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DEGREE BOUNDS FOR SEPARATING INVARIANTS

Martin Kohls and Hanspeter Kraft

Abstract. If V is a representation of a linear algebraic group G, a set S of G-invariant
regular functions on V is called separating if the following holds: If two elements v, v′ ∈ V

can be separated by an invariant function, then there is an f ∈ S such that f(v) 6= f(v′).
It is known that there always exist finite separating sets. Moreover, if the group G is
finite, then the invariant functions of degree ≤ |G| form a separating set. We show

that for a non-finite linear algebraic group G such an upper bound for the degrees of a

separating set does not exist.
If G is finite, we define βsep(G) to be the minimal number d such that for every G-

module V there is a separating set of degree ≤ d. We show that for a subgroup H ⊂ G

we have βsep(H) ≤ βsep(G) ≤ [G : H] ·βsep(H), and that βsep(G) ≤ βsep(G/H) ·βsep(H)
in case H is normal. Moreover, we calculate βsep(G) for some specific finite groups.

1. Introduction

Let K be an algebraically closed field of arbitrary characteristic. Let G be a linear
algebraic group and X a G-variety, i.e. an affine variety equipped with a (regular)
action of G, everything defined over K. We denote by O(X) the coordinate ring of X
and by O(X)G the subring of G-invariant regular functions. The following definition
is due to Derksen and Kemper [4, Definition 2.3.8].

Definition 1. Let X be a G-variety. A subset S ⊂ O(X)G of the invariant ring of X
is called separating (or G-separating) if the following holds:

For any pair x, x′ ∈ X, if f(x) 6= f(x′) for some f ∈ O(X)G then there is an h ∈ S
such that h(x) 6= h(x′).

It is known and easy to see that there always exists a finite separating set (see [4,
Theorem 2.3.15]).

If V is a G-module, i.e. a finite dimensional K-vector space with a regular linear
action of G, we would like to know a priory bounds for the degrees of the elements in
a separating set. We denote by O(V )d ⊂ O(V ) the homogeneous functions of degree
d (and the zero function), and put O(V )≤d :=

⊕d
i=0O(V )i.

Definition 2. For a G-module V define

βsep(G,V ) := min{d | O(V )G≤d is G-separating} ∈ N,
and set

βsep(G) := sup{βsep(G,V ) | V a G-module} ∈ N ∪ {∞}.

The main results of this note are the following.
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Theorem A. The group G is finite if and only if βsep(G) is finite.

In order to prove this we will show that βsep(K+) = ∞, that βsep(K∗) = ∞, that
βsep(G) = ∞ for every semisimple group G, and that βsep(G0) ≤ βsep(G) where G0

denotes the identity component of G (see Theorem 1 in section 3).

Theorem B. Let G be a finite group and H ⊂ G a subgroup. Then

βsep(H) ≤ βsep(G) ≤ [G : H]βsep(H), and so βsep(G) ≤ |G|.

Moreover, if H ⊂ G is normal, then

βsep(G) ≤ βsep(G/H)βsep(H).

This will be done in section 4 where we formulate and prove a more precise state-
ment (Theorem 2).

Finally, we have the following explicit results for finite groups.

Theorem C. (a) Let charK = 2. Then βsep(S3) = 4.
(b) Let charK = p > 0 and let G be a finite p-group. Then βsep(G) = |G|.
(c) Let G be a finite cyclic group. Then βsep(G) = |G|.
(d) Assume char(K) = p is odd, and r ≥ 1. Then βsep(D2pr ) = 2pr.

For a reductive group G one knows that the condition f(x) 6= f(x′) for some
invariant f (in Definition 1) is equivalent to the condition Gx ∩ Gx′ = ∅, see [13,
Corollary 3.5.2]. This gives rise to the following definition.

Definition 3. Let X be a G-variety. A G-invariant morphism ϕ : X → Y where Y
is an affine variety is called separating (or G-separating) if the following condition
holds: For any pair x, x′ ∈ X such that Gx ∩Gx′ = ∅ we have ϕ(x) 6= ϕ(x′).

Remark 1. If ϕ : X → Y is G-separating and X ′ ⊂ X a closed G-stable subvariety,
then the induced morphism ϕ|X′ : X ′ → Y is also G-separating.

Remark 2. Choose a closed embedding Y ⊂ Km and denote by ϕ1, . . . , ϕm ∈ O(X)
the coordinate functions of ϕ : X → Y ⊂ Km. If ϕ is separating, then {ϕ1, . . . , ϕm}
is a separating set. The converse holds if G is reductive, but not in general, as shown
by the standard linear action of K+ on K2 given by s(x, y) = (x+ sy, y) which does
not admit a separating morphism, but has {y} as a separating set.

2. Some useful results

We want to recall some facts about the βsep-values, and compare them with results
for the classical β-values for generating invariants introduced by Schmid [15]: β(G)
is the minimal d ∈ N such that, for every G-module V , the invariant ring O(V )G is
generated by the invariants of degree ≤ d.

By Derksen and Kemper [4, Corollary 3.9.14], we have βsep(G) ≤ |G|. This is in
perfect analogy to the Noether bound which says that β(G) ≤ |G| in the non-modular
case (i.e. if char(K) - |G|), see [8, 9, 15]. Of course we have βsep(G) ≤ β(G), so every
upper bound for β(G) gives one for βsep(G).
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In characteristic zero and in the non-modular case there are the bounds by Schmid
[15] and by Domokos, Hegedüs, and Sezer [6, 16] which improve the Noether
bound. In particular, β(G) ≤ 3

4 |G| for non-modular non-cyclic groups G, by [16] .
For a linear algebraic group G it is shown by Bryant, Derksen and Kemper

[2, 5] that β(G) < ∞ if and only if G is finite and p - |G| which is the analogon to
our Theorem A. For further results on degree bounds, we recommend the overview
article of Wehlau [18].

The following results will be useful in the sequel.

Proposition 1. Let H ⊂ G be a closed subgroup, X an affine G-variety and Z an
affine H-variety. Let ι : Z → X be an H-equivariant morphism and assume that ι∗

induces a surjection O(X)G � O(Z)H . If S ⊂ O(X)G is G-separating, then the
image ι∗(S) ⊂ O(Z)H is H-separating.

Proof. Let f ∈ O(Z)H and z1, z2 ∈ Z such that f(z1) 6= f(z2). By assumption
f = ι∗(f̃) for some f̃ ∈ O(X)G. Put xi := ι(zi). Then f̃(x1) = f(z1) 6= f(z2) = f̃(x2).
Thus we can find an h ∈ S such that h(x1) 6= h(x2). It follows that h̄ := ι∗(h) ∈ ι∗(S)
and h̄(z1) = h(x1) 6= h(x2) = h̄(z2). �

Remark 3. In general, the inverse map (ι∗)−1 does not take H-separating sets to
G-separating sets. Take K+ ⊂ SL2 as the subgroup of upper triangular unipotent
matrices, X = K2 ⊕K2 ⊕K2 the sum of three copies of the standard representation
of SL2 and Z = K2⊕K2 the sum of two copies of the standard representation of K+.
Then ι : Z → X, (v, w) 7→ ((1, 0), v, w) is K+-equivariant and induces an isomorphism
O(X)SL2

∼−→ O(Z)K
+

(see [14]). In fact, choosing the coordinates (x0, x1, y0, y1, z0, z1)
on X and (y0, y1, z0, z1) on Y , we get from the classical description [3] of the invariants
and covariants of copies of K2:

O(X)SL2(K) = K[y1x0 − y0x1, z1x0 − z0x1, y1z0 − y0z1],

O(Y )K
+

= K[y1, z1, y1z0 − y0z1],

and the claim follows, because ι∗(x0) = 1, ι∗(x1) = 0.
Now take S := {y1, z1, y1(y1z0 − y0z1), z1(y1z0 − y0z1)} ⊂ O(Z)K

+
. We claim that

S is a K+-separating set, but (ι∗)−1(S) ⊂ O(X)SL2 is not SL2-separating. For the
first claim one has to use that if y1 and z1 both vanish, then the third generator
y1z0 − y0z1 of the invariant ring O(Y )K

+
also vanishes. For the second claim we

consider the elements v = ((0, 0), (0, 0), (0, 0)) and v′ = ((0, 0), (1, 0), (0, 1)) of X,
which are separated by the invariants, but not by (ι∗)−1(S).

For the following application recall that for a closed subgroup H ⊂ G of finite index
the induced module IndGH V of an H-module V is a finite dimensional G-module.

Corollary 1. Let H ⊂ G be a closed subgroup of finite index and let V be an H-
module. Then βsep(H,V ) ≤ βsep(G, IndGH V ). In particular, βsep(H) ≤ βsep(G).

Proof. By definition, IndGH V contains V as an H-submodule in a canonical way. If
n := [G : H] and G =

⋃n
i=1 giH, then IndGH V =

⊕n
i=1 giV . Moreover, the inclusion

ι : V ↪→ IndGH V induces a surjection ι∗ : O(IndGH(V ))G � O(V )H , f 7→ f |V . In fact,
for f ∈ O(V )H+ , a preimage f̃ is given by f̃(g1v1, . . . , gnvn) :=

∑n
i=1 f(vi), vi ∈ V ,
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which is easily seen to be G-invariant. Now the claim follows from Proposition 1 above,
because the restriction map ι∗ is linear and so preserves degrees. �

Proposition 2 (Derksen and Kemper [4, Theorem 2.3.16]). Let G be a reductive
group, V a G-module und U ⊂ V a submodule. The restriction map O(V ) → O(U),
f 7→ f |U takes every separating set of O(V )G to a separating set of O(U)G. In par-
ticular, we have

βsep(G,U) ≤ βsep(G,V ).

Let us mention here that in positive characteristic the restriction map is in gen-
eral not surjective when restriced to the invariants, and so a generating set is not
necessarily mapped onto a generating set.

We finally remark that for finite groups there always exist G-modules V such that
βsep(G,V ) = βsep(G). The same holds for the β-values in characteristic zero.

Proposition 3. Let G be a finite group group and Vreg = KG its regular representa-
tion. Then

βsep(G) = βsep(G,Vreg).

In fact, every G-module V can be embedded as a submodule into V dimV
reg . Since, by

[7, Corollary 3.7], βsep(G,V m) = βsep(G,V ) for any G-module V and every positive
integer m, the claim follows from Proposition 2.

3. The case of non-finite algebraic groups

In this section we prove the following theorem which is equivalent to Theorem A
from the first section.

Theorem 1. For any non-finite linear algebraic group G we have βsep(G) = ∞.

We start with the additive groupK+. Denote by V = Ke0⊕Ke1 ' K2 the standard
2-dimensional K+-module: s·e0 := e0, s·e1 := se0+e1 for s ∈ K+. If charK = p > 0
we can “twist” the module V with the Frobenius map Fn : K+ → K+, s 7→ sp

n

to
obtain another K+-module which we denote by VFn .

Proposition 4. Let charK = p > 0 and consider the K+-module W := V ⊕ VFn .
We write O(W ) = K[x0, x1, y0, y1]. Then O(W )K

+
= K[x1, y1, x

pn

0 y1 − xp
n

1 y0]. In
particular, βsep(K+,W ) = pn + 1 and so βsep(K+) = ∞.

Proof. It is easy to see that f := xp
n

0 y1 − xp
n

1 y0 is K+-invariant. Define the K+-
invariant morphism

π : W → K3, w = (a0, a1, b0, b1) 7→ (a1, b1, a
pn

0 b1 − ap
n

1 b0).

Over the affine open set U := {(c1, c2, c3) ∈ K3 | c1 6= 0}, the induced map π−1(U) →
U is a trivialK+-bundle. In fact, the morphism ρ : U → π−1(U) given by (c1, c2, c3) 7→
(0, c1,−c−p

n

1 c3, c2) is a section of π, inducing a K+-equivariant isomorphism K+ ×
U

∼−→ π−1(U), (s, u) 7→ s ·ρ(u). This implies that O(W )K
+

x1
= K[x1, x

−1
1 , y1, f ], hence

O(W )K
+

= K[x0, x1, y0, y1] ∩K[x1, x
−1
1 , y1, f ], and the claim follows easily. �
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If K has characteristic zero, we need a different argument. Denote by Vn := SnV
the nth symmetric power of the standard K+-module V = Ke0 ⊕Ke1 (see above).
This module is cyclic of dimension n + 1, i.e. Vn = 〈K+vn〉 where vn := en1 , and for
any s ∈ K+, s 6= 0, the endomorphism v 7→ sv − v of Vn is nilpotent of rank n. In
particular, V K

+

n = Kv0 where v0 := en0 ∈ Vn.

Remark 4. For q ≥ 1 consider the qth symmetric power SqVn of the module Vn. Then
the cyclic submodule 〈K+vqn〉 ⊂ SqVn generated by vqn is K+-isomorphic to Vqn, and
〈K+vqn〉K

+
= Kvq0. One way to see this is by remarking that the modules Vn are

SL2(K)-modules in a natural way, and then to use representation theory of SL2(K).

Proposition 5. Let charK = 0. Consider the K+-module W = V ∗⊕Vn and the two
vectors w := (x0, v0) and w′ := (x0, 0) of W . Then there is a K+-invariant function
f ∈ O(W )K

+
separating w and w′, and any such f has degree deg f ≥ n + 1. In

particular, βsep(K+,W ) ≥ n+ 1, and so βsep(K+) = ∞.

Proof. Let U1, U2 be two finite dimensional vector spaces. There is a canonical iso-
morphism

Ψ: O(U∗
1 ⊕ U2)(p,q)

∼−→ Hom(SqU2, S
pU1)

where O(U∗
1 ⊕ U2)(p,q) denotes the subspace of those regular functions on U∗

1 ⊕ U2

which are bihomogeneous of degree (p, q). If F = Ψ(f), then for any x ∈ U∗
1 and

u ∈ U2 we have
f(x, u) = xp(F (uq)).

(Since we are in characteristic 0 we can identify Sp(U∗
1 ) with (SpU1)∗.) Moreover, if

U1, U2 are G-modules, then Ψ is G-equivariant and induces an isomorphism between
the G-invariant bihomogeneous functions and the G-linear homomorphisms:

Ψ: O(U∗
1 ⊕ U2)G(p,q)

∼−→ HomG(SqU2, S
pU1).

For the K+-module W = V ∗ ⊕ Vn we thus obtain an isomorphism

Ψ: O(V ∗ ⊕ Vn)K
+

(p,q)
∼−→ HomK+(SqVn, SpV ).

Putting p = n and q = 1 and defining f ∈ O(V ∗ ⊕ Vn)K
+

(n,1) by Ψ(f) = IdVn , we get
f(w) = f(x0, v0) = xn0 (v0) = xn0 (en0 ) 6= 0, and f(w′) = f(x0, 0) = 0. Hence w and w′

can be separated by invariants.
Now let f be a K+-invariant separating w and w′ where deg f = d. We can clearly

assume that f is bihomogeneous, say of degree (p, q) where p+q = d. Because f must
depend on Vn, we have q ≥ 1. Hence f(w′) = f(x0, 0) = 0, and so f(w) = f(x0, v0) 6=
0. This implies for F := Ψ(f) that F (vq0) 6= 0. Now it follows from Remark 4 above
that F induces an injective map of 〈K+vqn〉 into SpV , and so

p+ 1 = dimSpV ≥ dim〈K+vqn〉 = qn+ 1 ≥ n+ 1.

Hence deg f = p+ q ≥ n+ 1. �

To handle the general case we use the following construction. Let G be an algebraic
group and H ⊂ G a closed subgroup. We assume that H is reductive. For an affine
H-variety X we define

G×H X := (G×X)//H := Spec(O(G×X)H)
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where H acts (freely) on the product G × X by h(g, x) := (gh−1, hx), commuting
with the action of G by left multiplication on the first factor. We denote by [g, x] the
image of (g, x) ∈ G×X in the quotient G×H X.

The following is well-known. It follows from general results from geometric invariant
theory, see e.g. [12].

(a) The canonical morphism G×H X → G/H, [g, x] 7→ gH, is a fiber bundle (in
the étale topology) with fiber X.

(b) If the action of H on X extends to an action of G, then G×HX ∼−→ G/H×X
where G acts diagonally on G/H ×X (i.e. the fiber bundle is trivial).

(c) The canonical morphism ι : X ↪→ G ×H X given by x 7→ [e, x] is an H-
equivariant closed embedding.

Lemma 1. If ϕ : G ×H X → Y is G-separating, then the composite morphism ϕ ◦
ι : X → Y is H-separating. Moreover, if S ⊂ O(G×HX)G is a G-separating set, then
its image ι∗(S) ⊂ O(X)H is H-separating.

Proof. For x ∈ X we have G[e, x] = [G,Hx]. Therefore, if Hx ∩ Hx′ = ∅, then
G[e, x] ∩ G[e, x′] = ∅ and so ϕ ◦ ι(x) = ϕ([e, x]) 6= ϕ([e, x′]) = ϕ ◦ ι(x′). The second
claim follows from Proposition 1, because O(G×H X)G = O(G×X)G×H = O(X)H

and so ι∗ induces an isomorphism O(G×H X)G ∼−→ O(X)H . �

Now let V be a G-module and X := V |H , the underlying H-module. Let H act
on G by right-multiplication with the inverse. As H is reductive, the categorical
quotient G//H exists as an affine G-variety, and can be identified with the set of left
cosets G/H (see [17, Exercise 5.5.9 (8)]). Choose a closed G-equivariant embedding
G/H

∼−→ Gw0 ↪→W where W is a G-module (see [4, Lemma A.1.9]). Then we get the
following composition of closed embeddings where the first one is H-equivariant and
the remaining are G-equivariant:

µ : V |H ↪→ G×H V
∼−→ G/H × V ↪→W × V.

The map µ is given by µ(v) = (w0, v). It follows from Lemma 1 and Remark 1 that
for any G-separating morphism ϕ : W × V → Y the composition ϕ ◦ µ : V |H → Y
is H-separating. In particular, if G is reductive, then for any G-separating set S ⊂
O(W × V ) the image µ∗(S) ⊂ O(V )H is H-separating. Since degµ∗(f) ≤ deg f this
implies the following result.

Proposition 6. Let G be a reductive group, H ⊂ G a closed reductive subgroup and
V ′ an H-module. If V ′ is isomorphic to an H-submodule of a G-module V , then

βsep(H,V ′) ≤ βsep(G).

Now we can prove the main result of this section,

Proof of Theorem 1. By Corollary 1 we can assume that G is connected.
(a) Let G be semisimple, T ⊂ G a maximal torus and B ⊃ T a Borel subgroup. If

λ ∈ X(T ) is dominant we denote by Eλ the Weyl-module of G of highest weight λ, and
by Dλ ⊂ Eλ the highest weight line. Choose a one-parameter subgroup ρ : K∗ → T
and define k0 ∈ Z by ρ(t)u = tk0 · u for u ∈ Dλ. For any n ∈ N put

V ′
n := (Dλ)∗ ⊕Dnλ ⊂ Vn := (Eλ)∗ ⊕ Enλ.
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Then V ′
n is a two-dimensional K∗-module with weights (−k0, nk0). Hence O(V ′

n)
K∗

is
generated by a homogeneous invariant of degree n + 1 and so βsep(K∗, V ′

n) = n + 1.
Now Proposition 6 implies

n+ 1 = βsep(K∗, V ′
n) ≤ βsep(G)

and the claim follows. In addition, we have also shown that βsep(K∗) = ∞.
(b) If G admits a non-trivial character χ : G→ K∗ then the claim follows because

βsep(G) ≥ βsep(K∗) = ∞, as we have seen in (a).
(c) If the character group of G is trivial, then either G is unipotent or there is a

surjective homomorphism G → H where H is semisimple (use [17, Corollary 8.1.6
(ii)]). In the first case there is a surjective homomorphism G → K+ and the claim
follows from Proposition 4 and Proposition 5. In the second case the claim follows
from (a). �

4. Relative degree bounds

In this section all groups are finite. We want to prove the following result which
covers Theorem B from the first section.

Theorem 2. Let G be a finite group, H ⊂ G a subgroup, V a G-module and W an
H-module. Then

βsep(H,W ) ≤ βsep(G, IndGHW ) and βsep(G,V ) ≤ [G : H]βsep(H,V ).

In particular

βsep(H) ≤ βsep(G) ≤ [G : H]βsep(H), and so βsep(G) ≤ |G|.
Moreover, if H ⊂ G is normal, then

βsep(G) ≤ βsep(G/H)βsep(H).

Note that the inequalities βsep(G,V ) ≤ [G : H]βsep(H,V ) and βsep(G) ≤ |G| were
already proved by Derksen and Kemper ([11, Corollary 24], [4, Corollary 3.9.14]).

The proof needs some preparation. Let V,W be finite dimensional vector spaces
and ϕ : V →W a morphism, i.e. a polynomial map.

Definition 4. The degree of ϕ is defined in the following way, generalizing the de-
gree of a polynomial function. Choose a basis (w1, . . . , wm) of W , so that ϕ(v) =∑m
j=1 fj(v)wj for v ∈ V . Then

degϕ := max{deg fj | j = 1, . . . ,m}.
It is easy to see that this is independent of the choice of a basis.

If V is a G-module and ϕ : V → W a separating morphism, then βsep(G,V ) ≤
degϕ. Moreover, there is a separating morphism ϕ : V → W for some W such that
βsep(G,V ) = degϕ.

For any (finite dimensional) vector space W we regard W d = W ⊗Kd as the direct
sum of dimW copies of the standard Sd-module Kd. In this case we have the following
result due to Draisma , Kemper and Wehlau [7, Theorem 3.4].
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Lemma 2. The polarizations of the elementary symmetric functions form an Sd-
separating set of W d. In particular, there is an Sd-separating morphism ψW : W d →
KN of degree ≤ d.

Recall that the polarizations of a function f ∈ O(U) to n copies of U are defined
in the following way. Write

f(t1u1 + t2u2 + · · ·+ tnun) =
∑

i1,i2,...,in

ti11 t
i2
2 · · · tinn fi1i2...in(u1, u2, . . . , un)

Then the functions fi1i2...in(u1, u2, . . . , un) ∈ O(Un) are called polarizations of f .
Clearly, deg fi1i2...in ≤ deg f . Moreover, if U is a G-module and f a G-invariant, then
all fi1i2...in are G-invariants with respect to the diagonal action of G on Un.

Proof of Theorem 2. The first inequality βsep(H,W ) ≤ βsep(G, IndGHW ) is shown in
Corollary 1.

Let V be a G-module, v, w ∈ V , and let ϕ : V →W be an H-separating morphism
of degree βsep(H,V ). Consider the partition of G into H-right cosets: G =

⋃d
i=1Hgi

where d := [G : H]. Define the following morphism

ϕ̄ : V
ϕ̃−−−−→ W d ψW−−−−→ KN

where ϕ̃(v) := (ϕ(g1v), . . . , ϕ(gdv)) and ψW : W d → KN is the separating morphism
from Lemma 2.

We claim that ϕ̄ is G-separating. In fact, for g ∈ G define the permutation σ ∈
Sd by Hgig = Hgσ(i), i.e. gig = higσ(i) for a suitable hi ∈ H. Then ϕ(gigv) =
ϕ(higσ(i)v) = ϕ(gσ(i)v) and so ϕ̃(gv) = σ−1ϕ̃(v). This shows that ϕ̄ is G-invariant.

Assume now that gv 6= w for all g ∈ G. This implies that hgiv 6= w for all h ∈ H
and i = 1, . . . d, and so ϕ(giv) 6= ϕ(w) for i = 1, . . . , d, because ϕ is H-separating.
As a consequence, ϕ̃(v) 6= σϕ̃(w) for all permutations σ ∈ Sd, hence ϕ̄(v) 6= ϕ̄(w),
because ψW is Sd-separating, and so ϕ̄ is G-separating.

For the degree we get deg ϕ̄ ≤ degψW ·deg ϕ̃ ≤ d ·degϕ = [G : H]βsep(H,V ). This
shows that

βsep(G,V ) ≤ [G : H]βsep(H,V ).
If H ⊂ G is normal we can find an H-separating morphism ϕ : V → W of degree
βsep(H,V ) such that W is a G/H-module and ϕ is G-equivariant. Now choose an
G/H-separating morphism ψ : W → U of degree βsep(G/H,W ). Then the composition
ψ ◦ ϕ : V → U is G-separating of degree ≤ degψ · degϕ. Thus

βsep(G,V ) ≤ βsep(G/H,W )βsep(H,V ) ≤ βsep(G/H)βsep(H),

and the claim follows. �

5. Degree bounds for some finite groups

In principle, Proposition 3 allows to compute βsep(G) for any finite group G. Unfor-
tunately, the invariant ring O(Vreg)G does not behave well in a computational sense.
We have been able to compute βsep(G) with Magma [1] and the algorithm of [10] in
just one case (computation time about 20 minutes):
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Proposition 7 (Magma and Proposition 3). Let charK = 2. Then βsep(S3) = 4.

Proposition 8. Let charK = p > 0 and let G be a p-group. Then βsep(G) = |G|.

Proof. Let us start with a general remark. Let G be an arbitrary finite group, and
let V be a permutation module of G, i.e. there is a basis (v1, v2, . . . , vn) of V which
is permuted under G. Then the invariants are linearly spanned by the orbit sums sm
of the monomials m = xi11 x

i2
2 · · ·xinn ∈ O(V ) = K[x1, x2, . . . , xn] which are defined in

the usual way:
sm :=

∑
f∈Gm

f

The value of sm on the fixed point v := v1 + v2 + · · · + vn ∈ V equals |Gm|. Hence,
sm(v) = 0 if p divides the index [G : Gm] of the stabilizer Gm of m in G. It follows
that for a p-group G we have sm(v) 6= 0 if and only if m is invariant under G.

If, in addition, G acts transitively on the basis (v1, v2, . . . , vn), then an invariant
monomial m is a power of x1x2 · · ·xn, and thus has degree `n ≥ dimV . If we apply
this to the regular representation, the claim follows. �

With Corollary 1 we get the next result.

Corollary 2. Let charK = p > 0 and G be a group of order rpk with (r, p) = 1.
Then βsep(G) ≥ pk.

Proposition 9. Let G be a cyclic group. Then βsep(G) = |G|.

Proof. Let |G| = rpk where (r, p) = 1, p = charK, and choose two elements g, h ∈ G
of order r and q := pk, respectively, so that G = 〈g, h〉. We define a linear action of
G on V :=

⊕q
i=1Kvi by

gvi := ζ · vi and hvi := vi+1 for i = 1, . . . , q

where ζ ∈ K is a primitive rth root of unity and vq+1 := v1. We claim that the G-
invariants O(V )G are linearly spanned by the orbit sums sm where r|degm. In fact,
O(V )〈g〉 is linearly spanned by the monomials of degree `r (` ≥ 0), and the subgroup
H := 〈h〉 ⊂ G permutes these monomials.

Now look again at the element v := v1 + v2 + · · · + vq ∈ V . If r|degm then
sm(v) = |Hm|, and this is non-zero if and only if the monomial m is invariant under
H. This implies that m is a power of x1x2 · · ·xq. Since the degree of m is also a
multiple of r we finally get deg sm ≥ rq = |G|. �

Corollary 3. Let G be a finite group. Then we have

βsep(G) ≥ max
g∈G

(ord g).

Let D2n = 〈σ, ρ〉 denote the dihedral group of order 2n with ord(σ) = 2, ord(ρ) = n
and σρσ−1 = ρ−1.

Proposition 10. Assume that char(K) = p is an odd prime, and let r ≥ 1. Then
βsep(D2pr ) = 2pr.

Note that if char(K) = p = 2, then D2pr is a 2-group, so βsep(D2r+1) = 2r+1 by
Proposition 8. We conjecture that for char(K) = 2 and p an odd prime, we have
βsep(D2p) = p+ 1, which would fit with Proposition 7.
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Proof. Put q = pr and define a linear action of D2pr on V :=
⊕q−1

i=0 Kvi by

ρvi = vi+1 and σvi = −v−i for i = 0, 1, . . . , q − 1

where vj = vi if j ≡ i mod q for i, j ∈ Z. As before, the invariants under H := 〈ρ〉
are linearly spanned by the orbit sums sm :=

∑
f∈Hm f of the monomials m =

xi00 x
i1
1 · · ·x

iq−1
q−1 ∈ O(V ) = K[x0, x1, . . . , xq−1]. Thus, the D2pr -invariants are linearly

spanned by the functions {sm + σsm | m a monomial}.
For v := v0 +v1 + · · ·+vq−1 we get σsm(v) = sm(σv) = (−1)degmsm(v). Therefore,

sm+σsm is non-zero on v if and only if sm(v) 6= 0 and the degree ofm is even. As in the
proof of Proposition 9, sm(v) 6= 0 implies that m is a power of x0x1 · · ·xq−1 which has
to be an even power since q is odd. Thus, for m := (x0x1 · · ·xq−1)2, sm + σsm = 2m
is an invariant of smallest possible degree, namely 2q, which does not vanish on v. �

Let IH := O(V )G+O(V ) denote the Hilbert-ideal, i.e. the ideal in O(V ) generated
by all homogeneous invariants of positive degree. It is conjectured by Derksen and
Kemper that IH is generated by invariants of positive degree ≤ |G|, see [4, Conjecture
3.8.6 (b)]. The following corollary shows that this conjectured bound can not be
sharpened in general.

Corollary 4. Let charK = p and G a p-group (with p > 0), or a cyclic group, or
G = D2pr with p odd. Then there exists a G-module V such that IH is not generated
by homogeneous invariants of positive degree strictly less than |G|.

Proof. In the proofs of the Propositions 8, 9 and 10 respectively, we constructed a G-
module V and a non-zero v ∈ V such that f(v) = 0 for all homogeneous f ∈ O(V )G

of positive degree strictly less than |G|, but such that there exists a homogeneous
f ∈ O(V )G of degree |G| with f(v) 6= 0. This shows that f /∈ O(V )G+,<|G|O(V ). �

Now we use relative degree bounds for separating invariants and good degree
bounds for generating invariants of non-modular groups, that appear as a subquo-
tient, to get improved degree bounds for separating invariants in the modular case.

Proposition 11. Let charK = p and G be a finite group. Assume there exists a
chain of subgroups N ⊂ H ⊂ G such that N is a normal subgroup of H and such that
H/N is non-cyclic of order s coprime to p. Then

βsep(G) ≤
{

3
4 |G| in case s is even
5
8 |G| in case s is odd.

Proof. By Sezer [16], for a non-cyclic non-modular group U , we have β(U) ≤ 3
4 |U |

in case |U | is even, and β(U) ≤ 5
8 |U | in case |U | is odd. We now assume s is even;

the other case is essentially the same. Since βsep(U) ≤ β(U) always holds, we get by
using Theorem 2

βsep(G) ≤ βsep(H)[G : H] ≤ βsep(N)βsep(H/N)[G : H]

≤ β(H/N)[G : H]|N | ≤ 3
4
[H : N ][G : H]|N | = 3

4
|G|.

�
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Example 1. Assume p = 3 and G = A4. The Klein four group is a non-cyclic
non-modular subgroup of even order. We get βsep(A4) ≤ 3

4 |A4| = 9. Application of
Theorem 2 shows βsep(A4 ×A4) ≤ βsep(A4)2 ≤ 81.

Example 2. Let D2n be the dihedral group of order 2n. We know n ≤ βsep(D2n) by
Corollary 3. Assume charK = p 6= 2 and n = prm with p,m coprime and m > 1.
Then D2n has the non-cyclic subgroup D2m of even order, so βsep(D2n) ≤ 3

42n = 3
2n.

So the only dihedral groups, to which the proposition above does not apply, are those
of the form D2pr , which are covered by Proposition 10.

We end this section with two questions:

Question 1. Which finite groups G satisfy βsep(G) = |G|?

Question 2. Which finite groups G do not have a non-cyclic non-modular subquo-
tient?

The dihedral groups of Proposition 10 satisfy this property, and we get βsep(G) =
|G| for those groups. But in characteristic 2, βsep(S3) < |S3| by Proposition 7, so the
answer to the second question only partially helps to solve the first one.

Note added in proof: The conjecture following Proposition 10 claiming that in characteristic 2

we have βsep(D2p) = p + 1 for an odd prime p was recently proved by the first author jointly with

Müfit Sezer: Invariants of the dihedral group D2p in characteristic two, Preprint 2010.
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