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Abstract. We have evaluated the upper and lower bounds to the lattice relaxation energy 
gained on the self-trapping of excitons, using experimental values of transition energies for 
free and self-trapped excitons and theoretical values for lattice relaxation energies and 
optical transition energies. The lattice relaxation energy upon self-trapping of an exciton in 
alkali halides proves to be appreciably larger than that of a self-trapped hole. We discuss the 
implications for a number of solid state processes including the production mechanism of F 
and H centres and the desorption of halogen atoms following valence electron excitation. 

1. Introduction 

The self-trapping of a particle in a solid is an important step in several solid state 
processes, including defect production and certain desorption mechanisms. Whether or 
not self-trapping will occur is determined mainly by the relative magnitudes of two 
energies [l, 21. The first energy is the band width, which is a measure of the gain in 
kinetic energy on delocalising the particle; for a full band width// 2B, this gair! is B. 
The second energy is the gain in the relaxation energy S from lattice distortion and 
polarisation on localising the particle. The main aim in our present paper is the estimation 
of this self-trapping relaxation energy for self-trapped excitons in alkali halides, since 
this energy allows us to clarify several aspects of solid state processes. We do not consider 
here the dynamics of the self-trapping process [3 ,4] .  

For a simple particle, like an electron, or a muon, or an electronic hole, the condition 
for self-trapping is simply S > B. For a composite particle, like an exciton, there will 
be contributions to S from both constituent particles, and these e!ectron and hole 
components will be commented on later. The self-trapping of excitons is a very wide- 
spread phenomenon, and has been observed in alkali halides, alkaline-earth fluorides, 
silica (quartz) and alumina (see, e.g., [ 5 ] ) .  Although positive holes are knoun to be self- 
$ Permanent address: Department of Physics, Faculty of Science, Nagoya University, Furocho, Chikusa, 
Nagoya 494, Japan. 
11 Strictly this applies for a solid with one atom per unit cell, for the energy gain is R on delxa!ising from a 
Wannier function associated with a single unit cell. For a compound, like a halide, therc i i  :IC; problem so long 
as the band is associated with one ion in the cell (e.g. the valence band of alkali halides i s  halogen-like). 
However, when the band involves several inequivalent ions, B must be defined more carefully. 
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trapped, holes have been sought in vain in MgF2 [6] and S O z  [7]. Thus excitons are self- 
trapped in a rather wider range of substances than are positive holes. Partly this happens 
because the band width for holes (essentially the valence band width for the crystal) is 
much larger than that for excitons [8] and partly because, in some cases at least, the 
relaxation energy for excitons is larger than for holes. 

Toyozawa [9] has discussed the criterion for the self-trapping of excitons, and 
especially the conditions for localisation of electron and hole on a single ion (on-site 
case) or of the electron on one site and the hole on another. For on-site localisation 
the effective relaxation energy is the sum of the electron contributions Se,, the hole 
contribution Shx and the on-site Coulomb interaction energy U. For separate sites, the 
Coulomb term will be much smaller. Localisation on a single site is favoured if the 
coupling coefficients for the electron and hole have the same sign, i.e. if the relaxation 
caused by the electron involves the same ionic motions as that driven by the hole. Whilst 
there are no direct measurements of the lattice relaxation energy for self-trapped excitons 
in alkali halides, nor are there calculations of the highest accuracy, both the range 
of cases for which self-trapping is seen and Toyozawa’s description suggest that the 
relaxation energy for self-trapped excitons is bigger than that for self-trapped holes. This 
is confirmed by our later analysis. 

For some systems, the self-trapped exciton can be regarded as an electron localised 
by a self-trapped hole. This appears to be so in the alkali halides and in AgCl, for 
instance, and this would be an ‘on-site’ system in Toyozawa’s classification. The separate- 
site case is typical of more open crystal structures, notably the alkaline-earth fluorides, 
where the electron and hole are localised at different sites and the self-trapped exciton 
is sometimes described as a close F- and H-centre pair. Usually for the alkali halides, 
the self-trapped excitons have been taken to be of the on-site type, i.e. [V,e], or an 
electron trapped by a self-trapped hole. This picture is consistent with a wide range of 
data, although ENDOR data for KCl [lo, 111 suggest a separate-site model and the idea 
of an off-centre self-trapped exciton has been followed up with some success [12, 131. In 
our present analysis we shall leave the question of one or two sites [4, 141 open, although 
our results do put some limits on the models. In particular, we shall allow the geometry 
for the self-trapped hole to differ from that for the self-trapped exciton. 

The aim of the present paper is to derive information on the energies of excitons. We 
shall compare the lattice relaxation energies of self-trapped excitons and positive holes 
using available experimental and theoretical data. This shows that the exciton has a 
significantly larger relaxation energy. The same approach allows us to make a reasonable 
estimate of this relaxation energy, and hence to relate the various energies of excited 
states of the self-trapped exciton to the unrelaxed exciton energy. These relative energies 
are critical i n  a number of important solid state processes, notably the production 
mechanisms of F and H centres [15], the question of the possible inverse conversion 
from an F--H pair to a self-trapped exciton [16] and the desorption of halogen atoms 
following valence electron excitation [ 171. 

2. Evaluation of the lattice relaxation energy of self-trapped excitons 

2.1. Energy cycles giving bounds on the relaxation energy 

We have taken two different energy cycles to obtain upper and lower bounds for the 
relaxation energy S, for the self-trapped exciton. To describe these energy cycles we 
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Figure 1. A configuration coordinate curve for excitons in KCI. The energies for the perfect 
lattice configuration are based on experimental results. For the self-trapped configuration 
the energy differences within the configuration are based on experimental data but the 
energies relative to the ground state give only the lower bound. 

make use of the adiabatic energy surfaces shown in figure 1. These curves describe the 
energy of the exciton in its lowest-energy state and that of the ionised exciton (i.e. a hole 
plus a free electron) as a function of a relaxation coordinate. For clarity we have assumed 
it is adequate to draw a single coordinate, although this assumption is not used in the 
energy cycles. The configuration A corresponds to the perfect crystal geometry, so A, 
corresponds to a 1s free exciton and A, to a free-electron-free-hole pair. Relaxation 
takes the free exciton to its self-trapped form C, at configuration C; similarly, the 
electron-hole pair relaxes to a free electron and self-trapped hole B, at configuration B. 
As noted earlier we shall not assume configurations B and Care the same. In approaches 
that assume a [Vke] model for the self-trapped exciton the configurations differ primarily 
in the relaxations around the Vk centre because of the localised electron charge, while 
in approaches that assume the [F-HI model, the differences are primarily in the position 
of the halogen molecular ion. 

The energy cycle that gives the upper bound is as follows. Starting from a free- 
electron-hole pair (Ac), let the hole be self-trapped, gaining energy &. The self-trapped 
hole is further distorted to the self-trapped-exciton configuration, costing energy Dh. 
The distortion energy is a positive quantity. Recombination of the electron with the self- 
trapped hole at the self-trapped-exciton configuration C leads to the self-trapped exciton 
C, at the lowest state. The energy emitted by the recombination equals the ionisation 
energy I ,  of a self-trapped exciton. Restoring the perfect lattice configuration costs the 
relaxation energy S, of the self-trapped exciton, and the ionisation of a 1s exciton costs 
ionisation energy IF. Thus we obtain 

or, since Dh 2 0, the upper bound S i  of S, is given by 
S, = S h  I ,  - Dh - I F  (1) 

s i  = S h  + I ,  - IF. (2) 
In evaluating the lower bound Sa of S,, we start from C, and distort the lattice to the 
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self-trapped-hole configuration, costing energy D,. D,, like Dh, is a positive quantity. 
We now ionise the Is exciton at the self-trapped-hole configuration costing I:  , and this 
is followed by restoration of the perfect lattice configuration (costing energy sh). Recom- 
bination of the electron-hole pair (gaining energy IF) and lattice relaxation to the self- 
trapped-exciton configuration (gaining energy 3,) leads to the self-trapped exciton. Thus 
we obtain 

Since D, 2 0, the lower bound SL of S, is given by 

Comparing equations (2) and (4), we see that the difference between the bounds on 
the relaxation energy (S: - Sk) is simply I ,  - I:  , i.e. the change in ionisation energy of 
the self-trapped exciton on going from configuration B to configuration C. If we use 
equations (1) and (2), we note that I ,  - I: is also equal to D, + Dh. The bounds will be 
especially close when the ionic configurations of the self-trapped exciton and of the self- 
trapped hole are close. Equations (1) and (3) can also be rewritten to display the 
difference between the relaxation energies of the exciton and the hole: 

The first term, the difference between the ionisation energies of the self-trapped (I,) and 
free (IF) excitons, can be obtained directly from experiment and is certainly large, and 
this proves critical. 

2.2. Estimates of relaxation energies for self-trapped excitons 

We now evaluate the various terms in equations (1)-(5), starting with an estimate of the 
difference between the self-trapped-exciton ionisation energies for the self-trapped-hole 
geometry I ;  and for its actual geometry I,. Experimentally, only I ,  can be obtained 
directly. However, there have been several calculations of self-trapped excitons for the 
Vk-centre geometry, and we can use a comparison between these theoretical predictions 
and observed spectra to estimate I:  - I,. The comparison is made most easily for bound- 
bound transitions (table 1 shows results from a variety of methods), rather than for 
ionisation energies, since there has been less theoretical work on ionisation. The energies 
of the excited states will be less sensitive to local geometry than the lower-lying states, 
so this approach should give reasonable insight into the ionisation energy differences. 
With the exception of the 1s - 2pa transition energies, the agreement of the predicted 
and observed energies is good, consistent with small differences between I:  and I,. In 
the case of the 1s - 2pa transition, the spread of values surely reflects the strong 
interactions between the electron and the halogen molecular ion; if so, this is not relevant 
for the ionisation transition, where the final state has a delocalised electron. Overall, it 
seems unlikely that I:  and I ,  differ by more than about 0.5 eV. The upper and lower 
bounds (equations ( l ) ,  (3)) will thus be rather close, and we shall concentrate on Sl. A 
corollary is that D, + D, is also unlikely to exceed 0.5 eV, so both the distortion energies 
D,  and Dh will be small. 

In table 2 we show the results of calculations of S: for NaCl, KC1, KBr and RbCl. 
The values of S h  were taken by combining the calculations of Cade and co-workers [18] 
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Table 1. A comparison of 1s-2p transition energies of the self-trapped exciton obtained 
experimentally and obtained theoretically using the [V,e] model. 

Substance Transition Experiment Theory (Vk-centre geometry) 

NaCl 1s-2pa 2.02 1.8" 1.49b 0.7-1.1' 
l s - 2 ~ ~ ~  2.25 1.7" 1.95' 2 3-2.4' 

1.79b 2.3-2.4 
KCI l s - 2 ~ ~  2.19 2.On 0.7d 1.4' 

l s - 2 ~ ~  1.87 2.0" 2.56d 1.9e 
2.10 2.73d 2.2' 

KBr l s - 2 ~ ~  1.70 1.5" 0.94d 
l s - 2 ~ ~  1.57 1.4" 1.69d 

1.77 2.47d 
RbCl l s - 2 ~ ~  1.99 2.0" 

l s - 2 ~ ~ ~  1.71 2.0a 
1.89 

a [23]. 
[24]. 
[25]. 
[26]. 

e [20]. 

Table 2. Energies in electron volts of the lattice relaxation (&) of a positive hole, ionisation 
(I,) of a self-trapped exciton, ionisation (Z,) of a free exciton, and upper bound on the lattice 
relaxation (S:) of a 1s exciton. 

Sha 

NaCl 1.69 3.16' 2.gd 0.81 4.04 
KCI 1.61 2.73' 0.93 3.41 
KBr 1.53 2.24' 0.70 3.07 
RbCl 1.32 2.48" 0.69 3.11 

a [18] and present work. 
[19]. 
[24]. 
[27]. 

e [15]. 

with new estimates of the hole relaxation nergy (i.e. Clo +. Cl;) using the sam 
potentials. The values of I ,  and IF were taken fromthe experimental results given in [15] 
and [19], respectively. The fact that Z, > IF indicates that the lattice relaxation of the 1s 
exciton lowers its ionisation energy more significantly than the ionised exciton. We note 
further that, taking into account the possible differences between SL and Si ,  the value 
of S, is significantly larger than s h .  The relaxation energy for the self-trapped exciton is 
larger than that for the self-trapped holes by 1.5-2.5 eV: S, is typically 3-4 eV, whereas 
Sh is only about 1.5 eV. 

2.3. Self-trapped exciton structure: the role of the electron 
We discuss here what information S, - s h  gives on the geometry of the self-trapped 
exciton. The result S, > Sh certainly indicates that the electron associated with an exciton 
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plays an important role in the lattice relaxation energy. According to Toyozawa, the 
difference S, - S h  can be ascribed to the on-site Coulomb energy if the self-trapped 
exciton has the [V,e] structure. However, if the [F-HI model of the self-trapped exciton 
is valid, Toyozawa’s argument suggests S, = s h .  Because of the proximity of the sites of 
trapped electron and hole, however, their interaction cannot be ignored and it is likely 
that S, > S h  even in this case. No firm conclusion can be drawn on the model of the self- 
trapped exciton in alkali halides on the basis of the result S, > S h  although, since the 
interaction is unlikely to exceed a few tenths of an eV, it is likely that a one-site form is 
favoured. 

The result that Dh + D ,  = ITs - I [  s 0.5 eV, i.e. that the two distortion energies are 
small, does, however, appear to favour the [V,e] model. This can be seenfrom estimates 
of the two separate terms Dh and D,. Leung and co-workers [12] estimate that D, is 
about 1 eV, already larger than seems likely from the inequality. For consistency, this 
would certainly need a very small value of Dh, i.e. a negligible energy to shift the 
molecular ion of the self-trapped hole along its axis. Yet some idea of Dhcan be obtained 
using the HADES code alone here, this being a well tested and accurate approach, since 
no explicit solution of the Schrodinger equation is needed in this particular calculation. 
Rough estimates, following [18] and [20], suggest Dh cannot be negligible unless the 
[V,e] model holds. In all, therefore, the large value of D, of [12] leads to an apparent 
inconsistency unless the degree of off-centring, if any, is small. 

3. Implications of the large exciton self-trapping energy 

3.1. Relative energies of free and self-trapped exciton states 

Using the value of S i  obtained above we have evaluated the energy of excited states of 
free excitons and self-trapped excitons for KCl and the result is shown in figure 2. In this 
calculation, we assume that the hole transition energies in the self-trapped exciton are 
the same as those of the self-trapped hole [21]. The curves are drawn to show merely 
the correlation between the states at the perfect lattice and the self-trapped-exciton 
configurations. The adiabatic potential curves are schematic: that for the lowest self- 
trapped exciton is a parabola which has a minimum at the self-trapped-exciton con- 
figuration, and the other curves are similar parabolae with the correct energies at the 
two configurations indicated. We now turn to some of the implications of these curves 
and the large difference between S h  and S,. 

3.2. Implications fo r  solid state processes 

The relative energies shown in figure 2 are important in several solid state processes, as 
now discussed. First, several of the excited states of the self-trapped exciton (both hole 
and electron excitations) are lower in energy than the ground state of the free exciton. 
In particular we note that the 1s self-trapped exciton with the hole in a ng excited state 
is lower in energy than the 1s free exciton, and hence is bonding with respect to the 
halogen-halogen separation. According to the suggestion by Itoh and Saidoh [22], the 
transformation to F-H pairs occurs from this excited state of the self-trapped excitons. 
The bonding nature of this excited state favours the shift of the whole halogen molecular 
ion to form the F-H pair configuration. 
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Figure 2. The energy levels for the free exciton (0, the perfect lattice geometry) and the 
self-trapped exciton (A)  geometries. The lowest curve for the exciton is a parabola with its 
minimum for the STE configuration; the other curves are schematic. Note the way in which 
the [e(lsa,) + h(n,)] state relaxes from the free-exciton state. The abscissa represents a 
relaxation coordinate which includes both Vk-like relaxation and translational halogen 
motion along the (110) axis, as in [20]. 

Secondly, the energy of the lowest state of the self-trapped exciton is even higher 
than that of an isolated pair of an F centre and an H centre [20]. Thus it is unlikely that 
recombination of an F centre and an H centre forms a self-trapped exciton. 

Thirdly, the lower bound for the energy of the self-trapped exciton in its lowest state 
has been shown to be slightly smaller than the energy required to desorb a halogen atom 
from the surface [17]. Thus it is likely that the desorption of halogen atoms is induced 
from the next excited state (i.e. the ng hole and its as electron), which is about 2 eV 
above the lowest state of the self-trapped exciton, similarly to the formation of a pair of 
an F centre and H centre. 

4. Conclusion 

We find that energy cycles obtained using experimental and theoretical data provide 
useful upper and lower bounds on the energies of self-trapped excitons and on processes 
involving self-trapped excitons. All available data appear consistent with the conclusions 
that the self-trapping energy S, for the exciton is appreciably larger than that ( s h )  for the 
hole, and that the distortion energies (Ox and &) are both small. 
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