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Spatial averaging is a new approach for sampling rare-event problems. The approach modifies the
importance function which improves the sampling efficiency while keeping a defined relation to the
original statistical distribution. In this work, spatial averaging is applied to multidimensional
systems for typical problems arising in physical chemistry. They include �I� a CO molecule diffusing
on an amorphous ice surface, �II� a hydrogen molecule probing favorable positions in amorphous
ice, and �III� CO migration in myoglobin. The systems encompass a wide range of energy barriers
and for all of them spatial averaging is found to outperform conventional Metropolis Monte Carlo.
It is also found that optimal simulation parameters are surprisingly similar for the different systems
studied, in particular, the radius of the point cloud over which the potential energy function is
averaged. For H2 diffusing in amorphous ice it is found that facile migration is possible which is in
agreement with previous suggestions from experiment. The free energy barriers involved are
typically lower than 1 kcal/mol. Spatial averaging simulations for CO in myoglobin are able to
locate all currently characterized metastable states. Overall, it is found that spatial averaging
considerably improves the sampling of configurational space. © 2010 American Institute of Physics.
�doi:10.1063/1.3458639�

I. INTRODUCTION

Characterizing the diffusion of small probe molecules in
heterogeneous environments or on surfaces is important for
understanding adsorption, desorption, surface chemical reac-
tions, or migration pathways. Such processes usually take
place between different sites/defects �on surfaces� or differ-
ent pockets �in proteins�, which are separated by barriers,
typically of height � kBT, where kB is the Boltzmann con-
stant and T is the temperature. Under such circumstances the
transition between neighboring sites is an activated process
and may be a rare event.

Rare events typically occur on short time scales but with
very low probability. Thus, investigating such processes is a
challenge because the waiting time between two events �w is
typically considerably longer than the characteristic time
scales � j on which motion in the system occurs. One example
is the diffusion of small probe molecules in disordered envi-
ronments. The typical time scale of molecular vibration and
rotation is on the order of femtoseconds, whereas transit
times between two metastable states in the system can be
nanoseconds or longer. Other well-known examples are acti-
vated processes �chemical reactions� in the condensed phase
where the motions of the particles take place on the femto-
and picosecond time scales, but rate constants are on the
seconds time scale. In molecular simulations the fact that an
event is rare crucially depends on our ability to sample a
process sufficiently often �Monte Carlo� or over sufficiently
long time �molecular dynamics�. As such, the classification
of events into “frequent” or “rare” can also be viewed as our

ability to find appropriate sampling schemes which increase
the probability of a particular event to occur. Examples for
such “enhanced” sampling methods include metadynamics,1

umbrella sampling,2 transition path sampling,3 or multica-
nonical sampling.4

Typical examples of rare events are �I� the diffusion of
CO on amorphous ice surfaces, �II� the diffusion of H2 in
amorphous ice, and �III� the diffusion of CO in myoglobin
�Mb�. Each of these problems is characterized by typical
spatial length scales and barriers between the metastable
states. In the present work we apply spatial averaging5 to
examples �I�–�III�, each of which poses specific problems in
sampling configuration space. Spatial averaging has been re-
cently presented as a Monte Carlo �MC� implementation or
to be used together with molecular dynamics simulations.
Inherent to the method is a length scale which determines the
maximal range over which sampling is enhanced. Thus,
some knowledge about the topology of phase space of the
particular problem at hand is of advantage, but no detailed
information about the system and its reaction coordinates are
required. The physical relevance of each of the systems is
briefly summarized in the following.

�I� The interaction between CO and amorphous ice is im-
portant in astronomy contexts where sticking coeffi-
cients are of primary interest for reactions that take
place on amorphous ice surfaces.6 The energetic bar-
riers between neighboring positions in this system are
low since the energy difference between different po-
sitions on the surface originate only from Van-der-
Waals �VdW� interactions and electrostatics, and the
VdW interactions are very similar for neighboring po-a�Electronic mail: m.meuwly@unibas.ch.
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sitions on the surface. The desorption energy in con-
trast is significantly higher.

�II� Ultraviolet radiation promotes the formation of H2 in
amorphous ice and converts crystalline ice to the
amorphous form.7 Micropores may be rather impor-
tant in this process since there is an increased prob-
ability of an encounter between two H-atoms within
the pores8 and the dissociation probability of surface
water molecules is higher than those in the bulk.
Thus, the H2 production probability may be enhanced
within the pores. In addition, unimolecular decay
channels can produce hydrogen molecules directly at
pore surfaces. Contrary to CO on amorphous ice the
energetic barriers are higher in this system and steep
since they are dominated by the repulsive part of the
Lennard-Jones potential.

�III� The diffusion of diatomic ligands such as oxygen,
CO, and NO in myoglobin has been extensively stud-
ied by experiment and theory in the past.9–13 Finding
all possible pathways and favorable pockets for a di-
atomic molecule in a protein is a challenging sam-
pling problem which can be divided into two parts:
�A� finding all possible myoglobin conformations and
�B� for a given conformation finding all favorable po-
sitions and pathways for the ligand. This formal sepa-
ration is not necessary because the dynamics of the
protein and that of the diffusing ligand might be
coupled in certain regions of phase space. In other
words, the protein dynamics differs when an unbound
ligand is present or absent. This has been previously
found for NO migration in truncated hemoglobin
where extensive sampling has found all experimen-
tally and computationally known ligand binding
sites,14 whereas alternative and less rigorous sampling
schemes only found particular subsets.12,15 The energy
landscape can be expected to be more complex than
for H2 in amorphous ice, given the importance of con-
formational sampling, in particular at temperatures
beyond the glass transition.

The specific questions asked in the following are: What
part of phase space is sampled by conventional sampling and
spatial averaging? How efficiently is this space sampled? For
CO adsorbed on an amorphous ice surface, spatial averaging
should provide a broader distribution of sampled positions
parallel and perpendicular to the surface. Problems �II� and
�III� both consist of finding cavities accessible to a small
molecule. However, the height of the barriers is quite differ-
ent in the two cases. The efficiency of spatial averaging com-
pared to conventional MC is quantified by monitoring the
rate of diffusion as a function of the number of MC steps
�see Sec. II D�. This quantity allows us to evaluate the aver-
age number of moves required to sample a given distance
from the initial position and therefore provides an unambigu-
ous efficiency comparison of standard MC and spatial aver-
aging. Another issue to consider in terms of efficiency is the
computational overhead required for spatial averaging in
each MC step compared to conventional MC. This depends
sensitively on details of how the computations are carried

out, in particular for spatial averaging. Therefore an unam-
biguous comparison is difficult. Additional details are pro-
vided in Sec. II D.

This work is structured as follows. First, the computa-
tional realizations of all systems investigated are presented
and details of the implementation of spatial averaging are
provided. Next, results for the three systems are presented
and discussed. Finally, they are discussed in a wider context
and conclusions are drawn.

II. COMPUTATIONAL METHODS

In the following the computational models for the three
systems and the interaction potentials are first presented.
Next, the spatial averaging strategy and its implementation
are discussed. All simulations presented and discussed were
carried out with the CHARMM program16 with suitable exten-
sions to allow the sampling strategies described below.

A. The model systems studied

1. CO on amorphous ice

For CO on an amorphous ice surface a hexagonal
ice cube with 1024 water molecules and dimensions of
35�31�29 Å3 was heated to 300 K and equilibrated dur-
ing 50 ps in the NPT ensemble. Simulation time and tem-
perature are sufficient to break the symmetry of the ice struc-
ture. The system was then cooled to 100 K and equilibrated
during additional 50 ps. To create a surface, the periodic
boundaries were set to the dimensions of the ice cube of 33
and 30 Å in two dimensions. To the third dimension �28 Å�,
an additional 20 Å was added. This system was equilibrated
for 100 ps at 20 K in the NVT ensemble. A CO molecule was
then inserted in the center of the ice cube surface and the
structure was optimized. For the NPT simulations in this and
other sections, a Nose–Hoover thermostat17,18 was used. For
all NVT simulations, the weak coupling method of
Berendsen19 was applied.

2. H2 in amorphous ice

For H2 in amorphous ice the structure at the end of the
100 K equilibration run �see above� was used. The dimen-
sions of the box were adjusted in the same way as described
above and equilibrated in the NVT ensemble during 200 ps at
300 K and during 100 ps at 100 K. This leads to an extension
of the ice in one dimension and creates cavities in the ice
structure. Finally, a hydrogen molecule was inserted in the
center of the cube and the structure was optimized.

3. CO in myoglobin

Simulations for CO in myoglobin were started from the
x-ray structure �Protein Data Bank reference 1MBC�20 to
which hydrogen atoms were added. First, the positions of the
hydrogen atoms were optimized with heavy atoms frozen at
their crystallographic positions. Next, the protein was sol-
vated in a previously equilibrated waterbox with dimensions
of 57�51�39 Å3, which was heated to 300 K and equili-
brated during 100 ps in the NPT ensemble. A cutoff of 12 Å
was used for the nonbonded interactions.
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B. Force field parameters and potentials

For the ice systems, the TIP3P water model21 was used
together with the SHAKE algorithm22 for constraining the
O–H bonds to allow a timestep of 1 fs. For CO and H2,
atomic multipole moments up to octopole were used. The
parameters for H2 given in Table I have been obtained from
B3LYP aug-cc-pVTZ calculations with the GAUSSIAN

�Ref. 23� program and using GDMA �Ref. 24� to extract the
multipole moments. Those for CO are described elsewhere.25

For the simulations with atomic multipole moments, the cor-
responding interaction terms have been implemented in the
CHARMM program16 based on the published terms.26 For CO
in myoglobin, the standard CHARMM parameters were used
for the amino acids, the heme unit, and the ligand.27,28

C. Spatial averaging and its implementation

Stochastic quadrature methods typically utilize random
walk procedures to perform a statistical sampling of a speci-
fied probability density. When the “important” regions of the
integration volume are well-connected, random walk proce-
dures such as the Metropolis technique are adequate. In prob-
lems where one is faced with distributions that have mul-
tiple, isolated regions of importance, however, the
performance of such methods can become problematic and
special care must be exercised to deal with the “sparse” or
“rare-event” sampling issues that are involved.

As discussed elsewhere5 it is possible to construct a fam-
ily of densities related to the original distribution with two
important properties:

• the integrals of these modified densities over all space
are identical to those of the original distribution, and

• the spatial averaging is designed in a manner that the
resulting, modified densities are more “connected” and
hence can be more easily sampled than the original den-
sity.

In the spatial averaging approach the overall strategy is thus
to modify the underlying probability density itself rather than
to create a computational ensemble that spans a range of
control parameters, a strategy utilized in parallel tempering
techniques.29

If the density to be sampled is ��x�, a family of modified
densities having the required properties can be obtained by
writing �using a pseudo-one-dimensional notation�

��x,�� =� P��y���x + y�dy , �1�

where P��y� is a �normalized� probability distribution with a
length scale �. Although we will typically take it to be
Gaussian in nature, aside from the requirement that it can be
normalized the choice of this distribution is essentially arbi-
trary. Integrating Eq. �1� over all space it is easy to show that
the integrals of the original and modified densities, ��x ,0�
and ��x ,��, respectively, are equal for all values of � pro-
vided only that

• it is permissible to invert the orders of integration for x
and y, and

• that the integration domain is infinite �or that the den-
sity is periodic over the interval in question�.

The family of densities defined by Eq. �1� thus repre-
sents a set of norm-conserving densities whose thermody-
namic properties are closely linked to those of the original
distribution. Moreover, because the averaging process tends
to move density from high to low probability regions, the
modified densities tend to be “more connected” than the
original one and hence more easily sampled.

Spatial averaging was implemented into the CHARMM

MC module30 and is based on the penalty Monte Carlo
method31 which allows us to combine the Metropolis algo-
rithm with Monte Carlo integration steps. To modify the MC
importance function, a variable number of configurations N�

is generated for each coordinate of the atoms for which the
MC sampling is carried out. The distribution of the configu-

rations is Gaussian �exp−�x − x0�2/2W�
2
, centered around the ini-

tial coordinate x0 and with width W�. Each MC move is then
applied to all N� configurations. The move is accepted for the
entire distribution if the average energy difference between
all pairs of configurations satisfies the Metropolis criterion32

and if the variance in energy difference remains small. In
detail, spatial averaging includes the following steps.

�1� Generate a trial configuration based on the given con-
figuration and for the given type of MC move �this step
is identical to conventional MC�.

�2� Around the initial configuration x�0, generate a Gaussian
distribution of N� points for M� sets of points with
standard deviation W� in configuration space. The
Gaussian random numbers are generated using the ran-
dom number generator available in the CHARMM pro-
gram. They are transformed into Gaussian distributed
random numbers of zero mean and standard deviation
W� according to the algorithm of Box and Muller.33 The
Gaussian distributed random numbers ��x�i� are then
added to the coordinates x�0 in each direction. The pro-
cedure is repeated N��M� times to generate all points
of the spatial averaging distribution.

�3� Carry out the MC move for all N� points in all M� sets
and calculate for each point the old energy Eold

�n,m� and
the new energy Enew

�n,m� with corresponding Boltzmann

weights Eold,exp
�n,m� =e−��Eold

�n,m�
and Enew,exp

�n,m� =e−��Enew
�n,m�

.

TABLE I. Distributed multipole parameters for H2. The values refer to the
equilibrium position given by the coordinates.

Coordinate
�Å�

Dipole
�ea0�

Quadrupole
�ea0

2�
Octopole

�ea0
3�

H1 0.371 478 	0.069 097 0.318 182 	0.031 723
H2 	0.371 478 0.069 097 0.318 182 0.031 723
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�4� For each of the M� sets, calculate Sold
m =�n=0

N� Eold,exp
�n,m� and

Snew
m =�n=0

N� Enew,exp
�n,m� .

�5� For each of the M� sets, calculate 
m=−ln�Snew
m /Sold

m �.
�6� Calculate


 = 1/M��m
m and

�2 = �1/�M� � �M� − 1����i
N�
m − 
�2.

�7� For acceptance or rejection, �E in the Metropolis algo-
rithm is replaced by 
+ ��2 /2�.

A spatial averaging MC simulation is therefore charac-
terized by specific values for W�, M�, and N�. In the follow-
ing, a particular simulation will be described as a tupel
�W� ,M� ,N��. With this nomenclature, conventional MC for-
mally corresponds to �0.0,1,1�, where W�=0.0 in the Gauss-
ian distribution has to be understood as a 
-function and
M�=1 is not required in step �6� of the above scheme, i.e.,
only N�=1 has an actual meaning. As in all MC simulations
a maximal range xt

max for a move for a particular coordinate
is chosen. In the present implementation, spatial averaging
includes only the degrees of freedom selected for the MC
moves. It has to be noted that in general, spatial averaging
could also include other system coordinates.

D. Analysis of MC efficiency

The MC efficiency is evaluated using the MC diffusion
��s�,

��s� =
1

Nmax
�
i=1

Nmax

�r�i − r�i+s�2, �2�

with s=0, . . . ,smax, where s is the number of MC moves
between two steps, r� is the coordinate vector for the mol-
ecule of interest, and Nmax is the number of evaluation
steps, which can maximally be half of the number of MC
frames. ��s� is the MC-equivalent of diffusion whereas
�rms�s�=	��s� reports directly on the distance traveled by
the molecule.

For periodic systems with nonbonded cutoffs—which
are the approach chosen for the systems studied here—the
computing time required in each MC step is determined
mainly by two factors: �1� the generation of nonbonded and
image atom lists and �2� the energy evaluation based on these
lists. The computational effort required to generate the lists is
equal for standard MC and spatial averaging. The number of
energy evaluations is proportional to N��M�. Therefore the
relative computational overhead used for spatial averaging
for a given system depends on the ratio of the time needed to
generate nonbonded lists versus the time of a single energy
evaluation. It is difficult to evaluate this quantity in an un-
ambiguous way since it depends on the list update frequency
and the N��M� sampling points.

III. RESULTS

In the following, sampling of the available configura-
tional space for three different systems is characterized and
explored, and the physical insight for systems �I�–�III�

gained by the simulations is discussed. Conventional and
spatial averaging results are compared, and advantages and
disadvantages of either approach are discussed. It will be
shown that previous knowledge about the properties and to-
pologies of the systems is advantageous in choosing suitable
simulation conditions, but no detailed information about the
system is required.

A. CO on amorphous ice surface

Previously, the sampling of CO in amorphous ice was
characterized based on molecular dynamics �MD�
simulations.34 By comparing with experimental results from
infrared spectroscopy35,36 it was found that CO molecules
can be largely classified into occupying interstitial or substi-
tutional sites, respectively. This leads to two bands in the
infrared spectrum of CO. However, for increasing CO con-
centration additional effects, such as the mutual influence of
the CO molecules, become important and the simplistic pic-
ture needs to be revised. Here, the related case of CO on an
amorphous ice surface is considered. The interaction be-
tween CO and amorphous ice is important in astronomical
contexts where CO-sticking coefficients are of particular
interest.37 Using spatial averaging the likely interaction sites
and different ways of binding to the ice surface �dangling
and free O–H bonds� are characterized.

The following MC scheme was used with T=100 K and
for 1000 iterations:

• 500 moves of rigid translation with a maximum dis-
tance xt

max=0.2 Å and

• 500 single atom moves applied to C and O atoms of CO
with xt

max=0.02 Å.

Initially, simulations were carried out whereby CO was
either described with electrostatic and VdW interactions, or
only with VdW parameters. This showed that with
“electrostatics+VDW” the CO molecule remains largely
trapped locally whereas in the second case �VdW only� the
molecule was free to move. Therefore the CO motion paral-
lel to the surface is restricted mainly by electrostatic interac-
tions which are dominated by the large quadrupole moment
of CO. The displacements of CO on the surface are slightly
larger if the water molecules are also allowed to move,
which is not further pursued in the following production
simulations since no important rearrangements of water mol-
ecules take place at the simulation temperature �100 K� and
the sampling of favorable positions will not be affected by
using a rigid ice surface.

Spatial averaging is applied to the rigid translation at
each iteration. The simulation system with sampled CO cen-
ter of mass �COM� densities on the surface is shown in Fig.
1. It is found that the ice surface is structured and contains
several cavities and ridges separating them. Using conven-
tional MC sampling the probe molecule only explores one
particular cavity �dark spherical density� whereas spatial av-
eraging with different parameters leads to considerably en-
hanced exploration of the surface �green and yellow densi-
ties, respectively�. Corresponding “diffusion curves”
according to Eq. �2� are shown in Fig. 2. While for conven-
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tional sampling the diffusion is limited �black curves�, it in-
creases with increasing width W� of the distribution. Chang-
ing the number of points N� and M� also leads to variations
in the sampling and sufficiently large values for N� and M�

have to be used. Convergence tests with a smaller number of
iterations and a larger number of sampling points showed
that results are converged for �W� ,30,30�.

Detailed analysis shows that conformational space is
more efficiently explored by using spatial averaging. Since
the free energy surface is modified by the choice of the
�-parameters, it is important to determine whether regions of
high sampling densities correspond to energetically favorable
positions of the CO on the ice surface. This is analyzed using
�3.0,30,30� as an example. The sampled COM positions are
projected onto the surface as a two-dimensional map. Then,
the surface is divided into squares of 0.5�0.5 Å2 and the
density of sampling points is evaluated for each square. The
results are shown in Fig. 3. For the interpretation of such a
map it is important to note that the potential used for sam-
pling is a spatially averaged potential. For �3.0,30,30� the
average extends over 3 Å. Therefore “structures” corre-
sponding to the points sampled do not necessarily corre-
spond to real low energy configurations, but rather to an
average over several favorable positions. Meaningful low en-
ergy structures can be found by optimizing representative
structures. The position with the highest density is sur-
rounded by three dangling O–H groups. Three structures op-
timized from initial positions in this region are shown in Fig.
3. For all high density sites, favorable contacts with dangling

and bound O–H groups can be found if the structures are
optimized based on the initial sampling positions. Such
structural properties of favorable sites are in good agreement
with favorable positions found from MD simulations in ear-
lier studies.6

B. H2 positions in amorphous ice

Amorphous water ice at low temperatures can incorpo-
rate substantial amounts of H2 which is important for under-
standing the chemistry and physics of interstellar grain
mantles.38 In addition, the microporous structure of amor-
phous ice was found to be important for the formation of H2

�Ref. 8� and the interaction of H2 molecules with the ice was
important to explain H2 desorption rates.39 In this context,
the migration of H2 from the bulk to the ice surface is an
important step. For hexagonal ice, the diffusion coefficient of
H2 through ice was found to be remarkably high
�10−5 cm2 /s�, comparable to H2 in liquid and gaseous H2.40

For H2 in amorphous ice, the following iterative MC
scheme was used:

• five moves of rigid translation with different xt
max and

• ten single atom moves applied to the H-atoms of H2

with xt
max=0.02 Å.

Results are reported for simulations at 100 K over 105

iterations. For the translational part, different maximum
translational distances xmax

t were used and the diffusion effi-
ciency was evaluated and compared �see Fig. 4�. This is im-
portant since the pathways between different favorable posi-
tions may involve high energy barriers which cannot easily
be surmounted at low temperatures and in a rigid ice matrix.
Therefore, the H2 molecule may remain in the initial cavity
for many MC steps. By increasing xmax

t , H2 is able to directly
access the next cavity, no matter what the barrier height is.
However, the acceptance probability for such a move is low
and results in poor sampling. The acceptance ratios correlate
well with MC diffusion ��s�. For maximal move distances of
xt

max=4 Å �Fig. 4, center� the three sets with slow diffusion
have acceptance ratios below 1%, whereas the two sets with
significantly higher diffusion have acceptance ratios of 22%
�magenta� and 35% �orange�, respectively.

The system with sampled positions and pathways is
shown in Fig. 5. For spatial averaging, the choice of xmax

t is
less critical since the barriers can be overcome already for
small xmax

t due to averaging of the rapidly changing �rough�
potential energy surface. For conventional MC, xmax

t has to
be chosen such that the H2 molecule is able to jump between

FIG. 1. Ice surface with CO sampling density distribution. The black sphere
in the center of the surface shows the distribution for conventional MC
sampling, the green density shows the sampling for �2.0,30,30�, and the
yellow density shows the sampling for �3.0,30,30�. The ice surface is shown
in volume representation, layers more distant to the surface are shown in
VdW representation.
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FIG. 2. CO positions on ice surface during 1000 sam-
pling iterations. Comparison of different �-averaging
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W�=2.0 Å �right�. The graphs show the MC diffusion
��s� according to Eq. �2�. Conventional MC �black�;
�W� ,5 ,6� �red�; �W� ,10,10� �green�; �W� ,30,10�
�blue�; �W� ,10,30� �orange�; �W� ,30,30� �magenta�.
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different cavities and the sampling therefore depends on
xmax

t . As a consequence, the comparison of efficiency be-
tween conventional MC and spatial averaging also depends
on the choice of xmax

t . Here, 1
xmax
t 
7 Å is used for dif-

ferent spatial averaging parameters and �rms according to Eq.
�2� is individually reported for different xmax

t . The results are
shown in Fig. 4.

For conventional MC, evaluations of the positions in the

ice show that with xmax
t 
3 Å �not all results shown�, the CO

remains in the initial cavity. With xmax
t =4 Å two cavities are

sampled. Increasing xmax
t further leads to H2 visiting the

entire amorphous ice block. For spatial averaging with
W��1 Å and N��20 in contrast, the H2 leaves the initial
cavity for all values of xmax

t , starting at xmax
t =1 Å. Therefore,

the efficiency gain compared to conventional MC is largest
for xmax

t =1.
For the diffusion of H2 through amorphous ice, it is of

primary interest to characterize the distribution of favorable
positions within the ice. For this purpose, the probability
distributions P��� with �= �x ,y ,z� sampled along the x-, y-,

FIG. 3. Density map of CO sampling on ice surface analyzed for �= �3.0,30,30�. Color coding: 0%–0.01% �gray�; 0.01%–0.025% �yellow�; 0%–0.025%–
0.05% �orange�; 0.05%–0.1% �red�; 0.1%–0.25% �violet�; 0.25%–0.5% �blue�; �0.5% �black�. Percentages are given with respect to the total �integrated�
density. From initial structures in the largest high density region �	4,	3�, three optimized structures starting from sampled positions are shown on the right
hand side.
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FIG. 4. MC diffusion �rms�s� according to Eq. �2� for H2 in amorphous ice.
Comparison for W�=2.0 Å. The MC simulations use different maximum
translation distances: xmax

t =1 Å �top�; xmax
t =4 Å �center�; xmax

t =6 Å �bot-
tom�. Conventional MC �black�; �2.0,10,10� �green�; �2.0,30,10� �blue�;
�2.0,10,30� �orange�; �2.0,30,30� �magenta�. Simulations for �2.0,10,10� and
�2.0,30,10� �green and blue lines� were only carried out for xmax

t =4 Å and
are therefore only shown in the center panel.

FIG. 5. Sampled positions and pathways for H2 in amorphous ice. The
sampled densities shown in black correspond to 1000 equally distributed H2

positions taken from the sampling with xmax
t =6 Å �2.0,30,30�.
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and z–coordinates are evaluated and the corresponding free
energy profiles are estimated from G���=G0−kBT log P���
�see Fig. 6�. Since not all points are sampled, positions with
zero occurrence �P���=0� correspond to high but arbitrary
values of G���. The free energy profiles show a few minima
separated by considerable barriers for conventional MC. For
spatial averaging, the barriers between the minima are re-
duced and the free energy profile becomes smoother as W�

increases. More importantly, additional minima are found
which correspond to sampling new cavities. It is interesting
to note that the location of the primary minima �−5
x
0�,
�−2.5
y
0�, and �0
z
7.5� characterized with conven-
tional MC, �1.0,40,40� and �1.5,40,40�, agree quite well.
However, the barriers between the minima are unrealistic by
using conventional MC which does not sufficiently sample
all cavities in this region. With spatial averaging on the other
hand, sampling is much more exhaustive but the barriers are
artificially low and depend on W�. The inlay in the bottom
panel in Fig. 6 shows the dependence of a specific free en-
ergy barrier upon increasing W�. It reduces from 1 to 0.25
kcal/mol for W�=0 �conventional MC� to W�=1.5 Å. For
other barriers similar observations are made. As an example
for the y-axis, the barrier at �−2.5
y
0� is 
2 kcal /mol
for conventional MC whereas it is considerably reduced to
0.5 and 0.2 kcal/mol by using spatial averaging with increas-
ing W�. Assuming that the barriers from spatial averaging are
converged, linear extrapolation gives an unbiased barrier of
1.1 kcal/mol. As a result we find that most barriers are below
1 kcal/mol which suggests that the H2 is diffusing fairly eas-
ily in such an environment.

The computed free energy profiles �at T=100 K� can
also be compared with results from experiments. In hexago-
nal ice, quasielastic neutron scattering studies allowed to de-
termine activation energies for H2 intersite transitions of

0.2 kcal /mol.40 This agrees favorably with the small bar-
riers found for H2 in amorphous ice �see Fig. 6� and suggests
that—once formed—H2 can indeed diffuse through the solid
matrix and be released from the bulk. This is of particular
interest to astrophysics because it has been shown that below
70 K UV radiation leads to amorphization of ice.7

C. CO in myoglobin

For the two systems discussed above the motion of the
surrounding matrix can be treated as fluctuations around an
average position because the processes of interest occur at
low temperature. This is not true for myoglobin at 300 K,
which undergoes conformational changes that can open new
diffusion pathways for the CO ligand. For realistic simula-
tions it is thus important to include protein flexibility. Here,
this is done by starting MC simulations from an ensemble of
different structures obtained from equilibrium MD simula-
tions. A flexible protein matrix can influence ligand diffusion
in different ways: Certain positions can become more/less
favorable for the CO molecule and therefore decrease/
increase the number of transitions to neighboring sites. Also,
conformational flexibility can lead to new favorable posi-
tions. For the sampling used here, this is not highly probable
since to obtain a complete sampling of the conformational
space of myoglobin, long MD simulations �or a much larger
number of MC moves� are required.12,13 However, to com-
pare conventional MC with spatial averaging exhaustive
sampling is not a prerequisite.

As a starting point for the MC sampling, 100 MD snap-
shots were generated at 300 K. The simulations were initi-
ated from the equilibrated structure described in Sec. II A,
but without the CO ligand present. MD snapshots were then
taken every 2 ps. For the MC sampling, the CO ligand was
inserted in the distal heme pocket of the first MD snapshot.
Next, 1000 MC iterations with five rigid translation and ten
single atom moves were applied to the CO molecule. Finally,
the CO coordinates were stored and used as initial position to
insert the CO in the next MD structure. After insertion in the
new MD structure, the entire structure was optimized before
performing the next 1000 MC iterations. This procedure was
repeated for all MD structures. Different MC parameters
were used: xmax

t =4, 7, and 10 Å for rigid translation and
xmax

t =0.02 Å for the single atom moves.
The structure of Mb with the sampled pockets is shown

in Fig. 7. Favorable positions in the distal heme pocket and
the Xe1 to Xe4 pockets agree well with pockets found from
experiment41 and simulations.12,13,42 Also, the present
MC/MD simulations with spatial averaging �5�105 MC
moves in total, distributed over 100 protein structures� are
able to locate the phantom pockets Ph1 and Ph2 which up to
now have only been found by extensive �90 ns� MD
simulations.42 However, the relative population of these
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different sampling parameters.

044506-7 Spatial averaging for molecule diffusion J. Chem. Phys. 133, 044506 �2010�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  131.152.112.139 On: Wed, 07 Dec

2016 14:06:52



states—and hence the free energy difference between them—
cannot be expected to be converged due to the limited sam-
pling.

The positions characterized for each sampling strategy
are analyzed using a two-dimensional map based on the
COM distances between the CO ligand and the C� of His64
and His93, respectively �see Fig. 8�. With conventional MC
and for xmax

t =4 Å, only the Xe4 and Ph1 pockets are
reached. Increasing the maximal translational distance to
xmax

t =7 Å, the Xe4 and Ph1/Ph2 pockets are found in addi-
tion, and for xmax

t =10 Å, the CO reaches the Xe1 pocket.
Thus, conventional MC samples sites �Xe1, Xe4, and Ph�.
For spatial averaging with �1.0,20,80�, the Xe4 pocket is
already reached using xmax

t =4. With xmax
t =7, the Xe1 and

Xe2 pockets are reached in addition and for xmax
t =10, the CO

escapes to the solvent after sampling several pockets, thus
spatial averaging with �1.0,20,80� samples sites �Xe1, Xe2,
Xe3, Xe4, Ph, and solvent�. Another set of three runs with
spatial averaging was carried out with �2.0,20,80� which
found sites �Xe1, Xe3, Xe4, Ph, and solvent� and with
�1.0,40,40� the same sites could be characterized. Thus, spa-
tial averaging appears also to be fairly robust in view of the
particular choice of the parameters used.

The sampling performance for different spatial averag-
ing parameters is further analyzed by considering the MC
diffusion � �see Fig. 9�. For xmax

t =4 Å, spatial averaging
shows a more rapid diffusion and the sampled space is larger.
For xmax

t =7 Å, the MC diffusion is similar to conventional
MC. However, if the positions are analyzed �see above�, it is

found that spatial averaging samples more different pockets
than conventional MC. For xmax

t =10 Å, the performance of
spatial averaging is also clearly better than for conventional
MC. This is seen by the fact that in addition to the favorable
positions in the protein, positions in the solvent are sampled.

IV. CONCLUSIONS

A concrete implementation of spatial averaging and its
application to sampling small molecules in different hetero-
geneous and disordered environments is presented. The par-
ticular advantage of spatial averaging over other accelerated
sampling techniques is that the degrees of freedom that are
more efficiently sampled can be directly controlled, but no
specific reaction coordinate or other collective variable needs
to be defined. For example, in multicanonical sampling4 the
control quantity is the total energy of the system and in um-
brella sampling the underlying potential energy function is
modified by adding an umbrella potential which involves a
“progression variable.” In spatial averaging, Eq. �3.4� of Ref.
5 ensures that the thermodynamics of the modified and the
original system are closely related. As was shown in Ref. 5,
this property is a valuable one in that it tends to avoid the
large variance increases that can accompany general “change
of measure” methods. With regard to efficiency comparisons
it is found that spatial averaging explores the available phase
space more efficiently than conventional MC. However, a

FIG. 7. Myoglobin structure showing the sampled pockets. The COM posi-
tions are evaluated over different sampling setups and shown in blue.
dHeme refers to the distal heme pocket which is the initial position for the
sampling.

FIG. 8. Distribution of sampling points evaluated as a
two-dimensional map, using the distance of the COM to
His64 and His93 as coordinates. xmax

t =4 Å �left�,
xmax

t =7 Å �middle�, and xmax
t =10 Å �right�. Black cor-

responds to conventional MC, red corresponds to
�1.0,20,80�. The pockets are shown by circles. All po-
sitions not enclosed by circles correspond to positions
in the solvent. Note the change in scale for panel c.
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more detailed comparison-including potential improvement
in the implementation-will have to take into account the
number of energy evaluations and floating point operations
that are required to sample a particular region in space. One
possible strategy might be to pre-evaluate the energy differ-
ence for a move which would allow to avoiding moves
which are very unlikely to be accepted.

The comparison of systems �I�–�III� shows that a signifi-
cant improvement of the sampling efficiency can be achieved
by using spatial averaging for realistic sampling problems.
The computational cost of the improvement in terms of num-
ber of points used for the averaging depends on the system.
For low energy barriers �system �I�� meaningful sampling
can already be obtained with a few points �small M� and N��.
With increasing height and steepness of the energy barriers,
more sampling points are required. This means that the op-
timal parameters M� and N� for spatial averaging somewhat
depends on the system. Optimal values for W� are remark-
ably similar for all system and W�=2 Å appears to be a
useful choice in all cases studied here.

For CO on amorphous ice, spatial averaging provides
efficient sampling of the ice surface. Favorable positions on
the surface identified here are in good agreement with posi-
tions obtained by unbiased sampling.6 The barriers for H2

migration from unbiased sampling �where available� and
from spatial averaging simulations are low �
1 kcal /mol�
and agree with each other, and are in quite good agreement
with previous estimates from experiment.40 A wider explora-
tion of the available phase space with spatial averaging and
subsequent unbiasing of the barriers leads to the same con-
clusion. However, a full evaluation of the free energy land-
scape would require more exhaustive sampling. The previ-
ously known favorable sites for CO in myoglobin were
easily identified using spatial averaging. This is in contrast to
conventional MC which was only able to characterize a sub-
set of sites. Also, the regions sampled depended surprisingly
little on the translational distance used for the simulations.

Spatial averaging as applied to the systems studied here
appears to be a promising method to improve the sampling
of complex free energy surfaces arising in a wide range of
interesting physical chemical systems. The optimal param-
eters of W� and N� depend somewhat on the system under
consideration, but are easy to find by a systematic compari-
son of different parameter sets. For the systems studied here,
spatial averaging applied to the moving degrees of freedom
considerably improves the sampling efficiency and the de-
gree of improvement depends on the particular system stud-
ied.
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