
 

 
 

 

NOVEL SINGLE-MOLECULE FORCE SPECTROSCOPY 

APPROACHES TO CHARACTERIZE INTERACTIONS OF 

MEMBRANE PROTEINS 

 
 

Inauguraldissertation 

 

zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

von 

Michael Zocher 

aus 

Ilmenau, Deutschland 
 

 

 

 

 

 

Basel, 2012 



 

 

 

 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät 

auf Antrag von 

Prof. Dr. Andreas Engel und Prof. Dr. Sebastian Hiller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basel, den 26.06.2012 

 

 

 

 

        Prof. Dr. Martin Spiess 

        Dekan 

 



Abstract 
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Abstract 

Atomic force microscopy (AFM) based single-molecule force 

spectroscopy (SMFS) is a biophysical tool used to investigate folding and 

unfolding of biological macromolecules, like membrane proteins. 

Unfolding of single membrane proteins can be recorded by force-distance 

(FD) curves, which exhibit reproducible sawtooth-like patterns of force 

peaks. These force peaks reflect the unfolding of stable structural 

segments. In the case of α-helical transmembrane proteins, these 

segments consist of partial or complete α-helices, or even of several 

consecutive α-helices connected by extracellular or intracellular loops. 

Fitting these force peaks using polymer extension models reveals the 

exact position of the interaction within the membrane protein. 

Furthermore, with SMFS based dynamic force spectroscopy (DFS) it is 

possible to study intrinsic behavior of proteins, such as energetic, kinetic 

and mechanical properties, or, in other words, their energy landscape. 

The work presented here contains two SMFS-related projects that were 

carried out independently from each other. However, both projects are 

novel SMFS approaches that improve our understanding of α-helical 

transmembrane proteins. 

In the first project, it was investigated how cholesterol, an 

essential component of eukaryotic membranes, and ligands modulate the 

energy landscape of the human β2 adrenergic G protein-coupled receptor 

(β2AR). G protein-coupled receptors (GPCRs) are a class of versatile 

proteins that transduce signals across membranes. Environmental 

changes induce inter- and intramolecular interactions that change the 

functional state of GPCRs and activate intracellular messenger 

molecules. How these interactions are established and how they modulate 

the functional state of β2AR was addressed in this project. Cholesterol 

considerably increased the kinetic, energetic, and mechanical stability of 

almost every structural segment at sufficient magnitude to alter the 

structure and function relationship of β2AR. One exception was the 
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structural core segment of β2AR, which establishes multiple ligand-

binding sites and which properties were not significantly influenced by 

cholesterol. This suggests that cholesterol may not necessarily influence 

ligand binding to β2AR rather than setting the GPCR into a different 

state so that the receptor will respond differently to ligand binding. For 

that purpose, SMFS and DFS approaches were used to investigate how 

ligand binding modulates the energy landscape of β2AR. Five different 

ligands that represented agonists, inverse agonists or neutral antagonists 

established a complex network of interactions that tuned the kinetic, 

energetic and mechanical properties of functionally important structural 

regions of β2AR. These interactions were specific to the efficacy profile of 

the investigated ligands, which suggests that the functional modulation 

of GPCRs follows structurally well-defined interaction patterns. 

The second project addressed the problem that SMFS is a rather 

time-consuming technique, since the membranes embedding the 

membrane proteins must be imaged and localized before starting the 

actual SFMS measurement. In order to simplify the investigation of 

membrane proteins by SMFS the light-driven proton pump 

bacteriorhodopsin (BR) was reconstituted into lipid nanodiscs. The 

advantage of using nanodiscs is that membrane proteins can be handled 

and characterized like water-soluble proteins with similar ease. SMFS 

characterization of BR in native purple membranes and in nanodiscs 

revealed no significant alterations of structure, function, unfolding 

intermediates, and strengths of inter- and intra-molecular interactions. 

This demonstrates that lipid nanodiscs provide a unique approach for in 

vitro studies of native membrane proteins using SMFS and opens up a 

new avenue to characterize membrane proteins by a wide variety of 

SMFS approaches that have been established on water-soluble proteins.
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Zusammenfassung 

Rasterkraftmikroskopie (AFM) basierte Einzelmolekül-

Kraftspektroskopie (SMFS) ist eine biophysikalische Anwendung, die es 

ermöglicht, Entfaltung und Faltung von biologischen Makromolekülen, 

zum Beispiel von Membranproteinen, zu studieren. Die Entfaltung von 

einzelnen Makromolekülen kann mittels einer Kraft-Abstands-Kurve 

gemessen werden. Eine typische Kraft-Abstands-Kurve, welche die 

Entfaltung eines Transmembranproteins widerspiegelt, weist eine 

sägezahnartige Struktur aus Peaks auf. Jeder dieser Peaks entspricht 

der Entfaltung eines stabilen strukturellen Segments des entfalteten 

Proteins. Bei α-helikalen Transmembranproteinen bestehen diese 

Segmente aus α-Helices (oder Teilen davon), oder sogar aus mehreren 

Transmembransegmenten, welche durch extra- oder intrazelluläre Loops 

miteinander verbunden sind. Die Peaks können mittels physikalischer 

Modelle, die das Verhalten steifer Polymere bei Dehnung beschreiben, 

gefittet werden. Dadurch kann die exakte Position, an welcher innerhalb 

des Membranproteins eine Interaktion auftritt, bestimmt werden. Des 

Weiteren ist es möglich, mit dynamischer Kraftspektroskopie (DFS), ein 

auf SMFS basierendes Verfahren, das intrinsische Verhalten von 

Proteinen zu untersuchen. Beispielsweise können mittels DFS 

biophysikalische Parameter, wie energetische, kinetische und 

mechanische Eigenschaften (Energielandschaft) von Proteinen bestimmt 

werden. Bei der im Folgenden vorgestellten Arbeit handelt es sich um 

zwei voneinander unabhängig durchgeführte SMFS-Projekte. Beide 

Projekte sind neuartige Ansätze, welche unser Verständnis von α-

helikalen Transmembranproteinen verbessern. 

Im ersten Projekt wurde der Einfluss von Cholesterin, einem 

essentiellen Bestandteil eukaryotischer Membranen, auf die 

Energielandschaft des humanen β2 adrenergen G-Protein-gekoppelten 

Rezeptors (β2AR) untersucht. G-Protein-gekoppelte Rezeptoren (GPCRs) 

sind die größte und vielseitigste Gruppe von Membranrezeptoren. 
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Extrazelluläre Veränderungen induzieren inter- und intramolekulare 

Interaktionen, die den funktionellen Zustand von GPCRs modulieren und 

dadurch eine intrazelluläre Signalkaskade auslösen. In dem Projekt 

wurde untersucht, auf welche Art und Weise diese Interaktionen 

etabliert werden und wie sie den funktionellen Zustand des β2ARs 

beeinflussen. Cholesterin hatte einen wesentlichen Einfluss auf die 

Stärke der Interaktionen sowie die Energielandschaft fast aller 

struktureller Segmente des Rezeptors. Eine Ausnahme war das 

strukturelle Kernsegment von β2AR, welches eine Vielzahl von 

Ligandenbindungsstellen aufweist. Die Eigenschaften dieses Segmentes 

blieben auch in Gegenwart von Cholesterin unverändert. Da Cholesterin 

nicht notwendigerweise die Bindung von Liganden beeinflusst, ist zu 

vermuten, dass das Kernsegment seine Eigenschaften ändert, nachdem 

ein Ligand gebunden hat. Um diese Frage zu beantworten wurde mittels 

SMFS und DFS untersucht, wie die Bindung von Liganden an β2AR 

dessen Energielandschaft beeinflusst. Fünf Liganden unterschiedlicher 

therapeutischer Wirksamkeit etablierten ein Netzwerk von 

Interaktionen, welches die kinetischen, energetischen und mechanischen 

Parameter funktionell wichtiger struktureller Regionen des Rezeptors 

modulierte. Diese Interaktionen waren spezifisch entsprechend der 

Wirksamkeit des jeweiligen Liganden. Offenbar folgt die funktionelle 

Modulierung von GPCRs strukturell definierten Interaktionsmustern. 

Bei SMFS von Membranprotein handelt es sich um relativ 

zeitintensive Messungen, da die Membranen, in die das zu untersuchende 

Protein eingebettet ist, zunächst abgebildet und lokalisiert werden 

müssen. Dieses Problem wurde im zweiten Projekt näher betrachtet. Um 

SMFS mit Membranproteinen zu vereinfachen, wurde die lichtgetriebene 

Protonenpumpe Bakteriorhodopsin in Nanodiscs rekonstituiert. 

Nanodiscs sind synthetische Modellmembranen, mittels derer 

Membranproteine ähnlich wie wasserlösliche Proteine behandelt werden 

können. Die Charakterisierung von nativem BR in der Purpurmembran 

sowie in Nanodiscs ergab keine signifikanten Unterschiede bezüglich 

Struktur, Funktion, Entfaltungsintermediaten sowie Stärke von inter- 
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und intramolekularen Interaktionen. Diese Resultate bestätigen, dass 

Nanodiscs neue Möglichkeiten für SMFS-Studien an Membranproteinen 

in vitro bieten. 
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1 Cell membranes and membrane proteins 

1.1 Cells and their membranes 

It is estimated that there are about 100 million living species on 

earth today (1). Most of them are single cells. Others, for example 

humans, are enormous multicellular complexes in which specialized 

groups of cells perform specific functions and are linked by intricate 

communication systems (1). Nevertheless, all cells on earth share 

common features: hereditary information stored by DNA, DNA 

replication systems, transcription of DNA into RNA, and translation of 

RNA into proteins (1). Thus, every cell on the planet can be regarded as a 

biochemical factory dealing with the same basic molecular building 

blocks: DNA, RNA and proteins. Nevertheless, at least one other univer-

sal component of cells is missing: each cell is confined by a container – the 

plasma membrane. It acts as a selective barrier, enabling the cell to 

concentrate nutrients gathered from the environment, retaining the 

products it synthesizes for its own use and excreting its waste products 

(1). Without the plasma membrane, cells would lose their integrity as 

coordinated chemical systems (1). Complex multicellular organisms, such 

as eukaryotes, have specialized membranes that define different 

organelles, for example endoplasmic reticulum, Golgi apparatus, 

mitochondria, chloroplasts and other membrane-enclosed organelles, 

which maintain the characteristic differences between the contents of 

each organelle and the cytosol (2). 

The membrane consists of a set of amphipathic molecules called 

lipids, which have a hydrophobic (water-insoluble) and a hydrophilic 

(water-soluble) part. Membrane lipids constitute about 50% of the mass of 

most animal cell membranes. Lipid molecules aggregate spontaneously 

when placed in water. They arrange their hydrophobic portions to be as 

much in contact with one another as possible to shield them from water 

molecules whereas their hydrophilic portions are kept exposed (1). 
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Phospholipid molecules comprise most of the plasma membrane 

(1). Phospholipids have a polar headgroup and two hydrophobic 

hydrocarbon tails, usually fatty acids of different lengths (1). They 

spontaneously aggregate in aqueous environment forming a bilayer that 

creates small closed vesicles. This lipid bilayer has been decisively 

established as the universal basis for cell-membrane structure (1). 

The plasma membrane of many mammalian cells contains 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylserine  (PS) and sphingomyelin (SM). The composition of 

lipids depends on cell type, organelle, and organism (1, 3). Additionally, 

the lipid bilayer of many cell membranes often contains cholesterol1 and 

glycolipids (1, 3). The different types of lipids are not equally distributed 

within the two monolayers (leaflets) of the membrane (4). PS and PE are 

enriched in the cytoplasmic leaflet of the membrane, whereas PC and SM 

are primarily located in the outer monolayer (1, 5). PS is negatively 

charged, which results in a significant difference in charge between the 

two halves of the bilayer. This effect is referred to as the “positive-inside” 

rule (6-9). 

The resulting asymmetry is functionally important. Many proteins 

specifically bind or recognize certain lipid headgroups (10, 11). Animals 

use the phospholipid asymmetry of their plasma membranes to 

discriminate between living and dead cells (1). Furthermore, the 

distribution of lipids influences protein folding, assembly (12) and activity 

(13, 14). 

The “fluid mosaic model”, which has been proposed by Singer and 

Nicolson in 1972, describes membranes as an oriented, dynamic, two 

dimensional, and viscous solution of proteins and lipids (15). However, it 

turned out that membranes are more mosaic than fluid (16). Membrane 

proteins undergo restrained or directed motion within membranes (17). 
                                            
1 Cholesterol reduces the permeability of membranes to small water-soluble molecules 

(1). It can be predominantly found in eukaryotic plasma membranes, since they contain 

large amounts of cholesterol. 
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They are often organized in large functionally relevant supramolecular 

complexes, such as the respiratory chain complexes I, III and IV (18) and 

photosystems I and II (19). In addition, membranes contain 

microdomains, or lipid rafts, which are enriched in sphingolipids, 

cholesterol and membrane proteins (1). 

1.2 Membrane proteins 

For cells to function properly, membranes must not be completely 

impermeable. A cell must be able to import raw materials and export 

waste across its membranes. To transfer specific molecules from one side 

to the other, cells have specialized proteins embedded in their membrane. 

These transport proteins mainly determine which molecules can enter or 

exit the cell. Furthermore, all cells have membrane proteins that act as 

sensors of external stimuli, allowing the cell to change its behavior in 

response to environmental signals. Instead of molecules, these protein 

sensors, or receptors, transfer information across the membrane (1). 

Why are membrane proteins such an interesting and important 

field of research? In fact, 20-30% of all open reading frames in the genome 

of eubacterial, archaean, and eukaryotic organisms encode integral 

membrane proteins (20), indicating the importance of this class of 

proteins. Since membrane proteins are located at the boundaries of cells 

and other membrane-enclosed organelles, they are involved in all 

processes that require signal transduction across the membrane. They 

transport solubles, like toxic compounds and nutrients. Moreover, they 

play important roles in energy conversion and cell adhesion (1). Since 

they are involved in so many processes, they are important targets for 

drugs. Actually, about 70% of all drug targets are membrane proteins (21, 

22). Mutations in membrane proteins can be the cause of a multitude of 

diseases, for example cystic fibrosis and retinitis pigmentosa (23, 24). To 

develop new drugs and understand the molecular processes behind these 

diseases, it is of major importance to gain insight into structural and 

functional mechanisms of membrane proteins. However, compared to 

soluble proteins, the amount of membrane protein structures in the 
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Protein Data Bank (PDB)2 (25) is underrepresented. Because of the slow 

progress of membrane protein structure determination (26), structures 

and functional mechanisms of membrane proteins are poorly understood. 

Two protein secondary structure motifs capable of passing the 

membrane have been observed: α-helical bundles and antiparallel β-

strands (Figure 1.1). The great majority of membrane-spanning 

segments traverse the bilayer forming a α-helical bundle. α-helical 

membrane proteins contribute to active transport of solubles, signaling, 

and communication with other cells. In contrast, β-barrel membrane 

proteins arrange their transmembrane strands as a β-sheet in the form of 

a barrel. These proteins can be found in the outer membrane of Gram-

positive bacteria. In eukaryotes, β-barrel proteins are abundant in the 

outer membrane of mitochondria and chloroplasts 3 . However, the 

majority of multipass transmembrane proteins in the bacterial plasma 

membrane and in eukaryotic cells are composed of transmembrane α-

helices (1). 

  

                                            
2 On June 4, 2012, the search for membrane and cell surface proteins and peptides in the 

PDB resulted in 615 hits. The PDB contained 75885 protein structures at that day. 

3 Structure, assembly and folding of β-barrel membrane proteins are reviewed in (27-31). 
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Figure 1.1: The two major structural motifs found in membrane proteins. (A) 

The heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor 

rhodopsin from bovine rod outer segment (ROS). The transmembrane region contains 

seven α-helical bundles, which are connected by extramembrane loops. PDB ID: 1F88 

(32). (B) The OmpG protein from Escherichia coli is a β-barrel protein composed of 14 

antiparallel β-strands. PDB ID: 2FIC (33). Both proteins are shown in side-view. 

1.2.1 Folding of membrane proteins 

1.2.1.1 Sec-dependent insertion 

One important step during the lifetime of a membrane protein is 

its insertion into the lipid bilayer, a process that follows protein 

synthesis. Exhaustive functional studies on bacterial and eukaryotic 

homologues of the archaeabacterial protein-translocating SecYEG 

channel have significantly advanced our understanding of the molecular 

mechanisms that guide folding and insertion of membrane proteins (34-

38). 

The process of membrane protein folding and insertion is 

facilitated and controlled by the so-called translocon protein machinery 

(36, 37). It consists of a hydrophilic cavity with a diameter of a few tens of 

Ångströms, and a ribosome-binding site, which is displayed towards the 

cytoplasm. The N-terminal portion of a nascent polypeptide chain of a 

membrane protein contains a signal sequence in the N-terminal part that 

targets the ribosome-peptide complex to the translocon. After binding of 

the ribosome to the translocon, the nascent polypeptide chain is directly 

expelled from the ribosomal exit tunnel into the pore of the translocon. 

The translocon can accommodate peptides with a length of ≈20 aa, which 
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is sufficient to form an α-helical transmembrane segment. The peptide 

exits the translocon through a lateral gate. The gate might open and close 

periodically (39) in order to allow the segment to sense and partition into 

the lipid bilayer (40). As indicated by the size of the pore, transmembrane 

segments laterally exit the translocon one by one or pairwise (41, 42). 

While hydrophobic sequences are inserted into the membrane, 

hydrophilic sequences pass through the aqueous pore or emerge between 

the translocon and the ribosome. 

1.2.1.2 Insertion models 

Popot and Engelman introduced models, which describe the folding 

and insertion of membrane proteins into a membrane (43, 44). In the two-

stage model, the membrane protein inserts into the lipid bilayer in a 

process driven by a translocon. Secondary structure elements like the α-

helical bundle are formed in this step. In contrast to soluble proteins, 

whose three-dimensional fold is dictated by their amino acid sequences 

(45), the folding of a membrane protein requires the interplay between 

ribosome and the translocon machinery. In the second step, the actual 

membrane protein folding process takes place, including the formation of 

the correct tertiary or quaternary structure. Furthermore, the 

transmembrane elements need to rearrange and reorient to adopt the 

correct fold. The formation of additional structural elements (e.g. re-

entrant loops), binding of cofactors or oligomerization can be combined in 

a third step. 

The dimerization of α-helical bundles is promoted by specific amino 

acid sequence motifs within the peptide (e.g. GxxxG) (46-48). This process 

optimizes the packing of helices through van-der-Waals interactions (46). 

In addition, the formation of interhelical hydrogen bonds can be observed 

even in early stages of the translocon-mediated protein insertion (49). 

Although the two-stage folding model for membrane proteins 

appears simple, it provides an explanation of many experimental data. 

For instance, it has been shown that peptide fragments of membrane 
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proteins can be independently refolded or synthesized and assemble into 

functional proteins (50). 

Despite its simplicity, the two-stage model does not provide 

answers to certain questions, for example how and when transmembrane 

α-helices are formed. Also, it does not explain the principles behind this 

process. The four-step model provides a more detailed insight based on 

experimental data such as folding and insertion of synthetic peptides and 

small proteins into lipid bilayers (51). It includes the following steps: 

(i) partitioning of the unfolded polypeptide chain in the interface region of 

the membrane, (ii) folding of the α-helical segment, (iii) insertion of the α-

helical segment, and finally (iv) association of α-helical transmembrane 

segments (Figure 1.2). The membrane interface provides a local free 

energy minimum for binding and the subsequent folding of hydrophobic 

peptides (52-54). The minimization of the free energy is the driving factor 

behind this process. 

 

Figure 1.2: The four-step model of membrane protein folding. (1) Partitioning of 

the unfolded polypeptide chain. (2) Folding of α-helical segments. (3) Insertion of α-

helical segments. (4) Association of α-helical segments (5) Optional: assisted folding by a 

chaperone (green). 

1.2.2 Membrane protein research – a challenge 

As mentioned in section 1.1, there are still considerable difficulties 

in membrane protein research. The repertoire of reliable methods to 

produce, purify, solubilize and reconstitute or crystallize a membrane 

protein is limited, compared to the techniques available for water-soluble 
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proteins. To make things worse, the handling of a membrane protein is 

much trickier than working with a water-soluble protein. 

The concentration of membrane proteins in the native membrane is 

usually very low 4 . Therefore, approaches to overexpress membrane 

proteins are required (56-58). Overexpressed proteins can accumulate in 

the membrane, which may induce stress response mechanisms or can 

have other cytotoxic effects (58). Moreover, it is difficult to express 

eukaryotic membrane proteins in bacteria, since they do not fulfill certain 

requirements, such as specific glycosylation (58, 59) or lipid composition 

of the membrane (13, 60). In addition, translation rates differ between 

prokaryotes and eukaryotes, which eventually leads to aggregation and 

misfolding of the membrane protein of interest (56). The complexity of the 

cellular membrane further complicates purification of functional 

membrane proteins. 

Membrane proteins can be solubilized by detergents, which 

stabilize the protein in aqueous solutions (61, 62). Since the (long-term) 

stability of membrane proteins depends on the nature of the solubilizing 

agents (57, 62) the choice of detergent is possibly the most important 

decision to make when purifying a membrane protein. Alternatively, 

membrane proteins can be solubilized using polymers with a hydrophilic 

backbone and hydrophobic side chains, so-called amphipols (63). 

1.2.3 Approaches to study membrane proteins 

As discussed in the previous section, structure determination of 

membrane protein research remains an intricate challenge. Due to the 

enormous number of crystallization conditions that have to be screened 

and the low stability of solubilized membrane proteins, the growth of 

well-diffracting three-dimensional (3D) crystals for X-ray crystallography 

is very time-consuming. 

                                            
4 Some proteins are available in large quantities from their native membrane, for 

example bacteriorhodopsin (55). Therefore they can be purified from their natural 

sources. 
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Novel approaches, like the lipid cubic phase (64), fusion with large 

hydrophilic domains (65), and the use of antibody fragments (66) to 

improve crystallization of membrane proteins did not significantly 

accelerate the pace of structure determination. Nevertheless, this 

problem can be overcome by the use of electron microscopy (EM) (67). EM 

requires the arrangement of proteins in a two-dimensional (2D) planar 

ordered structure (68). An increase in resolution to near-atomic level (69) 

can be achieved by freezing the sample, a technique called cryo-EM (70). 

Besides, single-particle EM techniques to approach large proteins yield in 

medium resolution (8-30 Å), allowing observation of functionally related 

conformational changes (71). Furthermore, nuclear magnetic resonance 

(NMR) approaches, such as solution NMR (72), solid-state NMR (73) and 

magic-angle spinning NMR (74) provide increasing possibilities to study 

structure and dynamics of membrane protein complexes. 

Besides these relatively new techniques, “classical” methods are 

still indispensable in membrane protein research. Important approaches 

are circular dichroism (CD) spectroscopy (75, 76), time-resolved Fourier 

transform infrared (FTIR) spectroscopy (77, 78), several different types of 

fluorescence spectroscopy (75, 79), calorimetric studies (80, 81) and 

electrophysiological techniques (82-84). 

In addition to the experimental methods to study membrane 

proteins, computational tools have emerged in the past years. They gain 

importance since they strengthen or validate experimental data for these 

different methods. Additionally, the transmembrane topology based on 

sequence analysis can be predicted. The potential of molecular dynamics 

(MD) simulations is illustrated through modeling of structure and 

function of G protein-coupled receptors (GPCRs) (85, 86) and unfolding of 

bacteriorhodopsin (BR) (87, 88). 

There is one more method for studying membrane proteins that 

has not been mentioned so far: the atomic force microscope (AFM), a 

powerful tool to address single membrane proteins. The AFM will be 

described in the following chapter. 
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2 The atomic force microscope 

2.1 History 

Stockholm, Wednesday, December 10, 1986. The Nobel Prize in 

Physics has just been awarded to two scientists, Gerd Binning and 

Heinrich Rohrer, for their outstanding invention: the scanning tunneling 

microscope (STM). The STM, which uses a sharp tip to probe a surface, 

revolutionized microscopy. The tip “may be a fine needle, which is moved 

across the surface of the structure to be investigated. […] This is just the 

beginning of an extremely promising and fascinating development. The 

old dream from antiquity of a visible image of the atomic structure of 

matter is beginning to look like a realistic possibility, thanks to progress 

in modern microscopy”5. 

The STM showed the atomic structure at the crystalline surface of 

silicon and demonstrated the possibility to manipulate single atoms (89). 

However, the STM is limited to conducting surfaces, because it relies on 

tunnel currents between tip and surface. In 1986, Binnig and Rohrer 

received the Nobel Prize in Physics for their discovery. In the same year, 

Binnig together with Quate and Gerber introduced the atomic force 

microscope (AFM) (90) to image both conducting and non-conducting 

surfaces. Although true atomic resolution is only possible under ultrahigh 

vacuum and with atomically flat surfaces (91), the AFM impresses by its 

high spatial resolution. Both STM and AFM are members of the scanning 

probe microscopy (SPM) family. 

Today AFMs are commercially available. They have evolved 

through several generations since the early 1990s. Many different types 

of AFMs have been developed that can be used not only for measuring the 

topologies of surfaces, but also for measuring the properties of various 

materials at or close to surfaces. With a resolution down to either atomic 
                                            
5  Excerpt from the Award Ceremony Speech. Nobelprize.org 4 Jun 2012 

http://nobelprize.org/nobel_prizes/physics/laureates/1986/presentation-speech.html 
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or molecular level, this can be done in a broad temperature range in 

vacuum, gas, or in liquids.  

2.2 Atomic force microscopy in biophysics 

Over the past decades, the AFM has emerged into a versatile tool 

to study structural and mechanical properties of biological samples such 

as proteins and biological membranes (92). One advantage is the fact that 

these studies can be carried out under close to native conditions. For 

instance, Andreas Engel and Daniel J. Müller developed tools for high-

resolution imaging of membrane proteins (93). With these methods it 

became possible to acquire images with a lateral resolution of ≈5 Å and a 

vertical resolution of ≈1 Å. Using AFM imaging of reconstituted 

membrane proteins and native membranes biophysicists gained insight 

into high-resolution information about the topography (94-103), 

conformational changes (101, 103-108), oligomeric states (109-122), or 

dynamic process of membrane proteins (123, 124). Furthermore, AFM 

based single-molecule force spectroscopy (SMFS, see section 2.8.1) has 

emerged into a tool to investigate unfolding and folding of membrane 

proteins (92, 125). Prior to an SMFS experiment, membrane proteins 

reconstituted into lipid bilayers are adsorbed on a flat surface and 

attached to the AFM cantilever with one of their termini (see section 2.6). 

In the actual SMFS measurement, the cantilever is retracted and the 

protein is stretched. During this process, the membrane protein is 

unfolded in a sequential manner. With the help of SMFS, interactions 

that stabilize membrane proteins can be determined (92). Furthermore, 

these interactions are located within the membrane protein structures 

using polymer extension models (see section 2.8.2). 

It has already been shown that SMFS can address the effect of 

environmental changes on the membrane protein, for example 

temperature (126), ligands (127-131), ions (132, 133), inhibitors (134), 

point mutations (135), oligomeric states (136), pH (137) or the functional 

state of the protein (127, 128). A change in environmental factors affects 

molecular interactions that stabilize membrane proteins. This results in 
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changes in the unfolding spectra (125). An extension of SMFS uses 

unfolding at different velocities. This method is called dynamic force 

spectroscopy (DFS) and reveals parameters that are specific for the 

energy landscape of single membrane proteins (see section 2.8.3). 

In addition to mechanical unfolding of membrane proteins, it is 

also possible to study their refolding into lipid bilayers (138, 139). In 

these unfolding experiments, the membrane protein is partially unfolded, 

leaving one mechanical anchor in the membrane. In the next step, the 

cantilever approaches the surface again, which relaxes the unfolded 

polypeptide chain and allows reinsertion of the peptide or parts of it into 

the lipid bilayer. The folding kinetics of a single membrane protein can be 

evaluated by changing the time before the cantilever is retracted again to 

completely unfold the protein. 

2.3 Instrumental setup 

At first sight, the AFM seems to be a complicated instrument. 

Nevertheless, it works on a very simple principle and it is probably one of 

the easiest microscopy techniques to learn and understand. The 

instrumental setup of an AFM is simple (Figure 2.1). It consists of only 

three key components: i) a cantilever with a sharp tip or stylus at its end, 

ii) a piezoelectric transducer or actuator, which moves the sample 

mounted on its top in three dimensions with sub-nanometer precision6, 

and iii) an optic detection system that consists of a laser diode and a 

position sensitive photodiode (PSPD) with four quadrants for accurate 

detection of vertical and lateral displacement of the laser beam. Finally, a 

computer is required to control the AFM. 

                                            
6 AFMs from Bruker (formerly Veeco, DI) change the position of the sample. Other AFM 

instruments (e.g. JPK) move the cantilever for x-y-scanning and vertical adjustment in 

z-direction. 
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Figure 2.1: Schematic illustration of a typical AFM setup. A laser beam is focused 

on the backside of the cantilever. A mirror directs the reflected beam onto the 

photodiode (PSPD). Deflection of the cantilever changes the position of the laser spot on 

the PSPD, resulting in a signal, which is transferred to the controller. The controller 

processes the signal and sends a feedback signal to the piezoelectric transducer. Thus, 

the height of the surface is adjusted according to the feedback signal. 

Before setting up an AFM experiment, the cantilever needs to be 

mounted on a fluid cell or glass block (not shown in Figure 2.1). Next, 

the laser beam is focused on the backside of the cantilever, from where it 

is reflected onto a mirror. The mirror directs the laser beam to the PSPD. 

Deflection of the cantilever changes the position of the laser spot on the 

PSPD. This change is transferred to the controller, which records the 

incoming information, processes it, and converts it into a feedback signal. 

Then the signal is sent to the piezoelectric actuator, which adjusts the 

height, or z-position of the sample, in order to change the deflection of the 

cantilever. Thus, the contact force between the AFM tip and the sample 

surface is changed as well. 

2.4 Cantilevers 

The cantilever with a sharp tip at its end is the most important 

part of an AFM, since it interacts with the sample. Modern AFM 

cantilevers and tips are commonly made from silicon, silicon-nitride 

(Si3N4) or diamond. Usually cantilevers are rectangular or triangular 

shaped with a length of 50-200 µm and a thickness of 0.5-2 µm. They are 
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often coated with a thin layer of gold or aluminum for efficient reflection 

of the laser beam. Depending on the application, one can choose among 

cantilevers with different physical properties. Cantilevers used for high-

resolution contact mode imaging have a spring constant of ≈0.05-0.2 N/m. 

Highly sensitive low-noise SMFS experiments require cantilevers with a 

spring constant of ≈0.03 N/m. However, spring constants of cantilevers 

used for non-contact mode applications are significantly higher by a 

factor of ≈10. 

It can be assumed that the cantilever acts like a Hookean spring7 

with the spring constant !. Therefore, the bending of the cantilever, !", 

can be converted into force: 

! = !  ×  !" Equation 2.1 

The force value usually lies in the range of piconewton (pN) to 

nanonewton (nN). 

The spring constant of a cantilever is principally affected by its 

geometrical properties, such as length, width and thickness. Additionally, 

the material of a cantilever (Young’s modulus) further affects the spring 

constant. Equation 2.2 gives the theoretical spring constant of a 

rectangular cantilever. 

! =
!!!!
4!!  Equation 2.2 

! is the Young’s modulus, ! is the thickness, ! is the width and ! is the 

length of the cantilever (140). Typically, for biological AFM applications, 

rectangular or triangular cantilevers are used. 

2.5 Calibration 

2.5.1 Calibration of the photo-detection system 

Calibrating the photo-detection system of the AFM followed by 

determination of the cantilever spring constant (see following section) is 
                                            
7 Assuming that cantilevers act like Hookean springs, this assumption is only valid for 

small deflections (several tens of nanometers). Cantilevers do not behave as linear 

springs at higher deflections anymore. 
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obligatory for precise force measurements. During all calibration 

procedures, the cantilever is immersed in liquid, and a solid supporting 

surface is required. The x,y-position of the cantilever relative to the 

sample is kept constant while the piezo-actuator is repeatedly extended 

and retracted in the vertical (z-) direction by a certain distance. The beam 

deflection in the contact area is recorded during these approach-and-

retract cycles. This allows the correlation between the beam displacement 

on the PSPD in Volt (V) and the piezo-actuator in nm.  

Figure 2.2 on the next page illustrates how the deflection signal 

changes when the cantilever stylus gets into contact with the surface 

during an approach-and-retract cycle: 

1. The cantilever is away from the surface. Fluctuations in the 

deflection signal are caused by thermal noise.  

2. Next, the piezo-actuator is extended until the cantilever tip 

gets into contact with the surface. 

3. The cantilever bends upwards until the end of the piezo 

extension, leading to a linear increase in the signal on the 

PSPD.  

4. The piezo is retracted. The decrease in the bending of the 

cantilever is displayed by the linear decrease in the deflection 

signal. The deflection sensitivity (rate of signal strength 

correlated to extension in V/nm) can now be determined by 

fitting a line to this contact regime. 

5. Usually, the cantilever sticks to the surface and bends 

downwards during piezo retraction, which results in a 

negative deflection signal, also called adhesion peak. 

6. Further retraction of the piezo releases the cantilever from its 

interaction with the surface. Thus, it loses contact and relaxes 

into its original non-bent position. 

Thus, after calibration of the photo-detection system, a measured 

voltage signal of the PSPD can be easily converted into a metric 

cantilever deflection. 
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Figure 2.2: Deflection of the cantilever during an approach-and-retract cycle. 

For calibrating the deflection sensitivity of the PSPD detection system, the piezo-

scanner is extended until the cantilever reaches the surface and deflects (1-3). Then, the 

scanner is retracted at constant speed and the cantilever relaxes (4-6). Thus, the piezo-

extension can be directly correlated to the linear increase in the deflection of the 

cantilever (3 and 4). 

2.5.2 Calibration of the cantilever spring constant  

There are several possibilities to calculate the spring constant of an 

AFM cantilever (141). The most common method used for the calibration 

of AFM cantilevers is the so-called “thermal tuning” that was introduced 

by Hutter and Bechhoefer (142). The cantilever needs to be kept in 

solution, at a fixed position at least 50 µm away from the surface. 

Brownian motions induce minor free oscillations of the cantilever. After 

Fourier transformation of the free oscillation frequencies of the cantilever 

recorded over several seconds, a probability-oscillation frequency plot is 

generated. The resulting curve can be fitted with a power law, which 

allows determination of the actual spring constant of the respective 

cantilever. Measured spring constants can easily deviate by 50% 

compared to nominal spring constants provided by the manufacturer. 

This underlines the necessity of the calibration procedure. 
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2.6 Sample and support preparation 

In order to investigate a sample by AFM, it has to be adsorbed on a 

surface. This process is usually facilitated by physisorption (143) and 

strongly depends on the surface charges of both the supporting surface 

and the sample. The concentration of the sample as well as the 

adsorption time determine the adsorption efficiency, which can be 

optimized by minimizing repulsive electrostatic forces between sample 

and surface (143). Thus, the successful adsorption of a sample requires 

the careful adjustment of the electrolyte concentration and pH conditions. 

Furthermore, an appropriate surface is required on which the sample can 

be adsorbed. Adding cations balances the negative surface charge and 

leads to increased van-der-Waals interactions between sample and 

surface. 

A commonly used surface for AFM studies on membrane proteins 

is negatively charged muscovite (mica). Mica was used as a supporting 

surface throughout the work presented in chapter 3 and chapter 4. 

Further supporting surfaces used for AFM experiments are highly 

ordered pyrolytic graphite (HOPG) (106), ultraflat gold (144, 145) or glass 

(146, 147). However, due to their hydrophobicity those materials might 

lead to destruction of the investigated membrane protein. For that 

reason, mica surfaces are the first choice for AFM studies on membrane 

proteins. 

Usually a small piece of mica is glued onto a metal disc or onto a 

glass slide to ensure lateral fixation of the sample on the piezo-scanner 

(93). To adsorb a sample, it needs to be diluted in an appropriate buffer 

and subsequently placed on a clean surface. After an adequate adsorption 

time the surface needs to be washed several times. The AFM cantilever 

needs to be mounted on top of the sample. Normally, thermal 

equilibration requires several minutes before the experiment can be 

started. 
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2.7 Contact mode imaging 

In order to determine the topography of a surface, the AFM tip 

needs to be scanned over the area of interest in a raster-like manner. The 

bending of the cantilever provides information on the vertical dimension 

of the surface. In contact-mode imaging, the bending of the cantilever 

and, thus, the interaction force between tip and surface are kept constant 

by adjusting a user-defined value (set point). For that purpose, the height 

of the sample is constantly adjusted by the piezo movement. This imaging 

mode is also referred to as constant force mode. Usually, the scanning 

force is kept low (≈100 pN) in order to minimize alterations or distortion 

of topographical features of the sample. Contact mode imaging facilitated 

high-resolution images of several membrane proteins, like 

bacteriorhodopsin (BR) (148), connexin channels (103), the c-rings of ATP 

synthase (119) and the β-barrel protein OmpG (107). 

2.8 AFM-based force measurements 

Introduced to image the topography of inorganic surfaces in 

vacuum at nanometer precision (90), the AFM has emerged into a 

multifunctional toolbox in nanobiotechnology (149). One of a multitude of 

the currently used AFM techniques is an approach called single-molecule 

force spectroscopy (SMFS), which will be described in the next section. 

2.8.1 Single-molecule force spectroscopy (SMFS) 

Single-molecule force spectroscopy (SMFS) is an AFM technique, 

which uses force to unfold single proteins. SMFS has been introduced by 

Gaub (150) and Lee (151) to probe the strength of receptor-ligand bonds. 

All SMFS experiments that have been conducted so far demonstrated 

that the forces probed by SMFS reflect interactions within or between 

molecules. Unraveling the mechanisms of protein folding and unfolding, 

receptor-ligand interactions, and ligand-binding interactions that switch 

the functional state of a protein are only a small number of biologically 

and medically pertinent questions that can be answered by SMFS (149). 
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The first protein investigated by SMFS (and probably the best-

studied one) is the immunoglobulin titin (152). In the muscle sarcomeres 

of humans, the titin filament acts as an adjustable molecular spring. 

About 90% of the titin filaments are immunoglobulin (IG) domains that 

provide mechanical elasticity to the filament (153). Reversible unfolding 

of an oligomeric titin construct was achieved by simply applying a 

mechanical pulling force to both ends of the peptide. Recording the 

applied force over the distance the peptide has been stretched revealed a 

characteristic sawtooth-like pattern of force peaks. Every single force 

peak of this pattern reflected unfolding of a single IG domain of the 

peptide, whereas the sequence of force peaks described the unfolding 

pathways of all IG domains within the oligomeric titin construct. 

The light-driven proton pump bacteriorhodopsin (BR) from 

Halobacterium salinarum8 was the first membrane protein studied by 

SMFS (156). BR is an ideal model for SMFS on membrane proteins, since 

its atomic structure is known (64, 157). Furthermore, it is easy to purify 

and naturally abundant. Thus, an enormous amount of function-related 

biochemical data on BR is available (158). In SMFS experiments, single 

BR molecules withstand forces of up to 200 pN before their structural 

segments unfold cooperatively (159) (see chapter 4). Mechanical unfolding 

of BR occurs along a few highly reproducible pathways, which are 

temperature-dependent (126, 159). 

2.8.2 Polymer extension models 

In order to describe the stretching of flexible polymer chains the 

freely jointed chain model was developed (160). From this model, the 

worm-like chain (WLC) model emerged (161). The WLC model describes 

the extension of semi-flexible polymer chains (161, 162). The force ! 

required to stretch the polymer chain is given by 

                                            
8  Halobacterium salinarum is a halophilic marine Gram-negative obligate aerobic 

archaeon (154, 155). 
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! ! =   
!!!
!!
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!
!!
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− 0.25+

!
!!

 Equation 2.3 

where !! is the Boltzmann constant9 and ! is the absolute temperature. 

!!  is the persistence length of the polymer and describes its rigidity. 

Values for !! are specific for each polymer and must be experimentally 

determined (163). A persistence length of 4 Å has been successfully 

applied to describe the extension at forces higher than 50 pN (152, 156). 

F-D curves recorded upon unfolding of single polypeptides can be fitted 

using the WLC model (164). The contour length !! (in aa) obtained from 

fitting a force peak using the WLC model describes the length of the 

polypeptide that had been unfolded and stretched. The WLC model was 

used throughout all projects in the work presented here. 

2.8.3 Dynamic force spectroscopy (DFS) 

The mechanical stability of an interaction cannot be adequately 

characterized by its strength. In addition to the strength, the lifetime of 

an interaction has to be taken into consideration. 

Dynamic force spectroscopy (DFS) is an extension of SMFS. DFS 

probes molecular bonds at different loading rates (applied force over 

time), allowing the approximation of the transition state and kinetic rate 

of the energy barrier of the bond (165). 

Usually, the bound state of an interaction is characterized by the 

state of the lowest energy. Thus, in order to disrupt an interaction, it has 

to be transferred from this local energy minimum into the unbound state 

of unknown energy. To do so, the unfolding energy barrier must be 

overcome by a sufficient amount of energy in the direction of the reaction 

coordinate. The investigation of the folding and unfolding of soluble 

proteins revealed that these processes could be described by a two-state 

model (166, 167). In this model, folded structures exist either in a low-

energy, low-entropic conformation, which corresponds to the native folded 

state. The high-energy, high-entropic state corresponds to the unfolded 

                                            
9 !!=1.38�10-23 J/K 
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state of the protein. Both states are separated by an energy barrier 

(Figure 2.3A). The unfolding process can be modeled as a thermally 

driven overdamped first-order kinetic process in an aqueous environment 

described by the unfolding rate !!, which is given by  

!! = !!!!!"# −
∆!!

‡

!!!
 Equation 2.4 

where !! is the diffuse relaxation time, which lies in the range of 10-7-10-9 

s (168, 169) and ∆!!
‡ is the activation free energy. Equation 2.3 gives the 

expression for the spontaneous unfolding rate in the absence of applied 

force. 

Since most proteins are kept in their native conformation by non-

covalent interactions with limited lifetime, these bonds can break even in 

the absence of any applied force. According to Equation 2.4, the 

unfolding rate !!  increases when the activation free energy ∆!!
‡ 

decreases. Application of an externally applied unfolding force  ! leads to 

a decrease in ∆!!
‡:  

∆!‡ ! = ∆!!
‡ − !!! Equation 2.5 

where !! is the length along the reaction coordinate. !! is defined by  

!! = !!cos  (!) Equation 2.6 

Thus, application of an external unfolding force adds a mechanical 

unfolding potential (–!cos  (!)!!), which results in a tilt in the energy 

landscape (Figure 2.3B). !!  is the distance between folded and the 

transition state along the reaction coordinate, whereas !  is the angle of 

the externally applied force relative to the reaction coordinate. For single-

molecule force experiments it can be assumed that !  is small, so that 

!! ≈ !!. Therefore, the unfolding rate under an externally applied force ! 

is given by 

! ! = !!!!!"# −
∆!!

‡ − !!!
!!!

 Equation 2.7 

The transition rate across the energy barrier and the force required 

to break an interaction both depend on the rate and duration of the 
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applied force (165, 170, 171). The most probable unfolding force !∗ 

depends on the most probable loading rate !!∗, which is the slope of a force 

peak multiplied by the speed of unfolding (165, 171): 

!∗ =
!!!
!!

!"
!!!!∗

!!!!!
 Equation 2.8 

In general, AFM-based SMFS does not allow performing 

experiments under equilibrium conditions. Nevertheless, biophysicists 

are interested in parameters that describe the untilted energy landscape 

at equilibrium, such as !!,  !! and ∆!!
‡. To extract these parameters, one 

needs to measure the most probable unfolding force !∗ of a rupture event 

at different loading rates using DFS. The data obtained from these DFS 

unfolding experiments can be fitted using Equation 2.8. The ground-to-

transition state distance !! can be obtained from the slope of the DFS fit 

(!∗  vs !"(!!∗)). The height of the activation energy barrier ∆!!
‡  can be 

calculated using an the Arrhenius equation: 

∆!!
‡ = −!!!"#(!!!!) Equation 2.9 

The energy landscape illustrated in Figure 2.3 is an 

oversimplification, since the structures of soluble and membrane proteins 

are stabilized by weak non-covalent interactions, for example ionic bonds, 

hydrogen bonds and van-der-Waals interactions. These interactions break 

when the protein is transferred from the native state into the completely 

stretched and unfolded state. Thus, a large number of energy barriers 

have to be overcome during the folding or unfolding of a protein, which 

results in a rough energy landscape as indicated in Figure 2.3 (172-176). 

Therefore, DFS experiments locate and quantify only the most prominent 

energy barriers, while minor energy barriers might not be detected. 

  



The atomic force microscope 

 24 

 

Figure 2.3: Free energy unfolding barrier describing energetic (∆!!
‡ ) and 

kinetic (!! and !!) parameters of stable structural segments. (A) According to the 

Bell-Evans model (165, 177), folded structures can be characterized using a simple two-

state model. The native, folded structure resides in an energy valley and is separated by 

an energy barrier from the unfolded state. As approximated previously the surface 

roughness of the energy landscape of transmembrane α-helices, ε, is ≈4-6 !!! (178). This 

roughness creates local energy minima that can stabilize functionally related 

conformational states of a structural segment. Thus, for a given surface roughness, a 

wide energy valley can host more conformational states (i.e., hosts a higher 

conformational variability) of a structural segment compared to a narrow energy valley. 

The transition state (‡) has to be overcome to induce unfolding of the stable structural 

segment. !! represents the distance between the folded state and the transition state, !! 

is the transition rate for crossing the energy barrier under zero force, and ∆!!
‡ gives the 

activation energy for unfolding the segment. (B) Applying an external force ! changes 

the thermal likelihood of reaching the top of the energy barrier. The energy profile along 

the reaction coordinate (pulling direction) is tilted by the mechanical energy 

–!cos  (!)!!, as indicated by the dashed line. The applied force does not change the 

ground-to-transition state distance !!. ! describes the angle of the externally applied 

force relative to the reaction coordinate. As a result of this tilt, the energy barrier that 

separates the folded from the unfolded state decreases and the probability of the folded 

structural segment to unfold increases. 
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3 Molecular interactions of the human G 

protein-coupled β2 adrenergic receptor 

Parts of this work have been submitted to PNAS and Structure for 

consideration. 
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3.1 Introduction 

Over the past four years remarkable advances in the structural 

biology of G protein-coupled receptors (GPCRs) have been made. One of 

the highlights includes solving the crystal structure of the human β2 

adrenergic G protein-coupled receptor (β2AR) (65, 66), an outstanding 

success of great interest, in particular from the perspective of membrane-

protein biophysics. 

3.1.1 Multifaceted functionality of GPCRs 

What is it that makes this family of membrane proteins so 

interesting? First of all, GPCRs are the largest family of membrane 

proteins mediating most cellular responses to hormones and 

neurotransmitters. Furthermore, GPCRs are responsible for olfaction, 

taste and vision. All GPCRs contain seven membrane-spanning α-helical 

segments, which are separated by alternating intracellular and 

extracellular loops. In vertebrates, GPCRs can be divided into five 

families. Depending on their sequence and structural similarity, they are 

divided into rhodopsin-like (family A), secretin (family B), glutamate 

(family C), adhesion and frizzled/taste2 (179). The rhodopsin family is by 

far the largest and most diverse of these families. Members of family A 

are characterized by conserved sequence motifs implying shared 

activation mechanisms and structural features. Nevertheless, individual 

GPCRs have unique combinations of signal-transduction activities that 

involve multiple G protein subtypes. In addition, they initiate complex 

regulatory processes (180). Due to their broad influence over human 

physiology and behavior, GPCRs are promising targets for new and more 

effective drugs. 

The β2AR is one of the best-characterized GPCRs. β2AR belongs to 

the class A GPCRs and is expressed in pulmonary and cardiac myocyte 

tissue (181, 182). Together with its close relative β1AR, β2AR senses 

adrenalin in bronchial vasculature and noradrenalin in cardiac muscle. 

The implication in a broad spectrum of diseases like asthma or heart 

failure makes β2AR an important therapeutic target (183-187). Numerous 
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ligands that bind to β2AR are used as drugs in cardiac disease and 

asthma treatment (183). Several crystal structures of β2AR have been 

determined over the last years (65, 66, 188-191), providing unique 

insights into structure-function relationships of GPCRs. 

In general, the classical role of a GPCR is to couple the binding of 

agonists to activation of specific heterotrimeric G proteins, which leads to 

the modulation of downstream effector proteins. In the case of β2AR, 

binding of adrenalin and noradrenalin to cells in the target tissues of 

sympathetic neurotransmission leads to activation of Gαs, the 

stimulatory subunit of the heterotrimeric G protein. Gαs stimulates 

adenylate cyclase, cyclic (cAMP) accumulates, the cAMP-dependent 

protein kinase A (PKA) is activated, and proteins involved in muscle-cell 

contraction are phosphorylated (192). Nevertheless, in recent years it has 

been shown that many GPCRs exhibit a much more complex signaling 

behavior. For instance, β2AR has a significant constitutive activity, which 

can be blocked by inverse agonists (193, 194). Besides Gαs, β2AR couples 

to the inhibitory subunit Gαi in cardiac myocytes (195). β2AR can also 

signal in a G protein-independent manner: binding of arrestin to β2AR 

triggers MAP kinase pathways (196, 197). Additionally, desensitization of 

β2AR involves multiple pathways that include phosphorylation of the 

receptor, arrestin-mediated internalization into endosomes, recycling of 

the receptor and lysosomal degradation (198, 199) (Figure 3.1). Finally, 

these activities are further complicated by oligomerization of GPCRs 

(200) and localization to specific membrane compartments (201), which 

results in differences in the composition of the lipid bilayer. Drugs can 

preferentially activate or inhibit these different signaling pathways. This 

shows that the functional behavior of GPCRs is highly complex and 

multifaceted. 
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Figure 3.1: Signal transduction pathways induced by β2AR. A multitude of 

signaling pathways are regulated by β2AR. The receptor can activate two G proteins (Gs 

and Gi). Both G proteins differentially regulate adenylate cyclase. Adenylate cyclase 

generates cyclic AMP (cAMP), a second messenger, which activates protein kinase A 

(PKA). PKA regulates the activity of several cellular proteins, for example the L-type 

Ca2+ channel and also β2AR itself. Specific phosphodiesterase proteins (PDEs) 

downregulate cAMP levels. Activation of β2AR further leads to phosphorylation of β2AR 

by a G protein-coupled receptor kinase (GRK) followed by coupling of arrestin, a 

signaling and regulatory protein. Arrestin promotes the activation of extracellular 

signal-regulated kinases (ERK). Moreover, it prevents the activation of G proteins and 

stimulates internalization of the receptor via clathrin-mediated endocytosis. Protein 

kinase C (PKC) is another protein that can phosphorylate the receptor. Adapted from 

(180). 

3.1.2 Cholesterol and GPCRs 

Cellular membranes functionally modulate a large number of 

membrane proteins (16, 202-206). Such functional modulation is 

facilitated by chemical and physical interactions between membrane 

proteins and phopholipids, sphingolipids, cholesterol and other molecular 
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components of the cell membrane. Similar to many other membrane 

proteins, GPCRs are regulated by their hetero- and homooligomeric 

assembly and the membrane composition. Because the heterogeneous 

composition of cellular membranes changes dynamically, the functional 

state of GPCRs depends on the location in the cell membrane and on the 

state of the cell (207, 208). The steroid cholesterol modulates chemical 

and physical properties of cellular membranes and plays a role in the 

dynamic formation of sphingolipid-enriched assemblies of lipids and 

membrane proteins. These metastable assemblies, or lipid rafts, can 

functionally regulate membrane proteins by different mechanisms (207). 

Indirect regulation of membrane proteins, including GPCRs, can be 

observed through the ability of cholesterol to modulate biophysical 

properties of a lipid bilayer (14) whereas the direct regulation of 

membrane proteins can occur through specific interactions (209-212). 

Although it is not completely understood how cells control the 

distribution of cholesterol and by which mechanisms cholesterol 

functionally regulates GPCRs, insights into these processes are of cell 

biological and pharmacological importance (213, 214). 

Similar to other GPCRs cholesterol modulates the physiological 

function of β2AR (213, 215). Furthermore, cholesterol and the more water-

soluble cholesterol analog cholesteryl hemisuccinate (CHS) enhance the 

thermal stability of β2AR (213, 216). Additionally, cholesterol facilitates 

interactions between GPCRs and appears helpful to crystallize β2AR (65). 

A recently published X-ray crystallography model of human β2AR showed 

cholesterol to fit into a shallow surface groove formed by transmembrane 

α-helices H1, H2, H3 and H4 (217). This structural model unraveled 

possible interactions between cholesterol and β2AR. However, to 

understand to which extent the interactions established by cholesterol 

change kinetic, energetic, and mechanical properties of structural regions 

in the receptor requires additional insight. 
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3.1.3 Ligands and their efficacy profiles 

What are the biophysical mechanisms behind the complex 

functional behavior of GPCRs? The biochemical and biophysical 

properties of GPCRs can be modulated in a ligand-specific manner (218). 

Ligands are classified by their efficacy. The efficacy of a ligand reflects its 

effect on the structure and biophysical properties of a receptor. 

Depending on the biological response, ligands can be grouped into 

different efficacy classes (Figure 3.2). Full agonists are able to 

maximally stimulate the receptor, whereas partial agonists are unable to 

elicit full activity, even at saturating concentrations. Neutral antagonists 

can prevent other ligands from binding to the receptor, but they have no 

effect on signaling activity. Inverse agonists decrease the level of agonist-

independent basal activity. 

 

Figure 3.2: Classification of 

ligand efficacy for GPCRs. Many 

GPCRs exhibit basal or constitutive 

activity, which is independent from 

agonists (red line). Inverse agonists 

inhibit basal activity, whereas 

neutral antagonists have no effect. 

Agonists (and partial agonists) 

initiate biological responses above 

the basal activity. Note that efficacy 

is not directly related to affinity. 

The wide spectrum of ligand efficacies for GPCRs implies that 

efficient energy transfer between the binding pocket and G protein 

binding site depends on multiple interactions between receptor and 

ligand. Apparently, the energy transfer requires more than simply 

occupying the ligand-binding site. Biophysical studies on fluorescently 

labeled β2AR showed that full and partial agonists with different subsets 

of functional groups stabilize distinct conformational states of the 

receptor (219-221). These findings led to a complex picture of GPCR 
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activation: a distinct conformation stabilized by the structure of a ligand 

determines the efficacy towards a specific pathway. Many GPCRs are 

capable of activating multiple signaling pathways (see section 3.1.1), and 

specific ligands can have a different relative efficacy to different 

pathways (222). Even opposite activities for different signaling pathways 

are observed: for β2AR, agonists that induce the arrestin/MAP kinase 

pathway can also act as inverse agonists for the classical Gαs/cAMP/PKA 

pathway (196, 223). Thus, GPCRs are no longer thought to act like simple 

two-state switches. By now, they are regarded as molecular rheostats, 

having the ability to sample a continuum of conformations with relatively 

closely spaced energies (224). There is evidence from biochemical and 

biophysical data showing that GPRCs are flexible and dynamic molecules 

and that functionally distinct ligands can stabilize specific conformations 

of the receptor (224). 

In the following sections, it was investigated how these 

conformations, or interactions, change their dynamic energy profile. For 

that purpose, the dynamic energy landscape of β2AR was determined 

using DFS. Finally, it was investigated how physiologically relevant 

variables, such as cholesterol and ligands, modulate the energy landscape 

of β2AR. 

3.2 Experimental procedures 

3.2.1 Preparation of β2AR proteoliposomes 

β2AR-containing proteoliposomes were kindly provided by Brian 

Kobilka (Stanford University). Spodoptera frugiperda (Sf9) insect cells 

were grown at 27°C in suspension cultures in ESF-921 medium 

(Expression Systems, USA) supplemented with 0.5 mg/ml gentamicin. 

The Bac-to-Bac® Baculovirus Expression System (Invitrogen, USA) was 

used for generating baculovirus for the β2AR. Throughout this project, a 

modified construct of human β2AR with a truncated C-terminal end (48 

amino acids (aa)) and a N-terminal FLAG epitope followed by a TEV 

protease cleavage site was used. β2AR expression was accomplished by 
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infecting Sf9 cells at a density of ≈3 x 106 cells/ml for ≈48 h. Cells 

expressing receptors, as assessed by immunofluorescence, were harvested 

by centrifugation (15 min at 5000g). Cell pellets were stored at -80 °C. 

From these pellets β2AR was purified using a three-step purification 

procedure as described (225). For preparation of lipids, 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC) (Avanti Polar Lipids, USA) and the 

cholesterol analog cholesteryl hemisuccinate (CHS) (Steraloids, USA) 

were mixed and dissolved in chloroform to form a stock solution of lipids 

at concentrations of 20 mg/ml and 10 mg/ml. DOPC and CHS were added 

to a glass vial, with DOPC at a 10-fold excess, and the chloroform was 

evaporated under a fine stream of argon. To prepare DOPC lipids without 

cholesterol, CHS was excluded from all preparation steps. The lipids were 

then dried under vacuum for 1 h. After this, the lipids were resuspended 

in 100 mM NaCl, 1% (w/v) octylclucoside, 20 mM HEPES, pH 7.5, 

vortexed and sonicated for 1 h in an ice water bath. The lipid mixture was 

stored at -80°C.  

β2AR was reconstituted as described previously (225). Briefly, 300 

µl samples were prepared containing lipid and the β2AR at a lipid-to-

receptor ratio of 1,000:1 (mol:mol). The lipid/receptor mixture was mixed 

with reconstitution buffer (100 mM NaCl, 20 mM HEPES, pH 7.5) at a 

final volume of 300 µl and placed on ice for 2 h. Vesicles were formed 

removing detergent on a Sephadex G-50 (fine) column (25 x 0.8 cm) using 

reconstitution buffer. To bind ligands, β2AR in DOPC/CHS liposomes was 

pre-incubated for 1 h at room temperature (≈22°C) with saturating 

amounts (10 µM for BI-167107 (BI, Boehringer-Ingelheim), THRX-144877 

(THRX, Theravance) and carazolol, 100 µM for alprenolol and 100 µM for 

adrenalin). During subsequent reconstitution steps, the same 

concentration of ligand was included in the reconstitution buffer. 

3.2.2 SMFS and DFS 

SMFS was conducted using two different AFMs that provided 

similar results (ForceRobot 300, JPK Instruments, Germany and 

Nanoscope IIIa PicoForce AFM, Bruker, Germany). SMFS data of β2AR 
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were recorded at pulling velocities of 100, 300, 600, 900, 1200, 2500 and 

5000 nm/s. SMFS at pulling velocity of 5000 nm/sec was recorded using 

an additional 16-bit data acquisition hardware (Nanoscope IIIa: NI PCI-

6221; ForceRobot 300: NI PCI-6251, National Instruments, Germany). 

Cantilevers used (60 µm long silicon nitride A-BioLever, BL-RC150 VB, 

Olympus Ltd., Japan) had nominal resonance frequencies of ≈8 kHz in 

water. Cantilever spring constants (≈30 pN/nm) were determined in 

buffer solution using the equipartition theorem (226, 227) prior to 

experiments. Due to uncertainties in calibrating the cantilever spring 

constant (≈10%), β2AR was unfolded using at least five different 

cantilevers for each velocity. Proteoliposomes containing β2AR were 

adsorbed over night at 4˚C onto freshly cleaved mica in SMFS buffer (300 

mM NaCl, 25 mM MgCl2, 25 mM Tris, pH 7.0). Mica is an atomically flat, 

chemically inert and hydrophilic surface, which so far did not 

significantly influence the structure-function relationship of membrane 

proteins and their interactions probed by SMFS (93, 123, 138, 156). To 

remove weakly attached membrane patches, the sample was rinsed 

several times with SMFS buffer. SMFS buffer solutions were prepared 

using nanopure water (≥18 MOhm/cm; PURE-LAB Ultra, ELGA 

LabWater) and pro-analysis grade (≥98.5%) chemicals from Sigma-

Aldrich or Merck. All SMFS experiments were performed under identical 

SMFS buffer conditions at 24°C. To characterize ligand binding, SMFS 

buffer was supplemented with adequate amounts of the ligand. To attach 

a single β2AR via unspecific interactions, the AFM stylus was pushed 

onto proteoliposomes, applying a constant force of 700 pN for 0.5 s. The 

unspecific attachment between AFM stylus and terminal end of the β2AR 

polypeptide chain is strong enough to withstand pulling forces of ≈2 nN 

(93, 228). Separation of stylus and membrane stretched the polypeptide 

and exerted a force at the protein. At sufficiently high pulling force β2AR 

unfolded stepwise. Unfolding events were monitored recording the 

cantilever deflection and the distance separating cantilever stylus and 

membrane. Interaction forces were calculated from the cantilever 

deflection using Hook’s law. 
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3.2.3 Data selection 

Mechanical unfolding of β2AR was recorded by F-D curves. Each 

force peak of a F-D curve denoted the rupture of an unfolding barrier 

established by a structural segment of β2AR. The distance at which a 

force peak was detected assigned the contour length of the unfolded and 

stretched polypeptide that tethered the AFM stylus and the anchoring 

structural segment. The very last force peak of a F-D curve represented 

the unfolding of the last structural segment remaining anchored by the 

lipid bilayer (159). Overcoming the stability of this last segment lead to 

complete unfolding of the receptor, followed by extraction from the 

membrane. In the GPCR bovine rhodopsin, the last structural segment 

(or unfolding barrier) corresponds to α-helix H8, which lies parallel to the 

membrane bilayer followed by a palmitoylation site (229). It was assumed 

that this was also the case for β2AR since it shares very similar structural 

features with rhodopsin. A fully stretched β2AR polypeptide that remains 

anchored by α-helix H8 would show a contour length of ≈260 to 290 aa. 

Therefore, F-D curves showing a maximum length of 70-90 nm (≈260 to 

290 aa) were selected for data analysis. 

3.2.4 Data analysis 

Every force peak of a F-D curve was fitted using the WLC model 

(161) (see section 2.8.2). A persistence length P of 0.4 nm and a backbone 

length of 0.36 nm were assumed for every aa. The contour length !! (in 

aa) obtained from fitting a force peak using the WLC model describes the 

length of the polypeptide that had been unfolded and stretched. Contour 

lengths and rupture forces were statistically analyzed for every 

reproducibly occurring force peak using built-in and custom procedures of 

IgorPro 6 (WaveMetrics, USA). To generate density maps, F-D curves 

were superimposed and aligned to the characteristic force peak detected 

at the contour length of 121 aa. 

3.2.5 Assignment of stable structural segments 

The contour length determined by the WLC fits corresponds to the 

length of the unfolded and stretched β2AR polypeptide that tethers AFM 
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stylus and a structural unfolding intermediate. Thus, every force peak 

could be used to assign the end of the previous and the beginning of the 

following structural segment that stabilized β2AR against unfolding (125). 

Some stable structural segments had to be assumed to begin at the 

cytoplasmic β2AR surface at the opposite side of the pulling AFM stylus. 

To locate the beginning of such a stable structural segment, the so-called 

‘membrane compensation procedure’ was applied (125, 159). Thereto, the 

thickness of the membrane (≈4 nm) was added to the contour length of 

the corresponding force peak (125, 159). Accordingly, ≈11 aa (11 aa � 0.36 

nm/aa) were added to the contour length of a force peak. If the beginning 

of a stable structural segment was located within the membrane, less aa 

were added to the contour length.  

3.2.6 Calculation of !! and !! 

The Bell-Evans theory (177) describes the most probable unfolding 

force !∗ as a function of the most probable loading rate rf* to reveal 

insight into the unfolding energy barrier that stabilizes a structural 

segment against unfolding (171) (see section 2.8.3). Using a non-linear 

least squares algorithm, the parameters !!  and !!  were obtained by 

fitting Equation 2.8 to a DFS plot. The loading rate was calculated using 

!! = !!"#$%&   ! , where !!"#$%&  is the spring constant of the stretched 

polypeptide and ! is the pulling velocity. !!"#$!" corresponds to the slope 

of a force peak before rupture. Experimental force and loading rate 

histograms were fitted using Gaussian distributions. 

3.2.7 Calculation of transition barrier height and rigidity 

The free energy barrier ∆!!
‡  separating the unfolded from the 

folded state was calculated using Equation 2.9. In the calculations, !! = 

10-8 s was used. Varying !! in the range mentioned in section 2.8.3 would 

change ∆!!
‡ by <15%. Furthermore, the influence of errors of !! would be 

the same for all conditions and ∆!!
‡ values, even if !! was wrong by orders 

of magnitude. Errors in ∆!!
‡ were calculated by propagation of errors of 

!!. Without having information on the energy potential shape, a simple 
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parabolic potential was assumed. The mechanical spring constant  ! of a 

structural segment was calculated using ∆!!
‡  and !!  (230) with the 

following equation: 

! =
2∆!!

‡

!!!
 Equation 3.1 

To estimate errors in !, errors in ∆!!
‡ and !! were propagated. 

3.3 Cholesterol dependent interactions of β2AR 

3.3.1 Results 

3.3.1.1 SFMS of human β2AR in the presence and absence of 

cholesterol 

To characterize the influence of cholesterol on the interactions 

stabilizing human β2AR, the receptor was reconstituted into liposomes 

containing phospholipids (DOPC) or phospholipids and cholesteryl 

hemisuccinate (DOPC/CHS) (see section 3.2.1). For SMFS, β2AR the 

proteoliposomes were densely adsorbed onto freshly cleaved mica (Figure 

3.3). The AFM stylus was pushed onto the proteoliposomes with a force of 

≈700 pN for 0.5 s (Figure 3.4A). Subsequently, the cantilever was 

retracted, and its deflection recorded as a force-distance (F-D) curve. In 

≈0.5% of these approach-and-retract cycles, a single β2AR attached to the 

AFM stylus and the F-D curve recorded during retracting the cantilever 

showed a sawtooth-like pattern with several force peaks. These sawtooth-

like patterns were similar for β2AR reconstituted in DOPC (Figure 3.4B, 

top) and DOPC/CHS liposomes (Figure 3.4C, top). Each force peak of a 

F-D curve reflected the unfolding of a structural segment of β2AR. The 

magnitude of the force peak revealed the strength of the interaction that 

stabilized a structural segment against unfolding. These interactions 

were composed of inter- and intramolecular interactions. For analysis 

only F-D curves with an overall length of ≈70-90 nm were selected, since 

they describe the complete unfolding of the receptor from its terminus 

(see section 3.2.3). To highlight common features among the F-D curves, 

they were superimposed and displayed as density plots (Figure 3.4B,C, 
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bottom). The superimpositions of F-D curves recorded of β2AR 

reconstituted in DOPC (Figure 3.4B) and DOPC/CHS (Figure 3.4C) 

showed a characteristic pattern of eight force peaks. The presence of 

cholesterol did not change the position of the force peaks. However, the 

magnitude of the force peaks increased in presence of cholesterol (Figure 

3.5). This difference implies that cholesterol increases the strength of 

interactions stabilizing β2AR. 

 

Figure 3.3: AFM deflection image of β2AR 

proteoliposomes. Proteoliposomes were 

adsorbed over night at 4˚C onto freshly cleaved 

mica in buffer solution (300 mM NaCl, 25 mM 

MgCl2, 25 mM Tris, pH 7.0). To remove weakly 

attached membrane patches, the sample was 

rinsed several times with the same buffer 

solution. The contact mode AFM deflection 

image was recorded in buffer solution applying 

an imaging force of ≈50-100 pN. 
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Figure 3.4: SMFS of β2AR reconstituted into liposomes composed of either 

phospholipids (DOPC) or phospholipids and cholesterol (DOPC/CHS). (A) 

Pressing the AFM stylus onto the proteoliposomes promotes the unspecific attachment 

of a single β2AR polypeptide to the stylus. Withdrawal of the AFM cantilever stretches 

the polypeptide and induces the sequential unfolding of β2AR. F: force, d: distance. (B, 

C) Selection of force-distance (F-D) curves recorded upon N-terminal unfolding of β2AR 

reconstituted into DOPC (B, top) and DOPC/CHS liposomes (C, top). Density plots of 

superimposed F-D curves (bottom of (B) and (C)) highlight their common features. 

Number of superimposed F-D curves n=100 (B) and n=100 (C). Red numbers on top of 

each WLC curve (red dashed lines) indicate the average contour lengths (in amino acids) 

revealed from fitting each force peak of each superimposed F-D curve. Gray scale bars 

allow evaluating how frequently individual force peaks were populated. 
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Figure 3.5: Average force required to unfold structural segments of β2AR 

reconstituted into liposomes composed of phospholipids (DOPC) or of 

phospholipids and cholesterol (DOPC/CHS). (A) On average the force required to 

unfold β2AR reconstituted into DOPC/CHS liposomes (black) was higher than the 

average force required to unfold β2AR reconstituted into DOPC liposomes (red). This 

difference implies an increased mechanical stability of the GPCR in the presence of 

cholesterol. To determine average unfolding forces the sum of unfolding forces detected 

for every peak of every force-distance spectrum used in superimpositions shown in 

Figure 3.4B and Figure 3.4C was calculated. This sum of forces was then divided by 

the number of all analyzed F-D curves. (B) To exclude that differences in average forces 

are not a result of cantilever calibration errors, β2AR in DOPC (red) and DOPC/CHS 

(black) liposomes was unfolded under identical experimental conditions using the same 

cantilever. Bin sizes of histograms are 3 aa. The pulling velocity was 300 nm/s (A) and 

528 nm/s (B). The numbers (n) of analyzed F-D curves are indicated. 

3.3.1.2 Unfolding β2AR from N- and C-terminal ends 

In principle β2AR could attach non-specifically with either the N- 

or the C-terminal end to the AFM stylus. Accordingly, two different 

unfolding F-D spectra were recorded (Figure 3.6). To assign these classes 

to N- or C-terminal unfolding, the N-terminal FLAG tag was 

enzymatically removed and the shortened β2AR was unfolded (Figure 

3.7). A shift of ≈14 aa was observed in one class of F-D curves, suggesting 

that this particular class corresponds to N-terminal unfolding. 

Approximately 75% of the F-D curves (n≈1000) corresponded to unfolding 

of β2AR by mechanically pulling the N-terminal end (Figure 3.6A). The 

remaining F-D curves represented unfolding the receptor from the C-

terminal end (Figure 3.6B). The superimpositions of F-D curves showed 

a characteristic pattern of eight force peaks when unfolding β2AR from 
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the N-terminal end (Figure 3.6A, bottom). When unfolding β2AR from 

the C-terminal end, only four reproducible force peaks were detected 

(Figure 3.6B, bottom). The C-terminal region of the receptor, which is 

unfolded at pulling distances <30 nm, did not reveal reproducible 

unfolding events (force peaks) (Figure 3.6B). In summary, F-D curves 

recording the unfolding of β2AR from the N-terminal end occurred at 

higher probability and, most importantly, detected more unfolding events 

and interactions of the GPCR. For these reasons, only F-D curves that 

were recorded upon unfolding of β2AR from the N-terminus were 

analyzed. 

 

Figure 3.6: N- and C-terminal unfolding of β2AR reconstituted into DOPC/CHS 

liposomes. Selection of force-distance (F-D) curves recorded upon N-terminal (A, top) 

and C-terminal (B, top) unfolding of β2AR. Superimpositions of F-D curves (density plots 

at bottom of (A) and (B) highlight their common features. Red dashed lines represent 

WLC fits of the force peaks and the numbers on top of the curves indicate the average 

contour lengths (in amino acids) revealed from the WLC fits. Gray scale bars allow 

evaluating how frequently individual force peaks were populated. SMFS data recorded 

in SMFS buffer (300 mM NaCl, 25 mM Tris, 25 mM MgCl2, pH 7.0). Number of 

superimposed F-D curves n=103 (A, bottom) and n=56 (B, bottom). 
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Figure 3.7: Unfolding β2AR after removal of the FLAG-Tag. (A) Secondary 

structure model of 365N β2AR with N-terminal FLAG tag followed by a TEV protease 

cleavage site (colored in green). Superimposition of F-D curves recorded pulling N-

terminal (B) and C-terminal (C) ends before TEV protease treatment. SMFS of the 

untreated receptor shows the normal full-length spectrum. Force peaks were fitted using 

the WLC model to reveal the contour length of the unfolded and stretched polypeptide 

(given at the end of each WLC fit in aa). (D) Treatment of β2AR with TEV protease (red 

triangle) and PNGase F (blue triangles) removed 14 amino acids (aa) from the N-

terminus and the glycosylations, respectively. (E) Superimposition of F-D curves 

recorded pulling the truncated N-terminal end of β2AR after TEV protease treatment. 

On average the force peaks showed a shift of 14 aa. (F) Superimposition of F-D curves 

recorded pulling the C-terminal end of TEV protease treated β2AR. The superimposition 

shows the spectrum of the untreated receptor. Data (B-F) recorded in buffer solution 

(300 mM NaCl, 25 mM MgCl2, 25 mM Tris, pH 7.0). (G) Bimane fluorescence and 

Coomassie stain of untreated, TEV protease and PNGase F treated bimane labeled 

β2AR. The molecular weight was shifted on the gel after treatment with TEV, PNGaseF 

and both enzymes. 



Molecular interactions of the human β2AR 

 43 

3.3.1.3 Mapping interactions that stabilize structural segments of 

β2AR 

After having identified that the superimposed F-D spectra (Figure 

3.4B,C, bottom) correspond to the unfolding of β2AR from the N-terminal 

end (see previous section) the interactions were mapped to the β2AR 

structure. When exerting sufficient force to the N-terminal end, β2AR 

unfolds in a sequence of steps. Every force peak of the F-D curve reflects 

an unfolding step (Figure 3.4B,C, top). An unfolding step, in which a 

structural segment unfolds, describes the transfer of one unfolding 

intermediate to the next (125). To assign the unfolding steps and 

structural segments, every force peak of a F-D curve was fitted using the 

worm-like chain (WLC) model (see section 2.8.2). Each WLC fit revealed 

the contour length of the unfolded polypeptide that connected AFM stylus 

and the unfolding intermediate of the receptor. The contour lengths of all 

force peaks allowed determining all unfolding steps of β2AR (Figure 

3.4B,C, Table 3.1). In the first unfolding step the N-terminus and the N-

terminal transmembrane α-helix of β2AR unfolded. Next, the unfolded 

polypeptide linking AFM stylus and the stable structural segments that 

remained folded and anchored in the membrane was elongated and 

stretched. As soon as the stretching force exceeded the stability of the 

next structural segment this segment unfolded as well. This sequential 

unfolding of one structural segment after the other continued until the 

entire β2AR had been unfolded. In summary, eight unfolding steps were 

detected, each step reflecting the unfolding of a structural segment. 

Mapped onto the secondary and tertiary structure these stable structural 

segments show where inter- and intramolecular interactions stabilized 

β2AR (Figure 3.8). Because the common unfolding peaks detected for 

β2AR in the presence and in the absence of cholesterol showed no 

differences in their position (Figure 3.4), it could be concluded that 

cholesterol did not stabilize different structural segments (Figure 3.8). 

However, apparently the strength of the interactions stabilizing β2AR 

depended on the presence of cholesterol (Figure 3.5). In the following the 

nature of these interactions was investigated. 
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Table 3.1: Mean contour lengths of force peaks in F-D curves recorded during 

N-terminal unfolding of β2AR and stable structural segments assigned to the 

force peaks. Contour lengths represent mean peak positions. Errors represent 

standard deviations (SD). Number of analyzed F-D curves n=100 (DOPC) and n=100 

(DOPC/CHS). 

Stable structural segment 
Contour length ± SD (aa) 

DOPC DOPC/CHS 

[H1.1] 49 ± 4 49 ± 4 

[H1.2-C1] 58 ± 4 58 ± 3 

[H2.1] 73 ± 3 73 ± 3 

[H2.2-E1] 88 ± 4 88 ± 4 

[H3-C2-H4-E2-H5.1] 121 ± 0 121 ± 0 

[H5.2-C3-H6.1] 135 ± 9 135 ± 7 

[H6.2-E3-H7-H8] 195 ± 8 195 ± 7 

[CT] 275 ± 13 275 ± 11 
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Figure 3.8: Structural segments stabilizing human β2AR. Secondary (A) and 

tertiary (B) structure model of β2AR. Each color represents a structural segment that is 

stabilized by inter- and intramolecular interactions. (A) Black amino acids (aa) highlight 

the end of the previous and the beginning of the next stable structural segment. This 

structural position corresponds to the mean contour length (given in brackets) revealed 

from WLC curves fitting every force peak of every F-D curve. aa colored at less intensity 

give the standard deviation of locating the average force peak (Table 3.1). Membrane 

compensation’ (see section 3.2.5) was applied for the boundaries of structural segments 

that had to be assumed to lie within the membrane or at the membrane surface opposite 

to the puling AFM stylus. All seven transmembrane α-helices of β2AR are labeled with 

bold numerals (H1-H7). Cytoplasmic and extracellular loops are indicated C1, C2, C3 

and E1, E2, E3, respectively. H8 denotes the short C-terminal α-helix 8 at the 

cytoplasmic side. The secondary structure model (A) of C-terminally truncated β2AR 

carrying a N-terminal FLAG epitope (blue) followed by a TEV protease cleavage site 

(green) was taken from (66). The tertiary structure model (B) was taken from PDB ID 

3D4S. 

3.3.1.4 Cholesterol changes the energy landscape of β2AR 

The most probable force required to unfold a structural segment of 

a protein depends on the loading rate (pulling force applied versus time) 

(165). Thus, the unfolding force is only a relative measure of the stability 

of a structural segment exposed to mechanical stress. However, the 

kinetic, energetic, and mechanical properties of a folded structure that 

resides in an energy valley at equilibrium can be described by a free 

energy unfolding landscape (Figure 2.3). To approximate these 

parameters (165, 231) F-D curves were recorded at seven different pulling 
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velocities (100, 300, 600, 900, 1200, 2500 and 5000 nm/s). To investigate 

the effect of cholesterol on the energy landscape of β2AR, DFS was carried 

out in the absence and in the presence of cholesterol. Then the most 

probable unfolding force !∗ of every structural segment was determined 

at different loading rates !!∗. After this, the most probable unfolding force 

was plotted versus the most probable loading rate for every structural 

segment in a so-called DFS plot (Figure 3.9). As theoretically predicted 

(171, 177) and experimentally verified using membrane proteins (129, 

130, 135, 232-234), increasing the loading rate increased the unfolding 

forces. A linear relationship between the most probable unfolding force 

and the logarithm of the loading rate was observed for every interaction. 

This linearity suggests that, for every structural segment, a single energy 

barrier separated the folded from the unfolded state (Figure 2.3) (171). 

The DFS data were fitted using Equation 2.8 (Figure 3.9) to reveal the 

ground-to-transition-state distance !!  and transition rate !! , and 

Equation 2.9 and Equation 3.1 were used to estimate the unfolding free 

energy ∆!!
‡  and the mechanical spring constant !  for every structural 

segment of β2AR (see section 2.8.3). The statistical significance of these 

differences was estimated using a non-linear sum-of-squares F-test 

(Table 3.2) (235, 236). Several segments showed statistical significant 

differences in the presence of cholesterol (Table 3.3) suggesting that the 

energy barriers stabilizing the individual structural regions of β2AR 

changed. In the following these cholesterol-induced changes will be 

described. 
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Figure 3.9: Loading rate dependent interactions stabilizing structural 

segments of β2AR depend on cholesterol. DFS plots of each structural segment of 

β2AR reconstituted into DOPC (red) and DOPC/CHS liposomes (black). Shown is the 

most probable unfolding force against the most probable loading rate. Solid lines show 

DFS fits from which !!  and !!  were obtained (Table 3.3). Error bars indicate the 

standard error of the most probable force and the loading rate. 
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Table 3.2: Sum of squares F-test comparing DFS data recorded from β2AR 

reconstituted into DOPC and DOPC/CHS liposomes. For every stable structural 

segment the DFS data points (Figure 3.9) were fitted individually and simultaneously 

using Equation 2.8. The difference between the individually and simultaneously fitted 

values was assessed by sum-of-square (SSQ) F-tests. Degrees of freedom (dof) are given 

in parentheses. The F-ratio given by F=((SSQ1-SSQ2)/(dof1-dof2))/(SSQ2/dof2) 

quantifies the relationship between the relative increase in the sum of squares and the 

relative increase in the degrees of freedom. SSQ1 and SSQ2 refer to the sum of the two 

compared fits; dof1 and dof2 denote the degrees of freedom of the two compared fits. p-

values estimate the significance of differences of the same stable structural segment 

detected in β2AR in DOPC/CHS and DOPC. 

Lipid Stable 

structural 

segment 

Separate 

SSQ1 (dof1) 

SSQ2 (dof2) 

Common 

SSQ (dof) 

F-ratio p-value 

DOPC/CHS 
[H1] 

154.1 (5) 
1477.8 (12) 21.110 1.202�10-4 

DOPC 128.9 (5) 

DOPC/CHS 
[H1.2-C1] 

214.0 (5) 
860.8 (12) 7.490 6.464�10-3 

DOPC 130.6 (5) 

DOPC/CHS 
[H2.1] 

253.7 (5) 
1083.1 (12) 9.609 2.718�10-3 

DOPC 117.0 (5) 

DOPC/CHS 
[H2.2-E1] 

164.5 (5) 
1016.7 (12) 12.028 1.179�10-3 

DOPC 134.0 (5) 

DOPC/CHS 
[H3-C2-H4-E2-H5.1] 

24.0 (5) 
89.6 (12) 0.657 0.597 

DOPC 55.2 (5) 

DOPC/CHS 
[H5.2-C3-H6.1] 

497.7 (5) 
4581.7 (12) 26.153 4.756�10-5 

DOPC 237.6 (5) 

DOPC/CHS 
[H6.2-E3-H7-H8] 

138.9 (5) 
596.4 (12) 14.606 5.512�10-4 

DOPC 13.2 (5) 

DOPC/CHS 
[CT] 

90.6 (5) 
659.3 (12) 18.546 2.076�10-4 

DOPC 49.4 (5) 
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Table 3.3: Parameters characterizing the free energy barrier (!!, !! and ∆!!
‡) 

and spring constant (!) of structural segments stabilizing β2AR reconstituted 

into DOPC and DOPC/CHS liposomes. Errors represent standard deviations (SD). 

Differences were considered significant when p-values approached p < 0.001 from F-

tests (Table 3.2) and their changes did not overlap with their standard deviation. 

Significant changes are highlighted bold. 

Stable structural segment 
!! ± SD (nm) !! ± SD (s-1) 

DOPC DOPC/CHS DOPC DOPC/CHS 

[H1.1] 0.33 ± 0.02 0.44 ± 0.04 3.935 ± 1.210 0.077 ± 0.073 

[H1.2-C1] 0.26 ± 0.02 0.29 ± 0.02 1.418 ± 0.429 0.248 ± 0.178 

[H2.1] 0.32 ± 0.02 0.33 ± 0.02 1.250 ± 0.496 0.290 ± 0.174 

[H2.2-E1] 0.37 ± 0.02 0.45 ± 0.05 2.174 ± 0.592 0.166 ± 0.140 

[H3-C2-H4-E2-H5.1] 0.55 ± 0.04 0.55 ± 0.03 0.055 ± 0.041 0.038 ± 0.022 

[H5.2-C3-H6.1] 0.26 ± 0.01 0.29 ± 0.02 0.443 ± 0.162 0.018 ± 0.014 

[H6.2-E3-H7-H8] 0.45 ± 0.03 0.49 ± 0.03 1.376 ± 0.384 0.320 ± 0.118 

[CT] 0.54 ± 0.03 0.59 ± 0.05 0.126 ± 0.054 0.011 ± 0.008 

 

Stable structural segment 
∆!!

‡ ± SD (!!!) !± SD (N/m) 

DOPC DOPC/CHS DOPC DOPC/CHS 

[H1.1] 17.1 ± 0.3 21.0 ± 0.9  1.26 ± 0.11 0.88 ± 0.13 

[H1.2-C1] 18.1 ± 0.3 19.8 ± 0.7 2.39 ± 0.17 2.02 ± 0.26 

[H2.1] 18.2 ± 0.4 19.7 ± 0.6 1.51 ± 0.17 1.49 ± 0.18 

[H2.2-E1] 17.6 ± 0.3 20.2 ± 0.8 1.07 ± 0.10 0.84 ± 0.15 

[H3-C2-H4-E2-H5.1] 21.3 ± 0.7 21.7 ± 0.6 0.58 ± 0.07 0.59 ± 0.06 

[H5.2-C3-H6.1] 19.2 ± 0.4 22.4 ± 0.8 2.43 ± 0.21 2.23 ± 0.25 

[H6.2-E3-H7-H8] 18.1 ± 0.3 19.6 ± 0.4 0.73 ± 0.08 0.69 ± 0.08 

[CT] 20.5 ± 0.4 23.0 ± 0.7 0.59 ± 0.06 0.54 ± 0.06 

3.3.1.5 Cholesterol increases kinetic and energetic stability of 

β2AR 

Most prominent among the changes induced by cholesterol is that 

almost every structural segment of β2AR increased kinetic and energetic 

stability (Table 3.3). The free energy barriers that stabilize each 

structural segment against unfolding increased height in the presence of 

cholesterol. Particular the energy barriers stabilizing the structural 

segments [H1.1], [H1.2-C1], [H2.1], [H2.2-E1], [H5.2-C3-H6.1], [H6.2-E3-
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H7-H8] and [CT] were significantly higher in the presence of cholesterol. 

For individual structural segments the free energy increase caused by 

cholesterol ranged between 1.5 !!! ([H2.1] and [H6.2-E3-H7-H8]) and 

3.9 !!! ([H1.1]). The exception was the largest structural segment [H3-

C2-H4-E2-H5.1], whose small increase of the energy barrier (0.4 !!!) was 

not significant. Synchronous to the free energy barrier heights, the 

structural segments significantly increased kinetic stability (reciprocal of 

the transition rate !!) in the presence of cholesterol (Table 3.3). Some 

structural segments increased their kinetic stability considerably. For 

example in the presence of cholesterol structural segment [H1.1] 

increased kinetic stability by a factor of 50, [H1.2-C1] by a factor of 6, 

[H2.1] and [H6.2-E3-H7-H8] by a factor of 4, [H5.2-C3-H6.1] by a factor of 

25, and [CT] by a factor of 11. However, the transition rate of the 

structural core segment [H3-C2-H4-E2-H5.1] remained unchanged in the 

presence of cholesterol. 

3.3.1.6 Cholesterol increases conformational variability and 

decreases mechanical rigidity of transmembrane α-helices 

H1 and H2 

The conformational variability of a structure can be approximated 

by the ground-to-transition state distance !! (237, 238). With increasing 

ground-to-transition state distance the energy valley stabilizing a 

structural segment becomes wider. Consequently, the segment can adopt 

more conformational substates and, therefore, enhances conformational 

variability. On the contrary, if an energy valley stabilizing a structural 

segment narrows the conformational variability of the structural segment 

decreases (Figure 2.3). The only structural segments that significantly 

increased transition state distance !! by ≈20-30% and, thus, increased 

conformational variability were [H1.1] and [H2.2-E1] (Table 3.3). 

Although the other structural segments of β2AR showed similar trends in 

presence of cholesterol these differences were insignificant. 

The spring constant !  quantifies the mechanical rigidity of a 

structural segment (135, 230). Although all structural segments (except 
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[H3-C2-H4-E2-H5.1]) slightly decreased their mechanical rigidity (spring 

constant) in the presence of cholesterol (Table 3.3), this decrease was 

only statistically significant for structural segment [H1.1], which 

decreased the spring constant by ≈30% to 0.88 N/m. 

3.3.2 Discussion 

3.3.2.1 Cholesterol strengthens interactions of almost every 

structural segment of β2AR 

Using SMFS, interactions that stabilize the human β2AR 

reconstituted into DOPC liposomes were characterized. F-D spectra 

recorded during mechanical unfolding of β2AR showed a reproducible 

pattern of force peaks (Figure 3.4B,C). This pattern suggests that a 

characteristic interaction network stabilized structural segments within 

β2AR. The presence of cholesterol did not alter the position of the force 

peaks. Thus, it can be concluded that the interactions established in the 

presence of cholesterol stabilized the same structural segments of β2AR 

as detected in the absence of cholesterol. However, cholesterol increased 

the magnitude of individual force peaks (Figure 3.5) and, thus, increased 

the interaction strengths stabilizing the structural segments within β2AR 

(Figure 3.9). As this trend was observed for all structural segments 

(except for [H3-C2-H4-E2-H5.1]) and for all pulling velocities it can be 

concluded that cholesterol increased the mechanical stability of β2AR. 

This increased mechanical stability may result from direct interactions 

between cholesterol and β2AR. However, since cholesterol also affects the 

properties of the lipid membrane (14, 239, 240) and because cholesterol 

establishes direct interactions with some but not with all structural 

segments of β2AR (217), it can be assumed that it also affected the 

stability of β2AR indirectly. 
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3.3.2.2 Cholesterol increases free energy barrier and kinetic 

stability of every structural segment except for the 

structural core segment 

The strengths of the interactions stabilizing the structural 

segments of β2AR depended on the loading rate (Figure 3.9). This 

dependency was used to characterize the energy valley and barrier 

stabilizing every structural segment (Table 3.3). Except for the 

structural core segment [H3-C2-H4-E2-H5.1], cholesterol significantly 

affected the energy landscape of every structural segment of β2AR. 

Generally, the free energy barriers stabilizing these structural segments 

increased height in the presence of cholesterol. Consequently, the 

structural segments reduced transition rate and increased kinetic 

stability. Thus, cholesterol increased the kinetic and energetic stability of 

β2AR. However, the energy landscape of individual structural segments 

stabilizing β2AR and thus their properties changed quite individually. 

These changes, which are structurally mapped in Figure 3.10, will be 

discussed in the following. 
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Figure 3.10: Mapping the kinetic, energetic, and mechanical properties of β2AR 

in the absence (A) and presence (B) of cholesterol. Structural segments stabilizing 

β2AR (PDB ID code 3D4S are mapped on the left. Transition state distance !!, transition 

rate !!, free energy barrier height ∆!!
‡, and spring constant ! of structural segments in 

the absence of cholesterol (A) and in the presence of cholesterol (B). The color of the 

β2AR backbone roughly indicates the value for each parameter as indicated by the scale 

bars. Top panel of (A) and (B) shows β2AR from side view, lower panel of (A) and (B) 

shows β2AR from extracellular view. Values were taken from Table 3.3. 

3.3.2.3 [H1.1] 

The presence of cholesterol affected kinetic, energetic, and 

mechanical parameters of structural segment [H1.1]. Cholesterol 

increased the transition state distance !!  by 33% to 0.44 nm, which 

enhanced the conformational variability of the extracellular region of 

transmembrane α-helix H1. Furthermore, cholesterol significantly 

decreased the transition rate !! and thus, increased the kinetic stability 

of [H1.1] 50-fold. Moreover, cholesterol increased the free energy barrier, 



Molecular interactions of the human β2AR 

 54 

∆!!
‡, stabilizing [H1.1] by ≈4 !!! (≈23%). Finally, [H1.1] was the only 

structural segment of β2AR, which significantly lowered the spring 

constant ! in presence of cholesterol from 1.26 N/m to 0.88 N/m (≈30%). 

This implies that cholesterol increases mechanical flexibility of this 

structural region. The X-ray structure suggests that H1 establishes a 

direct interaction with cholesterol (217). The DFS data shows that 

cholesterol kinetically and energetically stabilizes the extracellular part 

of α-helix H1 and enhances its mechanical flexibility. It is thought that 

GPCRs including β2AR can assemble into dimers in the plasma 

membrane (200, 241). Although the functional importance of this 

dimerization and the exact location of the dimer interface in GPCRs are 

not fully understood (242) it may be speculated that cholesterol promotes 

β2AR dimerization, since ordered cholesterol molecules were found in the 

interface between H1 and H8 of two symmetry-related β2AR molecules 

(65). It has been proposed for several other class A GPCRs that α-helix 

H1 is involved in receptor oligomerization (243, 244). Therefore, it may be 

speculated that increased kinetic and energetic stability, and mechanical 

flexibility of [H1.1] may favor oligomerization of β2AR. 

3.3.2.4  [H1.2-C1] 

In the presence of cholesterol the energy landscape stabilizing 

structural segment [H1.2-C1] showed minor but statistically significant 

changes. [H1.2-C1] decreased transition rate and, thus, increased kinetic 

stability 6-fold. The free energy of [H1.2-C1] increased by 1.7 !!! (≈9%), 

indicating that this structural segment stabilizes in the presence of 

cholesterol. Structural models show cholesterol binding to the C-terminal 

part of transmembrane α-helix H1 (217), which could directly change the 

properties of structural segments [H1.1] and [H1.2-C1] as detected by 

DFS. Further changes may be caused by direct interactions between 

cholesterol and residue Y70 at the interface between structural segments 

[H1.2-C1] and [H2.1]. The minor changes detected for [H1.2-C1] 

correlates with the finding that Y70 appears to be the least important 

residue for cholesterol binding and establishes only van-der-Waals-
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interactions with ring A of cholesterol (217). In absence of further 

information, it may be speculated that electrostatic interactions between 

hydrophilic residues of intracellular loop C1 (e.g. K60, R63) and the 

cholesterol hydroxyl group could also contribute to the cholesterol-

induced changes of [H1.2-C1]. 

3.3.2.5 [H2.1] 

Cholesterol reduced the transition rate !!  of [H2.1] 6-fold and 

increased the height of the free energy barrier ∆!!
‡ by 1.5 !!! (≈8%). The 

ground-to-transition state distance !! and the spring constant ! of [H2.1] 

remained unchanged. Thus, in the presence of cholesterol, the lifetime 

and the energetic stability of [H2.1] enhanced significantly. These 

changes may result from direct interactions between β2AR and 

cholesterol, which interacts with [H2.1] via residues T73, S74 and C77 

(217). Hanson et al. (217) showed that cholesterol increases the packing 

value for transmembrane α-helix H2, which correlates with an increased 

thermal stability of β2AR. The DFS data shows that the increased 

packing value induced by cholesterol increases the kinetic and energetic 

stability of α-helix H2. 

3.3.2.6 [H2.2-E1] 

Cholesterol slightly increased the ground-to-transition state 

distance by 0.08 nm and, thus, the conformational variability of [H2.2-

E1]. Furthermore, cholesterol increased the kinetic stability of this 

structural segment 13-fold, and increased the height of the free energy 

barrier by 2.6 !!! (≈15%). Cholesterol increases the packing value of α-

helix H2 and interacts with [H2.2-E1] through an interaction with V81 

(217). The changes in [H2.2-E1] might also be indirectly induced by 

electrostatic interactions between the cholesterol hydroxyl group and 

positively charged residues (e.g. K97) of extracellular loop E1. 

3.3.2.7  [H3-C2-H4-E2-H5.1] 

Although transmembrane α-helices H3 and H4 are supposed to 

establish direct interactions with cholesterol (217), the energy landscape 
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of the core segment remained unchanged by the presence of cholesterol. 

This finding was surprising because it was recently detected that [H3-C2-

H4-E2-H5.1] changes energy landscape in the presence of agonists and 

inverse agonists (245). However, the core segment [H3-C2-H4-E2-H5.1] 

exposed a relatively high conformational variability (high !!) and high 

mechanical elasticity (low !) compared to the other structural segments 

of β2AR in the presence of cholesterol. Thermal stability assays showed 

that cholesterol increased the packing value, and thus, the thermal 

stability of transmembrane α-helix H4 (217), which is part of the core 

segment. Furthermore, the crystal structures of cholesterol bound β2AR 

were determined from solubilized and liganded receptors (217). In 

contrast to these measurements, we characterized unliganded β2AR 

reconstituted into liposomes. It may be speculated that the different 

experimental conditions cause this apparent discrepancy. However, the 

short α-helical region of loop E2 contains two disulfide bonds that link 

transmembrane α-helices H3, H4 and H5 (65) and stabilize the core 

segment of β2AR. In addition, the structural core segment contains 

multiple ligand binding sites (188, 189). It has been also shown that 

cholesterol is required for efficient ligand binding of β2AR (246). Thus, the 

finding that the core segment of β2AR retains its relatively high 

conformational variability and mechanical flexibility in the presence of 

cholesterol may be of functional importance for ligand binding. 

3.3.2.8  [H5.2-C3-H6.1] 

Cholesterol significantly increased the kinetic stability of [H5.2-C3-

H6.1] 25-fold and increased the height of the energy barrier, ∆!!
‡, by 3.2 

!!! (≈17%). The distance between ground and transition state as well as 

the spring constant of [H5.2-C3-H6.1] remained unchanged. These 

changes are surprising, since cholesterol does not directly interact with 

structural segment [H5.2-C3-H6.1]. Thus, it can be assumed that 

cholesterol induced these changes by modulating the biophysical 

properties of the lipid membrane (14, 239, 240) or/and by indirect 

interactions in β2AR. As assessed by proteolysis and split receptor 
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studies, co-transfection of a plasmid encoding the N-terminus to α-helix 

H5 and a plasmid encoding α-helix H6 to the C-terminus generates a 

functional ‘split’ receptor (247). The interface between both fragments 

locates at segment [H5.2-C3-H6.1]. Furthermore, the N- and C-terminal 

regions of cytoplasmic loop C3 are involved in G protein activation and 

are crucial for the formation of interactions between GPCR and G protein 

(248). These GPCR and G protein interactions require cholesterol (249). 

Thus, it may be speculated that that the kinetic and energetic stability of 

[H5.2-C3-H6.1] increased by cholesterol may play a role in regulating the 

interactions between β2AR and G proteins. 

3.3.2.9 [H6.2-E3-H7-H8] 

In the presence of cholesterol, structural segment [H6.2-E3-H7-H8] 

significantly increased the kinetic stability !! 4-fold and increased the 

free energy barrier, ∆!!
‡, by 1.5 !!! (≈8%). The oligomerization of class A 

GPCRs involves the interface between α-helices H1 and H8 (243, 244). 

Similar to segments [H1.1] and [H1.2-C1] it may be speculated that 

cholesterol affects oligomerization of β2AR by modulating the kinetic and 

the energetic stability of [H6.2-E3-H7-H8]. Furthermore, α-helix H8, 

which lies parallel to the membrane, might be affected by the composition 

of the membrane, for example through electrostatic interactions with 

polar lipid headgroups or the hydroxyl group of cholesterol (217). 

3.3.2.10 [CT] 

Cholesterol induced significant changes in [CT], which increased 

kinetic stability 10-fold and free energy by 2.5 !!!  (≈12%). The C-

terminal end of β2AR is not known to contribute to cholesterol binding to 

the receptor (217). Thus, it might be speculated that the changing 

properties of segment [CT] could be indirectly caused by cholesterol 

modulating the biophysical properties of the lipid bilayer. However, [CT] 

contains charged amino acid residues, which might establish electrostatic 

interactions with the interfacial region of the membrane, to which the 

cholesterol hydroxyl group contributes. [CT] is functionally important 

since it interacts with G protein-coupled receptor kinases, arrestin and 
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further signaling molecules (250). For instance, the C-terminal binding 

domain is required to direct the trafficking of β2AR to cholesterol-rich 

caveolae (251). Therefore, it can be assumed that the properties of [CT] 

changed by cholesterol in turn influence the way signaling molecules 

interact with β2AR. 

3.4 Ligand-specific changes of the β2AR 

3.4.1 Results 

3.4.1.1 Determining energetic, kinetic and mechanical properties 

of structural segments of β2AR in the presence of ligands 

To investigate to which extent the binding of different ligands 

affects the energy landscape of β2AR (reconstituted into DOPC/CHS 

proteoliposomes), DFS was carried out in the unbound state and in the 

presence of the synthetic agonists BI-167107 (BI, Boehringer-Ingelheim) 

and THRX-144877 (THRX, Theravance), the natural agonist adrenalin, 

the inverse agonist carazolol and the neutral antagonist alprenolol. For 

all pulling velocities superimpositions of the F-D curves did not change 

drastically upon ligand binding to β2AR. Next, the most probable 

unfolding force !∗ of every force peak characterizing a stable structural 

segment of β2AR was determined and plotted for the different loading 

rates !!∗ (Figure 3.11). 

3.4.1.2 Ligands change energy landscape of β2AR 

Fitting the DFS plots using Equation 2.8 (Figure 3.11) revealed 

the transition state !! , transition rate !! , free energy ∆!!
‡ , and 

mechanical spring constant !  characterizing every structural segment 

(Figure 3.8). Differences between these parameters imply that the 

kinetic stability and mechanical nature of molecular interactions changed 

in the presence of ligands (Table 3.4). To determine the statistical 

significance of these differences, DFS plots from ligand-free and ligand-

bound β2AR were fitted simultaneously, resulting in a common estimate 

for !!  and !!. The sum of squares of both separate and simultaneous fits 

was assessed by an F-test (Table 3.5) (235, 236). Several segments 
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showed statistically significant differences after ligand binding (Table 

3.4). In the following the significant differences detected in the 

experiments will be described. 

 

Figure 3.11: DFS plots reveal loading rate dependent interactions stabilizing 

β2AR. For each stable structural segment of β2AR the most probable unfolding force was 

plotted against the loading rate. DFS fits using Equation 2.8 (see section 2.8.3) are 

shown for unliganded (red), alprenolol bound (black), carazolol bound (green), BI bound 

(blue), THRX bound (orange) and adrenalin bound (violet) states. Values for !! and !! 

obtained from fitting the DFS plots are given in Table 3.4. Error bars represent the 

standard error of most probable force and loading rate. 
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Table 3.5 (next page): Statistical analysis of DFS data. Sum of squares F-test for 

DFS data of unliganded β2AR compared to β2AR bound to BI, THRX, adrenalin, 

carazolol and alprenolol. Degrees of freedom (dof) are given in parentheses. SMFS data 

were fitted individually and simultaneously (unliganded and liganded). The difference in 

the fits that were analyzed separately or simultaneously was assessed by F-tests. The F-

ratio given by F=((SSQ1-SSQ2)/(dof1-dof2))/(SSQ2/dof2) quantifies the relationship 

between the relative increase in the sum of squares and the relative increase in the 

degrees of freedom. SSQ1 and SSQ2 refer to the sum of the two compared fits; dof1 and 

dof2 denote the degrees of freedom of the two compared fits. p-values estimate the 

significance to the unliganded state. 
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Structural segment Ligand Sum of squares (dof) F-ratio p-value 
Separate Common 

[H1] 

Unliganded 154.1 (5) - - - 
BI 277.8 (5) 441 (12) 0.105 0.955 
THRX 68.9 (5) 261.1 (12) 0.854 0.496 
Adrenalin 62.1 (5) 263.6 (12) 1.096 0.395 
Carazolol 131 (5) 378.1 (12) 1.631 0.244 
Alprenolol 86.7 (5) 522.5 (12) 5.849 0.014 

[H1.2-C1] 

Unliganded 214 (5) - - - 
BI 250 (5) 623.5 (12) 1.719 0.226 
THRX 196.8 (5) 423.6 (12) 0.156 0.924 
Adrenalin 90 (5) 312.9 (12) 0.146 0.930 
Carazolol 314.2 (5) 2426.5 (12) 17.970 2.368�10-4 
Alprenolol 523.4 (5) 1064.5 (12) 2.218 0.149 

[H2.1] 

Unliganded 253.7 (5) - - - 
BI 524.9 (5) 1144.7 (12) 2.351 0.134 
THRX 57.5 (5) 411.2 (12) 1.607 0.249 
Adrenalin 119.5 (5) 394.1 (12) 0.280 0.839 
Carazolol 308.3 (5) 1232.5 (12) 5.965 0.013 
Alprenolol 624.3 (5) 1065.9 (12) 1.070 0.405 

[H2.2-E1] 

Unliganded 164.5 (5) - - - 
BI 289.4 (5) 503.4 (12) 0.938 0.458 
THRX 101 (5) 322.9 (12) 1.081 0.401 
Adrenalin 111.8 (5) 376 (12) 1.805 0.210 
Carazolol 249.1 (5) 609.1 (12) 2.363 0.133 
Alprenolol 267.6 (5) 497.1 (12) 0.752 0.546 

[H3-C2-H4-E2-H5.1] 

Unliganded 24 (5) - - - 
BI 116.6 (5) 2582.3 (12) 86.831 1.84�10-7 
THRX 68.3 (5) 1443.7 (12) 73.207 4.163�10-7 
Adrenalin 44.8 (5) 760.9 (12) 19.964 1.523�10-4 
Carazolol 96.9 (5) 1128.6 (12) 41.675 5.842�10-6 
Alprenolol 177.8 (5) 262.6 (12) 1.506 0.272 

[H5.2-C3-H6.1] 

Unliganded 497.7 (5) - - - 
BI 278.4 (5) 832.3 (12) 0.362 0.782 
THRX 86.3 (5) 588.6 (12) 0.039 0.989 
Adrenalin 148.2 (5) 339.7 (12) 0.890 0.479 
Carazolol 295.7 (5) 927.6 (12) 0.846 0.500 
Alprenolol 263.9 (5) 861.9 (12) 0.658 0.596 

[H6.2-E3-H7-H8] 

Unliganded 138.9 (5) - - - 
BI 58.9 (5) 260.4 (12) 1.582 0.255 
THRX 89.5 (5) 289.5 (12) 1.338 0.317 
Adrenalin 146.2 (5) 289.5 (12) 0.958 0.450 
Carazolol 87.6 (5) 451.9 (12) 4.976 0.023 
Alprenolol 266.4 (5) 499 (12) 1.156 0.374 

[CT] 

Unliganded 90.6 (5) - - - 
BI 84.3 (5) 200.3 (12) 0.726 0.559 
THRX 66.14 (5) 183.2 (12) 0.844 0.500 
Adrenalin 72.4 (5) 218.8 (12) 1.712 0.227 
Carazolol 97.82 (5) 288.9 (12) 2.665 0.105 
Alprenolol 165.7 (5) 262.6 (12) 0.123 0.944 
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3.4.1.3 Structural segments changing conformational variability 

upon ligand binding 

The distance between ground state and transition state !! 

approximates the conformational variability of a structure (Figure 2.3, 

see section 2.8.3) (237, 238). If a narrow energy valley stabilizing a 

structural segment becomes wider after binding of a ligand, the ligand 

increases the number of conformational states (i.e., conformational 

variability) the structural segment can adopt. Such an effect was 

observed upon ligand binding to β2AR (Table 3.4). Binding of agonists 

(BI, THRX, or adrenalin) significantly increased the conformational 

variability of the core segment [H3-C2-H4-E2-H5.1] (p < 0.001), carazolol 

significantly increased the conformational variability of structural 

segments [H1.2-C1] (p < 0.001), [H3-C2-H4-E2-H5.1] (p < 0.001), and 

[H6.2-E3-H7-H8] (p < 0.05), whereas alprenolol significantly increased 

the conformational variability of [H1.1] (p < 0.05) (Table 3.4). These 

results show that ligand binding increases the conformational variability 

(or states) of certain structural regions of β2AR whereas all other 

structural regions were not affected significantly. It appeared, that some 

structural regions were modulated by different ligands whereas other 

regions were modulated by only one ligand. However, to which extent the 

conformational variability of a structural region changed was specific to 

the ligand. 

3.4.1.4 Structural segments changing lifetime upon ligand 

binding 

The transition rate !!  measures the lifetime (reciprocal of 

transition rate) of a structural segment. The DFS experiments (Table 

3.4) detected that binding of BI, THRX, or adrenalin significantly 

increased the lifetime of the structural segment [H3-C2-H4-E2-H5.1] 

(p < 0.001), that carazolol binding significantly increased the lifetime of 

the structural segments [H1.2-C1] (p < 0.001), [H2.1] (p < 0.05), [H3-C2-

H4-E2-H5.1] (p < 0.001) and [H6.2-E3-H7-H8] (p < 0.05), and that 

alprenolol binding significantly increased the lifetime of the structural 
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segment [H1.1] (p < 0.05) (Table 3.4). These results demonstrate that 

ligand binding changes the kinetic properties of structural regions within 

β2AR. However, to which extent the kinetic properties of a structural 

region changed was again specific to the ligand. 

3.4.1.5 Structural segments changing free energy upon ligand 

binding 

The free energy ∆!!
‡ characterizes the height of the energy barrier 

stabilizing a folded structure (Figure 2.3, see section 2.8.3). DFS 

measurements showed that ligand binding increased the free energy of 

several structural segments (Table 3.4). Binding of BI, THRX and 

adrenalin significantly increased ∆!!
‡ of structural segment [H3-C2-H4-

E2-H5.1] (p < 0.001), carazolol significantly increased ∆!!
‡ of structural 

segments [H1.2-C1] (p < 0.001), [H2.1] (p < 0.05), [H3-C2-H4-E2-H5.1] 

(p < 0.001) and [H6.2-E3-H7-H8] (p < 0.05), and alprenolol significantly 

increased ∆!!
‡ of structural segment [H1.1] (p < 0.05). 

3.4.1.6 Structural segments changing mechanical properties upon 

ligand binding 

Similar to the other parameters characterizing the energy barriers 

the spring constants ! that quantify the mechanical rigidity of structural 

segments (135, 230), changed upon ligand binding (Table 3.4). Binding of 

the agonists BI, THRX, and adrenalin significantly increased the 

mechanical elasticity of the core structural segment [H3-C2-H4-E2-H5.1] 

(p < 0.001), and alprenolol significantly decreased the mechanical 

elasticity of structural segment [H1.1] (p < 0.05). Carazolol significantly 

increased the mechanical elasticity of structural segments [H1.2-C1] 

(p < 0.001), [H3-C2-H4-E2-H5.1] (p < 0.001), and [H6.2-E3-H7-H8] 

(p < 0.05), and decreased that of structural segment [H2.1] (p < 0.05). 

These results showed that the binding of a ligand changed the 

mechanical properties of certain structural regions. 
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3.4.2 Discussion 

3.4.2.1 Ligand binding to β2AR lacks pronounced localized 

interactions 

As for all membrane proteins investigated so far by SMFS (114, 

129, 130, 133, 135, 156, 233, 234) the F-D spectra recorded during 

mechanical unfolding of native-like β2AR reconstituted into 

proteoliposomes showed a reproducible pattern of force peaks (Figure 

3.4C and Figure 3.6). The reproducibility of the force peak pattern 

suggests that β2AR establishes a characteristic interaction network (125). 

Ligand binding to the receptor did not establish additional force peaks or 

significantly modify the strength of existing force peaks. In contrast, 

SMFS detected a significantly increased force peak after ligand binding to 

functionally activated Na+/H+ antiporters NhaA from Escherichia coli and 

MjHhaP1 from Methanococcus jannaschii (127, 128). The increasing 

interaction force was correlated to specific interactions established 

between the ligand Na+ and the deprotonated aspartic acid residues at 

the Na+-binding site. In β2AR multiple amino acid residues from several 

transmembrane α-helices contribute to ligand binding (188, 189). Thus, it 

is expected that ligand binding modulates the functional state of β2AR by 

changing the interaction network in the GPCR (224, 252). However, 

because no drastic changes of the force peak pattern were detected such 

as observed for other membrane proteins after ligand binding (127, 128), 

it can be concluded that ligand binding established rather small changes 

to the interactions that structurally stabilize β2AR in the unliganded 

conformation. 

3.4.2.2 Conformational variability and kinetic stability of 

unliganded β2AR 

DFS studies showed that structural segments of bacteriorhodopsin, 

bovine and mouse rhodopsin, the antiporter NhaA and the transporter 

BetP are stabilized by single energy barriers (Figure 2.3, see section 

2.8.3) (129, 133, 232, 234, 253). The same observation was made for the 

structural segments of β2AR. The transition state distance !! separating 
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the folded from the unfolded state of every structural segment of β2AR 

ranged from 0.3 to 0.6 nm (Table 3.4). Thus the structural segments of 

β2AR must be stretched by ≈0.3 to 0.6 nm to induce unfolding. These 

rather short distances suggest that short ranged inter- and 

intramolecular bonds, such as hydrogen bonds, van-der-Waals 

interactions, or electrostacit interactions had to be ruptured to induce 

unfolding of the receptor. On average, the transition state distance of 

structural segments determined of β2AR was similar to the average 

values of ≈0.4 nm determined for structural segments stabilizing 

bacteriorhodopsin, bovine rhodopsin and NhaA (!! ranging from 0.2 to 0.8 

nm) (129, 232, 234, 253). The structural segments of unliganded β2AR 

revealed transition rates !!  between 0.011 and 0.320 s-1 (Table 3.4), 

indicating lifetimes ranging between ≈3 and ≈90 s. These transition rates 

were in the range of those measured for other membrane proteins 

ranging from 0.001 to 0.9 s-1 (129, 232, 234, 253). However, the !! values 

of the structural segments of β2AR differed by a factor of 30 with 

structural segments [H1.1], [H3-C2-H4-E2-H5.1] and [CT] representing 

the kinetically stable regions, and [H1.2-C1], [H2.1] and [H6.2-E3-H7-H8] 

the kinetically less stable ones. Biophysical and functional studies 

support a multistate model of β2AR in the absence of ligands (254). These 

multiple conformational and functional states observed for unliganded 

β2AR may be directly related to the conformational variability and kinetic 

heterogeneity of the receptor’s structural segments observed by DFS. 

3.4.2.3 Energetic stability and mechanical elasticity of 

unliganded β2AR 

The free energy barrier ∆!!
‡ stabilizing the structural segments of 

unliganded β2AR ranged from ≈20 to 23 !!! . These free energy 

differences were below that determined for structural segments of bovine 

rhodopsin in the inactive dark-state (∆!!
‡ between 20 and 28 !!!) and 

below those determined for the structurally similar but functionally 

different bacteriorhodopsin (∆!!
‡ between 21 and 29 !!!) (234, 253). Thus 
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the structural segments of unliganded β2AR were energetically less stable 

compared to those of bovine rhodopsin and bacteriorhodopsin. 

Spring constants characterizing the mechanical elasticity of 

structural segments in the unliganded state varied by a factor of four 

(Table 3.4). The intracellular end of α-helix H1 together with the first 

intracellular loop [H1.2-C1] (!=2.02 N/m) and the structural segment 

[H5.2-H6.1-C3] (!=2.23 N/m) formed the most rigid structures of the 

receptor. In contrast, the core segment [H3-C2-H4-E2-H5.1] (!=0.59 N/m) 

and the C-terminal domain [CT] (!=0.54 N/m) formed the most elastic 

segments. In general, the structural segments stabilizing β2AR were more 

elastic compared to the structural segments of bacteriorhodopsin, where 

the values for ! ranged from 0.9 to 4.2 N/m (253). Compared to the 

elasticity of the structural segments of bovine rhodopsin (! between 0.16 

and 2.54 N/m) (234), the values observed for β2AR were more similar, 

indicating that both class A GPCRs share consistent mechanical 

properties. However, the spring constants of the structural core segments 

[H3-C2-H4-E2-H5.1] of both GPCRs differed from each other. In the case 

of unliganded β2AR, !  was about four times lower than !  of bovine 

rhodopsin in the dark-state. 

3.4.2.4 High conformational variability and mechanical elasticity 

of structural core correlates to basal β2AR activity 

Parameters characterizing the energy barrier stabilizing 

unliganded β2AR describe the receptor in its basal and low energy state 

(224). It has been suggested that the basal activity of β2AR in the absence 

of ligands may be attributed to an inherent structural flexibility and 

tendency to adopt several conformational states (224). In the 

measurements, the largest segment in the receptor core [H3-C2-H4-E2-

H5.1] exposed a relatively high conformational variability (high !!) and 

high mechanical elasticity (low ! ) compared to the other structural 

segments of β2AR and compared to the core segment of the GPCR bovine 

rhodopsin in the dark-state. This dark-state of rhodopsin is stabilized by 

the covalently bound chromophore that acts as inverse agonist and traps 
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the GPCRs in the inactive state (255, 256). Since the core segment of 

β2AR contains multiple ligand-binding sites (188, 189), the increased 

conformational variability and mechanical elasticity allows the core to 

sample more conformational states required to interact with a variety of 

different ligands. Thus, the DFS experiments suggest that the high 

conformational variability and mechanical elasticity of the core segment 

(Table 3.4) contribute to the basal activity of β2AR and favor ligand 

binding. 

3.4.2.5 Properties of β2AR modified by the neutral antagonist 

alprenolol 

Neutral antagonists bind in the orthosteric pocket of a GPCR but 

have little or no effect on basal activity. In contrast to all other ligands 

tested, the neutral antagonist alprenolol only modulated the N-terminal 

region of transmembrane α-helix H1 ([H1.1]) and widened the energy 

valley !!  from 0.44 nm (unliganded) to 0.75 nm. Thus, alprenolol 

enhanced the conformational variability of the extracellular half of α-

helix H1. Furthermore, binding of alprenolol significantly reduced the 

transition rate !! and increased the lifetime of structural segment [H1.1]. 

The free energy ∆!!
‡ stabilizing structural segment [H1.1] increased by ≈7 

!!!, whereas the spring constant ! decreased to 0.40 N/m (0.88 N/m in 

the unliganded state). These changes show that alprenolol kinetically and 

energetically stabilizes the extracellular part of α-helix H1 and enhances 

its mechanical elasticity. Available crystal structures do not explain these 

observations. It has been suggested that α-helix H1 is involved in 

receptor silencing by oligomerization (243, 244). Therefore, it may be 

speculated that the alprenolol induced kinetic and energetic stabilization 

as well as the structural softening of the extracellular half of α-helix H1 

favor oligomerization of the receptor. 

Although the affinity of alprenolol (Kd≈1 nM) is comparable to that 

of the agonist THRX and greater than that of adrenalin, binding of the 

neutral antagonist did not show any effects on the structural core 

segment [H3-C2-H4-E2-H5.1]. Thus, alprenolol established very different 
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interactions compared to THRX and to other agonists (Table 3.4). A 

possible explanation for this quite unique interaction pattern established 

in β2AR could be that alprenolol has a single aromatic ring that cannot 

establish strong interactions with F193 of loop E2, as shown by molecular 

dynamics docking simulations (257). Moreover, in contrast to both 

agonists and carazolol, alprenolol does not form polar interactions with 

serine residues of α-helix H5. This may explain that alprenolol cannot 

establish interactions at the core segment that are supposed to change 

the activity of β2AR. In summary, the DFS measurements unravel how a 

neutral antagonists works by simply constricting the access of other 

ligands to the receptor (258) and avoiding interactions at functionally 

important regions. 

3.4.2.6 An overall scheme: most ligands modulate the structural 

core segment of β2AR 

To investigate to which extent ligands change the energetic, kinetic 

and mechanical properties of β2AR, DFS was applied in the presence of 

the synthetic agonists BI and THRX, the natural agonist adrenalin, the 

inverse agonist carazolol or the neutral antagonist alprenolol. Figure 

3.12 highlights which ligands modulate the properties of different 

structural segments of β2AR. Binding of both agonists and the inverse 

agonist carazolol significantly modified the energetic, kinetic and 

mechanical parameters of the structural core segment [H3-C2-H4-E2-

H5.1]. The magnitude of the effect correlates relatively well with ligand 

affinity, with the lowest values being observed for the highest affinity 

ligands. This is may be explained by extensive interactions between 

ligands and transmembrane α-helices H3 and H5. As noted above, the 

small effect observed for the neutral antagonist alprenolol may be 

explained by the absence of polar interactions between alprenolol and 

transmembrane α-helix H5. In the presence of agonists and carazolol, the 

energy valley stabilizing the structural core segment increased its 

distance to the transition state !! from 0.55 nm (unliganded β2AR) to 0.73 

nm (THRX), 0.71 nm (BI), 0.65 nm (adrenalin) and 0.79 nm (carazolol). 
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This shift towards wider energy valleys in these ligand bound states 

implies that the core segment [H3-C2-H4-E2-H5.1] increases 

conformational variability in response to ligand binding. Furthermore, 

the reduction of the transition rate !! of the core segment by several 

orders of magnitude suggests that this structural region of β2AR 

increases lifetime by orders of magnitude in the presence of BI, THRX, 

adrenalin or carazolol. The spring constant ! of the core segment [H3-C2-

H4-E2-H5.1] is slightly reduced from 0.59 N/m (unliganded state) to 0.48 

N/m (BI), 0.44 N/m (THRX), 0.49 N/m (adrenalin) and 0.39 N/m 

(carazolol). This reduction in ! indicates that the core segment increases 

mechanical elasticity by ≈10-20%. Finally, ligand binding stabilized the 

β2AR core segment [H3-C2-H4-E2-H5.1] by increasing free energy ∆!!
‡ by 

7.7 !!! (BI), 6.9 !!! (THRX), 3.2 !!! (adrenalin) and 7.6 !!! (carazolol), 

compared to unliganded β2AR. Thus, the high-affinity ligands BI, THRX 

and carazolol increased the free energy stabilizing the core segment twice 

as much compared to the natural agonist adrenalin. 
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Figure 3.12: Structural segments 

of β2AR changing properties 

upon ligand binding. Structural 

segments that significantly change 

their energetic, kinetic and 

mechanical properties upon binding 

of BI, THRX or adrenalin (A), 

carazolol (B) and alprenolol (C) are 

highlighted (β2AR structure PDB ID 

code 2RH1). Arrows denote 

increasing (arrow up) and decreasing 

(arrow down) parameters 

characterizing the width of the 

energy valley (!! ), transition rate 

(!!), energy barrier (∆!!
‡), and spring 

constant ( ! ) of stable structural 

segments. Trends were taken from 

Table 3.4. 

Structural and functional data suggest that the core segment [H3-

C2-H4-E2-H5.1] is important for ligand binding and β2AR activation: (i) 

several amino acid residues of transmembrane α-helices H3 and H5 are 

part of the ligand-binding pocket (259). For instance, H3 and H5.1 

establish polar interactions and hydrophobic contacts with BI (189). Two 

residues of H3, D113 and V114, contribute to agonist binding (189). 

Furthermore, S203 of H5.1 is crucial for agonist binding, as shown by 

mutagenesis studies (260, 261). (ii) Receptor activation by agonists 

involves disruption of the ionic lock, which links the cytoplasmic parts of 

α-helices H3 and H6 in the inactive state (262, 263). (iii) The second 

intracellular loop C2 is important for the efficiency of G protein activation 

and contains a switch that enables G protein coupling (264, 265). 

In summary, DFS detected that binding of agonists and the inverse 

agonist carazolol increases structural flexibility, energetic stability and 

lifetime (kinetic stability) of the functionally important core segment [H3-

C2-H4-E2-H5.1]. These altered properties of the core segment enable 
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β2AR to adopt certain conformations, which are supposed to represent an 

active state. 

The affinities of the agonists investigated range from Kd=0.84 pM 

(BI) to Kd=3.68 µM (adrenalin). Kd of THRX is ≈1 nM. Each agonist 

changed the conformational variability, kinetic stability, energetic 

stability, and mechanical elasticity of the structural core segment [H3-

C2-H4-E2-H5.1] differently. A systematic change may be found between 

the kinetic stability of [H3-C2-H4-E2-H5.1], which increased with 

increasing affinity of the agonists that bound to β2AR. However, it should 

be noted that binding of agonists alone is insufficient to stabilize β2AR in 

the active state (266, 267). Even binding of full agonists cannot stabilize 

every β2AR in the active state (219, 268). The reason for this apparent 

discrepancy is that although bound to a ligand the probability of β2ARs to 

adopt other functional states lowers but does not approach zero (224). 

Interestingly, the active state can be further stabilized through 

interactions with G proteins or camelid antibodies (nanobodies) that 

exhibit G protein-like behavior (189, 267). Characterizing such stable 

β2AR/G protein complexes using DFS may be useful to quantify the 

conformational variability, kinetic stability, energetic stability, and 

mechanical elasticity of the structural core segment [H3-C2-H4-E2-H5.1] 

in the fully active state. 

3.4.2.7 The inverse agonist carazolol introduces major 

modifications to β2AR 

Among all ligands tested, carazolol modulated the properties of 

most structural segments of β2AR. Besides changing the energetic, kinetic 

and mechanical properties of the core segment [H3-C2-H4-E2-H5.1] such 

as observed for the agonists, carazolol significantly affected three other 

structural segments [H1.2-C1], [H2.1], and [H6.2-E3-H7-H8] (Table 3.4). 

Carazolol widened the energy valley stabilizing [H1.2-C1], [H3-C2-H4-E2-

H5.1], and [H6.2-E3-H7-H8] by 0.10-0.27 nm. This indicates that these 

segments enhanced their conformational variability. Furthermore, 

carazolol reduced the transition rate !! and, thus, increased the lifetime 
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of each of the four structural segments by up to 6 orders of magnitude. 

The free energy ∆!!
‡ of structural segments [H1.2-C1] and [H3-C2-H4-E2-

H5.1] increased by ≈10 !!! . Carazolol slightly lowered the spring 

constants !   of structural segments [H2.1], [H3-C2-H4-E2-H5.1] and 

[H6.2-E3-H7-H8], thereby increasing their structural elasticity. The 

strongest effect was observed for the structural segment [H1.2-C1], where 

! reduced from 2.02 N/m in the unliganded state to 0.83 N/m in the 

carazolol-bound state. 

Several amino acid residues of α-helices H3, H5, H6 and H7 are 

important for carazolol binding (188). For instance, W109, V114 and V117 

of α-helix H3 establish hydrophobic contacts with carazolol. Additionally, 

polar interactions between carazolol and D113 of α-helix H3 as well as 

S203 of H5.1 are crucial for carazolol binding. Furthermore, hydrophobic 

contacts between W286, F289 and F290 of α-helix H6 and carazolol 

contribute to binding of the inverse agonist (65, 66). Moreover, loop E2 of 

the structural segment [H3-C2-H4-E2-H5.1] establishes a salt bridge 

with extracellular loop E3 in the inactive state (257). Carazolol stabilizes 

packing interactions involving I121 (H3), P211 (H5.1), F282 (H6.2) and 

N318 (H7) that contribute to a network of interactions that stabilize an 

inactive conformation of the receptor (267). Thus, from this point it may 

not be surprising that the experiments detect that the structural 

segments [H3-C2-H4-E2-H5.1] and [H6.2-E3-H7-H8] change their 

properties upon carazolol-binding. However, DFS quantifies to which 

extent the properties of these and other structural regions change. 

3.4.2.8 Carazolol modifies structural regions proposed to be 

involved in oligomerization 

Inverse agonists promote higher-order β2AR oligomerization that 

alters access to other signaling proteins (225). The significant changes of 

the energy barriers ( !! , !!  and ∆!!
‡ ) and spring constants ( ! ) 

characterizing the structural segments [H1.2-C1], [H3-C2-H4-E2-H5.1] 

and [H6.2-E3-H7-H8] in the presence of carazolol are of particular 

interest because they significantly increase conformational variability, 
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mechanical flexibility, kinetic stability and energetic stability upon 

carazolol-binding. It has been proposed for several other class A GPCRs 

that oligomerization involves primarily the interface between α-helices 

H1 and H8 (243, 244). Thus, all structural segments changing their 

properties may contribute to the oligomerization of β2AR. Particularly α-

helices H4 and H5 are involved in the native packing arrangement of 

rhodopsin and define the rhodopsin dimer (243). It is therefore likely that 

the increased conformational variability of the core segment [H3-C2-H4-

E2-H5.1] contributes to the formation of dimers and higher-ordered 

oligomers in the presence of carazolol. Conversely, interactions between 

protomers that change their oligomeric state can influence the 

parameters quantified by DFS (136). Thus, it cannot be distinguished 

whether changes of the structural segments are induced by carazolol 

binding or carazolol-induced oligomerization. 

3.4.2.9 Carazolol employs direct and indirect interactions to 

modify structural regions 

Although carazolol binds to β2AR with picomolar affinity 

(comparable to BI), it significantly changed the energy landscape of four 

structural segments. The effect of carazolol on the energy landscape of 

the receptor is more pronounced compared to the effects caused by any of 

the other agonists or the neutral antagonist investigated. Not all of the 

structural segments are supposed to interact directly with carazolol (188). 

Thus, it can be concluded that carazolol binding changes the properties of 

the structural regions of β2AR by direct interactions and by indirect 

interactions, which do not result from directly contacting the ligand. 

3.5 Conclusions 

Energy landscapes describe conformational variability, kinetic 

stability, energetic stability and mechanical elasticity of proteins (231). 

GPCRs adopt many different conformations that are closely related to 

functional states (224). The work presented here contributes to a more 

detailed understanding of the energetic, kinetic and mechanical 

properties of native-like β2AR reconstituted into membranes of 
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phospholipids and cholesterol. It was observed that the interactions of 

unliganded β2AR stabilize well-defined structural segments of the 

receptor. 

Cholesterol considerably increased the strength of interactions 

stabilizing structural segments of β2AR. These interactions introduced by 

cholesterol were sufficient to increase the kinetic, energetic, and 

mechanical stability of all structural segments stabilizing β2AR except for 

the structural core segment [H3-C2-H4-E2-H5.1], whose properties were 

not significantly influenced by cholesterol. Because the core segment of 

β2AR is involved in ligand binding, this finding indicates that cholesterol 

may not necessarily influence the binding of a ligand to the structural 

core segment. It could not be distinguished to which extent the change 

introduced to all other stable structural segments were caused by the 

binding of cholesterol to the receptor or indirectly through the ability of 

cholesterol to modulate the properties of the lipid bilayer. At least the 

structural segments of β2AR that do not expose cholesterol binding sites 

must have changed properties through indirect interactions mediated by 

cholesterol. In summary the changing properties detected in the presence 

of cholesterol are of sufficient magnitude to alter the structure and 

function relationship of β2AR (245). The fact that cholesterol increases 

stability of the receptor supports the hypothesis that cholesterol is an 

essential component in the crystallization of β2AR (65). Taken together, 

the unchanged structural core segment containing multiple ligand 

binding sites and the changed properties of all other structural segments 

may represent a mechanism of how cholesterol modulates β2AR. As 

cholesterol may not necessarily influence the binding of a ligand to β2AR, 

the data suggests that in the presence of cholesterol the GPCR will react 

differently once a ligand has bound. 

In the presence of a ligand, SMFS could not detect drastic changes 

of interactions and the stabilizing structural segments did not change 

positions. Thus, it can be concluded that ligand binding to β2AR induces 

rather weak interactions instead of strong localized interactions. 
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However, DFS showed that the interactions established upon ligand 

binding were sufficient to change the conformational, energetic, kinetic 

and mechanical properties of structural segments of β2AR. Agonist or 

inverse agonist binding increased the conformational variability, kinetic 

stability, energetic stability and mechanical elasticity of the functionally 

important structural core segment [H3-C2-H4-E2-H5.1] of β2AR. To 

which extent individual ligands could change the properties of the core 

segment was intrinsic to the ligand. In contrast to the agonists (BI, 

THRX, and adrenalin), the inverse agonist carazolol affected, in addition 

to the core segment, three structural segments: [H1.2-C1], [H2.1], and 

[H6.2-E3-H7-H8]. Finally, the neutral antagonist alprenolol changed only 

the properties of structural segment [H1.1]. The functionally important 

structural core segment of the receptor remained unaffected by 

alprenolol. Taken together, theses single-molecule experiments reveal 

that ligands establish interactions that modulate the properties of 

distinct structural segments within β2AR. Quantifying the energetic, 

kinetic and mechanical parameters of the structural segments provides 

insight into how these structural segments stabilize ligand-specific 

conformations of the receptor. Depending on which structural segments 

change their energetic, kinetic or mechanical properties, the receptor 

samples more active states in the presence of agonists or more inactive 

states in the presence of the inverse agonist. 

 





Single-molecule force spectroscopy from lipid nanodiscs 

 79 

4 Single-molecule force spectroscopy from lipid 

nanodiscs 

Reprinted (adapted) with permission from Zocher M., C. Roos, S. 

Wegmann, P. D. Bosshart, V. Dotsch, F. Bernhard, and D. J. Muller. 

2012. Single-molecule force spectroscopy from nanodiscs: an assay to 

quantify folding, stability, and interactions of native membrane proteins. 

ACS Nano 6:961-971. Copyright 2012 American Chemical Society. 
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4.1 Introduction 

To reveal insights into membrane proteins by SMFS requires the 

membrane protein to be embedded in a lipid membrane. These 

membranes can be extracted from the native cell or synthetic lipid 

membranes into which the membrane protein has been reconstituted. In 

contrast to the thousands of different membrane proteins known, only a 

few could be reconstituted into the functionally important lipid 

membrane (13, 57, 269). These difficulties are based on the amphiphilic 

character of membrane proteins that once isolated from the cell 

membrane must be reconstituted into a lipid bilayer that mimics the 

native cellular membrane. 

Recently, phospholipid nanodiscs have been introduced to 

reconstitute membrane proteins into a native-like lipid environment (269-

271). Nanodiscs are composed of small patches (≈10-20 nm in diameter) of 

lipid bilayer framed by an amphiphilic membrane scaffold protein (MSP) 

to shield the hydrophobic fatty acid chains of the lipids from the aqueous 

buffer solution. MSP itself is based upon the sequence of human serum 

apolipoprotein A1, which are the primary component of high-density 

lipoproteins (rHDL). The shielding of hydrophobic interactions by the 

MSP makes lipid nanodiscs water-soluble. The phospholipids associate as 

a bilayer domain wile two MSP molecules wrap around the edges of the 

discoidal structure (272). One MSP covers the hydrophobic alkyl chain of 

each leaflet. Therefore, after integration into nanodiscs, membrane 

proteins can be handled similar to water-soluble proteins. Because the 

length of the scaffold protein determines the diameter of the nanodisc and 

the lipid composition of the nanodisc can be adjusted, the properties of 

the nanodisc can be tailored to favor the insertion of a particular 

membrane protein (271). Accordingly, several membrane proteins have 

already been embedded into lipid nanodiscs including the bacterial 

chemoreceptor Tar (273), cytochrome P450 (274), the translocon SecYEG 

(275), BR (276), β2AR (266, 277) and bovine rhodopsin (278). Structural 

and functional characterization of these membrane proteins 
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demonstrated that nanodiscs a capable of mimicking a physiological 

environment for in vitro studies (273, 279-282). 

Another bottleneck limits the applicability of SMFS to membrane 

proteins. To conduct SMFS the protein containing membrane must be 

first imaged and located so that the AFM tip can be attached to the 

membrane protein. Once the AFM tip has been attached the stability, 

folding and interactions of the membrane protein can be characterized 

(125, 156, 283). These constraints could be avoided if membrane proteins 

could be reconstituted into nanoscopic lipid bilayers that provide a native-

like environment of membrane proteins and that could be densely 

adsorbed onto the SMFS support. In a raster-like manner the AFM tip 

could then pick up and characterize one membrane protein after the other 

without the need of imaging. Dense adsorption layers on supporting 

surfaces can be prepared with hydrophilic water-soluble proteins (143). In 

contrast, reconstituted proteoliposomes showing a heterogeneous 

distribution of diameters from ≈50 to >500 nm. If adsorbed at higher 

concentration onto a support, proteoliposomes start forming aggregates 

that are not suitable for SMFS. However, in principle dense adsorption 

layers may be obtained using membrane proteins that are embedded in 

hydrophilic nanodiscs. Such improved preparation procedures would 

simplify SMFS of membrane proteins and be a basis to apply high-

throughput SMFS assays (284, 285) to study membrane protein (un-

)folding, stability and interactions. 

For these reasons, it was investigated whether membrane proteins 

reconstituted into phospholipid nanodiscs can be characterized by SMFS 

and to which extent the reconstitution into nanodiscs modulates the 

interactions guiding the stability and (un-)folding of membrane proteins. 

Among membrane proteins the light-driven proton pump 

bacteriorhodopsin (BR) from Halobacterium salinarum most probably 

represents the functionally and structurally best characterized example 

(286-289). Moreover, since many years BR serves as model to characterize 

the unfolding and folding of α-helical transmembrane proteins (44, 80, 
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156, 290, 291) (see section 2.8.1). Thus, BR was chosen as example for the 

SMFS studies presented here. For that purpose, BR from native purple 

membrane (BRPM) and BR reconstituted into phospholipid nanodiscs 

(BRND) were characterized by SMFS. The mechanical unfolding pathways 

and the stability of both BR samples were compared and their 

interactions mapped onto the BR structure. The results showed whether 

the reconstitution of BR into lipid nanodiscs alters the properties of BR 

and whether nanodiscs can in principle be applied to characterize 

membrane proteins by SMFS. 

4.2 Experimental procedures 

4.2.1 Expression and purification of MSP1 

MSP1 was expressed and purified in Volker Dötsch’s laboratory at 

the University of Frankfurt. Escherichia coli BL21 star (DE3, Invitrogen, 

Germany) were transformed with the plasmid containing the MSP1 gene 

(pET28b-MSP1). The MSP1 had an N-terminal 6-His affinity tag and a 

tobacco etch virus (TEV) protease cleavage site (271). A pre-culture was 

incubated overnight in lysogeny broth medium (supplemented with 30 µg 

kanamycin) and diluted 30-fold in expression media (lysogeny broth 

medium, supplemented with 0.5% (w/v) glucose and 30 µg/ml kanamycin). 

Escherichia coli were grown at 37°C with shaking (180 rpm). Expression 

of MSP1 was induced by adding isopropyl-b-D-thiogalactopyranosid 

(IPTG) to a final concentration of 1 mM when the optical density at λ = 

600 nm (OD600) reached 1. Subsequently, the cells were incubated under 

continuous shaking (180 rpm) for 1 h at 37°C before the temperature was 

decreased to 28°C for additional 4 h. Bacteria were pelleted and stored at 

-20°C. Bacteria pellets of 1.2 l expression culture were resuspended in 50 

ml breaking buffer (300 mM NaCl, 1 protease inhibitor tablet (cOmplete 

Protease Inhibitor Cocktail Tablet, Roche, Germany), 1 mM 

phenylmethanesulfonylfuoride (PMSF), 40 mM Tris-HCl, pH 8.0). Triton 

X-100 was added to a final concentration of 1% (v/v). Cells were disrupted 

using a Labsonic homogenizer (Braun, Germany) for 3 x 60 s and 3 x 45 s 

(pulse length 0.7 s) on ice. The suspension was centrifuged at 30.000g for 
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20 min to separate unbroken bacteria from bacteria debris. The 

supernatant was filtered (pore size 0.45 µm) before loading on an 

immobilized metal ion affinity chromatography column (IMAC Sepharose 

6 FF, GE Healthcare, USA). The IMAC column was equilibrated with 5 

column volumes of buffer 1 (300 mM NaCl, 40 mM Tris-HCl, 1% Triton-X 

(v/v), pH 8.0) before loading the supernatant. The column was washed 

successively with 5 column volumes of buffer 1 to 4 (buffer 2: 300 mM 

NaCl, 50 mM cholic acid, 40 mM Tris-HCl, pH 8.9; buffer 3: 300 mM 

NaCl, 40 mM Tris-HCl, pH 8.0; buffer 4: 300 mM NaCl, 50 mM imidazol, 

40 mM Tris-HCl, pH 8.0) followed by the elution of MSP1 with elution 

buffer (300 mM NaCl, 300 mM imidazol, 40 mM Tris-HCl, pH 8.0). Purity 

of the elution fraction was analysed by SDS-PAGE. MSP1-containing 

fractions were pooled and glycerol was added to a final concentration of 

10% (v/v) to prevent aggregation. MSP1 was dialysed against dialysis 

buffer (300 mM NaCl, 40 mM Tris-HCl, 10% glycerol (v/v), pH 8.0) for 16 

h at 4°C with one buffer exchange. The dialysis was performed using 

Spectra/Por dialysis membranes with 10 kDa molecular weight cut off 

(Spectrum Laboratories, USA). MSP1 concentration was determined by 

absorption spectroscopy using the molar extinction coefficient at λ = 280 

nm (ε = 24750 M-1cm-1). MSP1 was flash frozen in liquid nitrogen and 

stored at -80°C. 

4.2.2 Preparation of BR 

Purple membrane was kindly provided by G. Büldt. Purple 

membrane from strain H. salinarum S9 was purified as described (292). 

For reconstitution of BR into nanodiscs, purple membrane (concentration 

4.5-6 mg/ml) was mixed with an equal volume of solubilization buffer (40 

mM Na2HPO4/KH2PO4, 7.5% (w/v) n-octyl-β-D-glucopyranoside (β-OG, 

Sigma-Aldrich, Germany), pH 6.9) and incubated at 4°C for ≥2 days to 

extract BR from purple membrane. The solution was centrifuged at 

90.000g for 1 h to remove insoluble fragments. The supernatant 

containing solubilized BR (including some tightly bond purple membrane 

lipids) was used for nanodisc reconstitution with the BR concentration 
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being determined using the molar absorption coefficient at λ = 560 nm (ε 

= 42000 M-1cm-1). 

4.2.3 Reconstitution of BR into nanodiscs 

BR was reconstituted into nanodiscs in Volker Dötsch’s laboratory 

at the University of Frankfurt. Dimyristoylphosphatidylcholine (DMPC, 

Avanti Polar Lipids, USA) was added to water at a concentration of 50 

mM and solubilized by adding sodium cholate to a final concentration of 

100 mM. The detergent-lipid mixture was sonicated for 10 min at 35 kHz 

and 640 W in a water bath (Sonorex Super RK 510, Bandelin, Germany) 

and filtered (pore size 0.45 µm). BR was reconstituted into nanodiscs by 

mixing detergent-solubilized BR with MSP1 and DMPC at a 

stoichiometry of 1:1:10 (molar ratio). The BR-MSP1-DMPC mixture was 

incubated for 1 h at room temperature (≈23°C). To remove detergent and 

to induce nanodisc formation the mixture was dialyzed over night at room 

temperature against detergent-free buffer (100 mM NaCl, 40 mM Tris, 

pH 7.4) at a ratio ≥1:500. Since no purification step was performed after 

solubilization of BR, the nanodiscs also contained wild-type lipids from 

purple membrane. The following dialysis was performed at 4°C for 

additional 2 days. The detergent-free buffer was exchanged at least twice. 

To avoid photo bleaching of BR (293), all reconstitution procedures were 

carried out in the dark. After dialysis the aggregated material was 

removed by centrifugation at 22.000g for 20 min. The supernatant was 

concentrated using Amicon ultra centrifugal filter units (Millipore, 

Germany, 10 kDa molecular weight cut off) to a final volume of 0.5 ml. 

BRND complexes were purified using size-exclusion chromatography 

(Superdex 200, Tricorn 10/300, GE Healthcare, Germany) using dialysis 

buffer. Elution fractions with absorption maxima at λ = 530 nm were 

pooled and concentrated using ultra centrifugal filter units (Amicon, 10 

kDa molecular weight cut off) to a final concentration of ≈100 mM. 

Finally, the sample was centrifuged (20 min at 22.000g). The supernatant 

was stored at 4°C until analysis. 
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4.2.4 UV/vis spectra 

UV/vis spectra of BRND and BRPM were measured with a V-550 

spectrophotometer (Jasco, UK) at room temperature. BRPM was diluted 

with buffer solution (100 mM NaCl, 40 mM Tris-HCl, pH 7.4). The buffer 

was used for baseline setting. 

4.2.5 Circular dichroism 

Circular dichroism (CD) spectra are frequently used to measure 

assembly and disassembly of the BR lattice (294, 295). Thus, CD was 

applied to determine the assembly of BR in nanodiscs CD spectra were 

measured with a J-180 spectrometer (Jasco, UK) in buffer solution (100 

mM NaCl, 40 mM Tris-HCl, pH 7.4) at a protein concentration of 25.9 

µM. Measurements were carried out in a 1 mm cuvette at standard 

sensitivity with a band width of 3 nm, a response of 1 s and a scanning 

speed of 1 nm/s at 20°C. 

4.2.6 SMFS 

AFM imaging of BRPM and BRND was performed using a 

Nanowizard II (JPK Instruments, Germany) and a Multimode8 AFM 

(Bruker, Germany). SMFS on BRPM was conducted using a NanoWizard 

II (JPK Instruments), whereas BRND was approached using a ForceRobot 

300 (JPK Instruments). The rectangular 200 µm long AFM cantilevers 

(OMCL-RC800PSA, Olympus, Japan) having a nominal spring constant 

of ≈0.05 N/m were calibrated in buffer solution using the equipartition 

theorem (227). Determined spring constants were within ≈10% of each 

other. Experiments were carried out using AFM cantilevers from the 

same wafer. To non-specifically attach the AFM tip to BR, the tip was 

pushed on the purple membrane or BRND applying a force of ≈1 nN for 1 s 

(136, 156). Subsequent retraction of the AFM cantilever induced 

mechanical load that unfolded BR. While retracting the AFM cantilever 

at a velocity of 528 nm/s, the cantilever deflection was recorded to 

measure the force in dependence of the pulling distance. To record F-D 

curves, a x,y-raster of several hundred spots was defined. One F-D curve 

was recorded for every spot. In purple membrane the distance between 
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adjacent BR trimers corresponds to ≈6.2 nm. To ensure that single BR 

monomers were unfolded from intact BR trimers, the separation between 

adjacent spots was set ≈20 nm for purple membrane. To ensure that only 

one F-D curve per nanodisc was recorded, the distance between adjacent 

spots was set >50 nm for BRND. All SMFS experiments were performed 

using identical buffer solution (150 mM KCl, 20 mM Tris-HCl, pH 8.0) at 

room temperature. 

4.2.7 Selection and analysis of F-D curves  

First F-D curves were selected that exhibited an overall length 

between 60 nm and 70 nm, since they represented the complete unfolding 

of a BR into a fully stretched conformation (156). Then F-D curves were 

selected that corresponded to the C-terminal unfolding of BR (156, 296). 

All F-D curves were aligned using the characteristic force peak at a 

contour length of 88 amino acids as reference. Every force peak of a F-D 

curve was fitted using the worm-like chain (WLC) model (Section 2.8.2). 

Every force peak of every F-D curve was analyzed to quantify contour 

length and unfolding force (Figure 4.5). To determine the average force 

shown in histograms (Figure 4.5C,D) the average force of a particular 

force peak was calculated and multiplied by its probability of detection. 

This procedure gives the average force of an unfolding force peak from all 

unfolding F-D curves analyzed. 

4.2.8 Assignment of stable structural segments 

The contour length determined using the WLC model corresponds 

to the length of the unfolded and stretched BR polypeptide that tethers 

the AFM tip and a structural unfolding intermediate. Thus, each force 

peak was used to assign the end of the previous and the beginning of the 

following structural segment that stabilized BR against unfolding (125). 

Some stable structural segments had to be assumed to end or begin at the 

periplasmic BR surface at the opposite side of the pulling AFM tip. 

Therefore, the so-called ‘membrane compensation procedure’ was applied 

to correct the contour lengths (125, 159) (see section 3.2.5). 
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4.3 Results and discussion 

4.3.1 Mechanically unfolding single BR molecules from purple 

membrane and from nanodiscs 

After reconstituting BR into dimyristoylphosphatidylcholine 

(DMPC) lipid nanodiscs absorption spectra of native purple membrane 

(BRPM) and of BR in nanodiscs (BRND) were recorded (Figure 4.1A). 

BRPM and BRND showed similar absorption spectra between 450 and 650 

nm that are characteristic for the native light-driven proton pump BR 

(297). Thus, it can be concluded that reconstitution into lipid nanodiscs 

did not change the functional properties of BR significantly. To determine 

the assembly of BR in nanodiscs circular dichroism (CD) was used (294, 

295). The CD spectra of BRND showed peaks in the visible spectrum from 

400 to 700 nm (Figure 4.1B), which are typical for trimeric BR (298). The 

bilobed CD spectrum of BRND indicates that BR has been reconstituted 

into lipid nanodiscs as a trimer (298). In previous studies bilobed CD 

spectra indicating the BR trimerization could be only observed after 

heating the sample (298). However, a bilobed CD spectrum of BRND was 

observed without heating. This difference was attributed to the fact that 

a different detergent (β-OG compared to Triton-X used in (298)) to 

solubilize BR from purple membrane (see section 4.2). Consequently, BR 

trimers were reconstituted into lipid nanodiscs. 
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Figure 4.1: UV/vis and CD spectra. (A) UV/vis spectra of bacteriorhodopsin in purple 

membrane and of bacteriorhodopsin in nanodiscs. The co-factor specific absorption of 

BRPM and BRND at a wavelength of 560 nm is very similar. Differences were detected in 

the range between 250 and 440 nm. These changes might be caused by lower light 

scattering of the nanodiscs (272) compared to purple membrane. Spectra were recorded 

in buffer solution (100 mM NaCl, 40 mM Tris-HCl, pH 7.4) at room temperature. (B) 

Circular dichroism (CD) spectra of bacteriorhodopsin in nanodiscs. The presence of a 

positive (1) and a negative peak (2) in the visible CD spectrum indicates the existence of 

trimeric BR in BRND (298). The spectrum represents an average of 3 measurements. 

Spectra were recorded in buffer solution (100 mM NaCl, 40 mM Tris-HCl, pH 7.4) at 

20°C. 

For SMFS native purple membrane (BRPM) or BRND was adsorbed 

to mica and imaged by AFM in buffer solution (Figure 4.2) (143). 

Whereas purple membranes were heterogeneously distributed over the 

supporting mica, the BRND complexes were homogeneously distributed 

and densely packed. To attach a single BR via unspecific interactions to 

the AFM tip (156), the tip was brought into contact with the sample 

(BRPM or BRND) applying a force of ≈1 nN for 1 s. In ≈0.5% (BRPM, 

n≈20.000), or ≈0.05% (BRND, n≈250.000) of all cases a single BR molecule 

attached with its terminal end to the AFM tip (Figure 4.3). Withdrawal 

of the AFM tip stretched and stressed the terminal end and induced the 

unfolding of BR (156). The force-distance (F-D) curve recorded during 

withdrawal of the AFM tip showed a characteristic sawtooth-like pattern 

(Figure 4.4A,B) that has been assigned to the mechanical unfolding of 

BR from the C-terminal end (156, 159). 
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Figure 4.2: AFM topographs of purple membrane (A) and nanodiscs containing 

bacteriorhodopsin (BRND) (B). Purple membrane and BRND were adsorbed for 10 min 

onto freshly cleaved mica and imaged in buffer solution (300 mM KCl, 20 mM Tris-HCl, 

pH 8.0) at room temperature. Purple membranes have a diameter of 300-700 nm and 

BRND have a diameter of ≈10-20 nm. Both AFM topographs exhibit a full color scale 

corresponding to vertical scales of 15 nm. The AFM topograph in (A) was recorded using 

contact mode AFM applying a contact force of ≈100 pN (93) and the topograph in (B) was 

recorded using force-volume AFM applying a maximal force of ≈50 pN (299).  

 

 

Figure 4.3: Schematic representation of SMFS of bacteriorhodopsin (BR) 

embedded in native purple membrane (BRPM) and lipid nanodiscs (BRND). (A) 

and (B) are cartoons of BR trimers embedded in purple membrane (BRPM) and in a lipid 

nanodisc (BRND), respectively. After attachment of the AFM tip to the C-terminal end of 

a single BR molecule, the AFM tip is withdrawn to apply mechanical stress to the 

membrane protein. A force-distance (F-D) curve records the deflection of the AFM 

cantilever as a function of the distance (d) between AFM tip and membrane (Figure 

4.4A,B). F-D curves recorded of BRPM and BRND show that sufficiently high mechanical 

stress induces stepwise unfolding of the membrane protein. 
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Figure 4.4: Mechanical unfolding of bacteriorhodopsin in native purple 

membrane and in lipid nanodiscs. (A,B) Selection of F-D curves that record the 

unfolding of single BRPM (A) and BRND (B) molecules. Every force peak of every F-D 

curve detects an unfolding intermediate of BR with all force peaks (unfolding 

intermediates) describing the unfolding pathway taken by an individual BR molecule. 

(C,D) Superimpositions of 100 F-D curves recorded for BRPM (C) and for BRND (D). Red 

lines are WLC curves fitting the main force peaks that occur at a probability of 100%, 

whereas black dashed lines are WLC fits of minor force peaks that occur at probability 

<80%. The numbers next to each WLC curve assign the contour length (given in amino 

acids (aa) for every fit) of a force peak. This contour length approximates the length of 

the unfolded and stretched polypeptide. Gray scale bars allow evaluating how frequently 

individual force peaks were populated. 

In the experiments shown here, BR molecules could either attach 

unspecifically via the N-terminal or the C-terminal end to the AFM tip 

(Methods). As reported earlier the F-D curves showed a specific pattern 

depending from which terminal end BR was unfolded (296). However, the 

probability of the N-terminal end to attach to the AFM-tip was much 

lower than that of the C-terminal end (156, 296). Thus, for statistical 

reasons only F-D curves that reflected the unfolding of BR from the C-

terminal end were analyzed. The mechanical unfolding of BR from the C-

terminal end can be described as follows (156, 159). Upon separating the 

AFM tip from the support, the C-terminal end of the BR molecule is 
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stretched and a force builds up. As soon as the stretching force overcomes 

the stability of BR a structural segment directly connected to the C-

terminal end unfolds. This unfolding step extends the polypeptide linking 

the pulling AFM tip and the portion of the BR molecule that remains 

folded and anchored in the membrane. Continuously withdrawing the 

AFM tip stretches the previously unfolded polypeptide until the 

forthcoming structural segment is loaded, mechanically stressed and 

unfolded. The unfolding of structural segments forming stably folded 

entities continues until the entire BR molecule has been unfolded. This 

scenario explains that every single force peak of a F-D curve detects an 

unfolding intermediate of BR. The combination of all unfolding 

intermediates describes the unfolding pathway taken by the BR molecule. 

4.3.2 BR in purple membrane and in nanodiscs choose identical 

unfolding intermediates 

Using SMFS single BR molecules that were embedded either in 

native purple membrane or in lipid nanodiscs were repeatedly unfolded 

under identical experimental conditions (Figure 4.4A,B; Methods). 

Every force peak of every F-D curve records an unfolding intermediate of 

BR that had certain probabilities to be detected (136, 159, 232). An 

unfolding step describes the transition of one unfolding intermediate into 

the forthcoming one. Within such an unfolding step a structural segment 

of the BR molecule unfolds. The amplitude of a force peak quantifies the 

strength of the interaction that stabilizes a structural segment against 

unfolding. To visualize the common unfolding intermediates and steps of 

BR 100 F-D curves recorded of BRPM (Figure 4.4C) and 100 F-D curves 

recorded of BRND were superimposed (Figure 4.4D). Both 

superimpositions enhanced the force peaks that were common among all 

F-D curves (159). The superimpositions of F-D curves recorded of BRPM 

and of BRND did not show any considerable differences. 

To fit every force peak and to approximate the contour length of 

the stretched and unfolded BR polypeptide, the WLC model was used 

(Figure 4.4C,D). After having repeated this procedure for every force 
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peak of every F-D curve the positions of all force peaks detected were 

statistically analyzed (Figure 4.5A,B). Histograms of the force peak 

positions detected for the unfolding of BRPM and BRND showed minor 

differences. Student’s t-tests revealed that none of these differences was 

statistically significant (Table 4.1). This suggests that the unfolding 

intermediates that were assigned by the force peaks did not differ from 

both preparations. Thus, it can be concluded that the stable structural 

segments forming the unfolding intermediates of BR did not depend on 

whether the membrane protein was embedded in the native purple 

membrane or in lipid nanodiscs. 

  



Single-molecule force spectroscopy from lipid nanodiscs 

 94 

 

Figure 4.5: Probability and average force of unfolding intermediates of 

bacteriorhodopsin in native purple membrane (BRPM) and of 

bacteriorhodopsin reconstituted in lipid nanodiscs (BRND). (A,B) Probability of 

force peaks detected at certain contour lengths of BRPM (A) and BRND (B). (C,D) Average 

force of force peaks detected at certain contour lengths of BRPM (A) and BRND (B). The 

contour length of every force peak of every F-D curve (n=100 for each BRPM and BRND) 

was determined by WLC fits (Figure 4.4). Gaussian functions (red lines) were fitted to 

histograms to determine the average contour length of every peak including the 

standard deviation (fitted contour lengths in aa are given for every peak). Gray lines in 

(B) and (D) are Gaussian fits of the BRPM reference data (A) and (C), respectively. Bin 

sizes of histograms were 3 aa. Student’s t-tests did not reveal significant changes 

between BRPM and BRND (Table 4.1). 
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To assign the stable structural segments that established unfolding 

intermediates of the BR structure (Figure 4.6, Figure 4.7) the average 

contour lengths were used. The contour length of every unfolding force 

peak (Figure 4.5) was used to assign the beginning of a stable structural 

segment and the end of the previously unfolded structural segment (159). 

The stable structural segments detected for both BRPM and BRND were 

similar to the segments repeatedly detected before, using native purple 

membrane (126, 136, 253). This demonstrates that the unfolding 

intermediates shaping the unfolding pathway of BR in native purple 

membrane did not change upon reconstitution of BR into nanodiscs 

(Figure 4.7). 

 

Figure 4.6: Stable structural segments that establish unfolding intermediates 

of bacteriorhodopsin. (A) Top view of the BR trimer from the cytoplasmic surface. (B) 

Side view of the BR monomer. Numbers without brackets indicate the structural 

position (in aa) at which a force peak assigned the end of one stable structural stable 

segment and the beginning of the forthcoming structural segment. Numbers in brackets 

denote the corresponding residue (in aa) in the BR sequence (PDB ID 1FFB). Individual 

structural segments are equally colored. 
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Figure 4.7: Unfolding intermediates of BR. After attaching the AFM tip to the C-

terminal end the retracting AFM cantilever induces the mechanical unfolding of the BR 

molecule. In a first step the C-terminal end is stretched (unfolding intermediate 1). At 

sufficiently high force the first unfolding step occurs and transfers unfolding 

intermediate 1 into the unfolding intermediate 2. Within this unfolding step the 

structural segment highlighted in red unfolds. Subsequent retraction of the cantilever 

stepwise unfolds the BR molecule and stretches the unfolded polypeptide (unfolding 

intermediates 2-10). In the last unfolding step the remainder of the BR molecule is 

extracted from the membrane. The sequence of unfolding steps describes transition of 

one unfolding intermediate into the next one. The sequence of all unfolding 

intermediates describes the unfolding pathway taken by the BR molecule. As shown in 

Table 4.1 every unfolding intermediate of BR had a certain probability to occur. In some 

cases, one or more unfolding intermediates unfolded collectively in one unfolding step. 

Next the average force of every unfolding force peak detected was 

determined (Figure 4.5C,D). Histograms of the average unfolding forces 

showed minor differences between BRPM and BRND, which were 

statistically not significant (Table 4.1). Because the average unfolding 

forces quantify the strength of interactions stabilizing the unfolding 

intermediates of BR, this comparison shows that the interactions 

established in BR did not depend on whether BR was embedded in the 

native purple membrane or in lipid nanodiscs. However, it cannot be 
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excluded that more sensitive SMFS measurements in the future may 

allow detecting subtle differences. 

4.3.3 BRPM and BRND populate unfolding intermediates similarly 

In the previous chapter it was analyzed whether BR in native 

purple membrane and BR reconstituted in lipid nanodiscs show different 

unfolding intermediates and whether there is a difference in the 

interaction strengths stabilizing the individual unfolding intermediates. 

None of these analyses revealed significant differences. However, every 

unfolding intermediate occurred at a certain probability and the sequence 

of unfolding intermediates describes a particular unfolding pathway 

taken by the BR molecule. To characterize whether BR in purple 

membrane and BR in lipid nanodiscs populate unfolding intermediates 

and pathways differently, the probability for every unfolding 

intermediate that has been reproducibly taken by BR was analyzed 

(Figure 4.7, Table 4.1). The probability of every unfolding intermediate 

was obtained from the histogram providing the probability of single 

unfolding force peaks to be detected (Figure 4.4A,B). To determine the 

probability of a force peak described by a Gaussian distribution the 

number of F-D curves contributing a force peak to this distribution was 

counted and divided through the total number of F-D curves (Table 4.1). 

The unfolding intermediates described by the unfolding force peaks 

at contour lengths of 23, 88, 148 and 219 aa were detected at a probability 

of 100%. Therefore, they were named main unfolding intermediates. 

Other unfolding intermediates of BR were detected at lower probability, 

and were named minor unfolding intermediates. Thus, stressed at 

sufficiently high mechanical force the BR molecule always took the same 

main unfolding intermediates, whereas the minor unfolding 

intermediates were taken less frequently along the unfolding pathway. 

The probability of the less frequently occurring unfolding intermediates 

of BRND showed differences compared to those of BRPM (Table 4.1). 

However, these differences and the number of F-D curves analyzed were 

too small to verify significance (300). 
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From these results, it can be concluded that, compared to BR of 

native purple membrane, the reconstitution into lipid nanodiscs did not 

cause BR to populate unfolding intermediates differently. To further 

investigate whether there is a difference in the minor unfolding 

intermediates of BR more sensitive SMFS methods need to be 

established. 

4.3.4 Limited binding probability of the C-terminal end 

The probability to attach the C-terminal end of a BR molecule from 

purple membrane to the AFM tip was about 10 times higher (0.5%) 

compared to the probability of attaching the C-terminal end of a BR 

molecule in lipid nanodiscs (0.05%). Therefore, 10 times more 

experiments had to be conducted to obtain the 100 F-D curves from BRND 

in order to superimpose and analyze them in this work (Figure 4.4, 

Figure 4.5). Revealing statistical relevant number of F-D curves is 

mandatory to establish SMFS and dynamic force spectroscopy (DFS) 

assays to characterize membrane proteins (126, 135, 136, 229, 231, 253). 

Thus, the low attachment rate of BR from nanodiscs to the AFM tip 

makes it challenging to obtain sufficient amounts of F-D curves. Several 

scenarios appear feasible to increase the number of F-D curves recorded 

from nanodiscs. Most probably the nanodisc preparation characterized for 

the measurements also contained empty lipid nanodiscs without inserted 

BR. To overcome this problem, recombinant BR with an affinity tag could 

be used to separate in a further purification step empty nanodiscs from 

BRND. Furthermore, it is conceivable that in the preparation used in this 

work the nanodiscs adsorb onto the support with random orientation 

(Figure 4.2). Therefore, the functionalization of the support to favor a 

certain orientation of nanodiscs may increase the probability of the AFM 

tip to attach the terminal end of the membrane protein. Preferentially 

orienting nanodiscs may also help to reveal AFM topographs that show a 

sufficient high resolution to identify single BR molecules in the nanodisc. 

In addition, elongating one of the terminal ends of the membrane protein 

may be helpful to improve the attachment rate to the AFM tip. 
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4.4 Summary 

In previous SMFS experiments it was investigated whether 

temperature, mutations, ions, oligomeric assembly, activation, or 

molecular compounds modify or establish interactions that initiate the 

formation of new (un-)folding intermediates of membrane proteins 

embedded in their native lipid membrane (126, 129-133, 136). So far none 

of these experiments detected that a membrane protein establishes a new 

unfolding intermediate or stable structural segment. These results 

suggest that the unfolding intermediates and thus the stable structural 

segments established within functional membrane proteins are conserved 

(135, 233). However, when changing external and internal factors 

modulating the functional state and stability of a membrane protein it 

was observed that they could significantly change the probability of 

detecting certain unfolding intermediates by SMFS (127, 130-133). In 

most of these examples the probability to detect an unfolding 

intermediate increased with the strength of the interaction stabilizing a 

particular structural segment. Thus, the interactions stabilizing 

structural segments within membrane proteins depend sensitively on the 

environment. 

In the SMFS experiments presented here no significant changes of 

the interaction strengths stabilizing structural segments (unfolding 

intermediates) of BR embedded in purple membrane and of BR embedded 

in lipid nanodiscs (Figure 4.5, Table 4.1) were detected. To some extent 

this finding may be considered surprising because the assembly of BR in 

purple membrane is quite different from BR in lipid nanodiscs (Figure 

4.3). Additionally, although the phospholipid nanodiscs may contain 

residual lipids that have been co-extracted with BR from purple 

membrane, the overall lipid composition of nanodiscs certainly differs 

from the lipid composition surrounding BR in the native purple 

membrane. However, as the UV/vis absorption spectra of BR is sensitive 

to functional alterations (297) the largely unchanged absorption spectra 

suggests that the native structure and function relationship of BR was 
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maintained upon reconstitution into phospholipid nanodiscs (Figure 

4.1A). Because the functional characterization of BRPM and BRND reveals 

no significant differences one may infer that the inter- and 

intramolecular interactions within BR change very little. From this 

perspective it is not surprising that the SMFS experiments did not detect 

significant changes of interactions established of BRPM and BRND. 

Biochemical and biophysical studies showed that BR molecules natively 

assembled into the BR trimer are structurally and thermally more stable 

compared to monomeric BR molecules (136, 301, 302). Thus it can be 

assumed, that the individual BR molecule is significantly stabilized by 

intermolecular interactions formed within the native BR trimer. In the 

experiments the BR trimer was reconstituted into lipid nanodiscs 

(Figure 4.1B) without observing significant changes of the folding, 

stability and the interactions established in BR molecules. To which 

extend this effect may be attributed to the interactions stabilizing BR 

molecules within the BR trimer has to be shown. Although in the 

experiments the modified lipid environment of the nanodisc showed 

negligible influence on the function and stability of BR this may not be 

generalized for other membrane proteins. Particularly it has been shown 

that the lipid composition of membranes can functionally modulate 

membrane proteins (13, 14, 62, 303). Therefore, it may be too farfetched 

to conclude from the results that lipid nanodiscs do not change 

interactions of membrane proteins in general. It may be more realistic to 

conclude that SMFS of native membrane proteins can be conducted from 

lipid membranes and from lipid nanodiscs, and that the composition of 

lipid nanodiscs must be chosen carefully to maintain the native stability, 

structure and function of a particular membrane protein. 

In the experiments presented here no significant changes of the 

interactions determining the BR stability, unfolding intermediates, and 

unfolding pathways could be detected. Therefore it can be concluded that 

membrane proteins can be reconstituted into lipid nanodiscs to study 

their stability and folding using single molecule techniques such as 

SMFS. One advantage of using nanodiscs to study membrane proteins by 



Single-molecule force spectroscopy from lipid nanodiscs 

 102 

SMFS is that the reconstitution can be adjusted to the specific conditions 

required to maintain the native structure and function relationship of the 

membrane protein. The main advantage of this approach is that 

membrane proteins reconstituted into nanodiscs can be handled at 

similar ease as water-soluble proteins. Most importantly, membrane 

proteins in nanodiscs can be prepared for SMFS and investigated by 

SMFS similar to water-soluble proteins. Consequently, high-resolution 

AFM imaging to localize protein membranes is not required anymore for 

SMFS. This will enable performing high-throughput SMFS of membrane 

proteins in nanodiscs that homogeneously cover the SMFS support. Such 

high-throughput SMFS may allow screening for ligands or drugs that 

bind to the membrane protein of interest, for example to molecular 

transporters or G protein-coupled receptors (see section 3.1.1) (127, 130, 

132, 133). Furthermore, membrane proteins might be sandwiched into 

polyprotein constructs (304) and characterized with advanced SMFS 

approaches that have been developed and established using water-soluble 

proteins. Such approaches include using instrumentations that have been 

developed to significantly improve force sensitivity (305, 306), time 

resolution (307), throughput (285, 308, 309) and thermal stability (drift) 

(310) of the SMFS experiment and that are less well suitable for high-

resolution AFM imaging of biological samples. Taken together lipid 

nanodiscs will open new doors for the characterization of membrane 

proteins by SMFS. 

 



Outlook 

 103 

5 Outlook 

After its invention in 1986 (90), AFM has emerged into an 

important tool for the investigation of both biological and non-biological 

specimen. AFM is constantly improved in terms of instrumentation, but 

also as a result of novel assays developed to address scientific questions. 

Although it has been invented to image surfaces, during the last 20 

years the AFM has been increasingly used to measure forces, for instance 

adhesion forces between individual ligand-receptor pairs (151, 311), cell 

adhesion (312), stretching of DNA (313) and polymers (314) and of course 

unfolding of (membrane) proteins (152, 156). All of these experiments had 

in common that they measured interactions in relation to the function of 

the investigated sample. Furthermore, these SMFS experiments 

measured the unfolding behavior of single molecules, in contrast to 

conventional chemical or biophysical denaturation and unfolding studies, 

which mainly address bulk properties of a large ensemble of molecules. 

It has been shown that SMFS is a valuable tool for investigating 

unfolding behavior and interactions stabilizing membrane proteins. 

Furthermore, SMFS-based DFS facilitates the characterization of the 

underlying energy landscape of the membrane protein. The application of 

SMFS and DFS made it possible to reveal functionally related changes 

within membrane proteins (125). 

Recently, attempts have been made to study the refolding of 

membrane proteins into lipid bilayers (138, 139, 315). However, these 

refolding experiments were based on unfolding experiments where at 

least one structural element remained anchored in the membrane. Thus, 

the mechanical refolding of the membrane protein did not reflect a native 

scenario. Covalently linking the membrane protein of interest to the AFM 

tip and studying its refolding into an unsupported lipid bilayer might 

open a new door for the investigation of membrane protein folding on a 

single-molecule level (92). The target membrane could be supplemented 

with protein refolding machineries that are known to assist proper 
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membrane protein folding in vivo, like the Sec- (316) or the BAM-complex 

(317). Additionally, the influence of chaperones on the refolding of 

membrane proteins could be investigated. 

In contrast to soluble proteins, which mainly unfold in a single 

step, membrane proteins are stabilized by a multitude of molecular 

interactions. However, unfolding spectra detect only a small subset of 

these interactions, which can be considered to be the prominent ones. In 

the future, high-resolution SFMS using ultrastable AFM setups will 

enable measurements that are sensitive enough to detect even minor 

interactions of membrane proteins (305, 306, 310). Combined with other 

techniques, as for example nanodiscs (318) (see chapter 4), SMFS might 

become an even more powerful tool to investigate the unfolding of 

membrane proteins in vitro. 

In order to understand how membrane proteins are controlled in 

vivo and to gain insight into cellular processes, SMFS needs to be 

transferred into living cells. This paradigm change of combining in vitro 

and in vivo SMFS is challenging (300). Nevertheless, such in vivo SMFS 

measurements will provide key insight into biomolecular interactions 

that drive the machinery in the highly complex and dynamic environment 

of the cell interior. 
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6 Appendix 

6.1 Abbreviations 

°C Degree Celsius 

2D Two-dimensional 

3D Three-dimensional 

Å Ångström (10-10 m) 

aa Amino acids 

AFM Atomic force microscope/microscopy 

BR Bacteriorhodopsin 

BRND Bacteriorhodopsin in nanodiscs 

BRPM Bacteriorhodopsin in purple membrane 

CD Circular dichroism 

CHS Cholesteryl hemisuccinate 

DFS Dynamic force spectroscopy 

DMPC Dimyristoylphosphatidylcholine 

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine 

EM Electron microscopy 

F-D curve Force-distance curve 

G protein Guanine nucleotide binding protein 

Gi Inhibiting G protein 

GPCR G protein-coupled receptor 

Gs Stimulating G protein 

h Hour 

HOPG Highly ordered pyrolytic graphite 

IG Immunoglobulin 

IMAC Immobilized metal ion affinity chromatography 

IPTG Isopropyl-β-D-thiogalactopyranosid 

J Joule 

min Minute 

mM Millimolar (10-3 mol/l) 

MSP Membrane scaffold protein 



Appendix 

 106 

nm Nanometer (10-6 m) 

NMR Nuclear magnetic resonance 

nN Nanonewton (10-9 N) 

OD Optical density 

PC Phosphatidylcholine 

PDB Protein Data Bank 

PE Phosphatidylethanolamine 

PMSF Phenylmethanesulfonylfuoride 

pN Piconewton (10-12 N) 

PS Phosphatidylserine 

PSPD Position sensitive photodiode 

rHDL Reconstituted high density lipoprotein 

s Second 

SD Standard deviation 

Sf9 Spodoptera frugiperda 

SM Sphingomyelin 

SMFS Single-molecule force spectroscopy 

SPM Scanning probe microscope/microscopy 

STM Scanning tunneling microscope 

TEV Tobacco etch virus 

TRIS 2-Amino-2-(hydroxymethyl)-1,3-propanediol 

WLC Worm-like chain 

β-OG n-octyl-β-D-glucopyranoside 

β2AR Human β2 adrenergic receptor 

µm Micrometer (10-6 m) 

6.2 Symbols 

!∗ Most probable rupture/unfolding force [N] 

!! Unfolding rate in absence of force [s-1] 

!! Boltzmann constant (1.38�10-23 J/K) 

Kd Dissociation constant 

!! Contour length [m] 

!! Persistence length [m] 
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!!∗ Most probable loading rage [N/s] 

!! Loading rate [N/s] 

!! Distance between native and transition state [m] 

!!"#$%& Spring constant of the polymeric handle connecting 

cantilever tip and molecule (e.g. already unfolded 

polypeptide chain) [N/m] 

!! Diffuse relaxation time [s] 

∆!!
‡ Free energy of activation [J] 

! Young’s modulus [N/m2] 

! Force [N] 

! Spring constant [N/m] 

Q Quality factor 

! Temperature [K] 

! Mechanical rigidity of a structural segment [N/m] 
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