify an 

“episode” or “case” when an individual presents to a health facility with febrile 

illness and detectable parasitaemia. This is also useful for commodity forecasting 

and managing clinical workloads.  It may also be suitable for use in intervention 

trials where the goal is simply to detect a difference between two or more arms.  It 

is suboptimal as a measure of health burden, because it ignores what is going on in 

the infected people who are not reporting to the health facility or reporting late.  

When such data are used for managing resource allocation between interventions 

they can be seriously misleading because: (i) they can give a quite false idea of the 

importance of malaria relative to other illnesses, and (ii) they substantially 

understate the impact on health burden of improvements in case management 

practice.  Strikingly, the roll-out of ACT as first-line therapy across Africa barely 

impacts official estimates of burden, which show only a modest improvement over 

time, driven by scaling up of vector control. 

 

The proxy indicators generally used to indicate trends over time in disease rates 

can be fundamentally misleading. The Global Fund to fight AIDS, TB and Malaria 

(GFATM), in its Monitoring and Evaluation (M&E) toolkit for countries, 

recommends parasite prevalence and anaemia prevalence as morbidity indicators 

for national malaria control programs [147]. These indicators are frequently 

collected in Malaria Indicator Surveys (MIS) and a recent study from Zambia used 

them as evidence of health impact of interventions [148]. However, they are not 

direct measures of malaria morbidity, they are multifactorial [149] and they may 

change at different rates from clinical malaria incidence [150]. 

 

Reported histories of fever in the previous two weeks collected through 

community-based surveys provide a more direct measure of morbidity, and at least 

in some situations have been validated as comparative morbidity measures [151]. 
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However, to obtain health burden estimates, corrections must be made for the 

benefits of treatment on duration of illness, for recall bias, and for diagnostic error. 

Correction for levels of incidental parasitaemia is critically important when the 

malaria situation is changing, since the diagnostic performance depends on the 

level of asymptomatic parasitaemia and may also change over time. 

 

In this paper, we have incorporated all these considerations into an approach for 

estimating the number of days of illness due to malaria as a percentage of all days 

of observation and applied this to a specific set of surveys in Zambia.  The 

approach uses outcomes assessed in MIS surveys, recall data from Kenya, and 

data on the natural history of malaria fever from malaria-therapy patients.  Clearly 

the appropriateness of combining these datasets can be questioned, especially the 

assumption that the patterns of fever in African children parallel those in malaria 

therapy patients.  However the approach does lead to parameter estimates (Table 

4.3) with at least face validity, and unfortunately these are the only datasets we 

have available that provide all this information.  Estimates of burden, based on this 

approach, would be a substantial improvement on current practice in cost-

effectiveness analysis.  The Appendix discusses the implications of this for 

simulation modeling of case management, and how this relates to previous 

practice. 

 

Some of the data limitations could be addressed by improvements in survey 

design.  First, cross-sectional surveys of malaria illness and treatment-seeking 

need to include questions on history of fever and measure parasitaemia in all age 

groups, not just children under five. As malaria control efforts are scaled-up and 

transmission falls, malaria illness shifts into older age groups [28] due to slower 

acquisition of immunity. Burden will thus fall harder on older children and adults, 

and monitoring systems need to allow for this reality in order to capture the full 

burden of malaria illness.  Second, there is a need for more data like those from 
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Asembo to estimate recall bias. Ideally, 24-hour recalls would be used but this 

would reduce the size of available databases.  Finally, the current practice of 

carrying out MIS surveys at approximately the same time across whole countries 

means that there are limited data available on seasonality in either parasitological 

or clinical indices.  Data for each period of the year are essential for unbiased 

estimates of annual burden, and could in principle be obtained by carrying out 

rolling surveys visiting different clusters in a random order throughout the year.  

 

4.6. Conclusion  
 

Measurement of malaria burden is fraught with complexity mainly due to the 

natural history of the disease and to sub-optimal health facility utilization which 

means that treatment is often delayed or not sought. Definitions of malaria 

episodes are either ambiguous or difficult to use because we rarely have good 

information about patterns of infection, recurrence of fever or asymptomatic 

infection. 

 

This paper suggests that the point prevalence of malaria attributable disease, or 

equivalently, the days of malaria fever in unit time, should be used as a measure of 

burden.  This avoids the problem of defining a malaria episode, and we contend 

that it can in principle be estimated in an unbiased way from data that is already 

collected in national MIS combined with data on seasonality.  Estimates of recall 

bias and duration of bouts that we use in this paper could be applied more 

generally. 

 

It is hoped that this work will stimulate a dialogue on how to improve 

measurement of the burden of uncomplicated malaria, for the benefit of all those 

who are suffering from or are involved in the fight against the disease.   
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4.8. Appendix:  Burden of uncomplicated malaria in simulation 
models   

 

Studies of likely long-term impacts and cost-effectiveness of novel intervention 

strategies are often best carried out by simulation modeling.  Measures of disease 

burden in such studies need to be aligned with the data that can be obtained from 

field studies, and should use the same terminology and definitions.  Simulation 

modeling disciplines the practitioner into using explicit definitions.   

 

We previously developed individual-based stochastic simulation models of the 

biology and epidemiology of P. falciparum malaria [39] and applied these to 

estimating the cost-effectiveness of scaling up case management [41]. These 

models went beyond previous static models (such as those published by the Global 

Forum for Health Research [92]) by including the effect of treatment in truncating 

an infection and the dynamic effects of treatment on transmission.  However in 

modeling scaling up effective case management the model of Tediosi et al [41] 

assumed a constant duration of illness for episodes of clinical malaria.  This was 

taken from the Global Burden of Disease (GBD) study [152] without critically 

evaluating the GBD meaning of a malaria episode. 

 

A further criticism of the Tediosi et al [41] case-management model was that 

assumed treatment rates were very low in relation to clinical incidence.  The 

clinical incidence rates were fitted to data from the villages of Ndiop and Dielmo 

in Senegal [59;153]. These data were from daily surveillance carried out with the 

explicit intention of detecting and treating every clinical malaria attack, and 

reported higher rates than other studies.  

 

The Tediosi et al [41] model is an individual-based discrete time representation of 

the dynamics of malaria using five-day timesteps.  Bouts of illness (see Table 1) 
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are represented by classifying each time step according to whether it included any 

days of malaria fever.  In publications based on these models [41;63;64], numbers 

of episodes are calculated by grouping together bouts occurring within 30 days of 

each other in the same individual, following an approach used in some field 

studies [154]. This period can be justified by reference to prophylactic periods 

associated with treatment and the duration of standard in vivo tests for drug 

resistance.  It can be thought of as the period over which the patient or health care 

system considers the bouts of illness to be part of the same illness (Table 4.1). 

 

Treatment coverage in such models, defined as the proportion of sick intervals 

where treatment is applied, maps non-linearly onto the data available from 14-day 

recalls in MIS, MICS, or DHS surveys. This is because if treatment coverage is 

perfect and treatment completely effective, each episode is treated, and the 

infection causing it removed, during the first bout. There is therefore one bout per 

episode. As treatment coverage decreases, the number of bouts per episode 

increases. The amount by which bouts and episodes diverge across settings with 

different treatment coverage will depend on how many bouts each new infection is 

expected to generate in the absence of treatment and on their severity.   

 

Coverage values for input to the models can however be inferred from the 

mapping of model predictions of 14 day treatment rates as a function of the time-

step specific treatment rate.  The relationship depends on the details of the 

epidemiological model.  Figure 4.7 provides calibration results for a family of 14 

different models with 5-day time steps, all variants on the original model used by 

Tediosi et al [41], and applied in recent simulations of the likely impact of malaria 

vaccines on clinical incidence [70] . 

 

That can be used to estimate the amount of under-reporting of bouts if surveys are 

undertaken with different recall periods. For example, to estimate this with a 
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fifteen-day recall period (approximating , we set the health system memory to 15 

days and surveyed the population every 15 days, recording the number of 

treatments given and the number of episodes). Figure 4.7 shows that in our model, 

the probability of seeking treatment in any 5 day period is lower than the 

corresponding 15-day probability, because individuals can be sick multiple times 

in a 15-day period, and some fevers go untreated. Figure 4.7 also shows how this 

relationship is model-dependent.  
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Figure 4.7 Five- vs 15-day treatment-seeking probabilities 

Simulation of a setting where EIR=20, with a population size=2000. Lines are sub-model 
medians.  
 
We used an ensemble of 1 4 model variants. The ensemble consists of a base model, used in 
previous publications [63;64], and thirteen variants on that model, with each one representing a 
different set of assumptions about malaria transmission and epidemiology. Our ensemble of 
stochastic simulation models of malaria epidemiology incorporates different assumptions about 
decay of immunity and about heterogeneities in exposure, co-morbidity and access to treatment 
[70].  
 
R0674 (uncorrelated heterogeneities in access to treatment and susceptibility to comorbidity) and 
R0678 (heterogeneity in access to treatment) are not shown since at high treatment coverage 
levels, there is a limit to the amount of heterogeneity possible. Above about 55%, heterogeneity 
in treatment-seeking starts to decrease, since the upper half cannot go above 100% probability of 
accessing treatment. The ratio of upper to lower treatment-seeking probability thus starts to 
change. Overall 15-day treatment-seeking probabilities of above that level cannot be simulated 
with the R0674 and R0678 sub-models.  
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5. Development of a P. falciparum malaria case 
management model integrated with 
pharmacodynamics 

 

5.1. Background 
 

In 2006, Smith and colleagues presented individual-based stochastic simulation 

models of the biology and epidemiology of P. falciparum malaria, which were 

developed to study long-term impacts and cost-effectiveness of intervention 

strategies [40]. Models of health system effectiveness in intervention delivery are 

an important part of the simulation of any preventive and curative intervention, as 

the prevailing health system modifies the disease burden and thus the gains 

expected from an intervention. Therefore, as part of this project, a decision tree 

model for the case management of malaria was developed, based on data from 

Tanzania [41]. This model was novel for its consideration of the effect of 

treatment on malaria transmission. In addition to averting severe morbidity and 

mortality, treatment reduced burden by reducing recurrent clinical attacks due to 

one infection and by reducing infectivity of the population. In simulations using 

this model, the reduced burden on the health system resulting from preventive 

interventions and case management were considered. 

 

The Tediosi et al [41] model for case management of uncomplicated malaria 

consisted of three parameters – treatment-seeking (from the formal sector, self-

treatment, or no treatment-seeking), patient compliance to the drug regimen, and 

treatment cure rate in the presence and absence of compliance. An uncomplicated 

malaria case that was treated in the last 30 days was assumed to either seek 

treatment in the formal sector or not seek treatment. The model for severe malaria 

assumed that it could either be treated as an in-patient or not treated, and there 
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were three possible outcomes – death, full recovery, or recovery with neurological 

sequelae. In-patient case fatality rates were taken from a study in Tanzania while 

corresponding community case fatality rates were estimated. Algorithms were also 

developed to estimate the cost of case management [41]. 

 

This model was adequate for predictions of the cost-effectiveness of other 

interventions in the presence of different levels of treatment coverage. However, it 

did not allow simulation of the multiple factors which determine the treatments 

given in real health systems. In particular, alternatives to the public sector or self-

medication as sources of treatment were not considered, and neither was the 

response to diagnostic tests, imperfect provider compliance with treatment 

guidelines, or sub-optimal drug quality. The model also failed to consider the 

impact of malaria case management on management of non-malarial febrile 

disease. Increased use of confirmatory diagnosis offers the potential to improve 

treatment and therefore reduce morbidity and mortality from other causes, and 

should be considered in estimations of the cost-effectiveness of case management 

interventions. Second, there was no drug model, so clinical and parasitological 

outcomes were predicted within the case management model, and treatment either 

completely cleared parasites or had no effect. In reality, drug treatment should act 

to reduce parasite densities, and the outcome is not dichotomous. Drug treatment 

may cure clinical symptoms but not eliminate parasites, with implications for 

recurrences of illness, infectivity, and development of drug resistance; this could 

not be simulated with the previous model.   

 

There was agreement that the Tediosi et al model needed to be revised to 

incorporate improved simulations of the contribution of the informal sector, 

diagnosis, referral and drug action. This motivated the development of a case 

management model integrated with a model for malaria pharmacodynamics. 
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Alongside development of the model, potential interventions to be simulated were 

identified (see Table 5.1). Criteria for selecting interventions were primarily 1) 

potentially high impact and 2) broad applicability. Intermittive preventive 

treatment in infants, children and pregnant women was explored separately.
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Table 5.1 Interventions to simulate using the case management model integrated with pharmacodynamics 

(Source: A. Schapira, 2009) 
 

 
 
 

Strategic variants Intervention 
Technical Operational including targeting 

Secondary questions 

CHEMOTHERAPY 
Case management 
uncomplicated: 
treatment 
 

Schizonticidal 
� ACTs 
� Mono-artemisinins 
� SP 

P.falciparum gametocytocidal 
(primaquine) 

Integrated Management of Childhood Illness 
Differentiation by risk group, e.g.: <5 
Public 
� Facility-based free or paid  
� Community (home) -based) 

Formal private paid/SM 
� Franchises 

Informal private paid/SM 
� Improved drug vendors 

Global subsidy 

Secondary questions: Sequential ACTs 
vs multiple 1st line ACTs 
Higher than standard dose of drugs like 
chloroquine 
AIDS interactions 
Pregnancy specific protocols 

Case management 
uncomplicated: 
diagnosis 

Presumptive (clinical) 
Microscopy 
P.falciparum  RDTs 

Differentiation according to risk group, e.g. 
presumptive diagnosis in <5s and confirmatory in 
others in high transmission settings  

 

Active case detection 
(screening fever cases) 
 

For elimination 
In epidemic 
To compensate case management 

Mass screening 

Mass treatment 

Schizonticidal 
� ACTs 

P.falciparum gametocytocidal For elimination 
In epidemics 

 

Case management 
severe malaria 

Artemisinin suppositories as 
stand-by or complete  
Parenteral artemisinin or 
quinine 

Children/All  
Community/facility-based standby/ 
Only hospital-based parenteral 
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5.2. Overview of new simulator and fitting to data 
 

As previously, the new case management model works in conjunction with other 

model components to predict impact and cost-effectiveness of interventions. 

Briefly, there is a simulated population of humans who are updated at each time 

step via model components representing new infections, parasite densities, 

acquired immunity, uncomplicated and severe episodes, direct and indirect malaria 

mortality, infectiousness to mosquitoes, and case management. Simulated 

immunity to asexual parasites, derived from cumulative exposure to both 

inoculations and parasite densities and maternal immunity, acts mainly by 

controlling parasite densities [58]. The probability of a clinical attack of malaria 

depends on the current parasite density and a pyrogenic threshold [59]. Severe 

malaria comprises two categories of episodes: those that occur as a result of 

overwhelming parasite densities, and those that arise when an uncomplicated 

malaria episode coincides with non-malaria co-morbidity. Mortality can be either 

direct (following severe malaria) or indirect (uncomplicated malaria in 

conjunction with co-morbidity, or during the neonatal period as a result of 

maternal infection) [155]. The models which simulate the clinical consequences of 

malaria infection are collectively termed “pathogenesis” model.  

 

While the previous models used five-day time steps, the new simulator works on a 

one-day time step. The previous within-host model, which used a statistical 

description of parasite densities, was replaced with a mass action model of P. 

falciparum asexual parasite densities fitted to malariatherapy data [156]. The 

published model used a discrete time-step of two days. Our implementation 

adapted this to a one-day time-step by interpolating the parasite multiplication 

rate. Drug effects and natural immune effects of previous exposure were 

represented by further modifying the parasite multiplication rates. The models for 
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pharmacodynamics [157] and for case management were also implemented on a 

one-day time step. The ability to predict parasite densities each day allows a finer-

grained simulation of the action of drug treatment that people receive, since potent 

antimalarial drugs generally act to significantly reduce parasite densities within 

hours of being administered. It also allows a more realistic simulation of people’s 

response to illness and treatment.  

 

An overview of the new simulator and its components is presented in Figure 5.1. 

The pathogenesis models determine if an individual becomes sick, and whether the 

sickness is uncomplicated or severe. The case management model, which 

comprises the clinical scheduler and clinical decisions modules, determines 

whether, when and how the sickness is treated and how long it lasts. The case 

management model works together with the models for drug action, severe 

outcomes, and within-host dynamics to predict clinical and parasitological 

outcomes. The other components are as described in previous publications [40], 

with the addition of a model for the dynamics of malaria in mosquitoes [61]. The 

code for these models can be downloaded on openmalaria 

(http://code.google.com/p/openmalaria/). 
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the human
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transmission 
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Drug Action
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Outcomes
• Malaria Mortality

• Sequelae

• Recovery

Pathogenesis
•Uncomplicated malaria

•Severe malaria

•Non-malaria fever

•Indirect mortality

Within-host model

Clinical decisions 
• Care-seeking, testing and 
treatment decisions

Case management
interventions

 

Figure 5.1 Module overview of new simulator 

 

The parameter values for each of the components of the one-day time step model 

were estimated by fitting to data from a total of 61 malaria field studies of 

different aspects of malaria epidemiology [39]. However, efforts so far to validate 

this model by comparing results from the five-day and the one-day models lead to 

the conclusion that the predictions of the force of infection model for incidence in 

older age groups were far too high. The force of infection model was thus replaced 

with an alternative [158] and the whole model is currently being re-fitted. 

 

5.3. Presentation of case management model 
 

Each day, the within-host model generates a parasite density, Y(t), which is a 

function of the parasite density at the previous time point and a drug factor, if 

relevant.  For each individual, the pathogenesis model is then called to determine 

the individual’s new state. Given Y(t) and the patient’s history, the pathogenesis 

model calculates the individual’s pyrogenic threshold and the probability that an 
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event occurs [59] and the event type [155]. The pathogenesis model also generates 

indirect deaths and non-malarial fevers according to age-specific functions. 

 

To avoid confusion of terms while adapting the clinical model for a one-day time 

step, we developed the following notation (see Chapter 4):  

• Bout: a "bout of sickness" describes a fever, malarial or otherwise, or 

period of severe illness, usually lasting no more than five days. This is the 

main unit of interest for the purposes of the case management model. 

• Episode: the health-system's reporting unit; each bout is either considered 

the start of a new episode, or, if occurring within the health system memory 

(currently 30 days) of the start of the last episode, considered part of that 

episode.  

 

Thus, at least in low transmission settings, an episode should roughly correspond 

to one malaria infection (which can cause multiple bouts). An episode's severity is 

considered to be that of its worst bout.  

 

Each individual is assigned a clinical state which lasts until the next event. At any 

given time point, there are five possible states: healthy (including asymptomatic 

infections), uncomplicated malarial fever with or without a recent history of 

treatment, severe malaria, and dead. The corresponding events are start of an 

uncomplicated malarial fever from a healthy state, start of severe malaria (from 

healthy or uncomplicated malaria states), direct death (from a severe malaria state) 

and recovery (from uncomplicated malaria or severe malaria states). Transitions 

from severe malaria to uncomplicated fever, or from uncomplicated malaria to 

direct death, are not allowed. If the non-malarial fever option is enabled, an 

additional state of uncomplicated non-malarial fever is also possible. 
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Since state changes are not possible at every time-step, the clinical scheduler 

component of the case management model (see Figure 5.2) decides and tracks the 

clinical state of the individual and allocates individuals to the clinical decision and 

severe outcomes models, based on the state as determined by the pathogenesis 

model and recent illness and treatment history.  

 

Figure 5.2 Clinical scheduler module 

 

A bout commences with a morbidity event and concludes with a recovery or 

mortality event (stressing terminology used). When the bout first occurs, the 

clinical scheduler calls the clinical decision model. At the start of an 

uncomplicated fever, a potential treatment-seeking delay is modeled. The bout 

duration of uncomplicated malarial fevers and non-malarial fevers is fixed at three 

days from the time of seeking treatment, or from the start of illness (if treatment is 

not sought). If an individual delays seeking treatment for one or two days, bout 

duration becomes four or five days, respectively. During this time, the clinical 

scheduler maintains the individual in the same state, unless the pathogenesis 

models indicate that the illness has progressed to severe or the individual has died 
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from a non-malarial illness. After this time period, it is assumed that parasite 

densities have been reduced by treatment or immunity, or that the individual has 

recovered from the non-malarial illness, and the individual is returned to the 

healthy state.  

 

While healthy or during an uncomplicated bout, a severe bout may commence. In 

this case, the clinical scheduler calls the clinical decision model, cancels any 

recent drug treatment, and allocates the individual to the severe case management 

decision tree. The severe bout is fixed at six days long when the patient enters 

hospital immediately or not at all; a one-day delay to hospital entry is also 

considered possible which increases the bout length to seven days.  

 

Mortality due to malaria is possible during severe malaria bouts, and considered as 

a stochastic function of the proportional reduction in parasite density each day of 

the case (Hardy et al, unpublished). Each day during the severe illness, the clinical 

scheduler calls the severe outcomes model, which applies the appropriate case 

fatality rate to determine whether or not the individual died that day. For delayed 

hospital entry, the community death rate takes effect on the first day. Mortality 

events are always modeled as happening at the end of the associated severe 

episode.  

 

The clinical decision component of the model consists of stochastic decision trees 

concerned with determining the treatments given (including the actual schedule 

followed and dose sizes taken), along with whether the patient was hospitalized 

and whether treatment or hospitalization delays occurred. The decision trees also 

provide information necessary for calculating costs, derived from treatment-

seeking behaviour, drugs administered, and diagnostic tests used.  

 



5. Development of case management model  

 

127 

The decision tree for uncomplicated fever is shown in Figure 5.3. The simulated 

individual has a fixed chance of seeking treatment immediately, or, if yet to do so, 

on the following two days. Delays to treatment-seeking are modeled by starting 

the drug curve (of parasite density versus time) on the second or third day after the 

occurrence of the episode. If treatment is not sought on all three occasions, the 

individual reverts to the healthy state.  

 

Figure 5.3 Uncomplicated fever decision tree 

 

The first decision branch is whether and where to seek care. In health facilities, 

patients can be tested with a rapid diagnostic test, by microscopy, or not be tested 

at all; at community health workers, we assume that only RDTs are possible, 

which may or may not be used. Each test has a sensitivity and specificity which 

are functions of parasite density. To model this, we looked for a function to relate 

parasite densities to the probability of a positive outcome. Methods for doing so 

are described below. 

 

Based on the results of the test, the simulated individual can receive one of several 

antimalarial drug regimens, or no antimalarial treatment. Providers may respond to 

a given test result by prescribing or not prescribing antimalarials. The drugs can be 

given at various levels of quality. We also consider three possible adherence 
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options: good adherence, missing the first dose of the drug (common when 

patients vomit upon taking the drug), or missing the last day (as when treatment is 

stopped before the end of the recommended regimen). The individual is deemed to 

recover three days from the time of treatment-seeking (or, from the onset of 

illness, if treatment is not sought). 

 

If a bout of uncomplicated malarial fever occurs in an individual who has been 

treated with antimalarials within the last 14 days, it is assumed this would be 

considered as a treatment failure [13] which should be treated with the second-line 

drug. The decision tree is identical but the values of treatment-seeking, quality of 

care and compliance parameters are modified.  

 

In the case of severe malaria, the path through the case management decision tree 

is determined at the start of the episode. The tree may determine that a one-day 

travel-time delay occurs, in which case in-hospital decisions are not determined 

until the next day.  

 

The decision tree for severe malaria is shown in Figure 5.4. Individuals can 

initially either seek treatment from a lower-level source, in hospital, or not at all. 

There is a possibility of pre-referral treatment with referral to hospital on the same 

or next day; pre-referral treatment reduces parasite densities on the first day of 

illness. Diagnostic testing is considered for costing purposes but is assumed not to 

affect treatment received. The treatment schedule is found and applied in the same 

way as with an uncomplicated case. Entry to hospital temporarily removes the 

individual from the transmission cycle.  
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Figure 5.4 Severe malaria decision tree 

 

In both severe and uncomplicated cases, the relevant case management decision 

tree determines treatments given. For each drug and age group, the standard 

regimen is specified– dose size (in milligrams), and times given (in hours), and 

then modified, based on the decision tree outputs, by reduced drug quality, 

adherence and delays to taking treatment.  

 

The treatment schedule is applied to the individual as a list of pending medications 

that are given over the next time points. Any previously pending medications are 

cancelled when new treatments are prescribed, and drugs are only costed when 

taken, so that if an individual progresses to severe after receiving treatments for an 

uncomplicated case, remained unconsumed medications are not costed.  

 

Parasite diagnostics  

 

Data from [159] were used to model the outcome of RDTs for P. falciparum, 

which show the percent sensitivity (and the 95% confidence interval) found for the 

RDT BinaxNOW Malaria in a rigorous field trial, at different levels of 

parasitaemia. This assay is based on detection of the antigens HRP-2 for P. 



5. Development of case management model  

 

130 

falciparum and aldolase for generic Plasmodium. The sensitivities listed for P. 

falciparum were associated with the mid-points of the parasite density ranges 

listed, and one minus the specificity for a density of 0 parasites.  

 

To model microscopy, the data shown in Table 5.2 were assumed. This was 

sourced from expert opinion (personal communication, A. Schapira), backed by 

the observation that microscopy diagnostic errors are noted more commonly for 

low-density parasitemias of 10 to 100 parasites/µl [160].   

 

Table 5.2 Sensitivity and specificity of microscopy (P.falciparum) by parasite 
density 

(Source: A. Schapira, 2009) 

Parasite density (parasites / µl) Sensitivity of microscopy (P. 

falciparum) 
>100 90% 

0–100 75% 

Specificity 75% 

 

 

A sigmoidal function was found to be a good match for this data. Since the 

probability of obtaining a positive outcome when testing a sample with no 

parasites is non-zero, the sigmoidal had to be scaled. With a parasite density of Y, 

probability of a positive outcome with zero parasites α, and parameter β, this gives 

us the probability of a positive test outcome as a function of parasite density:  

( ) (1 )
Y

f Y
Y

α α
β

= − +
+

 

and thus the diagnostic test’s output can be modelled as Bernoulli (f(Y)).  
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The parameters in Table 5.3 were used to model RDT and microscopy diagnostics.  

 

Table 5.3 Parameters used to model diagnostic sensitivity and specificity 

Parameter Description RDT Microscopy 
α  Specificity 0.942 0.75 
β  density at which sensitivity is half given 

α =1 
50  

 

5.4. Model of incidence and management of non-malarial fevers 
 

Clinical decisions on management of fevers affect health outcomes and costs for 

both malarial and non-malarial illnesses. Correct targeting of antimalarials to 

malarial fevers and antibiotics to those non-malarial fevers (NMF) that need them 

is desirable. The use of malaria diagnostic tests to confirm the presence or absence 

of malaria parasites could help to achieve this; where fever is often treated 

presumptively as malaria, they might be expected to result in reduced mortality 

from non-malarial illnesses, as well as lowering malaria treatment costs and 

slowing the spread of antimalarial drug resistance. This is because a negative 

malaria diagnostic test result would likely prompt consideration and treatment of 

alternative causes of fever, while a positive test would increase the certainty that 

the symptoms are indeed due to malaria. These benefits and costs should be 

included when evaluating the cost-effectiveness of varying levels of 

parasitological diagnosis. We therefore present a model for the management and 

clinical outcomes of NMF. 
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Non-malarial fever (NMF) incidence and severity 

Table 5.4 Estimated incidence of non-malarial fevers 

(Source: A. Schapira, 2009) 

Age-group All fever pppy RR 
Estimated non-malarial fevers 
pppy 

0-11 mo. 9.1 

12-59 mos 9.8 
9.66 1 6.08 

5-9 vrs. 6.06 6.06 0.63 3.81 
10-14 yrs. 4.16 4.16 0.43  2.62 
15-59 yrs. 6.43 6.43 0.67 4.05 
60 yrs + 8.6 8.6 0.89 5.41 

 
 

To model age-based incidence of non-malarial fever, the data shown in Table 5.4 

were used. In order to transform this into a continuous function for frequency 

given age, we interpolated linearly on the data-points generated as follows: 

• For each age group, we added a data point centred on the age axis with 

frequency as given in the age group. 

• We added data points at ages 0 and infinity, taking frequency from that of 

the youngest and oldest age groups. 

 

The incidence of NMF was modeled as an interpolated linear function. NMFs can 

only start at a given time point if it has been determined that a malarial fever is not 

starting at that time point. If both a NMF and a malarial fever occur within the 

health system memory, only the malaria episode is reported.  

 

Each NMF has a certain age-based probability of needing antibiotic treatment, 

which was assumed to be independent of parasitological status. 
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Model for the probability of antibiotic administration 

 

We assumed that each individual has a probability of antibiotic administration, 

( )P AB , which varies according to treatment-seeking location. For NMF seeking 

treatment in a health facility, ( )P AB  is a function of the average probability of 

being prescribed an antibiotic in the absence of a malaria test; whether the 

individual had a negative or a positive malaria diagnostic test result; and whether 

the individual needs or does not need an antibiotic (this latter captures signs and 

symptoms that would indicate to a health worker need for antibiotics, in the 

absence of knowledge of malaria parasitological status).  

 

Thus: 

0 1 2 3logit(P( )) * ( ) * ( ) *( )AB I MD I MD needβ β β β= + − + + +  

and 

0 0 3log it( ) *P( )nP Nβ β= −  

 

where 0β is the log odds of receiving an antibiotic in the absence of need and of a 

malaria test; 1β  and 2β  are the effect of a negative and positive test, respectively, 

on the log odds of receiving an antibiotic; and 3β   is the effect of needing an 

antibiotic on the log odds of receiving it. ( )I X  is 1 when event X  is true and 0 

otherwise; event “need” is the event that death may occur without treatment, and 

"MD-" and "MD+" are the events that a malaria parasite diagnostic was used and 

indicated no parasites and parasites respectively. 0P  is the average probability of 

being prescribed an antibiotic in the absence of a malaria test, and ( )nP N  is the 

probability that a NMF needs an antibiotic. 
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For a NMF seeking treatment in the informal sector,  

0 4logit( ( ))P AB β β= +   

where 4exp( )β  is the effect of seeking treatment in the informal sector on the odds 

of getting antibiotics. In general, it is not known how the chance of getting an 

antibiotic depends on health facility attendance. Therefore, for the purposes of this 

model, 4β was set to 0, assuming that the overall probability of getting an 

antibiotic is not affected by seeking in the informal sector but targeting of 

antibiotics to those in need is improved in health facilities both by malaria 

diagnosis and additional diagnostic procedures (e.g. measuring respiratory rates, 

examining for symptoms of viral infection, etc). 

 

For NMF seeking treatment from community health workers (CHWs) who are 

trained in malaria diagnostic testing and management of non-malarial fevers, 

( )P AB  is assumed to be the same as in formal sector. If treatment is sought from 

community health workers (CHWs) trained to administer only presumptive 

treatment for malaria, or if no treatment is sought, ( ) 0P AB = . 

 

For malaria fevers,  

0 1 2 3logit(P( )) * ( ) * ( ) *( )AB I MD I MD needβ β β β= + − + + +  

and 

0 0 3logit( ) * ( )mP P Nβ β= −  

 

where ( )mP N  is the probability that a malarial fever needs antibiotics. This is 

assumed to be zero, as NMF are only assumed to occur in the absence of malaria 

fevers.  
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NMF case fatality rates 

 

The case fatality rate of fevers that do not need antibiotics is assumed to be 0.  

 

0
(1 * ( ))a ABa

CFR need I ABγ ε= −  

where aCFR need  is the age-based case fatality rate given need for antibiotics, 0aγ  

is the age-based case fatality rate in the absence of antibiotics, given need, and ABε  

is the efficacy of the antibiotic on the case fatality rate. ( )I AB  takes the value 1 if 

the individual receives an antibiotic and 0 if s(he) does not. 
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6. Parameterization of a P. falciparum case management 
model integrated with pharmacodynamics 

 

6.1. Background 
 

To parameterize the one-day time step case management model integrated with 

pharmacodynamics, we collected and analysed evidence on patient and provider 

behaviour that influences the level of effective case management coverage.  This 

was divided into two sets of data: 1) levels of treatment-seeking for fever or 

malaria, quality of care and patient use of medicines under usual practice; and 2) 

the impact and cost of interventions to improve treatment-seeking, quality of care 

and use of antimalarial drugs. Usual practice was defined as ACTs policy but with 

limited interventions above and beyond what was available under previous first-

line antimalarial drug policies. We also aimed to gain an understanding of the 

relative importance of determinants of these variables.  

 

 
Health system classification 
  

Successful ACTs-based malaria case management requires considerable health 

system capacity, which includes human resources, infrastructure, health 

commodities, logistics, tracking progress and effective financing. In order to 

provide general cost-effectiveness results for different health system settings, we 

planned to group countries by health system type and assign each group a common 

set of parameters in the case management model that determine baseline case 

management coverage. In simulations of intervention effectiveness, we would also 

match estimates of cost and impact from intervention studies to health system 

groups.  
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Recently, there is increased global recognition of the need to invest in health 

systems while working towards disease-specific targets [161;162]. WHO-

CHOICE (Choosing interventions that are cost-effective) has undertaken to 

improve costing of health systems interventions [163] and through the Alliance for 

Health Policy and Systems Research, WHO is promoting the generation and use of 

health policy and systems research as a means to improve health and health 

systems in developing countries. 

 

In 2000, the Commission on Macroeconomics and Health (CMH) classified 

countries by the need for additional health systems investments [164]. Following a 

review of work on classifying health systems, we found that, more than 10 years 

on, the CMH remains the reference for this type of work. A recent analysis on the 

intervention and health system costs of scaling up to reach the health Millennium 

Development Goals (MDGs) used the CMH classification, adjusting it to take 

account of specific constraints related to maternal health [165]. A 2009 attempt to 

create a health system typology for the 41 countries and 5 Indian states estimated 

to have the highest child mortality was unable to find variables upon which 

countries grouped. Scarce data for comparison of health systems in low-income 

countries was identified as a major problem [166].  

 

Our work ran into a similar problem, as we found that countries did not cluster 

easily according to all of the variables in our case management model – access, 

provider compliance, and patient adherence. The complexity of health systems and 

the state of malaria case management therein lead us to conclude that the results of 

simulating case management in generic health systems using our model would 

have limited utility. Instead, data on case management from a particular place can 

be input into the model for geographically-specific predictions of cost-

effectiveness; alternatively, it makes more sense to define several levels for each 
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parameter and investigate what effect varying each has on the results, without 

referring to particular health system types.  

 

6.2. Methods 
 

We undertook a review of published literature using the keywords in Table 6.1. 

Table 6.1 Literature review search strategy 

 

Key words used in search: 
 

Location Disease/conditions 

Treatment 
Diagnosis 
Case Management 
Treatment-seeking 
Care-seeking 
Demand 
Access  
Equity 
Coverage of poor 
Health services performance 
Quality of care/of health 
services 
Prescribe 
Adherence 
Compliance 
Use of drugs/medicines 
Cost 
Cost-effectiveness 
Health services efficiency 
Community health 
Performance improvement 
Informal sector 
Shopkeepers/Drug vendors 
Global ACTs subsidy 
Affordable Medicines 
Facility for Malaria 
Franchising/accreditation 

Africa 
 

Malaria 
Fever 
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We considered primarily material published from 2001 onwards, as this is the year 

that South Africa changed its first-line treatment policy to ACTs and WHO 

recommended them as first line treatment for uncomplicated malaria. The last 

database search was conducted in late 2009, although efforts were made to update 

this with key additions to the literature thereafter. Searches were limited to 

material published in the English language.  

 

The electronic databases used were PubMed and African Journal Online, and 

manual search for relevant references. We also attempted to include gray literature 

by searching the sites of World Bank, WHO, the UK Department for International 

Development, Partnerships for Health Report project, Quality Assurance Project, 

Health Systems Resource Centre, Population Services International, Management 

Science for Health, Malaria Consortium, DHS, MICS, GFATM, MIS, and 

BASICS.  

 

Criteria for inclusion as data for the parameter estimates were as follows:  

 

1. Studies with original quantitative data on actual treatment-seeking for 

fever/malaria, quality of care for fever/malaria, or use of antimalarial drugs 

where the sample is representative of the population under study. 

2. Studies of interventions specifically undertaken to improve these variables, 

where there is a quantifiable change in patient or provider behaviour from 

the introduction of an intervention.  

3. Both types of studies had to present both numerator and denominator 

information for outcomes.  

4. In the case of intervention studies, they had to be either RCTs, time series 

measurement, pre-post design with or without a control, and post design 

with a control. 
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When assessing the strength of the study, we considered whether it was a peer-

reviewed study, the sample size, and whether the study reported statistical 

significance of results. 

 

Providers were defined as anyone responsible for dispensing antimalarials and 

were categorized as formal/informal, public/private and community-based. Self-

treatment was defined as not consulting a provider.  

 

We excluded studies conducted in populations where malaria is not endemic; 

studies on chemoprophylaxis or mass treatment; studies which were not 

representative of the underlying variable to be estimated (for example, studies of 

treatment-seeking behaviour conducted at health facilities, or studies of adherence 

in a supervised population); studies of knowledge and perceptions with no data on 

actual patient or provider behaviour for recent illness episodes experienced or 

treated; and general reviews with no original data. 

 

6.3. Main findings 
 

Care-seeking 

 

There is a large body of literature on care-seeking for febrile illness across sub-

Saharan Africa, particularly among children under five in rural areas. Many of the 

studies use household survey methodology, interviewing caretakers about actions 

taken for recent childhood fevers (usually the last two weeks). The majority of 

these found high treatment rates (most over 90%), and that multiple treatments 

were common (most over 40%). Self-treatment was the first response to fever in 

about half of all cases, often with inappropriate drugs and dosages. Often, febrile 

children were given an antipyretic only. In most studies around half of fever cases 
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received some treatment in the official health sector, and this was higher in urban 

areas and for cases of higher perceived severity [93;167-171].  

 

Varying definitions of treatment sources are used, particularly for self-treatment. 

For example, studies differ in their definitions of “self” and “home” treatment, and 

in whether they consider treatment-seeking from a shop or pharmacy to be self-

treatment [172]. Definitions seem to be shifting to differentiating between the 

public/ not-for-profit sector, which includes public health facilities, community 

health workers, and non-profit health facilities, and the private sector, which 

encompasses outlets with or without qualified health workers [31].  

 

Whereas earlier studies focused more on describing treatment-seeking behaviour, 

more recent work seeks to understand why people make the choices they do [173]. 

Baume et al found that mothers seem to be very aware of start of fever and its 

course, suggesting that caretaker recognition of fever is not a major impediment to 

care-seeking [174]. Several studies have assessed the accuracy of mothers’ 

diagnoses of malaria in their children, often finding quite a low sensitivity [175]. 

The availability of drugs, perceived quality of provider, distance from health 

center, perceived severity of illness, duration of sickness, and costs/ability to pay 

have all been found to influence choice of provider [174;176;177]. Some evidence 

indicates that smaller children are more likely to be taken to a health centre, 

suggesting that mothers recognize the advantages of seeking care in the public 

sector and are deterred by other factors such as cost or convenience [178].  

 

Recent work in medical anthropology seeks to place access to health care within 

the broader context of livelihood insecurity to better understand the many 

dimensions that influence access. This work highlights the importance of 

understanding how people mobilize household and community assets to access 

care [179]. 
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Findings indicate that delays in treatment seeking from the formal sector are 

substantial, even where physical access to care is relatively good [180]. A study in 

Ghana conducted in 2002-2004 found that only 11% and 33% of children 

consulted a trained provider within 24 and 48 hours, respectively [181]. A study 

from Kenya reported a median waiting time of 2 days to any treatment, and that 

only <3% of fevers were treated within 24 hours using the nationally-

recommended 1st line drug, sulfadoxine-pyremethamine (SP), obtained largely 

through the public formal sector [182]. In a study of children presenting to health 

facilities and drug shops in Uganda, the mean duration of illness was 3.6 days; for 

those with no prior treatment it was 2.16 days [183].  

 

Previous work suggested that convulsions, a symptom of severe malaria, were 

associated with supernatural causes and prompted treatment-seeking from 

traditional healers [174;184-186]. However, more recent research indicates that 

this seems to be no longer the case. 57% of respondents in a rural Tanzanian 

community said that malaria was a cause of convulsions [187]. De Savigny et al 

found that of malaria-attributable deaths in Tanzania, nearly 79% used modern 

biomedical care as first resort [188] This suggests that in this population, 

something broke down in the transaction to obtain that care or in the quality of 

care at the point of contact. 

 

Treatment-seeking for adult febrile illness has been a relatively neglected area of 

research. Guyatt and Snow attempt to fill this gap, extending their household 

survey to treatment-seeking in three age groups (under 5, 5-14, 15+). Surprisingly, 

the study found that, in a rural, low-transmission area of Kenya, there were no 

significant differences in prevalence of reported fever or treatment-seeking for 

recent fever by age. Overall, only 33% of all fevers were treated with an anti-

malarial drug, due to the large proportion of visits to the informal sector where 
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anti-malarials were infrequently prescribed, with no significant difference by age 

[189].  

 

Rapid urbanization across much of sub-Saharan Africa has prompted inquiries into 

the differences between malaria/fever care-seeking patterns of rural and urban 

populations. A study in coastal Kenya found that urban care-seeking for malaria 

was surprisingly similar to rural care-seeking; 52% of lifelong rural resident 

mothers and 47% of urban resident mothers used only shop-bought drugs for 

recent (2 week recall) episodes of childhood febrile illness. Urban mothers were 

more likely to contact a private clinic (24% vs. 15%) and less than half as likely to 

consult a government service (22% vs. 10%). Urban mothers had better access to 

prescription-only drugs such as SP or amodiaquine (AQ), which were stocked 

more frequently in shops  [178]. A study in Kenya found that, for adults and 

children with acute illness, in a rural area 80% received some treatment (of which 

55% was self-treatment), while in an urban area 91% received some treatment (of 

which 50% was self-treatment) [190]. The high prevalence of self-treatment in 

urban areas begs the question of whether community-based initiatives would be 

cost-effective in these settings. Time before action taken was significantly shorter 

in urban (1.05+- 1-67 days) than rural (2.32 +- 0.82 days) areas in a study in 

Nigeria [191] 

 

Are national policy changes from chloroquine to newer, more effective 

antimalarials having an impact on treatment-seeking and access? Several studies 

suggest that treatment-seeking patterns are relatively consistent [192-194], and 

that access to ACTs remains very low in settings from Tanzania and Kenya to 

Burkina Faso [195;195;195-197]  

 

Recently-conducted household surveys investigating treatment-seeking for febrile 

children in six Africa countries highlighted the continuing dominance of the 
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private sector as a source of fever treatment for children [31]. Coverage with an 

ACT was found to be low although variable across countries, with Uganda and 

Zambia having relatively higher rates.  

 

By contrast, in another study from Tanzania, self-treatment seems to have 

decreased following the policy change from chloroquine (CQ) to SP [198]; this 

may be because CQ was no longer available in shops and was not replaced with 

SP [199]. In North A district, Zanzibar, care-seeking for fever by children at 

public health facilities increased by two-fold following the introduction of free 

ACTs. The authors hypothesize that these two are related, but note that there were 

no stock-outs of ACTs during this period, and that physical access to health 

facilities is quite good in the area [26].  

 

For nationally representative estimates of treatment-seeking for febrile illness, the 

Demographic and Health Surveys (DHS) and the Malaria Indicator Cluster 

Surveys (MICS) represent the most geographically complete and directly 

comparable source. Indicators are the percentage of children under five with fever 

in the two weeks preceding the survey and of those, the percentage who took 

antimalarial drugs the same or next day. These are disaggregated by background 

characteristics. There is also data on the percentage of children who took specific 

antimalarial drugs, and the percentage who took them the same or the next day.  

Given the large variation among countries in treatment-seeking patterns [3], it 

would be advisable to use household survey data to simulate specific settings.  

 

Quality of care 

 

Quality of care is multidimensional. For our purposes, adequate care can be 

defined as performing a diagnostic test on a febrile patient and prescribing an 



6. Parameterization of case management model  

 

145 

antimalarial to a test positive patient with sufficient active ingredient, in the 

appropriate dosage, and not prescribing an antimalarial to a test-negative patient.  

 

With regard to diagnostic testing, recent developments to ensure RDT quality 

[200;201] and evidence that restricting antimalarial treatment to parasitologically 

confirmed cases of malaria is safe [8] have allayed some of the early concerns that 

RDTs were not sufficiently accurate to justify withholding life-saving drugs. 

Studies have shown that increased use of parasitological diagnosis can improve 

the management of febrile disease [202]. However, concerns with moving to a 

test-based strategy for young children include doubts about the sensitivity of the 

test under field conditions and satisfactory adherence to the test by health workers 

[10]. This issue is not completely resolved and some have called for additional and 

larger studies that include severe outcomes. This would include studies on 

etiologies of non-malarial fevers, antibiotic prescribing and thus clinical benefits 

of improved treatment of alternative fever causes [203]. 

 

Availability and affordability of drugs and diagnostics in places where people 

access treatment are prerequisites for adequate quality of care. Outlet surveys 

conducted in six countries in the frame of the ACT Watch project found that 

availability of quality-assured ACTs, at affordable prices, is very low, particularly 

in the private sector where most antimalarials are distributed. Availability of 

diagnostic tests also varied considerably by country but in general was quite low, 

particularly in the private sector [204]. Stock-outs in public health facilities are a 

major problem [34;205]. However, treatment guidelines often are not followed 

even when the first-line drug is in stock [206]. 

 

Quality of care in the public sector has been found to be higher, in general, than in 

the informal sector. In a study in Tanzania, care-seeking from a government health 

facility was the main predictor increasing the likelihood of prompt access to ACT 
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[195]. However, recent household surveys suggest that case management practices 

in the public sector are far from ideal – fewer than half of children managed in the 

public sector received a blood test for malaria, and between 7 and 47% received an 

ACT [31].  The high use of the informal sector for fever treatment in Africa is in 

part a response to perceived poor quality of services offered in the public sector 

[177].  

 

Prescription of the correct drug in the appropriate dose is often sub-optimal. 

Hetzel et al found that, despite high health facility usage rates in rural Tanzania, 

only 23% of children and 11% of adults received timely treatment with an 

appropriate and correctly dosed antimalarial; inappropriate dosing of antimalarials, 

including in public health facilities, was documented as a problem [207]. In four 

Kenyan districts three years after SP replaced CQ as first-line treatment, SP was 

only prescribed in the correct dosage in 34% of pediatric prescriptions. Counseling 

and observation of taking treatment were also poor [208]. Another study, with a 

small sample size, found that children were never prescribed second line treatment 

(SP) even if it was a repeat treatment-seeking visit [174]. Nine months after 

introduction of artesunate-amodiaquine (AS-AQ) in public facilities in Burundi, 

AS-AQ prescription was only 14.1% [194] Zurovac et al examined prescribing 

practices in health facilities 4 to 6 months after the policy change from SP to 

artemether-lumefantrine (AL). The study found that only three-quarters of children 

with fever (and a positive test or no test) were prescribed an antimalarial, and only 

28% got AL. Many were prescribed the second line drug (AQ). The presence of a 

positive test did made a child more likely to get AL  [209].  It seems that health 

workers may prescribe AL for cases perceived as “more urgent” while using other 

antimalarials for other cases [210] 

 

Two additional problems are low diagnostic testing rates, and prescription of 

antimalarials to test-negative patients. Even when available, diagnostic tests are 
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often not used or their results ignored [211;212], even in areas of low-

.transmission [213]. Hamer et al found that only 28% of febrile patients were 

tested in facilities where diagnostics were available, and many who tested negative 

(58% by blood slide, 36% by RDT) still got antimalarials. 72.6% had no test 

performed and 66% were prescribed antimalarials anyway [214]. Overdiagnosis 

may lead health workers to miss other serious causes of febrile illness, as found in 

Tanzania, where 66% of slide-negative patients were not treated with antiobiotics, 

of which 7.6% died [215]. In 2009, Kenya initiated a new policy of universal 

parasitological diagnosis and targeted treatment with AL. Nation-wide surveys in 

Kenya found that, in health facilities where AL and malaria diagnostics were 

available, about half of patients with fever were tested, and about half of test-

negative patients were treated with an antimalarial, even following exposure to 

implementation activities to promote the new policies [205]. 

 

Zurovac et al reported that in four districts in Kenya, actual treatment practices 

differed dramatically from the national guidelines, which stated that febrile 

children under five should be treated presumptively for malaria but that over-fives 

should be tested before treatment. About a half a year after the new first-line drug, 

AL, was delivered to health facilities, only 43% of febrile patients over five years 

were given a diagnostic test, compared to 26% of children under five. Prescribing 

differed little across age groups, however; antimalarials were prescribed for the 

majority of adults and children with negative test results and those without tests 

performed. AL prescriptions usually followed a positive test result. The authors 

conclude that different age-specific recommendations for diagnosis may be 

difficult to implement [216]   

 

Other studies, however, have shown more positive results. A dramatic reduction in 

the use of antimalarials following implementation of RDTs was documented in 

urban Tanzania [217]. In Senegal, where the public health sector is quite strong 
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and in the presence of a small financial incentive to the consumer (who have to 

pay for first-line antimalarial drugs), parasite-based diagnosis increased to 86% 

over the three-year period following the policy change, resulting in a drop in ACT 

prescriptions to roughly the same number as confirmed malaria. This suggests that 

high adherence to an RDTs-based policy is achievable on a national scale [218].  

 

Why do health workers fail to follow recommended treatment practices? An 

increasing number of studies have explored this question. In the Zurovac et al 

study above, only 28% of children had AL prescribed, even when it was in stock, 

with health workers preferring to prescribe AQ. Factors associated with higher 

likelihood of AL prescription were health worker’s pre-service training, in-service 

training including AL use, presence of a positive malaria test, main complaint of 

fever and temperature greater than or equal to 37.5 degrees Celsius. Stock-outs 

and lack of training of health workers continued to be a challenge. Most (92%) of 

children received AL in the correct weight-specific dosage [209]. Interestingly, in 

a study from Zambia, in-service training and provision of job aids did not seem to 

influence AL prescribing [219].  Chandler found that 33% of slide-negative 

patients in a hospital OPD were prescribed antimalarials. The variation among 

hospitals was not apparently related to the transmission level, and patient demand 

was not seen to be a factor driving over-prescription [220] 

 

A qualitative study published in 2008 looked specifically at the issue of why 

health workers do not prescribe ACT when it is indicated. The reasons found 

related either to specific failings in introduction of policy (1) mixed/unclear and 

incorrect messages delivered during training and (2) availability/continued supply 

of AQ; and 2) more general health systems issues (workload of staff and erratic 

nature of drug supply) [221].  
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Treatment in the informal sector is well-documented as often inappropriate 

[182;222]  . Following the change to SP as first-line policy, Kachur et al found 

that, in rural Tanzania, only 17% of clients who visited drug stores to obtain 

medicine for a patient with fever or malaria actually purchased an antimalarial 

drug, while 77% purchased anti-pyretic medications. Of those that did purchase 

antimalarials, education of household head was significantly correlated, suggesting 

the importance of cost. The same study found that patients seeking treatment from 

drug stores for febrile illness were as likely to have malaria parasitemia as those 

seeking treatment in the formal sector, which confirms that the role of the informal 

sector in malaria case management cannot be ignored [193].  

 

Poor drug dispensing practices in the informal sector are being compounded by a 

large market for counterfeit antimalarial medicines in Africa [223]. A nationwide 

survey in 2001-2002 of CQ, quinine and antifolates sold in the informal sector in 

Cameroon found 12-74% of the samples to be of poor quality or containing no 

active ingredient [224]. A recent analysis of drugs sourced from urban or peri-

urban pharmacies in six African countries found that 35% of all samples failed 

quality tests, including 19% of artemether-lumefantrine fixed dose combination 

and 42% of artemisinin monotherapies [33]  

 

Patient use of antimalarial drugs 

 

Definitions of adherence and methodological differences among studies 

complicate the comparison of adherence studies. Some rely on self-reported 

adherence [225], while others combine this with pill counts/bottle inspections 

[226;227] and/or biological methods [228] . To be considered completely 

adherent, most studies considered both number and timing of doses. Studies differ 

in how they treat vomiting of doses in measurement of adherence [229].  
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It is generally believed that the simpler the dosing schedule, the higher the 

adherence. Abuya et al’s study bears this out, with SP used more appropriately 

than AQ although “adequate use” is not well-defined. One of the few studies to 

examine adherence in the informal sector, this paper found adherence to AQ of 2-

12%, and to SP of 46-84% [222]. In rural Senegal, less than a year after the policy 

change to AQ+SP as first-line treatment, 38% were considered strictly adherent 

[230] . Adherence to tablets was better than syrup (45% vs. 28%), which echoed 

previous findings [231].   

 

In research studies, adherence to AL has been found to be high [232;233]. Fogg et 

al found 90% probable adherence to Coartem in a study in a Uganda outpatient 

department. However, this was quite a controlled study and subjects were given 

careful instructions explanations by health workers [67]. In less controlled studies, 

adherence was still found to be quite high: 88% reported adherence to AL was 

found in rural Tanzania, and most non-adherence was due to untimely dosing 

rather than missing doses [225]. In another study from Tanzania, the full dose was 

taken at a satisfactory time in about 90% of cases [227]. However in Malawi, only 

65% of patients were completely adherent according to pill count and dose-recall 

interviews [226] and in Kenya, only 64% were [234].  

 

Adherence to co-packaged or co-blistered ACTs has been found to be lower in 

general. 77% adherence to AS+AQ, assessed by self report and pill count, was 

documented in children under five in Zanzibar [229]. Adherence of 48% to 

AS+AQ was found in a remote rural area of Sierra Leone, where patients had 

relatively little education and the treatment had been implemented for some time 

[235].  Another study found 75% complete adherence to AS+SP (based on self-

report and tablet counts), but with counseling and packaging interventions [236].  
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Several studies assessed adherence in atypical settings, with contrasting findings. 

In a refugee settlement where SP-AS was given at a clinic, without clear marks of 

timing or dosage on the packaging, only 39% probable adherence was found 

[237]. Among internally displaced persons in Uganda, Kolaczinski et al found that 

overall adherence to blister-packed CQ plus SP distributed through community 

health workers was 96%. However, this measure relied heavily on self-reports, 

even when the blister pack was not presented, sampling bias may be a problem, 

and the patient population may not be representative of non-conflict areas in 

Africa [238].  

 

Education level in the patient or caregiver, lack of supervised intake of the first 

dose   [229], poverty level [225], and unclear instructions from prescribers [237] 

are some of the main factors associated with non-adherence. In one study, children 

were found less likely to be adherent [226]. Conversely, improved packaging 

[231] and pictorial inserts and verbal instructions [239;240] increased adherence. 

 

Drawing on the literature review, a set of baseline model parameters is proposed in 

Table 6.2. A database has been compiled with quantitative results of the literature 

search.  
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Table 6.2 Proposed baseline parameters for case management model 

Input variable High or best estimate (Source) Alternative estimate (Source)  

% that seek treatment in formal sector 50 [3] 20 [3] 

% that seek treatment in informal sector 80 [3]  30 [3] 

% not treated 20 [3] 0 [3] 

% that seek treatment on the same or next day 30 [140]  

Formal sector   

% tested  35 [31;241]  

Of those tested ,% tested by microscopy 20 (Assumption)  

Of those tested, % tested by RDT 80 (Assumption)  

Of those that test positive, % that get antimalarial treatment 95  [213;214]        

Of those that test negative, % that get antimalarial treatment 50  [205]  

Of those not tested, % that get antimalarial treatment 60 [214]  

% of facilities that have ACT in stock  90 [209] 60 [209] 

Of those that test positive, % that get ACT (where ACT in stock) 70 [214]  

Of those that test negative, % that get ACT (where ACT in stock) 30 [214]   

% of AL that is good quality  95 (Assumption)  

% of SP that is good quality  90 (Assumption)  

% AL prescribed correctly 90 [242;243]  

% SP prescribed correctly  34 [208]  

% good adherence to ACT 90 [67] 39 [237] 

% good adherence to SP  95 (Assumption)  

Informal sector   

% tested 0 [31]  

% that get antimalarial treatment 30 [182]  

% that get ACT 6 [31]  

% of ACT that is bad quality  19 [33]  

% of SP that is bad quality  50 [33]  

% that get correct dose of ACT 70 [244]  

% that get correct dose of SP  46 [222]  

% good adherence to ACT 50 (Assumption)  
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Interventions and strategies to improve case management 

 

We reviewed the literature on interventions to improve access to malaria treatment 

by modifying patient and provider behaviour. We did not include wider health 

system interventions, for example removal of user fees in public health facilities or 

improvements in drug and diagnostic quality control or supply chains.  

 

Given the large and persistent share of the informal sector in providing anti-

malarial treatment across Africa, and the inappropriate care they offer, several 

approaches to improve their practices have been piloted. These interventions 

require first identifying retailers and characterizing their practices [245].  One 

approach has involved training shopkeepers to recognize malaria and improve 

dispensing [246;247]. In rural Kenya, the proportion of shop-treated childhood 

fevers receiving an adequate dose of a recommended antimalarial drug (CQ or 

later, SP) within 24 hours rose from 1% to 28%, following training for drug retails 

and community education [248] The estimated annual cost for implementation of 

this programme on district scale was US$ 45,489, or US$ .10 per capita, or a cost 

per DALY averted of US$ 3.85 [249]. Cost-effectiveness was modeled based on 

data from the early implementation phase, assuming that the same level of 

effectiveness would be maintained on a larger scale. This may be plausible, as the 

programme showed a higher effectiveness when it was scaled up [248]. The 

analysis is dependent on assumptions of a district population of about 473,000, 

annual fever incidence of 4.8 per child, that 56% of children visit a shop first for 

fever, and that the programme would have an eight-year life span. Larger-scale 

studies are needed to show whether this type of programme can be cost-effective 

on a large scale, with combination therapies, and whether it is sustainable. 

 

Due to the high cost and difficulty of reaching numerous retail outlets, an 

alternative approach involved training drug wholesalers to educate retailers dosing 
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and distribute job aids/posters. The study design was limited, in part because shops 

were not randomized. Following the intervention, 32% of shops receiving job aids 

(assumed to have been “informed”) prescribed to mystery shoppers the approved 

first line drug (SP), against 3% of those that were assumed not to have been 

informed. The cost of intervention in the first six months was US$ 8300, for a 

district of 900,000 or US$9-11 per retail outlet reached [250]. Many of these costs 

were fixed (such as development of shopkeeper job aids and posters) that could be 

spread over additional districts and annualized, making the average yearly costs 

much lower. 

 

One study was found that evaluated a relatively large scale Ministry of Health 

program to train retail sector providers in Kenya. It found that the program led to 

significant improvements in provider knowledge and practices. About 31% of 

intervention providers sold AQ with correct advice on use to surrogate clients, 

compared to about 5% of control retailers [251].  

 

In Tanzania, a new class of outlets known as Accredited Drug Dispensing Outlets 

(ADDOs) was created to improve access to treatment in the private retail sector. 

The intervention involved a combination of private drug shop dispenser training, 

incentives, accreditation and regulation. Subsidized AL was made available in 

both health facilities and ADDOs in 2007. ADDOs were found to greatly improve 

availability and accessibility of drug shops, and the quality of advice and 

dispensing in these outlets, and the use of the private retail sector increased despite 

much higher prices than in health facilities. However, the low affordability of AL 

restricted its availability, and SP and amodiaquine were still the most dispensed 

drugs. This study highlighted the importance of the private retail sector in 

provision of antimalarial treatment, but concluded that affordability of ACTs must 

be improved if they are to be widely dispensed [252]. A companion study in the 

same area found that contemporaneous health education campaigns aimed at 
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increasing people’s knowledge of appropriate malaria treatment seemed to 

improve care-seeking [253] 

  

To address the problem of limited affordability and accessibility of ACTs, 

particularly in the private sector, a subsidy scheme entitled the Affordable 

Medicines Facility - malaria (AMFm) was recently launched.  Hosted by GFATM, 

it negotiates with drug manufacturers to reduce the price of ACTs to both public 

and private sector first-line buyers, who are expected to pass on the highest 

possible proportion of this price benefit. Countries participating in AMFm must 

also implement “supporting interventions” to ensure the increased availability and 

safe use of ACTs. AMFm Phase 1 is being implemented through pilots in eight 

countries, and data is available from initial pilot projects in Tanzania and Uganda. 

In Tanzania, the proportion of consumers in the intervention districts purchasing 

ACTs rose from 1% at baseline to about 44% one year later, while no change was 

observed in the control district [254]. However, caution should be exercised when 

applying the findings of this small-scale study to the envisaged AMFm.  

 

Only one published study was found with data on the impact of private sector 

ACT subsidies on coverage of prompt effective treatment. The intervention, a 

cluster-randomized trial in Kenya, involved provision of subsidized packs of 

pediatric ACT to retail outlets, training of retail outlet staff, and community 

awareness activities. While there was no significant difference in treatment-

seeking behaviour between the control and intervention arms, at follow-up the 

percentage of children receiving AL on the day of fever or the following day was 

25% greater in the intervention arm. This suggests that the increase in coverage 

was indeed due to a change in the type of drugs dispensed in the private retail 

sector. Furthermore, most caregivers paid the recommended retail price for the 

subsidized ACT [244]. 
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There is virtually no evidence on the feasibility or impact of introducing RDTs in 

the private retail sector in Africa, although a randomized trial is upcoming in 

Uganda [255]. 

 

An alternative distribution mechanism to public health facilities and the private 

retail sector is community, or home- based, case management.  Delivery of 

treatment for suspected malaria through home-based management of malaria 

(HMM) has been discussed and applied in sub-Saharan African countries, with 

various degrees of implementation, for some years [256-259]. These experiences 

resulted in WHO’s development of the Roll Back Malaria strategy for improving 

access to treatment through home management of malaria [116]. This strategy 

consists of four major components: an effective communication strategy, training 

of community-based providers, availability of medicines, and supervision and 

monitoring. 

 

The average net cost of an intervention to promote home management of malaria 

in rural Burkina Faso, including training, purchase of the first stock of drugs, bags, 

labels and packing of drugs, incentives to community health workers (CHWs), and 

supervision and drug distribution, was 1994 US$ 0.06 per resident child [117]. The 

cost per villager, including consumer and provider costs, of design and 

implementation of a strategy based on use of CHWs for near and appropriate 

treatment of malaria was between US$ 1.40 and US$ 1.70 [119]. Both 

interventions seemingly resulted in improved management of febrile illness.  

 

There is some evidence of the effectiveness of HMM, although evidence of its 

cost-effectiveness, particularly with ACTs, is limited [260]. A study at sites in four 

African countries examined the feasibility, acceptability and utilization of ACT 

provided at community level. Results from a post-intervention household survey 

of recent treatment- seeking for febrile illness showed high coverage (52-75% 
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treated with ACTs from a CHW) and adherence (71-87% treated promptly 

(receiving first dose on first or next day) and correctly (dose and duration)). 98% 

of all children were correctly dosed. However, this was a very controlled research 

setting and monitored over a short time period; community health workers were 

not paid but were given other incentives [261] The cost of delivering home 

management of malaria in a trial in urban Ugandan children, including the cost of 

AL was estimated at US$ 33.83 per child per year. Home Management of Malaria 

greatly increased the proportion of febrile children receiving prompt and effective 

treatment with antimalarial drugs. However, the health effects were modest, 

suggesting that most antimalarials were given for non-malarial febrile illness 

[118].  

 

Some studies suggest that CHWs can be trained to effectively use RDTs to better 

target malaria treatment and that adherence to test results is high [262;263]. 

Harvey et al reported on a 3-hour training course together with provision of job 

aids for CHWs in Zambia on how to use and interpret RDTs. The course cost 

approximately 2006US$ 175 per CHW, including supplies, transportation, lodging 

for CHWs and salaries, per diems, and transportation costs for the trainers, 

observers and Ministry of Health personnel. When only supplies, transportation, 

and lodging for CHWs costs were included, the total cost per CHW was 2006US$ 

66 per CHW trained. Following the course, significantly more CHWs conducted 

and read the test results correctly than those who had received only the 

manufacturer’s instructions or job aids [121]. 

 

There is now increased interest in exploring whether CHWs can be trained to 

manage both malaria and pneumonia using RDTs, or integrated community case 

management (ICCM). The WHO and UNICEF now recommend ICCM where 

malaria and pneumonia are major killers. A cluster randomized control trial in 

Zambia found that training CHWs to prescribe amoxicillin to children with 



6. Parameterization of case management model  

 

158 

nonsevere pneumonia and AL for malaria after use of RDTs results resulted in a 

five-fold increase in the proportion of children with non-severe pneumonia who 

received early and appropriate treatment. Furthermore, use of AL dropped 

dramatically; CHWs adhered well to RDT results [120]. Preliminary evidence 

from Uganda suggests that CHWs can be trained to assess manage malaria and 

pneumonia in children, but this study only assessed performance immediately 

following training and these findings need validation in a real-life setting [264] 

 

The evidence on impact of interventions to improve provider practices in public 

health facilities is mixed. Agyepong et al found improvements in prescribing 

practices in clinics where a training for dispensers was held [240], but it is not 

clear whether this translates into better adherence, and if so, whether these results 

can be sustained over time. One study found that gains in knowledge following in-

service training for medical assistants on malaria treatment had deteriorated within 

a year [265]. It appears that knowledge does not always result in improved 

practice. Eriksen et al’s study suggests that staff with less training did not perform 

worse than others [198], leading her to suggest, as others have, that factors such as 

motivation, job satisfaction, cultural factors and financial incentives are probably 

more important. In a study of clinical practice in a health facility in Malawi, only 

71% of ill children that should have gotten an antimalarial according to gold 

standard clinician actually did, and neither in-service training nor supervision were 

associated with fewer treatment errors [266]. These findings are similar to those of 

Rowe et al, who reported that 50% of children were correctly treated. In this study, 

neither in-service fever training nor supervision was significantly associated with 

correct treatment [267].  More recent evidence from Kenya indicated that in-

service training and job aids were not sufficient to improve provider case 

management practices following the policy change to ACTs as first-line treatment  
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Given these results, it is unclear how providers can be convinced to adhere better 

to current malaria treatment guidelines involving RDTs and ACTs. Mobile phone 

text message reminders are an innovative intervention that was shown to improve 

health worker adherence to case management guidelines in Kenya [268] 

 

In the case of severe malaria, some evidence indicates that improved provider 

practices can reduce in-hospital mortality. Biai et al found that paediatric in-

hospital malaria mortality was reduced from 10% in the control group to 5% in the 

intervention group by providing a financial incentive to staff and better 

supervision [269]. Recently, evidence has emerged that rectal artemisinins as pre-

referral treatment can reduce mortality where patients cannot take medicines orally 

and access to injections will take several hours [270]. 

 

6.4. Conclusions 
 

Treatment-seeking for febrile illness from the informal sector remains high, and 

the influence of the implementation of new treatment policies on these patterns is 

only beginning to be understood. Care-seeking for severe illness remains a 

neglected area of research, although recent studies have shown that, in some 

settings, resorting to traditional healers first is no longer a significant reason for 

delay. The multiple factors influencing treatment-seeking for fever in Africa, both 

on the supply and demand side, are well-recognized. There is a need for a greater 

understanding of the key bottlenecks in different settings, as well as 

documentation of best practices of countries that seem to be performing better than 

most, like Uganda and Zambia.  

 

In addition, descriptive evidence indicates that quality of care is sub-optimal, 

including under ACTs policy. However, a clearer understanding of the multiple 
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factors that lead health workers to treat inappropriately, and convincing evidence 

from well-designed, large-scale intervention studies to address these issues, is 

needed. In addition, more data is needed on the etiology and management of non–

malarial fevers. Another area where information seems to be scarce is on referral, 

and its relation to malaria mortality in severe cases. Finally, more information on 

diagnostic and treatment practices in the formal and informal private sector would 

also be very useful. 

 

Adherence to ACT seems to be relatively high, even under routine conditions. 

However, particularly where education levels are low and patient provider 

communication is poor, adherence has been found to be sub-optimal. The impact 

of the introduction of RDTs on adherence is unclear; studies where patients were 

only treated after receiving a positive RDT test showed both relatively high [225] 

and low [235] adherence. There is still room to improve adherence, for example 

through better communication between providers and patients/caretakers and more 

attention to groups that are thought to be less adherent, in particular children.  

 

There are a number of difficulties which arise when comparing studies on human 

behaviour related to malaria treatment, including methods, sample, types of 

questions asked, and the way the data are presented [172].  In addition, there are 

numerous drivers for the results which are unique to the social, economic, cultural 

and health systems context in which the studies were undertaken. For example, 

epidemiology of febrile illness, level of infrastructure, stage of implementation of 

new policies, and health worker remuneration and incentives are just some of the 

factors that influence patient and provider behaviour. Thus, it is debatable how 

much descriptive or intervention data can be applied across settings. Notably, there 

is a lack of data from vast swathes of Africa where malaria burden is high; studies 

are needed to fill those gaps.  
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7. Discussion and Conclusion 
 

The overall aim of this thesis was to predict the impact and cost-effectiveness of 

P.falciparum malaria case management interventions in different transmission and 

health system settings. In low-transmission settings where policy-makers are 

considering pursuing elimination, as well as in settings of higher endemicity where 

the immediate goal is reduction of disease burden, case management is a critical 

component of integrated strategies against malaria.  

 

An existing integrated set of models was applied to examine the effect of passive 

case detection (PCD) in the aftermath of local transmission interruption, and was 

extended to simulate the cost-effectiveness of another chemotherapy-based 

intervention, mass screening and treatment (MSAT). This work also contributes a 

revised method for estimation of uncomplicated malaria burden and a new case 

management model, integrated with a model of pharmacodynamics, which will 

enable a more precise, finer-grained analysis of the effects of scaling up case 

management and improving diagnosis and treatment practices on health outcomes 

and drug resistance.  

 

This discussion places the case management models in context. It then discusses 

the implications of the studies undertaken and summarizes the strengths and 

limitations of the new case management model and the outlook for future 

modeling.  

  

7.1. Context of case management models  
 

Models of the impact and cost-effectiveness of malaria case management can be 

divided into two broad categories. The first includes models where case 
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management (and economics) is considered separately from the biology of the 

disease. The second category comprises models which bring together case 

management, biology and, in the case of cost-effectiveness, economics. 

 

A number of models have investigated case management interventions to reduce 

malaria burden. Some of these are very simple models which use data on baseline 

case management parameters and estimates of intervention impact to predict 

treatment effectiveness [271-273]. Others use estimates of disease burden, 

intervention effectiveness, and unit costs to predict cost-effectiveness of 

interventions or combinations of interventions in different settings [11;128;274-

276]. There is no within-host or transmission model, and the main effect of case 

management is to reduce mortality from the treated bout. There is no explicit 

consideration of the dynamics of transmission and immunity, the loss of which 

results from reduced exposure.   

 

A few modeling studies consider changes in immunity levels and the dynamic 

effects of case management on transmission [277-279]. To date, the application of 

population dynamic transmission modeling of infectious diseases together with 

methods for economic evaluation has been extremely limited [280].  Several 

previous models bring together aspects of malaria biology, case management and 

economics [281;282]. The Yeung et al model, developed primarily to study the 

spread of antimalarial drug resistance, used variable antimalarial and ACT 

coverage rates and adherence and the simulated level of resistance at each time 

step as the determinants of cure rate. Costs to the provider and patient were 

combined with predicted numbers of cases, cures and failures to estimate cost-

effectiveness of different case management strategies. The predecessor to the case 

management model presented in this thesis [41] was integrated into a set of 

models which combined parasitology, burden of disease, health systems, 

transmission and economics. It modeled care-seeking and costs in the formal 
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sector and self-treatment, based on real data from Tanzania. The work presented in 

this thesis adds a pharmacodynamic model, integrated with a more complex case 

management component, to this already quite comprehensive set of models. 

 

7.2.  Implications of studies on passive case detection and MSAT 
 

The passive case detection study was the first to apply the integrated models to 

answer questions regarding local elimination of malaria transmission. The models 

are well-suited for this purpose for several reasons. First, interruption or re-

establishment of malaria transmission is a stochastic process and is likely to 

depend greatly on random variation in risk, human movement, treatment-seeking, 

and other factors. The stochastic models capture this variation, allowing 

predictions of the probability of re-establishment based on multiple simulations 

with different random number seeds. Second, the use of model assumptions allows 

investigation of the effect of model uncertainty on predictions. The findings 

highlight the urgent need for research into the mechanisms and rate at which 

naturally- acquired immunity to P.falciparum malaria decays in the absence of 

exposure. Many people in sub-Saharan Africa could be in this position in the 

future if current efforts to control malaria lead to reductions in malaria 

transmission without eliminating the parasite, and this is likely to be a key driver 

of intervention impact in the longer-term. 

 

However, our analysis ignores several sources of heterogeneity which may be 

critical in low-transmission settings. Notably, it does not include spatial 

heterogeneity in interactions among people and mosquitoes, or in transmission. 

This may lead to overestimation of the probability of local interruption of 

transmission, as residual transmission is likely to be concentrated in 

geographically-defined foci. A transmission dynamic spatial model with multiple 
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interacting populations would be required to capture this heterogeneity. In 

addition, the models were fit to data from medium or high transmission intensities, 

and have not been validated with data from low-transmission settings. Finally, it 

was not readily possible to simulate immunity differentials between individuals 

importing infections and the simulated population; this may bias the estimated 

probability of transmission re-establishment.  

 

One methodological issue which arises in studies of malaria elimination is the 

difficulty of defining such a concept. WHO currently defines malaria elimination 

as zero incidence of locally-contracted cases [20]. However, until eradication is 

achieved, importation of infection and some degree of onward transmission is 

almost inevitable in most places; under the WHO definition, a number of countries 

currently certified as malaria-free would not qualify [51;283]. Our study 

established a threshold allowing each imported infection to give rise to a 

maximum of 2 secondary infections before classifying the simulation as one where 

transmission was re-established, but this was somewhat arbitrary. 

 

The costs of interrupting transmission and preventing re-establishment must be 

considered alongside the expected benefits in terms of disease burden, potential 

health care savings to caretakers and providers, and other benefits using an 

appropriate time horizon and discount rate, to inform the decision. Cost-

effectiveness analysis is likely to be insufficient to inform decision-making for 

elimination, as many of the benefits of elimination go beyond health outcomes. A 

recent analysis found that pursuing elimination is unlikely to be cost-saving 

because of the high upfront costs need to find and eliminate the last infections, as 

well as the ongoing costs for preventing re-introduction [76] . However, non-

health benefits to achieving and maintaining elimination may be substantial and 

need to be taken into account in making investment cases for interruption of 

malaria transmission. These additional benefits are currently very uncertain. There 
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is a need for further research and methodological developments for economic 

evaluation of malaria elimination.  

 

Surveillance in near-elimination or elimination settings will likely require 

interventions based on active case detection, either indiscriminately or in response 

to a detected case. There is a need for more data from field studies on the costs and 

effectiveness of different surveillance strategies.  The impact of such approaches 

will likely be determined to a great degree by rates of decay of natural immunity 

in the absence of exposure. This information could be combined and used with the 

model to help predict the most cost-effective surveillance and response models in 

different settings.  

 

The MSAT study reported here was a first attempt to quantify the effects, in terms 

of burden reduction, and costs of one variant of active case detection. These 

findings suggest that MSAT may be most cost-effective in settings of moderate 

transmission intensity, and not low transmission, as has often been assumed. The 

appendix presents a methodology for estimating costs which could be generalized 

to other interventions involving household visits. An area of uncertainty is the 

investments in the health system that would need to accompany such an 

intervention to ensure its successful implementation. 

 

The study highlights the scope for extending the analysis of the cost-effectiveness 

of scaling up combinations of interventions. In future studies, DALYs should be 

used as the outcome measure in the cost-effectiveness equation. In addition, an 

alternative method for estimating malaria burden which does not assume a fixed 

three-day duration of uncomplicated malaria episodes could improve the accuracy 

of the cost-effectiveness estimate. Finally, future analyses should consider a 

sensitivity analysis varying the unit cost of interventions, particularly case 

management, at different coverage levels. The current case management costing 
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model does not take account of investments in infrastructure or activities that 

would be needed to scale-up malaria treatment, which are likely to be substantial. 

 

7.3. Case management model integrated with 
pharmacodynamics: strengths, limitations, and outlook 

 

The case management model developed as part of this thesis will enable more 

accurate simulations of case management, including the activities involved in 

changing treatment practices, and the effect of drug treatment. It will also permit 

investigation of the development and spread of drug resistance, which is one of the 

most pressing questions in malaria control today [284;285].  

 

The added complexity of the one-day time step models comes at a cost. Enormous 

computational power is required to fit the model parameters to data; this is 

achieved through the use of volunteer computing through the internet [39]. It was 

difficult to predict how long this would take, and ultimately it was beyond the time 

frame allocated for this thesis. In addition, the models are quite time-consuming 

and computationally intensive to run.  

 

Adding additional detail to an already-complex set of models also makes it more 

difficult to understand the key drivers of results and risks increasing users’ 

reluctance to engage with and trust model outputs. The community of potential 

users for such models is still being defined, and for the time being, may need to be 

limited to those who have considerable experience using and interpreting 

simulation results. For this reason, the current utility of standard tools and 

interfaces for analyzing model outputs is questionable – those with data analysis 

skills and knowledge of the models will want more flexibility to analyse and 

present results. 
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Developing the integrated case management model required harmonizing the 

workflow of a large multidisciplinary team. The core program is now entirely 

written in the general purpose programming language C++; the project therefore 

required interacting not only with developers of other models components (in this 

case, the within-host and drug action models), but also with those developing the 

code. While a complex code base increases the functionality and versatility of the 

simulation platform, it is quite obtuse to non-programmers. This remoteness of 

modelers from the code can inhibit interaction with the models and result in 

mutual dependency of modelers and coders, which can slow down model 

development. Efforts to develop user interfaces for experiment creation are 

challenged by the ever-changing code base.   

   

One of the objectives of the literature search presented in this thesis was to add 

geographical specificity to the case management model by defining parameters for 

particular places. However, data was found to be limited in geographical coverage 

and by study methodology. Also, case management variables are very dependent 

on local context, change over time and can vary substantially within a country 

[173]. This leads to considerable uncertainty in case management parameters, 

arguing for the use of sensitivity analysis.  The costing model should also be 

expanded with additional data from other settings on the costs of febrile illness so 

that the effects of variation in cost parameters can be explored; some of this 

information is compiled in publicly available databases, for example through 

WHO-CHOICE [286]. In that vein, a probabilistic sensitivity analysis varying 

health systems parameters and costs was recently carried out using the five-day 

time step model [287]. 

 

Moreover, the complexity of health systems makes it difficult to characterize 

countries in terms of a few variables related to malaria case management. 

Countries may perform relatively well on certain aspects of case management and 
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relatively poorly on others. Therefore, allocation of countries to case management 

categories was not found to be feasible. Rather, it is considered more useful to 

simulate ranges for each variable, without referring to specific places, or to apply 

the model to specific settings where data is available.  

 

Health systems are dynamic, and interventions to improve malaria case 

management may have numerous effects on the rest of the system. For example, a 

reduction in the end-user price of malaria drugs may modify patterns of treatment-

seeking and self-treatment, prescribing practices and adherence [288]. The case 

management model offers the possibility to combine quantitative modeling of the 

feedback effects in health systems with dynamic models of malaria transmission 

and cost-effectiveness analysis. Whether the models can be useful to answer these 

types of questions, or whether they are best explored outside the models, is still 

uncertain. 

 

Once the one-day time step models achieve a satisfactory fit to data, they should 

be illustrated by applying them to several simple questions. First, the effect of 

drug stock-outs could be simulated by varying case management coverage in time 

and exploring the effect on health and transmission outcomes, relative to constant 

coverage.  Another immediate research question is the cost-effectiveness of 

different levels of diagnostic testing.  

 

In the longer-term, it would be important to fit the parameters of the 14 sub-model 

variants, incorporating different assumptions about decay of immunity and 

heterogeneity in force of infection, treatment-seeking and co-morbidity with the 

one-day time step model. This would enable investigation of the impact of model 

uncertainty, and comparison of the predictions of the different models. 

 



7. Discussion and Conclusion  

 

169 

7.4. Conclusion 
  

The rapidly changing malaria epidemiology due to factors such as intervention 

scale-up [26] and urbanization [289] in much of Africa requires that policy 

decisions be taken urgently. Models are necessary to inform these decisions, and 

the results of multiple models should be compared against one another towards 

assessing their validity. A major challenge for the next phase of the project is 

increasing the application of the models to help guide research and policy-making.  
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