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SUMMARY 

The central dogma of molecular biology describes the directional flow of biological 

information from DNA via RNA to protein. Information stored in DNA is copied to 

an mRNA molecule during the process of transcription. The mRNA is used as a 

template for translation, in which polypeptides are synthesized. The regulation of this 

process, which is conserved through all trees of life, has been a central field of study 

over the last decades. 

The discovery that RNA not only serves a simple role as a mere copy, but is much 

more versatile has created a lot of excitement. For example, RNA molecules 

themselves can act as enzymes. In the ribosome, rRNAs comprise the catalytic core for 

peptide bond formation. snRNAs form the core of the splicing machinery. tRNAs are 

the adaptors and thereby the actual readers of the genetic code. Last but not least, in 

the RNAi pathway, small RNAs serve as guides to target silencing complexes to 

complementary RNAs. Altogether, these findings placed RNA at the center of 

eukaryotic genome regulation.  

On the other hand, DNA in eukaryotic cells does not exist as a mere fibre, but is 

wrapped around the core histone octamer to form a nucleosome. Nucleosomes are the 

basic building blocks to form higher order chromatin structures. Besides its 

architectural role in chromosome segregation, genome stability and recombination, 

chromatin has also been linked to gene expression. In contrast to the rather gene-rich 

euchromatin, heterochromatin is a highly condensed and repressive structure, serves 

as a safe storage place for transposable elements and makes up a large fraction of the 

genome of higher eukaryotes. Repression or activation in different chromatin contexts 

involves covalent modifications on the histone proteins. The nature and combination 

of these modifications create different docking sites for various effector proteins that 

have either activating or repressing function.  

Surprisingly, recent studies have suggested that a substantial fraction of the genome, 

although heterochromatic, is transcribed at least to a certain extent and many of those 

transcripts do not encode proteins. Moreover, fascinating mechanisms have been 
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discovered, in which the silencing of heterochromatic sequences involves RNA-

dependent mechanisms. Altogether this suggests that the regulation of the genomic 

output in eukaryotes not only occurs at the level of transcription but to a substantial 

extent via co- or posttranscriptional gene silencing mechanisms (CTGS or PTGS, 

respectively). The cellular RNA decay machineries therefore have to be equipped with 

tools to specifically distinguish and degrade certain RNAs.  

Generally, RNA decay mechanisms recognize aberrant features that are contained in 

the RNA molecule itself, for example the presence and length of a poly(A) tail at the 

3’end. The RNAi pathway is triggered by the presence of short ssRNA molecules that 

are complementary to a target RNA and thereby lead to degradation. In some cases 

degradation induces feedback mechanisms back to chromatin resulting in histone 

modification and/or transcriptional modulation.  

My work has identified a novel mechanism to regulate RNA decay, which is 

dependent on the chromatin context from which the RNA has been transcribed. This 

mechanism is independent of the actual RNA sequence/molecule but involves binding 

to the heterochromatin protein HP1Swi6. I found that HP1Swi6 binding to a 

heterochromatic transcript fulfils a checkpoint function, which mediates repression 

on at least two levels. First, HP1Swi6 prevents translation of heterochromatic RNA by 

inhibiting association with ribosomes. This ensures repression even in the absence of 

RNA decay. Second HP1Swi6 mediates elimination by capturing RNA at the site of 

transcription and escorting it to the degradation machinery. On a molecular level, this 

is achieved by RNA binding to the HP1Swi6 hinge region. This renders the 

chromodomain structurally incompatible with stable H3K9me association leading to 

heterochromatin eviction and degradation of the RNA.  

My data points towards a model in which binding of HP1Swi6 to a heterochromatic 

RNA creates a heterochromatin-specific ribonucleoprotein (hsRNP) that is prone to 

degradation. Importantly, HP1Swi6 can induce degradation of any RNA of 

heterochromatic origin, which could be a crucial feature to repress the expression of 

deleterious sequences and transposons. Last but not least, my work is the first example 

that demonstrates that RNAs can act as “repellents” for chromatin proteins.   
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INTRODUCTION 

1. Chromatin: General properties and function 

1.1. Heterochromatin and Euchromatin 

The concept of two types of chromatin, heterochromatin and euchromatin, was 

proposed based on cytological observations made in the early 20th century. At this 

time it was noted for the first time that some parts of the genome (euchromatin) 

become invisible during interphase (Heitz, 1928). Heterochromatin, in contrast, 

remains condensed during the whole cell cycle and is functionally distinct from 

euchromatin. It replicates rather late during S-phase, is gene poor, often locates to the 

nuclear periphery and is transcriptionally less active (Grewal and Jia, 2007).  

 

Figure 1 – Electron Micrograph of a plasma 

cell from bone marrow 

Heterochromatin can be cytologically defined 
as a condensed structure within the nucleus of 
eukaryotic cells. In electron micrographs it is 
electron dense and therefore dark staining. 
This bone marrow cell shows the typical 
association of heterochromatin with the 
nuclear periphery.  
EM picture: UCSF, Office of educational 
technology, cell structure lab 
 

 

 

 

 

 

 

Heterochromatin can be further subdivided into constitutive heterochromatin, which 

is found at highly repetitive DNA elements surrounding centromeres and telomeres. 



Regulation of heterochromatic RNA decay via heterochromatin protein 1 (HP1)  

INTRODUCTION   

 

 

 
  

 2 

Thereby, besides its function in repressing the activity of transposable elements, 

heterochromatin contributes to the integrity and the maintenance of the overall 

chromosomal structure and mechanics (Buhler and Moazed, 2007; Richards and 

Elgin, 2002). 

Facultative heterochromatin forms in a euchromatic environment and functions in the 

heritable and stable maintenance of gene expression patterns. One of the best-studied 

cases is the inactivation of the female X chromosome (XCI) in mammals during early 

development. Interestingly, silencing often involves the action of ncRNAs such as Xist 

in the case of XCI (Beisel and Paro, 2011; Chow and Heard, 2009). 

 

1.2. Position Effect Variegation 

Position Effect Variegation (PEV) is a conserved phenomenon that has first been 

described in Drosophila melanogaster. Hermann Muller identified a mutant fly, in 

which the eye color displayed a variegated expression resembling a red-white mosaic 

(Muller, 1930). The red eye color of wild-type flies is encoded by the white gene, 

which is normally expressed in every ommatidium. Due to an inversion on the X 

chromosome, the white gene in the mutant flies resides in close proximity to 

heterochromatin, resulting in the stable and heritable silencing of the white gene in 

some of the cells.  

A conserved feature of classical PEV is the stochastic occurrence of the silencing, but 

once established, it is maintained stably throughout many cell divisions. The silenced 

domain may then spread in cis into adjacent regions that are several kilobases away 

(Huisinga et al., 2006). Levels of variegating gene expression were also found to 

depend in a dosage-dependent manner on the silencer levels (Eissenberg et al., 1992).  

PEV silenced domains have an altered chromatin architecture. Variegating transgene 

inserts were shown to have a reduced accessibility to restriction digest and 

micrococcal nuclease treatment and were packaged in a more regular nucleosome 

array (Cryderman et al., 1998; Sun et al., 2001; Wallrath and Elgin, 1995). From these 

studies and cytological observations (Schotta et al., 2003; Zhimulev et al., 1988) it has 

been concluded that this compact structure limits the accessibility for transcription 
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factors and the transcription machinery itself. In this classical model, PEV and gene 

silencing would be caused by the compaction of heterochromatin into an inert and 

transcriptionally inactive structure. However, recent genome wide studies have 

challenged this view, because transcription was found to be more widespread 

throughout the entire genome than previously anticipated (Birney et al., 2007; Cheng 

et al., 2005; Kapranov et al., 2007).  

 

 
Figure 2 - Position Effect Variegation (PEV) in D. melanogaster 

In wild-type cells, the white gene (red box), which encodes the red eye color in flies, is expressed 
from a euchromatic region.  In whitem4 mutant flies, an inversion positions the white gene in close 
proximity to heterochromatin (blue arrows) resulting in gene silencing. Stochastic spreading of 
heterochromatin into the white gene causes the variegated occurrence of the silencing (ON or OFF 
cells). Once established, however, the cells epigenetically transmit this state to their daughter cells. 
In white loss-of-function mutants, the absence of the gene product causes a complete white-eye 
phenotype. The grey circles/polygons illustrate genomic loci between the white locus and 
heterochromatin. Picture courtesy of Jonathan Schneiderman.  
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PEV phenomena have not only been described in flies (Eissenberg, 1989; Reuter and 

Wolff, 1981), but later on were also found in yeasts (Allshire et al., 1994; Allshire et al., 

1995; Sandell and Zakian, 1992), plants (Matzke and Matzke, 1998) and mammals 

(Rakyan et al., 2002).  

 

 
Figure 3 - PEV as a tool to genetically identify heterochromatin factors 

Position Effect Variegation was used as a powerful model system to identify factors that are 
required for heterochromatin formation and maintenance. Supressor mutations (Su(var)) are genes 
that are required for heterochromatin formation. E(var) mutations encode genes that antagonize 
heterochromatin formation and spreading. 
 

Most importantly, PEV has been instrumental to genetically identify the molecular 

components of heterochromatin silencing. Since the first publication of a PEV screen 

in the early 1980ies in Drosophila (Reuter and Wolff, 1981), this strategy has been 

applied to other organisms and has allowed understanding of heterochromatin 

biology on a molecular level.  
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1.3. Molecular components of chromatin structure 

Histone proteins and their posttranslational modifications (PTM) have crucial roles in 

the regulation of eukaryotic genomes. Each chromatin unit, the nucleosome, contains 

147 bp of DNA wrapped around an octamer composed of four core histone proteins 

H2A, H2B, H3 and H4 (Luger et al., 1997). To date, 130 PTMs on various sites in 

human histones have been identified (Tan et al., 2011). Histone modifications 

contribute to a plethora of different aspects of chromatin biology and genome 

regulation. Generally, one can distinguish two different mechanisms for the function 

of the histone modifications. First, histone modifications can directly influence the 

chromatin compaction by altering the inter-nucleosomal contacts or changing the net 

charge of the histones themselves. This has been demonstrated for acetylation, which 

neutralizes the basic charge of lysines and thereby affects chromatin compaction 

(Shogren-Knaak et al., 2006). Second, the modified histones serve as recruitment 

platforms for nonhistone proteins (Kouzarides, 2007). The same modification, 

depending on which histone residue it is placed, may have a different role. For 

example, whereas methylation at H3K4, H3K36 and H3K79 are positively correlated 

with active gene expression, it is linked to repression at H3K9, H3K27 or H4K20 

(Lachner and Jenuwein, 2002). In the following, I will only focus on the molecular 

mechanisms involving heterochromatin repression.  

 

1.4. Repressive histone modifications are a conserved molecular 

hallmark of heterochromatin 

Heterochromatin assembly requires H3K9 methylation, which creates a binding site 

for HP1 proteins (Bannister et al., 2001; Ekwall et al., 1995; Lachner et al., 2001). 

H3K9 methylation and binding of HP1 is a conserved molecular hallmark of 

heterochromatin from fission yeast to humans. The H3K9 methylation is catalyzed by 

the conserved SET-domain containing Suv3-9 family of proteins (Nakayama et al., 

2001; Rea et al., 2000).  
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In addition to providing the substrate for HP1 binding, it has been shown for some of 

the Suv3-9 family members that they promote spreading by binding to H3K9me 

themselves (Collins et al., 2008; Zhang et al., 2008). Furthermore, some of the Suv3-9 

family members have been shown to directly interact with HP1 (Loyola et al., 2009; 

Nozawa et al., 2010). This system could, once initiated, provide a self-assembly 

mechanism to spread linearly along a chromosome fiber. Via dimerisation of the 

conserved Chromoshadow-domain, HP1 interacts with a plethora of PxVxL-

containing proteins functioning in almost every aspect of nuclear biology (Brasher et 

al., 2000; Cowieson et al., 2000; Nozawa et al., 2010). 

Less well understood are the molecular mechanisms to stop inappropriate enrichment 

of heterochromatic marks into neighboring euchromatic regions. There is evidence 

that subnuclear organization and higher order chromatin structures can limit 

spreading (Gaszner and Felsenfeld, 2006; Ishii et al., 2002). Furthermore, sequence 

specific DNA binding factors such as CTCF or YYI seem to contribute to boundary 

formation in higher eukaryotes. Other reports implicate tRNA, RNA polymerase III 

and/or TFIIIC and ncRNA in barrier formation (Lunyak et al., 2007; Noma et al., 

2006; Scott et al., 2006). In fission yeast, HP1Swi6 itself is involved in boundary 

formation and has been shown to recruit the antisilencing factor Epe1, whose specific 

degradation within heterochromatin is controlled by the Cul4-Ddb1/2 complex 

(Braun et al., 2011). A similar mechanism might be operating in the fungus 

Neurospora crassa (Honda et al., 2010). 
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2. Heterochromatin biology in unicellular 

organisms 

Much of our knowledge about the molecular details of heterochromatin formation 

and maintenance is based on studies performed in yeasts. Whereas the findings made 

in S. cerevisiae were instrumental for a conceptual understanding of silencing, the 

molecular components are different from the ones that are present in higher 

eukaryotes. Therefore, more recently people have changed their focus to fission yeast, 

which uses an H3K9me-HP1 system, similar to the one found in higher eukaryotes, 

for repression.  

In the following few paragraphs, I will first summarize our understanding of the 

heterochromatin-silencing pathways in unicellular eukaryotes. Based on this, I will 

introduce chromatin silencing systems in other eukaryotes with a particular focus on 

RNA and the involvement of HP1 and other chromodomain-containing proteins.   

 

2.1. The Saccharomyces cerevisiae SIR repression mechanism 

Position effect variegation is observed at the silent mating-type loci and near 

telomeres (telomere position effect, TPE) in budding yeast, however, it is absent from 

the 125bp centromeric region, which is not heterochromatic. Heterochromatin in 

budding yeast is different from fission yeast in that it lacks an RNAi component (see 

below) and does not contain H3K9me. However, it involves the action of the 

conserved Sir2 NAD-dependent histone deacetylase (Aparicio et al., 1991). The 

absence of any active marks seems to be sufficient to favour binding of the Sir2-3-4 

complex  (SIR: Silent Information Regulator). Cis-acting DNA sequences (nucleation 

sites) as well as binding proteins such as Rap1 and yKu are necessary to nucleate 

assembly and spreading of silent chromatin. Indeed, it seems that in budding yeast the 

silencing arises through compaction as well as the sterical hindrance of positive 

regulators of transcription. Furthermore, recruitment to the nuclear envelope seems 

to have a regulatory effect (Buhler and Gasser, 2009). 
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2.2. Heterochromatin silencing in S.pombe 

Heterochromatin in fission yeast can be found at the centromeres, the telomeres and 

silent mating-type loci (Allshire et al., 1994; Allshire et al., 1995; Lorentz et al., 1992; 

Lorentz et al., 1994; Thon et al., 1994).  

 

 
Figure 4 - Domain Architecture of centromeric, mating-type and telomeric heterochromatin 

in fission yeast 

The Centromere is composed of a central core region (cnt1) which is the site of kinetochore 
assembly and contains the histone variant Cenp-A. This core is flanked by innermost repeats (imr1) 
and outermost repeats (otr1). The otr regions are composed of dg and dh repeat elements. The 
inverted repeat (IRC1) elements and tRNA genes mark transitions between heterochromatin and 
surrounding chromatin and serve as boundary elements. The mating-type locus contains the mat1, 
mat2 and mat3 genes, whereby the transcriptional status of the mat1 gene (P or M) determines the 
mating type of the cell. The cenH element is thought to be an RNAi-dependent nucleation center 
that acts in a parallel pathway with Atf1/Pcr1 mediated assembly of heterochromatin. A cenH like 
element can also be found within the subtelomeric tlh1/2+ ORFs. At the telomere, RNAi nucleates 
heterochromatin from this region in a parallel pathway with Taz1. Figure adapted from (Grewal and 
Jia, 2007).  
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The assembly of heterochromatin in fission yeast involves the stepwise action of 

several chromatin-modifying complexes. First, histone deacetylase-containing 

complexes act globally as well as locally on acetylated histones (Grewal et al., 1998; 

Shankaranarayana et al., 2003; Yamada et al., 2005). This is followed by histone 

methylation by Clr4 and binding of HP1 proteins, that will lead to spreading of the 

heterochromatic domains (Cam et al., 2005; Nakayama et al., 2000; Nakayama et al., 

2001). The mechanisms for targeting, establishment and maintenance of 

heterochromatin at the different heterochromatic loci, however, show some distinct 

features. 

2.2.1. RNAi-dependent heterochromatin formation at the centromere 

At the centromeric domains silencing critically depends on RNAi. Deletion of any of 

the single RNAi genes encoding Dicer (Dcr1), Argonaute (Ago1) or RNA-directed 

RNA polymerase (Rdp1) leads to a loss of H3K9me and HP1 binding (Volpe et al., 

2002). This is phenotypcially reflected by impaired centromere function (Provost et 

al., 2002). Both forward and reverse strand transcripts have been detected in RNAi 

mutants. Furthermore, siRNAs matching to centromeric repeats have been identified 

in wild-type cells (Buhler et al., 2008; Cam et al., 2005; Reinhart and Bartel, 2002).  

Biochemical studies have led to the identification of a number of protein complexes 

involved in the formation of centromeric heterochromatin. It is thought that these 

complexes act together via physical interaction among themselves, with chromatin 

and nascent RNA and thereby establish and maintain heterochromatin in cis.   

Ago1 is found together with Chp1, Tas3 and a single stranded sRNA in a complex 

termed RITS (RNA-induced initiation of transcriptional silencing complex) that 

localizes to centromeres (Verdel et al., 2004). Tethering of RITS to a nascent RNA is 

sufficient to establish heterochromatin (Buhler et al., 2006). Furthermore, the RITS 

complex couples recognition of nascent RNA to H3K9me-binding via the Chp1 

chromodomain (Schalch et al., 2009).  

Upon recognition of a nascent transcript, RITS recruits an RNA-dependent RNA 

polymerase (Rdp1). Rdp1 resides in the RDRC complex, which contains Rdp1, the 

poly(A) polymerase family member Cid12 and a putative RNA helicase Hrr1. RITS 



Regulation of heterochromatic RNA decay via heterochromatin protein 1 (HP1)  

INTRODUCTION   

 

 

 
  

 10 

and RDRC physically interact and both localize to the centromere and associate with 

centromeric transcripts (Motamedi et al., 2004). Synthesis of dsRNA triggers cleavage 

by Dcr1, which is physically associated with RDRC and centromeres (Colmenares et 

al., 2007; Woolcock et al., 2010).  

The siRNA duplex is then loaded onto Ago1 with the help of a putative siRNA 

chaperone complex ARC, which contains a double stranded RNA along with two 

uncharacterized proteins Arb1 and Arb2 (Buker et al., 2007).  

Being at the core of heterochromatin formation at centromeres, RITS couples RNAi 

to histone modification. Nascent transcript bound RITS recruits the H3K9-

methyltransferase Clr4-containg complex CLRC via the LIM domain protein Stc1 

(Bayne et al., 2010). Accordingly, tethering of Clr4 to a euchromatic locus leads to the 

formation of heterochromatin independently of RNAi (Kagansky et al., 2009).  

 
Figure 5 – Tethering of RITS to nascent transcript mediates heterochromatin formation 

The RITS complex consisting of Ago1, Chp1 and Tas3 associates via siRNA-cenRNA base-pairing to 
centromeres. This results in the recruitment of several different complexes in cis, which are in turn 
responsible for H3K9 methylation, silencing, siRNA generation and creation of a positive feedback 
loop, which epigenetically maintains heterochromatin. Figure adapted from Bühler, 2007.  
 

2.2.2. Heterochromatin formation at the silent mating-type locus 

At the mating-type locus, the H3K14 deacetylase Clr3 is targeted by the ATF/CREB 

family to a REIII heptamer sequence (Yamada et al., 2005). Clr3 is found in a complex 

with Mit1, Clr1, Clr2 as well as the chromodomain protein Chp2. The action of this 

complex limits RNA polymerase II access to heterochromatin and thereby mediates 

transcriptional gene silencing downstream of H3K9me (Motamedi et al., 2008; 
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Sugiyama et al., 2007). In addition, the global histone deacetylase Clr6 (Nicolas et al., 

2007) interacts with the Asf1/HIRA histone chaperone complex to mediate chromatin 

remodeling in a pathway that requires HP1Swi6 for spreading (Yamane et al., 2011). 

Apart from the pathway that requires Atf1/Pcr1 as a nucleation element, 

establishment but not maintenance of heterochromatin silencing at the mating-type 

locus also requires RNAi (Hall et al., 2002; Jia et al., 2004). The fact that RNAi is only 

required for establishment, but not for maintenance of heterochromatin formation 

defines this as a classical epigenetic event, in which a state (in this case 

heterochromatin) can be transmitted to subsequent generations even in the absence of 

the trigger (RNAi).   

It is thought that targeting of the RITS complex occurs at a region that shares 

remarkable homology to the centromere (cenH). Indeed this region was found to be 

transcribed and de-novo localization of RITS to this region depends on Dicer (Dcr1). 

This data suggests that siRNAs generated by Dcr1 are targeting RITS de novo to the 

cenH region. It is possible that these sRNAs are produced from the centromere(s) and 

then act as guides for the recruitment of RNAi to the mat locus.  

Once established, H3K9me and HP1Swi6 are sufficient for heterochromatin 

maintenance at the mating-type locus (Noma et al., 2004). Mating-type silencing also 

depends on RNA turnover pathways (Buhler et al., 2007; Wang et al., 2008).  

2.2.3. Telomeric Heterochromatin 

In fission yeast, telomeric DNA consists of telomeric repeats that are about 300 bp 

long, which are flanked by rRNA genes on chromosome III and subtelomeric 

sequences that contain ORFs on chromosomes I and II. The telomere-specific 

recruiter Taz1 establishes H3K9me and HP1Swi6 heterochromatin (Kanoh et al., 2005). 

Additionally, Ccq1 helps to recruit Chp2 and the SHREC complex for transcriptional 

silencing (Sugiyama et al., 2007).  

The telomere-linked helicases tlh1+ and tlh2+ notably share extensive sequence 

homology with the cenH region found at centromeres suggesting that RNAi could be 

required. In support of this hypothesis, RITS associates with telomeres (Noma et al., 

2004) and some cumulative effects can be seen in RNAi-Taz1 double mutant cells 
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(Kanoh et al., 2005). Nonetheless, it is important to note that in comparison to the 

centromere and the mating-type locus, the silencing mechanisms operating at the 

telomere are the least studied. More experiments are required to refine the role of 

RNAi and other targeting pathways at this locus (Buhler and Gasser, 2009; Hansen et 

al., 2006; Kanoh et al., 2005). 

 

2.3. Heterochromatin silencing induces DNA elimination in 

Tetrahymena thermophila 

T. thermophila contains an extreme example of genome regulation, in which RNAi-

directed heterochromatin formation results in the complete elimination of a 

potentially harmful sequence from the genome (Mochizuki, 2011). Apart from the 

work in S. pombe, this is to date one of most convincing examples of nuclear RNAi 

and a direct involvement in heterochromatin formation.  

Each cell of the ciliated protozoan Tetrahymena contains a germline micronucleus 

and a somatic macronucleus. The macronucleus lacks 15% of the DNA sequences 

found in the zygotic nucleus or the micronucleus due to DNA elimination occurring 

in developing macronuclei during late stages of conjugation. Many of the eliminated 

sequences are transposon-like repeats and other repetitive sequences.  

This process requires the Ago protein Twi1p (Mochizuki et al., 2002). Normally 

Twi1p localizes to the cytoplasm, however during early stages of conjugation, it is 

directed to the parental macronucleus until the micronuclei undergoes meiosis 

followed by fertilization (Noto et al., 2010). Once the zygotic nucleus gives rise to the 

next generation micro- and macronuclei, Twi1p relocalizes to the newly formed 

macronucleus. This is accompanied by 28nt scnRNAs that are processed from 

bidirectional transcripts of the whole micronucleus genome. An RNA that is 

homologous to any sequence in the old macronucleus is degraded, possibly via base-

pairing interaction of the Twi1p-scnRNA complex with nascent transcripts. However, 

the ones not matching a DNA sequence remain stable and are transferred to the new 

macronucleus. There, they participate in heterochromatinization via H3K9me and 

H3K27me and subsequent elimination of the DNA sequences.  
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Importantly this process requires two chromodomain proteins Pdd1p and Pdd3p that 

are both required for H3K9me establishment and recognition. Tethering of Pdd1p is 

sufficient to promote DNA excision. Additionally, Pdd1p also recognizes H3K27me3, 

which is catalyzed by a E(z) homolog. It is thought that a Twi1p-scnRNA complex 

recruits E(z) and subsequent recognition of H3K27me via the chromodomain protein 

Pdd1p. This in turn would mediate H3K9me and DNA elimination (Liu et al., 2004; 

Liu et al., 2007; Taverna et al., 2002).  

It remains to be demonstrated whether a similar complex like RITS, composed of 

Pdd1p and Twi1p also exists in Tetrahymena. This would provide a missing 

biochemical link between RNAi and the chromatin modifying complexes.  

 

2.4. A genome defense system in Neurospora crassa inactives 

repetitive sequences by mutation and subsequent 

heterochromatinization  

The filamentous fungus Neurospora crassa has several mechanisms to suppress 

transposon invasion. In the vegetative stage, RNAi triggers post-transcriptional gene 

silencing (PTGS), a phenomenon that has been initially termed quelling. Similarly, 

RNAi has been implicated in MSUD (Meiotic silencing of unpaired DNA), the DNA 

damage response, a classical miRNA pathway and a novel silencing mechanism that 

uses Dicer-independent siRNAs (disiRNA) (Dang et al., 2011; Lee et al., 2009; Wei et 

al., 2012). However, it remains to be demonstrated whether any of these mechanisms 

is directly involved in chromatin modification.  

During the sexual cycle, however, transposable elements and repetitive sequences are 

silenced by DNA methylation after their inactivation via a Neurospora specific defense 

system termed RIP (repeat-induced point mutation). RIP is a mechanism in which 

repeated sequences are specifically targeted for sequence alteration from G:C to A:T. 

These “edited” regions then become targeted by DNA methylation, which occurs 

unlike CpG in vertebrate cells, at cytosine residues in any sequence context (Rountree 

and Selker, 2010; Selker, 2002).  
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DNA methylation by DIM-2 occurs downstream of H3K9 methylation by DIM-5 and 

involves recruitment by HP1 (Freitag et al., 2004; Selker et al., 2003). In fact, DNA 

methylation, H3K9me3 and HP1 almost completely overlap and the H3K9 

methylation machinery is sufficient to establish DNA methylation (Lewis et al., 2009). 

More recent studies demonstrated that HP1 is also involved in silencing 

independently of DNA methylation at the centromere (Honda et al., 2012). 

Interestingly, HP1 was also shown to interact with a JmjC domain protein DMM-1, 

which prevents spreading of heterochromatin into nearby genes (Honda et al., 2010). 

This is reminiscent of the situation in S.pombe, where HP1Swi6 recruits the anti-silencer 

Epe1, which is involved in boundary formation. 

It is still unclear how the RIPed sequences are recognized. It is interesting, that 

recognition of AT-rich DNA, which is characteristic of RIPed sequences, involves the 

DIM-5 complex that contains Cul4 and Ddb1, which is similar to the fission yeast 

CLRC complex (Jia et al., 2005; Zhao et al., 2009). Another open question is how these 

regions are actually silenced. Intriguingly, DNA methylation and H3K9me do not 

seem to inhibit transcription initiation (Rountree and Selker, 1997), suggesting that 

co- or posttranscriptional RNA turnover mechanisms might be operating (Barra et al., 

2005). 

2.5. An Ascobulus Immersus defense system epigenetically 

silences repetitive sequences 

MIP (methylation-induced premeiotically) is a process in which duplicated copies of a 

gene become DNA methylated during the sexual phase. In contrast to RIP in 

Neurospora crassa, however, these sequences are not subjected to mutation (Barry et 

al., 1993). The silencing persists epigenetically even when only a single copy is 

inherited (Rhounim et al., 1992). The DNA methylation is catalyzed by Masc1 and 

possibly other redundant enzymes (Malagnac et al., 1997). An involvement of 

H3K9me or HP1 proteins has not been described. Very interestingly, truncated 

transcripts are produced from these MIPed regions, which have been attributed to 

RNA polymerase stalling (Barra et al., 2005). Nevertheless, it is interesting to speculate 

that post- or co-transcriptional degradation mechanisms could be acting as well.  
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3. Heterochromatin biology in multicellular 

eukaryotes 

3.1. Silencing in Drosophila melanogaster 

3.1.1. Occurrence and function of heterochromatin 

About one third of the D. melanogaster genome is heterochromatic. It is mainly found 

at pericentric regions and the telomeres and consists largely of transposable elements 

(TEs). Molecularly, it is characterized by the presence of H3K9me, HP1 (encoded by 

the Su(var)2-5 gene), but the absence of DNA methylation. The central core region of 

the centromere, like in fission yeast and higher eukaryotes, is enriched for the histone 

variant CID/CENP-A (Sullivan and Karpen, 2004).  

Whilst the key function of heterochromatin in Drosophila is the silencing of 

transposable elements (TEs) and viruses, it is interesting that TEs are also important 

to maintain telomere function. In contrast to most other eukaryotes that use 

telomerase-generated short repeats, flies use arrays of retrotransposons for telomere 

homeostasis. Here, the silencing function of HP1a seems to be mediated by the 

chromodomain, however, the localization to telomeres is mediated by direct DNA 

binding (Mason et al., 2008). 

Heterochromatin formation results in the loss of gene expression in position effect 

variegation (PEV), a paradigm that allowed genetic identification of many of the 

molecular components of heterochromatin in D. melanogaster (Eissenberg et al., 

1990). In these pioneering studies, a dosage response was observed for many factors: 

additional copies of the variegator genes resulted in increased silencing, whereas 

reduction resulted in loss of PEV. Furthermore, insertion of repetitive reporter 

sequences into the genome is sufficient to cause PEV (Dorer and Henikoff, 1994). 

HP1a directly interacts with Su(var)3-9 and this dual interaction with both the 

modified histone and the modifying activity has been suggested to form the core of 

the heterochromatin self-assembly and spreading machinery (Grewal and Elgin, 
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2007). Consistent with this model, tethering of HP1a to euchromatic sites is sufficient 

to induce gene silencing and bypasses the requirement of Su(var)3-9 (Li et al., 2003).  

 

Intererstingly, in Drosophila HP1a is not limited to heterochromatin, but also 

associates with euchromatin and seems to be involved in positive regulation of gene 

expression. Furthermore, there are 4 other HP1s in Drosophila, which have 

euchromatic preference and/or are germline specific. It is however still poorly 

understood, how this dual role as a repressor and activator works on a mechanistic 

and molecular level (Piacentini et al., 2009; Vogel et al., 2009).   

3.1.2. RNA and heterochromatin formation in Drosophila. 

Small RNAs are major players in regulating gene expression and have been suggested 

to contribute to heterochromatin formation in Drosophila. In contrast to the well-

established role of HP1s and H3K9me, there are still many open questions regarding 

the contribution of the RNAi machinery to heterochromatin formation.  

In the Drosophila germline, the piRNA pathway is an essential RNAi mechanism for 

retrotransposon silencing and developmental gene regulation (Simonelig, 2011). 

piRNA pathway mutations cause defects in the germline and embryonic axis 

specification. Molecularly, it is based on the production of 24-30nt RNAs that 

associate with the Piwi-clade of Argonaute proteins. piRNAs are produced in a Dcr-

independent manner from presumably single-stranded precursors which reside in 

distinct genomic clusters (Aravin et al., 2006; Brennecke et al., 2007; Gunawardane et 

al., 2007; Malone et al., 2009). Most of these clusters reside in heterochromatin, 

however, only a subset produces piRNAs. The piRNAs then act in trans to slice target 

transcripts. This occurs via three specialized Argonautes, the nuclear Piwi and the 

perinuclear Aubergine (Aub) and Ago3, which cooperate in a ping-pong 

amplification cycle to produce more piRNA. At the same time, this mechanism 

eliminates potentially harmful transposon transcripts. It is still unclear, how the initial 

precursor transcript is recognized and how the primary piRNA, that is required to 

start the ping-pong cycle, is produced. One possible explanation is that primary 

piRNAs could be inherited maternally (Brennecke et al., 2008).  



Regulation of heterochromatic RNA decay via heterochromatin protein 1 (HP1)  

INTRODUCTION   

 

 

 
  

 17 

Interestingly, an HP1 protein, Rhino, is required for piRNA production (Klattenhoff 

et al., 2009). Consistently, piRNA cluster transcription requires SETDB1-catalyzed 

H3K9me (Rangan et al., 2011). Furthermore, the putative nucleases Squash and 

Zucchini have been suggested to cleave the precursor transcripts, to produce such a 

primary piRNA. It is therefore tempting to speculate, that recognition of piRNA 

precursors via a chromatin protein (Rhino?) would trigger cleavage by Squash and 

Zucchini. These degradation products could then trigger the ping-pong amplification 

cycle via Piwi, Ago3 and Aub (Khurana and Theurkauf, 2010).  

Because HP1a interacts with both Piwi and Su(var)3-9 in the soma, it has been 

hypothesized that germline piRNAs not only arise from heterochromatic regions but 

might also feedback to and guide chromatin modifications (Khurana and Theurkauf, 

2010). There is currently data supporting as well as contradicting this hypothesis 

(Moshkovich and Lei, 2010; Wang and Elgin, 2011). More studies are required to 

finally address this issue.  

 

A functionally distinct RNAi pathway operates in genome defense in somatic cells. 

This endo-siRNA pathway involves Dcr2-dependent sRNAs corresponding to 

transposon-derived sequences and a subset of mRNA stem loop structures, which 

direct Ago2 mediated target cleavage (Czech et al., 2008; Ghildiyal et al., 2008; 

Kawamura et al., 2008; Okamura et al., 2008). In contrast to S. pombe and plants, 

amplification by an RNA-dependent RNA polymerase seems to be absent in this case. 

Whilst the effector complexes are triggered by the presence of siRNAs, it is unclear 

whether recognition of the precursor transcripts by Dcr-2 involves a chromatin 

component.  

Interestingly, endo-siRNAs have been linked to heterochromatin formation 

(Fagegaltier et al., 2009). Mutations in piwi and spindle-E, encoding a DEAD-motif 

RNA helicase, were previously shown to cause a loss of PEV in the soma and result in 

a dramatic redistribution of HP1a and reductions in H3K9me. Additionally, sRNAs 

corresponding to silenced PEV reporters have been identified (Brower-Toland et al., 

2007; Haynes et al., 2006; Pal-Bhadra et al., 2004). On the other hand there is also 

conflicting data suggesting that RNAi is not involved in heterochromatin formation in 
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Drosophila (Moshkovich and Lei, 2010). It could be that RNAi influences 

heterochromatin only under certain circumstances and these effects could be locus 

specific.  

In summary, the key function of heterochromatin is to repress transposon activity 

both in the Drosophila soma and germline. The repression mechanisms involve 

transcriptional inactivation and RNA degradation via RNAi. RNA degradation by 

RNAi can be triggered by transcription from a heterochromatic context. To what 

extent the various RNAi mechanisms may feedback to chromatin is still being debated 

and an intense field of study at the moment (Malone and Hannon, 2009).  

3.1.3. Facultative heterochromatin formation via the polycomb system 

In higher eukaryotes like Drosophila, another chromatin-based repression system is 

present, which is required for the stable and heritable maintenance of gene-expression 

patterns in different cell lineages. This is achieved by the Polycomb group (PcG) 

proteins, which regulate genes involved in developmental decisions, for example Hox 

genes. These proteins were first identified in Drosophila where mutations show 

characteristic defects in body patterning (Beisel and Paro, 2011).  

Consistently, PcG targets are highly enriched for transcription factors and regulators 

of developmental pathways (Schwartz et al., 2006). The hallmark histone 

modifications associated with Pc repression are H3K27me3 and H2A-K119ub. In 

Drosophila, targeting of the Pc proteins occurs by defined cis-regulatory DNA 

elements (PcG response elements, PREs). These elements are characterized by a 

complex pattern of motifs that are in turn recognized by various sequence-specific 

DNA-binding proteins such as Pleiohomeotic (PHO), GAGA factor (GAF) or Zeste 

(Simon and Kingston, 2009).  

Two protein complexes, PRC1 and PRC2, form the molecular core of the Polycomb 

repression system. PRC1 contains PC (Polycomb), SCE (Sex combs extra), PH 

(Polyhomeotic) and PSC (Posterior Sex combs). PC itself is the “reader” protein, that 

binds to H3K9me3 or H3K27me3. The complex then catalyzes H2A-K119 

ubiquitylation via the SCE RING finger activity, which possibly mediates gene-
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silencing via chromatin compaction and inhibition of RNA polymerase 2 elongation 

(Francis et al., 2004; Stock et al., 2007; Wang et al., 2004).  

PRC2 contains E(Z) (Enhancer of Zeste), ESC (Extra sex combs), SU(Z)12 

(Suppressor of Zeste), NURF55 (Nucleosome remodeling factor 55) and PCL 

(Polycomb-like). It contains both “readers” (ESC) and “writers” (EZH1) for the 

H3K27me3 mark, providing an inherent mechanism for the epigenetic propagation of 

the mark during cell division (Margueron et al., 2009; Schmitges et al., 2011). 

Although it is clear that the H3K27me mark is repressive, it is not known how this 

repression is achieved on a molecular level.  

 

 

3.2. Heterochromatic loci are targeted by multiple silencing 

pathways in plants 

Plants use a combination of H3K9me, DNA methylation and sRNA pathways for 

chromatin silencing. They are required to regulate gene expression and to protect the 

genome from parasitic DNA elements. In most of these cases, the silenced elements 

contain transposons and repetitive sequences such as inverted repeats (Chan et al., 

2005; Lippman et al., 2004).  

In the RNAi-dependent pathway (RdDM), 24nt siRNAs that originate from these 

regions promote heterochromatin formation (Chan et al., 2004). These 24nt sRNAs 

seem to be mobile and are able to transmit epigenetic modifications systemically 

within the plant (Molnar et al., 2010). The amplification mechanism for siRNA 

production from these DNA methylated regions occurs via a specialized transcription 

complex (Pol IV), an RNA-dependent RNA polymerase (RDR2) and a Dicer-complex 

(Dcl3, Hen1, Drb). Chromatin modifications are then triggered via Ago4. The 

interaction of Ago4 with a downstream polymerase PolV suggests that a nascent 

transcript model, like the one proposed for fission yeast, might apply. In support of 

this hypothesis, genetic experiments have shown that recruitment of the DNA 

methyltransferase Drm2 requires Ago4, and biochemically, this interaction could be 

mediated by Rdm1 (Gao et al., 2010). The initial primary RNAs that trigger Ago4 
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mediated silencing have been proposed to result from overlapping transcription by 

PolII (Matzke et al., 2009).  

Whilst the crosstalk between RNAi and DNA methylation are well studied, the role of 

H3K9me in gene silencing is less understood. Guiding of the DNA methyltransferase 

CMT3 depends on the Kryptonite H3K9 methyltransferase (Chan, 2008; Jackson et 

al., 2002). Intriguingly, the chromodomain of CMT3 recognizes H3 tails that are 

simultaneously methylated at H3K9 (mediated by KYP) and H3K27 (Lindroth et al., 

2004). While DNA methylation seems to transcriptionally silence transposons, a 

posttranscriptional layer operating via H3K9me seems to exist, too (Mirouze et al., 

2009).  

Studying H3K9me has been complicated by the fact that there are at least 29 active 

SET-domain proteins in Arabidopsis, of which 14 belong to the Su(var)3-9 group 

(Baumbusch et al., 2001). Indeed, the contribution of all these enzymes seem to be 

locus specific (Yu, 2009). Similarly, H3K9me3 is found at euchromatic regions and the 

exact nature of the heterochromatic histone “code” has not yet been clearly defined. 

 

The Arabidopsis HP1 homolog LHP1 is not a component of constitutive 

heterochromatin, but rather recognizes H3K27me3 in vivo. It represses genes located 

within euchromatin, which is characteristic of polycomb (Pc) mediated repression 

(Libault et al., 2005; Turck et al., 2007; Zhang et al., 2007). The Pc system is best 

studied in the cold-induced repression at the FLOWERING LOCUS (FLC). The FLC 

is modified by both H3K9me2 and H3K27me2 (Bastow et al., 2004). The nuclear 

proteins FCA and FPA co-transcriptionally recognize aberrant RNA produced from 

the FLC locus, which in turn triggers epigenetic silencing. This pathway only acts in 

cis and lacks an siRNA amplification cycle that is characteristic of the classical RdDM 

(Baurle et al., 2007).  

LHP1 is required for maintaining the repressed state of the FLC (Mylne et al., 2006; 

Sung et al., 2006). Consistently, mutations in LHP1 affect flowering time and plant 

architecture (Gaudin et al., 2001). On the contrary, they do not affect silencing of 

genes positioned in constitutive heterochromatin (Nakahigashi et al., 2005).  
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Interestingly, the ncRNA COLDAIR is required to recruit PRC2 to the FLC locus and 

maintain its repression via H3K27me in the cold (Heo and Sung, 2010). DCL4 seems 

to control the expression of the FCA gene via co-transcriptional cleavage of nascent 

read-through transcripts, which promotes transcription termination and FCA 

expression (Liu et al., 2012).  

 

Generally, it seems that multiple silencing systems, acting in cis and trans, and 

integrating RNA components in different ways, cooperate to mediate chromatin 

modification and silencing. This variety might have evolutionary reasons, as plants 

lack adaptive immune systems like the ones that can be found in vertebrates.  

 

3.3. Regulation of heterochromatin plasticity in Caenorhabditis 

elegans 

Heterochromatic H3K9me, but no DNA methylation marks, are also found in the 

nematode C. elegans. Their chromosomes are holocentric and therefore do not 

contain pericentric repeats. However, heterochromatic regions are found at the 

chromosome ends and during meiosis (Wenzel et al., 2011). 

H3K9me2 and H3K9me3 are differentially localized and generated by distinct 

enzymes: MET-2 (SETDB homolog) for H3K9me2 or MES-2 (E(z) homolog) for 

H3K9me3 (Bessler et al., 2010; Liu et al., 2010).  

There are two HP1 proteins in C. elegans: HPL-1 and HPL-2, which are 48% identical 

and have partially redundant functions (Couteau et al., 2002; Schott et al., 2006). 

Another class of H3K9me-readers include MBT domains and have also been shown to 

specifically bind to H3K9me2/3 (Koester-Eiserfunke and Fischle, 2011).  

Heterochromatin seems to function during early meiosis, when H3K9me2 marks 

accumulate on unpaired chromosomes (e.g. the male X chromosome). Interestingly, 

this process depends on some RNAi factors, such as the RNA-directed RNA 

polymerase EGO-1 and the Piwi/Ago protein CSR-1. The RNAi proteins seem to be 

required for selective accumulation of the heterochromatic marks on the unpaired 

chromosomes (She et al., 2009).  
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In line with these findings, it has been shown that endo-siRNAs can direct H3K9me 

(Burkhart et al., 2011; Burton et al., 2011). Repetitive transgenes are transcriptionally 

silenced when introduced into worms. This causes a trans-effect, which also silences 

the cognate endogenous genes. The repression depends on both RNAi and chromatin 

factors and results in decreased RNA Pol II occupancy on the silenced genes (Grishok 

et al., 2005; Robert et al., 2005; Sijen and Plasterk, 2003).  

Heterochromatin is also required for transposon silencing in the C. elegans germline 

(Sijen and Plasterk, 2003). piRNAs trigger silencing, which is maintained by the HP1 

homolog HPL-2, two methyltransferases and a nuclear Argonaute protein. This 

represents a multigenerational epigenetic inheritance mechanism, which is triggered 

by sRNAs (Ashe et al., 2012; Bagijn et al., 2012; Lee et al., 2012; Shirayama et al., 

2012).  

 

3.4. Heterochromatin in mammals 

Constitutive heterochromatin in mammals is characterized by the presence of 

H3K9me, H4K20me, H3K27me1 and DNA methylation. H3K9me1, me2 and me3 

occur at distinct loci throughout the genome and their plasticity is highly regulated 

through the concerted action of different enzymes (Rice et al., 2003). A fully 

comprehensive picture of the modifications and their regulation is not yet available. 

The reason is not only the complexity of mammalian development, but also the fact 

that genome-wide technologies, which are instrumental for the studies of such large 

genomes, have only become available recently and still are undergoing rapid 

development. 

3.4.1. Occurrence of heterochromatic marks 

In mouse embryonic stem cells (mESCs), which is the best-studied model system, 

H3K9me3 is highly correlated with the repressive mark H4K20me3. There is a strong 

enrichment at telomeres, pericentric satellite and long terminal repeats (LTRs). 

Interestingly, the enrichment at LTRs mainly reflects sequences that are known to 

produce dsRNA. H3K9me3 is also found on imprinting control regions (ICRs), whilst 

in this case on the other allele the active H3K4me3 mark is found. In some cases, the 
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H3K9me3 mark is able to spread from these repetitive regions to repress proximal 

sites (Martens et al., 2005; Meissner et al., 2008; Mikkelsen et al., 2007).  

 

 
Figure 6 - Repetitive elements in the mouse genome 

Major and minor satellite repeats are found in sequences surrounding the centromere. DNA 
transposons do not require an RNA intermediate for transposition but use a “cut and paste” 
mechanism. The LTR, LINE and SINE retrotransposition mechanism involves reverse transcription 
and insertion of the copy at a new site in the genome. SINEs require LINEs for their propagation, as 
they do not encode for proteins. H3K9me3 is found in satellite, DNA transposons and LTR repetitive 
elements. The LTRs enriched in H3K9me3 comprise elements from endogenous retroviruses (class I 
and II ERVs) and lose this mark during differentiation. Abbreviations: ITR, inverted terminal repeat; 
LTR, long terminal repeat; Gag, group-specific antigen (capsid proteins); Pol, polymerase; Env, 
envelope; LINE, long interspersed nucleotide element; SINE, short interspersed nucleotide element; 
L, Left monomer; R, Right monomer; Figure adapted from (Martens et al., 2005). 
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H3K9me2 can be found at quite high basal levels in mouse ES cells and during 

differentiation subtle local changes occur (Filion and van Steensel, 2009; Lienert et al., 

2011). H3K9me1 has been studied in human T-cells, where it was surprisingly found 

to be associated with transcribed regions (Barski et al., 2007).  

The H3K9me marks are in a dynamic regulation with other marks, a process that is 

still incompletely understood. For example, the HDAC Sirt1 and the HKMT Suv39h 

(see below) are functionally and physically linked (Vaquero et al., 2007). Another 

form of repressed chromatin, H4K20me, is linked to H3K9me, whereby the 

methylation state of each residue defines a distinct repressed region within the 

mammalian genome (Nishioka et al., 2002; Sims et al., 2006). 

A conserved feature is the enrichment of the histone variant CENP-A in the central 

core of the centromere (Sullivan and Karpen, 2004). Furthermore, constitutive 

heterochromatin (H3K9me2) is not associated with the nuclear periphery in 

mammals (Guelen et al., 2008). 

3.4.2. Deposition of heterochromatic marks (“Writers”) 

The deposition of the different H3K9me marks is very complex in mammals, as they 

contain several different SET-domain containing Histone-Lysine-Methyltransferases 

(HKMTs).  

 
Figure 7 - Domain architecture of mammalian HKMTs 

The three major mammalian Histone-Lysine-Methyltransferases (HKMTs) families all contain a pre-
SET and SET-domain (green) that are catalytically active. The remaining parts differ considerably in 
size and domains. Suv39h1/2 contain a N-terminal chromodomain (CD, yellow) that binds H3K9me. 
The Ankyrin repeats (A) in the G9a/GLP family exert the same function and are H3K9me binding 
modules. SETDB1 contains two Tudor domains (T), which in other proteins are known to bind 
methylated lysines or dimethylated arginines. Additonally, it contains a DNA methyl-binding 
domain (MBD), which is required to couple H3K9me to DNA methylation. Suv39h1/2 catalyzes 
H3K9me2 and me3, G9a/GLP me1 and me2, SETDB1 me3 (shown as blue hexagons).  
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(a) Suv39h family  

Suv39h1 and Suv39h2 are responsible for H3K9me2 and me3 in pericentromeric 

heterochromatin. Like their counterparts in other eukaryotes, they contain an N-

terminal Chromdomain (CD). Enzymatic activity is inhibited by H3K9 acetylation 

(Ac) and H3S10 phosphorylation (P), however stimulated by H3K14Ac (Peters et al., 

2003; Rea et al., 2000).  

The single Suv39h1 and Suv39h2 knockout mice are viable suggesting that these 

enzymes act redundantly during embryogenesis. In adults, Suv39h2 is specifically 

expressed in adult testes and is important for organizing meiotic heterochromatin in 

the male germline (O'Carroll et al., 2000). Double mutant mice contain aberrant 

H3K9me at pericentric heterochromatin resulting in impaired viability, chromsome 

missegregation, the development of lymphomas due to genomic instability and 

infertility (Peters et al., 2001).  

On a molecular level, Suv39h1/2 proteins create the substrate for and interact with 

HP1 proteins (Aagaard et al., 1999). HP1α and HP1β in turn interact with the de novo 

DNA methyltransferase Dnmt3b, which suggests that DNA methylation occurs 

downstream of H3K9me through recruitment via HP1. Consistently, pericentric 

localization of Dnmt3b and DNA methylation at major, but not minor satellite 

repeats is impaired in Suv39 dn ES cells. This is accompanied by the accumulation of 

major satellite transcripts (Lachner et al., 2001; Lehnertz et al., 2003; Martens et al., 

2005).  

Besides the function at pericentric heterochromatin, H3K9me and DNA methylation 

are also involved in telomere length homeostasis (Garcia-Cao et al., 2004; Gonzalo et 

al., 2006). Suv39h1 has also a role outside constitutive heterochromatin, as it was 

shown to act together with HP1 and Rb in a transcriptional co-repressor complex to 

regulate the cyclin E promoter. This process links heterochromatinization to cell cycle 

regulation (Nielsen et al., 2001b).  

(b) G9a/GLP family 

The major H3K9me1 and H3K9me2 HKMTs are G9a and GLP, which in contrast to 

Suv39h1/2 lack a chromodomain (CD) but instead contain N-terminal Ankyrin (Ank) 
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repats. The Ank repeats, however, seem to exert the same function as the CD, as they 

are methyllysine-binding modules (Collins et al., 2008). The loss of G9a or GLP affects 

mainly euchromatic regions and causes severe growth retardation and early lethality 

in mice. Consistently, these two proteins were found to form a heterodimeric complex 

that is required for their function in vivo (Tachibana et al., 2002; Tachibana et al., 

2005). A self-enforcing spreading mechanism has been proposed based on the finding 

that G9a directly interacts with HP1 and Dnmt1, and HP1 interaction with Dnmt1 

stimulates its enzymatic activity (Esteve et al., 2006; Smallwood et al., 2007). G9a is 

involved in silencing retrotransposons through CpG methylation. Interestingly, this is 

independent of the catalytic activity, H3K9me3 and HP1 recruitment (Dong et al., 

2008). Recent studies have suggested that G9a is particularly required for silencing 

newly acquired proviruses but not for the maintenance of the silent state (Leung et al., 

2011).   

G9a acts on a number of non-histone targets, for example the transcription factor 

MyoD (Ling et al., 2012; Rathert et al., 2008). It would be interesting to address how 

much of the phenotypes caused by HKMTs mutation can be attributed to histone 

methylation versus non-histone substrates. 

(c) SETDB1/2 family 

Similar to G9a/GLP, the HKMT ESET/SETDB1 localizes predominantly to regions 

outside of constitutive heterochromatin and also lacks a N-terminal CD. Instead, 

SETDB1 contains two tudor domains that recognize methylated arginines. The KAP1 

co-repressor recruits SETDB1 to promoters and coordinates histone methylation and 

HP1 deposition to mediate gene silencing (Schultz et al., 2002). Like the HP1-

Suv39h1/2 pathway, DNA methylation is also coordinated with H3K9me by SETDB1. 

The methyl CpG binding protein MBD1 directly interacts with SETDB1 during 

replication (Sarraf and Stancheva, 2004). Interestingly, a SETDB1 interaction partner, 

mAM (ATF/CREB family member), stimulates the enzymatic activity to convert 

H3K9 di- to trimethyl (Wang et al., 2003).  

In mESCs, SETDB1 seems to have a crucial function in controlling H3K9me3 of LTR-

containing retroviruses (ERVs) and seems to function independently of DNA 
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methylation in these cells (Matsui et al., 2010). Aberrant activation of ERVs caused 

transcription of promoter-proximal viral elements into genes resulting in the 

production of chimeric transcripts (Karimi et al., 2011).  Interestingly, HP1 proteins 

are dispensable for retroviral silencing (also see below), indicating that H3K9me3 

serves a different role in maintaining these elements in a silent state (Maksakova et al., 

2011). In contrast to SETDB1 and its euchromatic function, SETDB2 has been less 

studied but it seems to be involved in centromeric function (Falandry et al., 2010).  

3.4.3. Occurrence and function of mammalian HP1s (“readers”)  

Apart from the HKMTs, HP1 proteins are the second key component of 

heterochromatin. There are three HP1 homolouges in humans and mice, which share 

almost the same sequence between the two species and are highly conserved among 

each other. In vivo, HP1α is exclusively localized to heterochromatin, whereas HP1β 

and predominantly HP1γ are also found in euchromatin (Maison and Almouzni, 

2004; Minc et al., 2000). While these conclusions were mainly based on microscopical 

observations, recently published ChIP-Seq data confirmed that 89% of the human 

HP1γ (Cbx3) associates with genic regions, which do not contain H3K9me2/3 marks 

(Smallwood et al., 2012). 

In vivo targeting of either HP1α or HP1β is sufficient to recruit SETDB1, mediate 

H3K9me3, chromatin condensation and stable gene repression (Ayyanathan et al., 

2003; Verschure et al., 2005). Heterochromatin formation results in repression and 

PEV (Hiragami-Hamada et al., 2009). By transiently tethering HP1α to an ectopic 

locus, the dynamics of heterochromatin formation and spreading could be resolved 

(Hathaway et al., 2012). This study demonstrated that a newly formed 

heterochromatic allele was epigenetically inherited even when the tethered HP1α was 

removed. Surprisingly, HP1 is highly dynamic, which suggests that the silencing 

effects do not occur through formation of a static network (Cheutin et al., 2003). 

Accordingly, HP1α dissociates from centromeres upon heat shock, however this does 

not lead to a loss of H3K9me or decompaction of chromatin (Velichko et al., 2010). 

These findings reflect our poor understanding of the actual molecular mechanism of 

HP1 silencing and its other functions in (euchromatic) genome regulation that are 
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seemingly contradictory. For example, human HP1γ associates with RNA Polymerase 

II to recruit splicing factors to euchromatic genes (Smallwood et al., 2012).  

 

Figure 8 - HP1 interaction partners 

HP1 proteins contain a N-terminal 
Chromodomain (CD) and a C-terminal 
Chromoshadow-Domain (CSD), which is 
separated by the intrinsically unstructured 
Hinge region. The CD of HP1 was shown 
to be an H3K9me binding module. The 
hinge region binds nucleic acids, 
chromatin as well as Importins. The CSD 
domain binds a plethora of factors mostly 
through recognition of a PxVxL peptide 
motif, which requires HP1 homo- and 
heterodimerization. This includes 
chromatin remodelers and transcriptional 
repressors (CAF1, ZnF proteins, TIF1b), 
Histone-modifiers and enzymes (HKMTs, 
the PRC2 member Suz12, SENP7) as well 
as kinetochore and cohesin complexes 
(Aurora B, InCENP, hScc2, hMIS12 and 13).  
  
 

 

HP1 proteins interact with a plethora of factors including H3K9-methylated histones 

(Bannister et al., 2001; Kaustov et al., 2010; Lachner et al., 2001), the core histone H3 

(Richart et al., 2012), chromatin remodelers, cell cycle regulators, DNA damage 

response proteins, DNA methyltransferases (Nozawa et al., 2010), RNA and DNA 

(Maison et al., 2011; Muchardt et al., 2002; Sugimoto et al., 1996). Many of the protein 

interaction partners contain a PxVxL pentapeptide motif, which is recognized by the 

chromoshadow domain (CSD) dimer (Cowieson et al., 2000; Smothers and Henikoff, 

2000). The CSD forms both homo- and heterodimers in vivo and in vitro (Nielsen et 

al., 2001a).  

Additionally, HP1 proteins are posttranslationally modified and this contributes to 

their plastic regulation. For example, phosphorylated HP1γ serves as a marker for 

transcription elongation and has impaired silencing activity (Lomberk et al., 2006). 

Phosphorylated HP1β is released from H3K9me heterochromatin and initiates a 

signaling cascade promoting the DNA damage response (Ayoub et al., 2008). HP1α is 
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sumoylated in vivo and this modification is required for its targeting to 

heterochromatin. In vitro, sumoylated HP1α interacts with RNA, however in vivo 

experiments identifying HP1α RNA targets and linking RNA binding mechanistically 

to heterochromatin formation are still missing (Maison et al., 2011; Muchardt et al., 

2002).  

The variety of binding partners, posttranslational modifications and the ability to 

hetero- and homodimerize could explain the multifaceted role of the HP1 proteins, 

which possibly expand their function from being classical silencers. Cbx5 (HP1α) null 

mice are viable and fertile exhibiting no obvious abnormality. Cbx1 (HP1β) null 

mutation results in perinatal lethality in mice (Aucott et al., 2008). These animals have 

defects in forming neuromuscular junctions and display aberrant cortex formation. 

Cbx3 (HP1γ) deficient mice hardly ever reach adulthood and are characterized by 

severe hypogonadism and loss of germ cells. There is indication that this could be 

caused by ectopic expression of the normally silenced L1 retrotransposon (Abe et al., 

2011; Brown et al., 2010). On the other hand, it has been demonstrated that HP1s 

alone or in combination do not contribute to the silencing of proviral ERVs, as their 

combined depletion did not lead to the derepression of these elements (Maksakova et 

al., 2011). This could reflect functional redundancy with other H3K9me readers or 

point towards a silencing model that involves H3K9me but not HP1s.  

3.4.4. The mammalian Polycomb group proteins 

The Polycomb repression system is also found in mammalian cells, in which the Pc 

group proteins are usually found at promoter regions of their target genes (Beisel and 

Paro, 2011). Like in Drosophila, they are essential for regulation of developmental 

genes during differentiation (Boyer et al., 2006; Lee et al., 2006; Mohn et al., 2008). 

Accordingly, mutation of Pc proteins leads to early lethality in mice (Faust et al., 1995; 

O'Carroll et al., 2001; Pasini et al., 2004). 

The mammlian PcG proteins reside in two different complexes, PRC1 and PRC2. 

PRC1 contains mammalian Cbx2, 4, 6, 7 and 8, which contain an N-terminal 

chromodomain (CD). Whilst the Drosophila Pc CD binds H3K27me3, the 

mammalian counterparts recognize either H3K9me3 or H3K27me3, both or none of 
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these marks. Intriguingly, the CD of Cbx7, which binds both H3K9me3 and 

H3K27me3 also binds RNA (Bernstein et al., 2006).  

The PRC2 complex contains the catalytic activity that mediates H3K27-methylation 

(E(z)) and recognizes the same via the seven-bladed beta-propeller domain of Eed. 

This system could work like the Su(var)3-9 – HP1 mechanism in a self-reinforcing 

loop, that promotes propagation and maintenance of heterochromatin during DNA 

replication (Margueron et al., 2009). RNA binding has been also described for several 

PRC2 complex members, although the affinities are relatively low (Simon and 

Kingston, 2009; Zhao et al., 2010). 

In contrast to Drosophila, where PcG proteins are recruited through specific cis-acting 

DNA sequences (polycomb response elements, PRE), the mechanisms in mammals 

are more complex. It involves the action of DNA binding proteins, DNA elements 

such as CpG islands and ncRNAs. It has been suggested that RNA binding is involved 

in polycomb recruitment, conceptually analogous to the sRNA-mediated recruitment 

of RITS to nascent heterochromatic RNA in S.pombe. For example, the ncRNA 

HOTAIR is required for repression of the HOXD cluster. Intriguingly, this RNA is 

transcribed from another HOX cluster to repress HOXD in trans (Rinn et al., 2007). 

The Xist ncRNA is required for X-chromosome inactivation in cis, where it acts 

together with a number of other ncRNAs for dosage compensation in the somatic 

cells of female mammals (Chow and Heard, 2009). This process is facilitated by the 

activity of certain retrotransposons that are transcribed from heterochromatin and 

processed into sRNAs (Chow et al., 2010).  
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4. RNA turnover and chromatin-dependent gene 

silencing 

4.1. Introduction 

As described above, transcription and the involvement of RNA in heterochromatic 

gene silencing has been described in a number of systems. Consistently, recent 

genome wide studies have discovered that transcription occurs more widespread 

throughout the entire genome than previously anticipated (Cheng et al., 2005; 

Kapranov et al., 2007; Ponjavic et al., 2007; Willingham et al., 2006; Yamada et al., 

2003). Paradoxically, heterochromatin, although compact and silent, can be 

transcribed at least to a certain extent and a number of functionally important RNAs 

have been identified that arise from heterochromatic regions (Buhler et al., 2007; 

Chow et al., 2010; Motamedi et al., 2004; Nagano et al., 2008; Volpe et al., 2002; Zhao 

et al., 2008). Similarly, silencing of heterochromatin in fission yeast requires active 

transcription (Djupedal et al., 2005; Kato et al., 2005). This suggests that 

heterochromatin is kept silent on at least two levels: First, via transcriptional gene 

silencing, which limits the accessibility of RNA Polymerase 2 to heterochromatic 

genes. Second, via RNA degradation, which operates downstream of transcription. It 

is important to note, that this mode of RNA degradation depends on the locus from 

which the RNA is transcribed. 

 

4.2. Transcriptional gene silencing 

In fission yeast, transcriptional gene silencing (TGS) is mediated by the SHREC 

complex, which regulates nucleosome positioning and limits RNA Polymerase 2 

access to heterochromatin. It consists of histone deacetylases and chromatin 

remodelers (Sugiyama et al., 2007). The SHREC complex member Clr3 is also part of 

a second complex (SHREC2), which contains the HP1 homologue Chp2 and thereby 

links H3K9me to H3K14 deacetylation leading to transcriptional repression. 

Consistently, increased RNA Polymerase 2 occupancy is detected in SHREC and 
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SHREC2 mutants (Motamedi et al., 2008; Yamada et al., 2005). In other organisms, 

TGS can be found, too. This includes budding yeast (Johnson et al., 2009), Drosophila 

(Francis et al., 2004; Sigova et al., 2006; Stock et al., 2007), plants (Stams et al., 1998) 

and human cells (Lu and Gilbert, 2007). It should be noted, however, that most of the 

conclusions drawn in higher eukaryotes are based on indirect results, for example 

steady-state RNA levels. In the future, nuclear run-ons, in-vitro transcription assays 

and RNA Polymerase 2 ChIP experiments will have to confirm these conclusions.  

 

4.3. Chromatin-dependent RNA turnover 

While transcriptional gene silencing is an important repression mechanism, the 

production of RNA and rapid degradation from heterochromatic regions has been 

reported, too. For example, heterochromatin formation inhibits transcription only 

from the forward but not the reverse strand, indicating rapid turnover (Volpe et al., 

2002). RNA Polymerase II is enriched in G2 cells within centromeric heterochromatin 

when compared to an untranscribed gene. Similarly, Rpb2 mutation affects silencing 

and siRNA generation (Djupedal et al., 2005; Kato et al., 2005).  

RNA Polymerase 2 levels and transcription rates are unchanged, if ectopic 

heterochromatin and silencing is produced via RITS tethering (Buhler et al., 2006). 

Additionally, RNA polymerase II occupancy at reporter genes does not substantially 

increase in heterochromatin mutants, although silencing is lost and siRNAs can be 

detected (Buhler et al., 2007). Importantly, silencing of nascent transcripts via RNAi is 

cis-restricted (Buhler et al., 2006). Under normal circumstances, sRNAs are not able 

to act in trans (Iida et al., 2008). Last but not least, deletion of the non-canonical 

poly(A) polymerase Cid14 leads to a loss of silencing, while the integrity of 

heterochromatin and RNA Polymerase 2 levels are unchanged. This shows that active 

turnover is acting on heterochromatic transcripts in a process occurring downstream 

of H3K9me (Buhler et al., 2007; Buhler et al., 2006).  
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Figure 9 - Co-transcriptional gene silencing (CTGS) 

Co-transcriptional gene silencing (CTGS) refers to a silencing mechanism, in which RNA degradation 
is triggered by the chromatin context from which the transcript is produced. This mechanism 
operates along with transcriptional gene silencing (TGS) to silence heterochromatic genes. 
Euchromatic genes are transcribed, processed, exported from the nucleus and translated.  
 

4.4. Function of transcription and RNA turnover in silencing 

The above reports clearly demonstrate that heterochromatin can be transcribed and 

active turnover contributes to the silencing. Indeed, there are a number of examples 

demonstrating that this is not only reflecting transcriptional noise and its elimination, 

but is also functionally relevant. In the following, I list some of the possible 

mechanisms together with one representative example for each case.  

• The act of transcription itself is required for a certain process (e.g. chromatin 

remodeling) and the RNA is a simple byproduct that has to be eliminated 

(Hirota et al., 2008).  

• The RNA itself is needed (e.g. as a recruitment platform, scaffold, decoy) but 

its abundance is under control by RNA decay (Zhao et al., 2008).  

• The degradation product is needed (e.g. small RNAs) (Buhler et al., 2006; 

Volpe et al., 2002)  

• The RNA arises from a deleterious element (e.g. transposons) and is therefore 

kept silenced by RNA degradation (Brennecke et al., 2007).  

• Spurious transcription and degradation of certain RNAs is used to keep 

endogenous genes in a “poised” state, which allows the rapid activation of 

those genes under certain environmental conditions (Woolcock et al., 2012).  
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4.5. Regulating RNA decay in a chromatin-dependent manner 

To distinguish between “normal” and “aberrant” is one of the central themes in RNA 

degradation. Generally, quality control steps act multiple times before the RNA 

reaches its final functional destination. This involves recognition of an aberrant 

feature in the RNA and/or non-functional RNP (Doma and Parker, 2007).   

 

Figure 10 - Possible mechanisms 

inducing chromatin-dependent RNA 

decay 

Hypothetical mechanisms, by which 
chromatin-dependent RNA degradation 
is made specific: A) Ago contains slicer 
activity. Co-transcriptional slicing leads 
to the release of a nascent transcript 
containing a free 3’end, which is 
inducing exosome mediated decay. B) 
Rdp synthesizes double-stranded RNAs 
that are degraded by Dcr. The siRNAs are 
not necessarily stable and/or functional 
per se. C) Dcr directly cleaves nascent 
RNA through physical association with 
chromatin. This requires hairpin 
formation. D) A heterochromatin-specific 
RNP is co-transcriptionally formed. This 
RNP “tags” the RNA for degradation. E) 
The RNA is edited in a chromatin-specific 
manner (e.g. methylation). Chromatin-
specific editing of the RNA triggers 
degradation. Mechanisms A) to C) 
specifically occur in the vicinity of 
chromatin through physical interactions 
of these proteins with the genome. 
Degradation in D) and E) could occur 
elsewhere in the cell.  

 

4.5.1. RNAi triggers RNA degradation by physical association with its target 

genes 

Chromatin-dependent RNA degradation is cis-restricted and depends on the locus 

from which the RNA is transcribed (Buhler, 2009; Buhler et al., 2007). Accordingly, 

RNA degradation in some instances takes place in direct association with a locus, a 

process referred to as co-transcriptional gene silencing (CTGS). In S. pombe, synthesis 
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of precursor transcripts that generate sRNAs and synthesis of nascent RNA for 

siRNA-mediated recruitment of RITS are required for silencing (Buhler et al., 2006). 

Consistently, the nuclease Dcr1 was found to associate with centromeres (Woolcock 

et al., 2010). Interestingly, Dcr1 also associates with euchromatin to repress stress 

response genes demonstrating a physiological role for CTGS (Woolcock et al., 2012).  

 

4.5.2. Specificity in RNAi-independent turnover mechanisms  

The S. pombe RNAi pathway is only required for heterochromatin silencing at the 

centromere, but its inactivation does not affect heterochromatin maintenance at the 

silent mating type locus and the telomeres. In S. cerevisiae, which has lost the RNAi 

machinery, the exosome is involved in the nuclear turnover of cryptic transcripts that 

are produced from supposedly transcriptionally inactive regions (LaCava et al., 2005; 

Vasiljeva et al., 2008; Wyers et al., 2005).  

Mutations in components of the nuclear exosome and the TRAMP complex member 

Cid14 lead to a loss of heterochromatin silencing in fission yeast. Interestingly, the 

integrity of heterochromatin (H3K9me, Pol II occupancy) is unchanged in these 

mutants (Buhler et al., 2007). This suggests that RNA decay by the exosome and/or 

Cid14 can be specifically triggered, if a transcript is of heterochromatic origin.  

The TRAMP complex is an important co-factor for the exosome and mediates specific 

recognition and degradation of aberrant transcripts in S. cerevisiae (Vanacova et al., 

2005). Recognition is in some instances achieved by a short poly(A) tail that allows the 

cell to distinguish the substrates from regular mRNAs, which contain long poly(A) 

tails. Nonetheless, poly(A) activity of TRAMP is not always needed for degradation 

(Houseley et al., 2007; Rougemaille et al., 2007) and silencing of heterochromatin in  

S. pombe does not require the TRAMP complex member Air1 (Buhler et al., 2007). 

Therefore, it was unclear, how the TRAMP complex and the exosome specifically 

contribute to heterochromatin silencing in S.pombe and whether this contribution is 

direct.  
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4.6. Major questions related to chromatin-dependent RNA 

turnover 

1. How is transcription in different heterochromatic contexts regulated? 

2. What are the proteins and chromatin modifications that recognize and trigger 

chromatin-dependent RNA turnover?  

3. Which decay machineries are used in which genomic and cellular context? 

4. Is the transcription per se or the actual transcript needed for function? 

5. If the transcript is functional, does this depend on the precursor transcript or 

the degradation product? What is the mechanistic basis of the function? 

 

 

5. Aim of this thesis 

The findings made by Bühler et al. (2007) suggest that RNAi-independent turnover 

mechanisms contribute to heterochromatin silencing in S. pombe. Genetic and 

biochemical experiments demonstrated that Cid14 is required for transcript 

degradation downstream of heterochromatin integrity. The molecular mechanism, 

however, how Cid14 would specifically recognize and degrade these transcripts 

remained unclear.  I set out to identify the molecular checkpoint that determines 

specificity taking advantage of various biochemical approaches as well as the awesome 

power of yeast genetics. 
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RESULTS 

1. Manuscript 1 / see Appendix 

Proteomic and functional analysis of the noncanonical poly(A) polymerase Cid14 

Keller, C., Woolcock, K., Hess, D., Buhler, M. 

RNA. 2010 Jun;16(6):1124-9. Epub 2010 Apr 19. 

 

Previous work demonstrated that efficient silencing of transgene insertions depends 

on the non-canoncial poly(A) polymerase Cid14. Analogous to the situation in S. 

cerevisiae, Cid14 was found to reside in a TRAMP-like complex consisting of Cid14, 

Air1 and Mtr4. However, Air1 is dispensable for efficient silencing of 

heterochromatin. Furthermore, no protein was identified that would biochemically 

link Cid14 to a chromatin silencing function and attempts to crosslink Cid14 to DNA 

failed (Buhler et al., 2007; Wang et al., 2008).  

I therefore revisited affinity purifications to better characterize the Cid14-interaction 

network in order to find new factors that would link Cid14 to heterochromatic gene 

silencing. Purifications under varying conditions revealed that Cid14 forms a very 

stable complex with Air1, which is absolutely required for association with the 

putative exosome co-factor Mtr4. In the absence of the air1+ gene, we did not find 

another Air protein co-purifying with Cid14, and similarly, no other Cid protein was 

identified in Air purifications in the absence of cid14+. This demonstrates that the 

very stable Cid14-Air1 interaction forms the core of a single fission yeast TRAMP 

complex.  I also found that Cid14 interacts with a higher molecular weight complex 

that represents a 60S ribosomal subunit assembly interaction network. This finding 

provided a biochemical link to the known function of Cid14 in pre-rRNA processing 

(Win et al., 2006). Despite extensive analysis, I was not able to identify factors that 

would link Cid14 physically to heterochromatin.  
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The finding that the Cid14-Air1 interaction is absolutely required for TRAMP 

integrity was surprising, as silencing of transgene insertions is independent of Air1, 

but dependent on Mtr4. My biochemical experiments, however, ruled out the 

possibility that another Air protein could act redundantly in this complex or that 

Cid14 could interact with Mtr4 in the absence of Air1. I therefore wanted to test the 

functional contribution of Air1 and Cid14 to gene silencing on a genome wide scale. 

For this, I assessed expression in wild-type, cid14Δ and air1Δ cells using S. pombe 

tiling arrays, which cover the entire genome.  

The analysis made by Katrina Woolcock showed that only about half of the genes that 

are repressed by Cid14 also depend on repression by Air1. On the other hand, a large 

number of genes are repressed by Air1 independently of Cid14. The same 

observations were made for genes that are downregulated upon deletion of either 

cid14+ or air1+. This demonstrates that although Cid14 and Air1 are linked tightly on 

a biochemical level, they can function independently of each other. 

Last but not least, I wanted to check how many genes that are repressed by Cid14 are 

of heterochromatic origin. This analysis revealed that in some instances these genes 

were H3K9 methylated, but there was no absolute correlation. Indeed, there are a 

number of genes that are H3K9 methylated but not repressed by Cid14. This is, 

however, consistent with the idea that Cid14 functions in a parallel pathway with 

RNAi-mediated turnover to silence heterochromatic genes (Buhler et al., 2007; Buhler 

et al., 2008). The heterochromatic genes, which were repressed by Cid14, were mainly 

telomeric and subtelomeric transcripts as well as a number of meiotic genes residing 

in heterochromatic islands (Zofall et al., 2012).   
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2. Manuscript 2 / see Appendix 

HP1Swi6 Mediates the Recognition and Destruction of Heterochromatic RNA Transcripts 

Keller, C., Adaixo, R., Stunnenberg, R., Woolcock, K. J., Hiller, S., Buhler, M. 

Mol Cell. 2012 Jul 27;47(2):215-27. Epub 2012 Jun 7. 
  

Highlighted in:  

Silent decision: HP1 protein escorts heterochromatic RNAs to their destiny.  

Ren, J., Martienssen RA. EMBO J. 2012 Jun 15 

Chromatin: RNA eviction by HP1  

Schuldt, A. Nat Rev Mol Cell Biol. 2012 Jul 11;13(8):478-9 

Should I stay or should I go? Chromodomain proteins seal the fate of heterochromatic 

transcripts in fission yeast.  

Creamer KM, Partridge JF. Mol Cell. 2012 Jul 27;47(2):153-5. 

The results from my proteomic studies indicated that Cid14 is unlikely to recognize 

transcripts directly on chromatin, but rather acts downstream of a factor that is 

escorting the heterochromatic RNA to the degradation machinery. I decided to find 

this “checkpoint” using a classical PEV approach taking advantage of Yeast genetics. 

In these experiments, I surprisingly found that loss of Cid14 only caused a 

derepression of heterochromatic genes on the RNA but not the protein level. 

Knowing that these transcripts are properly processed and have coding potential per 

se, I postulated the existence of a factor that recognizes and binds nascent 

heterochromatic RNA to mediate their degradation. In the absence of Cid14, 

heterochromatin integrity is unaffected, which sustains a functional checkpoint that 

prevents translation of heterochromatic RNA most likely via nuclear retention.  

 
Figure 11 - Checkpoint model for heterochromatin-mediated RNA decay 

A checkpoint factor (blue star) that recognizes both RNA and H3K9me escorts nascent transcripts to 
the degradation machinery (red). In the absence of Cid14-mediated degradation, H3K9me and a 
functional checkpoint are intact, leading to loss of RNA degradation but not translational inhibition. 
Translational inhibition occurs through packaging into a heterochromatin specific RNP (hsRNP), 
which most likely causes nuclear retention. In clr4Δ cells, H3K9me marks and the checkpoint are 
lost, which leads to export and translation.  
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My subsequent experiments showed that this checkpoint factor is the fission yeast 

HP1 protein Swi6. I showed that Swi6 directly binds RNA and that this interaction 

occurs via the hinge region. I was able to create an RNA binding mutant that does not 

affect the molecular properties of the rest of the molecule (e.g. overall fold, H3K9me 

interaction). In vivo, this mutant rescues H3K9me defects that are found in swi6Δ cells 

and also localizes properly to heterochromatic domains. This demonstrates that RNA 

binding is neither required to maintain H3K9me nor for the recruitment of Swi6 to 

H3K9me-chromatin. However, consistent with the postulated function as a 

checkpoint, I found that heterochromatic RNA and protein levels are derepressed in 

an RNA binding mutant. This suggests that Swi6 is involved in silencing on at least 

two levels. First, it assembles the heterochromatic transcripts into a ribonucleoparticle 

(hsRNP) that is not competent for translation and thereby inhibits expression on the 

protein level. Second, Swi6 mediates RNA decay and thereby inhibits expression on 

the RNA level.  

Using NMR spectroscopy, we could explain these findings on a molecular basis. In 

solution RNA titration experiments revealed that structural changes upon RNA 

binding were not limited to the hinge region but surprisingly also affected the 

chromodomain. This pointed towards the intriguing possibility that RNA binding 

could affect H3K9me binding. We confirmed this idea with SPR experiments and 

found that RNA competes with Swi6 binding to H3K9me. Based on this data, we 

postulate a model in which RNA binding renders the chromodomain structurally 

incompatible with stable H3K9me association leading to heterochromatin eviction 

and degradation of the RNA.  

My data has several important implications. Binding to HP1Swi6 can induce 

degradation of any RNA of heterochromatic origin, which could be a crucial feature 

to repress the expression of deleterious sequences and transposons. It shows how 

repression is achieved on a mechanistic level: via RNA degradation and creation of a 

translationally incompetent hsRNP. Furthermore, it provides a possible explanation 

for why HP1 proteins are so highly dynamic and why RNA degradation factors like 

Cid14 have not been recovered previously in PEV screens. Last but not least, my work 

is the first example, which demonstrates that RNAs can act as “repellents” for 

chromatin proteins.   
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DISCUSSION 

1. Composition and functional relation of the 

TRAMP complex to heterochromatin silencing 

1.1. The role of the fission yeast TRAMP complex 

My work demonstrated that Cid14 is part of a stable complex together with Air1, 

which forms the core of a single TRAMP complex in fission yeast (Keller et al., 2010). 

It was shown before, however, that Air1 is dispensable for heterochromatic gene 

silencing. This discrepancy is somewhat surprising, as silencing also depends on Mtr4 

(Buhler et al., 2007) and the interaction of Cid14 with Mtr4 absolutely requires Air1. 

Furthermore, stimulation of the exosome activity in S. cerevisiae requires an intact 

TRAMP complex (LaCava et al., 2005).  

Taken together, this suggests that the silencing functions of Mtr4 and Cid14 are 

independent and achieved outside the TRAMP complex. It is possible that Cid14 

mediates degradation of heterochromatic RNA independently of the exosome. 

Consistently, rrp6Δ cid14Δ double mutant cells are lethal suggesting that they are 

genetically operating in different pathways. In line of these findings, it is interesting, 

that poly(A) polymerase activity is dispensable for silencing (Claudia Keller, 

unpublished) and that degradation in S. cerevisiae does not always require activity. 

Additionally, it was found that Mtr4p has functions outside of TRAMP (LaCava et al., 

2005). It could be that Cid14, rather than acting as an enzyme, is a recruiter for 

different RNA degrading activities. If these interactions occur very transient, this 

could be an explanation, why we did not pick them up in our proteomic analysis. 

Finding the exo- and/or endonucleases that are responsible for degradation would be 

crucial to understand Cid14-mediated gene regulation on a mechanistic level. 

Furthermore, I suggest to perform gene expression analysis in Cid14DADA catalytic 
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inactive mutants, to be able to functionally separate the poly(A) polymerase from the 

recruitment function.  

I also found that Air1 and Cid14, although tightly linked, share only a small number 

of common substrates. Air1 could serve as an adaptor for certain RNAs, whereas for 

other targets the recruitment might be different (e.g. Swi6-dependent, see below). The 

properties and requirements of such RNAs, however, have not been defined, yet. My 

genome-wide analysis showed that Cid14 is involved in the degradation of a subset of 

heterochromatic substrates including telomeric and meiotic transcripts. However a 

number of heterochromatic genes are not affected in cid14Δ cells. This is consistent 

with the finding that various RNA turnover mechanism act together to ensure proper 

silencing (Buhler et al., 2007). My subsequent work has addressed the molecular 

details, how RNA turnover is triggered by the presence of H3K9 methylation (see 

below). 

 

1.2. A conserved role for the TRAMP complex? 

Whereas the TRAMP complex has been extensively studied in yeast, the existence and 

function of a human TRAMP complex are not yet clear. A stable complex does not 

seem to exist, however, hTRF4-2 (Trf4p) and ZCCHC7 (Air2p) can be found in 

hRRP6 and hMTR4 precipitates (Lubas et al., 2011). This complex localizes to 

nucleoli, suggesting that a conserved function could be the involvement in rRNA 

maturation (LaCava et al., 2005; Win et al., 2006). hMtr4 is also found in the trimeric 

NEXT complex consisting of hMTR4, the Zn-knuckle protein ZCCHC8, and the 

putative RNA binding protein RBM7. This complex is required for the degradation of 

promoter upstream transcripts (PROMPTs) (Lubas et al., 2011; Preker et al., 2008). It 

is interesting that in contrast to the yeast exosome the human Rrp6 more efficiently 

degrades structured substrates on its own (Januszyk et al., 2011). Therefore, there 

might be no absolute need for a co-factor, which stimulates enzymatic activity. 

However, co-factors could be used to help recruiting the exosome to different kinds of 

substrates. Clearly, there are more studies required to define the substrates of the 

exosome and all the putative co-factors using state-of-the-art techniques covering the 

entire genome (Deep Sequencing).  
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2. HP1Swi6 defines an hsRNP that triggers 

heterochromatin-dependent RNA decay 

A number of recent genome wide studies have suggested that transcription occurs 

more widespread throughout the entire genome than previously anticipated (Barski et 

al., 2007; Birney et al., 2007; Cheng et al., 2005; Yamada et al., 2003). This includes 

heterochromatic regions that are characterized by H3K9me and HP1 binding (Buhler 

et al., 2007; Maison et al., 2011; Volpe et al., 2002). HP1s are highly dynamic (Cheutin 

et al., 2004; Cheutin et al., 2003) and they can be found in euchromatic regions, too 

(Libault et al., 2005; Minc et al., 2000; Piacentini et al., 2009). This suggests that 

silencing via H3K9me bound HP1s is unlikely to be caused through the formation of a 

static network that renders these regions refractory for transcription. Instead, RNAs 

produced from these regions are not expressed because they are highly unstable 

and/or can’t be translated by the ribosome. Consistently, the existence “cryptic” 

transcription and rapid degradation has been observed in a number of organisms 

(Buhler et al., 2007; Kapranov et al., 2007; Lemieux et al., 2011; Preker et al., 2008; 

Wilhelm et al., 2008; Woolcock et al., 2010; Woolcock et al., 2012; Wyers et al., 2005). 

The mechanisms for specificity of degradation are very diverse. For example, in the 

case of RNAi-mediated CTGS it occurs through direct association of the Dcr1 

nuclease with the target genes at nuclear pores. Interestingly, this is independent of 

heterochromatin formation (Woolcock et al., 2012). For Cid14-mediated degradation, 

the transcription from a heterochromatic context seems to be the trigger, however, 

how this would be achieved on a molecular level was unknown (Buhler et al., 2007).  

 

2.1. HP1 inhibits expression on the protein and RNA level 

My work has shown, that in fission yeast, HP1Swi6 controls heterochromatin silencing 

by triggering RNA degradation and creation of a translationally incompetent hsRNP. 

Importantly, the transcripts seem to be properly processed and recognition occurs 

independently of the actual sequence and/or presence of an ORF (Keller et al., 2012). 

Inhibiting expression both on the RNA and protein level might be of particular 
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importance, because in the absence of RNA degradation, silencing is still maintained 

at the protein level via sequestration. In this sense, inhibition of translation, which is 

most likely caused by nuclear retention, serves as a backup mechanism to ensure 

proper silencing.  

Conceptually similar examples have alreaday been reported. In Arabidopsis, MET1 

mutants display an increased expression of the transposon Evadé, however, this 

transposon is not able to transpose. This suggests that the inhibition of expression 

occurs at both the RNA and protein level. Interestingly, it was shown that the 

repression mechanism operating postranscriptionally in MET1 mutants requires the 

KYP H3K9 methyltransferase (Mirouze et al., 2009). Although the contribution of the 

HP1 homologue LHP1 has not been addressed in this study, it could be the presence 

of H3K9me that prevents translation via binding to an HP1 homolog resulting in 

RNA sequestration in the nucleus.  

Similarly, the expression of HLA-3C is controlled on two levels in human NK cells: 

RNA degradation and RNA sequestration. In the presence of enzymatic active MEX-

3C, this protein controls degradation of the HLA-3C mRNA via binding to the 

transcript and recruitment of cytoplasmic exonucleases. In the absence of enzymatic 

activity, binding to the mRNA is sufficient for RNA sequestration resulting in 

decreased HLA-A protein levels at the cell surface. Via this mechanism, MEX-3C like 

HP1Swi6 integrates both RNA degradation and translational competence via 

sequestration (Cano et al., 2012).  

 

2.2. HP1 connects heterochromatin transcription to degradation 

by Cid14 via formation of a hsRNP 

RNA degradation is achieved by HP1Swi6-mediated recruitment of RNA decay factors 

like Cid14. Because HP1Swi6 and Cid14 are found at all heterochromatic regions and 

Swi6 binds RNA without sequence preference it is possible that any RNA of 

heterochromatic origin is subjected to RNA degradation (Cam et al., 2005; Woolcock 

et al., 2010). Therefore, if a cell is able to “store” any sequence, for example a 
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deleterious element such as a transposon, in heterochromatin, this is sufficient for 

repression.  

Cid14 is recruited to the mating-type as well as the telomeric sequences in an HP1Swi6-

dependent manner. Consistently, HP1Swi6 mediates degradation by Cid14 at these two 

loci (Keller et al., 2012). How HP1Swi6 recruits Cid14 at these loci is an unresolved 

question. Although Cid14 contains two PxVxL motifs (Cowieson et al., 2000; 

Smothers and Henikoff, 2000), recombinant Swi6 and Cid14 do not interact in vitro 

(Claudia Keller, unpublished) suggesting that the recruitment network requires other 

factors and/or posttranslational modifications. Dam-ID experiments in nls-swi6-

KR25A strains are currently being performed, to address whether RNA binding is 

required to establish an interaction network for Cid14 recruitment. Because H3K9me 

is intact in this mutant at the mating-type and telomeric loci, it would also allow us to 

refine the role of the H3K9me mark versus HP1Swi6 itself in the recruitment of Cid14.  

Additionally, I suggest to revisit HP1Swi6 affinity purifications under different 

conditions. It is possible that this hsRNP complex has not been identified so far, 

because in these standard purifications the soluble (non-chromatin associated) 

fraction was enriched (Fischer et al., 2009; Motamedi et al., 2008). Quantitative 

proteomic approaches including the nls-swi6-KR25A allele as a negative control 

would be instrumental to define the hsRNP. Additionally, we could identify PTMs in 

an unbiased way and shed light on their contribution to the formation of the hsRNP.  

 

2.3. Cid14 association with centromeres and euchromatin 

Interestingly, Cid14 association with the centromere is not lost in swi6Δ cells and 

similarly, accumulation of centromeric transcripts is not observed in cid14Δ cells. It is 

very likely that at the centromere redundant turnover and recruitment mechanisms 

are acting. To answer the question, whether Cid14 plays a redundant role in RNA 

turnover at the centromere, we would require separate-of-function alleles for other 

RNA turnover pathways (such as RNAi). These alleles should only affect decay but 

not H3K9methylation, which maintains the HP1Swi6 checkpoint.  

The fact that H3K9me is not lost at the centromere, however absent at the telomeres 

and mat loci in swi6Δ cells could imply that H3K9me is indeed required for Cid14 
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recruitment. One could directly test this hypothesis by performing Cid14 Dam-ID 

experiments in a clr4Δ (the fission yeast Su(var)3-9 homologue) background, which 

lacks H3K9me at all heterochromatic loci. On the other hand, Cid14 also associates 

with euchromatin, excluding the possibility that H3K9me is the only trigger for 

chromatin association.   

Finally, it is interesting that recruitment of the RNAi machinery to centromeres does 

not require H3K9me (Woolcock et al., 2010). Cid14 associates with mating-type and 

telomeric loci and triggers transcript degradation depending on the presence of 

HP1Swi6 and/or H3K9me. Therefore, two different RNA turnover mechanisms that act 

together seem to have different recruitment and trigger mechanisms.  

 

2.4. Cid14 mediates heterochromatic RNA turnover 

Our Dam-ID experiments demonstrate that Cid14 associates with telomeric and 

mating-type heterochromatin in an HP1Swi6-dependent manner. Together with our 

genome wide expression data, this shows that the contribution of Cid14 to silencing is 

direct. Nonetheless, it is still enigmatic how Cid14 triggers RNA turnover.  

In vitro, an intact TRAMP complex is required to stimulate degradation by the 

exosome (LaCava et al., 2005). Nonetheless, silencing is intact in air1Δ cells, in which 

the interaction of Cid14 with Mtr4 is lost (Keller et al., 2010). We do not find any 

exosome components in our pulldowns from wild-type or air1Δ cells and do not 

recover TRAMP in exosome purifications (Claudia Keller, unpublished).  

Poly(A) activity of Trf4 is required for degradation via the exosome (Vanacova et al., 

2005). Recombinant Cid14 shows robust poly(A) activity and does not destabilize 

RNAs on its own (Buhler et al., 2007; Buhler et al., 2008). Activity, however, is 

dispensable for silencing (Claudia Keller, unpublished) and we do not detect aberrant 

polyadenylation of heterochromatic transcripts in cid14 mutants (Keller et al., 2012). 

So does Cid14 really act via polyadenylation and recruitment of the exosome to 

degrade heterochromatic targets? 

I suggest two possibilities: Cid14 acts via the exosome, but uses different redundant 

pathways and mechanisms, which back up each other in the absence of another 

component. For example, Dis3 could replace Rrp6 and vice versa. This redundancy 
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occurring in vivo could explain seemingly contradictory data from genetic and 

biochemical experiments (Buhler et al., 2007; Kinoshita et al., 1991; Wang et al., 2008; 

Woolcock et al., 2012).  

Alternatively, Cid14 could recruit a so far unidentified, novel nuclease. Recruitment 

could occur via direct transient interaction. A kinetic competition model could apply 

(Doma and Parker, 2007), in which inhibition of nuclear export by RNA binding to 

Cid14 eventually triggers degradation. Consistent with this model, changing the 

kinetics of hsRNP formation by introducing a ribozyme at the 3’end of PEV reporters 

escape the HP1Swi6-Cid14 checkpoint leading to protein expression in cid14Δ cells 

(Claudia Keller, unpublished). 

Our extensive attempts to identify such nucleases biochemically have failed so far, 

probably due to low abundance or very transient interaction. Genetic screening would 

be possible, if one could perform a PEV screen that directly assesses heterochromatic 

RNA levels. Mutation of this downstream factor should show a similar phenotype like 

a cid14 mutant, if the genetic connection is linear.  

 

2.5. HP1 inhibits translation of heterochromatic RNA 

Translational repression is observed in cid14 mutant cells, where RNA degradation is 

absent, however H3K9me and the checkpoint function are still intact. The 

mechanistic basis of this is not clear, mainly because we were unable to directly 

localize heterochromatic RNAs by microsopic or biochemical methods. The most 

likely hypothesis, however, is that HP1Swi6 traps heterochromatic RNA in the nucleus. 

This would explain, why heterochromatic RNAs in cid14Δ cells do not accumulate to 

the same extent as in clr4Δ or swi6Δ cells. Inefficient RNA processing and export leads 

to RNA degradation by the exosome (Jensen et al., 2003). It is therefore likely, that 

inhibition of nuclear export by HP1Swi6 can at some point induce RNA degradation by 

other mechanisms. At the moment, we try to confirm this hypothesis using 

ultrasensitive RNA imaging approaches.  
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2.5.1. Design of a PEV screen that detects changes in RNA levels 

An important impact of my findings is, that they explain why RNA degradation 

factors were not previously identified in PEV screens: In the absence of RNA 

degradation, expression is inhibited at the protein level. PEV screens, however, assess 

changes in heterochromatic gene expression at the protein level (Baur et al., 2001; 

Bayne et al., 2008; Reuter and Wolff, 1981; Smith et al., 1999). It would be therefore 

very interesting to design a PEV screen that is able to identify changes at the RNA 

level. Either this requires a genetic trick, in which the translational repression by the 

HP1Swi6 checkpoint is bypassed. Alternatively, one needs any signal that linearly 

correlates with the amount of RNA specifically produced from heterochromatin. RNA 

fluorescent in situ hybridization (RNA FISH) can’t be used on a genome wide scale 

due to the extensive sample preparations and optimizations that are required in 

fission yeast. Heterochromatic RNAs that are tagged with an aptamer (e.g. MS2) 

which bind to GFP-tagged fusion proteins (e.g. MS2-CP-GFP) are not suitable either, 

because the co-expressed fusion protein is always expressed at the same level.  

(a) Strategy 1: Combound-based fluorescence screen 

Therefore, I suggest to perform on a compound-based screen. The heterochromatic 

RNA is tagged with the Spinach aptamer, which binds to the DFHBI compound 

(Paige et al., 2011). A conformational change upon binding of the compound to the 

aptamer leads to fluorescence, giving rise to a signal that correlates to the amount of 

RNA. This would allow to quantitatively assess heterochromatic RNA levels. One 

could then perform chemical mutagenesis or alternatively use available deletion 

libraries (Kim et al., 2010b) to screen for factors that increase heterochromatic RNA 

levels. Crucial to the use of this technique is that the compound is not fluorescent, if it 

is not bound to the aptamer. This is the case for the Spinach-DFHBI method.  

In trial experiments, I was not able to detect any fluorescent signal using this system 

(Claudia Keller, unpublished). However, it could be that the yeast cell wall is not 

permeable for DFHBI or the compound is immediately pumped out. Additionally, it 

is not clear, yet, whether the Spinach system is suitable for lowly expressed transcripts 

and gives rise to a signal that is high enough to be detected above background in 
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fission yeast. Given the advantage of the system, I however think that it is worthwhile 

to perform more experiments to optimize this system.   

(b) Strategy 2: Genetically bypassing HP1Swi6 by Rz-termination 

An alternative to the proposed Spinach-approach would be to use a Ribozyme (Rz)-

tagged heterochromatic reporter system containing synthetic poly(A) tails (Dower et 

al., 2004). The beauty of this system is that a single point mutant of the Rz is available, 

which makes this an ideal control strain. As already mentioned, preliminary data 

suggests that rapid termination escapes translational repression but not degradation 

by HP1Swi6 (Claudia Keller, unpublished; also see Figure 12).  

 
Figure 12 - Ribozyme-mediated termination escapes the HP1Swi6 checkpoint 

A) The gfp+ reporter ORF is followed by a Ribozyme, which is placed in the Tadh1 terminator 
upstream of the first canonical poly(A) site. The whole reporter is driven by a ura4+ promoter. This 
cassette is integrated at the heterochromatic mating-type locus (mat3M) or the euchromatic ura4+ 
locus. B) In wild-type (wt) cells, ribozyme containing reporter constructs are regularly silenced, when 
introduced at the heterochromatic mat3M locus. Cid14-mediated degradation contributes to the 
silencing. Consequently, deletion of cid14+ results in transcript accumulation in both the wt and 
mut Rz reporter strains. However, normally terminated transcripts (Rz mut) are not translated, 
because of the HP1Swi6 checkpoint. Rapid termination by a Rz escapes this checkpoint leading to 
protein production in cid14Δ cells. At the euchromatic ura4+ locus, Rz termination has no effect on 
the amount of protein produced in a cid14+ mutant background.  
 

In wild-type cells, GFP-Rz reporters are silenced by Cid14-mediated RNA 

degradation. Consistent with our published data, mat3M::gfp-Rz+ and mat3M::gfp-

Rz(mut) RNA levels are derepressed in cid14Δ cells. However, there is a large 

difference on the protein level between the Rz (wt) and the Rz (mut) reporter. Under 
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canonical termination conditions (Rz mut) the HP1Swi6 checkpoint prevents 

translation of heterochromatic RNA, however, this is bypassed if the transcript is 

terminated with a Rz (wt). Importantly, the difference in protein levels between Rz 

(wt) and Rz (mut) is only seen, if the reporter is inserted in a heterochromatic context, 

demonstrating that cid14Δ cells have no general translation or processing defects. I 

therefore predict, that more factors like cid14+ could be identified by genetic screens 

carried out in these Rz reporter strains.  

Ideally, a genome-wide screen would be performed using a sensitive click beetle 

luciferase assay, in which reporter levels can be quantitatively assessed directly in the 

culture medium in a multiwell format. (Shimada and Buhler, 2012) 

 

3. Chromodomain proteins integrate RNA and 

H3K9me binding 

3.1. Molecular properties of HP1Swi6 RNA binding 

Our work has demonstrated that HP1Swi6 directly binds RNA and that this binding 

occurs via the intrinsically unstructured hinge region. The CD and CSD as isolated 

domains do not bind RNA, however, the NT and CD change molecular architecture 

upon RNA binding. This indicated, that RNA binding influences binding to H3K9me 

(see below).  

Furthermore, I was able to create a mutant that fails to bind RNA but retains the folds 

of the CD and CSD. In this mutant, all 25 positively charged residues (Arg/Lys) of the 

hinge region are mutated to Ala (KR25A). From our NMR studies, however, we know 

that only 13 resonances from the hinge region show changes upon binding to a 20mer 

RNA. Because we lack a complete resonance assignment of the hinge region so far, we 

do not know whether the hinge-RNA interaction is exclusively occurring at Lys/Arg 

or involves other amino acids, too.  

There are well-described examples of RNA binding to unstructured regions in the 

literature (Weiss and Narayana, 1998). For the ones that have been characterized by 

structural biology methods, nearly half of the hydrogen bonds to RNA are formed by 
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Arg, Lys and the main chain NH groups. Importantly, for RNA-protein complexes, 

the ribose (2’OH) contributes largely to these interactions (Bahadur et al., 2008). This 

could explain, why HP1Swi6 does not bind DNA. Given the importance of this group, it 

would be interesting to test whether HP1s are able to bind 2’O-methylated RNAs such 

as piRNAs (Tian et al., 2011). On the other hand, the Arg/Lys-rich properties of the 

hinge region might explain, why RNA binding is sequence and length independent, as 

these amino acids favor hydrogen bonding and van-der-Waals contacts to the 

phosphate backbone of the RNA (Ellis et al., 2007). Similarly, it would be worthwile 

testing whether longer RNAs induce more changes in the hinge region (maybe up to 

25, if all Lys/Arg are involved).  

To get more insights into the molecular nature of HP1Swi6 RNA recognition, I suggest 

assigning the HP1Swi6 RNA-protein interaction surface, with the ultimate goal to solve 

the solution structure by NMR spectroscopy.  

Based on such data, we could test, whether a certain spacing of positively charged 

residues and/or a motif is required for RNA binding. This would help to find such 

motifs in HP1s and other proteins, for example in RNA binding proteins, which have 

been identified by recent proteomic studies (Baltz et al., 2012).  

 

3.2. RNA and H3K9me binding are competitive processes 

Our NMR data revealed that structural changes upon RNA binding to HP1Swi6 are not 

limited to the hinge region, however, also affect the CD and NT. This pointed towards 

the intriguing possibility that RNA and H3K9me binding are connected. The in vivo 

data of the RNA binding mutant suggested that these events are competitive. We 

confirmed this idea using Surface Plasmon Resonance (SPR). Therefore, HP1Swi6 

dissociates from heterochromatin when complexed with RNA. So far we do not have a 

complete resonance assignment of the NT-CD-hinge construct, which is a 

prerequisite for getting a NMR solution structure. This would be a crucial experiment 

to understand the competition mechanism on a molecular level.  

In vivo, we propose that these competitive events form the molecular basis of 

heterochromatic RNA transcript degradation as discussed above. Importantly, 

H3K9me and HP1Swi6 recruitment to this mark is not altered globally in nls-swi6-
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KR25A mutants, suggesting that RNA binding is not required for the structural 

maintenance of heterochromatin. Importantly, the properties and function of HP1Swi6 

RNA binding seem to be different from the mammalian HP1s (Maison et al., 2002; 

Maison et al., 2011; Muchardt et al., 2002).  

 
Figure 13 - Model for HP1 mediated degradation of heterochromatic RNA by competitive 

H3K9me and RNA binding 

HP1Swi6
 proteins associate with H3K9-methylated nucleosomes (gray) only transiently and readily 

exchange from heterochromatin (dark blue). This continuous exchange of HP1Swi6 prevents 
saturation of heterochromatin with RNA. In case transcription within heterochromatin occurs, 
HP1Swi6 binds the newly synthesized RNA (red) and dissociates from H3K9 methylated nucleosomes 
as a result of competition between RNA and the histone tail for HP1Swi6 binding (light blue). 
Subsequently, the RNA is passed on to Cid14 (red), which in turn initiates RNA degradation. The 
RNA produced from highly transcribed regions at the heterochromatin boundaries could serve as 
repellents and inhibit heterochromatin spread into euchromatin.  
 

The finding that RNA counteracts H3K9me binding is particularly interesting, if one 

considers that heterochromatin boundaries are usually characterized by the presence 

of very highly transcribed genes (Cam et al., 2005; Takahashi et al., 1991). This 

includes tRNA genes, whose transcriptional activity is required for boundary 

formation (Noma et al., 2006; Scott et al., 2006). RNA has been also linked to 

boundary formation in mammalian cells (Lunyak et al., 2007). I therefore propose, 

that RNA-mediated eviction of HP1Swi6 is the molecular mechanism underlying 

heterochromatin boundary formation. This hypothesis predicts that in an HP1Swi6 

RNA binding mutant H3K9me marks spread across the heterochromatin boundary 
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into neighboring euchromatic regions. Furthermore, it is possible that eviction of 

HP1Swi6 induces degradation of the actual precursor/boundary-RNA via a Cid14-

dependent mechanism. To address these questions, we are currently performing 

genome-wide ChIP-Seq and sRNA-Seq experiments.  

 

3.3. Regulation and specificity of HP1Swi6 RNA binding 

3.3.1. Regulation via a dynamic organization of hsRNPs in nuclear foci 

Fission yeast HP1Swi6 localizes to nuclear foci corresponding to the main 

heterochromatic loci (Ekwall et al., 1995) . It is highly dynamic and exchanges with 

rapid kinetics on the ensemble level, but always remains closely associated with 

H3K9me chromatin (Cheutin et al., 2004). RNA and H3K9me binding are 

competitive processes, which causes preferential recruitment of RNA-free HP1Swi6. 

This could explain why induction of RNA degradation is specific to heterochromatic 

regions, as local concentration of HP1Swi6 ensures preferential capturing of 

heterochromatic RNA on the ensemble level. The local concentration outside these 

regions is not high enough, so HP1Swi6 cannot effectively compete with other proteins 

comprising a “regular” mRNP.  

One could test this idea by largely overexpressing HP1Swi6. This would increase the 

concentration of HP1Swi6 outside the foci in the nucleoplasm. In this case, HP1Swi6 

RNA binding would occur on non-heterochromatic targets and maybe also induce 

their degradation. Such a gain-of-function allele should induce global gene expression 

changes, which correlates to the targets that are newly bound by HP1Swi6. Indeed, 

overexpressed swi6+ has been reported to enhance gene silencing within 

heterochromatin (Nakayama et al., 2000) and causes both up- and downregulation of 

a large number of genes (Wiren et al., 2005). Interestingly, these gene expression 

changes are much more pronounced than the effects in swi6Δ cells, indicating a gain-

of-function. I speculate, that this is caused by ectopic RNA binding. To confirm this 

hypothesis, I suggest to perform gene expression analysis using tiling arrays and 

comparing swi6 with nls-swi6-KR25A overexpressing cells.  
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On the other hand, other factors, which increase heterochromatin specificity, could be 

acting in vivo. For example, heterochromatin-specific proteins could be required to 

link HP1Swi6 to Cid14. Our Dam-ID experiments indeed point towards this possibility. 

Factors, which prevent RNA binding off-chromatin, could contribute to an additional 

layer of regulation, too. To get more insights into these mechanisms, it is again very 

crucial to identify the components of the hsRNP via proteomic methods (see above).  

 

Last but not least, it is important to note, that also RNA binding is highly dynamic. 

This indicates, that RNA does not remain tethered firmly to HP1Swi6 in vitro. In vivo, 

this could be an important feature to very quickly hand over the transcript to the RNA 

degradation machinery. If RNA binding affects H3K9me binding, one would expect 

to see changes in the dynamic association of HP1Swi6 with heterochromatin. However, 

preliminary FRAP data from our lab suggest that wild-type have nls-swi6-KR25A cells 

display identical kinetic behaviour on the ensemble level (Rieka Stunnenberg, & 

Claudia Keller, unpublished). This probably reflects the fact that in bulk 

heterochromatin of wild-type cells H3K9me-CD interactions largely outnumber 

RNA-hinge interactions. Demonstration of changed kinetics might only be possible in 

a situation, where this balance is shifted towards higher RNA levels, without affecting 

the number of H3K9me histone tails. Preliminary experiments, in which this balance 

is shifted by deleting cid14+, indeed confirm this hypothesis (Claudia Keller & Rieka 

Stunnenberg, unpublished).  

3.3.2. Inhibition of RNA binding in the cytoplasm 

Once HP1Swi6 is synthesized in the cytoplasm, it would be formally possible that it 

binds a transcript in the cytoplasm. However, this is not likely to happen in vivo. 

Firstly, because RNAs appear hardly ever “naked” in the cytoplasm. They are covered 

with a plethora of factors that are required for many processes, for example 

translation (Hieronymus and Silver, 2004). Second, the hinge region also acts as a 

nuclear localization signal (NLS) (Keller et al., 2012; Wang et al., 2000). The nuclear 

localization of HP1Swi6 is disrupted in the swi6-KR25A mutant, showing that the 

residues that are required for RNA binding and nuclear localization at least partially 

overlap. Importin α directly binds to canonical NLS sequences with an affinity that is 
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considerably stronger than the HP1Swi6 RNA interactions (Goldfarb et al., 2004). 

Therefore, it is likely that Importin α binding to the hinge region not only translocates 

the protein to the nucleus but also inhibits binding of RNA in the cytoplasm. 

Interestingly, interaction of the hinge region with Importins was recently reported for 

human HP1α (Nozawa et al., 2010). Preliminary experiments with HP1Swi6 indicate 

that the same could hold true for fission yeast (Claudia Keller, unpublished).  

3.3.3. Regulation in a cell-cycle dependent manner? 

During mitosis, HP1Swi6 is lost from centromeres via H3S10 phosphorylation. This is 

thought to heterochromatic transcription and accumulation of RNA in G1/S phase. 

The rapid processing into sRNA promotes recruitment of RITS and the restoration of 

H3K9me and HP1Swi6 binding (Chen et al., 2008; Kloc et al., 2008; Li et al., 2011). 

Is it possible, that during mitosis, HP1Swi6 binds to other RNA targets, because its local 

concentration is shifted? Or is RNA binding off-chromatin during these cell cycle 

stages inhibited for example via posttranslational modifications? Our current 

experiments did not address this issue at all, as unsynchronized fission yeast cells are 

mainly residing in the G2 phase and the M/G1 phase is very short. It would be 

interesting to analyze the properties of the nls-swi6-KR25A mutant in other cell cycle 

stages. As mentioned above, a starting point would be a proteomic analysis of HP1Swi6 

complexes and PTMs in different cell cycle stages.  

 

3.4. Conservation of HP1 RNA binding 

3.4.1. Role of HP1 RNA binding in mammals 

The hinge region, in contrast to the chromo- (CD) and chromoshadow-domain 

(CSD), is poorly conserved and much shorter in higher eukaryotes. It is therefore 

somewhat surprising, that HP1α also binds RNA via the hinge region (Muchardt et 

al., 2002). Assuming that the mere presence of Lys/Arg in an unstructured hinge 

region is enough, it would be expected that all the mammalian HP1s bind RNA. 

Consistently, we find that human and mouse HP1α, HP1β and HP1γ directly bind to 

RNA with similar affinity and binding mode (Veronika Ostapcuk & Claudia Keller, 

unpublished) although earlier experiments have suggested different binding 
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properties (Muchardt et al., 2002). The affinities of the mammalian HP1s to RNA are 

about 10-fold weaker than HP1Swi6, which might reflect a smaller total number of 

amino acids including Lys/Arg in the hinge region (13 versus 25 in HP1Swi6). It is 

likely, that this is the reason, why mutation of 3 Lys is already enough to abolish RNA 

binding (Muchardt et al., 2002), whereas in HP1Swi6, mutation of 3 or 7 positively 

charged residues has no effect in vitro and in vivo (Claudia Keller, unpublished).  

 

 
Figure 14 - Alignment of Swi6 with the human HP1 homologs 

Whereas the CD and the CSD (blue border) are highly conserved from fission yeast to humans, the 
hinge region (green) is considerably smaller and shows less sequence conservation. The residues 
important for HP1α RNA binding (Muchardt et al., 2002) of are shown in red.    
 

Several reports address the function of HP1 RNA binding in human cells. In vitro 

HP1α is a sequence-unspecific RNA binder (Muchardt et al., 2002). These authors 

were able to create a point mutant (3K>A), which fails to localize to the characteristic 

heterochromatic foci. Similarly, RNase treatment of human cells leads to dispersal of 

HP1α foci, which can be restored upon addition of nuclear RNA (Maison et al., 2002). 

In vitro, sumoylated HP1a preferentially binds to RNA. NEM treated nuclear extracts 

were shown to interact specifically with in-vitro transcribed RNA. In these pulldowns, 
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Sumo-HP1α is only detected with Major Forward, but not Reverse and Minor Satellite 

transcripts, indicating sequence specificity. From immunostaining experiments using 

different mutants it was concluded that sumoylation of the hinge region is required 

for de novo recruitment of HP1α (Maison et al., 2011). Consistent with our in vitro 

data, it was shown in another report that all the human HP1s interact with TERRA 

RNA, linking these proteins to a function telomere homeostasis (Deng et al., 2009). 

Another link of HP1s to RNA biology is the fact that the phenotypes that are caused 

by HP1γ disruption are similar to Miwi2-/- (Carmell et al., 2007) and Dnmt3L-/- mice 

(Bourc'his et al., 2001). Based on all these findings, the current model is that RNA 

binding is involved in HP1 recruitment to heterochromatin. Importantly, these 

properties of human HP1s seem to be fundamentally different from the fission yeast 

HP1Swi6, in which RNA binding to the hinge region is inducing eviction (also see 

discussion below on other CD proteins in S. pombe).  

 

For future studies, it will be instrumental to revisit the biochemical properties of HP1 

RNA binding. This includes structural work by NMR spectroscopy as well as 

proteomic studies to find interaction partners of HP1s bound to RNA. This will be 

important to obtain point mutants, which are needed to address the functional role in 

vivo. Whole genome approaches (H3K9me and HP1 ChIP-Seq) instead of 

immunofluorescence are required to more directly assess the importance of HP1 RNA 

binding in establishing and maintaining heterochromatic domains. I also suggest to 

identify direct RNA targets in vivo in an unbiased approach using CLIP-Seq combined 

with expression analysis in RNA binding mutants. All these experiments should be 

performed in cells, in which HP1s are endogenously functioning in a certain 

biological process, for example in the male germline, where HP1γ might be involved 

in transposon silencing (Brown et al., 2010).  

3.4.2. Connection of HP1 proteins to RNA in other eukaryotes 

The HP1 protein Rhino, has been linked to transposon silencing via the piRNA 

pathway in the Drosophila germline (Klattenhoff et al., 2009). Rhino is a rapidly 

evolving HP1 member, which is expressed in ovaries. It has been suggested, that the 

function of this rapid evolution is to keep the activity of transposons in check 
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(Vermaak et al., 2005). It is interesting, that the hinge region of Rhino is even longer 

than the one of HP1Swi6 and furthermore, the overall amino acid composition is much 

more basic. It is therefore possible, that Rhino is an RNA binding protein that 

functions like HP1Swi6. Rhino could recognize transposon transcripts and escort them 

to the RNA degradation machinery to ensure efficient elimination of transposon 

RNA.  

 

Figure 15 - Amino acid composition of 

Rhino versus Swi6 

The number and % of the amino acids in 
Rhino and Swi6 are compared. Positively 
charged amino acids are marked in blue, 
negatively charged ones in red. Rhino is 
considerably longer and also contains less 
negatively charged amino acids.  
 
 

 

 

 

 

 

 

In Arabidopsis LHP1 is required for maintaining the repressed state of the FLC locus, 

which controls vernalization and flowering (Mylne et al., 2006; Sung et al., 2006). 

Biochemically, LHP1 has not been studied extensively. It is known to bind both 

H3K9me and H3K27me in vitro. However, whether LHP1 binds RNA has not been 

addressed in those reports (Turck et al., 2007). LHP1 is slightly larger than HP1Swi6 

and the presence of positively charged residues in the hinge region are conserved (see 

Figure 16). It would be very interesting to test, whether LHP1 RNA binding is 

involved in regulating FLC via direct association with this gene.  
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Figure 16 - Alignment of Swi6 with LHP1 

The sequences of S. pombe Swi6 and A. thaliana LHP1 show remarkable conservation, which is not 
only limited to the CD and CSD (grey letters). This also includes a number of Lys and Arg, which 
could potentially be involved in RNA binding.  
 

3.5. RNA binding in other chromatin proteins 

3.5.1. Chromdomain proteins as RNA interaction modules 

(a) Fission yeast CD proteins 

HP1Swi6 is not the only fission yeast CD protein that binds RNA. Chp1 binds RNA via 

an RRM and the CD. This is very interesting, because the Swi6 CD does not bind 

RNA but overall, these domains are structurally very similar. Indeed, RNA binding is 

contributed by a unique positively charged surface in the C-terminal α-helix of the 

Chp1 CD (Ishida et al., 2012). Furthermore, the Clr4 CD is also able to bind RNA, 

however, only when bound to H3K9me. In contrast to Swi6, where binding of RNA 

induces changes that negatively affect H3K9me binding, the opposite is true for the 

CDs of Clr4 and Chp1. RITS tethering via RNA therefore occurs on two levels. sRNA-

nascent transcript interaction via Ago1 and Chp1 CD interaction, which effectively 

tethers it to H3K9me chromatin. For the Clr4 CD the same function could apply. 

Therefore, CD proteins integrate RNA binding to functionally control very different 

processes: Tethering in the case of Chp1 and Clr4 versus eviction and RNA 

degradation in the case of Swi6 (Creamer and Partridge, 2012; Keller et al., 2012). 
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Again, it is worthwhile emphasizing again, that RNA crucially affects three hallmark 

proteins of heterochromatin, a region that has been suggested to be refractory to 

transcription for a long time. Last but not least, the fourth fission yeast CD protein 

Chp2 does not seem to bind RNA (Motamedi et al., 2008) and consistently, the Swi6 

hinge region is unable to function in Chp2 (Sadaie et al., 2008). 

(b) CD proteins in other organisms 

CD proteins binding to RNA have been described in other organisms, too. The CD of 

the Drosophila histone acetyltransferase MOF is an RNA binding module (Akhtar et 

al., 2000). However, it should be noted that this domain adopts a β-barrel fold, which 

is different from canonical CDs (Nielsen et al., 2005). Therefore this module is also 

called chromo-barrel domain, which is structurally more similar to Tudor domains. 

Interestingly, this report demonstrated that the MOF CD is necessary but not 

sufficient for RNA binding. Similarly, the CD of MSL3, another protein involved in 

dosage compensation and required for H4K16ac, binds nucleic acids, too. Upon 

binding to DNA, the CD of MSL3 switches its properties and recognizes the repressive 

mark H4K20 (Kim et al., 2010a).  

The mouse PcG protein Cbx7 binds RNA via the CD. Interestingly, Cbx7 contains 

affinity for both H3K9me and H3K27me and is enriched in facultative 

heterochromatin. The interaction of Cbx7 with RNA was suggested to be required for 

heterochromatin recruitment (Bernstein et al., 2006). Consistently, repression of the 

INK4b/ARF/INK4a locus by Cbx7 requires both H3K27me recognition and binding 

to the ncRNA ANRIL (Yap et al., 2010). 

It is interesting that CDs are also found in some transposable elements, for example 

the Gypsy LTR family as well as the Tf1 LTR-retrotransposon in S.pombe. The exact 

function has not been defined yet, however, it was speculated that they might direct 

their integration into heterochromatin (Hizi and Levin, 2005; Novikova, 2009). It 

would be interesting to test, whether these proteins bind RNA.  

Taken together, this reflects a whole repertoire of CD proteins, which can be 

modulated in different ways by RNA binding.  
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3.5.2. Other chromatin proteins and the role of ncRNAs 

The discovery that a large proportion of the genome is transcribed into RNAs that do 

not encode for proteins has created a lot of excitement recently. Whereas it was 

debated for a long time whether these transcripts just reflect noise, recent studies 

suggested that these molecules are functional. The authors discovered a large number 

of lincRNAs based on a chromatin signature (K4-K36) that is characteristic of 

transcribed genes. Indeed, these lincRNAs seem to be regulated in a cell-type specific 

manner and show evolutionary conservation (Guttman et al., 2009; Guttman et al., 

2011).  

Currently, there are many reports trying to address the role of ncRNAs in regulating 

chromatin proteins (Guttman and Rinn, 2012). In the following, I want to name some 

of those examples, knowing, however, that a comprehensive picture of the molecular 

mechanisms underlying ncRNA function is not yet available. Particularly, it is very 

difficult to distinguish, whether the ncRNA itself, a ncRNA degradation product or 

the act of transcription of the ncRNA as such are needed for a certain function. 

Cis-regulating ncRNAs are suggested to remain tethered to the locus from where they 

are transcribed and influence regulatory proteins by virtue of association directly on 

chromatin. For example, the Xist RNA is required for dosage compensation and was 

implicated in the recruitment of Polycomb to the inactive X chromosome (Chu et al., 

2011; Zhao et al., 2008). Similarly, the SET-domain protein Ash1 is targeted to the 

Ultrabithorax (Ubx) by association with TRE transcripts produced from the Ubx 

locus (Sanchez-Elsner et al., 2006). Trans-acting ncRNA can exert their function on 

genomic regions that are far away from where they are transcribed or even on another 

chromosome. The ncRNA HOTAIR directly binds to PRC2 and is required for its 

targeting in human cells (Rinn et al., 2007). However, the function of this ncRNA does 

not seem to be conserved in mice, suggesting that it is rapidly evolving or redundant 

mechanism mask its function (Schorderet and Duboule, 2011). Similarly, some 

ncRNAs have been suggested to be involved in relocating the polycomb protein Pc2 

within the nucleus to dynamically control gene expression (Yang et al., 2011). Others 

have been shown to act as enhancers where they might be guides for DNA looping 

(Orom et al., 2010). Intriguingly, ncRNA transcription from one allele could be an 
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elegant mechanism to maintain allele specific repression during genomic imprinting. 

This has been demonstrated for the Air ncRNA that recruits the HKMT G9a 

selectively to the allele that has to be repressed (Nagano et al., 2008).  

Whereby in these examples, the ncRNA seems to act in targeting chromatin-

modifying complexes to certain loci, alternative functions have also been described. 

ncRNA can serve as co-factors for certain enzymes by acting as ligands or allosteric 

regulators. Such a function was demonstrated for the ncRNA CCND1, which inhibits 

the CBP/p300 Histone-Acetyltransferase function and therefore leads to transcription 

repression (Wang et al., 2008b). Similarly, ncRNA act as scaffolds, for example the 

TERC RNA in telomerase. Last but not least, in the “decoy” function, ncRNAs prevent 

protein complexes from binding their regulatory targets. A ncRNA transcribed 

upstream of the DHFR promoter was shown to interact with TFIIB and dissociate the 

pre-initiation complex (PIC) efficiently from chromatin leading to gene repression 

(Martianov et al., 2007). 

Finally, there are reports, where the act of transcription but not the ncRNA is 

required. Here the RNA itself, can be regarded as a byproduct. For example, 

chromatin remodeling of the fission yeast fbp1+ gene is induced upon transcription of 

several ncRNAs (Hirota et al., 2008). In S. cerevisiae, intergenic transcription controls 

nucleosome positioning and gene expression by transcriptional interference (Hainer 

et al., 2010). The same is true for the PHO5 gene, in which ncRNA transcription 

enhances chromatin pasticity to mediate activation of this gene (Uhler et al., 2007).  

Last but not least, in some instances the ncRNA only serves as a precursor for the 

production of sRNA species. For a discussion of their role in genome regulation, I 

refer to recently published reviews (Malone and Hannon, 2009; Wilusz et al., 2009). 

In conclusion, many functions of RNAs and their role in regulating gene expression 

are being discovered at the moment. The current repertoire of proteins that are 

regulated by ncRNAs is dominated by chromatin factors. It will be interesting to see, 

whether ncRNA function expands beyond chromatin biology in the near future. 

Indeed, it was predicted, that lncRNA might at some point rival sRNAs and proteins 

being a novel class of biological molecules (Wang and Chang, 2011). Like proteins, the 

abundance of these molecules has to be tightly regulated and I therefore envision, that 

studying ncRNA synthesis and turnover is an attractive field for future studies. 
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REPORT

Proteomic and functional analysis of the noncanonical

poly(A) polymerase Cid14

CLAUDIA KELLER, KATRINA WOOLCOCK, DANIEL HESS, and MARC BÜHLER
Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland

ABSTRACT

The fission yeast Cid14 protein belongs to a family of noncanonical poly(A) polymerases which have been implicated in a broad
range of biological functions. Here we describe an extensive Cid14 protein–protein interaction network and its biochemical
dissection. Cid14 most stably interacts with the zinc-knuckle protein Air1 to form the Cid14–Air1 complex (CAC). Providing
a link to ribosomal RNA processing, Cid14 sediments with 60S ribosomal subunits and copurifies with 60S assembly factors. In
contrast, no physical link to chromatin has been identified, although gene expression profiling revealed that efficient silencing of
a few heterochromatic genes depends on Cid14 and/or Air1.

Keywords: TRAMP; CAC; heterochromatin silencing; ribosome biogenesis; poly(A) polymerase; Cid14

INTRODUCTION

Proper gene expression requires polyadenylation of most
eukaryotic mRNA 39 ends by the canonical poly(A) poly-
merase (PAP), which has been shown to be important for
RNA export, translation, and RNA stabilization. Besides
the canonical PAP, eukaryotic cells possess noncanonical
PAPs, which have been implicated in a broad range of bio-
logical processes and are conserved from yeast to humans.
The fission yeast Schizosaccharomyces pombe encodes six non-
canonical PAPs: Cid1, Cid11, Cid12, Cid13, Cid14, and Cid16
(Stevenson and Norbury 2006). Although initially classified as
noncanonical PAPs, some of these enzymes have been
demonstrated to add U residues (Kwak and Wickens 2007;
Rissland et al. 2007). Cid14 is a nuclear enzyme which pref-
erentially adds purines to RNA substrates in vitro, functions
in ribosomal RNA (rRNA) processing and heterochromatic
gene silencing, and is required for faithful chromosome
segregation, proper siRNA generation by the RNA interfer-
ence (RNAi) pathway, and maintenance of genomic integrity
of the ribosomal DNA (rDNA) locus (Win et al. 2006; Bühler
et al. 2007, 2008; Wang et al. 2008; Bühler 2009).

Cid14 is a functional ortholog of the two noncanonical
PAPs, Trf4p/5p, found in the distantly related budding yeast
Saccharomyces cerevisiae (Win et al. 2006). Both Trf4p and

Trf5p are found together with predicted zinc-knuckle pro-
teins Air1p/2p and the helicase Mtr4p in complexes termed
TRAMP4 (Trf4p–Air1p/2p–Mtr4p; LaCava et al. 2005;
Vanacova et al. 2005; Wyers et al. 2005) and TRAMP5
(Trf5p–Air1p–Mtr4p; Houseley and Tollervey 2006). The
TRAMP complexes are considered to be cofactors of the
yeast nuclear exosome that functions to process or degrade
RNAs (Mitchell et al. 1997; Mitchell and Tollervey 2000).

Here we report the existence of a single TRAMP-like
complex in S. pombe, consisting of Mtr4, Cid14, and Air1.
Whereas Air1 and Cid14 form a stable complex, the asso-
ciation with Mtr4 is weak and occurs only in the presence of
both Cid14 and Air1. Moreover, Cid14 sediments with 60S
ribosomal subunits and copurifies with 60S assembly factors,
providing a link to its role in ribosomal RNA processing.
Previously we have shown that efficient silencing of trans-
gene insertions at heterochromatic loci depends on Cid14
(Bühler et al. 2007). Here we demonstrate that silencing of
a few endogenous heterochromatic genes depends on Cid14.
In contrast to the factors implicated in ribosome biogenesis,
no components have been identified that would link Cid14
to chromatin. Therefore, we propose that Cid14 functions
off chromatin to control gene expression.

RESULTS AND DISCUSSION

Cid14 stably associates with the zinc-knuckle
protein Air1

Previously, we have shown that Cid14 copurifies with
a large number of proteins, including ribosomal proteins

Reprint requests to: Marc Bühler, Friedrich Miescher Institute for
Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland;
e-mail: marc.buehler@fmi.ch; fax: 41-61-697-39-76.
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(RPs) and two proteins that are homologs of the budding
yeast Mtr4p and Air1p/2p (Bühler et al. 2007). To better
characterize this protein–protein interaction network, we
revisited affinity chromatography under various condi-
tions. We started our analysis by tandem affinity purifica-
tions of fully functional C-terminally TAP-tagged Cid14
(Cid14-TAP; Bühler et al. 2007) at different salt concen-
trations followed by analysis of the purification by SDS
polyacrylamide gel electrophoresis and mass spectrometry.
LC-MS/MS analysis of tryptic digests of protein mixtures of
Cid14-TAP and control purifications revealed that Cid14
copurifies specifically with Air1 (SPBP35G2.08c), Mtr4
(SPAC6F12.16c), and a large number of RPs at 150 mM
NaCl (Fig. 1A,D). Association with Mtr4 and RPs was
gradually lost with increasing NaCl concentrations or upon
treatment with RNase I (Fig. 1B,D). The only detectable

interaction preserved at 500 mM NaCl was with Air1 (Fig.
1A,D; Supplemental Table S1). Thus, Cid14 and Air1 form
a stable complex, independently of Mtr4. We refer to this
complex as Cid14–Air1 Complex (CAC). Similarly, Trf4p
has been shown to stably associate with either Air1p or
Air2p in S. cerevisiae. Interestingly, this interaction is
necessary for PAP activity (Vanacova et al. 2005; Wyers
et al. 2005). In contrast, Cid14 shows PAP activity in-
dependently of Air1 (Bühler et al. 2007).

Mtr4, Cid14, and Air1 form a TRAMP-like complex
in S. pombe

At low salt concentrations, Cid14 reproducibly copurified
with Mtr4 and Air1, suggesting that a TRAMP-like com-
plex also exists in S. pombe. To verify this, we constructed
a strain expressing a C-terminally TAP-tagged Air1 protein
(Air1-TAP). Affinity purification followed by mass spec-
trometry identified Cid14 and Mtr4 as Air1-interacting
proteins, as well as RPs (Fig. 1C). Mtr4 and RP association
was also sensitive to high salt concentrations (Fig. 1E and
data not shown). Similarly, 500 mM NaCl washes have
been demonstrated to dissociate Mtr4p from Trf4p, Trf5p,
and Air2p in S. cerevisiae (LaCava et al. 2005). RNAse
treatment of the Cid14-TAP complex bound to IgG beads
prior to release by TEV cleavage did not abolish the
recovery of Air1 and Mtr4 (Fig. 1B), whereas binding of
RPs, in particular 40S ribosomal proteins, was reduced
(Fig. 1B,D; Supplemental Table S1). This makes it unlikely
that Mtr4, Cid14, and Air1 interact via substrate RNAs.
Based on these results, we conclude that a TRAMP-like
complex does exist in S. pombe.

In S. cerevisiae, Trf4p can either interact with Air1p or
Air2p, suggesting the existence of two TRAMP complexes
containing either Air1p or Air2p associated with Trf4p and
Mtr4p (Wyers et al. 2005). Although S. pombe encodes for
more than one Air1p/2p homolog, we consistently identi-
fied Air1 by LC-MS/MS from Cid14-TAP purifications
(Supplemental Table S1). To rule out that a related zinc-
knuckle protein could substitute in the absence of Air1, we
purified Cid14-TAP expressed in air1D cells. These purifi-
cations did not reveal any other Air1 homologs associating
with Cid14 (Fig. 2C,E; Supplemental Table S1). Thus, Air1
is the sole zinc-knuckle protein interacting with Cid14.
Furthermore, we purified Air1-TAP from cid14D cells and
found no other Cid14 homologs copurifying with Air1
(Fig. 2D). In conclusion, the association of CAC with Mtr4
represents the only TRAMP-like complex in S. pombe.
Importantly, Cid14-TAP purifications from air1D cells
revealed that Mtr4 no longer interacts with Cid14 in the
absence of Air1 (Fig. 2C,E). This may suggest that Air1
mediates the interaction with Mtr4. However, Mtr4 was
also lost when we purified Air1-TAP from cid14D cells (Fig.
2D,E). Therefore, an intact CAC complex is required for
TRAMP formation in fission yeast.

FIGURE 1. Cid14 interacts with Air1, Mtr4, and ribosomal proteins.
(A) Silver-stained gel showing Cid14-TAP purifications under in-
creasing salt conditions. The positions of Mtr4 (126 kDa), Cid14-CBP
(83 kDa), a Cid14 degradation product, Air1 (35 kDa), and a molec-
ular weight marker (left) are indicated. CBP, calmodulin binding
peptide. (B) Silver-stained gel showing an RNase-treated Cid14-TAP
purification. Five-hundred units of RNase I were added after the TEV-
cleavage reaction for 1 h at RT. (C) Silver-stained gel showing an Air1-
TAP purification (150 mM NaCl). (D,E) Table summarizing the LC-
MS/MS results of the TAP purifications under various conditions (see
also Supplemental Table S1). TAP elutions were TCA-precipitated
and processed for LC-MS/MS analysis. RPs, ribosomal proteins. Black,
gray, and white boxes indicate peptides that are, respectively, of high
abundance, medium abundance, or absent in LC-MS/MS.
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Cid14 associates with 60S ribosomal subunits
and assembly factors

The results described above show that Cid14 resides in at
least two biochemically distinct protein complexes, CAC
and TRAMP. Importantly, Cid14 has previously been
shown by gel filtration experiments to be part of a complex
much larger than CAC and TRAMP (Win et al. 2006).
Consistently, sucrose gradient fractionation indicated that
Cid14 is part of both low and high molecular weight
protein assemblies (Fig. 2A). We observed the same for
Air1, but not Mtr4. Mtr4 sedimented mainly in fraction 2,
which represents its own molecular weight of z126 kDa
(Fig. 2A,B). Thus, Mtr4 seems unlikely to be a stable
component of any larger protein assemblies. Furthermore,
only a small fraction of the Mtr4 population seems to be
associated with CAC to form spTRAMP, similar to what
has also been described for Mtr4p in S. cerevisiae (LaCava
et al. 2005).

The high number of copurifying RPs and the sedimen-
tation of Cid14 in high molecular weight fractions is
indicative of an association with ribosomes. Interestingly,
Cid14 has been reported to be involved in 25S rRNA
processing (Win et al. 2006), suggesting that Cid14 might

interact with ribosomal proteins during
assembly of the large ribosomal subunit.
Therefore, we performed ribosome frac-
tionation on sucrose gradients ranging
from 10% to 50% by centrifugation for
15 h followed by Western blotting to
detect Cid14-TAP. Consistent with its
known role in 25S rRNA processing,
Cid14 was mainly detected in fractions
representing the 60S large ribosomal
subunit (Fig. 3A). Importantly, five
proteins known to be involved in 60S
biogenesis could be identified by LC-
MS/MS after reducing the complexity
of our Cid14-TAP purification by SDS-
PAGE separation and performing the
tryptic digest on individual gel bands
(Fig. 3B). Thus, we conclude that the
higher molecular weight Cid14 com-
plex represents a 60S ribosomal sub-
unit assembly protein–protein interac-
tion network.

Silencing of a few endogenous
heterochromatic genes depends
on Cid14

Previously we have shown that efficient
silencing of transgene insertions at het-
erochromatic loci depends on Cid14
(Buhler et al. 2007). However, it re-

mained to be tested to what extent Cid14 also functions
in heterochromatic silencing of endogenous genes and
whether this depends on an intact TRAMP complex.
Therefore, we hybridized total RNA isolated from wild-
type, cid14D, and air1D cells to affymetrix tiling arrays.
Taking the average of two biological replicates and using
a cutoff of 1.5-fold, 149 and 323 genes were shown to be
up-regulated in cid14D and air1D cells, respectively, while
73 and 86 were down-regulated (Fig. 4A,B). Interestingly,
the genes differentially expressed in cid14D and air1D cells
overlapped only partially, suggesting that Air1 and Cid14
can also function outside the CAC or TRAMP complexes
(Fig. 4A,D). Consistent with this, we noticed that both
Cid14 and Air1 associated with high molecular weight
protein assemblies independently of each other (Fig. 2F,G).

Comparing the expression in cid14D to previously
published H3K9me2 and HP1Swi6 ChIP-on-chip data
(Cam et al. 2005) revealed that only a small set of
heterochromatic genes was up-regulated in cid14D (Fig.
4E; Supplemental Table S2). The majority of these are
subtelomeric genes, as previously described (Wang et al.
2008). Importantly, not all of these heterochromatic genes
were up-regulated in air1D cells, suggesting that an intact
CAC and/or TRAMP complex is not always necessary to

FIGURE 2. Cid14 resides in high and low molecular weight complexes. (A) Sucrose gradient
fractionation under low salt conditions (150 mM NaCl). Individual fractions from sucrose
density gradients were analyzed by Western blotting with antibodies recognizing Cid14-HA,
Air1-TAP, or Mtr4. (B) Sucrose gradient fractionation under high salt conditions (500 mM
NaCl). The analysis was performed as in A. (C) Silver-stained gel showing Cid14-TAP
purifications performed with wild-type and air1D cells. (D) Silver-stained gel showing Air1-
TAP purifications performed with wild-type and cid14D cells. (C,D) Salt concentration was
150 mM. (E) Table summarizing LC-MS/MS results of TAP purifications shown in C and D.
Black, gray, and white boxes indicate peptides that are of high abundance, medium abundance,
and absent in LC-MS/MS, respectively. (F,G) S. pombe lysates from cid14-TAP air1D and air1-
TAP cid14D cells were separated by sucrose density gradient centrifugation. (A,B,F,G) S. pombe
total cell lysates were loaded onto an 18%–54% sucrose gradient and protein complexes were
separated by ultracentrifugation at 39,000 rpm for 18 h.
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silence heterochromatin (Supplemental Table S2). Al-
though future work on Air1 and its RNA binding proper-
ties will be required to rule out alternative functions, we
speculate that Air1 functions as an RNA adaptor to support

the association of Cid14 with its substrate. Depending on
yet to be determined characteristics of a Cid14 substrate,
Air1 might be more or less important for this.

Conclusions

Our findings that Cid14 associates with 60S ribosomal
subunits and with proteins known to be involved in 60S
biogenesis strongly suggest that Cid14 is directly involved
in the assembly of pre-ribosomes. This is further supported

FIGURE 3. Cid14 associates with 60S ribosomal subunits and 60S
ribosome assembly factors. (A) Sedimentation behavior of Cid14-TAP
in 10%–50% ribosome sucrose gradients. UV profile (OD at 254 nm)
with ribosomal subunits, mono- and polysomes is indicated. Samples
were treated with cycloheximide to stabilize or puromycin to disrupt
polysomes. Twenty-four fractions were collected and analyzed by
Western blotting against Cid14-TAP. (B) Cid14-TAP and control
purifications from 20 g of cells were separated by SDS-PAGE followed
by Coomassie-staining. Bands were cut out and LC-MS/MS analysis
was performed on in-gel processed samples. Positions of the bands
and the corresponding proteins indentified by LC-MS/MS are in-
dicated. %, percent sequence coverage; # number of unique peptides.

FIGURE 4. Differential gene expression in cid14D and air1D cells.
(A,B) Venn diagrams showing the number of genes up- or down-
regulated at least 1.5-fold in cid14D or air1D cells compared to wild
type (P = 0.05) on S. pombe tiling arrays. Two biological replicates
were analyzed. (C) Heatmap displaying the genes which were up- or
down-regulated at least 1.5-fold (P = 0.05) in cid14D cells compared
to wild type on S. pombe tiling arrays. (D) Heatmap displaying the
genes which were up- or down-regulated at least 1.5-fold (P = 0.05) in
air1D cells compared to wild type on S. pombe tiling arrays. (C,D)
Artificially scaled expression values are shown for the strains indicated
(�1.5 is set for the gene with the lowest expression and +1.5 is set for
the gene with the highest expression). (E) Comparison of genes up-
regulated in cid14D cells to previously published H3K9me2 ChIP-on-
chip data (Cam et al. 2005). Asterisks in red indicate those genes that
have a value >0.6 (log scale) in both the expression and ChIP
experiments (listed in Supplemental Table S2).
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by the nucleolar localization of Cid14 and its role in rRNA
metabolism (Win et al. 2006; C Keller and M Bühler,
unpubl.). Therefore, we propose that Cid14 is physically
linked to ribosome biogenesis. Cid14 also functions in
eliminating a variety of RNAs, amongst them transcripts
originating from subtelomeric heterochromatin (this study;
Bühler et al. 2007; Wang et al. 2008). In contrast to RPs and
ribosome assembly factors, we were not able to identify
proteins which could link Cid14 to heterochromatin phys-
ically. Therefore, we favor a model in which Cid14 rec-
ognizes and eliminates heterochromatic RNAs off chroma-
tin. Finally, our biochemical and functional data suggest
that Cid14 may at least partially function outside of an
intact TRAMP complex. Future work will be required to
elucidate substrate characteristics and requirements for
Cid14 and/or the TRAMP complex.

MATERIALS AND METHODS

Strains and plasmids

Fission yeast strains used in this study are described in Supple-
mental Table S3 and were grown at 30°C in YES (Yeast Extract
with Supplements). All strains were constructed following a stan-
dard PCR-based protocol (Bahler et al. 1998).

Tandem affinity purification

A 2-L culture of TAP-tagged S. pombe cells (OD at 600 nm � 2)
was pelleted, washed once in ice-cold PBS, resuspended in 1/4
pellet volume of lysis buffer (6 mM Na2HPO4, 4 mM NaH2-

PO4dH2O, 1% NP-40, 150 mM NaCl, 2 mM EDTA, 1 mM EGTA,
50 mM NaF, 4 mg/mL leupeptin, 0.1 mM Na3VO4, 1 mM PMSF,
13 Protease Inhibitors Complete EDTA free [Roche]), and
pelleted into N2(l). Ten grams of cells were then disrupted by
cryo-grinding with a Retsch MM 400 (3 3 3 min at 30 Hz).
Sixteen milliliters of lysis buffer was added to the powder and
stirred for ca. 15 min in the cold room. The salt concentration was
now adjusted, if required. The lysate was spun for 25 min at
12,000 rpm (4°C). The supernatant was then incubated with 200
mL of IgG-Sepharose for 2 h at 4°C on a rocker. The beads were
transferred to a column and washed three times with 10 mL of
washing buffer (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.1%
NP-40) and once with TEV-cleavage buffer (10 mM Tris-HCl [pH
8.0], 150 mM KOAc, 0.1% NP-40, 0.5 mM EDTA, 1 mM DTT).
The TEV-cleavage reaction was performed using 50 U of acTEV
(Invitrogen) in 1 mL of TEV-cleavage buffer for 1 h at 25°C.
Where indicated, the RNase I (Ambion) treatment was subse-
quently performed for 1 h at RT using 500 U. The eluate was then
transferred to a new column and the old column was washed out
with 0.5 mL of TEV-c buffer. Three milliliters of Calmodulin-
binding buffer (CAM-B: 10 mM Tris-HCl [pH 8.0], 150 mM
NaCl, 1 mM Mg[OAc]2, 1 mM imidazole, 2 mM CaCl2, 10 mM
b-mercaptoethanol), 4.5 mL of 1 M CaCl2, and 150 mL of
Calmodulin-Sepharose were added and incubated for 1 h at 4°C
on a rocker. The beads were washed twice with 1.5 mL CAM-B
(0.1% NP-40) and once with 1.5 mL CAM-B (0.02% NP-40). The
purified proteins were eluted from the column using 1 mL of

CAM-E (=CAM-B, but replacing the CaCl2 with 10 mM EGTA).
The eluate was split into two aliquots and each of them was TCA-
precipitated. One pellet was resuspended in 13 LDS sample buffer
and run on a 4%–12% NuPAGE gel (Invitrogen) using MOPS
buffer followed by silver- or Coomassie-staining (Colloidal Blue
Staining kit, Invitrogen). The other pellet was used for mass spec-
trometric analysis.

Sucrose density gradient centrifugation

The lysate was prepared as for the TAP purifications (0.5 g of cryo
ground powder). After the high-speed spin, 300 mL of the lysate
was loaded onto a 18%–54% sucrose gradient (buffered with
20 mM Tris-HCl [pH 7.5], 150 mM KCl, 1 mM DTT, 1 mM
PMSF). Complexes were separated by ultracentrifugation for 18 h
at 39,000 rpm (4°C) with an SW40 rotor (Beckman). The gradient
was unloaded from the bottom with 70% sucrose. Twelve
fractions of 1 mL were taken using a fraction collector while
reading the absorbance at 254 nm with a UV reader. Twenty-eight
microliters of the fractions was separated on a 4%–12% NuPAGE
gel, blotted to nitrocellulose (1.5 h at 200 mA), and the proteins of
interest were detected using the ECL system. Antibodies were used
at 1:10,000 (a-PAP, Sigma), 1:20 (a-HA, FMI monoclonal
antibody), 1:3000 (a-Mtr4, custom polyclonal, Eurogentec).

For the ribosome fractionation, 100 mg/mL cycloheximide or
1 mM puromycin was added to 250 mL of an exponentially
growing S. pombe culture. The culture was incubated for another
10 min at 30°C and then pelleted. The cells were washed once and
then resuspended in 0.5 mL of lysis buffer (20 mM Tris-HCl [pH
7.5], 150 mM KCl, 5 mM MgCl2, 1 mM EGTA, 1 mM PMSF, 13

Protease Inhibitors Complete EDTA-free [Roche], 100 mg/mL
Cycloheximide or 1 mM puromycin). For the puromycin treated
sample, the MgCl2 concentration in all buffers was reduced to
1 mM. One milliliter of glass beads was added and the cells were
disrupted using a bead-beater (4 3 30 sec). The lysate was spun
for 15 min at 16,000 rpm, 4°C, and then 300 mL of the
supernatant was loaded onto a 10%–50% gradient, which was
prepared as described above. The ultracentrifugation was carried
out for 15 h at 27,000 rpm in a SW40 rotor (Beckman). In this
case, 24 fractions of 0.5 mL were collected as described above.

Mass spectrometry

SDS-PAGE separated proteins and TCA-precipitated and acetone-
washed protein pellets were reduced with TCEP, alkylated with
iodoacetamide, and digested with trypsin. The generated peptides
were analyzed by NanoLC-MSMS on a 4000Q Trap as described
(Supplemental Table S1; Hess et al. 2008). The proteins were
identified with Mascot searching Uniprot 15.6 (Perkins et al.
1999).

S. pombe tiling arrays and data analysis

RNA was isolated from cells collected at OD600 = 0.5 using the hot
phenol method (Leeds et al. 1991). The isolated RNA was
processed according to the GeneChip Whole Transcript (WT)
Double-Stranded Target Assay Manual from Affymetrix using the
GeneChip S. pombe Tiling 1.0FR. For analysis of the tiling arrays,
an R-based script was used, which is available upon request. We
used the genome and annotations from the S. pombe Genome
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Project (http://www.sanger.ac.uk/Projects/S_pombe/). The oligos
from the Affymetrix .BPMAP file were remapped using bowtie
and the .GFF file was used to map them to the genes. The resulting
.CDF file is available upon request. The expression data from
cid14D was compared to ChIP-on-chip data for H3K9me2
(Cam et al. 2005) by plotting, for each annotated element,
enrichment/input for the ChIP data against cid14D/wt for the
expression data. The average of two biological replicates was taken
for each data set.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
Tiling array data are reposited at the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/), accession number GSE20905.
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SUMMARY

HP1 proteins are major components of heterochro-
matin, which is generally perceived to be an inert
and transcriptionally inactive chromatin structure.
Yet, HP1 binding to chromatin is highly dynamic
and robust silencing of heterochromatic genes can
involve RNA processing. Here, we demonstrate by
a combination of in vivo and in vitro experiments
that the fission yeast HP1Swi6 protein guarantees
tight repression of heterochromatic genes through
RNA sequestration and degradation. Stimulated by
positively charged residues in the hinge region,
RNA competes with methylated histone H3K9 for
binding to the chromodomain of HP1Swi6. Hence,
HP1Swi6 binding to RNA is incompatible with stable
heterochromatin association. We propose a model
in which an ensemble of HP1Swi6 proteins functions
as a heterochromatin-specific checkpoint, capturing
and priming heterochromatic RNAs for the RNA
degradation machinery. Sustaining a functional
checkpoint requires continuous exchange of HP1Swi6

within heterochromatin, which explains the dynamic
localization of HP1 proteins on heterochromatin.

INTRODUCTION

Heterochromatin is a distinct chromatin structure that is late

replicating, gene poor, and rich in transposons or other parasitic

genomic elements. Heterochromatic structures are required for

proper centromere function, repression of recombination, sister

chromatid cohesion, and the maintenance of telomere stability,

and they also play an essential role in heritable gene silencing

in a variety of organisms from yeast to humans (Grewal and

Jia, 2007). One hallmark of heterochromatin is its association

with members of the highly conserved heterochromatin protein

1 (HP1) family of proteins (James and Elgin, 1986). HP1 proteins

consist of an N-terminal chromodomain (CD) and a structurally

related C-terminal chromo shadow domain (CSD), separated

by a hinge region. The CSD can mediate homodimerization of

HP1 and binding to other proteins through a degenerate penta-

peptide motif, PxVxL (Cowieson et al., 2000; Smothers and
Henikoff, 2000). The CD binds the N-terminal tail of histone H3

when it is di- or trimethylated with high specificity but low affinity

(Bannister et al., 2001; Jacobs and Khorasanizadeh, 2002;

Jacobs et al., 2001; Lachner et al., 2001; Nielsen et al., 2002)

and the hinge region has been implicated in nucleic acid binding

(Muchardt et al., 2002). The fission yeast Schizosaccharomyces

pombe contains two HP1 homologs, HP1Chp2 and HP1Swi6,

which both bind to methylated lysine 9 of histone H3 (H3K9)

and are involved in heterochromatin silencing (Grewal and Jia,

2007). In contrast to other eukaryotes, S. pombe contains only

a single member of the SUV39 histone methyltransferase family

of proteins, Clr4, which is responsible for the methylation of

H3K9 (Nakayama et al., 2001).

Heterochromatin is generally perceived to be a structurally

rigid and static chromatin compartment that is inaccessible to

the transcription machinery, yet several findings challenge this

view. For example, the H3K9 methyl-binding affinity of HP1

proteins can be rather low, and their association with hetero-

chromatin is surprisingly dynamic (Cheutin et al., 2004, 2003;

Festenstein et al., 2003; Schalch et al., 2009). Furthermore,

recent work has revealed that both RNAi-dependent and -inde-

pendent RNA turnover mechanisms are crucial for the quies-

cence of heterochromatic sequences in S. pombe, indicating

that silencing of heterochromatin does not occur exclusively at

the transcriptional level (Bühler et al., 2007). Repression of

marker genes when inserted into heterochromatin depends on

the noncanonical poly(A) polymerase Cid14, which is thought

to target the heterochromatic RNA for degradation via the

RNA exosome and/or the RNAi pathway. Similarly, silencing of

subtelomeric genes marked by H3K9 methylation also depends

on Cid14 (Keller et al., 2010; Wang et al., 2008). Importantly,

heterochromatic gene silencing is impaired in Cid14 mutant

strains, yet heterochromatin remains intact (Bühler et al.,

2007). Thus, some level of transcription within heterochromatin

is possible, and pathways to cope with the unwanted hetero-

chromatic RNA do exist (Bühler, 2009). However, themechanism

of specific recognition of heterochromatic transcripts and thus

their targeting for the Cid14-dependent degradation has re-

mained elusive.

HP1Swi6, one of the two S. pombe heterochromatin proteins,

is best known for its critical role in proper centromere function.

In swi6 mutant cells, centromeres lag on the spindle during

anaphase, and chromosomes are lost at a high rate (Ekwall

et al., 1995). This is associated with a failure in the recruitment

of cohesin to pericentromeric heterochromatin (Bernard et al.,
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2001; Nonaka et al., 2002). Thus, one function of HP1Swi6 is the

attraction of a high concentration of cohesin to S. pombe centro-

meres, which guarantees proper chromosome segregation.

HP1Swi6 has also been implicated in the recruitment of cohesin

outside constitutive heterochromatin, thus regulating transcrip-

tion termination between convergent gene pairs (Gullerova and

Proudfoot, 2008). Besides cohesin subunits, HP1Swi6 also co-

purifies with a diverse set of other nuclear nonhistone proteins

that are involved in a variety of nuclear functions such as

chromatin remodelling and DNA replication (Fischer et al.,

2009; Motamedi et al., 2008). Even though many of these inter-

actions remain to be confirmed, HP1Swi6 may partner with

many different factors and ensure genomic integrity. Apart

from these functions, HP1Swi6 is also required for heterochro-

matic gene silencing, but on a mechanistic level this is poorly

understood.

Here, we demonstrate that HP1Swi6 serves a general function

linking transcription within heterochromatin to downstream RNA

turnover. HP1Swi6 binds RNA via a molecular mechanism that

involves the hinge region, the CD, and the N-terminal domain.

Rather than tethering heterochromatic transcripts to chromatin,

HP1Swi6 complexed with RNA dissociates from H3K9-methyl-

ated nucleosomes and escorts its associated RNAs to the

RNA decay machinery. This detachment of HP1Swi6 from chro-

matin results from a competition mechanism that combines

the interactions of RNA and methylated H3K9 to HP1Swi6 on

the single-molecule level with dynamic exchange between the

histone-bound and -unbound HP1Swi6 ensemble. Our results

provide an explanation for the dynamic localization of HP1

proteins on heterochromatin and reveal insights into the role of

RNA in the regulation of higher order chromatin structures.

RESULTS

Heterochromatic mRNA Transcripts Are Not Translated
into Protein
Previous work revealed that the noncanonical polyA-polymerase

Cid14 processes or eliminates a variety of RNA targets to control

processes such as the maintenance of genomic integrity,

meiotic differentiation, ribosomal RNA maturation, and hetero-

chromatic gene silencing (Keller et al., 2010; Wang et al., 2008;

Win et al., 2006). The effect of cid14+ mutations on heterochro-

matin silencing has previously been studied using the ura4+

reporter gene/5-FOA assay (Bühler et al., 2007). Because this

assay does not allow a quantification of the resulting protein

levels, and because it is also compromised by a general sensi-

tivity of cid14+ mutant cells to 5-FOA (Figure S1), we created

reporter strains carrying a gfp+ transgene inserted at the inner-

most centromeric repeat region (imr1R::gfp+) or at the mat3M

locus (mat3M::gfp+) (Figure 1A). Consistent with previous results

(Bühler et al., 2007), heterochromatic gfp+ mRNA levels from

centromeric locations increased significantly in clr4D and

dcr1D cells, but only modestly in cid14D cells (Figure 1B), with

no corresponding increase in GFP protein levels upon cid14+

deletion (Figures 1C and S1A). Therefore, Cid14 plays a redun-

dant role, if any at all, in the silencing of a reporter gene located

in centromeric heterochromatin. In contrast, deleting the cid14+

gene resulted in strongly elevated gfp+ mRNA levels from the
2 Molecular Cell 47, 1–13, July 27, 2012 ª2012 Elsevier Inc.
mating-type locus. Unexpectedly, however, this was not accom-

panied by a concomitant increase in GFP protein levels (Figures

1D and E).

To test whether mRNAs originating from heterochromatic

genes engage in translation at all, we set out to profile their asso-

ciation with polyribosomes (Figure 1F). S. pombe cell lysates

were separated on sucrose gradients and RNA was extracted

from the individual fractions. The relative amount of a given

mRNA in each fraction was then quantified by quantitative

real-time RT-PCR (qRT-PCR). As expected, act1+ mRNA was

highly enriched, whereas the nuclear U6 snRNA was absent

from the polysomal fractions (Figure 1F). When transcribed

from its endogenous locus, mRNA encoded by the ura4+ gene

was also highly enriched in polysomes (data not shown). Simi-

larly, ura4+ mRNA originating from a mat3M::ura4+ reporter

was found in the polysomal fractions in the absence of the

H3K9 methyltransferase Clr4. However, no considerable associ-

ation with polysomes was observed for heterochromatic ura4+

reporter mRNA in wild-type or cid14D cells (Figure 1F).

Thus, although heterochromatic mRNAs can be over 10-fold

more abundant in cid14D cells than in wild-type cells, they are

not translated into protein effectively.

HP1Swi6 Functions as an H3K9 Methylation-Specific
Checkpoint to Assemble Translationally Incompetent
Ribonucleoprotein Particles
Atypical processing of 50 or 30 ends of heterochromatic mRNAs

could explain why heterochromatic mRNAs do not engage in

translation. However, our analysis of mRNA termini revealed no

major differences between heterochromatic and euchromatic

transcripts (Figure S2 and data not shown), suggesting that

heterochromatic mRNAs per se do not contain aberrant features

that would signal their destruction or render them translationally

inactive. Rather, transcripts emerging from heterochromatin

are more likely to be channeled into the RNA decay pathway

by the assembly of a heterochromatin-specific ribonucleopro-

tein particle (hsRNP). Therefore, we postulate the existence of

an H3K9 methylation-specific checkpoint that would function

on chromatin and assemble emerging transcripts into hsRNPs

that are translationally incompetent and prone for degradation

(Figure 2A).

Obvious candidates for proteins that could function as such

a checkpoint are HP1 proteins, because they have been re-

ported to have affinity for both H3K9-methylated histone H3 tails

and RNA. Therefore, HP1 proteins might capture heterochro-

matic RNAs in an H3K9 methylation-specific manner. The

S. pombe genome contains two HP1 homologs, HP1Chp2 and

HP1Swi6. Interestingly, even though HP1Swi6 is essential for the

full repression of heterochromatin, its contribution to transcrip-

tional gene silencing is minimal. Furthermore, heterochromatic

RNAs have been observed to copurify with HP1Swi6 but not

HP1Chp2 (Motamedi et al., 2008).

Therefore, we tested whether heterochromatic mRNAs would

become translated in cells lacking HP1Swi6. Consistent with

the checkpoint model, GFP protein expression from the

mat3M::gfp+ allele was restored in swi6D and swi6D cid14D

cells (Figure 2B). However, deletion of swi6+ also resulted in

a significant reduction in H3K9me2 at mat3M::gfp+ (Figure 2C),



Figure 1. Heterochromatic mRNAs Are Not Translated into Protein

(A) Diagram representing DNA organization at the centromere of chromosome I and at the mating-type locus (chromosome II). cnt1, central core; imr1, innermost

repeats; otr1, outermost repeat. gfp+ reporter transgenes are driven by the ura4+ promoter, whereas the ORF is followed by a natMX6 cassette (Tadh1

terminator).

(B) Quantitative real-time RT-PCR showing gfp+mRNA levels in imr1R::gfp+ cells. Mean values normalized to act1+ are shown (n = 3). Error bars represent SEM;

p values were calculated using the Student’s t test.

(C) Western blot showing GFP protein levels in imr1R::gfp+ cells. Total protein from an equivalent number of cells was extracted by TCA. Tubulin served as

a loading control.

(D) Quantitative real-time RT-PCR showing gfp+ mRNA levels in mat3M::gfp+ cells. Mean values normalized to act1+ are shown (n = 14). Error bars represent

SEM, p values were calculated using the Student’s t test.

(E) Western blot showing GFP protein levels in mat3M::gfp+ cells. Total protein from an equivalent number of cells was extracted by TCA. Tubulin served as

a loading control.

(F) A representative polysome profile (OD 254 nm) with monosomal (fractions 1–5) and polysomal fractions (fractions 6–12 polysomal) is shown on the left. RNA

levels were determined by quantitative real-time RT-PCR and the enrichment in the polysomal fraction was calculated as a percentage of the total. Error bars

represent SEM. Act1+ RNA and U6 snRNA served as positive and negative controls, respectively.
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not allowing us to definitely assign the checkpoint function to

HP1Swi6. In contrast, deletion of swi6+ or cid14+ or both did

not significantly lower H3K9 methylation levels at the subtelo-

meric tlh1/2+ genes, yet resulted in a strong upregulation of

the respective mRNAs (Figures 2D and 2E). Importantly, associ-

ation of tlh1/2+ mRNA with polysomes was only observed in

cells lacking swi6+ but not cid14+ (Figure 2F). These results

place HP1Swi6 upstream of Cid14 and directly support a model

in which HP1Swi6 acts on H3K9-methylated nucleosomes and

promotes the assembly of translationally incompetent hsRNPs.

HP1Swi6 Binds RNA via the Hinge Region
The above results implicate HP1Swi6 in the checkpoint model as

the H3K9 methylation ‘‘reader,’’ yet it was not clear whether

HP1Swi6 itself or any of its interacting proteins could capture

heterochromatic RNAs. Whereas RNA-binding affinity has
been demonstrated for mammalian HP1a (Muchardt et al.,

2002), it was not known whether fission yeast HP1Swi6 can

bind RNA directly. We purified recombinant HP1Swi6 and per-

formed electrophoretic mobility shift assays (EMSA) using

various RNA and DNA probes. In these assays, recombinant

HP1Swi6 bound efficiently to the different RNAs but only

weakly to DNA (Figure 3B). Furthermore, RNA binding could be

competed with unlabeled RNA probes (Figure S3). HP1Swi6

consists of four domains: An N-terminal domain (NTD, residues

1–74), which is presumably flexibly disordered; a chromodomain

(CD, residues 75–139), which binds K9-methylated histone tails

(Bannister et al., 2001); a hinge region (H, residues 140–264);

and a C-terminal chromo shadow domain (CSD, residues 265–

328) (Cowieson et al., 2000). The hinge region of mammalian

HP1a has been implicated in RNA binding (Muchardt et al.,

2002). To test whether the hinge region also confers RNA binding
Molecular Cell 47, 1–13, July 27, 2012 ª2012 Elsevier Inc. 3



Figure 2. HP1Swi6 Prevents Translation of Heterochromatic RNAs

(A) Checkpoint model for the specific recognition of mRNA originating from heterochromatin. When H3K9 is unmethylated (clr4D or euchromatin), the checkpoint

cannot assemble and mRNAs are exported and translated. In WT and cid14D cells, the checkpoint assembles on H3K9 methylated nucleosomes and captures

heterochromatic mRNA transcripts. Eventually, these mRNAs are degraded in a Cid14-dependent manner. In the absence of Cid14 (cid14D), heterochromatic

mRNAs accumulate but are not translated because they are retained by the checkpoint.

(B) Western blot showing GFP protein levels in mat3M::gfp+ cells. Total protein from an equivalent number of cells was extracted by TCA. Tubulin served as

a loading control.

(C and D) ChIP experiment showing that H3K9me2 levels at mat3M::gfp+ are significantly reduced in swi6D and cid14D swi6D cells but not in cid14D cells.

H3K9me2 levels at the telomeric tlh1+ and tlh2+ genes are not significantly reduced in cid14D, swi6D, and cid14D swi6D cells. Enrichment was determined by

quantitative real-time PCR. Mean values normalized to act1+ are shown (n = 4). Error bars represent SEM, p values were calculated using the Student’s t test.

(E) tlh1/2+ mRNA levels were determined by quantitative real-time RT-PCR. Mean values normalized to act1+ are shown (n = 9). Error bars represent SEM, p

values were calculated using the Student’s t test.

(F) tlh1/2+mRNA associates with polysomes in swi6D but not in cid14D cells, although total mRNA levels are not significantly different in swi6D and cid14D cells

(E). Enrichment of tlh1/2+mRNA in polysomal fractions of the indicated mutants was determined by polysome profiling as in Figure 1F. Error bars represent SEM.
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properties to HP1Swi6, we purified recombinant CD, hinge, and

CSD. In contrast to the CD and the CSD, the isolated hinge

region was sufficient for strong RNA binding (Figure 3B). By

using NMR chemical shift titrations monitored on amide reso-

nances in the flexible hinge region, we determined the binding

constant of full-length HP1Swi6 to a 20-mer RNA as 38 ± 13 mM

(Figure 3C). These results demonstrate that HP1Swi6 is able to

bind RNA alone and that the hinge region is substantially

involved in this binding interaction.

Design of an HP1Swi6 Mutant that Affects RNA
but Not H3K9me Binding
Because heterochromatin at certain loci disintegrates upon

removal of the swi6+ gene (Figure 2C), we aimed to develop an

HP1Swi6 mutant with compromised RNA- but normal H3K9me-

binding affinity. Therefore, we mutated the positively charged

residues of the hinge region, 20 lysines and 5 arginines, to

alanines (Figure 4A). For the resulting mutant protein, HP1Swi6-
4 Molecular Cell 47, 1–13, July 27, 2012 ª2012 Elsevier Inc.
KR25A, RNA binding was indeed drastically reduced when

compared to the wild-type protein (Figure 4B). For the subse-

quent use of the protein in vivo, we assessed the impact of these

25 mutations on protein architecture by solution NMR spectros-

copy using recombinant HP1Swi6 and HP1Swi6-KR25A protein.

Based on the full-length proteins and subconstructs thereof,

we established complete sequence-specific resonance assign-

ments for the isolated CD (residues 75–139) (Figure S4A), as

well as domain-specific resonance assignments for the NTD,

the hinge region, and the CSD of wild-type HP1Swi6. The chem-

ical shift dispersion and intensities of the resonances in full-

length HP1Swi6 indicated the CD and the CSD to be folded

domains and the NTD and the hinge region to be flexibly

unfolded polypeptide segments, as expected from predictions

of the secondary structure. Analysis of the 13Ca and 13Cb

secondary chemical shifts of the isolated CD indicates three

b-strands and one large a-helix at the C-terminal end of the

domain (Figure S4E), which is well in agreement with the known



Figure 3. HP1Swi6 Is an RNA-Binding Protein

(A and B) Electrophoretic mobility shift assay (EMSA) using recombinant

HP1Swi6, HP1Swi6 subdomains or GST and different substrate nucleic acids

(see Supplemental Information). RNA probes were labeled with fluorescein-

UTP by in vitro transcription. DNA probes were produced by standard PCR.

Protein-nucleic acid complexes were separated on 1.6%-TB agarose gels and

the signal detected using a typhoon scanner.

(C) NMR chemical shift perturbation assay. The open circles are combined

amide chemical shifts Dd=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:04$Ddð15NÞ2 +Ddð1HÞ2

q
of three selected amide
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secondary structure elements in the homologous human chro-

mobox homolog 3 (Kaustov et al., 2011). Importantly, 2D

[15N,1H]-TROSY NMR spectra revealed the subspectra for the

CD, the CSD, and the NTD, but not the hinge region of recombi-

nant HP1Swi6-KR25A, to be essentially identical to wild-type

HP1Swi6 (Figures 4D and 4E). Thus, the 25 Lys and Arg to Ala

mutations in the hinge region abolish RNA binding without

affecting the global fold of the CD and CSD domains or having

a structural effect on the unfolded NTD. Binding to methylated

H3K9 is, therefore, expected to be maintained in the HP1Swi6-

KR25A mutant. This we could confirm by surface plasmon

resonance (SPR) measurements (Figure 4C). The binding

constants of wild-type and HP1Swi6-KR25A to an immobilized

peptide corresponding to residues 1–20 of a K9 trimethylated

histone H3 tail (H3K9me3 peptide) (2.5 ± 0.5 mM and 7.8 ±

0.8 mM, respectively), were akin to and in correspondence with

published values for the individual domains (Jacobs and Khora-

sanizadeh, 2002; Schalch et al., 2009).
Silencing but Not the Integrity of Heterochromatin
Is Affected in the HP1Swi6 RNA-Binding Mutant
To study the functional relevance of RNA binding through the

hinge region of HP1Swi6, we replaced the endogenous swi6+

open reading frame (ORF) with the HP1Swi6-KR25A mutant

ORF. Consistent with previous results that assigned a nuclear

localization signal (NLS) function to the hinge region (Wang

et al., 2000), we observed that the HP1Swi6-KR25A protein

localized mainly to the cytoplasm (Figure S5A and data not

shown). Therefore, we added an N-terminal SV40 NLS to the

wild-type and mutant HP1Swi6 alleles, which restored the char-

acteristic heterochromatic foci in the nucleus and the specific

association with RNA from heterochromatic regions (Figures

5A and S5B–S5F). Furthermore, in contrast to swi6D cells,

neither NLS-HP1Swi6- nor NLS-HP1Swi6-KR25A-expressing

cells were sensitive to thiabendazole (TBZ), showing that RNA

binding to HP1Swi6 is not required for proper chromosome

segregation (Figure 5B). Importantly, the H3K9 methylation

defect observed at the mat3M::gfp+ locus in swi6D cells

(Figure 2C) was rescued by the nls-swi6-KR25A allele (Fig-

ure 5D). Similarly, H3K9 methylation within telomeric hetero-

chromatin remained unaffected in nls-swi6-KR25A cells (Fig-

ures 5E and 5F).

These results demonstrate that neither H3K9 methylation nor

recruitment of HP1Swi6 to heterochromatin depend on RNA

binding through the hinge region of HP1Swi6. However, silencing

of heterochromatic genes was nonfunctional in nls-swi6-KR25A

cells (Figures 5G–5J). Thus, RNA binding to HP1Swi6 is required

for full repression of heterochromatic genes but dispensable

for the integrity of heterochromatin. In summary, with nls-swi6-

KR25A we created a separation-of-function allele of HP1Swi6

that fails to repress heterochromatic genes but still fulfills its

architectural roles, with no impact on H3K9 methylation or chro-

mosome segregation.
resonances plotted versus the RNA concentration. The line is the result of

a nonlinear least-squares fit of a single binding curve to the data. The resulting

dissociation constant KD is indicated.
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Figure 4. Characterization of HP1Swi6-KR25A

(A) Domain architecture of HP1Swi6. The two folded domains are indicated as ellipses, the two flexible domains as wavy lines. The amino acid sequence of the

hinge region (residues 140–264) is given below. Lys and Arg residues that are mutated to Ala in the HP1Swi6-KR25A protein are marked in green.

(B) EMSA showing that RNA binding of HP1Swi6-KR25A is strongly impaired compared with the wild-type protein. A 100 nt centromeric RNA probe was used.

(C) SPR sensorgrams for binding of HP1Swi6 (black) and HP1Swi6-KR25A (green) to an H3K9me3 surface. The protein concentrations are from bottom to top 0,

0.015, 0.047, 0.15, 0.43, 1.3, and 3.8 mM.

(D and E) Comparison of 2D [15N,1H]-TROSY correlation spectra of HP1Swi6 (black) and HP1Swi6-KR25A (green). In (D), the downfield region of the spectrum is

plotted at a low base level, showing mainly resonances from folded parts of the proteins. The sequence-specific resonance assignments for the CD and domain-

specific assignments for the CSD (labeled ‘‘CSD’’) are indicated. In (E), the random-coil region of the same spectra are plotted at high base level, showing mainly

resonances from the flexibly disordered NTD and hinge region. Domain-specific resonance assignments are shown for those resonances that are altered by the

KR25A mutations. These are all located in the hinge region (‘‘H’’). The complete domain-specific resonance assignments are given in Figure S4.
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HP1Swi6 Binding to K9 Methylated Histone
H3 Is Highly Dynamic
Consistent with published results (Cheutin et al., 2004), fluores-

cence recovery after photobleaching (FRAP) experiments re-
6 Molecular Cell 47, 1–13, July 27, 2012 ª2012 Elsevier Inc.
vealed that HP1Swi6 proteins are highly dynamic at the cellular

ensemble level in vivo (Figure S5A). For proteins that are bound

tightly to chromatin, recovery kinetics can be expected to be

slow or not detectable, as observed for the telomere-binding



Figure 5. RNA Binding through the Hinge Region of HP1Swi6 Is Required for Silencing but Not Maintenance of Heterochromatin

(A)Microscopy of livingS. pombe cells expressing C-terminally Dendra2-taggedHP1Swi6 variants driven from the endogenous promoter. Cells were grown in YES

medium at 30�C. To restore nuclear localization of the HP1Swi6-KR25A mutant (Figure S4), a SV40 NLS was added N-terminally. Scale bar = 2 mm.

(B) In contrast to swi6D cells, cells expressing the RNA-bindingmutant NLS-HP1Swi6-KR25A are not sensitive to thiabendazole (TBZ), indicating that chromosome

segregation is normal. Cells were spotted on YES agar plates containing either 0 or 14 mg/l TBZ.

(C) Schematic diagram showing the location of three heterochromatic genes at the telomeres of chromosome I and II. tlh1+ and tlh2+ produce identical tran-

scripts (Mandell et al., 2005). CEN, centromere; TEL, chromosome end.

(D–F) ChIP experiments demonstrating that H3K9me2 levels are not significantly reduced at mat3M::gfp+ (D), tlh1/2+ (E), and SPBCPT2R1.07c (F) in nls-swi6+

and nls-swi6-KR25A cells compared with wild-type cells. Mean values normalized to act1+ are shown (n = 4). Error bars represent SEM, p values were calculated

using the Student’s t test.

(G) Western blot showing GFP protein levels in mat3M::gfp+ cells. Total protein from an equivalent number of cells was extracted by TCA. Tubulin serves as

a loading control.

(H–J) Quantitative real-time RT-PCR showing mat3M::gfp+ (I), tlh1/2+ (K), or SPBCPT2R1.07c (L) transcript levels in the respective mutants. Mean values

normalized to act1+ are shown (n = 5). Error bars represent SEM, p values were generated using the Student’s t test.
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protein Taz1 (Figure S5B). This is not the case for HP1Swi6, for

which fluorescence recovered rapidly after photobleaching

with an exponential lifetime of 1.8 ± 0.1 s (Figure S5C). This

dynamic exchange of the HP1Swi6 ensemble from chromatin

in vivo is qualitatively consistent with the rapid exchange

dynamics we observed in NMR peptide titration experiments

in vitro. We found that the resonances of the CD involved in

H3K9me3 peptide binding underwent line broadening due to

intermediate chemical exchange. This indicates kinetic on/off

rates for the exchange between bound and unbound forms of

individual HP1Swi6 molecules in the range of about 0.01–

1.0 ms-1, corresponding to lifetimes of 1–100 ms. These in vivo

and in vitro data thus demonstrate the highly dynamic behavior

of HP1Swi6 and rule out the possibility that individual HP1Swi6

molecules remain tightly bound to heterochromatin for minutes

or longer. Therefore, HP1Swi6 alone cannot tether heterochro-

matic RNAs to chromatin.

Localization of the HP1Swi6 Interaction Sites
with RNA and H3K9me
To obtain insight into the interactions of HP1Swi6 with RNA and

methylated H3K9 at the atomic level, we used NMR chemical

shift perturbation to identify residues structurally involved in

these interactions. To this end, we monitored amide moiety

chemical shifts, which are sensitive to structural changes of

the polypeptide backbone. For the interaction of full-length

HP1Swi6 with the H3K9me3 peptide, we observed chemical shift

changes for 21 out of the 65 residues in the CD, as well as for one

tryptophan side chain indole moiety (Figures 6A and 6B). The

location of these residues in the amino acid sequence in HP1Swi6

corresponds to the location of the known binding pocket for the

peptide in homologous domains (Jacobs and Khorasanizadeh,

2002; Kaustov et al., 2011; Nielsen et al., 2002). No significant

chemical shift changes occurred for the backbone amide reso-

nances of the CSD, but smaller chemical shift perturbations

were observed for 8 residues of the N-terminal domain and 1

residue of the hinge region (Figure 6B). On the other hand, inter-

action with 20-mer-GFP RNA induced chemical shift changes for

resonances of three different domains: 13 residues from the

hinge region, 19 from the CD, and 10 from the N-terminal domain

(Figures 6C and 6D). Furthermore, all resonances of the CD

underwent line broadening at intermediate RNA concentrations

due to intermediate exchange indicating kinetic on/off rate

constants for RNA binding below about 1 ms-1.

These data show that binding of RNA as well as binding of

H3K9me3 peptide to HP1Swi6 occurs by a molecular mechanism

that includes structural changes in three domains of HP1Swi6.

The observation that these interaction sites partially overlap

thereby points toward the intriguing possibility that histone tail

and RNA binding are not independent. Rather, these could be

competitive processes, meaning that HP1Swi6 dissociates from

H3K9-methylated nucleosomes when complexed with RNA.

Consistent with this idea, steady-state competition assays using

SPR showed competitive behavior (Figure 6E). At substoichio-

metric RNA:HP1Swi6 ratios, the initial SPR response increased.

This can be rationalized by the dimeric nature of HP1Swi6 caused

by its CSD, which leads to complexes with 2 RNA and 2 peptide-

binding sites. At concentrations above stoichiometry, however,
8 Molecular Cell 47, 1–13, July 27, 2012 ª2012 Elsevier Inc.
the SPR response decreased with increasing RNA concentra-

tion, indicating competition for the peptide surface. Importantly,

the 20-mer GFP-RNA did not bind to the immobilized peptide

surface in a control experiment under the same buffer conditions

(Figure S6D). Furthermore, binding of the HP1Swi6 -KR25A

mutant to H3K9me was insensitive and noncompetitive to the

addition of RNA (Figures 6E and S6D).

In summary, our results implicate a mechanism by which RNA

and methylated H3K9 compete for HP1Swi6 binding at the

ensemble as well as the single-molecule level. Binding of RNA

to HP1Swi6 structurally involves the hinge, the CD, and the NTD

and impedes binding of HP1Swi6 to methylated H3K9. Thus,

rather than tethering RNA to heterochromatin firmly, HP1Swi6

dynamically complexes with RNA and dissociates from H3K9-

methylated nucleosomes.

Cid14 Functions in the Vicinity of Heterochromatin
The above results have established HP1Swi6 as a crucial constit-

uent of hsRNPs, tagging RNAs as a result of their heterochro-

matic origin and priming them for degradation. Importantly, the

dynamic properties of HP1Swi6 imply that the degradation of

heterochromatic RNA originating from telomeres and the

mating-type locus occurs off chromatin, but it is unclear whether

Cid14 would join the hsRNP before or after dissociation from

H3K9 methylated nucleosomes. If it would occur before dissoci-

ation from heterochromatin, it should be possible to crosslink

Cid14 to telomeres or the mating-type locus. However, ChIP

experiments did not show enrichment of Cid14 at these loci

(data not shown), suggesting that Cid14 joins the HP1Swi6/RNA

complex only after dissociation from heterochromatin.

To test whether this still occurs in close proximity to hetero-

chromatin, we employed the DNA adenine methyltransferase

identification method (DamID, Figure 7A), a sensitive chromatin

profiling technique that is suited to capture indirect or transient

protein–chromatin interactions. We generated strains that

express HP1Swi6 and Cid14 fused to the Dam DNA methyltrans-

ferase (Figure 7A; Woolcock et al., 2011) and assessed GATC

methylation throughout theS. pombe genome using tiling arrays.

As expected, HP1Swi6 was highly enriched at the mating-type

locus, the centromeres, and the telomeric regions when

compared to a Dam-only control (Figure 7B). Similarly, GATC

methylation within the different heterochromatic regions was

also observed for Dam-Cid14, demonstrating that Cid14 resides

in close proximity to heterochromatin. Importantly, GATC meth-

ylation by Dam-Cid14 at the mating-type locus and telomeres

is fully dependent on HP1Swi6 and not as strong as for Dam-

HP1Swi6 (Figure 7C). This indicates that Cid14 joins hsRNPs after

assembly and dissociation from heterochromatin at the mating-

type region and the telomeres.

In conclusion, these results demonstrate that Cid14 resides in

the vicinity of heterochromatin and that heterochromatic RNA

originating from telomeres or the mating-type locus is delivered

to Cid14 in a close spatial and temporal correlation to the disso-

ciation of HP1Swi6 from H3K9-methylated nucleosomes. We

speculate that the actual degradation of heterochromatic RNA

might also occur near heterochromatin. The functional relevance

of the HP1Swi6-independent association of Cid14 with centro-

meric heterochromatin remains unknown.



Figure 6. Localization and Competition of the

HP1Swi6 Interactions

(A–D) Overlay of 2D [15N,1H]-TROSY correlation spectra of

HP1Swi6. The spectra are plotted in (A) and (C) at low base

level, showing mainly resonance peaks from the two fol-

ded domains CD and CSD. The spectra are plotted in (B)

and (D) at high base level, showing mainly resonances

from the flexibly unfolded hinge and N-terminal domains.

Residue type and number indicate sequence-specific

resonance assignments for the CD. ‘‘H,’’ ‘‘N,’’ and ‘‘Trp’’

denote resonances from the hinge region, the NTD, and

tryptophan side chains, respectively. (A and B) Black:

HP1Swi6; blue: 138 mM HP1Swi6 + 513 mM H3K9me3

peptide. (C and D) Black: HP1Swi6; red: 95 mM HP1Swi6 +

560 mM RNA.

(E) SPR responses for competitive binding of H3K9me3

and RNA to HP1Swi6. A constant concentration of 1 mM

HP1Swi6 (black circles) or 5 mM HP1Swi6-KR25A (red

squares) with increasing concentrations of 20-mer GFP-

RNA was injected to the H3K9me3 surface. The maximal

SPR response after 200 s injection is plotted versus the

RNA:protein concentration ratio. For each of the two

proteins, the response in the absence of RNA was set to

zero (raw data, see Figure S6D).
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Figure 7. Cid14 Functions in the Vicinity of Heterochromatin

(A) In DamID, a Dam fusion protein is expressed at very low levels. On interaction of the fusion protein with chromatin (red), Dam methylates the adenine in the

sequence context of GATC, which can be mapped by a methylation-specific PCR protocol.

(B and C) HP1Swi6 and Cid14 enrichments from DamID experiments (log2) at chromosomal regions.

(D) Model for HP1Swi6-mediated degradation of heterochromatic RNA. HP1Swi6 proteins associate with H3K9-methylated nucleosomes (gray) only transiently and

readily exchange from heterochromatin (dark blue). This continuous exchange of HP1Swi6 prevents saturation of heterochromatin with RNA. In case transcription

within heterochromatin occurs, HP1Swi6 binds the newly synthesized RNA (red) and dissociates from H3K9 methylated nucleosomes as a result of competition

between RNA and the histone tail for HP1Swi6 binding (light blue). Subsequently, the RNA is passed on to Cid14 (red), which in turn initiates RNA degradation.
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DISCUSSION

Association of HP1 Proteins with RNA
It was recognized earlier that proteins involved in chromatin

regulation have the ability to bind RNA, although the functional

relevance of this interaction has remained elusive. RNA binding

was first demonstrated for the CDs of MOF and MSL-3, pro-

teins involved in dosage compensation in Drosophila (Akhtar

et al., 2000). For mammalian HP1a, the hinge region has

been implicated in RNA binding (Muchardt et al., 2002). Here

we demonstrate that HP1Swi6, the fission yeast homolog of

HP1a, can also bind RNA directly. Importantly, we have found

that the interaction of HP1Swi6 with RNA mechanistically

includes the hinge region, the CD, and the NTD, a property

that could be easily overlooked when working with isolated

domains. Therefore, it will be interesting to revisit the RNA-

binding properties of other HP1 proteins, such as mammalian

HP1a, b, or g, by approaches similar to those in this study. It

might be that different HP1 isoforms display important differ-

ences in their interaction with RNA, which could reveal novel

insights into their functional diversification. It will also be very

interesting to elucidate the structural basis of the RNA and

peptide binding of HP1Swi6 at the atomic level, which should

give additional insights into the biophysical nature of their

competitive binding mechanism.
10 Molecular Cell 47, 1–13, July 27, 2012 ª2012 Elsevier Inc.
It has been speculated that the functional relevance of the

RNA affinities of HP1a or the dosage compensation complex

might be the targeting to chromatin by major satellite or roX

noncoding RNAs, respectively (Akhtar et al., 2000; Maison

et al., 2002, 2011). In such a model, RNA is proposed to be

involved structurally in the assembly of a higher order chromatin

structure by serving as a recruitment platform. This is unlikely to

apply to S. pombe HP1Swi6, as neither H3K9 methylation nor

recruitment of HP1Swi6 to heterochromatin depends on RNA

binding. In contrast, RNA bound to HP1Swi6 dissociates from

chromatin as a result of exchange with the cellular HP1Swi6

ensemble and a decrease in affinity for methylated H3K9.

Stable Repression of Heterochromatin through RNA
Sequestration and Degradation
The results of our work reinforce previous findings that hetero-

chromatin is not always refractory to transcription, yet is tightly

repressed. We demonstrate here that HP1Swi6 assures coupling

between heterochromatin transcription and RNA turnover by

serving as an H3K9 methylation-specific checkpoint. Based on

the data presented, we propose a model for the action of the

HP1Swi6 ensemble, which dynamically exchanges with the bulk

in a maintenance cycle. Free RNA is captured in the eviction

cycle and passed on to the degradation machinery. Constant

flux of RNA-unbound HP1Swi6 from the bulk ensemble prevents
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saturation of heterochromatin with RNA. Competition between

RNA and methylated H3K9 for HP1Swi6 binding at the ensemble

level guarantees that RNA-free HP1Swi6 is preferably recruited

to heterochromatin, thereby sustaining a functional checkpoint

on the H3K9-methylated nucleosome and ensuring constant

turnover of heterochromatic RNAs (Figure 7C).

In our model, HP1Swi6 functions on chromatin to bind to and

assemble emerging heterochromatic transcripts into special

RNPs, which we refer to as hsRNPs. Thereby, HP1Swi6 guaran-

tees specific and tight repression of heterochromatic genes on

at least two levels. First, HP1Swi6 prevents protein synthesis by

sequestration of mRNAs from ribosomes, most likely through

nuclear retention. Thus, a heterochromatic mRNA remains

repressed even in the absence of RNA degradation. This

explains why classical PEV screens failed to recover RNA decay

factors such as Cid14. Notably, Cid14 itself is involved in the

processing of ribosomal RNA and also associates with 60S

ribosomal proteins (Keller et al., 2010; Win et al., 2006), raising

the possibility that loss of Cid14 might result in a general defect

in translation. However, association of euchromatic mRNAs

with polyribosomes, as well as protein expression levels, remain

unaffected in cid14D cells (Figure 1 and data not shown),

strongly arguing against such an indirect effect. Second, the

HP1Swi6 ensemble ensures elimination of heterochromatic

mRNAs by capturing the RNA at the site of transcription and

escorting it to the degradation machinery. Rather than the clas-

sical features of an aberrant RNA, such as a truncated open

reading frame or defective 50 or 30 ends, our data suggests that

it is the physical association of a heterochromatic mRNA with

HP1Swi6 that primes it for destruction. We note that artificial

tethering of HP1Swi6 to a euchromatic mRNA does not result in

RNA degradation (data not shown), suggesting that canonical

mRNPs are immune to HP1Swi6-mediated RNA turnover.

Furthermore, since the kinetics of RNA binding to HP1Swi6 are

fast, the hsRNPs may be stabilized by additional factors.

However, at this point we can only speculate on such contribu-

tions by additional proteins or other molecules.

Concluding Remarks
In this study, we have discovered a function for one of the fission

yeast HP1 proteins that provides the missing link between

transcriptional origin and Cid14-dependent degradation of

heterochromatic mRNAs. Our results highlight the role of RNA

as a negative regulator of HP1Swi6 binding to chromatin and

provide insights into the repression of heterochromatic domains

at a posttranscriptional level. The high degree of conservation of

HP1 proteins and heterochromatin-mediated gene silencing

phenomena suggest that our findings may also apply to other

eukaryotes.

Our work has revealed that HP1Swi6, in addition to its role in

proper centromere function, also guarantees tight repression

of heterochromatic genes through RNA sequestration and

degradation. Interestingly, the Drosophila HP1 protein Rhino

has been linked recently to the piRNA pathway (Klattenhoff

et al., 2009). In analogy to our checkpoint model, Rhino may

bind the initial sense transcript at the heterochromatic trans-

poson locus and subsequently escort it to the perinuclear

‘‘nuage’’ structure, where it can enter the ping-pong amplifica-
tion cycle. Thus, rather than forming repressive chromatin, Rhino

might specify the recognition and ensure efficient elimination of

transposon RNA.

Finally, our results add another layer of complexity to the

crosstalk between RNA and chromatin. In contrast to the

emerging theme that RNA can serve as a scaffold to assemble,

recruit, or guide chromatin-modifying complexes to their respec-

tive targets (Wang and Chang, 2011), we demonstrate that they

may also function as ‘‘repellents.’’ RNA-mediated eviction might

be a possible mechanism that counteracts HP1 spreading along

the chromatin fiber or the formation of ectopic heterochromatin.

Importantly, neither coding potential nor stability is important for

an RNA to function as a repellent, offering a possible molecular

function for the many short-lived, low-abundant noncoding

RNAs that are present in the eukaryotic cell.

EXPERIMENTAL PROCEDURES

Strains and Plasmids

Fission yeast strains and plasmids used in this study are described in Supple-

mental Information.

Western Blot and Polysome Profiling

Total proteins from exponentially growing cells were extracted using TCA and

separated by SDS-PAGE. Antibodies for western blotting were used at the

following concentrations: GFP (Roche; 1:3000), tubulin (Woods et al., 1989;

1:5000), Swi6 (Bioacademia; 1:10,000). Polysome profiling is described in

Supplemental Information.

Chromatin Immunoprecipitation and Gene Expression Analysis

RNA isolation, cDNA synthesis, and quantitative RT-PCR was performed as

described in Emmerth et al. (2010). Chromatin immunoprecipitation (ChIP)

was performed as described in Bühler et al. (2006), using 2.5 mg of an antibody

against dimethylated H3K9 (Kimura et al., 2008).

Electrophoretic Mobility Shift Assay (EMSA)

The desired amount of protein was diluted into 9 ml of 1 3 electrophoretic

mobility shift assay (EMSA) buffer (20 mM HEPES-KOH [pH 7.5], 100 mM

KCl, 0.05% NP-40) and incubated for 10 min at RT. The substrate was added,

incubated at 30�C for 30 min, and followed by gel electrophoresis (1.6% TB-

agarose). Fluorescently labeled RNA was detected using a TyphoonTM 9400

Gel Scanner. RNA labeling is described in Supplemental Information.

Recombinant Protein Expression and Purification for NMR

Expression and purification was performed as described in Supplemental

Information with the following modifications. Bacteria were grown in 6 l of

M9 minimal medium containing 15N-NH4Cl as a nitrogen source. Induction

was carried out using 0.5 mM IPTG. The lysate was incubated with 10 ml of

glutathione-sepharose FF (GE). The protein was released from the gluta-

thione-resin by TEV-cleavage o/n at 4�C using acTEV (Invitrogen). This was

followed by Source15Q ion exchange chromatography (GE Healthcare). The

purification was completed by size exclusion chromatography (Superdex

200; GE Healthcare) in 50 mMMES pH 6.5, 100 mM KCl, 5 mM DTT. The puri-

fied complex was concentrated to 100 mM by centrifugal filtration.

Solution NMR Spectroscopy and SPR

NMR experiments were performed on Bruker 800 MHz and 600 MHz spec-

trometers. The sequence-specific resonance assignments for the isolated

HP1Swi6 CD (residues 75–139) were obtained from the two APSY-type exper-

iments 4D APSY-HNCACB (15 projections) and 5D APSY-HNCOCACB

(16 projections) (Gossert et al., 2011; Hiller et al., 2005, 2007) and subsequent

automated backbone assignment by the algorithm MATCH (Volk et al., 2008).

For SPR, samples were analyzed using a Biacore T-100 instrument (GE

Healthcare). Further details are given in Supplemental Information.
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DamID

DamID was carried out as previously published (Woolcock et al., 2011). Coor-

dinates of heterochromatic regions are given in Supplemental Information.
ACCESSION NUMBERS

DamID data sets were deposited under accession number GSE36956 (NCBI

Gene Expression Omnibus).
SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, Supplemental Experimental

Procedures, Supplemental References, and five tables and can be found

with this article online at doi:10.1016/j.molcel.2012.05.009.
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Supplemental Data 

 
 

 
 
Figure S1, Related to Figure1. The Noncanonical PolyA-polymerase Cid14 Confers 
Resistance to 5-FOA 
(A and B) Cells were spotted on PMG agar plates containing either 0 or 2 mg/L 5-FOA. The 
ura4+ gene encodes orotidine 5’-phosphate decarboxylase, which converts 5-FOA to toxic 5-
fluorouracil. Therefore, cells can only grow on 5-FOA containing medium if the ura4+ gene is 
absent or silenced.  
(A) Growth on 5-FOA containing medium indicates that the centromeric ura4+ reporter 
(imr1R::ura4+) is efficiently silenced by heterochromatin. Deletion of the gene encoding the 

histone H3 methyltransferase Clr4 (clr4 ) disrupts heterochromatin and silencing of 

imr1R::ura4+ is lost. Similar to clr4 cells, cells lacking the cid14+ gene or cells expressing a 
catalytically inactive Cid14 (cid14DADA) cannot grow on 5-FOA.  
(B) Cells lacking a functional ura4+ gene (ura4DS/E) grow on 5-FOA media in the absence of 

heterochromatin (clr4 ), but not in the absence of Cid14 (cid14 ) or if Cid14 has lost its 
polyadenylation activity (cid14DADA). Therefore, the inability of imr1R::ura4+ cells to grow on 
5-FOA when expressing cid14

+
 mutants (A) is unlikely to result from defective 

heterochromatin silencing. Rather, 5-FOA is converted into 5-fluorouracil or another toxic 
substance by a ura4+-independent, endogenous pathway that becomes activated in the 
absence of Cid14. Alternatively, 5-FOA itself is toxic, but is usually degraded by an enzyme 
that is only expressed in the presence of functional Cid14. 
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Figure S2, Related to Figure 2. Heterochromatic mRNAs Are Properly Processed 
(A) Schematic diagram outlining RNAseH and RACE-PAT assays, which were used to assess 
the polyadenylation status of heterochromatic RNAs in different mutants.  
(B) Evaluation of the polyadenylation status of heterochromatic mat3M::gfp+ mRNAs by the 
RNaseH assay. Total RNA was separated on an agarose gel and transferred to a nylon 
membrane. GFP RNA was detected using specific 

32
P-labelled DNA oligos. In the presence of 

oligodT (+oligodT), polyA tails are degraded by RNAseH. The appearance of two bands upon 
polyA tail removal is consistent with the presence of two major polyadenylation sites in the 
Tadh1 terminator present in this gfp+ reporter. As expected, the distal site is used more 
frequently. The smear in the -oligodT lanes indicates the heterogenous polyA tail length of the 
GFP mRNA. Importantly, no major qualitative differences can be observed for euchromatic or 

heterochromatic GFP mRNAs in wt, clr4 , or cid14  cells.  
(C) The polyadenylation status of heterochromatic mat3M::ura4+ mRNAs was assessed as in 
B. Instead of agarose, polyacrylamide  was used to separate RNAseH treated RNA. 
(D) RACE-PAT assay to determine the polyadenylation state of tlh1/2+ mRNAs. 1/10th of the 
RT reaction was used as input for the PCR in cid14Δ and clr4Δ cells.  
(E) Total RNA was extracted from cells expressing either gfp+ from a euchromatic 
(ura4Δ::gfp+) or heterochromatic (mat3M::gfp+) locus. The RNA was subsequently treated 
with terminator 5’-phosphate dependent exonuclease, which selectively degrades 5’-
monophosphorylated RNA, while leaving 5’-me7G-capped RNA intact. The efficiency of the 
reaction was determined by comparing the amount of degraded 25S and 18S RNA (5’-
monophosphorylated) versus 5S RNA (stable) on a Agilent Total RNA Nano Chip. The 
relative amount of a given RNA was quantified in untreated and exonuclease-treated samples 
by quantitative real-time RT-PCR. The terminator exonuclease resistant population reflects 
the relative amount of 5’-me7G-capped RNA.  
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Figure S3, Related to Figure 3. HP1
Swi6

 Is an RNA-Binding Protein 
(A) SDS-PAGE of the recombinant HP1

Swi6 
proteins that were used for NMR and SPR (pH 

6.5), or EMSA (pH 7.5).  
(B) EMSA demonstrating that binding of HP1

Swi6
 to a fluorescently labelled RNA probe can be 

competed by an unlabelled RNA probe.  
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Figure S4, Related to Figure 4. Creation of a Mutant HP1

Swi6
 that Fails to Bind RNA but 

Keeps Its Other Molecular Properties 
(A) 2D [

15
N,

1
H]-HSQC spectrum of the isolated CD (residues 75–139). Sequence-specific 

resonance assignments are indicated. 
(B) Domain-specific assignments for the amide resonances arising from flexibly disordered 
segments of the polypeptide chain. On a 2D [

15
N,

1
H]-TROSY spectrum of full-length HP1

Swi6
, 

the residues are identified which are part of the hinge region (“H”) and the N-terminal domain 
(“N”). The part in red dashed lines is shown enlarged in (C). 
(C) Enlargement of the central part of the spectrum (B). Resonances from the N-terminal 
domain are indicated “N”. All other resonances belong to the hinge region. 
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(D) The chromatograms of HP1
Swi6

 and HP1
Swi6

-KR25A that were loaded onto a Superdex200 
size exclusion column show that the KR25A mutation does not affect the dimeric state of 
protein.  

(E) Secondary chemical shifts for the 
13

C  and 
13

C  chemical shifts of the isolated CD 
(residues 75–139) relative to random coil values. Above the amino acid sequence of the 

domain, the secondary structure elements inferred from these shifts, three -strands and one 

-helix, are indicated.  
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Figure S5, Related to Figure 5.  RNA Binding through the Hinge Region of HP1

Swi6
 Is 

Required for Silencing but Not Maintenance of Heterochromatin 
(A) Cells expressing HP1

Swi6
-KR25A with or without an SV40 NLS

 
were fractionated into total 

and cytoplasmic fractions. Proteins were separated by SDS-PAGE and detected by Western 
blot. Cytoplasmic Tubulin and nuclear Histone H3 serve as fractionation controls.  
(B) Microscopy of living S. pombe cells co-expressing C-terminally Dendra2-tagged HP1

Swi6
 

variants and C-terminally mCherry-tagged Taz1 driven from their endogenous promoters. 
Cells were grown in YES medium at 30°C. To restore nuclear localization of the HP1

Swi6
-

KR25A mutant (Figure S4), a SV40 NLS was added N-terminally.  
(C) Microscopy of living S. pombe cells co-expressing C-terminally Dendra2-tagged HP1

Swi6
 

variants and C-terminally mCherry-tagged Cnp1 driven from their endogenous promoters. 
Cells were grown in YES medium at 30°C. To restore nuclear localization of the HP1

Swi6
-

KR25A mutant (Figure S4), a SV40 NLS was added N-terminally.  
(D-F) RIP experiment demonstrating that HP1

Swi6
 but not HP1

Swi6
-KR25A interacts with 

heterochromatic RNA in vivo. TAP-tagged Swi6 was immunoprecipitated and the RNA was 
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isolated followed by cDNA synthesis. The amount of co-immunoprecipitated RNA was 
quantified by quantitative real-time RT-PCR and normalized to act1+ mRNA. The amount of 
RNA co-immunoprecipitated with HP1

Swi6
-KR25A is shown relative to the amount of RNA that 

co-immunoprecipitates with HP1
Swi6

. As a control for unspecific background RNA binding in 
this pulldown experiment, U6 snRNA levels were measured (D). 
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Figure S6, Related to Figure 6. Dynamic Exchange of HP1

Swi6 
from Chromatin on the 

Ensemble Level In Vivo and the Influence of RNA Binding on H3K9me Binding 
Properties 
(A) Representative images of Fluorescence Recovery After Photobleaching (FRAP) 
performed with a cell expressing HP1

Swi6
-Dendra2. Pictures were taken before, immediately 

after, 2 seconds after, and 13 seconds after photobleaching. Red circle indicates the 
heterochromatin focus subjected to photobleaching.   
(B) FRAP analysis of cells expressing Taz1-GFP. Average relative fluorescence intensities of 
8 bleached foci (cells) with a gliding time-average of 3 frames are shown.  
(C) FRAP analysis of cells expressing HP1

Swi6
-Dendra2. The fluorescence intensities were 

normalized to an unbleached focus in the same image. Average relative fluorescence 
intensities of 37 bleached foci (cells) with a gliding time-average of 3 frames are shown. 
(D) SPR responses for competitive binding of H3K9me3 and RNA to HP1

Swi6
. Top panel: A 

constant concentration of 1 μM HP1
Swi6

 with increasing concentrations of 20mer GFP-RNA 
was injected to an H3K9me3 surface for 200 s. The color code indicates the RNA 
concentrations in nM. Middle panel: same experiment without HP1

Swi6
, showing that RNA 

does not bind to the peptide surface under the experimental conditions used. Bottom panel: 
same experiment as in the top panel but using 5 μM HP1

Swi6
 KR25A instead of 1 μM HP1

Swi6
 

wild-type. 
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Supplemental Experimental Procedures 

 
Strains and Plasmids 
Fission yeast strains were grown at 30°C in YES. All strains were constructed following a 
PCR-based protocol (Bahler et al., 1998) or standard mating and sporulation. Point mutations 
were created using the QuickChange Lightning Site-directed mutagenesis kit (Stratagene). 
The Swi6-KR25A hinge region fragment was created by gene synthesis (Integrated DNA 
Technologies, Inc.) and linked by a fusion PCR strategy to give rise to Swi6-KR25A. This was 
then cloned into a bacterial GST-expression vector. This plasmid was either transformed into 
bacteria for recombinant protein expression or used as a template for PCR-based gene 
targeting in S. pombe. All Swi6 mutant strains were created by transformation into a 
swi6Δ::ura3+ (c.a.) strain (ORF deletion) followed by counterselection on 5-FOA. The 
Dendra2 protein sequence (Chudakov et al., 2007) was reverse translated in silico using 
yeast codons. The template for PCR-based gene targeting was created by gene synthesis 
(Integrated DNA Technologies, Inc.) followed by cloning into a pFA6a-link-plasmid series 
vector (Sheff and Thorn, 2004),  
All strains were confirmed by sequencing. Plasmid sequences and detailed maps are 
available upon request.  
 
Silencing Assays 
Serial 10-fold dilutions of the strains indicated were plated on PMGc (nonselective, NS) or on 
PMGc plates containing 2 mg/mL 5-Fluoroorotic Acid. For ade6-reporter strains, the cells 
were spotted on YES, YE low ade (22.5 mg/L adenine). For TBZ assays, the cells were 
spotted on YES plates containing 14 μg/mL Thiabendazole (TBZ) (Sigma T5535). 
 
RNA Probe Labelling for EMSA 
DNA templates were generated by PCR on S. pombe genomic DNA using primers containing 
T7 polymerase promoter sequences. In-vitro transcription was performed using the T7 RNA 
polymerase MEGA script kit (Ambion). For the synthesis of labeled probes, a mix of 0.6 mM 
UTP and 0.4 mM Fluorescin-UTP (Roche, 2.5 mM) was used. The reaction was carried out 
for 1h at 37°C followed by a 15 min incubation with 1 μL Turbo DNaseI (37°C). The reaction 
was phenol-chloroform extracted and purified over G50 spin columns (Amersham) to remove 
unincorporated nucleotides.  
 
Recombinant Protein Expression and Purification 
Recombinant proteins were expressed as N-terminal GST-fusion proteins in Rosetta (BL21) 
bacteria. A 1L culture was grown in LB + antibiotics until OD600=0.4. The cells were grown for 
another 2h at 20°C (OD600 around 0.6), followed by induction of expression of the GST-fusion 
proteins with 0.5 mM IPTG. The culture was grown o/n at 20°C. The cells were pelleted, 
washed and frozen in N2(l). For protein purification, the cell pellet was resuspended in 5 pellet 
volumes of lysis buffer (25 mM Tris-HCl (pH 7.5), 500 mM NaCl, 1% Triton-X100 + Protease 
Inhibitors) and sonicated 6 x 30 sec at 50%. The lysate was spun at 16’000 rpm, 4°C for 30 
minutes and cleared by filtration (0.45 μm). The extract was incubated with 1 mL of 
glutathione-agarose (Sigma) and rotated for 2h at 4°C. After 3 washes (25 mM Tris-HCl (pH 
7.5), 500 mM NaCl, 0.1% Triton-X100) the protein was eluted using 50 mM reduced 
glutathione. The eluate was dialysed o/n into 50 mM HEPES (pH 7.5), 200 mM KCl, 10% 
Glycerol. This recombinant protein was used for EMSA.  
 
Polysome Profiling 
A detailed protocol for polysome profiling in S. pombe is available upon request. Briefly, 50 
mL of cells were grown to an OD of 0.5-0.6. Cycloheximide was added to a final concentration 
of 100 μg/μL and the culture was incubated for another 10 min at 30°C. The cells were 
pelleted and flash frozen in N2(l). Lysis was performed by bead-beating in 200 μL of lysis 
buffer and 500 μL glass beads followed by removing insoluble material by centrifugation. 140 
OD260 were loaded onto a 15-60% sucrose gradient and separated by ultracentrifugation for 
2h at 39’000 rpm (Beckman SW40 rotor). The gradient was unloaded from the bottom with 
70% sucrose. Fractions were collected while monitoring the absorbance at 254 nm. RNA was 
isolated from the fractions using phenol-chloroform extraction followed by isopropanol 
precipitation. RNA recovery was determined by UV absorbance. cDNA was synthesized from 
500 ng RNA using the Affinity Script Multiple Temperature cDNA synthesis kit (Stratagene) 
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and subsequently quantified by qRT-PCR. The data was analyzed as described in (Ding and 
Grosshans, 2009), calculating the RNA enrichment relative to the total amount of RNA in a 
given fraction.  
 
mRNA Polyadenylation State Assays 
The polyadenylation state of mRNAs was assayed by RACE-PAT or oligo(dT)/RNase H-
Northern analysis as described in (Salles et al., 1999). To increase resolution in the RNAseH-
Northern assay, an oligo (mb1314) that anneals 100 bp before the STOP codon of the GFP 
ORF was included in the RNaseH cleavage reaction. RNA was isolated from 50 mL of 
exponentially growing cells using the hot phenol method. 50 μg of total RNA was incubated 
with 2 uL mb1314 (100 μM) and with or without oligo dT (10 μL of 100 ng/μL) in a total volume 
of 68 μL. This was incubated at 65°C for 5 min and slowly cooled down to RT. 8 μL of 10 x 
buffer, 1 μL RNasIn Plus (Promega) and 1.5 μL RNaseH (New England Biolabs) were added 
followed by a 30 min incubation at 37°C. The RNA was phenol-chloform extracted followed by 
ethanol precipitation. The pellet was resuspended in 20 μL of 100% formamide, denatured 
and separated on a 2.4% MOPS-agarose gel. After capillary transfer in 20 x SSC to a 
positively charged nylon membrane and UV crosslinking, PNK-labelled oligos 
(mb1315/mb1316) were hybridized o/n at 35°C. The membrane was washed 3 x 15 min in 0.5 
x SSC, 0.1% Triton-X100 at 35°C. Signal was detected using a Phosphorscreen.  
 
5’-Dependent Terminator Exonuclease Assay 
Total RNA was isolated using the hot phenol method. The RNA was subjected to DNase 
digestion using the Absolutely RNA Miniprep Kit (Stratagene). 1 μg RNA was treated with 1 
μL of terminator 5’phosphate-dependent exonuclease (Epicentre) for 2h at 30°C. Control 
reactions were incubated for 2h at 30°C in the absence of the enzyme. The reaction was 
terminated by phenol-chloroform extraction followed by isopropanol precipitation.1/10

th
 of the 

reaction was analyzed on a Agilent Bioanalyzer 2100 (Eukaryote Total RNA Nano Chip). 500 
ng of RNA was used for cDNA synthesis and quantification by qRT-PCR.  
 
Live Cell Imaging and FRAP Analysis  
Imaging was performed on an Olympus IX81 microscope equipped with a Yokogawa CSU-X1 
spinning disk, a UPlanFLN 40x/1.3 objective, a CascadeII camera (Photometrics, AZ), a 
491nm laser line (Cobolt, Sweden), a Semrock Di01-T488/568 dichroic and a Semrock FF01-
525/40-25 emission filter. All devices were piloted with the software Metamorph (Molecular 
Devices Inc, CA). For FRAP experiments, a UGA-40 module (Rapp-Optoelectronics, 
Hamburg) equipped with a 473nm laser line and a chroma Z405/473rpc-xt dichroic was 
installed on the setup. In Metamorph, image acquisition was done using the live replay menu 
with an exposure time of 100ms and binning 2 for the camera. The bleaching region was a 
diffraction-limited spot, bleach time was 20ms. The acquired images were analyzed using the 
open source Fiji software (Walter et al., 2010). The fluorescence intensities were normalized 
to an unbleached focus in the same image and pre-bleach intensities were averaged and set 
to 1. Growth conditions for live cell microscopy were described in (Emmerth et al., 2010). 
Images were acquired at room temperature. 
 
Solution NMR Spectroscopy 
The sequence-specific resonance assignments for the isolated HP1

Swi6
 CD (residues 75–140) 

were obtained using a 750 M sample of [U-
13

C,
15

N]-labeled CD sample in 50 mM MES-KOH 
pH 6.5 buffer with 100 mM KCl, 5 mM DTT and 5%/95% D2O/H2O. The assignments were 
obtained from the two triple-resonance APSY-type experiments 4D APSY-HNCACB (15 
projections) and 5D APSY-HNCOCACB (16 projections) (Gossert et al., 2010; Hiller et al., 
2005; Hiller et al., 2007) and subsequent automated backbone assignment by the algorithm 
MATCH (Volk et al., 2008). These experiments were recorded at 25°C on a Bruker 600 MHz 
spectrometer equipped with a room-temperature triple-resonance probe in a total experiment 
time of 63 h. The assignments of the CD were transferred to full-length HP1

Swi6
 by a 

comparison of the [
15

N,
1
H]-correlation patterns, which were found to be highly similar (Figs. 4 

& S4). The domain-specific resonance assignments of the NTD, the hinge region and the 
CSD were obtained by identifying the individual substracta from HP1

Swi6
 subconstructs: 

isolated CD, CD+hinge, CD+hinge+CSD, NTD+CD+hinge. 
The NMR titration experiments were performed at 25°C on a Bruker 800 MHz spectrometer 
equipped with a cryogenic triple-resonance probe. 2D [

15
N,

1
H]-TROSY experiments 
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(Pervushin et al., 1997) of 50–120 M samples of [U-
15

N]-Swi6 in 50 mM MES-KOH pH 6.5 
buffer with 100 mM KCl, 5 mM DTT and 5%/95% D2O/H2O were recorded. Typically, 1024 
and 90 complex points were recorded in the direct and indirect dimension, respectively in total 
experiment times of 8–12 h for each spectrum. H3K9me3 peptide from a 1 mM stock solution 
or 20mer GFP-RNA from a 3 mM stock solution of the same buffer were added.   
 
Surface Plasmon Resonance (SPR) 
Samples were analyzed using a Biacore T-100 instrument (GE Healthcare). H3K9me3 
peptide was covalently bound to a CM5 chip by amine coupling achieving a final density of 
1985 RU. All measurements were recorded as subtracted sensorgrams relative to a flow 
channel with blank amine immobilisation. Sensorgrams were recorded at 25 °C and flow rate 

of 50 l min
-1

 using 25 mM NaPi pH 7.0, 150 mM KCl, 5mM DTT, 0.1% P20, 62.5 g ml
-1

 BSA 
and 5% Glycerol as running buffer. All samples were diluted in running buffer prior to 
injection. Each sample was injected for 200 sec and dissociation was recorded for 300 sec. A 
regeneration step was performed at the end of each cycle by injecting 5 mM NaOH for 30 sec 
followed by a stabilization period of 50 sec. For the determination of binding constants, 
increasing concentrations of HP1

Swi6
 or HP1

Swi6
-KR25A were injected. For the competition 

assay, samples of 1 M Swi6 with increasing amounts of RNA were injected. 
 
Dam-ID 
DamID was carried out as previously published (Woolcock et al., 2011). Average enrichment 
values were calculated for all the oligos overlapping the major heterochromatic regions: 
mating type locus (chromosome 2, 2114000-2137000), telomeres (chromosome 1, 1-20000 
and 5571500-5579133; chromosome 2, 4516200-4539804), and centromeres (chromosome 
1, 3753687-3789421, chromosome 2, 1602264-1644747, chromosome 3, 1070904-1137003). 
 
RNA Immunoprecipitation (RIP) 
RIP was performed essentially as described in (Gilbert and Svejstrup, 2006). IgG-dynabeads 
(expoxy-coupled) that have been pre-blocked using E.coli tRNA were used for the 
immunoprecipitation of the TAP-tagged proteins. An additional DNaseI-digestion step was 
included before the cDNA synthesis with random primers.  
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Supplemental Tables 
 

Table S1. Plasmids  
 
pMB247 

 
pFA6a-Cid14DADA-TAP-hphMX6 

 
Template for PCR based gene targeting  
(Creation of Cid14DADA::TAP allele) 
 

pMB680 pGEX empty n-term GST fusion vector with TEV and Thrombin cleavage site 
 

pMB714 pGEX-Swi6 Swi6 purification (N-term GST, TEV and Thrombin cleavage site) 
 

pMB715 pGEX-Swi6-KR25A Swi6-KR25A purification (N-term GST, TEV and Thrombin cleavage 
site) 
 

pMB776 pGEX-Swi6-CD Swi6-Chromodomain purification (N-term GST, TEV and Thrombin 
cleavage site) 
 

pMB768 pFA6a-link-Dendra2-hphMX Template for PCR based gene targeting (C-term Dendra2 tagging) 
 

 
 

Table S2. Primers for Real-Time PCR 

  Forward Primer Reverse Primer 

cendg mb549/mb550 AAGGAATGTGCCTCGTCAAATT TGCTTCACGGTATTTTTTGAAATC 

cendh mb551/mb552 GTATTTGGATTCCATCGGTACTATGG ACTACATCGACACAGAAAAGAAAACAA 

gfp+ mb820/mb821 CGAAAGATCCCAACGAAAAGAG TCCCAGCAGCTGTTACAAACTC 

ura4+ mb553/554 TACAAAATTGCTTCTTGGGCTCAT AGACCACGTCCCAAAGGTAAAC 

tlh1/2+ mb682/683 CGTGTGCAAGCCGTCAAA GCTCGAGTTGTGCTGAAATGTC 

SPBCPT2R1.07c mb3006/mb3007 TGGTGTTGCTCCAAAGTGTAGTGGA GACAGTTGCCTCCGGTAAATGGATTC 

    

Control Genes    

U6 snRNA mb1281/mb1282 GATCTTCGGATCACTTTGGTCAA TGTCGCAGTGTCATCCTTGTG 

act1+ mb555/mb556 TCCTCATGCTATCATGCGTCTT CCACGCTCCATGAGAATCTTC 

fbp1+ mb557/mb558 CTGGCCAGCTTATTCAACTTCAT GATTTCGTCGAGATCTTTTTTCATG 

    

 

Table S3. Primers for RNaseH Assays 

  Target Purpose 

mb1315 TTACAAACTCAAGAAGGACCATGTGGTCTCTC GFP probe 

mb1316 TTTGTATAGTTCATCCATGCCATGTGTAATCCCA  GFP probe 

mb1314 GATTGTGTGGACAGGTAATGG GFP cleavage 

    

 
Table S4. RNA Probes 
  Length Purpose 

20-GFP-RNA AUGGGUAAAGGAGAAGAACU 20nt NMR 
 

150-GFP-RNA 
 

ggAGUAAAGGAGAAGAACUUUUCACUGGAGUUGUCCCAAUUCUUGUUGAAUUAGA
UGGUGAUGUUAAUGGGCACAAAUUUUCUGUCAGUGGAGAGGGUGAAGGUGAUGC
AACAUACGGAAAACUUACCCUUAAAUUUAUUUGCACUACUG 

150nt EMSA 
 
 

700-GFP-RNA 
 

ggAGUAAAGGAGAAGAACUUUUCACUGGAGUUGUCCCAAUUCUUGUUGAAUUAGA
UGGUGAUGUUAAUGGGCACAAAUUUUCUGUCAGUGGAGAGGGUGAAGGUGAUGC
AACAUACGGAAAACUUACCCUUAAAUUUAUUUGCACUACUGGAAAACUACCUGUU
CCAUGGCCAACACUUGUCACUACUUUCACUUAUGGUGUUCAAUGCUUUUCAAGAU
ACCCAGAUCAUAUGAAACGGCAUGACUUUUUCAAGAGUGCCAUGCCCGAAGGUUA
UGUACAGGAAAGAACUAUAUUUUUCAAAGAUGACGGGAACUACAAGACACGUGCU
GAAGUCAAGUUUGAAGGUGAUACCCUUGUUAAUAGAAUCGAGUUAAAAGGUAUUG
AUUUUAAAGAAGAUGGAAACAUUCUUGGACACAAAUUGGAAUACAACUAUAACUC
ACACAAUGUAUACAUCAUGGCAGACAAACAAAAGAAUGGAAUCAAAGUUAACUUCA
AAAUUAGACACAACAUUGAAGAUGGAAGCGUUCAACUAGCAGACCAUUAUCAACA

711nt EMSA 
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AAAUACUCCAAUUGGCGAUGGCCCUGUCCUUUUACCAGACAACCAUUACCUGUCC
ACACAAUCUGCCCUUUCGAAAGAUCCCAACGAAAAGAGAGACCACAUGGUCCUUC
UUGAGUUUGUAACAGCUGCUGGGAUUACACAUGGCAUGGAUGAACUAUACAAA 

 
 
 
 

100-cen-RNA ggCGUGCGAUCGGGCCGCGACUGGCCAUUUUCAAGGAUAUAUCGAAUCAAAUUUA
GGUAUUGCUCUUCUUCUGUAUUUCUAUAUUCGGAGGAAGUAAAU 

99nt EMSA 
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Table S5. Strain Table           

 

  

F
ig

u
r
e
 

Genotype 

S
o

u
r
c
e

 

Comment 

spb28 wt 1 h+ leu1-32 ura4D18 oriI ade6-M216 imr1R(Nco1)::gfp+::natMX * gfp+ driven by ura4+ promoter 

spb38 clr4Δ 1 h+ leu1-32 ura4D18 oriI ade6-M216 imr1R(Nco1)::gfp+::natMX clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb36 dcr1Δ 1 h+ leu1-32 ura4D18 oriI ade6-M216 imr1R(Nco1)::gfp+::natMX dcr1∆::kanMX * gfp+ driven by ura4+ promoter 

spb313 cid14Δ 1 h+ leu1-32 ura4D18 oriI ade6-M216 imr1R(Nco1)::gfp+::natMX cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb342 wt 1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb360 clr4Δ 1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb361 dcr1Δ 1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 dcr1∆::kanMX * gfp+ driven by ura4+ promoter 

spb374 cid14Δ 1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14∆::kanMX * gfp+ driven by ura4+ promoter 

      

spb342 wt 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb374 cid14Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb360 clr4Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb535 cid14Δ clr4Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4- leu1-32 ade6- clr4D::hph cid14∆::kanMX * gfp+ is driven by ura4+ promoter; 
ura4D18 or DS/E; ade6-M210 or 

216 

spb721 swi6Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6∆::ura3+ * gfp+ driven by ura4+ promoter 

spb723 cid14Δ swi6Δ 2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6∆::ura3+ cid14∆::kan  * gfp+ driven by ura4+ promoter 

      

spb1071 swi6-Dendra2 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6-Dendra2::hphMX * gfp+ driven by ura4+ promoter 

spb1240 nls-swi6-Dendra2 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-Dendra2::hphMX * gfp+ driven by ura4+ promoter 

spb1241 nls-swi6-KR25A-Dendra2 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-KR25A-Dendra2::hphMX * gfp+ driven by ura4+ promoter 

spb342 wt 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb360 clr4Δ 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb939 swi6Δ 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6∆::ura3+ (ORF deletion only) * gfp+ driven by ura4+ promoter 

spb1226 nls-swi6 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6 * gfp+ driven by ura4+ promoter 

spb1227 nls-swi6-KR25A 4 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-KR25A * gfp+ driven by ura4+ promoter 
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spb435 dam 6 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-kan    

spb436 dam-cid14 6 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-cid14-kan   

spb1386 dam swi6  6 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-kan swi6∆::ura3+ (ORF deletion only)   

spb1387 dam-cid14 swi6  6 h+ leu1-32 ade6-M216 ura4∆::nmt1(81x)-dam-myc-cid14-kan swi6∆::ura3+ (ORF deletion only)   

      

spb65 wt, ura4+ S1 972h- 1 

spb221 wt S1 h- imr1R(Nco1)::gfp+::natMX * gfp+ driven by ura4+ promoter 

spb295 clr4Δ S1 h- imr1R(Nco1)::gfp+::natMX clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb294 cid14Δ S1 h- imr1R(Nco1)::gfp+::natMX cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb373 cid14DADA S1 h- imr1R(Nco1)::gfp+::natMX cid14DADA-TAP::hphMX * gfp+ driven by ura4+ promoter 

spb342 wt S1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb360 clr4Δ S1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb374 cid14Δ S1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb739 cid14DADA S1 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14DADA-TAP::hphMX * gfp+ driven by ura4+ promoter 

      

spb29 wt, ura4+ S2 h+ otr1R(SphI)::ura4+ leu1-32 ade6-M210 ura4∆::gfp::natMX * end. ura+ ORF replaced with gfp+  

spb342 wt S2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb360 clr4Δ S2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 clr4∆::kanMX * gfp+ driven by ura4+ promoter 

spb374 cid14Δ S2 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 cid14∆::kanMX * gfp+ driven by ura4+ promoter 

spb76 no gfp S2 h90 mat3M(EcoRV)::ura4+ ura4-DS/E leu1-32 ade6-M210 2 

      

spb342 wt S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 * gfp+ driven by ura4+ promoter 

spb1055 swi6-KR25A S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6-KR25A * gfp+ driven by ura4+ promoter 

spb1468 swi6-Dendra2 

cnp1-mCherry 

S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 swi6-Dendra2::hphMX cnp1-

mCherry::kanMX 

* gfp+ driven by ura4+ promoter 

spb1450 nls-swi6-Dendra2 

cnp1-mCherry 

S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-Dendra2::hphMX cnp1-

mCherry::kanMX 

* gfp+ driven by ura4+ promoter 

spb1469 nls-swi6-KR25A-Dendra2 
cnp1-mCherry 

S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 nls-swi6-KR25A-Dendra2::hphMX 
cnp1-mCherry::kanMX 

* gfp+ driven by ura4+ promoter 

spb1439 NLS-TAP-Swi6 S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 NLS-TAP-Swi6 * gfp+ driven by ura4+ promoter 

Spb1493 NLS-TAP-Swi6-KR25A S5 h90 mat3M(EcoRV)::gfp+::natMX ura4-DS/E leu1-32 ade6-M210 NLS-TAP-Swi6-KR25A 

 

* gfp+ driven by ura4+ promoter 

 
Source:  *this study, 1Charles Hoffmann, 2Danesh Moazed 
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