DEGREE BOUNDS FOR SEPARATING INVARIANTS

Martin Kohls and Hanspeter Kraft

Abstract

If V is a representation of a linear algebraic group G, a set S of G-invariant regular functions on V is called separating if the following holds: If two elements $v, v^{\prime} \in V$ can be separated by an invariant function, then there is an $f \in S$ such that $f(v) \neq f\left(v^{\prime}\right)$. It is known that there always exist finite separating sets. Moreover, if the group G is finite, then the invariant functions of degree $\leq|G|$ form a separating set. We show that for a non-finite linear algebraic group G such an upper bound for the degrees of a separating set does not exist.

If G is finite, we define $\beta_{\text {sep }}(G)$ to be the minimal number d such that for every G module V there is a separating set of degree $\leq d$. We show that for a subgroup $H \subset G$ we have $\beta_{\text {sep }}(H) \leq \beta_{\text {sep }}(G) \leq[G: H] \cdot \beta_{\text {sep }}(H)$, and that $\beta_{\text {sep }}(G) \leq \beta_{\text {sep }}(G / H) \cdot \beta_{\text {sep }}(H)$ in case H is normal. Moreover, we calculate $\beta_{\text {sep }}(G)$ for some specific finite groups.

1. Introduction

Let K be an algebraically closed field of arbitrary characteristic. Let G be a linear algebraic group and X a G-variety, i.e. an affine variety equipped with a (regular) action of G, everything defined over K. We denote by $\mathcal{O}(X)$ the coordinate ring of X and by $\mathcal{O}(X)^{G}$ the subring of G-invariant regular functions. The following definition is due to Derksen and Kemper [4, Definition 2.3.8].
Definition 1. Let X be a G-variety. A subset $S \subset \mathcal{O}(X)^{G}$ of the invariant ring of X is called separating (or G-separating) if the following holds:

For any pair $x, x^{\prime} \in X$, if $f(x) \neq f\left(x^{\prime}\right)$ for some $f \in \mathcal{O}(X)^{G}$ then there is an $h \in S$ such that $h(x) \neq h\left(x^{\prime}\right)$.

It is known and easy to see that there always exists a finite separating set (see [4, Theorem 2.3.15]).

If V is a G-module, i.e. a finite dimensional K-vector space with a regular linear action of G, we would like to know a priory bounds for the degrees of the elements in a separating set. We denote by $\mathcal{O}(V)_{d} \subset \mathcal{O}(V)$ the homogeneous functions of degree d (and the zero function), and put $\mathcal{O}(V)_{\leq d}:=\bigoplus_{i=0}^{d} \mathcal{O}(V)_{i}$.
Definition 2. For a G-module V define

$$
\beta_{\operatorname{sep}}(G, V):=\min \left\{d \mid \mathcal{O}(V)_{\leq d}^{G} \text { is } G \text {-separating }\right\} \in \mathbb{N},
$$

and set

$$
\beta_{\text {sep }}(G):=\sup \left\{\beta_{\text {sep }}(G, V) \mid V \text { a } G \text {-module }\right\} \in \mathbb{N} \cup\{\infty\} .
$$

The main results of this note are the following.

[^0]Theorem A. The group G is finite if and only if $\beta_{\mathrm{sep}}(G)$ is finite.
In order to prove this we will show that $\beta_{\text {sep }}\left(K^{+}\right)=\infty$, that $\beta_{\text {sep }}\left(K^{*}\right)=\infty$, that $\beta_{\text {sep }}(G)=\infty$ for every semisimple group G, and that $\beta_{\text {sep }}\left(G^{0}\right) \leq \beta_{\text {sep }}(G)$ where G^{0} denotes the identity component of G (see Theorem 1 in section 3).

Theorem B. Let G be a finite group and $H \subset G$ a subgroup. Then

$$
\beta_{\mathrm{sep}}(H) \leq \beta_{\mathrm{sep}}(G) \leq[G: H] \beta_{\mathrm{sep}}(H), \text { and so } \beta_{\mathrm{sep}}(G) \leq|G|
$$

Moreover, if $H \subset G$ is normal, then

$$
\beta_{\text {sep }}(G) \leq \beta_{\text {sep }}(G / H) \beta_{\text {sep }}(H)
$$

This will be done in section 4 where we formulate and prove a more precise statement (Theorem 2).

Finally, we have the following explicit results for finite groups.
Theorem C. (a) Let char $K=2$. Then $\beta_{\text {sep }}\left(S_{3}\right)=4$.
(b) Let char $K=p>0$ and let G be a finite p-group. Then $\beta_{\text {sep }}(G)=|G|$.
(c) Let G be a finite cyclic group. Then $\beta_{\operatorname{sep}}(G)=|G|$.
(d) Assume $\operatorname{char}(K)=p$ is odd, and $r \geq 1$. Then $\beta_{\text {sep }}\left(D_{2 p^{r}}\right)=2 p^{r}$.

For a reductive group G one knows that the condition $f(x) \neq f\left(x^{\prime}\right)$ for some invariant f (in Definition 1) is equivalent to the condition $\overline{G x} \cap \overline{G x^{\prime}}=\emptyset$, see [13, Corollary 3.5.2]. This gives rise to the following definition.

Definition 3. Let X be a G-variety. A G-invariant morphism $\varphi: X \rightarrow Y$ where Y is an affine variety is called separating (or G-separating) if the following condition holds: For any pair $x, x^{\prime} \in X$ such that $\overline{G x} \cap \overline{G x^{\prime}}=\emptyset$ we have $\varphi(x) \neq \varphi\left(x^{\prime}\right)$.

Remark 1. If $\varphi: X \rightarrow Y$ is G-separating and $X^{\prime} \subset X$ a closed G-stable subvariety, then the induced morphism $\left.\varphi\right|_{X^{\prime}}: X^{\prime} \rightarrow Y$ is also G-separating.

Remark 2. Choose a closed embedding $Y \subset K^{m}$ and denote by $\varphi_{1}, \ldots, \varphi_{m} \in \mathcal{O}(X)$ the coordinate functions of $\varphi: X \rightarrow Y \subset K^{m}$. If φ is separating, then $\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}$ is a separating set. The converse holds if G is reductive, but not in general, as shown by the standard linear action of K^{+}on K^{2} given by $s(x, y)=(x+s y, y)$ which does not admit a separating morphism, but has $\{y\}$ as a separating set.

2. Some useful results

We want to recall some facts about the $\beta_{\text {sep }}$-values, and compare them with results for the classical β-values for generating invariants introduced by Schmid [15]: $\beta(G)$ is the minimal $d \in \mathbb{N}$ such that, for every G-module V, the invariant ring $\mathcal{O}(V)^{G}$ is generated by the invariants of degree $\leq d$.

By Derksen and Kemper [4, Corollary 3.9.14], we have $\beta_{\text {sep }}(G) \leq|G|$. This is in perfect analogy to the Noether bound which says that $\beta(G) \leq|G|$ in the non-modular case (i.e. if $\operatorname{char}(K) \nmid|G|$), see $[8,9,15]$. Of course we have $\beta_{\text {sep }}(G) \leq \beta(G)$, so every upper bound for $\beta(G)$ gives one for $\beta_{\text {sep }}(G)$.

In characteristic zero and in the non-modular case there are the bounds by Schmid [15] and by Domokos, Hegedüs, and Sezer [6, 16] which improve the Noether bound. In particular, $\beta(G) \leq \frac{3}{4}|G|$ for non-modular non-cyclic groups G, by [16] .

For a linear algebraic group G it is shown by Bryant, Derksen and Kemper $[2,5]$ that $\beta(G)<\infty$ if and only if G is finite and $p \nmid|G|$ which is the analogon to our Theorem A. For further results on degree bounds, we recommend the overview article of Wehlau [18].

The following results will be useful in the sequel.
Proposition 1. Let $H \subset G$ be a closed subgroup, X an affine G-variety and Z an affine H-variety. Let $\iota: Z \rightarrow X$ be an H-equivariant morphism and assume that ι^{*} induces a surjection $\mathcal{O}(X)^{G} \rightarrow \mathcal{O}(Z)^{H}$. If $S \subset \mathcal{O}(X)^{G}$ is G-separating, then the image $\iota^{*}(S) \subset \mathcal{O}(Z)^{H}$ is H-separating.
Proof. Let $f \in \mathcal{O}(Z)^{H}$ and $z_{1}, z_{2} \in Z$ such that $f\left(z_{1}\right) \neq f\left(z_{2}\right)$. By assumption $f=\iota^{*}(\tilde{f})$ for some $\tilde{f} \in \mathcal{O}(X)^{G}$. Put $x_{i}:=\iota\left(z_{i}\right)$. Then $\tilde{f}\left(x_{1}\right)=f\left(z_{1}\right) \neq f\left(z_{2}\right)=\tilde{f}\left(x_{2}\right)$. Thus we can find an $h \in S$ such that $h\left(x_{1}\right) \neq h\left(x_{2}\right)$. It follows that $\bar{h}:=\iota^{*}(h) \in \iota^{*}(S)$ and $\bar{h}\left(z_{1}\right)=h\left(x_{1}\right) \neq h\left(x_{2}\right)=\bar{h}\left(z_{2}\right)$.

Remark 3. In general, the inverse map $\left(\iota^{*}\right)^{-1}$ does not take H-separating sets to G-separating sets. Take $K^{+} \subset \mathrm{SL}_{2}$ as the subgroup of upper triangular unipotent matrices, $X=K^{2} \oplus K^{2} \oplus K^{2}$ the sum of three copies of the standard representation of SL_{2} and $Z=K^{2} \oplus K^{2}$ the sum of two copies of the standard representation of K^{+}. Then $\iota: Z \rightarrow X,(v, w) \mapsto((1,0), v, w)$ is K^{+}-equivariant and induces an isomorphism $\mathcal{O}(X)^{\mathrm{SL}_{2}} \xrightarrow{\sim} \mathcal{O}(Z)^{K^{+}}$(see [14]). In fact, choosing the coordinates $\left(x_{0}, x_{1}, y_{0}, y_{1}, z_{0}, z_{1}\right)$ on X and ($y_{0}, y_{1}, z_{0}, z_{1}$) on Y, we get from the classical description [3] of the invariants and covariants of copies of K^{2} :

$$
\begin{aligned}
\mathcal{O}(X)^{\mathrm{SL}_{2}(K)} & =K\left[y_{1} x_{0}-y_{0} x_{1}, z_{1} x_{0}-z_{0} x_{1}, y_{1} z_{0}-y_{0} z_{1}\right] \\
\mathcal{O}(Y)^{K^{+}} & =K\left[y_{1}, z_{1}, y_{1} z_{0}-y_{0} z_{1}\right]
\end{aligned}
$$

and the claim follows, because $\iota^{*}\left(x_{0}\right)=1, \iota^{*}\left(x_{1}\right)=0$.
Now take $S:=\left\{y_{1}, z_{1}, y_{1}\left(y_{1} z_{0}-y_{0} z_{1}\right), z_{1}\left(y_{1} z_{0}-y_{0} z_{1}\right)\right\} \subset \mathcal{O}(Z)^{K^{+}}$. We claim that S is a K^{+}-separating set, but $\left(\iota^{*}\right)^{-1}(S) \subset \mathcal{O}(X)^{\mathrm{SL}_{2}}$ is not SL_{2}-separating. For the first claim one has to use that if y_{1} and z_{1} both vanish, then the third generator $y_{1} z_{0}-y_{0} z_{1}$ of the invariant ring $\mathcal{O}(Y)^{K^{+}}$also vanishes. For the second claim we consider the elements $v=((0,0),(0,0),(0,0))$ and $v^{\prime}=((0,0),(1,0),(0,1))$ of X, which are separated by the invariants, but not by $\left(\iota^{*}\right)^{-1}(S)$.

For the following application recall that for a closed subgroup $H \subset G$ of finite index the induced module $\operatorname{Ind}_{H}^{G} V$ of an H-module V is a finite dimensional G-module.
Corollary 1. Let $H \subset G$ be a closed subgroup of finite index and let V be an H module. Then $\beta_{\mathrm{sep}}(H, V) \leq \beta_{\mathrm{sep}}\left(G, \operatorname{Ind}_{H}^{G} V\right)$. In particular, $\beta_{\mathrm{sep}}(H) \leq \beta_{\mathrm{sep}}(G)$.
Proof. By definition, $\operatorname{Ind}_{H}^{G} V$ contains V as an H-submodule in a canonical way. If $n:=[G: H]$ and $G=\bigcup_{i=1}^{n} g_{i} H$, then $\operatorname{Ind}_{H}^{G} V=\bigoplus_{i=1}^{n} g_{i} V$. Moreover, the inclusion $\iota: V \hookrightarrow \operatorname{Ind}_{H}^{G} V$ induces a surjection $\iota^{*}: \mathcal{O}\left(\operatorname{Ind}_{\tilde{f}}^{G}(V)\right)^{G} \rightarrow \mathcal{O}(V)^{H},\left.f \mapsto f\right|_{V}$. In fact, for $f \in \mathcal{O}(V)_{+}^{H}$, a preimage \tilde{f} is given by $\tilde{f}\left(g_{1} v_{1}, \ldots, g_{n} v_{n}\right):=\sum_{i=1}^{n} f\left(v_{i}\right), v_{i} \in V$,
which is easily seen to be G-invariant. Now the claim follows from Proposition 1 above, because the restriction map ι^{*} is linear and so preserves degrees.

Proposition 2 (Derksen and Kemper [4, Theorem 2.3.16]). Let G be a reductive group, V a G-module und $U \subset V$ a submodule. The restriction map $\mathcal{O}(V) \rightarrow \mathcal{O}(U)$, $\left.f \mapsto f\right|_{U}$ takes every separating set of $\mathcal{O}(V)^{G}$ to a separating set of $\mathcal{O}(U)^{G}$. In particular, we have

$$
\beta_{\mathrm{sep}}(G, U) \leq \beta_{\mathrm{sep}}(G, V)
$$

Let us mention here that in positive characteristic the restriction map is in general not surjective when restriced to the invariants, and so a generating set is not necessarily mapped onto a generating set.

We finally remark that for finite groups there always exist G-modules V such that $\beta_{\text {sep }}(G, V)=\beta_{\text {sep }}(G)$. The same holds for the β-values in characteristic zero.

Proposition 3. Let G be a finite group group and $V_{\text {reg }}=K G$ its regular representation. Then

$$
\beta_{\mathrm{sep}}(G)=\beta_{\mathrm{sep}}\left(G, V_{\mathrm{reg}}\right)
$$

In fact, every G-module V can be embedded as a submodule into $V_{\text {reg }}^{\operatorname{dim}} V$. Since, by [7, Corollary 3.7], $\beta_{\text {sep }}\left(G, V^{m}\right)=\beta_{\text {sep }}(G, V)$ for any G-module V and every positive integer m, the claim follows from Proposition 2.

3. The case of non-finite algebraic groups

In this section we prove the following theorem which is equivalent to Theorem A from the first section.

Theorem 1. For any non-finite linear algebraic group G we have $\beta_{\mathrm{sep}}(G)=\infty$.
We start with the additive group K^{+}. Denote by $V=K e_{0} \oplus K e_{1} \simeq K^{2}$ the standard 2-dimensional K^{+}-module: $s \cdot e_{0}:=e_{0}, s \cdot e_{1}:=s e_{0}+e_{1}$ for $s \in K^{+}$. If char $K=p>0$ we can "twist" the module V with the Frobenius map $F^{n}: K^{+} \rightarrow K^{+}, s \mapsto s^{p^{n}}$ to obtain another K^{+}-module which we denote by $V_{F^{n}}$.

Proposition 4. Let char $K=p>0$ and consider the K^{+}-module $W:=V \oplus V_{F^{n}}$. We write $\mathcal{O}(W)=K\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$. Then $\mathcal{O}(W)^{K^{+}}=K\left[x_{1}, y_{1}, x_{0}^{p^{n}} y_{1}-x_{1}^{p^{n}} y_{0}\right]$. In particular, $\beta_{\text {sep }}\left(K^{+}, W\right)=p^{n}+1$ and so $\beta_{\mathrm{sep}}\left(K^{+}\right)=\infty$.

Proof. It is easy to see that $f:=x_{0}^{p^{n}} y_{1}-x_{1}^{p^{n}} y_{0}$ is K^{+}-invariant. Define the K^{+} invariant morphism

$$
\pi: W \rightarrow K^{3}, \quad w=\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto\left(a_{1}, b_{1}, a_{0}^{p^{n}} b_{1}-a_{1}^{p^{n}} b_{0}\right)
$$

Over the affine open set $U:=\left\{\left(c_{1}, c_{2}, c_{3}\right) \in K^{3} \mid c_{1} \neq 0\right\}$, the induced map $\pi^{-1}(U) \rightarrow$ U is a trivial K^{+}-bundle. In fact, the morphism $\rho: U \rightarrow \pi^{-1}(U)$ given by $\left(c_{1}, c_{2}, c_{3}\right) \mapsto$ $\left(0, c_{1},-c_{1}^{-p^{n}} c_{3}, c_{2}\right)$ is a section of π, inducing a K^{+}-equivariant isomorphism $K^{+} \times$ $U \xrightarrow{\sim} \pi^{-1}(U),(s, u) \mapsto s \cdot \rho(u)$. This implies that $\mathcal{O}(W)_{x_{1}}^{K^{+}}=K\left[x_{1}, x_{1}^{-1}, y_{1}, f\right]$, hence $\mathcal{O}(W)^{K^{+}}=K\left[x_{0}, x_{1}, y_{0}, y_{1}\right] \cap K\left[x_{1}, x_{1}^{-1}, y_{1}, f\right]$, and the claim follows easily.

If K has characteristic zero, we need a different argument. Denote by $V_{n}:=S^{n} V$ the nth symmetric power of the standard K^{+}-module $V=K e_{0} \oplus K e_{1}$ (see above). This module is cyclic of dimension $n+1$, i.e. $V_{n}=\left\langle K^{+} v_{n}\right\rangle$ where $v_{n}:=e_{1}^{n}$, and for any $s \in K^{+}, s \neq 0$, the endomorphism $v \mapsto s v-v$ of V_{n} is nilpotent of rank n. In particular, $V_{n}^{K^{+}}=K v_{0}$ where $v_{0}:=e_{0}^{n} \in V_{n}$.

Remark 4. For $q \geq 1$ consider the q th symmetric power $S^{q} V_{n}$ of the module V_{n}. Then the cyclic submodule $\left\langle K^{+} v_{n}^{q}\right\rangle \subset S^{q} V_{n}$ generated by v_{n}^{q} is K^{+}-isomorphic to $V_{q n}$, and $\left\langle K^{+} v_{n}^{q}\right\rangle^{K^{+}}=K v_{0}^{q}$. One way to see this is by remarking that the modules V_{n} are $\mathrm{SL}_{2}(K)$-modules in a natural way, and then to use representation theory of $\mathrm{SL}_{2}(K)$.

Proposition 5. Let char $K=0$. Consider the K^{+}-module $W=V^{*} \oplus V_{n}$ and the two vectors $w:=\left(x_{0}, v_{0}\right)$ and $w^{\prime}:=\left(x_{0}, 0\right)$ of W. Then there is a K^{+}-invariant function $f \in \mathcal{O}(W)^{K^{+}}$separating w and w^{\prime}, and any such f has degree $\operatorname{deg} f \geq n+1$. In particular, $\beta_{\mathrm{sep}}\left(K^{+}, W\right) \geq n+1$, and so $\beta_{\mathrm{sep}}\left(K^{+}\right)=\infty$.

Proof. Let U_{1}, U_{2} be two finite dimensional vector spaces. There is a canonical isomorphism

$$
\Psi: \mathcal{O}\left(U_{1}^{*} \oplus U_{2}\right)_{(p, q)} \xrightarrow{\sim} \operatorname{Hom}\left(S^{q} U_{2}, S^{p} U_{1}\right)
$$

where $\mathcal{O}\left(U_{1}^{*} \oplus U_{2}\right)_{(p, q)}$ denotes the subspace of those regular functions on $U_{1}^{*} \oplus U_{2}$ which are bihomogeneous of degree (p, q). If $F=\Psi(f)$, then for any $x \in U_{1}^{*}$ and $u \in U_{2}$ we have

$$
f(x, u)=x^{p}\left(F\left(u^{q}\right)\right)
$$

(Since we are in characteristic 0 we can identify $S^{p}\left(U_{1}^{*}\right)$ with $\left(S^{p} U_{1}\right)^{*}$.) Moreover, if U_{1}, U_{2} are G-modules, then Ψ is G-equivariant and induces an isomorphism between the G-invariant bihomogeneous functions and the G-linear homomorphisms:

$$
\Psi: \mathcal{O}\left(U_{1}^{*} \oplus U_{2}\right)_{(p, q)}^{G} \xrightarrow{\sim} \operatorname{Hom}_{G}\left(S^{q} U_{2}, S^{p} U_{1}\right)
$$

For the K^{+}-module $W=V^{*} \oplus V_{n}$ we thus obtain an isomorphism

$$
\Psi: \mathcal{O}\left(V^{*} \oplus V_{n}\right)_{(p, q)}^{K^{+}} \xrightarrow{\sim} \operatorname{Hom}_{K^{+}}\left(S^{q} V_{n}, S^{p} V\right)
$$

Putting $p=n$ and $q=1$ and defining $f \in \mathcal{O}\left(V^{*} \oplus V_{n}\right)_{(n, 1)}^{K^{+}}$by $\Psi(f)=\mathrm{Id}_{V_{n}}$, we get $f(w)=f\left(x_{0}, v_{0}\right)=x_{0}^{n}\left(v_{0}\right)=x_{0}^{n}\left(e_{0}^{n}\right) \neq 0$, and $f\left(w^{\prime}\right)=f\left(x_{0}, 0\right)=0$. Hence w and w^{\prime} can be separated by invariants.

Now let f be a K^{+}-invariant separating w and w^{\prime} where $\operatorname{deg} f=d$. We can clearly assume that f is bihomogeneous, say of degree (p, q) where $p+q=d$. Because f must depend on V_{n}, we have $q \geq 1$. Hence $f\left(w^{\prime}\right)=f\left(x_{0}, 0\right)=0$, and so $f(w)=f\left(x_{0}, v_{0}\right) \neq$ 0 . This implies for $F:=\Psi(f)$ that $F\left(v_{0}^{q}\right) \neq 0$. Now it follows from Remark 4 above that F induces an injective map of $\left\langle K^{+} v_{n}^{q}\right\rangle$ into $S^{p} V$, and so

$$
p+1=\operatorname{dim} S^{p} V \geq \operatorname{dim}\left\langle K^{+} v_{n}^{q}\right\rangle=q n+1 \geq n+1 .
$$

Hence $\operatorname{deg} f=p+q \geq n+1$.
To handle the general case we use the following construction. Let G be an algebraic group and $H \subset G$ a closed subgroup. We assume that H is reductive. For an affine H-variety X we define

$$
G \times^{H} X:=(G \times X) / / H:=\operatorname{Spec}\left(\mathcal{O}(G \times X)^{H}\right)
$$

where H acts (freely) on the product $G \times X$ by $h(g, x):=\left(g h^{-1}, h x\right)$, commuting with the action of G by left multiplication on the first factor. We denote by $[g, x]$ the image of $(g, x) \in G \times X$ in the quotient $G \times{ }^{H} X$.

The following is well-known. It follows from general results from geometric invariant theory, see e.g. [12].
(a) The canonical morphism $G \times{ }^{H} X \rightarrow G / H,[g, x] \mapsto g H$, is a fiber bundle (in the étale topology) with fiber X.
(b) If the action of H on X extends to an action of G, then $G \times{ }^{H} X \xrightarrow{\sim} G / H \times X$ where G acts diagonally on $G / H \times X$ (i.e. the fiber bundle is trivial).
(c) The canonical morphism $\iota: X \hookrightarrow G \times{ }^{H} X$ given by $x \mapsto[e, x]$ is an H equivariant closed embedding.
Lemma 1. If $\varphi: G \times{ }^{H} X \rightarrow Y$ is G-separating, then the composite morphism $\varphi \circ$ $\iota: X \rightarrow Y$ is H-separating. Moreover, if $S \subset \mathcal{O}\left(G \times{ }^{H} X\right)^{G}$ is a G-separating set, then its image $\iota^{*}(S) \subset \mathcal{O}(X)^{H}$ is H-separating.
Proof. For $x \in X$ we have $\overline{G[e, x]}=[G, \overline{H x}]$. Therefore, if $\overline{H x} \cap \overline{H x^{\prime}}=\emptyset$, then $\overline{G[e, x]} \cap \overline{G\left[e, x^{\prime}\right]}=\emptyset$ and so $\varphi \circ \iota(x)=\varphi([e, x]) \neq \varphi\left(\left[e, x^{\prime}\right]\right)=\varphi \circ \iota\left(x^{\prime}\right)$. The second claim follows from Proposition 1, because $\mathcal{O}\left(G \times^{H} X\right)^{G}=\mathcal{O}(G \times X)^{G \times H}=\mathcal{O}(X)^{H}$ and so ι^{*} induces an isomorphism $\mathcal{O}\left(G \times{ }^{H} X\right)^{G} \xrightarrow{\sim} \mathcal{O}(X)^{H}$.

Now let V be a G-module and $X:=\left.V\right|_{H}$, the underlying H-module. Let H act on G by right-multiplication with the inverse. As H is reductive, the categorical quotient $G / / H$ exists as an affine G-variety, and can be identified with the set of left cosets G / H (see [17, Exercise 5.5.9 (8)]). Choose a closed G-equivariant embedding $G / H \xrightarrow{\sim} G w_{0} \hookrightarrow W$ where W is a G-module (see [4, Lemma A.1.9]). Then we get the following composition of closed embeddings where the first one is H-equivariant and the remaining are G-equivariant:

$$
\mu:\left.V\right|_{H} \hookrightarrow G \times^{H} V \xrightarrow{\sim} G / H \times V \hookrightarrow W \times V
$$

The map μ is given by $\mu(v)=\left(w_{0}, v\right)$. It follows from Lemma 1 and Remark 1 that for any G-separating morphism $\varphi: W \times V \rightarrow Y$ the composition $\varphi \circ \mu:\left.V\right|_{H} \rightarrow Y$ is H-separating. In particular, if G is reductive, then for any G-separating set $S \subset$ $\mathcal{O}(W \times V)$ the image $\mu^{*}(S) \subset \mathcal{O}(V)^{H}$ is H-separating. Since $\operatorname{deg} \mu^{*}(f) \leq \operatorname{deg} f$ this implies the following result.

Proposition 6. Let G be a reductive group, $H \subset G$ a closed reductive subgroup and V^{\prime} an H-module. If V^{\prime} is isomorphic to an H-submodule of a G-module V, then

$$
\beta_{\mathrm{sep}}\left(H, V^{\prime}\right) \leq \beta_{\mathrm{sep}}(G)
$$

Now we can prove the main result of this section,
Proof of Theorem 1. By Corollary 1 we can assume that G is connected.
(a) Let G be semisimple, $T \subset G$ a maximal torus and $B \supset T$ a Borel subgroup. If $\lambda \in X(T)$ is dominant we denote by E^{λ} the Weyl-module of G of highest weight λ, and by $D^{\lambda} \subset E^{\lambda}$ the highest weight line. Choose a one-parameter subgroup $\rho: K^{*} \rightarrow T$ and define $k_{0} \in \mathbb{Z}$ by $\rho(t) u=t^{k_{0}} \cdot u$ for $u \in D^{\lambda}$. For any $n \in \mathbb{N}$ put

$$
V_{n}^{\prime}:=\left(D^{\lambda}\right)^{*} \oplus D^{n \lambda} \subset V_{n}:=\left(E^{\lambda}\right)^{*} \oplus E^{n \lambda}
$$

Then V_{n}^{\prime} is a two-dimensional K^{*}-module with weights $\left(-k_{0}, n k_{0}\right)$. Hence $\mathcal{O}\left(V_{n}^{\prime}\right)^{K^{*}}$ is generated by a homogeneous invariant of degree $n+1$ and so $\beta_{\text {sep }}\left(K^{*}, V_{n}^{\prime}\right)=n+1$. Now Proposition 6 implies

$$
n+1=\beta_{\operatorname{sep}}\left(K^{*}, V_{n}^{\prime}\right) \leq \beta_{\operatorname{sep}}(G)
$$

and the claim follows. In addition, we have also shown that $\beta_{\text {sep }}\left(K^{*}\right)=\infty$.
(b) If G admits a non-trivial character $\chi: G \rightarrow K^{*}$ then the claim follows because $\beta_{\text {sep }}(G) \geq \beta_{\text {sep }}\left(K^{*}\right)=\infty$, as we have seen in (a).
(c) If the character group of G is trivial, then either G is unipotent or there is a surjective homomorphism $G \rightarrow H$ where H is semisimple (use [17, Corollary 8.1.6 (ii)]). In the first case there is a surjective homomorphism $G \rightarrow K^{+}$and the claim follows from Proposition 4 and Proposition 5. In the second case the claim follows from (a).

4. Relative degree bounds

In this section all groups are finite. We want to prove the following result which covers Theorem B from the first section.

Theorem 2. Let G be a finite group, $H \subset G$ a subgroup, V a G-module and W an H-module. Then

$$
\beta_{\mathrm{sep}}(H, W) \leq \beta_{\mathrm{sep}}\left(G, \operatorname{Ind}_{H}^{G} W\right) \quad \text { and } \quad \beta_{\mathrm{sep}}(G, V) \leq[G: H] \beta_{\mathrm{sep}}(H, V)
$$

In particular

$$
\beta_{\mathrm{sep}}(H) \leq \beta_{\mathrm{sep}}(G) \leq[G: H] \beta_{\mathrm{sep}}(H), \text { and so } \beta_{\mathrm{sep}}(G) \leq|G|
$$

Moreover, if $H \subset G$ is normal, then

$$
\beta_{\text {sep }}(G) \leq \beta_{\text {sep }}(G / H) \beta_{\text {sep }}(H)
$$

Note that the inequalities $\beta_{\text {sep }}(G, V) \leq[G: H] \beta_{\text {sep }}(H, V)$ and $\beta_{\text {sep }}(G) \leq|G|$ were already proved by Derksen and Kemper ([11, Corollary 24], [4, Corollary 3.9.14]).

The proof needs some preparation. Let V, W be finite dimensional vector spaces and $\varphi: V \rightarrow W$ a morphism, i.e. a polynomial map.

Definition 4. The degree of φ is defined in the following way, generalizing the degree of a polynomial function. Choose a basis $\left(w_{1}, \ldots, w_{m}\right)$ of W, so that $\varphi(v)=$ $\sum_{j=1}^{m} f_{j}(v) w_{j}$ for $v \in V$. Then

$$
\operatorname{deg} \varphi:=\max \left\{\operatorname{deg} f_{j} \mid \quad j=1, \ldots, m\right\}
$$

It is easy to see that this is independent of the choice of a basis.
If V is a G-module and $\varphi: V \rightarrow W$ a separating morphism, then $\beta_{\text {sep }}(G, V) \leq$ $\operatorname{deg} \varphi$. Moreover, there is a separating morphism $\varphi: V \rightarrow W$ for some W such that $\beta_{\mathrm{sep}}(G, V)=\operatorname{deg} \varphi$.

For any (finite dimensional) vector space W we regard $W^{d}=W \otimes K^{d}$ as the direct sum of $\operatorname{dim} W$ copies of the standard \mathcal{S}_{d}-module K^{d}. In this case we have the following result due to Draisma, Kemper and Wehlau [7, Theorem 3.4].

Lemma 2. The polarizations of the elementary symmetric functions form an $\mathcal{S}_{d^{-}}$ separating set of W^{d}. In particular, there is an \mathcal{S}_{d}-separating morphism $\psi_{W}: W^{d} \rightarrow$ K^{N} of degree $\leq d$.

Recall that the polarizations of a function $f \in \mathcal{O}(U)$ to n copies of U are defined in the following way. Write

$$
f\left(t_{1} u_{1}+t_{2} u_{2}+\cdots+t_{n} u_{n}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{n}} t_{1}^{i_{1}} t_{2}^{i_{2}} \cdots t_{n}^{i_{n}} f_{i_{1} i_{2} \ldots i_{n}}\left(u_{1}, u_{2}, \ldots, u_{n}\right)
$$

Then the functions $f_{i_{1} i_{2} \ldots i_{n}}\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathcal{O}\left(U^{n}\right)$ are called polarizations of f. Clearly, $\operatorname{deg} f_{i_{1} i_{2} \ldots i_{n}} \leq \operatorname{deg} f$. Moreover, if U is a G-module and f a G-invariant, then all $f_{i_{1} i_{2} \ldots i_{n}}$ are G-invariants with respect to the diagonal action of G on U^{n}.
Proof of Theorem 2. The first inequality $\beta_{\operatorname{sep}}(H, W) \leq \beta_{\mathrm{sep}}\left(G, \operatorname{Ind}_{H}^{G} W\right)$ is shown in Corollary 1.

Let V be a G-module, $v, w \in V$, and let $\varphi: V \rightarrow W$ be an H-separating morphism of degree $\beta_{\text {sep }}(H, V)$. Consider the partition of G into H-right cosets: $G=\bigcup_{i=1}^{d} H g_{i}$ where $d:=[G: H]$. Define the following morphism

$$
\bar{\varphi}: V \xrightarrow{\tilde{\varphi}} W^{d} \xrightarrow{\psi_{W}} K^{N}
$$

where $\tilde{\varphi}(v):=\left(\varphi\left(g_{1} v\right), \ldots, \varphi\left(g_{d} v\right)\right)$ and $\psi_{W}: W^{d} \rightarrow K^{N}$ is the separating morphism from Lemma 2.

We claim that $\bar{\varphi}$ is G-separating. In fact, for $g \in G$ define the permutation $\sigma \in$ \mathcal{S}_{d} by $H g_{i} g=H g_{\sigma(i)}$, i.e. $g_{i} g=h_{i} g_{\sigma(i)}$ for a suitable $h_{i} \in H$. Then $\varphi\left(g_{i} g v\right)=$ $\varphi\left(h_{i} g_{\sigma(i)} v\right)=\varphi\left(g_{\sigma(i)} v\right)$ and so $\tilde{\varphi}(g v)=\sigma^{-1} \tilde{\varphi}(v)$. This shows that $\bar{\varphi}$ is G-invariant.

Assume now that $g v \neq w$ for all $g \in G$. This implies that $h g_{i} v \neq w$ for all $h \in H$ and $i=1, \ldots d$, and so $\varphi\left(g_{i} v\right) \neq \varphi(w)$ for $i=1, \ldots, d$, because φ is H-separating. As a consequence, $\tilde{\varphi}(v) \neq \sigma \tilde{\varphi}(w)$ for all permutations $\sigma \in \mathcal{S}_{d}$, hence $\bar{\varphi}(v) \neq \bar{\varphi}(w)$, because ψ_{W} is \mathcal{S}_{d}-separating, and so $\bar{\varphi}$ is G-separating.

For the degree we get $\operatorname{deg} \bar{\varphi} \leq \operatorname{deg} \psi_{W} \cdot \operatorname{deg} \tilde{\varphi} \leq d \cdot \operatorname{deg} \varphi=[G: H] \beta_{\operatorname{sep}}(H, V)$. This shows that

$$
\beta_{\mathrm{sep}}(G, V) \leq[G: H] \beta_{\mathrm{sep}}(H, V)
$$

If $H \subset G$ is normal we can find an H-separating morphism $\varphi: V \rightarrow W$ of degree $\beta_{\text {sep }}(H, V)$ such that W is a G / H-module and φ is G-equivariant. Now choose an G / H-separating morphism $\psi: W \rightarrow U$ of degree $\beta_{\text {sep }}(G / H, W)$. Then the composition $\psi \circ \varphi: V \rightarrow U$ is G-separating of degree $\leq \operatorname{deg} \psi \cdot \operatorname{deg} \varphi$. Thus

$$
\beta_{\text {sep }}(G, V) \leq \beta_{\text {sep }}(G / H, W) \beta_{\text {sep }}(H, V) \leq \beta_{\text {sep }}(G / H) \beta_{\text {sep }}(H)
$$

and the claim follows.

5. Degree bounds for some finite groups

In principle, Proposition 3 allows to compute $\beta_{\operatorname{sep}}(G)$ for any finite group G. Unfortunately, the invariant ring $\mathcal{O}\left(V_{\text {reg }}\right)^{G}$ does not behave well in a computational sense. We have been able to compute $\beta_{\text {sep }}(G)$ with Magma [1] and the algorithm of [10] in just one case (computation time about 20 minutes):

Proposition 7 (Magma and Proposition 3). Let char $K=2$. Then $\beta_{\mathrm{sep}}\left(S_{3}\right)=4$.
Proposition 8. Let char $K=p>0$ and let G be a p-group. Then $\beta_{\operatorname{sep}}(G)=|G|$.
Proof. Let us start with a general remark. Let G be an arbitrary finite group, and let V be a permutation module of G, i.e. there is a basis $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of V which is permuted under G. Then the invariants are linearly spanned by the orbit sums s_{m} of the monomials $m=x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}} \in \mathcal{O}(V)=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which are defined in the usual way:

$$
s_{m}:=\sum_{f \in G m} f
$$

The value of s_{m} on the fixed point $v:=v_{1}+v_{2}+\cdots+v_{n} \in V$ equals $|G m|$. Hence, $s_{m}(v)=0$ if p divides the index $\left[G: G_{m}\right]$ of the stabilizer G_{m} of m in G. It follows that for a p-group G we have $s_{m}(v) \neq 0$ if and only if m is invariant under G.

If, in addition, G acts transitively on the basis $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, then an invariant monomial m is a power of $x_{1} x_{2} \cdots x_{n}$, and thus has degree $\ell n \geq \operatorname{dim} V$. If we apply this to the regular representation, the claim follows.

With Corollary 1 we get the next result.
Corollary 2. Let char $K=p>0$ and G be a group of order rp ${ }^{k}$ with $(r, p)=1$. Then $\beta_{\mathrm{sep}}(G) \geq p^{k}$.
Proposition 9. Let G be a cyclic group. Then $\beta_{\text {sep }}(G)=|G|$.
Proof. Let $|G|=r p^{k}$ where $(r, p)=1, p=\operatorname{char} K$, and choose two elements $g, h \in G$ of order r and $q:=p^{k}$, respectively, so that $G=\langle g, h\rangle$. We define a linear action of G on $V:=\bigoplus_{i=1}^{q} K v_{i}$ by

$$
g v_{i}:=\zeta \cdot v_{i} \text { and } h v_{i}:=v_{i+1} \text { for } i=1, \ldots, q
$$

where $\zeta \in K$ is a primitive r th root of unity and $v_{q+1}:=v_{1}$. We claim that the G invariants $\mathcal{O}(V)^{G}$ are linearly spanned by the orbit sums s_{m} where $r \mid \operatorname{deg} m$. In fact, $\mathcal{O}(V)^{\langle g\rangle}$ is linearly spanned by the monomials of degree $\ell r(\ell \geq 0)$, and the subgroup $H:=\langle h\rangle \subset G$ permutes these monomials.

Now look again at the element $v:=v_{1}+v_{2}+\cdots+v_{q} \in V$. If $r \mid \operatorname{deg} m$ then $s_{m}(v)=|H m|$, and this is non-zero if and only if the monomial m is invariant under H. This implies that m is a power of $x_{1} x_{2} \cdots x_{q}$. Since the degree of m is also a multiple of r we finally get $\operatorname{deg} s_{m} \geq r q=|G|$.

Corollary 3. Let G be a finite group. Then we have

$$
\beta_{\mathrm{sep}}(G) \geq \max _{g \in G}(\operatorname{ord} g)
$$

Let $D_{2 n}=\langle\sigma, \rho\rangle$ denote the dihedral group of order $2 n$ with $\operatorname{ord}(\sigma)=2, \operatorname{ord}(\rho)=n$ and $\sigma \rho \sigma^{-1}=\rho^{-1}$.

Proposition 10. Assume that $\operatorname{char}(K)=p$ is an odd prime, and let $r \geq 1$. Then $\beta_{\text {sep }}\left(D_{2 p^{r}}\right)=2 p^{r}$.

Note that if $\operatorname{char}(K)=p=2$, then $D_{2 p^{r}}$ is a 2 -group, so $\beta_{\text {sep }}\left(D_{2^{r+1}}\right)=2^{r+1}$ by Proposition 8. We conjecture that for $\operatorname{char}(K)=2$ and p an odd prime, we have $\beta_{\text {sep }}\left(D_{2 p}\right)=p+1$, which would fit with Proposition 7.

Proof. Put $q=p^{r}$ and define a linear action of $D_{2 p^{r}}$ on $V:=\bigoplus_{i=0}^{q-1} K v_{i}$ by

$$
\rho v_{i}=v_{i+1} \text { and } \sigma v_{i}=-v_{-i} \text { for } i=0,1, \ldots, q-1
$$

where $v_{j}=v_{i}$ if $j \equiv i \bmod q$ for $i, j \in \mathbb{Z}$. As before, the invariants under $H:=\langle\rho\rangle$ are linearly spanned by the orbit sums $s_{m}:=\sum_{f \in H m} f$ of the monomials $m=$ $x_{0}^{i_{0}} x_{1}^{i_{1}} \cdots x_{q-1}^{i_{q-1}} \in \mathcal{O}(V)=K\left[x_{0}, x_{1}, \ldots, x_{q-1}\right]$. Thus, the $D_{2 p^{r}}$-invariants are linearly spanned by the functions $\left\{s_{m}+\sigma s_{m} \mid m\right.$ a monomial $\}$.

For $v:=v_{0}+v_{1}+\cdots+v_{q-1}$ we get $\sigma s_{m}(v)=s_{m}(\sigma v)=(-1)^{\operatorname{deg} m} s_{m}(v)$. Therefore, $s_{m}+\sigma s_{m}$ is non-zero on v if and only if $s_{m}(v) \neq 0$ and the degree of m is even. As in the proof of Proposition $9, s_{m}(v) \neq 0$ implies that m is a power of $x_{0} x_{1} \cdots x_{q-1}$ which has to be an even power since q is odd. Thus, for $m:=\left(x_{0} x_{1} \cdots x_{q-1}\right)^{2}, s_{m}+\sigma s_{m}=2 m$ is an invariant of smallest possible degree, namely $2 q$, which does not vanish on v.

Let $I_{H}:=\mathcal{O}(V)_{+}^{G} \mathcal{O}(V)$ denote the Hilbert-ideal, i.e. the ideal in $\mathcal{O}(V)$ generated by all homogeneous invariants of positive degree. It is conjectured by DERKSEN and KEMPER that I_{H} is generated by invariants of positive degree $\leq|G|$, see [4, Conjecture 3.8.6 (b)]. The following corollary shows that this conjectured bound can not be sharpened in general.

Corollary 4. Let char $K=p$ and G a p-group (with $p>0$), or a cyclic group, or $G=D_{2 p^{r}}$ with p odd. Then there exists a G-module V such that I_{H} is not generated by homogeneous invariants of positive degree strictly less than $|G|$.

Proof. In the proofs of the Propositions 8, 9 and 10 respectively, we constructed a G module V and a non-zero $v \in V$ such that $f(v)=0$ for all homogeneous $f \in \mathcal{O}(V)^{G}$ of positive degree strictly less than $|G|$, but such that there exists a homogeneous $f \in \mathcal{O}(V)^{G}$ of degree $|G|$ with $f(v) \neq 0$. This shows that $f \notin \mathcal{O}(V)_{+,<|G|}^{G} \mathcal{O}(V)$.

Now we use relative degree bounds for separating invariants and good degree bounds for generating invariants of non-modular groups, that appear as a subquotient, to get improved degree bounds for separating invariants in the modular case.

Proposition 11. Let char $K=p$ and G be a finite group. Assume there exists a chain of subgroups $N \subset H \subset G$ such that N is a normal subgroup of H and such that H / N is non-cyclic of order s coprime to p. Then

$$
\beta_{\text {sep }}(G) \leq \begin{cases}\frac{3}{4}|G| & \text { in case } s \text { is even } \\ \frac{5}{8}|G| & \text { in case } s \text { is odd. }\end{cases}
$$

Proof. By SEzER [16], for a non-cyclic non-modular group U, we have $\beta(U) \leq \frac{3}{4}|U|$ in case $|U|$ is even, and $\beta(U) \leq \frac{5}{8}|U|$ in case $|U|$ is odd. We now assume s is even; the other case is essentially the same. Since $\beta_{\text {sep }}(U) \leq \beta(U)$ always holds, we get by using Theorem 2

$$
\begin{aligned}
& \beta_{\mathrm{sep}}(G) \leq \beta_{\mathrm{sep}}(H)[G: H] \leq \beta_{\mathrm{sep}}(N) \beta_{\mathrm{sep}}(H / N)[G: H] \\
& \quad \leq \beta(H / N)[G: H]|N| \leq \frac{3}{4}[H: N][G: H]|N|=\frac{3}{4}|G| .
\end{aligned}
$$

Example 1. Assume $p=3$ and $G=A_{4}$. The Klein four group is a non-cyclic non-modular subgroup of even order. We get $\beta_{\text {sep }}\left(A_{4}\right) \leq \frac{3}{4}\left|A_{4}\right|=9$. Application of Theorem 2 shows $\beta_{\text {sep }}\left(A_{4} \times A_{4}\right) \leq \beta_{\text {sep }}\left(A_{4}\right)^{2} \leq 81$.

Example 2. Let $D_{2 n}$ be the dihedral group of order $2 n$. We know $n \leq \beta_{\text {sep }}\left(D_{2 n}\right)$ by Corollary 3. Assume char $K=p \neq 2$ and $n=p^{r} m$ with p, m coprime and $m>1$. Then $D_{2 n}$ has the non-cyclic subgroup $D_{2 m}$ of even order, so $\beta_{\text {sep }}\left(D_{2 n}\right) \leq \frac{3}{4} 2 n=\frac{3}{2} n$. So the only dihedral groups, to which the proposition above does not apply, are those of the form $D_{2 p^{r}}$, which are covered by Proposition 10 .

We end this section with two questions:
Question 1. Which finite groups G satisfy $\beta_{\text {sep }}(G)=|G|$?
Question 2. Which finite groups G do not have a non-cyclic non-modular subquotient?

The dihedral groups of Proposition 10 satisfy this property, and we get $\beta_{\text {sep }}(G)=$ $|G|$ for those groups. But in characteristic $2, \beta_{\text {sep }}\left(S_{3}\right)<\left|S_{3}\right|$ by Proposition 7 , so the answer to the second question only partially helps to solve the first one.

Note added in proof: The conjecture following Proposition 10 claiming that in characteristic 2 we have $\beta_{\text {sep }}\left(D_{2 p}\right)=p+1$ for an odd prime p was recently proved by the first author jointly with Müfit Sezer: Invariants of the dihedral group $D_{2 p}$ in characteristic two, Preprint 2010.

References

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993).
[2] R. M. Bryant and G. Kemper, Global degree bounds and the transfer principle for invariants, J. Algebra 284 (2005), no. 1, 80-90.
[3] C. de Concini and C. Procesi, A characteristic free approach to invariant theory, Advances in Math. 21 (1976), no. 3, 330-354.
[4] H. Derksen and G. Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation Groups, I, Springer-Verlag, Berlin (2002), ISBN 3-540-43476-3. Encyclopaedia of Mathematical Sciences, 130.
[5] —, On global degree bounds for invariants, in Invariant theory in all characteristics, Vol. 35 of CRM Proc. Lecture Notes, 37-41, Amer. Math. Soc., Providence, RI (2004).
[6] M. Domokos and P. Hegedús, Noether's bound for polynomial invariants of finite groups, Arch. Math. (Basel) 74 (2000), no. 3, 161-167.
[7] J. Draisma, G. Kemper, and D. Wehlau, Polarization of separating invariants, Canad. J. Math. 60 (2008), no. 3, 556-571.
[8] P. Fleischmann, The Noether bound in invariant theory of finite groups, Adv. Math. 156 (2000), no. 1, 23-32.
[9] J. Fogarty, On Noether's bound for polynomial invariants of a finite group, Electron. Res. Announc. Amer. Math. Soc. 7 (2001) 5-7 (electronic).
[10] G. Kemper, Computing invariants of reductive groups in positive characteristic, Transform. Groups 8 (2003), no. 2, 159-176.
[11] ——, Separating invariants, J. Symbolic Comput. 44 (2009), no. 9, 1212-1222.
[12] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Vol. 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], Springer-Verlag, Berlin, third edition (1994), ISBN 3-540-56963-4.
[13] P. E. Newstead, Introduction to moduli problems and orbit spaces, Vol. 51 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research, Bombay (1978), ISBN 0-387-08851-2.
[14] M. Roberts, On the Covariants of a Binary Quantic of the $n^{\text {th }}$ Degree, The Quarterly Journal of Pure and Applied Mathematics 4 (1861) 168-178.
[15] B. J. Schmid, Finite groups and invariant theory, in Topics in invariant theory (Paris, 1989/1990), Vol. 1478 of Lecture Notes in Math., 35-66, Springer, Berlin (1991).
[16] M. Sezer, Sharpening the generalized Noether bound in the invariant theory of finite groups, J. Algebra 254 (2002), no. 2, 252-263.
[17] T. A. Springer, Linear algebraic groups, Vol. 9 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, second edition (1998), ISBN 0-8176-4021-5.
[18] D. L. Wehlau, The Noether number in invariant theory, C. R. Math. Acad. Sci. Soc. R. Can. 28 (2006), no. 2, 39-62.

Zentrum Mathematik - M11, Technische Universität München, Boltzmannstrasse 3, D85748 Garching, Germany

E-mail address: kohls@ma.tum.de
Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, SwitzerLAND

E-mail address: Hanspeter.Kraft@unibas.ch

[^0]: Received by the editors July 13, 2010.

