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“It was the best of times, it was the worst of times 

It was the age of wisdom, it was the age of foolishness 

It was the epoch of belief, it was the epoch of incredulity 

We had everything before us, we had nothing before us” 

Charles Dickens  

A Tale of Two Cities 
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ABSTRACT 

 

Tissue engineering is an emerging strategy in medical field that focuses on regeneration or 

replacement of lost or damaged tissue and organs. Most of the tissues in human body have no or 

limited self renewal and regeneration potential which decrease with ageing. Today, bone is one of the 

most transplanted organs of human body every year.  Bone defects or missing bone segments may 

occur due to trauma, injury, tumour removal and infections. Increased life span in modern society 

results in an increased demand for organ and tissue substitutes. So far, most of the tissue 

engineering approaches proposed solutions which only allow the generation of small scale of grafts 

with confined clinical relevance. Translation of tissue engineering and regenerative medicine 

approaches from bench to bedside faces with some vital issues that limit their immediate therapeutic 

applications. Providing autologous cells of clinical grade isolated from a relevant source to avoid 

potential clinical complications is the primary issue to be handled. Other than this, when enlarging the 

size of the engineered constructs vascularization of the graft upon in vivo implantation, the complexity 

and costs of the manufacturing protocols are among the other main problems. This thesis addresses 

possible solutions for limitations mentioned above by implementing stromal vascular fraction (SVF) 

cells from adipose tissue to provide pre-vascularization into up-scaled tissue engineered osteogenic 

constructs and by developing simplified approaches based on the coupling of reparative surgery to a 

streamlined cell isolation and intraoperative generation of osteogenic constructs from SVF cells.  
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A. INTRODUCTION 

1. Bone  

1.1 Bone repair 

Bone is a complex organ in terms of structural organisation and functionality. Besides providing 

mechanical stability to the human body, bones play a role in the protection of internal organs like 

heart, lungs and brain, shape the body, play a major role in movement, control haematopoiesis by 

producing red blood cells and are responsible for many metabolic activities. Storing minerals like 

calcium and phosphorous, growth factors such as insulin growth factor, transforming growth factor 

and bone morphogenic protein, fatty acids, and heavy metals are also critical features of bone. 

Functioning as an endocrine organ is also among the extensive list of properties of bone. It secretes 

osteocalcin hormone which takes place in fat deposition and glucose regulation [1].   

 

Bone has three major cell types, osteoblasts, osteocytes and osteoclasts [2]. Osteoblasts are derived 

from mesenchymal origin and are responsible for synthesising the organic extracellular matrix as well 

as regulating its mineralization. Osteocytes are post osteoblastic cells that form a network within ECM 

and function in the homeostasis of mineralization, signalling and mechanical sensing. Osteoclasts 

play role in resorbing the ECM of bone. They are of haematopoietic origin and together with 

osteoblasts, regulate the formation and remodelling of bone tissue.  

 

Figure 1 Structure of bone. 

http://academic.kellogg.edu/herbrandsonc/bio201_mckinley/skeletal.htm 
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Structurally, bone is comprised of two compartments [3]; compact (cortical) bone which is 80-90% 

mineralized tissue and provides most of the mechanical strength of bone and 15-25% mineralized 

trabecular bone that is primarily responsible for the metabolic activities and functions also as 

reservoir, as described above.  

 

Bone defects or missing segments can result from trauma, injury, tumours and infections. Today, 

bone is one of the most transplanted organs of human body every year [4]. Increased life span of 

individuals in modern society results in an increased demand for bone repair [5]. Bone has a 

remarkable capacity to renew itself, which drastically decreases with age [3].  

 

Healing of a bone fracture takes place in three steps. First, in the reactive phase, blood vessels 

adjacent to injury site constrict to stop bleeding and form a clot which allows only fibroblasts to survive 

and form loose granulation tissue. Secondly, the reparative phase is when fibroblasts in the granulose 

tissue differentiate into chondroblasts that produce hyaline cartilage. Accumulation of hyaline cartilage 

bridges the gap in the fracture and forms the callus. Hyaline cartilage is afterwards replaced with 

lamellar bone and this replacement is named endochondral ossification. Briefly, collagen matrix starts 

to mineralize, chondrocytes become hypertrophic and induce blood vessel ingrowth into the 

cartilagenous template. Chondrocytes are replaced by osteoblasts that start secreting bone 

extracellular matrix. As a final remodelling step, the newly formed trabecular bone is substituted with 

cortical bone. Osteoclasts start resorption of the trabecular bone, creating space for osteoblasts to 

deposit the newly compacted bone tissue [6]. 

  
 
Figure 2. Bone repair mechanism A) formation of hyaline cartilage, B) lamellar bone and 
endochonral bone formation, C) remodelling of newly formed bone, D) compact bone [7].  
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Another physiological pathway to regenerate bone tissue is through intramembraneous ossification. In 

intramembraneous ossification mesencymal cells directly differentiate into osteoblasts. This process 

mainly occurs in flat bones like skull and mandible [8]. 

  

1.2 Gold standard in bone grafts 

Despite the excellent self renewal capacity of bone in healing and regeneration, there often remains a 

need to support and guide the regeneration to reconstruct the defect. The bridging of the defect zone 

with callus and woven bone formation could be possible with natural mechanisms after restored 

alignment and stable fixation is provided. The gap can be bridged acutely by filling itself or 

continuously by distraction of the callus. These natural methods need a long time, and rigid fixation of 

the injury site however inadequate vascular supply might be the critical to obtain satisfactory results. 

Therefore, grafting will be definitely required after some clinical cases, such as resections of bone 

tumors, deformity corrections or large bone defects after comminuted fractures. Considering bone 

grafts, the clinically most relevant technique is microvascular transfer. Autologous cancellous bone is 

the best source for grafting and filling material. It can be harvested with its vascular pedicle, therefore, 

even the cells residing in the core of the graft may survive upon transplantation. Besides, they are 

osteoinductive, osteoconductive, osteoproliferative, angiogenic, and safe (regarding immunologic 

aspects) [9]. However, since these grafts are limited in their availability and the success of the 

procedure highly depends on the quality of the autologous tissue, not to mention the operator 

expertise, alternative approaches are desirable. Other potential limiting factors are morbidity at the 

harvesting site and/or inadequate material for extensive or multi-step reconstructions [8, 10, 11]. 

 

Alternatively, acellular bone allografts and synthetic biomaterials designed to substitute bone can also 

be used as defect-filling grafts. In large bone defects, since those materials lack vasculature and 

osteogenic cell, it takes a relatively longer time for them to be colonized and functionally engrafted. It 

has been shown that making those osteoconductive materials osteoinductive by incorporating 

signalling molecules that will recruit osteoprogenitors from the surroundings has a significant effect on 

reconstruction of the defect zone. However, clinical validation regarding efficacy and safety has not 

yet been achieved [12].    
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1.3 Tissue engineering

Drawbacks to the gold standard in bone healing have created a bridge between tissue engineering 

and the bone regeneration field. Advances in biomaterials and developments in cell biology could be 

a solution to satisfy the needs of custom prepared, ready to use, highly compatible treatments in bone 

regeneration. The tissue engineering approach aims to create in vitro designed systems which, upon 

transfer to the target organ, will enhance regeneration and healing [13]. In order to access the target 

organ successfully, tissue engineering tries to mimic its structural, mechanical, functional and 

biological properties. The tissue engineering paradigm can be summarized as thus: harvesting a 

biopsy from the healthy part of a target organ or site that contains stromal/progenitor cells, isolation 

and expansion of autologous cells or progenitor cells that are going to be directly used or 

differentiated, loading of the cells onto a carrier and then, either culture in vitro until certain maturation 

and/or transplanting directly to the defect site (Figure 3). 

 
Figure 3: Conventional tissue 
engineering approach isolates 
healthy cells from a biopsy, 
expands them in monolayer 
culture, seed in a 3D scaffold 
and maturate for certain period. 
Finally the engineered graft is 
implanted to the patient. 

 

 

 

 

 

For engineering efficient and functionally successful osteogenic grafts, scaffolds for bone tissue 

engineering should provide sufficient mechanical stability, shape and porosity, considering the region 

of implantation. A scaffolding material can be of biological origin like collagen [14] and deminaralized 

bone matrix [15] or synthetic in nature, such as porous metal [16], bioactive glass [17], synthetic 

polymers [18] or calcium phosphates like hydroxyapatite and tricalcium phosphate [19]. Scaffolds 

should also be osteoconductive, promoting and supporting osteoprogenitor cell attachment, 
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proliferation and differentiation and, therefore, bone formation [20]. But still, apart from composition, 

structure and bioresorbability, providing osteoinductive properties has remained one of the most 

challenging tasks for the development of bone graft substitutes [21]. 

Osteogenicity of the construct is provided by osteo progenitor cells and the mineralized matrix 

secreted by them. A large number of cells are demanded to generate tissue engineered grafts for 

clinically sized bone defects. Mesenchymal stromal cells have been shown to differentiate into 

osteogenic cells and produce bone [22]. Bone marrow is the most preferred source of mesenchymal 

stromal cells for bone tissue engineering. They can be easily be isolated from bone marrow aspirates, 

expanded, and differentiated in the presence of grow factors, hormones and other supplements like 

ascorbic acid [23] Differentiated cells should have high biosynthetic activity to support the 

development and integration into the host, express osteogenic markers to form real bone tissue and 

have a phenotypic stability to avoid nonspecific tissue development.  A different and relatively newer 

source for mesenchymal stromal cells is adipose tissue [24]. Adipose tissue is much more easily 

accessed than bone marrow, more abundant and gives a higher yield of cells. Isolation of adipose 

tissue derived stromal (ATSC) cells causes a much reduced donor site morbidity as compared to 

bone marrow aspirates. Studies that compare ATSC and BMSCs indicate both similarities and 

differences in terms of surface markers and differentiation capacities in vitro and in vivo [25, 26]. 

 

  2.  Vascularization strategies in tissue engineering 

In native tissue, cells are organized in a way that they can be supplied with oxygen, nutrients and 

signaling factors and be drained of their metabolic waste by endothelial-lined capillaries. The 

proximity of a capillary network therefore is vital for cell survival [27].  Vascularization is a key issue of 

tissue engineered grafts both in vitro and in vivo. In order to fabricate long lasting and functional 

tissues, one should first design the scaffold or carrier considering cell organization, select an ideal cell 

source for rapid vascular network formation and define an in vitro and in vivo graft maturation or 

implantation strategy. To overcome limitations related to vascularization and cell survival issues, 

different approaches were previously investigated:  
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2.1 Delivery of angiogenic signals 

Angiogenesis is described as the formation of new blood vessels from already existing blood vessels 

by cell growth or sprouting.  Angiogenic factors such as VEGF, FGF, PDGF and Ang1 are known to 

stimulate mobilization and recruitment of endothelial cells thereby inducing angiogenesis, vascular 

ingrowth and thus vascularization. Delivery of such angiogenic factors into tissue-engineered 

constructs can be done by direct addition, coating on the scaffold, controlled release by encapsulation 

into degradable micro- or nano-particles or the use of genetically modified cells, transduced to have 

sustained over expression of some of them. However, maintaining optimal concentrations of those 

specific proteins inside the graft or at the defect site of the host is challenging. With insufficient 

induction there might be a lack of improvement while excessive induction might lead to the formation 

of unstable vasculature. Such newly formed capillaries are often unstable, disorganized, leaky and 

hemorrhagic [28]. Newly formed capillaries are typically stabilized by pericytes and smooth muscle 

cells which are recruited through PDGF. More difficult can be to synchronize the dose and timing for 

more than one angiogenic factor. An indirect strategy is to stimulate cells that secrete such 

angiogenic factors by addition of sonic hedgehog homolog (SHH), hypoxia inducing factor 1 (HIF-1) 

[29] or bone morphogenic protein (BMP)-2, -4 or 6 [30]. In this case the dose of required angiogenic 

stimuli is regulated by the producing cell and often results in expression of the required physiological 

concentrations. Moreover, indirectly stimulated cells create a gradient of angiogenic factors which has 

been shown to be important for capillary morphogenesis and stimulation of the vascular ingrowth from 

the host. The procedure induces other proteins that also stabilize newly formed capillaries and play a 

role in the promotion of a functional vasculature. High costs and difficulties in clinical translations are 

the major disadvantages of both direct and indirect angiogenic factor delivery. Safety issues related to 

the use of transduced cells and to the control of the over expression remains a major limitation toward 

clinical applications. 

 

 2.2 Cellular approach 

Using cells is another strategy to build the vasculature in vitro or in vivo in tissue-engineered 

constructs. Primary endothelial cells from different sources such as human umbilical vein, human 

dermal microvascular and peripheral blood have been co-cultured with fibroblasts, osteoblasts or 

mesenchymal stromal cells from bone marrow or adipose tissue in sequential culture conditions or 

simply by mixing cells together [31]. Endothelial cells alone are able to form capillary networks in vitro 
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and in vivo, which must be stabilized by pericytes (mural) shortly after formation. In vivo, pericytes 

interact with endothelial capillaries and enhance their function and stability. In tissue engineering, 

fibroblasts and mesenchymal stromal cells are easy to obtain and have been used as mural cells and 

in co-culture with endothelial cells to enhance vascularization of generated constructs. Co-culture of 

different cell types can be achieved in vitro to pre-vascularize the graft prior to implantation and is 

expected to create a vascular network which upon in vivo implantation is rapidly anastamosed with 

host vasculature [32]. The co-culture ratio of cell types, duration and culture conditions should be 

optimized for every cell types [27]. Besides cells that form vasculature, other cell types providing the 

functionality of the designed graft may often need different types of culture conditions for stimulation 

and differentiation [33]. Therefore, the implementation of these two aspects in one final product 

should be well optimized. On the other hand, sourcing of endothelial cells has ultimate importance in 

clinical perspectives. In tissue engineering research, HUVECs are the most frequently used 

endothelial cells which cannot be autologously sourced for clinical use. Endothelial progenitor cells 

originating from bone marrow are circulating in peripheral blood, having capacity to be used as an 

endothelial cell source for regenerative medicine [34]. However, those progenitor cells are very low in 

number and have to be expanded in vitro, which brings extra costs for the clinical translation. Freshly 

isolated adipose tissue-derived stromal cells, also known as the stromal vascular fraction (SVF), are a 

source for both endothelial cells and stromal cells. It has been shown that SVF cells can establish a 

pre-vascularization and differentiate into osteogenic cells and adipogenic cells, enabling large tissue 

engineered construct to be engrafted to the host tissue rapidly and functionally [35].  

 

 2.3 Biomaterial design 

Achieving rapid and effective vasculature in tissue engineered construct also needs well designed 

scaffolds. Geometry, pore interconnectivity and scaffold material are the crucial points to be 

addressed considering the target organ [36]. Larger pores and higher interconnectivity significantly 

increase the vessel ingrowth in accordance with cell migration. The materials that enhance cell 

adhesion and migration and therefore also the vascularization should be considered [37, 38]. In some 

applications, the scaffolding material is coated with proteins such as collagen and fibronectin or 

chemically modified by immobilizing peptide motifs such as RGD, to promote cell seeding [39].  
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 2.4 In vivo pre-vascularization 

Another approach to vascularize tissue engineered constructs is to use living tissues. In in vivo 

conditions, host cells always tend to invade the implanted construct which brings the endothelial 

vasculature by branching and sprouting into the graft. Two possible strategies have been developed:  

 

 

Figure 4. Vascularization strategies in tissue engineering a) delivering of angiogenic growth factors or 

cytokines, b) applying progenitor cells to the damaged area or to the construct, c) designing biomaterials that can 

favour vessel ingrowth or enhance vessel formation, d) implanting grafts that have been pre-vascularized  in vivo 

with flap prefabrication or AV loop, e) generating novel strategies by combining two or more strategies. Adapted 

from [27].  

 

i. flap pre fabrication:  Tissue engineered construct is implanted in a highly vascularized 

body part of the host, like muscle, that favors a rapid ingrowth of blood vessels and, once fully 
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vascularized, is transferred into the defect zone [40]. By using micro surgery, construct and blood 

vessels newly formed inside it during the pre-vascularization phase can be implanted at the defect 

site providing instantaneous perfusion of the whole construct. Major disadvantage of this approach is 

that it requires a two-step surgery and prior to the final implantation; the construct might need to be 

reseeded with cells of interest since a majority of cells inside the inner core of the construct most 

probably did not survive to the pre-vascularization step. 

ii. AV loop formation: to shorten time of anastamosis of engineered construct, a pre-existing 

vascular network is integrated inside or around the graft by surgically creating an arterio-venous (AV) 

loop and by placing graft in close contact with this vascular bundle [32, 41]. The outgrowth of 

capillaries from the bundle forms a microvascular network in the construct and at the time of 

transferring to the required defect zone, the graft is harvested with the supplying artery making 

immediate perfusion of the entire construct. Complicated procedure and limitation of geometry of the 

construct make this strategy less appealing.   

 

 2.5 Combined strategies 

It should be stated that there cannot be one ideal strategy to bring vascularization in tissue 

engineering applications. As different types of tissues and defects needs different treatments, 

vascularization approaches described above could be preferred one to another according to the 

feasibility. On the other hand, some of these techniques can be combined, increasing the efficiency 

and eliminating some limitations. For instance the angiogenic factors can be delivered in combination 

with endothelial progenitor cells that are co-cultured with mesenchymal progenitor cells. In this case, 

the dose of recombinant angiogenic proteins can be reduced which may reduce the effects of 

unstable vasculature formation like leaky vessels and also result in a significant decrease of the 

related costs. Specially-developed hydrogels mimicking the native tissue environment with defined 

stiffness, immobilized adhesive peptides and supplemented with growth factors can be seeded with 

different timing to provide optimal capillary formation and stability [38, 42]. 
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 3. Stem cells 

Stem cells are defined by their self-renewal capacity, producing at least one identical stem cell and to 

produce one to undergo lineage differentiation [43]. Regarding their potency to produce one or more 

lineages, they can be identified as i) totipotent i.e. able to produce all cells and tissues of an 

organism, ii) pluripotent, having capacity to produce cells and tissues from all three germ layers – 

ectoderm, mesoderm and endoderm, iii) multipotent stem cells with the ability to produce more than 

one cell lineage or iv) unipotent which can differentiate only into a single cell phenotype [44]. 

 

Mesenchymal stem cells (MSC) are multipotent and can be found in most of the tissues in human 

body. However, regarding the isolation, availability and clinical applications the most relevant sources 

are bone marrow, skin, placenta and adipose tissue [45]. The Mesenchymal and Tissue Stem Cell 

Committee of the International Society for Cellular Therapy have proposed three criteria to define 

MSC; (1) isolated cells should adhere on tissue culture plates, (2) more than 95% of adhering cells in 

the culture should express CD105, CD73 and CD90; and they should lack expression of CD34, CD45, 

CD14 or CD11b, CD79a or CD19 and HLA-DR markers, (3) MSC should differentiate into 

osteoblasts, adipocytes and chondroblasts in vitro [46].  

 

 3.1 Bone marrow stromal cells 

Bone marrow mesenchymal stromal cells (BMSC) have been shown to have self renewal capacity 

[47] and osteogenic potential [48] and been extensively used in bone tissue engineering since 

decades.  However the frequency of putative stem cells is less than 0.01% [49] therefore requiring 

extensive in vitro expansion phases to be applied in tissue engineering applications. Various in vitro 

studies, preclinical and more recently human clinical trials have demonstrated the immunotolerance 

and immunomodulatory properties of allogeneic BMSC [50], [51]. Some clinical case studies showed 

that the seeding of autologous BMSCs into porous hydroxyapatite scaffolds and implantation in 

various limbs with 4-7 cm critical size defects can heel non-union fractures without any adverse 

effects [52]. However this strategy is not superior to traditional methods of bone grafting where this 

recovery is much faster. Bone tissue engineering using BMSC most of the time lacks enough 

vascularization in the case of large grafts [41]. To overcome this problem, many vascularization 

strategies have been developed. The most widely explored technique is where BMSCs are combined 

with endothelial cells from various different sources such as umbilical cord blood [53], buffy coat-
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derived endothelial progenitors [54], human umbilical vein [55] or dermal microvasculature [56] to 

create vascular structures inside the osteogenic grafts that can anastamose with host vasculature 

upon implantation. Another approach aims to solve vascularization problems by enhancing the 

ingrowth of host vasculature into the graft. In this approach BMSCs are transfected with VEGF gene 

alone [57] or together with BMP-2 [58] thereby creating angiogenic zones through the graft by 

releasing angiogenic proteins which recruit endothelial progenitors from the surrounding tissue that 

can vascularize the construct.  Although there are some promising studies, irrelevant cell sources, 

long and demanding in vitro cell manipulations and safety concerns put those approaches still far from 

regular clinical applications. 

 

 3.2  Adipose tissue derived stromal cells 

Adipose tissue contains not only adipocytes but it is also an excellent source for progenitor cells [24]. 

Studies showed that subcutaneous adipose tissue homes hematopoietic, mesenchymal and vascular 

stromal cells that can be harvested with minimal invasive techniques isolated with enzymatic digestion 

and thereafter be used in stem cell research. The freshly isolated hetoregenous cell population from 

adipose tissue is named the stromal vascular fraction (SVF) which can be directly used or plated for 

expansion to amplify adherent population known as adipose-derived stromal/stem cells (ASC) [12]. 

The ASC present in the SVF are characterized as CD34
+
/CD105

-
 ASC. In addition to ASC, the SVF 

also contains blood-derived cells, such as erythrocytes and leukocytes characterized by expression of 

the pan-hematopoietic marker CD45, and other adipose-derived cells, such as vascular endothelial 

(known to be CD34
+
/CD31

+
) and mural cells [59]. ASC have multipotent stem cell capacities and can 

differentiate into osteogenic, chondrogenic, adipogenic and neurogenic cell types, attracting 

significantly high interest in regenerative medicine research and applications. Compared to bone 

marrow stromal cells, adipose tissue derived cells have higher clonogenic capacity that makes them 

more favorable in terms of stem cell yield [60]. 

 

Being more available and having various potential harvesting zones (abdominal, ties, breast etc.) lead 

many studies to try to characterize adipose tissue-derived stem cells and develop standardized 

harvesting methods for them. Despite high interest in ASC research, no true correlations and clear 

predictive indicator(s) could be defined between cell characteristic, cell yield, body mass index (BMI), 

age and harvesting site [61]. Adipose tissue-derived progenitors are widely used in reconstructive 
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surgery studies like for breast augmentation [62, 63]. Lipoaspirates are combined with SVF cells and 

implanted to augment breast volume and showed much more rapid and efficient engraftment. Also, 

clinical trials on wound healing of diabetic patients and radiation therapy tissue damage showed 

better healing by using SVF cells [64, 65]. The heterogeneous nature of SVF cells is hypothesized to 

enhance this engraftment via containing endothelial cells which contribute to vascular network 

formation. Clinical studies in orthopedics aim to involve ASCs and SVF cells in bone repair cases 

using their high capacity to differentiate into osteogenic lineage [12]. Clinical trial has shown that 

using autologous ASCs in combination with BMP-2 and β-tricalcium phosphate in low weight-bearing 

maxillofacial defect generate fully integrated and vascularized implants [66]. Some other clinical trials 

with adipose tissue-derived progenitors are initiated in the treatment of immune diseases like multiple 

sclerosis [67] and Crohn’s disease [68, 69, 70]. 

 

 4. Manufacturing challenges for bone tissue engineering 

The major driving force behind stem cell research is focused to understand the biology behind them 

and place them as novel and efficient therapeutic agents in diverse fields of medicine and 

pharmaceutical applications. Some of the trials showed success in long term. However, following are 

many variables that have to be optimized to make stem cell therapies to become standardized and 

preferable to traditional treatments. Optimal cell source, in vitro culture conditions, scaffolds, dosage 

of differentiating factors, maturation time and implantation technique and costs are major items [1, 71, 

72]. 

Sequential surgeries and long hospitalization time decrease donor comfort and increase the cost of 

the therapies. Most tissue engineering applications include implantation of autologous cells that are 

first isolated and expanded in good manufacturing practice (GMP) compliant laboratories. GMP 

facilities and running the protocols are costly and requiring big investments both in infrastructure and 

trained staff. Despite strict regulations, these manufacturing techniques still carry a risk of 

contamination and show limited reproducibility. An intraoperative approach in stem cell-based 

therapies may skip many of these in vitro handling phases and can complete all surgical 

manipulations in one step. Getting a biopsy, isolating cells and generating tissue engineered graft can 

be done in the same operation room, decreasing dramatically hospitalization time, costs and favoring 

patient comfort.  
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Automated systems are slowly being introduced for cell isolation and graft manufacturing in order to 

reduce costs and variables [73, 74]. The development of closed, aseptic and automated devices, 

allowing the isolation of adipose cells outside a GMP facility at reasonable costs, for instance inside 

an operation theater, and requiring minimal operator intervention, could overcome these limitations. 

 

 5. Aim of the thesis 

Translation of tissue engineering and regenerative medicine approaches from bench to bedside is 

struggling with some key issues that limit their straightforward therapeutic applications. Providing 

autologous cells of clinical grade isolated from a relevant source to avoid possible clinical 

complications is the first issue to be considered. Besides that, so far, most of the tissue engineering 

approaches proposed solutions which only allow the generation of small grafts. The reasons for that 

are first vascularization problems upon in vivo implantation, when enlarging the size of the constructs 

and second the complexity and costs of the manufacturing protocols. This thesis addresses possible 

solutions for these two limitations by implementing stromal vascular fraction (SVF) cells from adipose 

tissue to provide pre-vascularization into up-scaled tissue engineered osteogenic constructs and by 

developing simplified approaches based on the coupling of reparative surgery to a streamlined cell 

isolation and intraoperative generation of osteogenic constructs from SVF cells.  

 

Chapter I focuses on generating large osteogenic grafts using SVF cells and hypothesizes that the 

presence of endothelial progenitors could enhance the construct engraftment and uniformity of bone 

tissue formation in vivo. SVF cells have been shown to have intrinsic vascularization capacity making 

them able to form stable blood vessels within tissue engineered grafts in vivo [36]. Initially this chapter 

uses this feature of SVF cells as innovative strategy to avoid endothelial cell - mesechymal cell co-

culturing for formation of capillary network, thereby validating SVF cells as a more clinically relevant 

cell source for vascularization of large grafts in tissue engineering. Therefore, pre-vascularized large 

osteogenic grafts were generated aiming to anastamose with the host vasculature rapidly upon 

ectopic in vivo implantation in rats in order to provide better engraftment in terms of cell survival and 

integration. Finally as a result of rapid engraftment more uniform bone formation throughout the large 

grafts could be expected.  
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Thereafter, Chapter II looks for relevant and applicable ways to translate this outcome into more 

clinically relevant scenarios. The clonogenic cell yield after isolation of SVF cells is relatively high 

compared to other mesenchymal stem cell sources suggesting that they can be used directly without 

any in vitro manupulation. In this chapter the goal is to skip in vitro differentiation and expanding 

phases of SVF cells by applying an intraoperative approach. To achieve this, cell isolation and graft 

manufacturing is followed by direct ectopic implantation where major read out is success in 

engraftment and bone tissue formation in the engineered graft. This chapter focuses on the effects of 

key parameters such as cell seeding density and the dose of osteoinductive stimuli, namely bone 

morphogenetic protein-2 (BMP-2), on the success of the approach.  

 

Finally Chapter III focuses on how to streamline this intraoperative approach by automating the 

manual cell isolation steps. Successful translation of laboratory developed methods into the clinics as 

an alternative or routine treatments needs to be validated to reach a large degree of standardization. 

An automated device can solve operator and procedure variability in SVF cell isolation; however 

phenotype and the function of isolated cells should not be altered. In this chapter, the protocol of the 

automated SVF cell isolation device (Sepax™) is validated and cells obtained in this way are 

compared to manually isolated SVF cells both phenotypically and also in terms of cell yield, viability, 

clonogenicity, and differentiation capacity. 
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B. Experimental work 

 

 

 

Chapter I 

Engineering of large osteogenic grafts with intrinsic vasculogenic 

capacity 

 

 

Engineering of large osteogenic grafts with rapid engraftment capacity using 

mesenchymal and endothelial progenitors from human adipose tissue 

 

Enclosed is the pdf file of the paper published in Biomaterials, 2011;32:5801-5809 
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Supplementary data 

 

Supplementary Figure 1. In situ hybridization for human-specific ALU sequences (left column), 

immunostaining for human CD34 (central column) and for bone sialoprotein (BSP) (right column) on 

histological sections of stromal vascular fraction (SVF) cell-based constructs implanted in nude rats for the 

indicated time (1, 2 or 4 weeks). Images were acquired at the deepest front of tissue penetration and are 

representative of those observed for 4 donors. Scale bars = 200 µm. 
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Intraoperative approach in bone tissue engineering 

 

 

 

Intraoperative engineering of osteogenic grafts combining freshly harvested, human 

adipose-derived cells and physiological doses of bone morphogenetic protein-2 
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Abstract  

Engineered osteogenic constructs could replace the use of autologous transplantation for bone 

surgery but typically involve long and costly fabrication processes, due to a limited availability of 

cells from the donor. Freshly isolated human adipose-derived cells provide precursors in large 

amounts, allowing production of the grafts and their immediate, intraoperative implantation, despite 

the reported requirement to include a molecular trigger into the construct to induce full 

osteogenicity of the cells in vivo. The present study evaluated recombinant human BMP-2 (rhBMP-

2) as a potential inductive supplement in this context. The stromal vascular fraction (SVF) was 

isolated from human adipose tissue from 7 healthy donors by enzymatic digestion. Immediately 

after, porous silicated calcium-phosphate granules (Actifuse
®
, Apatech) were mixed with 1x10

6
 or 

4x10
6
 fibrin-embedded SVF-cells, supplemented or not with rhBMP-2 (250 ng / 0.06 cm

3
 

construct). These constructs were thereafter  implanted ectopically for eight weeks in nude mice. 

Upon explantation, constructs were analyzed histologically while the effect of rhBMP-2 on 

osteoblastic differentiation of SVF cells was assessed in vitro. Bone tissue was formed only in the 

presence of rhBMP-2, at a dose which could not induce ectopic ossification by itself. The 

reproducibility of bone tissue formation was improved by increasing the density of SVF cells, the 

latter not only supporting but directly contributing to bone tissue formation. In vitro, rhBMP-2 did not 

involve an increase in the percentage of SVF cells recruited to the osteogenic lineage, but rather 

induced a stimulation of the osteoblastic differentiation of the committed progenitors. This study 

confirms the feasibility of the generation of fully osteogenic grafts intra-operatively, and the 

mechanisms involved. An extension to an orthotopic, immuno-competent animal model is the next 

required step towards its validation for clinical use. 
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Introduction 

The standard of care in the treatment of bone defects in orthopaedic, trauma or reconstructive 

surgery is the transplantation of autologous bone grafts. Alternative options are the implantation of 

allografts or osteoconductive materials, the local treatment with osteoinductive growth factors such 

as BMP-2 or BMP-7, or combinations thereof (Berner et al., 2011;De, Jr. et al., 2007;Saxer F et al., 

2010). The engineering of osteogenic bone graft substitutes based on osteoconductive scaffolds 

combined with autologous osteoprogenitors (mesenchymal stromal cells, MSC) as a biologically 

active component could provide an attractive alternative, but its translation into clinical practice has 

proven to be highly challenging (Berner et al., 2011;Cuomo et al., 2009;Evans et al., 2007). Low 

MSC numbers found in the bone marrow generally require a step of cell expansion for graft 

manufacturing. This not only is known to be associated with a progressive loss of osteogenic 

differentiation capacity (Banfi et al., 2000), but also requires processing under costly and tightly 

regulated Good Manufacturing Practice (GMP) conditions. Thus, cost-effectiveness of the classical 

bone tissue engineering paradigm still needs to be verified (Meijer et al., 2007). 

One possible solution proposed to overcome the limitations above is based on the 3D expansion of 

MSC directly within porous scaffolds (Braccini et al., 2005). This was shown to reduce intra-

individual differences, increase quality of grafts and streamline manufacturing in perfusion 

bioreactors, with the potential to introduce automation and thus reduce costs (Martin et al., 2009). 

Another approach has more radically addressed the problem, by trying to eliminate the expansion 

phase, i.e. reducing the manufacturing process to a one-step surgical procedure. Such an intra-

operative approach poses the essential requirements to identify an autologous source of cells that 

have (i) intrinsic osteogenic capacities in vivo without prior culture or osteoinduction and (ii) are 

available in sufficient numbers directly upon isolation. Freshly isolated bone marrow-derived cells, 

possibly harvested using a reamer-irrigator-aspirator (Cox et al., 2011;Stafford and Norris, 2010), 

concentrated by immunoselection (Aslan et al., 2006) or modified genetically (Evans et al., 2007), 

have been proposed to be directly used for bone repair. Despite the promising data collected so 

far, the reproducible collection of a sufficient number of MSC across different patients remains to 

be demonstrated. The freshly-isolated stromal vascular fraction (SVF) of human adipose tissue 

represents a possibly better cell source for a one-step surgical procedure, given its up to 500-fold 

larger number of clonogenic progenitors per volume of tissue sample compared to human bone 

marrow (Fraser et al., 2006;Scherberich et al., 2007). Two studies (Helder et al., 2007;Vergroesen 
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et al., 2011) tested bone formation by autologous SVF cells, intraoperatively processed to generate 

grafts implanted in a goat spinal fusion model. Those studies demonstrated a superior bone 

healing when implants were loaded with SVF cells, but the model was not designed to assess the 

direct osteogenic properties of the SVF-based grafts. Our group recently demonstrated that ectopic 

implantation in nude mice of human SVF cells seeded on porous hydroxyapatite scaffolds results 

in the formation of human origin blood vessels and dense osteoid matrix, but no ‘frank’ bone 

formation (Muller et al., 2010). These findings suggested that, in the absence of in vitro 

commitment, additional cues (e.g. osteoinductive factors) might be needed to support ectopic bone 

tissue generation in vivo. 

In the present study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was therefore 

used as an osteoinductive stimulus (Chen et al., 2004;Jeon et al., 2008) for the implanted SVF 

cells, at doses known to be not sufficient to induce by themselves bone tissue formation (Fujimura 

et al., 1995). RhBMP-2 was introduced in fibrin-ceramic-based constructs simultaneously with the 

freshly-isolated/SVF cells and immediately implanted ectopically in nude mice. Bone formation and 

the contribution of SVF cells to this process were studied 8 weeks after implantation. In vitro 

experiments were also performed to address whether rhBMP-2 enhances SVF cell osteogenic 

differentiation and/or the osteogenic recruitment of clonogenic SVF populations. 

 

Material and Methods 

Cell isolation 

Adipose tissue, in the form of liposuction or excised fat samples, was obtained from 7 healthy 

female donors following informed consent and according to a protocol approved by the local ethical 

committee (EKBB, Ref. 78/07). Minced tissue from excised fat samples or lipoaspirates were 

processed as previously described (Guven et al., 2011;Muller et al., 2010) and the cell pellets 

resuspended in complete medium (CM), consisting of !-MEM supplemented with 10% of foetal 

bovine serum (FBS), 1% HEPES, 1% Sodium pyruvate and 1% of Penicillin-Streptomycin 

Glutamate (100x) solution (all from Gibco, www.invitrogen.com). 
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Cell Characterisation 

Fluorescence activated cell sorting (FACS) 

SVF cells were analyzed by cytofluorimetry with antibodies to CD105, CD90 and CD73 

(mesenchymal markers), CD31 and CD34 (endothelial markers), the monocytic marker CD14 and 

the pan-haematopoetic marker CD45 (anti-CD105 antibody from AbD Serotec, 

www.abdserotec.com, all others from Becton Dickinson Bioscience, www.bdbiosciences.com), as 

previously described (Gronthos et al., 2001;Guven et al., 2011). 

 

Frequency of clonogenic cells 

The ratio of colony forming unit-osteoblasts (CFU-o) to the total number of formed colonies (colony 

forming unit-fibroblasts, CFU-f) (Friedenstein et al., 1970) (Baksh et al., 2003) was determined by 

plating 100 SVF cells/well into six well plates. Cells were cultured with CM or osteogenic medium 

(OM), consisting of CM supplemented with 100 nM dexamethasone, 10 mM beta-glycerophosphate, 

and 0.05 mM ascorbic-acid-2-phosphate (Sigma-Aldrich, www.sigmaaldrich.com) for 14 days, in the 

presence or absence of the indicated concentration of rhBMP-2 (R&D Systems, 

www.rndsystems.com). CFU-o were defined as colonies stained positive for alkaline phosphatase 

(ALP) activity, using a commercially available kit (104-LL kit, Sigma-Aldrich). The CFU-o/CFU-f ratio 

was determined following counter staining with buffered neutral red solution (N6264, Sigma-Aldrich), 

which allowed to count the total number of CFU-f. 

 

In vitro stimulation with rhBMP-2SVF cells were plated on tissue culture plastic and grown to 

confluence in the presence of CM. Cells were then cultured for 14 days with either CM or OM, alone 

or further supplemented with 50 or 500 ng/mL BMP-2 (produced as previously described (Weber et 

al., 2002)) were analysed by reverse transcriptase real time polymerase chain reaction (RT-rt-PCR). 

Cells were then treated with lysis buffer (Qiagen, http://www.qiagen.com) enriched with 1/100 (V/V) β-

mercaptoethanol (Sigma-Aldrich). RNA was extracted by using a NucleoSpin
®
 RNA II kit (Macherey-

Nagel, http://www.mn-net.com). The RNA was eluted in RNase-free water and transcription into cDNA 

was performed as previously described (Barbero et al., 2003). The samples were analysed by using a 

GeneAmp
®
 PCR System 9600 (Perkin Elmer, www.perkinelmer.com) and the transcription levels of  

osteopontin (OP) and osteocalcin (OC) quantified, with glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) as reference housekeeping gene  (Frank et al., 2002). SVF cells were similarly plated on 
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tissue culture plastic, grown to confluence and cultured for 7 days with CM, alone or further 

supplemented with 500 ng/mL BMP-2 (R&D Systems, www.rndsystems.com). Cells were then 

detached with trypsin (Invitrogen) and analysed by cytofluorimetry with fluorochrome-conjugated 

antibodies to alkaline phosphatase and osteocalcin (ALP and OC, both from R&D systems, 

www.rndsystems.com). 

 

Generation and assessment of SVF cells-fibrin-ceramic constructs 

One or four millions SVF cells were suspended in the fibrinogen phase (30 µL) of a polymerizing 

fibrin gel (Tisseel
®
, Baxter, www.baxter.com), as described previously (Bensaid et al., 2003;Muller 

et al., 2010), with or without addition of 250 ng of recombinant human BMP-2 (R&D Systems). 

Briefly, following mix with the thrombin phase (30 µL), the solution was poured onto a volume of 

approx. 0.06 cm
3 

of hydroxyapatite granulates of 1-2mm size (Actifuse
®
 ABX, ApaTech, 

www.apatech.com) pre-stacked in the wells of a 96-well plate. After 1-2 min, when the gels 

polymerized, constructs were covered with CM and transferred into a humidified incubator (37°C, 

5% CO2) for 10 min. Directly after fabrication, some constructs were incubated for 2 hours at 37°C 

in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma-Aldrich) solution at a 

final concentration of 0.05 mg/mL and the distribution of the blue/purple metabolized substrate of 

MTT was inspected macroscopically to assess cell viability. Other constructs were fixed overnight 

in 4% formalin, paraffin-embedded, sectioned and stained with haematoxylin/eosin (H&E) for 

qualitative assessment of the spatial distribution of the seeded cells. The remaining constructs 

were implanted in nude mice as described below. 

 

In vivo implantation in nude mice and explant analysis 

The maintenance, surgical treatment and sacrifice of animals were performed in accordance with 

the guidelines of the local veterinary agency (“Kantonales Veterinäramt Basel-Stadt”, permission 

#1797). Constructs were implanted in the subcutaneous tissue of nude athymic mice (CD1 nu/nu, 

Charles River, www.criver.com) and harvested after eight weeks following mice sacrifice by 

inhalation of CO
2
. Tissues were fixed in 4% formalin overnight, subjected to slow decalcification in 

7 % w/v EDTA and 10% w/v sucrose (both from Sigma-Aldrich) at 37°C on an orbital shaker for 7-

10 days and paraffin-embedded. Samples were then cross-sectioned (12 µm thickness) and 

processed for histological, histochemical and immunohistochemical stainings as follows.  Standard 
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H&E staining and Masson trichrome staining (Kit Trichrome de Masson-Vert lumière, Réactifs RAL, 

www.ral-diagnostics.fr) were performed to identify bone tissue formation and maturation stage. 

Safranin-O staining allowed investigating the presence of sulphated proteoglycans inside the 

construct, characteristic of cartilaginous tissue. Tartrate resistant alkaline phosphatase (TRAP) 

staining (leukocyte acid phosphatase kit, Sigma-Aldrich) was used to identify osteoclasts, while the 

presence of osteoblastic cells and osteoid structures was assessed by immunostaining for human 

bone sialoprotein (BSP, Immundiagnostik AG, www.immundiagnostik.com) (Minkin, 

1982;Papadimitropoulos et al., 2011). The presence of donor-derived, human blood vessels was 

demonstrated by immunostaining with a biotin-conjugated antibody for human CD34 (Abcam, 

www.abcam.com), as previously described (Scherberich et al., 2007). All human cells in the 

explants were identified by chromogenic in situ hybridization for the human-specific sequence ALU, 

using a biotin-conjugated DNA probe (ZytoVision, http://zytovision.com), as previously described 

(Muller et al., 2010;Roy-Engel et al., 2001). 

 

Results 

The percentage of CFU-f in the SVF preparations from different human adipose tissue samples 

averaged 14.7 ± 6.8 % (n = 4). The fractions of different SVF subpopulations were highly variable 

across different donors, as assessed by the large standard deviations in the percentage of positive 

cells for different typical surface markers (Figure 1A) and in accordance with previous reports 

(Muller et al., 2009;Muller et al., 2010). Once embedded in a fibrin gel around ceramic granules, 

SVF cells were viable and homogenously distributed throughout the construct, as evidenced by 

MTT metabolic staining (Figure 1B). The structure of the construct was investigated by H&E 

staining of sections of decalcified samples (Figure 1C and D). It allowed visualizing the structural 

components of the constructs prior to implantation, including the fibrin gel (pink stain in Figure 1C 

and D), the embedded cells (blue stain in Figure 1D) and the porous ceramic granules (void 

spaces in decalcified samples, Figure 1C). 
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Figure 1: Characterization of cells and constructs in vitro 
(A) Cytofluorimetric analysis of freshly-isolated SVF cells derived from 7 donors. For every CD 
marker, the average percentage of cells positive for the marker is plotted. Error bars represent 
standard deviations. (B) Representative picture of a tetrazolium-based metabolic staining (MTT 
assay) performed on SVF cells-fibrin gel-ceramic granules sample constructs to demonstrate the 
distribution of viable cells. (C and D) Macroscopic (C) and microscopic (D) pictures of 
hematoxylin/eosin staining performed on histological sections of decalcified, paraffin-embedded 
samples. 
 

In the absence of incorporated BMP-2 and independently of the initial cell density (1 or 4 million 

SVF cells per 100 mm
3 

construct), constructs explanted after subcutaneous implantation for 8 

weeks in nude mice did not display any evidence of frank bone tissue formation, as assessed by 

H&E staining (data not shown) and by fluorescence microscopy (Figure 2, left column). These 

findings are in accordance with our previous results (Muller et al., 2010). The addition of 250 ng of 

rhBMP-2 inside the fibrin gel resulted in a significant increase in the formation of bone tissue with 

71% of cases showing bone inside the construct (5/7 donors). A trend indicating a lower 

reproducibility in bone formation with a lower number of cells (71 % vs 33% of the donors with 

respectively 4 million vs. 1 million cells) was shown (Figure 2, right column). Because this 

comparison was not essential for the study, a limited number of replicates (with cells from 3 

independent donors) were performed with 1 million SVF cells, and a relevant statistical analysis 

between the 2 cell seeding densities was therefore impossible. 
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Figure 2: Comparison of in vivo bone formation 
Representative fluorescence microscopy pictures of histology sections of explanted, fixed and 
decalcified constructs. Experimental conditions are indicated in the table. The values provided for 
each experimental condition is the ratio of donors exhibiting bone formation in vivo by the total 
number of donors tested. Scale bars represent 200 � m and (b) indicates bone tissue. ** indicates 
a significant difference (p<0.01) in bone formation as tested by one-way ANOVA test followed by 
Newman-Keuls comparison of the different groups. 
 

Bone tissue formation was confirmed by H&E staining both around the entire construct, in between 

the ceramic granules and within their pores (Figure 3A, black arrows). Bone tissue displayed the 

typical features of an ‘ossicle’ structure, including a dense collagenous matrix with embedded 

osteocytes and a rim of osteoblasts depositing osteoid tissue starting from the ceramic material 

(Figure 3B). Masson trichrome staining further qualified that the bone tissues was at  various 

stages of maturation, with local spots of red stained regions, indicating the presence of elastic 

proteins and characteristic of a more mature bone tissue (Figure 3C, black arrow). Neighbouring 

already developed bone ossicles, areas of pre-osteoid tissue were also identified by positive 

immunostaining for bone sialoprotein (Figure 3D, black arrow). As a control group, implantation of 

ceramic-fibrin-rhBMP-2 constructs without cells resulted in the formation of a merely fibrous tissue 

with no bone (data not shown). 
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Figure 3: Characterization of newly-formed bone tissue 
Histological analysis of sections of explanted, fixed and decalcified constructs seeded with 4x10

6
 

SVF cells and rhBMP-2. (A) Hematoxylin/eosin. Arrows show newly-formed bone tissue both in the 
pores of granules and in a shell around the construct. (B) Higher magnification of the same 
sections showing compact bone matrix (b) and osteocytes embedded therein. (C) Masson 
trichrome staining. The green dye stains dense collagenous matrix identifying bone tissue (b) in 
contact with the ceramic granules (gr.), with various stages of maturation, in particular zones with 
red staining characterizing elastic proteins (arrows). (D) Immunostaining for BSP. The arrow 
indicates a zone with BSP-positive, osteoblastic cells where initial bone formation is ongoing.  
Areas with mature bone tissue (b) do not contain osteoblastic cells. 
 

In order to study the contribution of implanted human SVF cells to the formation of tissue inside the 

construct, in situ hybridization for human-specific ALU sequences was performed. Cells of human 

origin were identified both embedded within the bone matrix (putative osteocytes, black arrow in 

Figure 4A) as well as at the bone matrix deposition front (putative osteoblasts, open arrow in 

Figure 4A). ALU staining was also positive in the lumen of capillaries (putative endothelial cells, red 

circle in inset, Figure 4A). The contribution of human vascular cells from the SVF to blood vessel 

formation was further confirmed by immunostaining for human CD34 (Figure 4B, open arrows). 

The presence of erythrocytes in the lumen of the human capillary structures demonstrated 

functional connection with the host vasculature. Negative safranin-O staining indicated the 

absence of structures containing cartilage-specific glycosaminoglycans (Figure 4C). TRAP staining 

identified the presence of multinucleated cells, likely of host origin, in contact with the newly formed 

bone (putative osteoclasts, arrow in Figure 4D), suggesting an active remodelling process. 
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Figure 4: Characterization of the contribution of SVF cells to tissue formation 
Histological analysis of sections of explanted, fixed and decalcified constructs seeded with 4x10

6
 SVF 

cells and rhBMP-2. (A) In situ hybridization for human-specific ALU sequences. osteocytes (black 
arrows) and lining osteoblasts (open arrows) of human origin are identified by their nuclear ALU 
staining. Inset shows ALU nuclear staining of human endothelial cells at the level of human capillaries 
(red dashed line). (B) Immunostaining for human CD34 shows human blood vessels (bv, open 
arrows), filled with erythrocytes. (C) Safranin-O staining with no specific red staining, indicative of 
sulphated proteoglycans and therefore of the generation of cartilaginous tissue inside the constructs. 
(D) TRAP staining showing the presence of multinucleated, osteoclastic cells in contact with newly 
formed bone (arrow). (b) indicates bone and (gr.) ceramic granules. 
 

We next investigated the effect of rhBMP-2 on the percentage of osteoprogenitors recruited in vitro 

within the SVF cell population and the level of osteogenic induction of those osteoprogenitors in 

vitro. The CFU-o/CFU-f ratios, representing the fraction of clonogenic SVF cells displaying 

osteogenic properties, were higher in OM than in CM, but were not affected by rhBMP-2 at both 

tested concentrations (Figure 5A). The level of osteogenic induction of SVF cells in vitro was 

assessed by the mRNA expression of osteoblastic markers, namely BSP and OP. The expression 

of these genes was not affected by medium supplementation with 50 ng/ml rhBMP-2, whereas it 

was consistently enhanced by the use of 500 ng/ml rhBMP-2, independently of the use of CM or 

OM (Figure 5B). To confirm this trend in the effect of rhBMP-2 on the differentiation of the 

osteoprogenitors, the effect of 500 ng/ml rhBMP-2 on cells cultured with CM was tested by 

cytofluorimetry and compared to untreated cells (negative control) and cells cultured with OM 

(positive control). RhBMP-2 significantly increased the differentiation of osteoprogenitors, at levels 
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similar to OM, based on the expression of ALP (Figure 5C) and based on cells co-expressing ALP 

and ALP (Figure 5D). 

                                     

Figure 5: In vitro effect of rhBMP-2 on human SVF cells 
 (A) Effect of 2 different doses of rhBMP-2 (50 and 500 ng/ml) on the CFU-o/CFU-f ratio of human 
SVF cells cultured with either complete medium (CM) or osteoblastic induction medium (OM). 
Experiments were performed in triplicates with cells from n=6 independent donors. Average ± s.d. 
is represented. (B) Effect of 2 different doses of rhBMP-2 (50 and 500 ng/ml) on the expression 
levels of bone sialoprotein (BSP) or osteopontin (OP) mRNA. Results are represented as average 
± s.d. of the ratio between marker’s expression levels and expression levels of GAPDH. 
Experiments were performed in duplicate with cells from n=3 independent donors. (C and D) Effect 
of 500 ng/ml rhBMP-2 and OM on the percentage of cells expressing the osteoblastic markers 
alkaline phosphatase (ALP, C) and ALP+osteocalcin (OC, D). Experiments were performed with 
cells from n=5 independent donors. Average ± s.d. is represented. 
* and ** indicate significant differences (p<0.05 and p<0.01, respectively) as tested by one-way 
ANOVA test followed by Newman-Keuls comparison of the different groups. 
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Discussion 

This study validates an intraoperative manufacturing for the generation of grafts with 

osteogenic/vasculogenic potential derived from human adipose tissue. The formation of bone 

tissue was shown to require the delivery of a low dose of rhBMP-2, which could not induce ectopic 

ossification by itself. The reproducibility of bone tissue formation might well be improved by 

increasing the density of implanted SVF cells, which not only supported but directly contributed to 

bone tissue formation. The in vitro results suggest that the mechanism of action of rhBMP-2 was 

not involving an increase in the percentage of SVF cells recruited to the osteogenic lineage, but 

rather a stimulation of the osteoblastic differentiation of the committed progenitors.  

Previous reports demonstrated that SVF cells, freshly isolated from adipose tissue and immediately 

implanted, can enhance bone healing in orthotopic experimental animal models (reviewed in 

(Scherberich et al., 2010)). Autologous SVF cells have also been used in a on-the-spot 

intraoperative approach in a few clinical cases, demonstrating safety and a favourable clinical 

outcome (Lendeckel et al., 2004;Pak, 2011). However, in all these studies, the direct contribution 

of the implanted cells to bone formation was not addressed and therefore the intrinsic osteogenic 

capacity of freshly harvested SVF cells had not yet been demonstrated. The experimental setup 

used in the present work, instead, namely an ectopic implantation site in a nude mouse model, 

allowed to investigate the fate and mode of action of the implanted human SVF cells and therefore 

to conclude that SVF cells can directly form bone tissue, but only when stimulated in situ by 

rhBMP-2. 

The induction of bone formation by BMPs in vivo has been described for the first time in 1965 

(Urist, 1965). Numerous in vitro and in vivo studies have later demonstrated enhanced bone repair 

by rhBMP-2, which is now FDA-approved in spinal, trauma and maxillo-facial surgery (Govender et 

al., 2002;Hsu and Wang, 2008;Jones et al., 2006;Smith et al., 2008). The clinical use of rhBMP-2 

is based on the principle of induction of osteogenesis by resident precursor cells and requires very 

high and non-physiological doses, which have been reported to be associated with aberrant bone  

formation (Deutsch, 2010), neurotoxicity (Smith et al., 2008) or cancer development (Carragee et 

al., 2011). As compared to commercially available products, which contain 1.5 mg/ml of rhBMP-2,  

the concentration used in the present study (2.5 � g/ml of construct) was about three orders of 

magnitude lower. The dose, which to the best of our knowledge is lower than the minimal one ever 

reported for stimulation of adipose derived cells in vivo (Jeon et al., 2008), was not intrinsically 
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associated with osteoinductivity and supported bone formation only by acting in concert with the 

implanted cells. Moreover, one can no exclude that the combination of implanted human cells and 

rhBMP-2 could have recruited circulating cells from the host which may have directly contributed to 

bone formation inside the constructs after their stimulation by rhBMP-2, in parallel with implanted 

bone-forming cells. 

The actual osteogenic responsiveness of mesenchymal stromal cells to BMPs, in particular for 

osteoprogenitors derived from adipose and bone marrow tissues, is still controversial. Indeed, 

while some groups reported no significant difference of bone formation after addition of rhBMP-2 

(Chou et al., 2011;Diefenderfer et al., 2003;Osyczka et al., 2004;Zuk et al., 2011) or transfection 

with hBMP-2 gene (Peterson et al., 2005), some others reported induction of bone repair by BMP-2 

stimulation of adipose-derived osteoprogenitors (Jeon et al., 2008;Lee et al., 2010). This 

discrepancy may result from factors such as the high inter-donor variability, the variety of animal 

models and experimental settings as well as the doses of rhBMP-2 used (Zara et al., 2011). Also 

age and sex of the donor seem to influence the osteogenic potential of osteoprogenitors (van, V et 

al., 2003;Zhu et al., 2009), as well as their responsiveness to rhBMP-2 (Kim et al., 2008). Our in 

vitro results indicate that rhBMP-2 specifically stimulated the osteoblastic differentiation of SVF 

cells. No effect of rhBMP-2 on adipose-derived cell differentiation was seen with 50 ng/mL, 

confirming a previous report (Zuk et al., 2011) showing no effect at doses ranging 10-100 ng/mL. 

We however demonstrated in this study, both at the gene expression and protein expression level, 

that a 500 ng/mL concentration stimulated osteoblastic differentiation of adipose-derived cells. 

Based on those in vitro data, it was challenging to establish which dose of rhBMP-2 had to be 

added to the constructs to mimic this effect during in vivo implantation. Indeed, the release profile -

3 repetitive doses for monolayer culture in vitro vs. burst release from the gel in vivo- and the 

different cell mixes -pure ASC in vitro and SVF cells (containing ASC, endothelial and 

hematopoietic cells) in vivo- could not easily be compared. Therefore, the cumulative dose of 

rhBMP-2 in vitro (1.5 � g) was used to normalize the dose in the constructs, which was then further 

adjusted from 1.5 � g/ml of construct to 2.5 � g/ml of construct in order to account for a very high 

density of SVF cells seeded in the constructs. This dose was then tested in acellular constructs in 

vivo and rhBMP-2 demonstrated no intrinsic osteoinductive capacity by itself in this setting. 

Interestingly, there have been promising results in enhancing bone formation by adipose tissue 

cells also by addition of vitamin D3 (Song et al., 2011), alendronate (Wang et al., 2010) or platelet-
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rich plasma (Liu et al., 2008).  Whether or not addition of these substrates, alone or in combination 

with rhBMP-2, could lead to a more reliable bone formation in the proposed setup will also have to 

be investigated. Finally, although rhBMP-2 was previously reported to have the potential to 

stimulate angiogenesis (Deckers et al., 2002;Peng et al., 2005), in our study the presence of 

human endothelial cells (positively stained for ALU sequences and for human CD34) in graft 

vascularisation did not appear to be increased in the presence of rhBMP-2 (data not shown).  

 

Conclusion 

This study reinforces the feasibility of an intra-operative use of autologous SVF cells for bone 

regeneration. The approach requires only one surgical procedure, similar to autologous bone 

grafting but clearly with reduced morbidity at the donor site. Moreover, it does not require extensive 

processing and culture of the isolated cells, thereby also reducing the costs and regulatory burdens 

otherwise associated with advanced cellular therapies. The clinical translation of the proposed 

strategy still requires an extended validation to an orthotopic model, in order to investigate the 

bone regenerative capacity of SVF cells in the context of a bony and injured/inflamed environment. 

Recent work on the established interaction between the immune system and osteoprogenitor cell 

function (Liu et al., 2011) also prompts for further studies in immunocompetent models. However, 

the introduction of alternative in vivo models requires the use of animal as opposed to human 

adipose-derived cells, which are known to have markedly different biological properties and 

osteogenic potential (Levi et al., 2011) and thus would limit the potential clinical relevance of the 

generated findings. In this regard, one of the most compelling challenges in the routine clinical 

implementation of this approach is related to the large variability in phenotype and bone forming 

capacity of human adipose-derived cells derived from different donors (Scherberich et al., 2007). 

Therefore, one additional effort will have to involve the identification of reliable quality 

control/potency markers of the implanted cells, in order to ultimately define the number of cells with 

a specific phenotype which should be introduced per unit of construct volume to ensure 

reproducible bone formation. 
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C. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

Since two decades, tissue engineering is an emerging research field in regenerative medicine. The 

idea to regenerate a tissue or even a whole organ stimulated science and medicine and raised 

expectations in society. Indeed, in today’s world need for tissue and organ replacement is growing 

tremendously, every day the waiting list for donors is extending. Initial experiments in laboratories and 

clinical trials promised that tissue engineering approach would soon satisfy those hopes. 

Unfortunately, few applications and products have found a place in clinics and on the medical market. 

Knowledge gained in the stem cell field and their translation into the tissue engineering field further 

increased the potential of those approaches. However, despite efforts and investments made on 

tissue engineering, researchers and biotechnology industry so far failed to actually provide relevant 

and applicable therapies and novel products, mostly because of the following reasons: i) most of the 

developed strategies failed to demonstrate higher clinical potential over the conventional techniques, 

ii) the reproducibility of successful approaches is often not satisfactory, iii) the manufacturing and 

treatment techniques are too costly and therefore not taken in charge by health insurances. This 

thesis focuses on bone tissue engineering and aims to solve some of the limitations related to the 

upscaling from laboratory scale osteogenic grafts to a size adapted to applicable and standardized 

clinical applications in bone tissue repair. If successful, this study and its outcomes could likely be 

adapted to other applications in the regenerative medicine field. 

 

Considering vascularization as one of the major obstacles in upscaling of tissue engineered construct, 

in Chapter I, in vitro pre-vascularized large osteogenic grafts were generated and shown to be able to 

engraft more rapidly than non –prevascularized ones and to form highly homogenous bone tissue in 

vivo. The study shows that large osteogenic grafts can be pre-vascularized by the use of stromal 

vascular fraction (SVF) cells from human adipose tissue which results into more uniform and 

abundant formation of bone tissue inside the graft upon ectopic implantation in rat. Primary 

endothelial progenitors from SVF can substitute other primary endothelial cells (i.e HUVEC, cord or 

peripheral blood-derived EPCs, etc.) commonly used to study pre-vascularization of tissue-

engineered constructs. Moreover, those primary cells lack clinical relevance and require further costly 
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in vitro manipulations. It should be stressed that the in vitro performance of SVF cells to build capillary 

networks and their potency to become functional blood vessels through rapid anastamosis upon 

implantation is likely the key mechanism enabling the successful engraftment of the tissue-

engineered, osteogenic constructs. The 3D perfusion bioreactor system used in Chapter I maintains 

endothelial progenitors inside the scaffold for 5 days of in vitro culture. Moreover, in such large scale 

grafts, a homogenous cell seeding provided by the perfusion system appears essential not only for a 

uniform distribution of the pre-vascularization but also for a uniform distribution of osteogenic cells 

and their secreted extracellular matrix. This study also suggests that SVF cells, though typically 

described with a lower intrinsic bone-forming capacity than BMSC, managed to compete with them 

and even showed a higher performance both in terms of reproducibility and amount of bone tissue 

formation, in the context of a large osteogenic graft. 

 

Many approaches to overcome the size limitations of engineered osteogenic grafts involve irrelevant 

and impractical endothelial cell sources as well as transduction of mesenchymal cells with 

angiogenesis-stimulating proteins. The strategy used in the present study identified novel and efficient 

tools allowing demonstrating that endothelial progenitors from human SVF can support deeper bone 

formation not only in the periphery but also throughout a large construct and that, due to their 

availability and abundance, SVF cells constitute a unique source of both vasculogenic and osteogenic 

cells, likely showing a superior potential as compared to BMSCs. As a continuation of this study, 

scaffolds made of different materials and obtained by various production techniques, able to fulfill any 

specific shape or mechanical features, will have to be validated. Also, animal models better reflecting 

targeted clinical scenario, such as large orthotopic models, should be designed to further validate the 

described approach. 

  

Chapter II introduces in vivo manufacturing of osteogenic constructs producing bone tissue 

ectopically. SVF cells were directly implemented into the construct during manufacturing of the graft. 

The time consuming and costly in vitro manipulations typically related to engineered constructs was 

skipped by stimulating SVF cells with low doses of rhBMP-2, known to induce osteogenesis and 

vascularization. It should be stressed that by eliminating the in vitro culturing phases, this strategy 

shifts the cell-seeded construct from being truly a tissue engineered product into becoming rather a 

transplant. As a clinical relevance, this method introduces an intraoperative approach by making the 
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whole procedure applicable in the timeframe and environment of one surgery procedure. One should 

also note that the approach decreases related costs by reducing hospitalization time and need of 

GMP facilities. Follow-up of this project, by applying a similar manufacturing process but by using an 

orthotopic model with a critical size defect is ongoing. Based on forthcoming results, clinical trials 

using volunteer patients are currently planned.    

 

Finally, in Chapter III, the standardization of the cell isolation procedure to manufacture tissue 

engineered osteogenic grafts or implants was assessed. Newly developed therapeutic approaches 

using tissue engineering suffer from a lack of standardization and reproducibility and therefore hardly 

find clinical applications and mostly stay at the clinical trial phase. In this part of the thesis, an 

automated adipose tissue derived cell isolation device was developed and validated. The automated 

cell isolation device gives higher yield of viable cells with preserved clonogenic and differentiation 

potential as compared to manual isolation techniques used in the laboratory. Adipose tissue derived 

stromal cells isolated with this automated method are not exposed to risk of contamination and are 

functionally similar. Making cell isolation techniques easy, reproducible, applicable, operator and 

environment independent and might widespread tissue engineering approach in clinics. Minimizing 

labor intensive work and safety concerns will also result in decrease of costs changing the 

preferences towards newly developed strategies in regenerative medicine.   

 

Taken together, these results suggest that bone tissue engineering using freshly isolated SFV cells is 

pretty close to be applied as a regular treatment in orthopedics. As indicated before, results presented 

in this thesis could easily be adapted to other medical fields where stem cell based tissue engineering 

therapies such as skin, muscle, vascular and periodontal tissue engineering. 

 

 

 

 

 

 

 

 

 



 64 

D. ACKNOWLEDGEMENTS 

It is very difficult to find proper words to show my gratefulness to those who made me to complete 

successfully this part of my life. I would like first to thank to Prof. Ivan Martin, who showed me how to 

be a good scientist, good boss and good friend. In most hard situations to be able to look in positive 

way, trying to find solution instead of make it complicated.  As scientists, we ask questions and try to 

find answers and during my PhD what I really learned from Ivan is to ask the most important question 

ever: “What is your question Sinan?” This is what I tried to ask and answer in these 4 years. Thank 

you Ivan for giving me this unique opportunity to work with you and being my role model as a group 

leader!   

 

There are some people who you realize only after some time that has changed your life lines. I would 

like to thank to Prof. Mauro Alini for influencing my decisions at right time, at the right places and most 

importantly in right ways!   I am sure one day when I need, I will find you again. 

 

Dear Arnaud, may be these lines are the hardest ones to write. You are the one who any PhD student 

is looking for. You can not imagine how much I owe you! I will never be able to pay you back. I will 

just try to make you be proud of me in my life and my career. Thanks for being my father, brother, 

supervisor and most importantly, my friend. You will be the one I will miss the most! 

 

 I am sorry Sandra that I have to leave. Thank you very much for being with me from the very first day 

that I entered the lab.  You know me better than I do, you read me like an open book.  I am not sure 

whether I can replace my left arm.  

 

I would like to thank the hard core PhD group of ICFS: Silvia, Rosy, Bea, Uta, Clem, Lele, and Elia. 

Guys you are the starring of “Life Science”. Thank you for creating such a nice working and living 

atmosphere in Basel. 

 

It will be improper to forget former colleagues Nasser, Devin, Chitra, Daniel, Ugo and Jenny.  You are 

all around the world but we are still in touch! Let’s keep it like that and meet from time to time. 

Let’s get out from the lab and go to Claragraben 54. Luki and Anne! You create my niche, my 

precious home in Basel. This wonderful WG! And you guys: Caroline, Kei, Milica, Maria, Marco, 

Raphaella and Selina thanks a lot for sharing the same home with me. We enjoyed a lot, parties, 

barbeques, dinners… 

 

Dear DBM members, Heidi, Verena, Emmanuel, Beat, Ueli and all animal facility staff; thank you for 

your valuable inputs, technical and administrative supports. I truly appreciate your help and friendly 

approach. 

 

This PhD work that I accomplished is strongly connected with University Hospital Basel. I had a great 

and unique opportunity to work with clinicians from Department of Plastic Surgery, Department of 

Orthopedics and Department of Trauma. I would like to thank to Prof. Dirk J. Schaefer, Prof. Claude 



 65 

Jaquiery and Prof. Marcel Jakob for making all their team available and providing biopsies for my 

research. Special thanks to Andy, Arne, Franziska and Alex for teaching me surgical manipulations on 

lab animals and giving me the vision of a clinician. Many thanks to Simone, Rene and Marina. 

 

Francine: I am waiting for your emails since a while but what you changed a strategy? You just trash 

without asking me?  

Sylvie, Anke: I am really excited how you handle the paper work, Amazing! 

New generation of PhD team Paul, Benjamin, Waldemar. Guys you are so cool! You provide some 

fresh air and new enthusiasm for life in lab and Basel. Wish you great ending with your PhDs! 

Adam you are really and literally what we say in Turkish: “Adam gibi Adam” thanks for making me feel 

at home.  Sorry, I miss the big Greek wedding! 

 Karolina: I will really miss our mutual discussions. You are my role model for a young mother with a 

career in science, sincerely difficult to see people like you around. 

 Anna, I know you are sorry but never mind! You know what? I think we just begin to work together! 

Nunzia: I know you will miss my comments, believe me I will miss too. Thanks for the profiterole after 

3 years! I know you keep your words!  

Prasad: Please excuse me if I ever hurt you. I wish you peace inside yourself. And please stop 

annoying me 

 

 Evren, Sarper, Arzu, Umut , Banu and Arda: It was great to meet you and feel your support at Gurbet 

Ellerde! Çok teşekkürler!  

 

And Serdar: Life without you in Basel wouldn’t be so much fun and adventurous.  You know I will be 

awake when you want to talk! Thanks a lot!  

 

Finally I would like to thank all ICFS, DBM and UHB members. I believe everyone that I met in my life 

played a part in this work. So I would like to show my appreciation to all of them. Thank you! 

 

The most difficult part of this PhD has been handled by my dear parents. Being far from you did not 

reduce, instead enforced your ultimate support.  Sizi seviyorum, size laik olmak için elimden geleni 

yapacağım. Sizlere minnettarım! 

 

 

Sinan Güven 

Basel – Cambridge, 2012 

  

 

 

 



 66 

E. CURICULUM VITAE 

 

First name, Surname: SİNAN GÜVEN    
 

Date of Birth:  May 7, 1979      185 Elm Street 

Nationality: Turkish       Cambridge 02139 MA, USA 

Gender:       Male sinansnp@yahoo.com 

 

Education:  

2007 - 2011 Ph.D. Department of Biomedicine, University of Basel, Switzerland 

 

2003 - 2006  M.S.  Department of Biotechnology, Middle East Technical University, 

Ankara - Turkey      

 

1999 - 2003 B.S. Department of Chemistry, Middle East Technical University, 

Ankara - Turkey  

                              

Language:        Excellent command of both spoken and written English 

  Good command of both spoken and written Bulgarian 

Turkish native language 

 

Positions and employment:  

2012 - present Post-doctoral fellow, Harvard-MIT Health Sciences and Technology, 

Massachusetts, USA 

  2011 - 2012 Post-doctoral fellow, University Hospital Basel, Switzerland    

 2007 - 2011   PhD Student, University Hospital Basel, Switzerland 

2006 - 2007 Visitor scientist, Ludwig Boltzmann Institute for Experimental and Clinical 

Traumatology, Vienna - Austria 

2004 - 2007  Teaching and Research Assistant, Faculty of Pharmacy, Hacettepe    

University, Ankara - Turkey  

 

Publications: 

Helmrich U, Güven S, Groppa E, Largo R, Martin I, Scherberich A, Banfi A, VEGF 

expression by human mesenchymal stem/stromal cells promotes vascularization of 

osteogenic grafts, but imbalances bone homeostasis towards increased resorption, 

2012, Submitted 

 

Mehrkens A, Saxer F, Güven S, Hoffmann W, Müller AM, Jakob M, Weber FE, Martin 

I, Scherberich A, Intraoperative engineering of osteogenic grafts combining freshly 

harvested, human adipose-derived cells and physiological doses of bone 

morphogenetic protein-2,  2012, Submitted 

 

Güven S, Karagianni M, Schwalbe M, Shreiner S, Farhadi J, Bula S, Bieback K, 

Martin I, Scherberich A. Validation of an Automated Procedure to Isolate Human 



 67 

Adipose Tissue - Derived Cells by Using the SEPAX 
TM

 Technology, Tissue 

Engineering Part C, 2012, Vol18 

 

Güven S, Mehrkens A, Saxer F, Schaefer DJ, Martinetti R, Martin I, Scherberich A, 

Engineering of large osteogenic grafts with rapid engraftment capacity using 

mesenchymal and endothelial progenitors from human adipose tissue, Biomaterials, 

2011 32:5801-5809  

 

Papadimitropoulos A, Scherberich A, Güven S,
 
Theilgaard N, Alphons Crooijmans 

HJ,
 
Santini F,  Scheffler K, Zallone A, Martin I,  A 3D in vitro bone organ model using 

human progenitor cells, Eur Cell Mater, 2011 21:445-458 

 

Largo RD, Häcki J, Gueven S, Scherberich A, Kämpfen A, Kalbermatten DF, Haug 

MD, Schaefer DJ, Clinical use and safety aspects of autologous fat transplantation in 

the female breast [in German] Swiss Medical Forum, 2011 11:489-494 

Müller AM, Mehrkens A, Schäfer DJ, Jaquiery C, Güven S, Lehmicke M, Martinetti R, 

Farhadi I, Jakob M, Scherberich A, Martin I. Towards an intraoperative engineering of 

osteogenic and vasculogenic grafts from the stromal vascular fraction of human 

adipose tissue. Eur Cell Mater. 2010 19:127-35 

Kossowska-Tomaszczuk K, Pelczar P, Güven S, Kowalski J, Volpi E, De Geyter C, 

Scherberich A. A novel three-dimensional culture system allows prolonged culture of 

functional human granulosa cells and mimics the ovarian environment Tissue Eng 

Part A. 2010 (6):2063-73 

 

 

Selected Abstracts and Conferences Attended: 

 

Marsano A, Perugini V, Centola M, Güven S, Banfi A, Meikle ST, Guildford AL, Santin 
M, Martin I. In vivo chondrogenesis by using anti angiogenic peptides. 24th European 
Conference on Biomaterials, September 4-9th, 2011, Dublin – Ireland 
 
Helmrich U, Güven S, Melly L, Christ L, , Scherberich A, Heberer M, Martin I, Banfi A. 
VEGF-expressing MSC for rapid vascularization of tissue-engineered bone grafts, 
TERMIS EU, June 7 – 10th, 2011, Granada – Spain 
 
Güven S, Mehrkens A, Saxer F, Schaefer DJ, Santoro R, Martinetti R, Martin I, 
Scherberich A. Prevascularization and in vivo performance of critically-sized 
osteogenic grafts based on progenitors from human adipose tissue.Orthopaedic 
Research Society Annual Meeting 2011 13-16 January 2011 Long Beach - USA. 
 
Marsano A, Bernegger P, Ghanaati S, Güven S, Helmrich U, Kirkpatrick CJ, Barbero 
A, Banfi A, Martin I Improved in vivo chondrogenesis by human nasal chondrocytes 
engineered to express soluble VEGF receptor-2. Orthopaedic Research Society 
Annual Meeting 2011 13-16 January 2011 Long Beach - USA. 
 
Mehrkens A, Di Maggio N, Banfi A, Güven S, Scherberich A, Heberer M, Martin I. 
Non-adherent mesenchymal progenitors are present in the stromal vascular fraction 
of freshly isolated human adipose tissue and are able to self-renew in suspension 
when cultured on their niche Orthopaedic Research Society Annual Meeting 2011 13-
16 January 2011 Long Beach - USA. 
 
Bourgine P, Gueven S, Scherberich A, Martin I. Generation and characterization of 
an immortalized bone marrowderived mesenchymal stem cell line in comparison to 
the primary counterpart. Swiss Stem Cell Network Meeting 2011 Lausanne - 
Switzerland. 



 68 

 
Schreiner S, Güven S, Le Magnen C, Jakob M, Martin I, Scherberich A. Maintenance 
of CD34 expression in human adipose-derived mesenchymal stromal cells in long-
term cultures. Swiss Stem Cell Network Meeting 2011 Lausanne - Switzerland. 
 
Güven S, Mehrkens A, Saxer F, Schaefer DJ, Santoro R, Martinetti R, Martin I, 
Scherberich A. Perfusion culture of human adipose-derived progenitors to engineer 
vasculogenic, large osteogenic grafts. TERMIS EU, June 13-17, 2010 Galway - 
Ireland 
 
Güven S, Mehrkens A, Saxer F, Schaefer DJ, Martinetti R, Martin I, Scherberich A. 
Human adipose-derived cells generate large vasculogenic and osteogenic grafts. The 
summit of European Orthopaedic Research Society 30 June-2 July 2010 Davos - 
Switzerland 
Mehrkens A, Saxer F, Müller AM, Güven S, Schäfer DJ, Jakob M, Martin I, 
Scherberich A Towards an intraoperative engineering of osteogenic grafts with cells 
from human adipose tissue. American Academy of Orhopaedic Surgeons annual 
Meeting 2010 Las Vegas – USA 
 
Güven S, Ulubayram K. Hacettepe University, Biomaterials-Tissue Engineering-
Regenerative Medicine (BIOTERM) Group poster presentation, TERMIS-EU, 
September 4-7, 2007 London - UK 
 
Güven S, Ulubayram K, Hasirci N, “Integrated Biomimetic Scaffolds for Skin Tissue 
Engineering”, 1. Marie Curie Cutting Edge InVENTS Conference on New 
Developments on Polymers for Tissue Engineering, Replacement and Regeneration, 
June 1-5, 2006 Funchal, Madeira - Portugal 

 

 

Awards: 

2011 University of Basel, Travel award 

2011 Orthopaedic Research Society Annual Meeting,  

New Investigator Recognition Awards Finalist, Long Beach - USA  

2010 Tissue Engineering and Regenerative Medicine Int. Society EU,  

50 Best Abstracts Awards, Galway - Ireland. 

2006 European Union Leonardo da Vinci Scholarship, Ankara - Turkey 

 

 

Certificates and Qualifications: 

 

 January 2010  Laboratory Animal Experiments course Zürich - Switzerland 

 

Sep. 2006-Jan.2007 Certificate on “Development of Basic Cell Culture Techniques 

for Tissue Engineering Applications”, Ludwig Boltzmann 

Institute for Experimental and Clinical Traumatologie, Vienna 

- Austria  

  

June 27-28, 2006 Nanotechnology Workshop, Hacettepe University, Ankara -

Turkey  

 



 69 

June 1-5, 2006 1
st
 Marie Curie Cutting Edge InVENTS Conference on New 

Developments on Polymers for Tissue Engineering, 

Replacement and Regeneration, Funchal, Madeira - Portugal 

     

Nov.24-26, 2004 Basic Principles on Cell Culture Technology and Artificial 

Organs Workshop, Department of Bioengineering, Ege 

University, İzmir - Turkey   

 

September, 2003 Preparation and Characterization of Multicomponent 

Polymer  Systems, Summer School, Technical 

University Darmstadt, Darmstadt - Germany 

  

 

Interests:  Angiogenesis, Tissue Engineering, stem cells, biomaterials, nanotechnology 


