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2 Abbreviations 

AMD   age-related macular degeneration 

Ang   angiopoietin 

C-terminus  carboxy-terminus or COOH-terminus 

Da, kDa  Dalton, kilo-Dalton 

DARPin  designed ankyrin repeat protein 

DNA   deoxyribonucleic acid 

E. coli   Escherichia coli 

ECD   extracellular domain 

EM   electron microscopy 

Eph   ephrin receptor 

FGF   fibroblast growth factor 

Flt-3   Fms-like tyrosine kinase-3 

HIF-1   hypoxia-inducible factor 1 

HSPG   heparan sulfate proteoglycan 

Ig   immunoglobulin 

ITC   isothermal titration calorimetry 

MALS   multi-angle light scattering 

Nrp   neuropilin 

N-terminus  amino-terminus or NH2-terminus 

PDGF   platelet-derived growth factor 

PDGFR  platelet-derived growth factor receptor 

PI3K   phosphatidylinositol-3 kinase 

PLCγ1  phospholipase C-γ1 

PlGF   placenta growth factor 

PKC   protein kinase C 

PNGaseF  peptide N-glycosidase F 

PTB   phospho-tyrosine binding 

RTK   receptor tyrosine kinase 

SAXS   small-angle X-ray scattering 

scFv   single-chain variable fragment 
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Sck   Src-like protein 

SEC   size exclusion chromatography 

SH   Src-homology 

Shb   SH2 in β-cells 

SHP   Src-homology phosphatase 

TGF   transforming growth factor 

TSAd   T-cell-specific adaptor 

VE-cadherin  vascular endothelial cadherin 

VEGF   vascular endothelial growth factor 

VEGFR  vascular endothelial growth factor receptor 
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3 Summary 

The vascular endothelial growth factor (VEGF) family plays key roles in the 

development of the blood and lymphatic vasculature. Five members, 

VEGF-A, -B, -C, -D, and PlGF can be found in the human body. They bind in an 

overlapping pattern to three receptor tyrosine kinases (RTKs), which constitute 

the type V family of RTKs: VEGF-receptor (VEGFR)-1 (also known as Flt1), 

VEGFR-2 (KDR/Flk1), and VEGFR-3 (Flt4).  While VEGFR-1 and VEGFR-2 are 

mainly involved in angiogenesis, VEGFR-3 is the key player in 

lymphangiogenesis. VEGFRs consist of seven immunoglobulin-homology 

domains constituting the extracellular domain (ECD), a single transmembrane 

helix, and a split tyrosine kinase domain. Ligand binding to the VEGFR 

ectodomain initiates receptor dimerization, followed by kinase activation and 

autophosphorylation. Phosphorylated tyrosine residues in the intracellular 

domain of VEGFRs act as docking sites for a number of different signaling 

molecules. 

In addition to physiological angiogenesis, aberrant VEGFR signaling is 

associated with a variety of pathological conditions such as in cancer, in 

ischemic, and in inflammatory disorders. Several inhibitors of VEGF-signaling 

have been developed most of which are at different stages in clinical trials. 

However, anti-angiogenic treatment of cancer is often accompanied by severe 

side-effects and tumor patients tend to develop resistance to the treatment. 

Hence, structural studies of the VEGF receptor system may further elucidate 

the molecular mechanism underlying receptor activation and thereby help to 

develop new more specific drugs complementing existing therapies. 

During this project, I showed that binding of individual VEGFR-1 ligands 

resulted in conformationally similar ligand/VEGFR-1 ECD complexes. Besides 

showing ligand induced dimerization, the complexes reveal homotypic 

receptor/receptor interactions in the membrane proximal Ig-homology domains. 

Our study is also the first addressing the thermodynamic contributions of 

individual Ig-homology domains of VEGFR-1 to ligand binding. I showed that 

VEGFR-1 D4-7 positively contribute to ligand binding as shown by the higher 
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affinities of the ligands for VEGFR-1 D1-7 compared to binding to the minimal 

ligand binding domain D1-3. Surprisingly, I discovered that Ig-homology 

domain 1 blocks PlGF-1 binding to VEGFR-1 D1-3 but not to D1-7. The exact 

mechanism explaining this phenomenon remains unclear.  

In a second project, we showed that Ig-homology domains 4 and 7 are 

indispensable for VEGFR-2 activation. The loop connecting β-strand E and F in 

Ig-homology domain 7 represents the element that are required for receptor 

activation by mediating contacts with Ig-homology domain 7 of the second 

receptor chain in the dimerized complex. We generated Designed Ankyrin 

Repeat Proteins (DARPins) that specifically target the low affinity 

receptor/receptor interactions formed upon ligand binding and identified a 

DARPin binding to Ig-homology domain 4 that blocks VEGFR-2 activation and 

phosphorylation without preventing the formation of the VEGF-A/VEGFR-2 

complex. This inhibitor also affected downstream signaling and inhibited sprout 

formation of endothelial cell spheroids. This type of inhibition displays a new 

inhibition mechanism for VEGFR-2 that might be applied complementarily to 

other therapeutic approaches to improve the efficiency of anti-angiogenic 

therapy. 
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4 Zusammenfassung 

Die Familie der VEGFs spielt eine wichtige Rolle in der Entwicklung des Blut- 

und Lymphgefässsystems. Im menschlichen Körper sind fünf Mitglieder, 

VEGF-A, -B, -C, -D, und PlGF anzutreffen. Sie binden in einem überlappendem 

Muster zu drei Rezeptor Tyrosin Kinasen, die die Typ V Familie der RTKs 

bilden: VEGFR-1 (auch bekannt als Flt1), VEGFR-2 (Flk1), und VEGFR-3 

(Flt4). Während VEGFR-1 und VEGFR-2 hauptsächlich in der Angiogenese 

involviert sind, stellt VEGFR-3 eine Schlüsselfigur in der Lymphangiogenese 

dar. VEGFRen bestehen aus 7 Immunoglobulin-ähnlichen Dömanen in der 

extrazellulären Domäne, einer einzelnen membrandurchziehenden Helix, und 

eine geteilten intrazellulären Kinasedomäne. Ligandenbindung an die 

extrazelluläre Domäne initiiert Rezeptordimerisierung, gefolgt von 

Kinasenaktivierung und Autophosphorylierung. Phosphorylierte 

Tyrosinseitenketten in der intrazellulären Domäne von VEGFRen agieren als 

Bindestellen für eine Vielzahl von Signalmolekülen. 

Neben der physiologischen Angiogenese sind VEGFR-Signalwege auch in 

einer Vielzahl von pathologischen Konditionen involviert, z.B. Krebs, 

ischämischen und Entzündungskrankheiten. Eine Reihe an Inhibitoren wurde 

entwickelt, von denen die meisten sich in verschiedenen Stadien von klinischen 

Studien befinden. Allerdings wird die Anti-Angiogenese Behandlung von Krebs 

oft von starken Nebenwirkungen begleitet und Krebspatienten neigen dazu eine 

Resistenz gegen die Behandlung zu entwickeln. Daher könnten strukturelle 

Studien dieses Rezeptorsystems weiter dazu beitragen den molekularen 

Mechanismus, der der Rezeptoraktivierung unterliegt, aufzuklären, als auch 

helfen neue Medikamente zu entwickeln die benötigt werden um bestehende 

Therapien zu erweitern. 

Während dieses Projektes, habe ich gezeigt, dass die Bindung der einzelnen 

VEGFR-1 Liganden in ähnlichen Liganden/VEGFR-1 ECD Konformationen 

resultierte. Die Komplexe sind neben der Dimerisierung durch den Liganden 

durch weitere homotypische Rezeptor/Rezeptor Interaktionen in den 

membrannahen Ig-homologen Domänen geprägt. Ausserdem, ist dies die erste 
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Studie, die die thermodynamische Beteiligung individueller Ig-homologie 

Domänen zum Prozess der Ligandenbindung behandelt. Dabei habe ich 

gezeigt, dass VEGFR-1 Domäne 4-7 eine positive Beteiligung am Prozess der 

Ligandenbindung besitzt, was durch niedrigere Affinitäten der Liganden für 

VEGFR-1 D1-7 im Vergleich zur minimalen Ligandenbinde Domäne gezeigt 

wurde. Überraschenderweise, habe ich entdeckt dass Ig-homologie Domäne 1 

die PlGF-1 Bindung an VEGFR-1 D1-3 aber nicht die Bindung an D1-7 

behindert. Der genaue Mechanismus, der dieses Verhalten erklären würde, ist 

jedoch unklar. 

In einem zweiten Projekt, zeigen wir dass Ig-homologie Domäne 4 und 7 

unersetzlich für die VEGFR-2 Aktivierung sind. Innerhalb der Ig-homologie 

Domäne 7 ist es der Loop, der β-Strang E und F verbindet, der die wichtigen 

Elemente für die Rezeptoraktivierung beinhaltet. Dieser Loop interagiert mit 

demselben Loop in der Ig-homologie Domäne 7 der zweiten Rezeptorkette im 

dimerisierten Komplex. Daher haben wir DARPins generiert die spezifisch die 

niedrigaffinen Rezeptor/Rezeptor-Interaktionen anzielen, die sich durch die 

Ligandenbindung bilden. Wir beschreiben einen DARPin, der Ig-homologie 

Domäne 4 bindet und der zu einer verringerten VEGFR-2 Phosphorylierung 

führt ohne dabei die Ligandenbindung zu stören. Dieser Inhibitor wirkt sich auch 

auf Abwärtssignalwege zu PLCγ1 aus und inhibiert die Bildung von neuen 

Trieben von Endothelzellen. Diese Art von Inhibition stellt einen neuen 

Inhibitionsmechanismus für VEGFR-2 dar, der komplementär zu anderen 

Behandlungen benutzt werden kann um die Effizienz der Anti-Angiogenese 

Therapie zu verbessern. 
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5 Introduction 

5.1 The vascular system 

5.1.1 Vasculogenesis & angiogenesis 

In humans, the cardiovascular system serves as an internal communication 

network. Molecules, nutrients, but also waste products are delivered to or 

removed from distant organs and tissues. Thus, the cardiovascular system is 

one of the first organs that develops during embryonic growth of vertebrates. 

Two major processes are responsible for the development of the vasculature, 

vasculogenesis and angiogenesis. While vasculogenesis mainly occurs during 

early embryonic development, angiogenesis plays also an important role in 

adults. Wound healing and the formation of the corpus luteum during the female 

reproductive cycle are just two exemplary events, where angiogenesis is 

involved. 

Vasculogenesis represents the process of the de novo formation of an 

immature vasculature in an avascular environment. In the embryo, premature 

vessels are built by angioblasts, which are differentiated endothelial cells from 

the mesoderm. Angioblasts coalesce at or close by their site of origin to 

construct a first network of vascular tubes, the primary capillary plexus (Risau 

and Flamme, 1995). This network already contains vessels in the developing 

embryo, for instance the aorta and major veins. In order to further mature the 

vasculature, a process called angiogenic remodeling occurs. Smooth muscle 

cells and pericytes are recruited to the existing vessels. They pack tightly with 

the endothelial cells and the extracellular matrix to form compact vessel walls.  

Angiogenesis, the second step of vasculature maturation, signifies vessel 

growth from a preexisting vascular system into an avascular tissue region. 

There two major types of angiogenesis, which refer to sprouting angiogenesis 

and non-sprouting angiogenesis are observed. During sprouting angiogenesis 

endothelial cells proliferate and migrate into the proteolytically degraded 

extracellular matrix to form a new branch derived from an existing vessel. In 
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non-sprouting angiogenesis or intussusception, endothelial cells, which 

proliferated inside an existing vessel, form a lumen that can be divided by fusion 

or splitting of capillaries. Both angiogenic processes occur during the 

development of the cardiovascular system giving rise to the mature vasculature, 

but only angiogenesis is implicated to take place also in adults. 

5.1.2 Molecular mechanisms of vessel formation 

The formation of the vasculature is regulated by a plethora of molecules  

(Fig. 1). Early in embryonic development members of the fibroblast growth 

factor (FGF)-family induce the differentiation of hematopoietic precursor cells, 

the hemangioblasts which give rise to endothelial cells (Krah et al., 1994). 

Subsequently, the vascular endothelial growth factor (VEGF)-family plays an 

essential role in determining the fate of endothelial cells (Risau and Flamme, 

1995; Risau, 1997). Mice that do not express VEGF-A show severe defects in 

the vascular development and die at embryonic day 9.5-10.5 (Carmeliet et al., 

1996). The mutation of one single VEGF-A allele is enough to promote vascular 

abnormalities that lead to lethality at embryonic day 11-12 (Carmeliet et al., 

1996; Ferrara et al., 1996). Most likely, VEGF exerts its differentiation inducing 

function through the receptor tyrosine kinase (RTK) VEGF-receptor (VEGFR)-2. 

This is supported by a VEGFR-2 knockout mouse that lacks both angioblasts 

and hematopoietic cells (Shalaby et al., 1995; Yamashita et al., 2000). Another 

VEGF-receptor, VEGFR-1, plays a crucial role in vasculogenesis. In mice 

deficient for VEGFR-1 angioblasts are present but they lack the primary 

vascular network, leading to lethality at embryonic day 8.5-9 (Fong et al., 1995). 

At the cellular level, overproliferation of hemangioblasts in VEGFR-1-/- -mice has 

been shown to cause the malformation of the immature vasculature (Fong et al., 

1999).  
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Fig. 1: Schematic representation of vascular development and the 
involved molecules and cells 
The individual stages of vascular development are presented and below the 
molecules that are implicated in these steps are shown in boxes (a). Nascent 
vessels are composed of a single layer of endothelial cells forming a tube (b). 
As the nascent blood vessels mature into capillaries, they are surrounded by a 
basement membrane and pericytes (c). Mature arterioles and veins are 
additionally covered by smooth muscle cells, which contain their own basement 
membrane (d). (adapted from (Tallquist et al., 1999) & (Jain, 2003)) 

Further vessel maturation and remodeling of the initial vascular network are 

induced by angiopoietins (Ang), their receptors Tie1/2, and the ephrin-family of 

growth factors. In mice lacking Ang1 or its receptor Tie2 initially an immature 

vasculature is formed (Dumont et al., 1994; Sato et al., 1995). However, the 

endothelial cells forming the primary vasculature seem to be unable to 

associate with the supporting cells (Suri et al., 1996). Another member of the 

Ang-family, called Ang2, is important for further angiogenic and vasculogenic 
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remodeling. Ang2, an antagonist of Ang1 for Tie2, induces uncoupling of 

smooth muscle cells from endothelial cells and loosening of the extracellular 

matrix at the sites where angiogenic sprouting is supposed to occur 

(Maisonpierre et al., 1997). This enables endothelial cells to migrate and to form 

a new branch of the vessel. 

Another important step in the maturation of blood vessels is the recruitment of 

periendothelial cells, such as vascular smooth muscle cells and pericytes. The 

platelet-derived growth factor (PDGF)-family plays an important role in this 

process. This family comprises four ligands, PDGF-A, -B, -C, and -D, and two 

receptors, PDGFR-α and PDGFR-β. The vascular endothelial cells building the 

immature network express PDGF-B, thereby recruiting mesenchymal progenitor 

cells expressing PDGFR-β (Hellstrom et al., 1999). Mice that are homozygous 

null for PDGF-B lack pericytes associated to vascular endothelial cells and 

show an impaired microvasculature (Hellstrom et al., 2001; Lindahl et al., 1997; 

Leveen et al., 1994). In addition to the recruitment of mural cells, PDGF-B 

expression leads to the migration of existing vascular smooth muscle cells and 

pericytes along the growing tip of a sprouting vessel. 

In one of the final steps of the formation of the vasculature, vessels need to be 

defined as arterial or venous. Here the ephrin signaling system comes into play. 

The ephrin receptors (Eph) represent the largest known family of RTKs and in 

contrast to other ligand/receptor families ephrins need to be membrane 

anchored to bind to their receptors. Inactivation of either ephrinB2 or EphB4 in 

mice leads to similar effects as observed in Ang1/Tie2-deficient mice, such as 

the development of a normal primary vasculature with impaired association of 

supporting and endothelial cells (Wang et al., 1998). EphrinB2 is preferentially 

expressed in arterial endothelial cells, while its receptor EphB4 is mainly found 

in venous endothelial cells (Wang et al., 1998; Gerety et al., 1999). This 

expression pattern and the results of the knockout mice suggest that ephrinB2 

and EphB4 determine the identity of venous and arterial vessels and they might 

be involved in the process of fusing them. Another role of ephrinB2 in the 

regulation of angiogenic sprouting and branching has been discovered recently 

(Sawamiphak et al., 2010; Wang et al., 2010). In these studies, the authors 

showed that ephrinB2-signaling through its PDZ interacting domain controls 
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VEGFR-2 and VEGFR-3 internalization and thus signaling by these two 

receptors. Mice expressing ephrinB2 that lacks its PDZ binding motif showed a 

decreased number of tip cells with a lower amount of filipodia in the mouse 

retina, suggesting that ephrinB2 regulates VEGF/VEGFR-2 induced filipodia 

extension of endothelial tip cells (Sawamiphak et al., 2010). 

Other factors involved in the development of the vasculature are members of 

the transforming growth factor (TGF)-β superfamily, vascular endothelial 

(VE)-cadherin, and members of the Notch family of receptors. TGF-β1 is 

involved in vascular remodeling by initiating extracellular matrix deposition and 

the differentiation of mural cells from mesenchymal precursor cells (Pepper, 

1997). Experiments performed with mice that are deficient for VE-cadherin or its 

β-catenin binding motif showed vascular plexus formation, but impaired vessel 

maturation, and increased endothelial apoptosis implicating a role of 

VE-cadherin/β-catenin signaling in controlling endothelial cell survival 

(Carmeliet et al., 1999a; Carmeliet and Collen, 2000). The Notch signaling 

pathway with its ligands Delta-like-4, Jagged-1, and Jagged-2 and its receptors 

Notch-1, Notch-3, and Notch-4 is implicated in the determination of endothelial 

cell fate as well as in the control of tip cell selection (Hellstrom et al., 2007). 

Notch signaling represses venous cell differentiation while favoring arterial cell 

differentiation in zebrafish (Lawson et al., 2001). In the event of blood vessel 

sprouting, Notch signaling acts as a repressor system in the cells adjacent to 

tip-cells, the so called mural cells (Hellstrom et al., 2007; Siekmann and 

Lawson, 2007).  

5.1.3 Pathological angiogenesis in cancer 

There are numerous human diseases involving excessive angiogenesis, 

abnormal vascular remodeling, insufficient vessel growth, or impaired vessel 

regression. The most prominent pathology hallmarked by excessive 

angiogenesis is cancer. Others include arthritis, psoriasis, artherosclerosis, 

obesity, and several retinopathies, for instance due to age-related macular 

degeneration (AMD) or diabetes. Insufficient vessel growth or abnormal blood 

vessel regression are characteristics of neurodegeneration, osteoporosis, heart 
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ischemia, and brain ischemia (Ferrara and Davis-Smyth, 1997; Ferrara and 

Kerbel, 2005). 

Angiogenesis in cancer involves several different types of blood vessel 

formation in tumors: (1) avascular tumor growth initiates angiogenic sprouting 

towards the tumor of surrounding blood vessels, (2) tumor cells grow on and 

along existing host-vessels, and (3) endothelial precursor cells recruited from 

the bone-marrow further contribute to tumor angiogenesis (Fig. 2) (Yancopoulos 

et al., 2000; Carmeliet, 2000). Tumors can survive quiescent by quite a while, 

mainly regulated by a well balanced expression of pro-angiogenic and 

anti-angiogenic factors (Folkman, 1995). This balanced regulation of pro- and 

anti-angiogenic molecules is often referred to as the „angiogenic switch‟. There 

are a number of inducers of the „angiogenic switch‟, including metabolic stress, 

mechanical stress, immune/inflammatory response, and mutations of 

oncogenes or tumor suppressor genes (Carmeliet and Jain, 2000). 

The diffusion limit of oxygen in tissues is 100-200 μm. Hence, blood vessels 

need to be close to surrounding cells for the proper distribution of oxygen and 

nutrients. If tumors reach a size bigger than the oxygen diffusion limit, they 

become hypoxic and need to be vascularized. A hallmark of hypoxia is the 

upregulation of the transcription factor hypoxia-inducible factor 1 (HIF-1). 

Activation of HIF-1 in hypoxic tumors induces transcription of pro-angiogenic 

factors, such as VEGF, VEGFR, FGF, and TGF-β1 (Tang et al., 2004; 

Carmeliet et al., 1998). The expression of these molecules causes 

angiogenesis characterized by sprouting, branching, or intussusception of 

nearby vessels, followed by ingrowth of blood vessels into the tumor. Although 

the process of tumor angiogenesis and physiological angiogenesis are very 

similar, the newly formed blood vessels show quite distinct features. Tumor 

blood vessels often lack proper association with perivascular cells, such as 

smooth muscle cells or pericytes, or they do not even form a surrounding cell 

layer (Hashizume et al., 2000). This phenomenon leads to instability of the 

vessels, rendering them often leaky. Other features of tumor blood vessels 

include disorganization, uneven sizes, non-uniform layering by endothelial cells, 

and excessive branching and sprouting, aggravating the difficulties that 

anti-cancer treatments face (Morikawa et al., 2002; Chang et al., 2000; Baish 
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and Jain, 2000). 

 

Fig. 2: Mechanisms of pathological angiogenesis associated with tumor 
growth 
The tumor grows avascular leading to hypoxia induced expression of 
pro-angiogenic factors, which in turn initate blood vessl sprouting (a).The tumor 
co-opts existing blood vessels and grows along them, followed by vessel 
regression. The tumor becomes secondarily avascular causing angiogenic 
sprouting (b). Endothelial progenitor cells are recruited from the bone marrow 
by factors released by tumor cells leading to angiogenesis of adjacent blood 
vessels (c). (adapted from (Yancopoulos et al., 2000) & (Carmeliet, 2000)) 

In the case of tumors growing on and along existing blood vessels by co-option, 

vessels recognize the tumor cells and start to regress (Holash et al., 1999). This 

leads to a secondarily avascular and hypoxic tumor, which is accompanied by a 

significant tumor cell loss. At the margin of the tumor, angiogenesis is initiated, 

rescuing remaining tumor cells. Ang2 and VEGF seem to be key players of this 



Dissertation Edward Stuttfeld Introduction 

16 
 

process, since Ang2 shows increased expression in the co-opted blood vessels, 

while VEGF is detectable in neighbouring tumor cells (Holash et al., 1999). 

5.1.4 Pathological angiogenesis in age-related macular degeneration 

Age-related macular degeneration describes a leading cause of blindness of 

elderly people and is the third major cause of blindness worldwide. There are 

two forms of AMD: dry (nonexudative) and wet (exudative) AMD. While in the 

dry form visual loss only slowly progresses over several years, patients 

suffering from the wet form can lose vision over a very short time frame, if the 

disease stays untreated. In the wet form of AMD, abnormal vessels grow from 

the choroidal vascular network which lies directly underneath the retina. This 

process is described as choroidal neovascularization and thought to be 

triggered by the permeability inducing function of VEGF. Blood, coming from the 

newly formed and excessively leaky vessels, leads to a swelling of the retina 

and edema formation, which subsequently results in impaired vision. Hence, a 

lot of therapeutic applications for wet AMD aim at inhibiting VEGF. 

VEGF plays important roles in a number of pathological angiogenesis 

associated diseases, especially in the eye. One example in which VEGF 

induces pathological neovascularization in the eye is proliferative diabetic 

retinopathy.  

5.1.5 Therapeutic approaches 

Since the VEGF/VEGFR-signaling system is the major network involved in 

physiological and pathological angiogenesis, many therapeutic treatments focus 

on the members of the VEGF/VEGFR-family, no matter if promoting or inhibiting 

their function. Two types of anti-angiogenic therapies targeting the 

VEGF/VEGFR-system are used. The first aims at preventing ligand binding to 

the receptor by either blocking the ligand binding site at the receptor or 

vice-versa blocking the binding site of VEGF for the receptor. The second 

approach uses small molecule inhibitors that bind the intracellular kinase 

domain and block kinase activity. 

The first drug targeting VEGF got the approval for treating colorectal cancer in 



Dissertation Edward Stuttfeld Introduction 

17 
 

combination with chemotherapy by the US Food and Drug Administration in 

2004 (Ferrara et al., 2004). It was a humanized monoclonal antibody 

neutralizing VEGF, known as bevacizumab or Avastin (Genentech). In the 

meantime it got also approved for treating breast and lung cancer. 

Ranibizumab, commercially available as Lucentis (Genentech), is an optimized 

Fab fragment of bevacizumab, which is successfully used to treat wet AMD 

(Ferrara et al., 2006). Patients suffering from wet AMD are able to regain sight, 

when treated with Lucentis at a monthly basis. In 2004, the US Food and Drug 

Administration approved pegaptanib (Macugen), an anti-VEGF aptamer, for the 

treatment of wet AMD (Willis et al., 1998; Gragoudas et al., 2004). Another 

concept to block ligand/receptor complex formation was to create a VEGF trap. 

Hence, Holash and colleagues engineered a recombinant protein consisting of 

Immunoglobulin (Ig)-like domain 2 of VEGFR-1 and Ig-homology domain 3 of 

VEGFR-2 predimerized by the constant region (Fc-region) of human IgG1 

(Holash et al., 2002). The VEGF-trap (Regeneron) showed significantly higher 

affinity for VEGF than the native receptors. The researchers at ImClone 

Systems Incorporated also used antibodies against VEGFR-1 and/or VEGFR-2 

to suppress tumor growth in mouse cancer models (Dias et al., 2000; Wu et al., 

2006). 

In a second approach to block pathological angiogenesis, small molecule 

inhibitors blocking the kinase domain have been developed. Among these types 

of inhibitors are Sutent (SU11248, Pfizer), Sorafenib (BAY 43-9006, Bayer), 

Vatalanib (PTK787/ZK222584, Novartis), and Recentin (AZD2171, 

AstraZeneca). Two types of small molecule inhibitors exist. One type targets the 

active conformation of the ATP-binding pocket of the kinases (type I inhibitors) 

and the other type prevents the kinase domain from undergoing structural and 

conformational changes that are needed to exploit its full function (type II 

inhibitors). Since the kinase domains of RTKs are highly conserved and thus 

structurally very homologous, small molecular weight inhibitors targeting the 

kinase domain are not very specific. Sutent, for instance, binds and inhibits 

VEGFR, PDGFR, Fms-like tyrosine kinase-3 (Flt-3), and c-Kit. 

Another very promising approach for blocking VEGFR signaling emerged very 

recently. Alitalo and colleagues generated an antibody against VEGFR-3 that 
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binds the extracellular domain (ECD), but does not block ligand binding 

(Tvorogov et al., 2010). They showed that this antibody leads to decreased 

signal transduction, migration, and sprouting of microvascular endothelial cells 

in vitro and in vivo. A similar approach was successfully applied to VEGFR-2 

(Kendrew et al., 2011). 

One major problem in anti-angiogenic therapies targeting cancer lies in the 

development of resistance to the treatment (Fig. 3). The expression of other 

angiogenic factors than VEGF that take over as the disease progresses is a 

possible reason. Other explanations could be the recruitment of bone-marrow 

derived endothelial progenitor cells expressing angiogenic factors, pericytes 

protecting tumor blood vessels from anti-angiogenic treatment, increased tumor 

cell invasiveness, the co-opted growth of tumor cells along existing vessels 

making angiogenesis as a survival promoting process obsolete, and the 

existence of tumor cells that are hypoxia resistent (Fig. 3) (Bergers and 

Hanahan, 2008). Therefore, it is likely that anti-angiogenic treatment of tumors 

is not a standalone therapy. Targeting several angiogenic factors in combination 

with other treatments of tumor cells might be a successful option in treating 

cancer. 

In addition, extensive efforts have been laid into developing therapeutic 

angiogenesis to treat ischemic disorders. Despite several preclinical and clinical 

trials using several angiogenesis inducing factors, such as application of VEGF 

and FGF isoforms, researchers are still waiting to achieve a major 

breakthrough. 
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Fig. 3: Development of resistance to anti-angiogenic treatment of tumors; 
mechanisms 
Upregulation of other pro-angiogenic factors, such as FGFs, ephrins, or 
angiopoietins circumvents anti-angiogenic therapy (a). Recruitment of bone 
marrow-derived endothelial progenitor cells expressing angiogenic factors can 
lead to new vascularization of tumor tissue (b). Development of a good 
perivascular cell layer including pericytes can render tumor blood vessels 
resistant to anti-angiogenic treatment (c). Increased invasiveness and growth of 
tumor cells along existing vasculature allows tumor cells to escape from oxygen 
and nutrient deprivation (d). (adapted from (Bergers and Hanahan, 2008)) 

5.2 The VEGF/VEGFR-signaling system 

In humans, the VEGF family of growth factors consists of five members, namely 

VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placenta growth factor (PlGF). 

Structurally related proteins that also belong to this family and do not exist in 

mammals, are VEGF-E, VEGF variants produced by some parapox viruses, 

and VEGF-F, VEGFs that were found in some snake venoms (Shibuya, 2003; 

Yamazaki et al., 2009). The VEGFs bind in an overlapping pattern to three 

different RTKs, which are called VEGFR-1, VEGFR-2, and VEGFR-3 (Fig. 4).  



Dissertation Edward Stuttfeld Introduction 

20 
 

 

Fig. 4: Overview of the VEGF/VEGFR-signaling system 
VEGFs bind three different RTKs, called VEGFR-1, -2, and -3. Ligand binding 
causes homo- and heterodimerization of the VEGFRs and subsequent 
activation. In addition, soluble VEGFR-1 (sVEGFR-1) and VEGFR-2 
(sVEGFR-2) act as decoy receptors by capturing soluble VEGF. The signaling 
output is further modulated by co-receptors such as Neuropilin-1 and -2. 

Alternative splicing and proteolytic processing give rise to several isoforms of 

every VEGF family member leading to different signaling functions (Fig. 5) 

(Takahashi and Shibuya, 2005). Ligand binding leads to dimerization of the 

receptor, followed by activation and tyrosine phosphorylation of the intracellular 

domain of the receptor. The phosphorylated tyrosines act as docking sites for 

signaling molecules such as phospholipase C-γ1 (PLCγ1), T-cell-specific 

adaptor (TSAd), and Shb (Src-homology-2 protein in β-cells) (Olsson et al., 

2006). The binding of downstream signaling molecules of VEGFRs depends on 

which tyrosine residue gets phosphorylated leading to combinatorial signal 

output. The signaling output can be further modified by binding of co-receptors, 

such as neuropilin-1 (Nrp-1), neuropilin-2 (Nrp-2), clotho, or heparan sulfate 

proteoglycans (HSPG) (Grünewald et al., 2010). 
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Fig. 5: Splice variants of the VEGF family and their mRNA structure 
Alternative splicing and proteolytic processing give rise to a number of isoforms 
of VEGF-A, VEGF-B, and PlGF. The numbers on the right indicate the 
sequence identity to VEGF-A165 at the amino acid level. Arrows indicate the 
sites of proteolytic digestion to generate VEGFR-2 binding variants of VEGF-C 
and VEGF-D. (Takahashi and Shibuya, 2005) 

The VEGFRs belong to type V RTKs. They consist of seven Ig-homology 

domains in the extracellular region, a single transmembrane helix, a 

juxtamembrane domain, a split tyrosine-kinase domain, and a long tail at the 

C-terminus. VEGFR-3 is a special case, since it is proteolytically processed in 

the region of Ig-homology domain 5. Nevertheless, VEGFR-3 maintains its 

overall topology by crosslinking the proteolytic products through a 

disulfide-bridge. Ig-homology domain 2 and 3 compose the minimal ligand 

binding site (Keyt et al., 1996b), while the other Ig-homology domains are 

implicated in stabilizing the dimeric receptor or in preventing receptor 

dimerization in the absence of ligand (Ruch et al., 2007; Tao et al., 2001). 
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5.2.1 The ligands 

VEGF-A 

VEGF-A is the best characterized member of the VEGF family. Due to 

alternative splicing up to nine isoforms of VEGF-A can be found in the human 

body: VEGF-A121, VEGF-A145, VEGF-A148, VEGF-A162, VEGF-A165, VEGF-A165B, 

VEGF-A183, VEGF-A189, and VEGF-A206 (Fig. 5). The subscript digits indicate 

the number of amino acids each isoform is composed of. All VEGF-A variants 

bind VEGFR-1 and VEGFR-2 with high affinity. The VEGF-A gene is located on 

human chromosome 6p21.3 (Vincenti et al., 1996) and is composed of eight 

exons and seven introns, giving rise to the aforementioned isoforms (Tischer et 

al., 1991; Houck et al., 1991). VEGF-A is expressed in endothelial cells, 

macrophages, T-cells and a number of other cells (Ferrara and Davis-Smyth, 

1997; Freeman et al., 1995). The most abundant isoforms of VEGF-A are 

VEGF-A121, VEGF-A165, and VEGF-A189. 

VEGF-A121 lacks the amino acid sequences of exon 6 and 7, rendering it 

incapable of binding HSPG. Thus, VEGF-A121 is freely diffusible upon secretion 

by cells. Knockout of VEGF-A164 or VEGF-A188 in mice (in mice the 

VEGF-variants are all one amino acid shorter) results in lethality shortly after 

birth due to excessive organ bleeding in 50% of the cases and the remaining 

mice die within 14 days post-natally due to cardiac failure (Carmeliet et al., 

1999b). In addition, mice exclusively expressing VEGF-A120 show severe 

defects in skeletal development, vascularization of the retina, and in myocardial 

angiogenesis (Maes et al., 2002; Zelzer et al., 2002). These findings indicate 

that the heparin binding domain of VEGFs is essential to initiate vascular 

branching and sprouting in a spatially very restricted way.  

VEGF-A165, often only referred to as VEGF, contains the amino acid sequence 

encoded by exon 7 and thus shows a reasonable affinity for heparin (Ferrara 

and Henzel, 1989). Mice engineered to express only VEGF-A164 show normal 

development of the vasculature (Stalmans et al., 2002). On the other hand, 

mice expressing no VEGF-A die before embryonic day 9.5-10.5 (Carmeliet et 

al., 1996). Even the mutation of one single VEGF-A allele is sufficient to 

severely impair the development of the vasculature leading to lethality at 
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embryonic day 11-12 (Ferrara et al., 1996). These results underscore the 

central role that VEGF-A165 plays in the development of the vasculature. 

Interestingly, the VEGF-A165B splice variant that differs from VEGF-A165 only in 

the last 6 amino acids has an inhibitory effect on angiogenesis when added 

together with VEGF-A165 (Bates et al., 2002). This is explained by the fact that 

VEGF-A165B lacks the ability to bind Nrp-1 (Cébe-Suarez et al., 2006). 

Whereas VEGF-A121 is freely diffusible and VEGF-A165 has an intermediate 

affinity for HSPG or other extracellular matrix components, VEGF-A189 shows a 

very high affinity for HSPG, which results from the additional amino acids 

encoded by exon 6 (Park et al., 1993). However, proteolytic digestion can 

render extracellular matrix or cell bound VEGFs diffusible. Plasmin cleavage at 

the carboxy-terminus (C-terminus) produces a VEGF-variant consisting only of 

amino acids 1-110 (Keyt et al., 1996a). The mitogenic function of VEGF-A1-110, 

similar to VEGF-A121, is significantly decreased compared to VEGF-A165. 

VEGF-A189 can be converted to an endothelial cell differentiation factor by 

urokinase controlled proteolysis (Plouet et al., 1997). This shows that the 

different VEGF isoforms have distinct functions in the vascular development, 

with VEGF-A165 as the central player. 

VEGF-B 

As is the case with VEGF-A, the VEGF-B gene gives rise to more than one 

isoform by alternative splicing: VEGF-B167 and VEGF-B186 (Fig. 5). Both 

VEGF-B proteins contain the same 116 amino-terminal (N-terminal) amino 

acids, but differ significantly in their C-terminus. VEGF-B167 is able to bind to 

HSPGs with its carboxy-terminal tail and is thus associated with the 

extracellular matrix or cell-surface bound HSPGs (Olofsson et al., 1996a). 

VEGF-B189 on the other hand is not capable to bind to HSPGs with its 

C-terminal domain and is thus a freely diffusable protein once it is secreted by 

cells (Olofsson et al., 1996b). Both isoforms exert their functions exclusively 

through binding to VEGFR-1, but they are also able to bind Nrp-1 (Makinen et 

al., 1999). 

The functional role of VEGF-B was and still is under debate. Since VEGFs are 
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major players in the vascular development, researchers mainly focused on the 

angiogenic potential of VEGF-B. The knockout of VEGF-B in mice was not 

lethal and led to healthy and fertile animals as opposed to VEGF-A knockout 

mice. However, they showed a reduced heart size, dysfunctional coronary 

vasculature, and an impaired recovery from cardiac ischemia (Aase et al., 2001; 

Bellomo et al., 2000). These findings correlated with the expression pattern of 

VEGF-B, which is mainly found in the heart, but also in other tissues such as 

brown fat, skin, and the brain (Aase et al., 1999; Lagercrantz et al., 1996). 

Nevertheless, VEGF-B has not been proven so far to be a pro-angiogenic 

factor, although it has been detected in a number of different cancer types 

(Salven et al., 1998; Niki et al., 2000), where it is believed to supplement the 

angiogenic potential of other VEGF family members. 

A new role of VEGF-B has been proposed very recently by the lab of Ulf 

Eriksson (Hagberg et al., 2010). They report that VEGF-B regulates the fatty 

acid uptake of endothelial cells and thereby the transport of fatty acids to 

peripheral organs. Mice that are deficient for VEGF-B show a decreased level of 

lipids in heart, muscle, and brown adipose tissue. Hence, the function of the 

VEGF family is not restricted to the development and regulation of the 

vasculature; instead it is also involved in the regulation of metabolic pathways. 

PlGF 

PlGF was initially described in 1991 as a growth factor that was isolated from a 

placental cDNA-library (Maglione et al., 1991). Its transcript is detectable in the 

placenta at all stages of human gestation and has been also observed in the 

heart, lung, thyroid gland, and skeletal muscle (Persico et al., 1999). Alternative 

splicing generates four different isoforms (Fig. 5), which display different binding 

properties: PlGF-1 (PlGF131), PlGF-2 (PlGF152), PlGF-3 (PlGF203), and PlGF-4 

(PlGF224). While PlGF-2 and -4 are able to bind heparin, PlGF-1 and -3 do not 

contain a heparin binding motif (Maglione et al., 1993; Yang et al., 2003). PlGF 

binds to VEGFR-1, but not to VEGFR-2 or -3 (Park et al., 1994). PlGF-2 is also 

known to bind Nrp-1 and -2.  

The deletion of PlGF in mice did not affect the development of the vasculature 
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in the embryo. However, it affected angiogenesis in pathological conditions, 

such as in ischemia, inflammation, and cancer (Carmeliet et al., 2001). Further 

implications that PlGF is involved in pathological angiogenesis come from Peter 

Carmeliet‟s research group. They showed that treatment of ischemic tissue with 

PlGF led to a revascularization and that angiogenesis was inhibited in tumors, 

atherosclerosis, and arthritis when treated with anti-VEGFR-1 antibodies (Luttun 

et al., 2002). Moreover, PlGF signaling through VEGFR-1 leads to 

transphosphorylation or activation of VEGFR-2 by VEGFR-1, indicating that 

PlGF enhances VEGF-A signaling (Autiero et al., 2003). In 2007 a monoclonal 

antibody raised against PlGF has been shown to inhibit tumor angiogenesis, 

growth, and metastasis, even in tumors that were resistant to other 

VEGFR-inhibitors (Fischer et al., 2007). The anti-PlGF antibody displayed no 

side effects on normal, physiological angiogenesis, raising the hopes for a new 

anti-cancer treatment, also in combination with already existing therapies.  

However, a recent study where researchers analyzed several new anti-PlGF 

antibodies in 15 different models, showed no effect on tumor angiogenesis 

either as a standalone treatment or in combination with anti-VEGF-A treatment 

(Bais et al., 2010). This report has been promptly answered by testing additional 

anti-PlGF antibodies as well as by reagents blocking PlGF using genetic tools in 

animal tumor models, showing that anti-PlGF treatment can be an option in 

specific types of tumors (Van, V et al., 2010). Hence, more studies are needed 

to explore the exact functions as well as the therapeutical potential of PlGF. 

5.2.2 The receptors 

VEGFR-1 

VEGFR-1 was reported for the first time in 1990, when it was cloned from a 

placental cDNA-library (Shibuya et al., 1990). In addition to vascular endothelial 

cells, VEGFR-1 is also expressed in non-endothelial cells such as 

macrophages, monocytes, and hematopoietic stem cells (Sawano et al., 2001; 

Hattori et al., 2002). It is a high-affinity receptor for VEGF-A, VEGF-B, PlGF, 

and some VEGFs that are found in snake venoms. The affinity of VEGF-A 



Dissertation Edward Stuttfeld Introduction 

26 
 

binding to VEGFR-1 is at least 10-fold higher than for VEGFR-2. However, the 

kinase domain of VEGFR-1 shows only weak tyrosine phosphorylation activity 

compared to VEGFR-2 (Waltenberger et al., 1994; Seetharam et al., 1995). 

Work with chimeric VEGFR-1/VEGFR-2 proteins suggests that the 

juxtamembrane domain of VEGFR-1 contains an inhibitory element causing 

attenuation of kinase activity (Gille et al., 2000). In addition, mutation of the 

amino acid N1050 to D in the activation loop of the VEGFR-1 kinase domain 

changed the characteristics of the kinase domain and increased its activity 

(Meyer et al., 2006).  The modest activity of the VEGFR-1 kinase domain made 

it very challenging to study the function of this receptor.  

In total, there exist six tyrosine residues in the kinase domain and one in the 

juxtamembrane domain of VEGFR-1 that have been reported to get 

phosphorylated leading to interactions with downstream signaling molecules 

(Fig. 6) (Cunningham et al., 1995; Sawano et al., 1997; Ito et al., 2001). 

Tyrosine phosphorylation depends on the ligand binding to VEGFR-1. For 

instance, Autiero et al. reported that Y1213 gets phosphorylated upon VEGF-A 

binding, whereas PlGF leads to phosphorylation of Y1309 (Autiero et al., 2003). 

Several interacting downstream molecules binding to phosphorylated tyrosine 

residues have been identified, such as p85/phosphatidylinositol-3 kinase (PI3K), 

PLCγ1, Src-homology phosphatase-2 (SHP2), growth-factor-receptor-bound-2 

(Grb2) protein and Nck (Matsumoto and Claesson-Welsh, 2001). However, the 

individual signaling pathways and their functional output are still not well 

characterized. 

The knockout of VEGFR-1 in mice caused prenatal lethality at embryonic day 

8.5-9 (Fong et al., 1995). Later it was revealed that the lack of the VEGFR-1 

protein leads to overproliferation of endothelial progenitor cells (Fong et al., 

1999). These data suggest, that VEGFR-1 may act as a decoy receptor during 

embryonic development of the vasculature, sequestering excessive VEGF-A 

and thereby spatially controlling the VEGF-A concentration. Further support for 

this hypothesis came from experiments with mice that express a truncated 

VEGFR-1 lacking the intracellular tyrosine-kinase domain. These animals 

survived and developed a normal vasculature (Hiratsuka et al., 1998). The 

localization of the VEGFR-1 ECD seems to be important, since 50% of the mice 
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expressing only soluble VEGFR-1 ECD suffer from embryonic lethality due to 

impaired vasculogenesis, whereas the other half survives (Hiratsuka et al., 

2005). Another function of VEGFR-1 is its ability to induce macrophage and 

monocyte migration upon VEGF-A or PlGF-stimulation (Barleon et al., 1996; 

Clauss et al., 1996). This biological function of VEGFR-1 was supported by the 

decreased migration rate of macrophages that was observed in mice 

expressing VEGFR-1 lacking the tyrosine kinase domain (Hiratsuka et al., 

1998). 

Next to its involvement in physiological processes, VEGFR-1 seems also to be 

part of pathological angiogenesis. VEGFR-1 transcripts were observed in 

ischemic and inflammatory diseases (Luttun et al., 2002), but also in a number 

of tumors, such as in non-small cell lung cancer, prostate, breast and colon 

cancer, pulmonary adenocarcinoma, hepatocellular carcinoma, glioblastoma, 

and multiple myeloma (Andre et al., 2000; Plate et al., 1994). This raised the 

interest of researchers to target VEGFR-1 as a therapeutic strategy (Fischer et 

al., 2008). However, further insight into the signaling properties of VEGFR-1 

and clinical data are still missing. 
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Fig. 6: Schematic representation of the intracellular VEGFR-tyrosine 
residues that are phosphorylated and upon activation recruit downstream 
signaling proteins 
Schematic representation of the intracellular domains of VEGFR-1 (bottom left), 
VEGFR-2 (top), and VEGFR-3 (bottom right). Dark blue boxes indicate tyrosine 
residues. Signaling proteins that are known to interact with phosphorylated 
tyrosines are displayed in dark blue ovals. Subsequent signaling-cascades (light 
blue ovals) activate specific biological responses (pale boxes). (adapted from 
(Olsson et al., 2006) 

In addition to the full length receptor, a soluble variant of VEGFR-1 

(sVEGFR-1), which is composed of the first six Ig-homology domains of the 
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VEGFR-1 ECD, has been identified (Kendall and Thomas, 1993). The soluble 

variant of VEGFR-1 acts as a ligand trap by binding with high affinity to 

VEGF-A, VEGF-B, and PlGF. Therefore, its biological function appears to be 

inhibition of angiogenesis by sequestering VEGF-A preventing it thereby from 

binding to VEGFR-2. This leads to inhibition of oedema formation by interfering 

with VEGF-A mediated vascular permeability, and an anti-inflammatory 

function, by preventing VEGFR-1 induced monocyte/macrophage migration. 

Pathologically, sVEGFR-1 is upregulated in preeclampsia, a syndrome affecting 

5% of all pregnancies, leading to decreased levels of VEGF-A and PlGF and 

ultimately to endothelial dysfunction (Maynard et al., 2003). Administration of 

exogenous VEGF-A and PlGF rescued this phenotype. 

VEGFR-2 

VEGFR-2 is the key receptor in embryogenic vascular development and 

probably the best characterized VEGFR, due to the fact that it shows a higher 

tyrosine kinase activity than VEGFR-1. It can be activated by binding to 

VEGF-A, VEGF-E, VEGF-C, and VEGF-D once the latter two are proteolytically 

processed. Terman and colleagues were the first researchers to be able to 

isolate the gene encoding VEGFR-2 (Terman et al., 1991).  

As with the other VEGFRs, ligand binding induces receptor dimerization 

followed by intracellular autophosphorylation. The phosphorylated tyrosine 

residues serve as docking sites for downstream signaling molecules, containing 

either Src-homology (SH) domains or phospho-tyrosine binding (PTB) domains. 

Several intracellular tyrosine residues that get phosphorylated and recruit 

proteins have been mapped (Fig. 6). The most important tyrosines that play a 

functional role are Y951 in the kinase-insert domain, Y1054, and Y1059 in the 

kinase activation loop, and Y1175, and Y1214 in the C-terminal tail. The 

phosphorylation of amino acid Y951 has been shown to mediate the binding of 

TSAd regulating the induction of vascular permeability and cell migration 

(Matsumoto et al., 2005; Wu et al., 2000). Phosphorylation of Y1054 and Y1059 

is a prerequisite for the kinase to gain full activity (Kendall et al., 1999; 

Takahashi et al., 2001). PLCγ1 signaling to protein kinase C (PKC) and 
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subsequent activation of the mitogen-activated protein kinases p42/44 is 

mediated through the phoshorylation of Y1175, which is the binding site for 

PLCγ1 (Cunningham et al., 1997). The adaptor proteins Shb and Shc-like 

protein (Sck) also bind to phosphorylated Y1175 (Holmqvist et al., 2004; Warner 

et al., 2000). 

The fact that VEGFR-2 is a major mediator of angiogenesis is supported by its 

early presence in endothelial cells during murine embryogenesis. VEGFR-2 

protein is first observed in mesodermal blood island progenitors at embryonic 

day 7 and later detected in vascular endothelial precursor cells and developing 

endothelial cells (Millauer et al., 1993; Yamaguchi et al., 1993). As mentioned 

earlier, mice that are deficient for VEGFR-2 die at the embryonic stage owing to 

malformation of the vasculature (Shalaby et al., 1995). VEGFR-2 mediates 

several physiological functions in endothelial cells such as migration, 

proliferation, survival, and permeability. The PLCγ1 activating signaling pathway 

appears to be a key regulator of cell proliferation and vascular permeability. 

PLCγ1 binding to VEGFR-2 leads to the generation of diacylglycerol and 

inositol-1,4,5-triphosphate, which causes PKC activation and an increase in the 

intracellular calcium concentration, respectively. This in turn activates the 

mitogen-activated protein kinases p42/44 resulting in endothelial cell 

proliferation (Takahashi et al., 2001). Mice that carry a mutation at position 

Y1173 (murine VEGFR-2 is two amino acids shorter) are embryonically lethal 

due to defective endothelial and hematopoietic cells, highlighting the importance 

of PLCγ1 signaling in vasculogenesis and angiogenesis (Sakurai et al., 2005). 

Although it still needs to be determined whether or not the observed effects are 

really mediated through PLCγ1 and not through Shb and Sck, which also bind 

VEGFR-2 at this site. Endothelial cell migration is an important function that is 

needed in angiogenesis. Several signaling cascades activated by VEGFR-2 are 

implicated in cell migration. Binding of TSAd to Y951 followed by complex 

formation between TSAd and Src leads to cell migration, which was indicated 

by point mutagenesis of Y951 (Matsumoto et al., 2005). Other adaptor proteins 

that lead to an initiation of cell migration are Nck that signals through the 

p38-kinase pathway (Lamalice et al., 2006) and focal adhesion kinase which is 

activated by Shb (Holmqvist et al., 2003). Cell survival is mainly mediated 



Dissertation Edward Stuttfeld Introduction 

31 
 

through Y1175 which recruits Shb, followed by activation of PI3K and protein 

kinase B/Akt (Fujio and Walsh, 1999). The induction of vascular permeability 

through VEGFR-2 requires the activation of eNOS. Two signaling pathways can 

result in eNOS activation: PLCγ induced influx of calcium and the activation of 

protein kinase B/Akt (Fulton et al., 1999; Dimmeler et al., 1999). 

Interestingly, as in VEGFR-1, alternative splicing and/or proteolytic processing 

give rise to a soluble VEGFR-2 consisting only of the first six Ig-homology 

domains (Ebos et al., 2004). Its function is not quite clear yet, but a recent study 

suggested that sVEGFR-2 acts as a negative regulator of lymphangiogenesis 

by capturing VEGF-C (Albuquerque et al., 2009). 

VEGFR-3 

VEGFR-3 is a RTK important in lymhangiogenesis. This effect is mainly 

mediated by VEGF-C, since knockout of VEGF-C in mice causes embryonic 

lethality due to impaired lymph vessel development (Karkkainen et al., 2004), 

whereas VEGF-D deficient mice develop with only minor defects (Baldwin et al., 

2005). During embryogenesis VEGFR-3 is present in all endothelial cells, 

whereas in adults its expression is limited to lymphatic endothelial cells 

(Kaipainen et al., 1995). Mice that do not express VEGFR-3 die during 

embryogenesis before lymphatics start to develop owing to vascular remodeling 

defects (Dumont et al., 1998). This indicates an additional role of VEGFR-3 in 

angiogenesis. Indeed, blocking of VEGFR-3, which is also highly expressed in 

sprouting endothelial cells, by monoclonal antibodies caused impaired 

angiogenesis and defects in vascular network formation (Tammela et al., 2008). 

It was also shown that VEGFR-3 can form VEGF-C mediated heterodimers with 

VEGFR-2, for instance to positively regulate angiogenic sprouting (Nilsson et 

al., 2010; Dixelius et al., 2003). 

5.3 The structure of VEGFs and VEGFRs 

To date there are a number of structures of VEGF or VEGFR molecules 

(Table 1) available in the Protein Data Bank (www.pdb.org) (Berman et al., 

http://www.pdb.org/
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2000). These include the receptor binding core of all ligands either alone or in 

complex with minimal ligand-binding domains of VEGFR-1 and -2, and the 

kinase domain of VEGFR-1 and -2 either alone or in complex with inhibitors 

(reviewed in (Grünewald et al., 2010)). However, several features are still not 

structurally characterized. For instance a structure of the complete ECD is still 

missing, as it is the case with the transmembrane domain. The structure of the 

kinase domain lacks the juxtamembrane domain, the kinase insert domain, and 

the C-terminal tail, all which are of high interest and act as adaptor sites for 

downstream molecules. 
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Table 1: Crystal structures found in the protein data bank (PDB), when 
searched for VEGF 
The names of the molecules that are present in the crystal structure are listed 
together with their PDB-entry codes (PDB-ID), their resolution in Å, and the 
references. 

PDB ID Molecules  
Resolution 

[Å] 
Reference 

1FZV PlGF-1 2.00 (Iyer et al., 2001) 

1RV6 PlGF-1/VEGFR-1 D2 2.45 (Christinger et al., 2004) 

1WQ8 Vammin 1.90 (Suto et al., 2005) 

1VPF VEGF-A 2.50 (Muller et al., 1997b) 

2VPF VEGF-A 1.93 (Muller et al., 1997a) 

1MJV VEGF-A (C51A and C60A) 2.10 (Muller et al., 2002) 

1MKG VEGF-A (C57A and C102A) 2.50 (Muller et al., 2002) 

1MKK VEGF-A (C61A and C104A) 1.32 (Muller et al., 2002) 

1BJ1 VEGF-A/antibody-complex 2.40 (Muller et al., 1998) 

1CZ8 VEGF-A/antibody-complex 2.40 (Chen et al., 1999) 

2FJH VEGF-A/B20-4 Fab-complex 3.10 (Fuh et al., 2006) 

3BDY VEGF-A/bH1-Fab-complex 2.60 (Bostrom et al., 2009) 

2QR0 VEGF-A/Fab-complex 3.50 (Fellouse et al., 2007) 

2FJF VEGF-A/G6 Fab-complex 2.65 (Fuh et al., 2006) 

2FJG VEGF-A/G6 Fab-complex 2.80 (Fuh et al., 2006) 

1VPP VEGF-A/Receptor Blocking Peptide-complex 1.90 (Wiesmann et al., 1998) 

1FLT VEGF-A/VEGFR-1 D2 1.70 (Wiesmann et al., 1997) 

1QTY VEGF-A/VEGFR-1 D2 2.70 (Starovasnik et al., 1999) 

1TZH VEGF-A/YADS1 Fab-complex 2.60 (Fellouse et al., 2004) 

1TZI VEGF-A/YADS2 Fab-complex 2.80 (Fellouse et al., 2004) 

2C7W VEGF-B 2.48 (Iyer et al., 2006) 

2VWE VEGF-B/Fab-complex 3.40 (Leonard et al., 2008) 

2XAC VEGF-B/VEGFR-1 D2 2.71 (Iyer et al., 2010) 

2X1W VEGF-C/VEGFR-2 D2-3 2.70 (Leppanen et al., 2010b) 

2X1X VEGF-C/VEGFR-2 D2-3 3.10 (Leppanen et al., 2010b) 

2XV7 VEGF-D 2.90 (Leppanen et al., 2010a) 

2GNN VEGF-E NZ2 2.30 (Pieren et al., 2006) 

3HNG VEGFR-1 Kinase Domain / inhibitor-complex 2.70  

1VR2 VEGFR-2 Kinase Domain 2.40 (McTigue et al., 1999) 

2XIR 
VEGFR-2 Kinase Domain / PF-00337210-
complex 

1.50  

3KVQ VEGFR-2 D7 2.70 (Yang et al., 2010) 

1WQ9 VR-1 2.00 (Suto et al., 2005) 

http://www.rcsb.org/pdb/explore.do?structureId=1FZV
http://www.rcsb.org/pdb/explore.do?structureId=1RV6
http://www.rcsb.org/pdb/explore.do?structureId=1WQ8
http://www.rcsb.org/pdb/explore.do?structureId=1VPF
http://www.rcsb.org/pdb/explore.do?structureId=2VPF
http://www.rcsb.org/pdb/explore.do?structureId=1MJV
http://www.rcsb.org/pdb/explore.do?structureId=1MKG
http://www.rcsb.org/pdb/explore.do?structureId=1MKK
http://www.rcsb.org/pdb/explore.do?structureId=1BJ1
http://www.rcsb.org/pdb/explore.do?structureId=1CZ8
http://www.rcsb.org/pdb/explore.do?structureId=2FJH
http://www.rcsb.org/pdb/explore.do?structureId=3BDY
http://www.rcsb.org/pdb/explore.do?structureId=2QR0
http://www.rcsb.org/pdb/explore.do?structureId=2FJF
http://www.rcsb.org/pdb/explore.do?structureId=2FJG
http://www.rcsb.org/pdb/explore.do?structureId=1VPP
http://www.rcsb.org/pdb/explore.do?structureId=1FLT
http://www.rcsb.org/pdb/explore.do?structureId=1QTY
http://www.rcsb.org/pdb/explore.do?structureId=1TZH
http://www.rcsb.org/pdb/explore.do?structureId=1TZI
http://www.rcsb.org/pdb/explore.do?structureId=2C7W
http://www.rcsb.org/pdb/explore.do?structureId=2VWE
http://www.rcsb.org/pdb/explore.do?structureId=2XAC
http://www.rcsb.org/pdb/explore.do?structureId=2X1W
http://www.rcsb.org/pdb/explore.do?structureId=2X1X
http://www.rcsb.org/pdb/explore.do?structureId=2XV7
http://www.rcsb.org/pdb/explore.do?structureId=2GNN
http://www.pdb.org/pdb/explore/explore.do?structureId=3HNG
http://www.pdb.org/pdb/explore/explore.do?structureId=1VR2
http://www.rcsb.org/pdb/explore.do?structureId=2XIR
http://www.rcsb.org/pdb/explore.do?structureId=3KVQ
http://www.rcsb.org/pdb/explore.do?structureId=1WQ9
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5.3.1 The ligands 

The first structure of a VEGF family member that has been solved was the 

crystal structure of VEGF-A (Muller et al., 1997b). It shows an anti-parallel 

dimeric organization of the protein, where the monomers are crosslinked by two 

disulfide bridges composed of C51 and C60 (Fig. 7a). The structure contains a 

cystine-knot motif, a feature that is characteristic for all VEGFs and the related 

growth factors PDGF and TGFβ (Oefner et al., 1992; Schlunegger and Grutter, 

1992). The knot is formed by a disulfide bond between C26-C68 passing 

through a ring like structure that is built by two intramolecular disulfide bonds 

between C57-C102 and C61-C104. A twisted β-sheet formed by four β-strands, 

called β1, β3, β5, and β6, extends from the cystine-knot motif. The individual 

β-strands are connected by three solvent exposed loops that form receptor 

binding sites. In addition, each monomer contains an N-terminal helix. 

 

Fig. 7: Crystal structures of the VEGF family of growth factors 
Bottom view of VEGF-A (PDB-entry 1VPF) is shown in the cartoon 
representation (a). The loops that are involved in VEGFR binding are 
highlighted: loop 1 (yellow), loop 2 (blue), and loop 3 (red). In the 
superimposition of the free VEGF-A (green; PDB-entry 2VPF) and the receptor-
bound VEGF-A (cyan; PDB-entry 1FLT) only minor conformational changes are 
observed (b). Superimposition of the VEGF-A (green; PDB-entry 1VPF), 
VEGF-B (blue; PDB-entry 2C7W), VEGF-C (gray; PDB-entry 2X1W), PlGF 
(magenta; PDB-entry 1FZV), VEGF-E (red; PDB-entry 2GNN) with VEGF-D 
(yellow; PDB-entry 2XV7) (c). The Cα-traces are shown in the ribbon 
representation. 
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Later on, the structures of VEGF-B (Iyer et al., 2006; Leonard et al., 2008), 

PlGF (Iyer et al., 2001), VEGF-C (Leppanen et al., 2010b), VEGF-D (Leppanen 

et al., 2010a), VEGF-E (Pieren et al., 2006), and VEGF-F (Suto et al., 2005) 

have been solved. All VEGFs share the commonly found structural features 

typical for this protein family, such as the cystine-knot motif, the irregular 

β-sheet composed of four β-strands, and the N-terminal helix, which folds back 

on top of the other monomer, thereby stabilizing the dimer. The cores of all 

these ligands show high similarities, indicated by root mean square deviations 

of ~1.0 Å, when superimposing VEGF-E with its homologs VEGF-A, VEGF-B, 

PlGF, and Vammin and VR-1, two snake venom VEGFs (Pieren et al., 2006). 

The most significant differences can be found in the loops connecting the 

β-strands, and in the N-terminal helix, which appears to be much more 

extended in VEGF-C and -D (Fig. 7c). Interestingly, prolonged N-terminal 

helices of VEGF-C and -D provide additional interaction sites for VEGFR-2 and 

-3 (Leppanen et al., 2010a; Leppanen et al., 2010b). Major conformational 

changes in loop 1 and 3 of VEGF-E account for the binding selectivity of 

VEGF-E, which binds only to VEGFR-2 but not to VEGFR-1 (Pieren et al., 

2006). Similar observations have been made with the VEGF-B and PlGF 

structures. 

To date, structural data for ligands in complex with receptor domains are only 

available for VEGF-A (Wiesmann et al., 1997), VEGF-B (Iyer et al., 2010), 

VEGF-C (Leppanen et al., 2010b), and PlGF (Christinger et al., 2004). The 

structure of VEGF-A in complex with Ig-homology domain 2 of VEGFR-1 

revealed that loop 1 and loop 3 of one VEGF-A monomer interact with the 

receptor, and loop 2, located at the other pole of the monomer, interacts with 

the second molecule of VEGFR-1 thereby inducing receptor dimerization 

(Wiesmann et al., 1997). This also explains the conformational differences 

found in these loops within the VEGF family. Nonetheless, when comparing the 

structures of the free ligands with the receptor-bound ligands, no major 

structural changes are observed (Fig. 7b).  
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5.3.2 The extracellular domain of VEGFRs 

In addition to the VEGF/VEGFR-complex structures mentioned above, only one 

additional crystal structure of a VEGFR ECD domain has been solved, which is 

the structure of VEGFR-2 Ig-homology domain 7 (Fig. 8) (Yang et al., 2010). All 

structures combined show that the Ig-homology domains of VEGFRs belong to 

the I-set of the immunoglobulin superfamily, although the VEGFR-2 D2 and D3 

do not show all the characteristic features (Harpaz and Chothia, 1994). In 

VEGFR-1 D2, the β-strands βa‟, βc, βc‟, βf, βg, and the β-strands βb, βd, βe 

form two β-sheets that are organized in a sandwich-like conformation and that 

are connected by a disulfide bond between C158 and C207 (Wiesmann et al., 

1997). In VEGFR-2 D7, the two β-sheets are each formed by four β-strands and 

are also covalently linked through a disulfide bond between C688 and C737 

(Yang et al., 2010).  

 

Fig. 8: Crystal structures of VEGFR ECD domains 
Cartoon representation of the VEGFR-1 D2 (wheat) in complex with VEGF-A, 
VEGF-B, and PlGF (blue) (a).Structure of VEGF-C (green) in complex with 
Ig-homology domain 2-3 of VEGFR-2 (brown) (b). Top view on the structure of 
VEGFR-2 D7 (c). The amino acids R726 and D731 that form salt bridges are 
highlighted in magenta and green, respectively. 
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The binding interfaces of all ligand/receptor complexes seem to be rather flat 

and mainly be mediated by hydrophobic interactions. The analysis of the 

electrostatic surface potential of the ligand-binding regions on the receptor 

domains revealed that VEGFR-1 contains a positively charged binding 

interface, whereas VEGFR-2 displays a negatively charged surface at the 

binding interface (Iyer et al., 2010). Complementary to these findings ligands 

with binding specificities for VEGFR-1, such as VEGF-B and PlGF, display 

negatively charged patches at the binding interface. In agreement with this, 

mutation of the basic amino acids H223 and R224 located in VEGFR-1 D2 

abolishes PlGF binding and decreases the affinity of VEGF-A for VEGFR-1 D2 

(Davis-Smyth et al., 1998). VEGF-A, which binds VEGFR-1 and -2, shows a 

more neutral charge distribution at these binding sites and VEGF-C, which does 

not bind VEGFR-1, contains mainly positively charged patches (Iyer et al., 

2010). This suggests that charge distributions at the binding interfaces 

contribute to receptor specificity. Interestingly, a comparison of the 

VEGF-C/VEGFR-2 D2-3 complex with the complex of VEGF-A/VEGFR-1 D2 

showed that VEGF-C bound to VEGFR-2 is tilted by 15° and twisted by 9° from 

the D2 interface when superimposing the complexes based on the orientation of 

D2 (Leppanen et al., 2010b). 

A NMR-structure of the free VEGFR-1 D2 domain showed, that no structural 

changes are induced by the binding of VEGF-A (Starovasnik et al., 1999). 

Unfortunately, no free ligand-binding receptor domains of VEGFR-2 have been 

crystallized to date, making it difficult to judge whether or not ligand-binding 

induces conformational changes in the receptor. However, electron microscopy 

(EM) images of the VEGFR-2 ECD in complex with its ligand VEGF-A showed a 

rigid structure, where Ig-homology domains 4 and 7 of the two receptor 

molecules seem to interact with each other (Ruch et al., 2007). Later the crystal 

structure of the c-Kit ectodomain, a related RTK comprised of five extracellular 

Ig-homology domains, in complex with its ligand stem cell factor showed that 

ligand binding induces a conformational rearrangement of the C-terminal 

Ig-homology domains (Yuzawa et al., 2007). This conformational change 

enables homotypic interactions between a conserved pair of basic and acidic 

amino acids. Sequence alignment revealed that this motif is conserved among 
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several RTKs and can be found in Ig-homology domain 7 of all VEGFRs. 

Indeed, the crystal structure of VEGFR-2 shows D7 dimers held together by 

these conserved residues (Yang et al., 2010).    

5.3.3 The kinase domain 

The intracellular kinase domain has been of special interest for the development 

of drugs to inhibit VEGFR signaling. To date, the crystal structure of the 

VEGFR-1 and VEGFR-2 kinase domain have been solved (McTigue et al., 

1999). Additional crystal structures of the VEGFR-2 kinase domain in complex 

with different inhibitors are also available (Table 1). Already the very high 

sequence homology between RTK kinase domains pointed to the structural 

homology that most kinases of RTKs share. The kinase is composed of two 

major folds, the N-lobe and the C-lobe (Fig. 9). The catalysis of the 

phosphotransfer from ATP to the hydroxyl group of a tyrosine side chain takes 

place in the cleft between the two lobes.  

 

Fig. 9: Structures of the VEGFR-1 and VEGFR-2 kinase domain 
The VEGFR-1 (a) and the VEGFR-2 kinase domain (b) are shown in a cartoon 
representation. The glycine rich nucleotide binding motif (magenta), the catalytic 
site (red), the ends of the kinase insert domain (gray), and the activation loop 
(yellow) are highlighted. Superimposition of the VEGFR-1 (green) and the 
VEGFR-2 (cyan) kinase domains show the same overall topology with minor 
differences in the positioning of the N-lobe (c). (adapted from PDB-entries 
3HNG and 1VR2) 

Although several features are missing in the VEGFR-2 kinase domain 

structures, important motifs such as the glycine rich nucleotide binding loop, the 

catalytic site, and the DFG motif, also known as the activation segment, can be 
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observed. As the name implies the glycine rich nucleotide binding loop, 

consisting of a conserved GXGXXG motif (C-lobe), interacts with the 

adenosine-5‟-triphosphate (ATP) and brings it close to the catalytic site. In 

VEGFR-2 the activation segment contains two major phosphorylation sites, 

Y1054 and Y1059, which need to be phoshorylated for full activity of the kinase. 

Although the protein has been phosphorylated at Y1059 prior to crystallization, 

the activation loop adopts an inhibitory conformation, which is obvious when 

superimposing it with the structure of the VEGFR-1 kinase domain that has 

been cocrystallized with an inhibitor (Fig. 9). As already mentioned, key features 

such as the kinase insert domain and the juxtamembrane domain are missing in 

the VEGFR-2 kinase and in part also in the VEGFR-1 kinase structure. Hence, 

further structures including these domains and the C-terminal tail would be of 

great benefit. 

5.4 Mechanism of receptor tyrosine kinase activation 

Although RTK activation always involves receptor oligomerization and RTKs 

contain similar overall architectures, such as a ligand binding ECD, a single 

transmembrane spanning helix, and an intracellular kinase domain, the 

mechanisms of activation can differ remarkably. By structurally and functionally 

characterizing the ECD of RTKs, two major activation concepts have emerged: 

(1) entirely ligand mediated dimerization/oligomerization (e.g. nerve growth 

factor), and (2) entirely receptor mediated dimerization/oligomerization 

(e.g. epidermal growth factor) (Lemmon and Schlessinger, 2010). Activation of 

the FGF receptors, c-Kit, and also of VEGFRs are processes that involve 

additional features. Ligand binding to c-Kit or VEGFRs induces receptor 

dimerization, but additional entirely receptor mediated interactions stabilize this 

complex. In the case of FGF receptors it has been shown that dimerization is 

receptor mediated. However, the FGFs interact with both receptors in the 

dimeric complex.  

In the following review article we discussed the mechanism of VEGFR 

activation that has emerged from structural and functional studies of VEGFRs 

and related RTKs. The structure of the individual domains, the ECD, the 
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membrane domain, the juxtamembrane domain, and the kinase domain and 

their role in receptor activation are highlighted. Concluding these data, we 

propose a mechanism of activation that should not give a final statement, but 

rather induce further discussion. 
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5.5 Aims of the thesis 

Angiogenesis and vasculogenesis are important in the development of the 

lymphatic and blood vasculature and their deregulation is implicated in a 

number of pathological conditions. In angiogenesis and vascularization the 

members of the VEGF/VEGFR signaling system are key regulators. VEGFs 

bind to VEGFRs, leading to receptor dimerization, followed by exact positioning 

of the intracellular kinase domain, enabling its activation and subsequent 

autophosphorylation of intracellular tyrosine residues. The phosphorylated 

tyrosine residues act as docking sites for intracellular signaling molecules. The 

VEGF family consists of 5 members in humans that bind to three different 

receptors. Depending on the ligand/receptor complex, distinct signaling 

pathways are activated. Although there are several high resolution structures 

available, the mechanisms of ligand binding specificity and of the subsequent 

ligand dependent phosphorylation of tyrosine residues still need to be 

elucidated. At the onset of this thesis only a low resolution structure of the 

VEGFR-2 ECD in complex with VEGF-A was known. This structure showed that 

ligand binding promotes additional receptor/receptor interactions. In order to 

shed more light on these interactions, the first aim was to determine the high 

resolution structure of the membrane-proximal Ig-homology domain 7 of 

VEGFR-2 and its biochemical and biophysical characterization. During the 

course of this project a competing research group published this structure, 

supporting the hypothesis based on the low resolution VEGFR-2 ECD/VEGF-A 

structure. This motivated us to analyze the structure of the VEGFR-1 ECD using 

low and high-resolution structural methods. Structural information gained from 

VEGFR-1 ECD/VEGF complexes would help to understand ligand specificity, 

the role of the ECD in the activation mechanism, and to facilitate drug 

development for VEGFR-1 inhibitors. As a third aim, we wanted to analyze 

whether or not homotypic receptor/receptor interactions that are formed upon 

ligand binding can be targeted by designed ankyrin repeat proteins (DARPins) 

with the goal to inhibit VEGFR-2 signaling. 
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6 Structure of the VEGFR ECD 

6.1 Introduction 

When this project was initiated, only limited or no structural information of the 

VEGFR-1 and VEGFR-2 ECD, respectively, was available. The crystal 

structures of VEGFR-1 D2 in complex with VEGF-A and PlGF gave first insights 

into the ligand binding mechanism (Wiesmann et al., 1997; Christinger et al., 

2004). Furthermore, an EM analysis of the VEGFR-2 ECD in complex with 

VEGF-A revealed Ig-homology domain 7 interactions in the ligand-bound 

complex (Ruch et al., 2007). However, a detailed understanding of the 

mechanism of receptor activation was still missing. Thus, gaining structural data 

for multidomain fragments of the VEGFR ECD is expected to lead to novel 

insights into the molecular mechanism of receptor activation. In addition, 

detailed knowledge of the structural arrangement of VEGFRs in the ligand-

bound state may open new opportunities to target VEGFR signaling and to 

block pathological angiogenesis.  

Based on the hypothesis that VEGF binding to VEGFR-2 induces the formation 

of homotypic receptor/receptor interactions in the membrane-proximal 

Ig-homology domain 7, we wanted to gather structural information to reveal the 

molecular basis of these interactions. To reach this goal, we designed 

predimerized VEGFR-2 D7 proteins and analyzed them using small-angle X-ray 

scattering (SAXS) and X-ray crystallography.  

VEGFR-2 is the best characterized VEGFR, mainly owing to its important role in 

regulating physiological and pathological angiogenesis. However, VEGFR-1 

malfunction is also implicated in pathological conditions. Little is known about 

the structure and the activation mechanism of VEGFR-1. Hence, we aimed at 

expressing the VEGFR-1 ECD to gain structural information using SAXS, EM, 

and X-ray crystallography. Furthermore, we wanted to elucidate the role of 

Ig-homology domains 4-7 in receptor activation using isothermal titration 

calorimetry (ITC), multi-angle light scattering (MALS), and EM. 
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6.2 Materials and methods 

6.2.1 Construction of expression plasmids 

The expression plasmids for scFv-like constructs were cloned using classic 

restriction digestion/ligation enzymes. First, a pcDNA3 plasmid carrying the 

cDNA encoding VEGFR-2 D6-7 was cloned by PCR-subcloning as described 

using the primers listed in Table A-1 (Geiser et al., 2001). A glycine-serine linker 

and a Kpn2I restriction site were then introduced using the same technique. 

Individual Ig-homology domains 4 or 7 were PCR amplified using Phusion high 

Fidelity DNA polymerase (Finnzymes) and the specified primers. The PCR 

products and the plasmid backbone were digested with KpnI, Kpn2I, EcoRI, 

and/or BamHI (Fermentas). The digested PCR fragments were ligated into the 

plasmid using standard T4- ligase (Fermentas). 

All other pcDNA3 expression vectors were cloned using ligase-independent 

cloning by PCR (Geiser et al., 2001). Briefly, the coding sequences of the 

proteins of interest were amplified by PCR using primers that contain 

sequences homologous to the desired insertion sequence of the plasmid 

backbone (Table A-1). The PCR amplicon was then used as a primer for a 

second PCR step to amplify the plasmid backbone linked to the insert. The 

linear amplified plasmids were closed by addition of Tsc-ligase (Roche). 

The pFL-plasmids containing several VEGFR-1 ECD variants were cloned by 

ligase-independent cloning using the CloneEZ-kit (GenScript). Briefly, the insert 

and the vector backbone were amplified by PCR using primers that contain 

homologous sequences at their 5‟-end (Table A-1). The linear insert and 

plasmid backbone were in vitro recombined using the CloneEZ-kit. The 

recombined plasmid was then transformed into Escherichia coli (E. coli) 

DH10β-cells for amplification and selection. 

The sequence encoding VEGFR-2 D7 linked to a GCN4 coiled coil was 

amplified by PCR using primers listed in Table A-1. The PCR-product and the 

Pichia pastoris expression plasmid pPICZαA (Invitrogen) were digested with 

EcoRI and SalI (Fermentas). The digested fragments were ligated using 

T4-ligase (Fermentas). 
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Pichia pastoris expression constructs encoding the ligands VEGF-A121, 

VEGF-A165, VEGF-A165B, and PlGF-1 as well as insect cell expression plasmids 

pFASTBAC1 encoding VEGFR-1 D1-7 and D1-3 were already available in the 

laboratory. 

6.2.2 Production and purification of recombinant proteins 

VEGF-A121, VEGF-A165, VEGF-A165B, and PlGF-1 were produced in Pichia 

pastoris by Thomas Schleier, Paul Scherrer Institute Villigen, Switzerland. 

VEGF-B was kindly provided by Veli-Matti Leppanen from the University of 

Helsinki, Finland. 

All VEGFR-1 ECD variants and PlGF-1-1fzv (residues 19-221) were expressed 

in Sf21 or HighFive™ insect cells. Briefly, Sf21 and HighFive™ cells (Invitrogen) 

were maintained in suspension in serum-free InsectXpress medium (Lonza) or 

ExpressFive medium (Invitrogen), respectively, at 27°C and 90 rpm. As soon as 

the cells reached a density of 106 cells/ml, they were infected with recombinant 

baculovirus at high multiplicity. Three days after infection the supernatant was 

harvested by centrifugation at 900 g and concentrated using a tangential flow 

ultrafiltration device with a 10 kDa cut-off membrane (Schleicher & Schuell). 

The buffer was exchanged to 20 mM sodium-phosphate buffer (PBS) pH 7.4, 

500 mM NaCl, and 10 mM imidazole by dialysis or by dilution of the 

concentrated medium followed by another concentration round. The conditioned 

medium was then loaded onto an immobilized metal ion chromatography 

(IMAC) column (GE Healthcare). The hexa histidine-tagged (His6) protein was 

eluted with a gradient of 40-500 mM imidazole and further purified by size 

exclusion chromatography (SEC) on a Superdex200 HR 16/60 column (GE 

Healthcare) equilibrated in 25 mM HEPES pH 7.5 and 500 mM NaCl. For 

VEGFR-1 ECD/VEGF-A121 complex formation, an equimolar amount of receptor 

and ligand were mixed and the complex was then purified by SEC as described 

above. If needed, the proteins were concentrated using centrifugal protein 

concentrators (Sartorius Stedim Biotech). 

VEGFR-2 D7-GCN4, VEGFR-2 D7 and VEGFR-2 D6-7 were produced in 

transiently transfected HEK293T cells as described (Aricescu et al., 2006). In 
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brief, when the cells reached ~90% confluency, the medium was changed from 

DMEM (BioConcept) containing 10% fetal bovine serum to DMEM containing 

0.5% fetal bovine serum. For a 15 cm tissue culture dish 50 μg DNA were 

incubated with 75 μg polyethylenimine (PEI, 25 kDa branched, Sigma-Aldrich) 

in 5 ml serum-free DMEM for 10 min at room temperature. After the incubation 

the DNA:PEI complex was added to the cells. Three days after transfection the 

medium was harvested, cleared by centrifugation, and concentrated using a 

350 mL Amicon ultrafiltration device (Millipore). The buffer was exchanged to 

20 mM PBS pH 7.4, 500 mM NaCl, and 10 mM imidazole. The His6-tagged 

proteins were purified by IMAC as described for the VEGFR-1 ECD variants. 

The buffer was exchanged to 25 mM HEPES pH 7.5, 150 mM NaCl using 

centrifugal protein concentrators (Sartorius Stedim Biotech). Proteins produced 

for crystallization screens or SAXS analysis were further purified by SEC using 

a Superdex75 10/30 column (GE Healthcare), equilibrated in 20 mM Tris 

pH 7.5, and 150 mM NaCl. 

For the production of VEGFR-2 D7-GCN4 in Pichia pastoris, X33 or KAI3 

strains positive for protein expression were grown in BMGY medium. After 24 h 

at 30°C and 220 rpm, the medium was exchanged to BMMY to induce protein 

expression. Additional methanol was added every 12 h after expression 

induction to a final concentration of 0.5%. After 48 h the supernatant was 

harvested by centrifugation at 1500 g, supplemented with 8x IMAC binding 

buffer (160 mM PBS pH 7.4, 4 M NaCl, 80 mM imidazole) to a final 

concentration of 1x, and the proteins were purified over an IMAC column (GE 

Healthcare). 

6.2.3 Deglycosylation 

Proteins were analytically deglycosylated using EndoF1 or PNGaseF, both 

recombinantly produced as a GST-fusion protein in E. coli (Grueninger-Leitch et 

al., 1996). Endoglycosidases were added in a 1:20 (w/w) ratio to the 

glycosylated proteins in the purification buffer. The reactions were incubated at 

4°C and/or room temperature for 1 h and overnight. The enzymatic reaction was 

stopped by adding 4x SDS-PAGE sample buffer. Subsequently, the proteins 
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were separated on a SDS-PAGE gel and the gels were stained either with 

Coomassie for proteins or with periodic acid-Schiff to stain sugar moieties. 

VEGFR-1 ECD proteins produced in Sf21 cells were deglycosylated in 

preparative amounts using 1:100 (w/w) PNGaseF. The proteins were incubated 

with the enzymes overnight at 4°C. The reaction buffer was the same as the 

purification buffer, consisting of 25 mM HEPES pH 7.5, and 500 mM NaCl. The 

completeness of the enzymatic reaction was assessed using SDS-PAGE. The 

endoglycosidase was removed by another step of SEC as described above. 

6.2.4 Isothermal titration calorimetry 

All measurements were performed at 20°C in 25 mM HEPES pH 7.5, and 

500 mM NaCl (ITC-buffer) using an iTC200 calorimeter (MicroCal®, 

GE Healthcare). All proteins were purified over a Superdex200 SEC column 

(GE Healthcare) equilibrated in ITC-buffer and dialysed against the ITC-buffer 

overnight at 4°C prior to the experiments. The calorimeter cell contained 

VEGFR-1 D1-7 or VEGFR-1 D1-3 at concentrations ranging from 4.4 to 30 μM 

and the ligands VEGF-A121, VEGF-A165, VEGF-A165B, and PlGF-1 were used in 

the syringe at concentrations ranging from 22.5 to 100 μM. Protein 

concentrations were determined spectrophotometrically at 280 nm using 

theoretical extinction coefficients estimated by the ExPASy tool ProtParam 

(Gasteiger et al., 2003). All samples were equilibrated to the measurement 

temperature and degassed prior to the ITC experiments. The following settings 

were applied: one initial injection of 1 μl followed by 15 injections of 2.6 μl at an 

injection speed of 1 μl*s-1 with a data filter of 1 s and 300 s recovery time 

between each peak. In order to fully saturate the reaction and to accurately 

estimate the unspecific heat, overtitrations were conducted when needed. The 

software ConCat (MicroCal®) was used to merge the data from overtitration 

measurements and Origin 7.0 (OriginLab®) was employed for data analysis. 

6.2.5 Multi-angle light scattering 

The SEC coupled multi-angle light scattering (MALS) experiments were 

conducted on an Agilent 1100 HPLC-system (Agilent Technologies) with an 
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analytical-grade Superdex 200HR 10/30 column (GE Healthcare) coupled to the 

Wyatt miniDAWN Tristar (Wyatt Technologies). The system was equilibrated in 

25 mM HEPES pH 7.5, 500 mM NaCl at 20°C prior to the experiments. The cell 

contents of the ITC experiments were concentrated to 110 μl in Vivaspin500 

centrifugal protein concentrators with a molecular weight cut-off of 10 kD 

(Sartorius Stedim Biotech). For the MALS experiments, 100 μl of the 

concentrated proteins were loaded onto the SEC column. For the measurement 

of individual proteins, a total amount of 100 ug was loaded onto the SEC 

column. The elution profiles were recorded as UV-absorbance at 280 nm and 

as the intensity of Rayleigh scattering at three different angles. The ASTRATM 

software (Wyatt Technologies) was used to calculate the weight average 

molecular masses (Mr). 

6.2.6 Electron microscopy 

VEGFR-1 ECD/VEGF-A121, VEGFR-1 ECD/PlGF-1, and VEGFR-1 

ECD/VEGF-B samples were prepared for electron microscopy (EM) using a 

conventional negative staining protocol (Ohi et al., 2004). Briefly, 5 μl of protein 

sample were adsorbed to a glow-discharged carbon-coated copper grid, 

washed with 2 drops of deionized water, and stained with one drop of 2% (w/v) 

uranyl acetate. For the grid preparation we used protein concentrations in the 

range of 1-3 μg/ml. The samples were imaged at room temperature with a 

CM10 electron microscope (Philips) equipped with a LaB6 filament and 

operated at an acceleration voltage of 80 kV. Images of specimens were 

recorded with a side-mounted Veleta 2k x 2k CCD camera (Olympus Soft 

Imaging Solutions) using low-dose procedure at a magnification of 92,000. 

The display program X3D (Conway et al., 1996) was used for selecting and 

picking particles. For projection analysis, 6260 particles of VEGFR-1 

ECD/VEGF-A121, 2203 particles of VEGFR-1 ECD/PlGF-1, and 1234 particles of 

VEGFR-1 ECD/VEGF-B were interactively selected from 161, 39, and 

39 images, respectively. The particles were windowed into 70 x 70 pixel 

images, stacked, centered, subjected to 10 cycles of multireference alignment, 

and classified into 50 output classes for the VEGFR-1 ECD/VEGF-A121 complex 
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and 20 output classes for the VEGFR-1 ECD/PlGF-1 and VEGFR-1 

ECD/VEGF-B complexes using the SPIDER program suite (Frank et al., 1996). 

6.2.7 Small angle X-ray scattering 

SAXS data acquisition was performed at the X12SA-beamline (cSAXS) at the 

Swiss Light Source at the Paul Scherrer Institute Villigen, Switzerland. The 

intensities of the scattered X-rays were recorded on a Pilatus 2M detector using 

a wavelength of λ = 1 Å. Data was collected in the scattering vector range of 

0.008 Å-1 - 0.4 Å-1, where the length of the scattering vector is given as 

s = 4πsinθ/λ (2θ is the scattering angle). Silver behenate was used as a 

standard for calibration of the s-range (Huang et al., 1993). Three 

concentrations were measured per protein sample using quartz capillaries with 

a diameter of 1 mm (Hilgenberg GmbH). To record the background scattering, 

the protein buffer was measured in the same capillaries prior to the actual 

protein data acquisition. Exposures of 0.5 s were taken at ten different spots 

along the capillary. The data was monitored for radiation damage and all frames 

showing no radiation damage were merged and averaged for further data 

processing. 

The collected SAXS data were integrated and radially averaged utilizing our 

own MATLAB-scripts (Missimer & Kisko). Using PRIMUS (Konarev et al., 2003) 

from the ATSAS-program package (Petoukhov et al., 2007), the background 

scattering was substracted and data of different concentrations were merged. In 

order to check the proper folding of all measured proteins Kratky-plots were 

calculated. The distance distribution function P(r) was calculated using GNOM 

and the program AUTOGNOM. We calculated the radius of gyration Rg from 

both the P(r) function as well as from the data in the linear Guinier-region. The 

programs DAMMIF and DAMMIN were used for ab-initio shape reconstructions 

from the P(r) functions. For all samples, between 10 and 20 independent 

DAMMIF runs were aligned, averaged, and filtered back to the original envelope 

volume using DAMAVER. For superimpositions of the SAXS envelopes with 

existing crystal structures the program SITUS was employed (Wriggers and 

Birmanns, 2001). 
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6.2.8 Protein crystallization 

Protein crystallization screens were set up in InnovaplateTM SD-2 (Innovadyne 

Technologies, Inc.) using the Crystal PHOENIX dispenser (Art Robbins 

Instruments).  Proteins were first screened for the proper concentration range 

using the pHClear and pHClear II crystallization suites (QIAGEN). 

Crystallization drops containing a protein:precipitant ratio of 1:1 were pipetted 

using protein concentration ranges of 2-19 mg/ml. The JCSG-core suite 

(QIAGEN) was then used for further crystallization screening. Crystals of the 

VEGFR-1 ECD/VEGF-A121 complex grew at 20°C in several conditions 

consisting of a buffer substance in the pH-range of 6-9, 0.2-1 M monovalent or 

bivalent salt, and 8-13% polyethyleneglycole (PEG) with a size between 2000 

and 8000 Da. For crystal reproduction and refinement, 24-well plates (Greiner) 

were used, usually containing 500 μl reservoir solution and 1-2 μl drops of a 

protein:precipitant mixture at a ratio of 1:1 or 2:1. 

For collection of diffraction data, the crystals were fished using nylon loops 

(Hampton Research). They were transferred to drops of mother liquor 

containing increasing concentrations of cryo-protectant. In each drop they were 

equilibrated for 1-5 min and then immediately flash frozen in liquid nitrogen. 

Crystal diffraction data was collected at the X06SA- or the X06DA-beamline at 

the Swiss Light Source, PSI Villigen, Switzerland. 

6.3 Results 

6.3.1 Expression and purification of VEGFR-2 ECD protein 

EM images of VEGFR-2 ECD in complex with VEGF-A121 revealed interactions 

between Ig-homology domains 7 of the two receptor chains that are 

incorporated in one complex. Furthermore, the structural knowledge of VEGFR 

ECDs was limited to one single Ig-homology domain of VEGFR-1 at the onset 

of this project. Hence, additional high resolution data of Ig-homology domain 7 

would be helpful to elucidate the molecular mechanism of VEGFR activation 

and to understand the molecular basis of the receptor interactions observed in 

the EM images. To further confirm the interaction of Ig-homology domain 7, we 
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wanted to bring two such domains into close proximity either through a 

glycine-serine-linker, resembling a scFv-like molecule, or through the C-terminal 

attachement of a GCN4 coiled coil domain to induce dimerization (Fig. 10). 

 

Fig. 10: Schematic representation of different strategies to gain structural 
knowledge on the VEGFR-2 ECD membrane proximal domains 

Expression in HEK-cells 

The coding sequences of the constructs shown in Fig. 10 were cloned into 

pcDNA3, a mammalian expression vector. All proteins were produced as 

secreted proteins carrying the native VEGFR-2 signal sequence. A C-terminal 

His6-tag facilitated purification of the recombinant proteins from the expression 

medium. During the project, asparagine residues 704 and 721 were mutated to 

glutamine in order to prevent N-glycosylation giving rise to additional 

Ig-homology domain 7 and 7-GCN4 constructs. 

Test expressions of the scFv-like dimeric Ig-homology domain constructs 

showed low expression in case of Ig-homology domain 7 linked to domain 6 and 

to another domain 7, while Ig-homology domain 7 linked to the GCN4 coiled coil 

showed a reasonable expression 72 hours post transfection (Fig. 11a). 

A dimeric Ig-homology domain 4 construct showed no expression at all. 

Because of the low expression levels compared to other constructs, I stopped 

this approach to study the homotypic interactions of Ig-homology domain 7. 

Small scale test expressions were conducted to validate the production of 

recombinant VEGFR-2 ECD variants in HEK293T cells. Immunoblotting and 
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detection with anti-His5 antibodies confirmed the presence of recombinant 

Ig-homology domains 6, 6-7, and 7 linked to GCN4 in the supernatant of 

transfected HEK293T cells (Fig. 11b). All of the expressed recombinant proteins 

appeared as several bands on SDS-PAGE owing to heterogenous 

N-glycosylation. Mutation of two glycosylation sites in the VEGFR-2 D7-GCN4 

construct showed a shift to smaller molecular weights, confirming the presence 

of N-glycosylation (Fig. 11c). 

 

Fig. 11: Immunoblot analysis of His6-tagged VEGFR-2 ECD variants 
expressed in HEK293T cells 
Aliquots of the medium harvested from transfected HEK293T cells were 
subjected to SDS-PAGE and subsequent immunoblotting. Recombinant 
proteins were detected with an anti-His5 antibody. scFv-like linked domains 6 
and 7, 7 and 7, and domain 7 linked to a GCN4 coiled coil (a). Ig-homology 
domain 6 and 6-7 (b). Wild type Ig-homology D7 and D7-GCN4 and several 
asparagines mutants to prevent N-glycosylation (c). 

Upscaled protein production was carried out in HEK293T cells in the absence 

and presence of Kifunensine and in HEK293S-GnTI- cells. Kifunensine is a 

α-mannosidase-I inhibitor, rendering proteins expressed in the presence of 

Kifunensine endo-H sensitive (Chang et al., 2007). HEK293S-GnTI- is a cell line 

that has been engineered to lack the enzyme N-acetylglucosaminyltransferase I 

(GnTI) (Reeves et al., 2002). These cells produce proteins that are 

homogenously glycosylated with five mannoses and two N-acetylglucosamines. 

Hence, proteins generated in HEK293S-GnTI- cells are endoglycosidase 

sensitive, which allows deglycosylation and may facilitate crystal growth.  

Recombinant proteins were produced in transiently transfected HEK293T cells 

using either calcium-phosphate or PEI as the transfecting reagents. Expression 

of Ig-homology domain 6/7 variants in HEK293T cells resulted in protein yields 
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between 6-9 mg per liter of culture medium, whereas the expression in 

HEK293S-GnTI- cells yielded only 1-2 mg protein per liter of culture medium. 

Stable cell lines expressing Ig-homology domain 7, 6, 6-7, or 7 linked to the 

GCN4 coiled-coil were generated, which increased the protein yield up 

to 3 mg/L. 

The His6-tagged proteins were purified directly from the cell supernatant via 

IMAC. The proteins were eluted from the column by increasing imidazole 

concentrations. The purity of the proteins was examined using SDS-PAGE. One 

step of IMAC purification resulted in sufficiently pure material for further 

experiments as judged by SDS-PAGE (Fig. 12). Proteins that were produced in 

HEK293T cells appeared as diffuse bands on SDS-PAGE owing to 

N-glycosylation, while proteins that were expressed in HEK293S-GnTI- cells or 

lack 2 of 3 N-glycosylation sites run as discrete bands (Fig. 12). This results 

from the inability of HEK293S-GnTI- cells to process the glycan precursors to 

complex-type glycans, which are very heterogenous (Reeves et al., 2002). 

However, in most cases several bands are observed for proteins produced in 

HEK293S-GnTI- cells probably due to heterogenous glycosylation (Fig. 12). 

For further applications, recombinant VEGFR-2 ECD variants were purified by 

SEC to remove aggregates. In addition, proteins were characterized by MALS 

and/or mass spectrometry (LC/ESI/MS). 
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Fig. 12: IMAC purification of VEGFR-2 ECD variants expressed in 
mammalian cells 
Proteins were produced in HEK293T or HEK293S-GnTI

-
 cells and purified by 

IMAC. Fractions of the IMAC were subjected to SDS-PAGE. Coomassie stained 
SDS-gels of VEGFR-2 D7-GCN4 (a), VEGFR-2 D7-GCN4-N704/721Q (b), 
VEGFR-2 D6 (c), VEGFR-2 D7 (d), and VEGFR-2 D6-7 (e). 

Expression in Pichia pastoris  

HEK293T cells possess the necessary cellular machinery to fully process 

recombinant proteins posttranslationally. However, expression in HEK293T 

cells is expensive and protein yields are often not very high. Hence, Pichia 

pastoris can be an alternative, since the cells are able to modify recombinant 
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proteins posttranslationally in particular by N-glycosylation, are very robust, and 

can be grown to high densities at production costs way below those of 

mammalian cells. Furthermore, multi-copy insertion of the expression plasmid 

into the genome is possible leading to higher expression yields.   

The DNA sequence encoding VEGFR-2 D7 linked to a GCN4 coiled coil was 

transferred into an expression plasmid designed for the production of secreted 

proteins in Pichia pastoris. The wild type strain X33 and the mutated strain KAI3 

were used for expression tests. KAI3 overexpresses the Trichoderma reesei 

α-1,2-mannosidase in the endoplasmatic reticulum and contains a disrupted 

OCH1 gene, which encodes a mannosyltransferase, enabling the expression of 

recombinant protein that is endoglycosidase-H sensitive (Vervecken et al., 

2004). Immunoblot analysis of the supernatants of several expression clones 

shows two major bands at ~25 kDa and ~10 kDa (Fig. 13). While the 25 kDa 

band represents the full length VEGFR-2 D7-GCN4, the lower band is most 

likely a degradation product. Edman-sequencing of the 10 kDa band revealed 

that this protein carries the N-terminus RVRKEDE, which is the amino acid 

sequence found in the loop connecting β-strand E and F in Ig-homology domain 

7. Unfortunately, protein production in an upscaled format showed the same 

digestion product, leading to a loss of ~50% of the protein (Fig. 13).  
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Fig. 13: Expression of VEGFR-2 D7-GCN4 in Pichia pastoris leads to 
proteolysis 
Individual clones of Pichia pastoris strain X33 (a) and KAI3 (b) were induced to 
express VEGFR-2 D7-GCN4 by addition of methanol. Aliquots of the media 
were harvested at the indicated time points and subjected to immunoblotting. 
Recombinant proteins were detected with anti-His5 antibodies. Expression 
positive clones of Pichia pastoris strains X33 (c) and KAI3 (d) were grown in an 
upscaled format. Protein expression was induced by methanol addition. 
Recombinant VEGFR-2 D7-GCN4 was purified by IMAC. Individual IMAC 
fractions were subjected to SDS-PAGE, followed by Coomassie staining. 

6.3.2 Expression and purification of VEGFR-1 ECD protein 

Expression in insect cells 

At the beginning of the VEGFR-1 project, several expression plasmids encoding 

VEGFR-1 ECD variants were already available in the laboratory. These 

expression plasmids included the insect cell expression plasmid pFASTBAC-1 

encoding VEGFR-1 D1, VEGFR-1 D2, VEGFR-1 D3, VEGFR-1 D1-3, and 

VEGFR-1 D1-7 and the mammalian expression plasmid pcDNA3.1 encoding 

VEGFR-1 D1-7 (Fig. 14). All constructs contain the endogenous VEGFR-1 

signal sequence to trigger the secretion of the protein and a C-terminal His6-tag.  
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Fig. 14: Schematic representation of the VEGFR-1 constructs used for 
initial expressions 

To date, there are three insect cell lines that are mainly used for recombinant 

protein expression, Sf9, Sf21, and High Five™ cells. Sf21 as well as Sf9 are 

ovarian cell lines from Spodoptera frugiperda (Vaughn et al., 1977) and High 

Five™ cells were isolated from adult ovarian tissue of Trichoplusia ni (Wickham 

et al., 1992). High Five™ cells have been reported to be more suitable for 

secreted protein expression (Davis et al., 1992). Thus, recombinant protein 

expression was compared between Sf21 and High Five™ insect cells for the 

constructs encoding VEGFR-1 D1-7 and VEGFR-1 D1-3. Aliquots of the 

supernatant were analyzed for its protein content by immunoblotting using 

His5-tag specific antibodies. The peak of protein expression was observed 

72-96 h postinfection (Fig. 15a). The medium was harvested at this time point in 

subsequent large scale productions of proteins. The expression of VEGFR-1 

D1-7 in Sf21 and High Five™ cells showed no significant differences, while the 

expression of VEGFR-1 D1-3 was remarkably increased in High Five™ cells 

compared to Sf21 cells (Fig. 15b). Hence, High Five™ cells were used for 

VEGFR-1 D1-3 expression and Sf21 cells for VEGFR-1 D1-7 expression. 

Expression of VEGFR-1 D1-7 resulted in a ~100 kDa protein band and 

VEGFR-1 D1-3 runs as a ~50 kDa protein in SDS-PAGE, both are heavier than 

the theoretical values of 83.6 kDa and 36.6 kDa, respectively, that are 

calculated based on the amino acid sequence. Given the fact that proteins 

produced in insect cells have the advantage to carry all posttranslational 

modifications, the difference in molecular weight can be explained by 

N glycosylation. As a matter of fact, the ECD of VEGFR-1 contains 13 predicted 

N-glycosylation sites (Fig. 14). 
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Fig. 15: Expression of VEGFR-1 D1-3 and D1-7 in insect cells 
VEGFR-1 D1-7 (left) and VEGFR-1 D1-3 (right) expression was tested in Sf21 
and High-Five™ cells. Supernatants were blotted onto PVDF membranes and 
recombinant protein was detected with anti-His5 antibodies (a). UV-absorption 
profiles of SEC purified VEGFR-1 D1-3 (b) and VEGFR-1 D1-7 (c). SDS gels 
showing individual fractions (marked with asterisks) are shown in the insets. 
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In an upscaled format, protein yields ranged from 2-12 mg per liter of cultured 

cells. The optimal purification protocol comprised a first step of IMAC 

purification to remove major impurities and a second step using SEC columns 

to get rid of any aggregates and remaining impurities. This procedure resulted 

in at least 95% pure protein judged from SDS-PAGE (Fig. 15). 

During the course of this project it became evident that additional constructs for 

insect cell expression are needed. The new constructs were supposed to 

encode VEGFR-1 ECD variants with varying domain boundaries. Several DNA 

fragments encoding different Ig-homology domains of the VEGFR-1 ECD were 

cloned into one expression cassette of the pFL plasmid. The pFL plasmid 

carries two expression cassettes allowing the production of multiprotein 

complexes (Berger et al., 2004). Future experiments coexpressing the 

VEGFR-1 ECD variants with ligands or coreceptors may be possible using this 

vector. All constructs contained the signal sequence of VEGFR-2 and a 

C-terminal His6-tag that is removable with factor-Xa protease cleavage 

(Table 2). The VEGFR-2 signal sequence was used owing to the higher protein 

yield in VEGFR-2 productions compared to VEGFR-1 preparations. 
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Table 2: Expression constructs for recombinant VEGFR-1 ECD production 
in insect cells 

Domain 
boundaries 

Amino acids  

D1-7N27 27-750 
 

D1-6N27 27-660 
 

D1-5N27 27-554 
 

D1-4N27 27-420 
 

D1-3N27 27-331 
 

D1-7N32 32-750 
 

D1-6N32 32-660 
 

D1-5N32 32-554 
 

D1-4N32 32-420 
 

D1-3N32 32-331 
 

D2-7 132-750 
              

D2-6 132-660 
              

D2-5 132-554 
              

D2-4 132-420 
              

D2-3 132-331 
              

D4-7 343-750 
                                        

D4-6 343-660 
                                        

D4-5 343-554 
                                        

 
 

During the virus production aliquots of the supernatant were analyzed on 

immunoblots using anti-His5 antibodies for immunodetection of the expressed 

proteins. All supernatants of the virus producing cells showed a band for the 

expressed proteins, except VEGFR-1 D1-5N27, VEGFR-1 D1-5N32, VEGFR-1 

D1-3N27, and VEGFR-1 D2-6. Several of these constructs were expressed in 

an upscaled format. The yield of these protein preparations ranged from 1-6 mg 

per liter of cell culture medium. The purification protocol was applied as 

described above and a single purification step using IMAC columns resulted in 

pure protein (exemplary VEGFR-1 ECD variants are shown in Fig. 16). 
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Fig. 16:  IMAC purifications of VEGFR-1 ECD variants 
Proteins were purified using IMAC and individual fractions were collected and 
subjected to SDS-PAGE. VEGFR-1 D2-3 (a), VEGFR-1 D4-7 (b), VEGFR-1 
D1-6 (c), and VEGFR-1 D1-7N32 (d) are shown. L: loading; Ft: flow-through; M: 
protein size marker 

Expression in mammalian cells 

Although crystal structures of proteins containing N-linked glycosylations have 

been reported, crystal growth may be hampered by sugar moieties. Thus, 

removing these modifications can help in crystallization. Therefore, VEGFR-1 

D1-7 expression was also assessed in HEK293S-GnTI- cells. 

Since transient expression of VEGFR-1 D1-7 in HEK293S-GnTI- cells yielded 

only a low amount of protein, a stable cell line was generated. Cells transfected 

with the VEGFR-1 D1-7 expression plasmid underwent two rounds of antibiotic 

selection to assure the cells are monoclonal. Protein expression was analyzed 

by immunoblotting using His5-tag specific antibodies. Several clones showed 

expression of VEGFR-1 D1-7 (Fig. 17). However, the expression level between 

the clones varied remarkably. One clone was selected for testing an upscaled 
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protein preparation. After purification using an IMAC column, only 0.8 mg 

protein per liter of cultured cells was recovered, a low amount of protein 

compared to the expression in insect cells. 

 

Fig. 17: Expression of VEGFR-1 ECD in HEK293S-GnTI
-
 cells 

The supernatants of individual HEK293S-GnTI
-
 clones stably expressing 

VEGFR-1 D1-7 were analyzed for their recombinant protein content on 
immunoblots using antibodies against the His6-tag. The clone selected for 
upscaled protein production is marked with an asterisk. 

6.3.3 Deglycosylation 

As sugar moieties linked to asparagines of the recombinant protein may impede 

crystal growth, one approach to improve crystal quality is to remove the 

glycosylations from the protein of interest. Insect cells share common first steps 

of the N-glycosylation pathway with mammalian cells by adding the same 

N-glycan precursor to asparagines. However, insect cells fail in elongating this 

precursor with galactose and sialic acid residues and they trim the precursors 

by one N-acetylglucosamine to produce paucimannose or high-mannose end 

products. This feature renders proteins produced in insect cells at least partially 

sensitive for native deglycosylation by glycosidases, such as EndoF1 or 

PNGaseF. EndoF1 cleaves between the two innermost N-acetylglucosamines, 

leaving one N-acetylglucosamine residue linked to the asparagines. PNGaseF 

cleaves between N-acetylglucosamine and asparagine, leaving no sugar 

moieties linked to the protein. 

VEGFR-1 D1-7 was treated with EndoF1 and PNGaseF for 1h or overnight at 

room temperature or 4°C, respectively. The deglycosylation of VEGFR-1 D1-7 

with either EndoF1 or PNGaseF resulted in a band shift towards a smaller Mr 

on SDS-PAGE (Fig. 18a), confirming that the protein is highly glycosylated. The 
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PNGaseF treated protein was only weakly observed by a faint band in the 

periodic acid-Schiff staining, while the EndoF1 treated protein gave rise to a 

strongly stained band (Fig. 18b). Furthermore, PNGaseF treatment led to a 

larger band shift than EndoF1. This indicates that either deglycosylation by 

EndoF1 is not complete or the remaining N-acetylglucosamine residues result in 

different electrophoretic characteristics of the protein in SDS-PAGE and are still 

heavily stained with periodic acid-Schiff. Another explanation would be that 

specific N-glycans are buried in the folded protein, rendering them inaccessible 

for EndoF1 cleavage. Treatment of the proteins for 1 h and 24 h did not result in 

any differences. Thus, the enzymatic reactions can be considered as 

completed. Since PNGaseF resulted in bigger band shift and a weakly stained 

band using periodic acid-Schiff, indicating an almost completely deglycosylated 

protein, it appears that paucimannose glycans produced by insect cells are not 

fully removable by EndoF1. 

 

Fig. 18: Analytical deglycosylation of VEGFR-1 D1-7 
Coomassie-staining (a) and periodic acid-Schiff staining (b) of untreated and 
deglycosylated VEGFR-1 D1-7 separated on SDS-PAGE. 

6.3.4 Crystallization of VEGFR ECDs 

Recombinantly produced proteins underwent extensive crystallization screens 

using commercial 96-well format screens (Table 3). For initial screenings 

several drop ratios of protein:precipitant were used.  
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Table 3: Used screens for the assessment of crystal growth of VEGFR 
ECD proteins 
The protein or protein complex analyzed for crystal growth is given 
accompanied with the used concentrations (c) and crystal screen conditions. 

Protein c [mg/ml] Screens Remarks 

VEGFR-2 D6-7 4.5; 9; 12.7 pHClear  

12.7 AmSO4 suite; PEG 
suite 

 

5.8 pHClear Protein produced in the presence 
of kifunensine and deglycosylated 
with EndoF1 

9.5 JCSG-Core suite; 
JCSG+ suite; PACT 
suite;PEG suite 

Protein produced in the presence 
of kifunensine and deglycosylated 
with EndoF1 

19.1 pHClear; JCSG-Core 
suite 

Deglycosylated with EndoF1 and 
PNGaseF 

14.9 PEG suite Produced in HEK293S-GnTI- cells 
and deglycosylated with EndoF1 

VEGFR-2 D7 2 AmSO4 suite; PEG 
suite 

 

VEGFR-2 D7-GCN4 7 pHClear; Classics  

5.1 pHClear II  

6.6 pHClear; Classics; 
JCSG+; JCSG core 
suite 

 

VEGFR-2 D7-GCN4 
N704/721Q 

5.8 JCSG core suite  

VEGFR-1 D1-7 2.6; 5; 7.4; 10 pHClear  

7 JCSG core suite  

5.7 JCSG core suite Methylated lysines 

6 JCSG core suite Deglycosylated with PNGaseF 

VEGFR-1 D1-3 7.1 JCSG core suite Methylated lysines 

VEGFR-1 D4-7 2.2  Deglycosylated with PNGaseF 

VEGFR-1 D1-3 
/VEGF-A121 

4; 8; 11.3; 
14.8 

pHClear  

8 JCSG core suite  

VEGFR-1 D1-7 
/VEGF-A121 

2; 3.8; 7.5; 
9.6 

pHClear  

5.5; 9.6 JCSG core suite; 
Additive screen HT; 
silver bullets additive 
screen 

 

5.5 JCSG core suite + EndoF1 or α-chymotrypsin 

5.9 JCSG core suite Methylated lysines 

5.4 JCSG core suite; 
Additive screen HT 

Deglycosylated with PNGaseF 

VEGFR-1 D2-7 
/VEGF-A121 

4.5 JCSG core suite Deglycosylated with PNGaseF 
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Crystallization screening of VEGFR-2 D7 alone, linked to a GCN4 coiled coil, or 

D6-7 did not result in crystal growth. In most cases different forms of 

precipitates were observed, especially in ammonium-sulphate containing 

conditions. Refined screens were set up for promising conditions without any 

success in crystal growth. 

VEGFR-1 ECD variants were screened for crystallization alone as well as in 

complex with VEGF-A121. While the receptor ECD alone did not yield any 

crystals, the VEGFR-1 D1-7/VEGF-A121 complex crystallized in several 

conditions. The crystals initially grew to 0.1-0.2 μm in an almond like shape  

(Fig. 19a). The buffers leading to crystal growth varied from pH 5 to pH 9 and 

the precipitant concentration ranged from 8-13% PEG. PEGs from 

2000-8000 Da were the most effective precipitants. In addition, most conditions 

comprised monovalent salts such as sodium chloride or lithium chloride varying 

in concentrations from 0.1-1 M. The crystals were fished and transferred into 

drops of mother liquor containing increasing concentrations of cryo-protectant 

and immediately flash frozen in liquid nitrogen. Unfortunately, the frozen 

crystals diffracted only up to ~10 Å. In addition, diffraction spots were only 

observed when shooting the crystals with full intensity leading to radiation 

damage and rapid loss of diffraction. 

In order to improve crystal quality, deglycosylated protein was analyzed for its 

crystallization characteristics. It crystallized in similar conditions as fully 

glycosylated protein. However, the crystal morphology changed to clusters of 

rods or plates depending on the precipitant concentration (Fig. 19b & c). 

Although the protein crystallized in a different crystal shape, the diffraction 

behavior did not change at all (Fig. 19b). SDS-PAGE and immunoblot analysis 

using anti-His5 antibodies assured that the crystals contain at least VEGFR-1 

protein and most likely also VEGF-A121 (Fig. 19c). 
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Fig. 19: Crystallization of VEGFR-1 D1-7/VEGF-A121 
Images of crystallization drops containing crystals of glycosylated (a) and 
deglycosylated (b) VEGFR-1 D1-7 in complex with VEGF-A121, together with 
their diffraction pattern. Silver-stained SDS-gel and immunoblot of VEGFR-1 
D1-7/VEGF-A121 crystals containing deglycosylated (top) and glycosylated 
(bottom) VEGFR-1 D1-7 (c). 
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In addition to modifications in the glycosylation pattern of the used protein, I 

tried additive screens, lysine methylation (Walter et al., 2006), partial proteolysis 

with α-chymotrypsin (Dong et al., 2007), in drop deglycosylation, different cryo 

conditions followed by dehydration of the crystal, chemical crosslinking of the 

protein in the crystal, and initial seeding tests to induce growth of single rods or 

plates. However, none of these methods yielded crystals with improved 

diffraction characteristics. 

6.3.5 Characterization of ligand-binding to VEGFR-1 ECD 

In order to assess the quality and the functionality of the recombinant VEGFR-1 

ECD proteins, its ligand binding ability was used as an assay. VEGFR-1 D1-7 or 

VEGFR-1 D1-3 was incubated with VEGF-A121 at a 2:1, 1:1, and 1:2 molar ratio 

(receptor:monomeric ligand). The complexes were purified over a SEC column 

and analyzed by SDS-PAGE. Addition of two-fold higher amount of VEGFR 

resulted in a UV-profile showing two peaks, the VEGFR/VEGF complex eluting 

earlier (12.4 ml for VEGFR-1 D1-7 & 14.1 ml for VEGFR-1 D1-3) and the 

excess receptor protein eluting at a bigger elution volume (13.5 ml for VEGFR-1 

D1-7 & 15.4 ml for VEGFR-1 D1-3). The chromatograms of the 1:1 complex and 

the 1:2 complex look very similar, showing one major peak at 12.1 ml elution 

volume and 14.1 ml for the VEGFR-1 D1-7/VEGF-A121 and the 

VEGFR-1 D1-3/VEGF-A121 complex, respectively (Fig. 20). Compared with a 

molecular weight standard, these elution volumes correspond to a Mr of 

195 kDa for the VEGFR-1 D1-7/VEGF-A121 complex and 99 kDa for the 

VEGFR-1 D1-3/VEGF-A121 complex, which is very close to the theoretical 

values of 196.8 and 103.6 kDa, respectively. This indicates that the 

recombinant VEGFR-1 ECD variants are fully functional and bind to VEGF-A121 

in a 1:1 ratio, considering the VEGF-A121 as a monomer. 
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Fig. 20: SEC of VEGFR/VEGF complexes 
UV-profiles of SEC purifications of VEGFR-1 D1-7/VEGF-A121 (top) and 
VEGFR-1 D1-3/VEGF-A121 (bottom). The complexes were mixed at a molar 
ratio of 2:1 (blue), 1:1 (red), and 1:2 (green). SDS-gels showing selected 
fractions of the SEC purifications are displayed in the insets. 

In order to validate these results, purified VEGFR/VEGF complexes were 

loaded onto a SEC column connected to a MALS instrument to estimate the 

molecular masses of the recombinant proteins. MALS of proteins allows 

calculating the Mr in a shape independent manner. The loading of VEGFR-1 

D1-7 gave rise to a single peak with a calculated mass of 90 kDa (Fig. 21). 

Adding VEGF-A121 caused a shift of this peak towards earlier elution volumes 

with a calculated mass of 206 kDa. The experimentally determined Mrs are 

slightly bigger than the theoretical values of 83 kDa for the VEGFR-1 D1-7 

alone and 197 kDa for the ligand/receptor complex. This can be explained by 

the sugar moieties that are still linked to the proteins, resulting in higher Mrs in 

MALS experiments. The same explanation is valid vor VEGFR-1 D1-3 alone. 
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However, the experimentally determined Mr of the VEGFR-1 D1-3/VEGF-A121 

complex (88 kDa) is smaller than the theoretical value of 99 kDa (Fig. 21). The 

peak of the VEGFR-1 D1-3/VEGF-A121 complex in the UV-profile shows a long 

tail, suggesting that a heterogenous mixture of 2:1 and 1:1 receptor:ligand 

complexes is present. 

 

Fig. 21: SEC coupled MALS of VEGFR-1 ECD variants alone and in 
complex with VEGF-A121 
The UV-profiles of VEGFR-1 D1-7 alone and in complex with VEGF-A121 (a) 
and VEGFR-1 D1-3 alone and in complex with VEGF-A121 (b) are shown along 
with the mass distribution of each peak calculated from the MALS data. Table 
comparing the experimental Mr with the theoretical Mr (c). 
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6.3.6 Thermodynamic profile of VEGFR-1 ECD/ligand complex formation 

In a recent study conducted in our laboratory, we showed that the presence of 

VEGFR-2 Ig-homology domain 4-7 reduced the free energy for all 

ligand/receptor interactions (Brozzo et al., 2011, submitted). Hence, the 

membrane-proximal Ig-homology domains seem to prevent receptor self 

dimerization in the absence of ligand. 

In order to further characterize the VEGFR-1 ECD proteins ITC experiments 

were performed. ITC allows to determine binding parameters, such as 

dissociation constant (Kd), enthalpy (ΔH), and stoichiometry (N). Furthermore, 

by comparing ligand binding to the minimal ligand binding domain (VEGFR-1 

D1-3) and to the full length ECD (VEGFR-1 D1-7), the contribution of the 

membrane-proximal Ig-homology domains 4-7 to the ligand binding can be 

estimated. Four ligands were analyzed for their receptor binding characteristics: 

VEGF-A121, VEGF-A165, VEGF-A165B, and PlGF. 

Table 4: Thermodynamic parameters of the VEGFR-1 ECD/ligand 
interaction determined by ITC 
Stoichiometry (N), dissociation constant (Kd), Gibbs free energy (ΔG), enthalpy 
(ΔH), entropy (ΔS), and c-value (calculated as: c = N*[R1]/Kd) are given. 

 N Kd 
[μM] 

ΔG 
[kcal*mol

-1
] 

ΔH 
[kcal*mol

-1
] 

-TΔS 
[kcal*mol

-1
] 

c-value 

VEGF-A121/R1-D1-7 1.93 0.012 -10.6 -11.9 1.3 759 

VEGF-A165/R1-D1-7 1.91 0.033 -10.0 -15.4 5.4 267 

VEGF-A165B/R1-D1-7 1.82 0.020 -10.3 -12.8 2.5 440 

PlGF/R1-D1-7 2.03 0.038 -10.0 -12.5 2.5 234 

VEGF-A121/R1-D1-3 2.37 0.098 -9.4 2.0 -11.3 408 

VEGF-A165/R1-D1-3 2.01 0.069 -9.6 2.3 -11.9 583 

VEGF-A165B/R1-D1-3 2.13 0.172 -9.1 1.7 -10.7 267 

PlGF/R1-D1-3 ND  ND ND ND ND 

 

The ITC measurements confirmed that VEGF binds to VEGFR with a 

stoichiometry of 2, meaning VEGF (as a dimer) can bind two receptor 

molecules. The binding affinities of the used ligands for VEGFR-1 D1-3 ranged 
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from 69-172 nM, whereas the binding affinities for the full length ECD showed 

lower values and varied from 12-38 nM (Fig. 22 & Table 4). The higher affinity 

for the full length ECD of VEGFR-1 suggests that Ig-homology domains 4-7 

have a positive effect on ligand binding, possibly owing to receptor/receptor 

interactions. Interestingly, the binding of VEGFs to the full length ECD of 

VEGFR-1 is enthalpically driven, whereas the binding to Ig-homology 

domains 1-3 is dominated by entropic contributions (Fig. 22 & Table 4). Hence, 

Ig-homology domains 4-7 show a strong effect on the enthalpy of VEGF 

binding. Although the different ligands (VEGF-A121, -A165, -A165B, and PlGF) bind 

with different binding constants, the thermodynamic mechanism of ligand 

binding is the same, shown by similar ΔΔ-values (ΔΔG, ΔΔH, and –TΔΔS). 

Surprisingly, PlGF showed high affinity binding to the full ectodomain of 

VEGFR-1, but no binding to the minimal ligand binding domain of VEGFR-1 

consisting of Ig-homology domains 1-3. This is in contrast to the binding 

characteristics of VEGF-A. 

To confirm VEGFR/VEGF complex formation in the ITC cell, specific samples 

were loaded onto a SEC column coupled to a MALS instrument. The 

chromatograms of the SEC step as well as the calculated Mrs showed complex 

formation of VEGFR-1 D1-7 with all ligands. VEGFR-1 D1-3 formed the 

complex only with the VEGF-A variants but not with PlGF, which is apparent 

when comparing the UV-profile of the individual proteins and the sample of the 

ITC experiment (Fig. 23a). The separation of the ITC cell content of the 

VEGFR-1 D1-3/PlGF complex formation resulted in two peaks with the apparent 

Mr of 59.6 and 39.1 kDa, close to the Mr of PlGF (54 kDa) and VEGFR-1 D1-3 

(40.4 kDa) when loaded separately onto SEC-MALS. The VEGFR-1 

D1-3/VEGF-A121 complex on the other hand resulted in two peaks with a Mr of 

95.8 and 30.7 kDa, which are similar to the theoretical values of the complex 

(103.6 kDa) and the VEGF-A121 (30.3 kDa). PlGF alone does not elute as a 

monodisperse peak from the SEC column, probably due to the heterogeneity of 

the sugar moieties present on the protein. Since PlGF was produced in Pichia 

pastoris, the protein gets heavily glycosylated. Deglycosylation with EndoF1 

shows a significant shift of the diffuse band observed for the glycosylated form 

to a more discrete band on SDS-gels (Fig. 23b). Interestingly, VEGFR-1 D2-3 
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mixed with PlGF and loaded onto the SEC-MALS eluted as one peak with a 

calculated Mr of 81 kDa, resembling the theoretical value of 81.5 kDa for a 2:1 

complex, considering the PlGF dimer as one molecule (Fig. 23). 

 

Fig. 22: Representative thermodynamic characterization of the VEGFR-1 
ECD/ligand interaction 
Raw titration data and the corresponding integrated and concentration 
normalized isothermograms (a). The solid lines represent the best fit according 
to the “One Site Model”. Table representing the thermodynamic parameters 
ΔΔG, ΔΔH, and –TΔΔS (b). Graphical representation of the thermodynamic 
parameters Gibbs free energy (ΔG), enthalpy (ΔH), entropy (-TΔS) of the 
VEGFR-1 ECD/ligand interaction (c). 
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Fig. 23: MALS analysis of VEGFR-1 ECD/VEGF complex formation in ITC 
experiments 
UV-profiles of SEC-MALS experiments conducted with selected ITC cell 
contents, PlGF and VEGFR-1 D1-3 alone as controls, and the VEGFR-1 
D2-3/PlGF complex (a). Coomassie-stained SDS-gel of fully glycosylated and 
deglycosylated PlGF (b). 

6.3.7 Structure of predimerized VEGFR-2 Ig-homology domain D7 

determined by SAXS 

SAXS gives access to low resolution structures of macromolecules in solution 

by ab-initio modeling. The following parameters can be easily obtained using 

SAXS: Rg, Dmax, hydrated particle volume, and Mr (Mertens and Svergun, 

2010). While the Dmax represents the maximum intramolecular distance, the 

Rg is defined as the root-mean-squared distance of all elemental scattering 

volumes from their center of mass weighted by their scattering densities 

(Jacques and Trewhella, 2010). The Fourier-transformation of the scattering 

intensities gives rise to the P(r) function. The P(r) function illustrates the 

distribution of intramolecular distances. The Rg is accessible from both the 

liniear Guinier-region (scattering intensities plotted against s2) and the P(r) 

function. From the P(r) function three-dimensional shapes can be retrieved 

through ab-initio modeling. 

As indicated in the EM images of the VEGFR-2 ECD/VEGF-A complex, the 

membrane-proximal Ig-homology domains 7 interact with each other in the 
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ligand bound receptor complex (Ruch et al., 2007). To further characterize 

these interactions I predimerized individual domains 7 through a C-terminal 

GCN4 coiled coil. Keeping two Ig-homology domains 7 in close proximity would 

trigger them to form homotypic interactions as observed in the EM images. 

SAXS was used as an initial low resolution method to analyze whether or not 

the two Ig-homology domains 7 interact.  

The SAXS analysis showed a relatively flat intensity curve with no apparent 

features (Fig. 24a). The Kratky-plot confirmed that the protein is folded and the 

linear Guinier-region showed that no higher order aggregates are formed (Fig. 

24b & c). The P(r) function showed a maximum distance (Dmax) of 120 Å (Fig. 

24d). The asymmetric shape of the P(r) function with a maximum at around 

35 Å and a longer tail indicates that the overall structure of the protein is 

elongated. Ab-initio modeling resulted in an elongated envelope structure with 

dimensions of 120x90x45 Å that has a bigger volume at one end, narrowing 

down to the other end (Fig. 24e). The overall shape of the SAXS model is 

bigger than the crystal structures of the Ig-homology domain 7 dimer and the 

GCN4 coiled coil (Fig. 24f). SAXS, in contrast to X-ray crystallography also 

takes into account the hydration shell of the protein since analysis is performed 

in solution, leading to bigger overall shapes. Furthermore, the proteins used for 

the SAXS study still contain all N-glycosylations, while the proteins shown in the 

crystal structures have been produced in E. coli, giving rise to unglycosylated 

proteins. In summary, the ab-initio model of the VEGFR-2 D7-GCN4 protein 

shows that two Ig-homology domains 7 interact with each other when arranged 

in close proximity. 
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Fig. 24: SAXS results of VEGFR-2 D7-GCN4 
The intensity plotted as a function of s (a). The linear Guinier region (b). The 
Kratky-plot (c). The P(r) function of as calculated from AUTOGNOM (d).The 
averaged model of VEGFR-2 D7-GCN4 as retrieved from ab-initio modeling (e). 
SITUS generated (top) and manual (bottom) superimposition of the ab-initio 
model (grey) with the dimeric Ig-homology domain 7 (PDB: 3KVQ) and a GCN4 
coiled coil (PDB: 2ZTA) (f). 

6.3.8 Structure of the VEGFR-1 ECD/VEGF-A complex in solution 

Using SAXS, I wanted to gain insight on the overall structure of monomeric 

VEGFR-1 ECD as well as complexed with its ligand VEGF-A121. The scattering 

intensity curves of monomeric and complexed VEGFR-1 ECD show no 

remarkable features, but they differ at low angles showing that the VEGFR-1 
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ECD/VEGF-A121 complex has a bigger size than the monomeric receptor (Fig. 

25a). This is verified by the P(r) function indicating a shifted maximum towards 

higher distances when VEGFR-1 is bound to the ligand and a Dmax of 255 Å 

for the receptor/ligand complex and 220 Å for the monomeric receptor (Fig. 25d 

& Table 5). The shifted maximum of the P(r) function reflects a thicker overall 

body in the complex compared to the monomeric VEGFR-1 ECD. The 

Kratky-plot and the linearity of the Guinier region document the presence of 

properly folded protein (Fig. 25b & c). 

Table 5: SAXS analysis of samples  
All values were calculated from data of the individual concentrations using 
AUTOPOROD. Errors were estimated from the differences between the 
individual concentrations. 

Protein sample Concentrations 
[mg/ml] 

Rg [Å] Dmax [Å] Vol x10
3
 [Å

3
] 

VEGFR-1 ECD (glycerol) 2.8; 3.4 66.7 ± 6.5 214 ± 22 268 ± 99 

VEGFR-1 ECD (DTT) 1.5; 2.0; 2.9 66.0 ± 0.7 221 ± 2 214 ± 13 

VEGFR-1 ECD (EDTA) 2.0; 2.4; 3.3 66.9 ± 2.8 231 ± 21 223 ± 34 

VEGFR-1 ECD/ 
VEGF-A121 (glycerol) 

1.3; 3.1; 5.7 82.4 ± 3.2 270 ± 9 632 ± 22 

VEGFR-1 ECD/ 
VEGF-A121 (DTT) 

2.2; 2.8; 3.1 76.9 ± 1.1 260 ± 7 596 ± 10 

VEGFR-1 ECD/ 
VEGF-A121 (EDTA) 

2.0; 2.4; 3.6 81.2 ± 1.4 272 ± 17 685 ± 8 

VEGFR-1 ECD/ 
VEGF-A121 (ascorbic 
acid) 

2.5; 5.0 74.7 ± 2.5 256 ± 12 574 ± 52 

VEGFR-1 ECD/ 
VEGF-A121 (sucrose) 

2.7; 5.0 75.4 ± 1.3 253 ± 2 557 ± 18 
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Fig. 25: SAXS results for VEGFR-1 ECD alone and in complex with 
VEGF-A121 
The intensity as a function of s (a), the linear Guinier regions (b), the Kratky-plot 
(c) and the P(r) function (d) are shown for VEGFR-1 D1-7 and the VEGFR-1 
D1-7/VEGF-A121 complex. 

Ab-initio shape reconstruction of the monomeric VEGFR-1 ECD resulted in an 

elongated tube like shape that is bent twice along the molecule (Fig. 26a). The 

VEGFR-1 ECD shape is 220 Å long and 65 Å wide. Superimposition of the 

obtained SAXS shape with VEGFR-2 D2-3 (PDB 2X1W) showed that it fits 

nicely into the shape leaving space for the remaining Ig-homology domains  

(Fig. 26b). The VEGFR-1 ECD/VEGF-A121 complex can be described as a 

Y-like shape with dimensions of 255 Å in length and 140 Å in width. The end 

with the bigger mass presumably represents the ligand binding domain with 

Ig-homology domains 1-3 and the ligand VEGF-A121 (Fig. 26c). Towards the 

other end, the shape becomes thinner, implying receptor/receptor interactions 

between Ig-homology domains 4-7. The overall topology of the 

VEGFR-1 ECD/VEGF-A121 suggests an asymmetric complex in solution. In 

contrast, the crystal structure of the c-Kit ECD in complex with its ligand SCF 
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shows a similar shape but with a P2-symmetry along the receptor chains 

(Yuzawa et al., 2007). However, the c-Kit/SCF crystal structure did not 

superimpose well with the „most typical‟ model of VEGFR-1 D1-7/VEGF-A121 

(Fig. 26d). The application of P2-symmetry for ab-initio shape reconstructions 

resulted in models where the symmetry axis was placed across, instead of 

along, the receptor molecules.  

 

Fig. 26: Ab-initio shape reconstruction of VEGFR-1 ECD and VEGFR-1  
ECD/VEGF-A121 
The averaged and filtered model of VEGFR-1 ECD (a) and its superposition 
with VEGFR-2 D2-3 (blue; PDB-entry: 2X1W) using SITUS (b). The averaged 
and filtered model of VEGFR-1 ECD in complex with VEGF-A121 (c). The „most 
typical‟ model of VEGFR-1 D1-7 in complex with VEGF-A121 (wheat) and its 
superposition with the c-Kit/SCF (blue; PDB-entry: 2E9W) crystal structure (d). 
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6.3.9 Structure of the VEGFR-1 ECD/ligand complexes determined by EM 

Negative stain EM provides quick access to the overall shape of the analyzed 

macromolecule, especially for bigger complexes that may be problematic for 

X-ray crystallography. Here, isolated proteins are embedded in a layer of dried 

heavy metal solution on a carbon support film. The recorded images of a 

negative stained specimen can be computationally averaged to allow finer 

details to be visualized. 

VEGFR-1 is activated by VEGF-A, VEGF-B, and PlGF. Whereas VEGF-A also 

binds to VEGFR-2, VEGF-B and PlGF bind exclusively to VEGFR-1. VEGF-A 

and PlGF have been shown to cause the phosphorylation of distinct tyrosine 

residues (Autiero et al., 2003). Depending on the ligand type that binds to the 

receptor, different conformations of the intracellular kinase domain may be 

induced. This in turn may regulate the accessability of specific tyrosine residues 

to the active site of the kinase. Using EM, we wanted to analyze the different 

VEGFR-1 ECD/ligand complexes.  

The VEGFR-1 ECD alone showed a highly flexible structure, making it difficult 

to average single particles into classes. However, we observed that the 

unliganded receptor was monomeric and did not show intermolecular 

interactions (Fig. 27). The seven Ig-homology domains were mostly stretched 

out to an elongated chain with a maximum length between 200 and 250 Å. The 

EM class averages of the ligand/receptor ECD complexes showed molecules 

that are 100 Å in width and 250 Å in length. Most class averages of all three 

complexes show conformations where two receptor molecules are bridged by 

extra density most likely representing the ligand, which binds Ig-homology 

domains 2 and 3 (Fig. 27). Thus, the density pointing away from the ligand has 

to be Ig-homology domain 1, which is bent by almost 90° compared to the other 

Ig-homology domains. This prominently bent Ig-homology domain 1 is present 

in almost all class averages and is often seen only on one receptor molecule. 

The individual receptor chains were often oriented in a parallel fashion and only 

in some class averages they showed an intertwined shape, as seen in the 

VEGFR-2/VEGF-A complex (Ruch et al., 2007). Furthermore, some class 

averages indicate receptor/receptor interactions in the region of Ig-homology 
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domains 4 to 7. The homotypic interaction of Ig-homology domain 7, which has 

been described for VEGFR-2, is also seen in over 50% of the images of 

VEGFR-1, independent of the bound ligand type. However, there are also 

molecules showing the region around Ig-homology domain 4 and 5 of the two 

receptor chains in very close proximity, suggesting further homotypic 

interactions that may stabilize the VEGFR/VEGF complex. When comparing the 

complexes of the three ligands with the receptors, no significant differences 

were observed. Hence, all ligands for VEGFR-1 form similar complexes with the 

ectodomain of VEGFR-1, indicating similar binding mechanisms. 

 

Fig. 27: Electron microscopy of monomeric VEGFR-1 ECD and of 
VEGFR-1 ECD/ligand complexes 
Raw images and schematic representations of the monomeric VEGFR-1 ECD 
(a). Class averages and graphic representations of the VEGFR-1 ECD in 
complex with VEGF-A121, PlGF, and VEGF-B (b). All scale bars, 15 nm. 
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Comparing the SAXS shape with the EM images, some differences can be 

noticed. While the shape of the VEGFR-1 ECD/VEGF complex obtained using 

SAXS implies an asymmetric conformation, the EM images show more 

symmetrical complex conformations. In EM, Ig-homology domain 1 of both 

receptor chains points outwards, whereas in SAXS this feature is less 

prominent. Furthermore, the EM images indicate several different 

conformations, either with both receptor chains oriented parallel to each other or 

arranged in an intertwined manner. Since the SAXS shape represents an 

average over all conformations found in solution, these details can not be 

observed in the SAXS derived VEGFR-1 D1-7/VEGF-A121 structure. 

6.4 Discussion 

VEGFs and their receptors, the VEGFRs, are major regulators of angiogenesis, 

vasculogenesis, and lymphangiogenesis. Their dysfunction has been linked to a 

number of pathological conditions, making VEGFs and VEGFRs prominent drug 

targets. During this project, a major goal was to determine the structure of 

VEGFR ECD variants using high and low resolution methods. In this chapter I 

described the successful expression, purification, characterization, and 

crystallization of VEGFR ECD variants. The capability of complex formation of 

the recombinant proteins was assessed and thermodynamic parameters of 

ligand binding were determined. ITC and MALS experiments showed that 

VEGFR-1 D1-7 has a higher affinity for VEGF-A and PlGF-1 than VEGFR-1 

D1-3. In fact, PlGF-1 did not bind to VEGFR-1 D1-3 but to VEGFR-1 D2-3, 

suggesting a regulatory role of Ig-homology domain 1 for PlGF binding. 

Furthermore, structural information obtained by SAXS using predimerized 

VEGFR-2 Ig-homology domain 7 confirmed that two of these domains form low 

affinity interactions presumably when they are brought into close proximity. 

SAXS and EM images of the VEGFR-1 ECD/ligand complex resulted in a 

dimeric receptor/ligand complex that is further stabilized by homotypic 

interactions in the region of Ig-homology domains 4-7. These interactions are 

characteristic for all three VEGFR-1 ligands: VEGF-A, VEGF-B, and PlGF. 

Overall, the study presented establishes low affinity homotypic interactions 
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induced upon ligand binding as a common feature for type V RTK activation. 

Recombinant receptor protein expression was conducted in mammalian cells, 

insect cells, and Pichia pastoris, yielding protein amounts in the range of 

milligrams. However, only the mammalian and insect cell expression system 

resulted in full length proteins, whereas Pichia pastoris expression gave rise to 

protein degradation. While the protein yield in HEK293T, Sf21, and HighFive™ 

cells was sufficiently high, protein production in HEK293S-GnTI- cells showed 

high protein yield only when generating stable cell lines. Protein expression in 

E. coli was not assessed due to the fact that earlier expression trials in the 

laboratory resulted in unfolded protein in inclusion bodies. However, it is 

arguable whether or not E. coli is the right expression system for single 

Ig-homology domains. In fact, all crystal structures of single VEGFR 

Ig-homology domains have been solved with protein expressed in E. coli that 

was later refolded (Wiesmann et al., 1997; Christinger et al., 2004; Iyer et al., 

2010; Yang et al., 2010). In order to produce larger VEGFR ECD fragments, 

eukaryotic expression systems represent a more suitable strategy to gain 

correctly folded recombinant proteins. Several crystal structures of Ig-homology 

domain proteins have been solved using insect cell produced material (Yuzawa 

et al., 2007; Leppanen et al., 2010b). However, proteins produced in insect cells 

can lead to heterogeneously glycosylated protein. Thus, expression in 

HEK293S-GnTI- cells is a promising option in order to obtain homogenously 

glycosylated proteins. As a matter of fact, there is an increasing number of 

structures of RTK ECDs deposited in the PDB database reporting expression in 

HEK293S-GnTI- cells (Hye-Ryong Shim et al., 2010; Verstraete et al., 2011). In 

order to overcome low expression yields in HEK293S-GnTI- cells, the 

BacMam-system has been developed (Dukkipati et al., 2008). Here, virus 

produced in insect cells is able to infect mammalian cells. Infection of 

HEK293S-GnTI- with this virus is characterized by an improved gene delivery 

compared to classical transfection methods. Furthermore, this method has been 

already successfully applied to solve the structure of the PDGFR Ig-homology 

domains 1-3 in complex with PDGF (Hye-Ryong Shim et al., 2010). Therefore, 

the BacMam-system should be evaluated in the future to obtain reasonable 

expression yields of VEGFR ECDs in HEK293S-GnTI- cells. 
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Expressed VEGFR-1 and VEGFR-2 ECD proteins underwent extensive 

screening for crystallization. While VEGFR-2 ECD domains did not result in any 

crystal growth, VEGFR-1 D1-7 in complex with VEGF-A121 showed crystal 

growth in a number of conditions. Both glycosylated and deglycosylated 

proteins were used for crystallization screening resulting in different crystal 

forms. However, all crystals showed only poor diffraction. One possible 

explanation that comes to mind is that N-glycosylation affected the crystal 

growth or diffraction quality of the crystals. In fact, researchers who successfully 

solved the crystal structure of VEGFR-2 Ig-homology domain 7 used non 

glycosylated protein produced in E. coli (Yang et al., 2010). In a recent project 

at the PSI solving the structure of a vitamine B12 transporter, the protein was 

treated with EndoH leaving one N-acetylglucosamine at asparagine residues 

(Frei et al., personal communication). Some of the remaining 

N-acetylglucosamines formed crystal contacts, showing that residual sugars 

may even be beneficial for crystallization. Since deglycosylation did not improve 

diffraction characteristics of VEGFR-1 D1-7/VEGF-A121 crystals, it appears that 

the proteins themselves are very flexible or contain flexible regions resulting in 

loosely packed crystals. Thus, new constructs with redefined domain 

boundaries or newly engineered loop and linker regions would be helpful. Other 

strategies I did not pursue during my thesis include tag-cleavage, mutation of 

the N-glycosylation sites, and the employment of other ligands for crystallization 

screening. Furthermore, the existing crystals can be used for extensive seeding 

screens to support crystal growth in conditions that did not result in crystals 

before. This strategy can possibly lead to a different crystal packaging, thereby 

improving diffraction quality.  

Using SAXS and predimerized Ig-homology domains 7, I was able to confirm 

that these domains form homotypic interactions. Initially, I believed, that 

Ig-homology domain 7 only dimerizes upon local concentration through a 

glycine-serine linker or a coiled coil domain. Surprisingly, the structure of this 

domain alone showed dimers in the crystal held together through salt bridges 

formed by the conserved amino acids R726 and D731 (Yang et al., 2010). 

Thus, the single Ig-homology domain 7 would have been sufficient for 

crystallization trials in order to characterize the reported receptor/receptor 
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interactions (Ruch et al., 2007). However, for low resolution methods such as 

SAXS, the local concentration of this Ig-homology domain through dimerization 

by a coiled coil is needed. In analytical ultracentrifugation, individual 

Ig-homology domains 7 indicated dimerization starting at a concentration of 

0.1 mM (Yang et al., 2010). For SAXS studies a homogenous distribution of the 

analyte is an absolute requirement. Hence, very high concentrations would 

have been needed to obtain a homogenous dimeric solution of the single 

Ig-homology domain 7, which we did not achieve. 

The ability of the VEGFR-1 ECD to form a complex with VEGF-A and PlGF was 

characterized by several methods in this thesis. SEC, MALS, and ITC confirmed 

that VEGFR-1 ECD and ligands form a complex in a 2:1 stoichiometry, 

considering the disulfide linked ligand as one molecule. Binding affinities of the 

ligands for VEGFR-1 D1-7 were in the range of 12-33 nM, while the binding 

affinities for VEGFR-1 D1-3 decreased 2 to 8-fold. Higher affinities have been 

reported in the literature thus far. Using Biacore, Christinger and colleagues 

showed that concentrations of 24 pM VEGF and 435 pM PlGF are required to 

displace 50% VEGFR-1 D1-7 bound to VEGF (Christinger et al., 2004). 

Furthermore, 0.114 nM VEGF and 1.1 nM PlGF are sufficient to displace 50% 

of bound VEGFR-1 D2-3. Similar values were reported by Park and colleagues, 

who determined an IC50 value of 250 pM for VEGF binding to a dimeric 

VEGFR-1 D1-7 fusion protein (Park et al., 1994). Predimerization of VEGFR-1 

proteins can explain the higher measured affinities in this case. However, 

another group determined the binding affinities of VEGF and PlGF to 

recombinantly produced VEGFR-1 ECD variants (Tanaka et al., 1997). They 

immobilized the VEGFR-1 ECD variants in 96-well plates and quantified the 

amount of bound radiolabeled ligand. With this assay, they showed that VEGF 

bound VEGFR-1 D1-7 and D1-3 with Kds of 17 pM and 6.5 pM, respectively. 

PlGF on the other hand showed Kd values of 193 and 447 pM for VEGFR-1 

D1-7 and D1-3 binding, respectively. The different experimental setup used in 

these studies explains the differences to our measured Kd values. Most of the 

research groups determined binding parameters by immobilizing one reaction 

partner on a solid surface leading perhaps to locally concentrated protein and 

favorable conformations of the binding partner. In the thesis presented, we were 
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the first determining binding of VEGF ligands to VEGFR-1 in solution using ITC. 

However, in our experimental setup, ITC is able to determine Kd values only in 

the millimolar to nanomolar range. The VEGFR-1 ECD/ligand reaction shows 

affinities that are very close to the detection limit. In order to more accurately 

determine Kd values with ITC, a competitive binding setup would be more 

suitable. 

The determination of the thermodynamic binding parameters using ITC 

revealed that Ig-homology domains 4-7 have a positive effect on ligand binding 

shown by lower Kd values for binding to VEGFR-1 ECD compared to D1-3. This 

effect is mainly owing to a large enthalpic contribution of Ig-homology domains 

4-7 to the ligand binding reaction. In contrast, the presence of VEGFR-2 

Ig-homology domains 4-7 result in reduced binding affinities for the ligands to 

VEGFR-2 ECD (Brozzo et al., 2011 manuscript submitted). These findings 

suggest that VEGFR-2 D4-7 acts as a control module to prevent self 

association of VEGFR-2 in the absence of ligand. The fact that these four 

membrane proximal Ig-homology domains enhance ligand binding to VEGFR-1 

support the hypothesis that VEGFR-1 acts as a decoy receptor for VEGF-A. In 

fact, several knock out studies in mice showed that VEGF-A concentrations 

need to be spatially and temporally tightly controlled (Fong et al., 1995; Fong et 

al., 1999; Hiratsuka et al., 1998; Hiratsuka et al., 2005). In addition, sVEGFR-1, 

whose sole function is to sequester free ligand, is comprised of Ig-homology 

domains 1-6, supporting the importance of Ig-homology domains 4-6 for ligand 

binding (Kendall and Thomas, 1993). 

Interestingly, PlGF did not bind VEGFR-1 D1-3 in contrast to the studied 

VEGF-A isoforms. However, removing Ig-homology domain 1 enabled PlGF-1 

binding, as shown in MALS experiments. Barleon and colleagues were the first 

to analyze the binding characteristic of VEGFR-1 ECD domains (Barleon et al., 

1997). Both VEGF-A and PlGF-1 showed binding to VEGFR-1 ECD variants 

containing at least Ig-homology domains 1-3. However, the immobilized 

receptor molecules were preincubated with radiolabeled VEGF-A. After addition 

of increasing amounts of non-labeled VEGF-A or PlGF-1, the remaining 

radioactivity was measured. In this setup the preincubation step with 

radiolabeled VEGF-A might favor the ligand-bound conformation of VEGFR-1 



Dissertation Edward Stuttfeld Structure of the VEGFR ECD 

93 
 

ECDs, thus facilitating PlGF-1 binding. In addition, immobilization of the 

VEGFR-1 ECDs might trigger the molecules to adopt a favorable conformation 

for ligand binding. Several other studies showed PlGF binding to VEGFR-1 

D1-3 (Davis-Smyth et al., 1996; Davis-Smyth et al., 1998). However, in these 

studies VEGFR-1 ECD proteins were predimerized through a C-terminal Fc-tag. 

In this setup the Fc-tag might mimick the presence of Ig-homology domains 4-7 

and thereby facilitate PlGF binding. Davis-Smyth and colleagues also reported 

that mutation of E137 to A affected PlGF but not VEGF binding (Davis-Smyth et 

al., 1998), although the crystal structure of VEGFR-1 D2 in complex with PlGF 

does not show a direct interaction of this amino acid with the ligand (Christinger 

et al., 2004). However, E137 is located close to the N-terminus of Ig-homology 

domain 2 and might be involved in the D1/2 interface and thereby indirectly 

regulating PlGF binding. Furthermore, binding studies of the VEGFR-2 

ECD/VEGF complex suggest a regulatory role of Ig-homology domain 1 

(Shinkai et al., 1998). Constructs comprising Ig-homology domain 1-7 showed a 

lower kon for VEGF binding than constructs comprising Ig-homology 

domains 2-7, 2-5, and 2-4. In summary, I suggest that Ig-homology domain 1 of 

VEGFR-1 plays a regulatory role in ligand binding by favoring VEGF-A over 

PlGF binding. 

Using SAXS and EM, the overall structure of VEGFR-1 D1-7 alone and in 

complex with one of its ligands was characterized. While the ECD alone has an 

elongated shape that shows a moderate flexibility, the structure of the ECD in 

complex with one of its ligands is more rigid. Both SAXS and EM revealed that 

ligand binding to Ig-homology domain 2-3 induces additional receptor/receptor 

interactions in the membrane-proximal domain 7. Some class averages of 

VEGFR-1 ECD in complex with VEGF-A suggested further homotypic 

interactions in the region of Ig-homology domains 4-5. Furthermore, no 

remarkable differences were observed between VEGFR-1 ECD in complex with 

VEGF-A, VEGF-B, or PlGF, indicating that all three ligands share a common 

mechanism of activation (Fig. 28).  

Ligand binding to Ig-homology domains 2-3 leads to receptor dimerization 

without affecting the overall topology of these two Ig-domains. The high local 

concentration of dimerized receptor molecules enables low affinity interactions 
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between Ig-homology domains 4-7. These interactions lock the ligand/receptor 

complex in a defined conformation that brings the transmembrane, 

juxtamembrane, and the kinase domain into a specific conformation allowing 

autophosphorylation and activation of the kinase.  

 

Fig. 28: Schematic model of VEGFR activation 
Ligand (green) binding induces receptor dimerization, followed by a 
conformational arrangement of the VEGFR ECD allowing Ig-homology 
domains 7 to interact with each other. These interactions stabilize the active 
conformation enabling proper positioning of the transmembrane (TMD), the 
juxtamembrane (JMD), and the kinase domain to allow autophosphorylation in 
the intracellular receptor kinase. 

Similar activation mechanisms were shown for VEGFR-2 (Ruch et al., 2007; 

Yang et al., 2010), another type-V RTK, c-Kit (Yuzawa et al., 2007), and 

PDGFR-β (Yang et al., 2008), both members of type-III RTKs, which contain 

only five Ig-homology domains in the ECDs. For c-Kit, both the crystal 

structures of the unbound monomeric receptor and the ligand-bound receptor 

complex were solved (Yuzawa et al., 2007). It was shown that ligand binding to 

Ig-homology domains 1-3 occurs without any remarkable conformational 

changes in this region. However, ligand binding is accompanied by a 

conformational rearrangement of Ig-homology domains 4 and 5. This enables 

E386 and R381, located in Ig-homology domain 4, to form salt bridges. Mutation 

of these residues resulted in decreased phosphorylation of the intracellular 

kinase domain. A similar motif was found in PDGFR-β and VEGFR-2 (Yang et 

al., 2008; Yang et al., 2010). In VEGFR-2, this pair of acidic and basic residues 

is located in the most membrane proximal Ig-homology domain 7. The crystal 

structure of VEGFR-2 Ig-homology domain 7 showed D731 and R726 forming 
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salt bridges (Yang et al., 2010). Thus, homotypic interactions between the 

extracellular domains seem to be a common mechanism within type III and V 

RTKs to stabilize the activated receptor complex. Surprisingly, the crystal 

structure of the Fms-like tyrosine kinase 3 ECD in complex with its ligand 

suggested a novel ligand binding mechanism that does not result in any 

receptor/receptor interactions (Verstraete et al., 2011). 

Several studies showed that receptor dimerization is required but not sufficient 

for kinase activation (Bell et al., 2000; Dell'Era Dosch and Ballmer-Hofer, 2010). 

Rather, the two kinase domains in the dimer need to be in a specific orientation 

relative to each other to be fully functional. An artificially engineered 

transmembrane domain allows the rotation of the kinase domains with respect 

to each other. Tyrosine kinase activation of Neu RTK, PDGFR-β, and VEGFR-2 

can only be detected in specific orientations indicating a tight linkage between 

kinase activity and the orientation of the two kinase domains in the receptor 

dimer (Bell et al., 2000; Dell'Era Dosch and Ballmer-Hofer, 2010). Hence, 

homotypic receptor interactions in the RTK ECD may be important for fixing the 

transmembrane and the kinase domain in a distinct orientation that allows 

autophosphorylation. 

EGFRs have been shown to form dimers in living cells in the absence of ligand 

(Chung et al., 2010; Nagy et al., 2010). These dimers were inactive and existed 

for a finite lifetime (Chung et al., 2010). Our SAXS and EM studies of soluble 

VEGFR-1 ECD without ligand clearly showed only monomeric receptor 

molecules suggesting that VEGFRs do not form dimers without ligand. In 

agreement, FGFR3, consisting of three Ig-homology domains in the ECD, does 

not dimerize in the absence of FGF-1 (Chen et al., 2010). However, for 

VEGFRs the existence or absence of such preformed ligand-independent 

receptor dimers still needs to be proven in living cells. 

In conclusion, the ITC, SAXS, and EM data presented in this study show that 

the VEGFR-1 ECD can be divided in two separate functional segments as 

suggested by the Schlessinger group for c-Kit (Yuzawa et al., 2007). 

Ig-homology domains 1-3 constitute the rather rigid segment 1, whose sole 

function is to bind the ligand. This is supported by the crystal structures of 

VEGFR-1 Ig-homology domain 2 in complex with VEGFR-1 ligands, which are 
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strikingly similar suggesting, that the ligands share a common binding 

mechanism to VEGFR-1 (Wiesmann et al., 1997; Christinger et al., 2004; Iyer et 

al., 2010). Furthermore, the solution structure of the free VEGFR-1 Ig-homology 

domain 2 showed no significant conformational changes compared to the ligand 

bound form (Starovasnik et al., 1999). Segment 2 is composed of Ig-homology 

domains 4-7. This segment is thus more flexible and provides additional 

interactions to the receptor/ligand complex, thereby stabilizing the activated 

complex.  
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7 Allosteric inhibition of VEGFR-2 signaling 

Structural studies of the ECD of type III and type V RTKs suggest a common 

mechanism of activation. Ligand binding to the N-terminal 3 Ig-homology 

domains brings two receptor molecules together. The local concentration of the 

receptors leads to homotypic receptor interactions, thereby stabilizing the 

activated receptor/ligand complex, but also bringing the transmembrane and the 

intracellular domains into close proximity to allow autophosphorylation.  

VEGFR-2 signaling is implicated in several pathological conditions such as 

cancer or retinopathic diseases. Several different strategies to tackle pathologic 

VEGFR-2 activation have been developed, including antibodies against 

VEGF-A or VEGFR-2 as well as small molecule inhibitors against the kinase 

domain.  

As described in chapter 6 for the VEGFR family of RTKs homotypic interactions 

in the membrane proximal Ig-homology domains 4-7 are induced upon ligand 

binding. Based on similar data for VEGFR-2 (Ruch et al., 2007), we wanted to 

test whether or not these interactions can be targeted by Designed Ankyrin 

Repeat Proteins (DARPins) without disturbing the formation of the 

ligand/receptor complex.  

In collaboration with Molecular Partners AG, we raised DARPins against 

VEGFR-2 D1-7. Several ribosome display screens resulted in 18 DARPins, of 

which 3 showed inhibitory effects on VEGFR-2 kinase phosphorylation in the 

presence of VEGF. While one DARPin bound the VEGFR-2 ectodomain very 

unspecifically, DARPins 6C8 and 6G9 bound the receptor at Ig-homology 

domain 4 or 2-3, respectively. We showed that DARPin 6G9 prevented ligand 

binding to the receptor, whereas 6C8 did not disturb the ligand/receptor 

complex integrity. Furthermore, downstream signaling was decreased in the 

presence of both DARPin 6C8 and 6G9. We further analyzed the effect of the 

inhibitors on the sprouting of endothelial cell spheroids. When preincubated with 

6C8 or 6G9, embryoid bodies were not able to build sprouts upon VEGF 

application. In summary, we present a novel mechanism to target pathological 

VEGFR-2 signaling without disturbing ligand/receptor complex formation. 
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Furthermore, these data show that receptor dimerization alone does not drive 

VEGFR-2 activation and that a specific conformation in the region of 

Ig-homology domains 4-7 is necessary for full functionality of VEGFR-2. 

This research project was conducted in collaboration with the PhD-student 

Alexandra Giese and Molecular Partners AG, Schlieren, Switzerland. My 

contribution to the project included production and purification of all proteins 

needed for the generation, verification, and determination of binding specificities 

of the DARPins. In addition, I performed the SEC-MALS experiments to show 

that 6C8 does not prevent VEGFR-2/VEGF complex formation. Furthermore, I 

was involved in designing and cloning the mutant VEGFR-2 constructs to 

functionally characterize the VEGFR-2 ECD. 
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Abstract 

Vascular Endothelial Growth Factors (VEGFs) regulate blood and lymph vessel 

formation by activating three receptor tyrosine kinases, VEGFR-1, -2, and -3. 

The extracellular ligand-binding domain of VEGFRs consists of seven 

immunoglobulin homology domains (Ig-domains) connected by a 

transmembrane helix to the intracellular tyrosine kinase domain. VEGF family 

ligands interact with Ig-domains 2 and 3 thereby inducing receptor dimerization. 

Low resolution structural information and biophysical data show that specific 

orientation of receptor monomers in active dimers is further controlled by 

homotypic receptor contacts mediated through membrane-proximal Ig-domains. 

Ig-domains 4 and 7 are required for properly aligning receptor monomers in 

active dimers and are thus indispensable for kinase activation. We then 

developed Designed Ankyrin Repeat Proteins (DARPins) specifically binding to 

the extracellular receptor domain. DARPins specific for Ig domains 2 and 3 

inhibited ligand binding while DARPins specific for Ig domain 4 prevented 

kinase activation without interfering with dimerization. These data reveal a 

crucial role for the membrane-proximal receptor domain in ligand-mediated 

activation of VEGFR-2.  

Introduction 

Receptor tyrosine kinases (RTKs) accomplish functions in a wide variety of 

biological processes such as cell growth, differentiation, migration, and survival. 

Regulation of RTKs is the subject of intense research since it holds promise for 

the development of new drugs aiming at diseases caused by deregulation of 

RTK activity. Vascular Endothelial Growth Factors, VEGFs, comprise a family of 

proteins interacting with three type V RTKs, VEGFR-1 (Flt-1), VEGFR-2 

(KDR/Flk-1), and VEGFR-3 (Flt-4) (Pajusola et al., 1992; Terman et al., 1991; 

Shibuya et al., 1990). VEGFs promote endothelial cell survival, migration, 

proliferation, and differentiation, and are thus indispensable for blood and lymph 

vessel formation and homeostasis. In addition, VEGFs regulate endothelial cell 

permeability and vessel contraction. Like all RTKs, VEGFRs are activated 

following ligand-induced structural changes in the receptor extracellular domain 
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(ECD) (Grünewald et al., 2010; Stuttfeld and Ballmer-Hofer, 2009). VEGFR-2 is 

the major mediator of angiogenic signaling in endothelial cells (Shalaby et al., 

1995) and its activity is regulated at multiple levels. We have also shown that 

receptor dimerization is necessary, but not sufficient, for receptor kinase 

activation (Dell'Era Dosch and Ballmer-Hofer, 2010). These data establish that 

specific orientation of receptor monomers in the active dimers is mandatory to 

instigate transmembrane signaling and kinase activation. 

High resolution structures of ligand-receptor complexes of VEGFRs show that 

Ig-homology domains 2 and 3 comprise the ligand binding site (Wiesmann et 

al., 1997; Christinger et al., 2004; Leppanen et al., 2010b; Iyer et al., 2010). Our 

low resolution electron microscopy structure of the full length ECD of VEGFR-2 

bound to VEGF showed that ECD domains 4-7 form homotypic receptor 

contacts (Ruch et al., 2007). This was recently confirmed by a structural model 

derived from a small angle X-ray scattering (SAXS) analysis (Kisko et al., 

FASEBJ 2011). Taken together, our data demonstrate that receptor monomers 

are not only held together by ligand binding to Ig-domains 2 and 3, but by 

additional homotypic receptor contacts formed by the membrane-proximal part 

of the ECD.  

Here we complement our structural studies by a functional characterization of 

the role of the individual extracellular Ig-domains in ligand binding (Shinkai et 

al., 1998) and receptor activation and signaling (Tao et al., 2001; Yang et al., 

2010).  We further analyzed the function of Ig-homology domains D4-7 in 

receptor dimerization and activation using a series of receptor ECD mutants 

expressed in tissue culture cells. Mutation or deletion of D4 and D7 drastically 

reduced receptor activity. Based on these results we developed new ECD 

binders, Designed Ankyrin Repeat Proteins (DARPins), specifically interacting 

with individual Ig-domains. By testing these reagents for inhibition of 

ligand-stimulated receptor activity we identified several DARPins binding to 

D2-3 and thereby blocking ligand binding and receptor activation. Most 

interestingly, DARPins binding to D4 efficiently inhibited receptor activation 

without interfering receptor dimerization. These new reagents will be useful for 

in vivo studies aiming at imaging or inhibiting VEGFR-2. 
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Materials and methods 

Cloning of VEGFR-2 mutants 

The pcDNA5/FRT vector (Invitrogen) was used for the expression of VEGFR-2 

mutants in HEK293 and COS-1 cells. The pcDNA5/FRT VEGFR-2 3/5 construct 

was generated by PCR-subcloning (Geiser et al., 2001). Ig-domain D5 was 

PCR-amplified from the pcDNA3.1 VEGFR-2 wt construct (in-house) using the 

primers listed in Table 7-1 and subcloned into the pcDNA5 FRT VEGFR-2 wt 

plasmid to replace D4. The pcDNA5 FRT VEGFR-2 Δ4 and K868M constructs 

were kindly provided by Claudia Ruch (in-house). 

Mutations R726A, D731, RD/AA, and xD7EF were introduced into the pcDNA5 

FRT VEGFR-2 wt construct by PCR-subcloning (Geiser et al., 2001) with 

primers containing the mutations (Table 7-2). 

The pLIB vector derived from Moloney murine leukemia virus was used for the 

retroviral transduction of PAE cells. The pLIB LN VEGFR-2 and the pVSV-G 

plasmids were kindly provided by Ralph Graeser (ProQinase GmbH Freiburg, 

Germany). For generating pLIB LN VEGFR-2 wt, 3/5, R, D, RD, and xD7EF 

constructs, the sequences were PCR-amplified from the respective constructs 

in the pcDNA5/FRT vector by simultaneously introducing a SalI restriction site. 

Primers are listed in Table 7-3. Insert and pLIB LN vector were joined by 

standard ligation process. 

Mutations RRR/AAA, RRRK/AAAS, ED/AA, and EDE/AAA were introduced into 

both the pcDNA5 FRT VEGFR-2 wt and pLIB LN VEGFR-2 wt constructs by 

PCR-subcloning (Geiser et al., 2001) with primers containing the mutations 

(Table 7-3). 

Mammalian expression plasmids for recombinant production of VEGFR-2 D7 

(aa 663-764) and VEGFR-2 D6-7 (aa 549-764) were generated using 

PCR-subcloning (Geiser et al., 2001). Ig-domain 7 was PCR-amplified from 

pcDNA3-VEGFR-2-D7-GCN4 using the forward primer 

5‟-ATGGAGAGCAAGGTGCTGC-3‟ and the reverse primer 5‟-GTGATGCTGGA 

AGTAGAGGTTCTCCAAGTTCGTCTTTTCCTGGGC-3‟. Ig-domains 6-7 were 

amplified from pcDNA3-VEGFR-2-D1-7 using the forward primer 

5‟- CGCCTCTGTGGGTTTGCCTAGGGGTCCTGAAATTACTTTGC-3‟ and the 
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reverse primer 5‟-GTGATGCTGGAAGTAGAGGTTCTCCAAGTTCG 

TCTTTTCCTGGGC-3‟. The PCR-products were then subcloned back into the 

templates used for the amplification reaction, thereby deleting Ig-domains 1-5 or 

the sequence coding for a GCN4-zipper. VEGFR-2 D1-7 (residue 1-764) was 

cloned into the pFASTBAC plasmid (Invitrogen) for expression in Sf21 cells as 

described (Brozzo et al., 2011, submitted). 

Cell culture 

Human embryonic kidney epithelial cells 293 (HEK 293), COS-1 monkey kidney 

cells and bovine aortic endothelial cells (BAECs) were grown in Dulbecco‟s 

modified Eagle‟s medium (DMEM, BioConcept) supplemented with 10% fetal 

bovine serum (FBS) or 10% newborne calf serum (NCS) in the case of the 

BAECs. Porcine aortic endothelial cells (PAE cells) were maintained in Ham‟s 

F12 medium (BioConcept) containing 10% FBS. Cells were grown in a 

humidified atmosphere at 37 °C and 5% CO2. 

Transfection of HEK293 and COS-1 cells 

Transfection of HEK293 cells or COS-1 cells with FuGENE (FuGENE HD 

Transfection Reagent, Roche) was performed according to manufacturer´s 

protocol. For the DNA titration experiments, different amounts of DNA were 

used to form the transfection complex.  

Generation of stably transfected PAE-cells by retroviral 

transduction 

HEK293 Ampho (5 x 106) cells were plated in 10 cm cell culture dishes and 

cultured in DMEM (Sigma) supplemented with 10% FBS. Cells were transfected 

with 10 μg pLib LN VEGFR-2 plasmid and 10 μg pVSV-G plasmid by Ca3(PO4)2 

precipitation. Cells were then transferred to an BL2 laboratory. Medium was 

replaced 5 h later with 20 ml of fresh DMEM. Target PAE cells were seeded in 

10 cm cell culture dishes in Ham‟s F12 medium (BioConcept) containing 

10% FBS. After 24 h, the supernatant of the transfected HEK293 Ampho cells 

was filtered through a 45 μm-nitroacetate filter and added to the PAE cells. To 
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increase the efficiency of infection, polybrene (Hexadimethrinebromide, Sigma 

H9268) was added to a final concentration of 4 μg/ml. Fresh DMEM was added 

to the HEK293 Ampho cells. Infection of PAE cells was repeated the next day. 

After 48 h, PAE cells were split 1/6 and selected with 1 mg/ml G418. Selection 

medium was added every 3 days. After 2 weeks, cells were checked for 

expression. 

VEGF receptor activity test 

HEK293 (5 x 105) cells were plated into 6 cm cell culture dishes, grown for 24 h 

in DMEM with 10% FBS, and transfected with Ca3(PO4)2 precipitation. Cells 

were starved overnight in DMEM supplemented with 1% BSA 30 h after 

transfection. Transfected cells were stimulated with 1.5 nM VEGF-A165 for 

10 min at 37°C. Cells were rinsed once with ice-cold PBS followed by lysis in 

200 μl lysis buffer (50 mM Tris, pH 7.5; 100 mM NaCl; and 0.5% w/v Triton 

X-100) containing protease inhibitor cocktail (Roche), phosphatase inhibitors 

(200 μM Na3VO4, 10 mM NaF, 10 mM sodium pyrophosphate, 30 mM 

paranitrophenylphosphate, 80 mM glycerophosphate, and 20 μM phenylarsine 

oxide), and 10% glycerol. Cell lysates were boiled in Lämmli buffer (20 mM Tris, 

pH 6.8; 5% SDS; 10% mercaptoethanol; and 0.02% bromophenol blue) and 

resolved on 8% SDS gels, blotted to PVDF membranes, and immunodecorated 

with phospho-specific antibody pY1175 or VEGFR-2 specific antibody (Cell 

Signaling). All experiments were performed in triplicates and immunoblots were 

quantified by densitometric scanning using the ImageQuant TL software 

(Molecular Dynamics, GE Healthcare). 

Immunocytochemistry 

HEK293, COS-1, or stably transfected PAE cells were grown on glass 

coverslips to a density of approximately 60%. HEK293 and COS-1 cells were 

transfected with the VEGFR-2 constructs. Cells were fixed with 3.7% 

formaldehyde in PBS for 10 min at 37°C followed by extensive washing with 

PBS. Cells were permeabilized with 1% NP40 in PBS for 10 min at RT. The first 

antibody diluted in PBS was added to the cells for 2 h at room temperature 



Dissertation Edward Stuttfeld Allosteric inhibition of VEGFR-2 signaling 

105 
 

followed by incubation with fluorescently labeled secondary antibody for 1 h. 

Samples were washed with PBS before they were embedded in gelvatol (15% 

gelvatol, 33% glycerol, 0.1% sodium azide). Images were acquired on an 

Olympus IX81 epifluorescence microscope and processed using 

3D deconvolution and spectral unmixing software (Olympus Cell^R). 

Sprouting of BAECs 

BAECs were cultured in DMEM supplemented with 10% normal calf serum 

(NCS). A total of 500 cells were used to generate one hanging drop. Hanging 

drops were incubated upside down at 37 °C. After 24 h, spheroids were 

collected and pooled by centrifugation (100 rcf, 3 min). On ice, 8 volumes of 

collagen I stock (BD Biosciences) were mixed with one volume of 10x PBS and 

0.023 volumes of 1 N NaOH. Basal medium was added up to ten volumes. 

Spheroids were resuspended in basal growth medium with inclusion of DARPin 

(100 nM) and mixed 1:1 with the collagen-containing medium. Spheroids were 

transferred to a prewarmed 24-well plate (500 μl, 20 spheroids per well) and 

polymerization was induced by incubation at 37°C for 2 h. Gels were overlaid 

with 500 μl of normal growth medium supplemented with 1% FCS and 

VEGF-A165 (1.5 nM final concentration) and incubated for 24 h. Spheroids were 

fixed with 3.7% formaldehyde at 37 °C o/n. After washing with PBS spheroids 

were stained with Rhodamin labeled Phalloidin (Cell Signaling) and imaged. In 

the spheroid assay the length and number of sprouts was determined using the 

Image J software (NIH). Sprouts from two independent experiments were 

statistically analyzed for each condition. 

Production and purification of recombinant proteins 

VEGFR-2 ECD was produced and purified as described (Brozzo et al., 2011 

submitted). Briefly, Sf21 cells, maintained in serum-free Insect-Express (Lonza) 

media at 27 °C, were used to produce recombinant virus. When the cells 

reached a density of 106 cells/ml, they were infected with recombinant 

baculovirus at high multiplicity. Three days after infection, the supernatant was 

harvested by centrifugation at 900 g, concentrated, and dialyzed against 20 mM 
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sodium-phosphate buffer pH 7.4 and 500 mM NaCl. The conditioned medium 

was loaded onto an IMAC column (GE Healthcare). The hexa-histidine tagged 

(His6) protein was eluted with a gradient from 40-500 mM imidazole and further 

purified by gel filtration on a Superdex 200HR 10/30 column (GE Healthcare) 

equilibrated with 25 mM HEPES pH 7.5 containing 150 mM NaCl. 

VEGFR-2 D7 and VEGFR-2 D6-7 were produced in transiently transfected 

HEK293T cells as described (Aricescu et al., 2006). In brief, when cells reached 

~90% confluency, the medium was exchanged from DMEM (BioConcept) 

containing 10% fetal bovine serum to DMEM containing 0.5% fetal bovine 

serum. The preincubated DNA-polyethylenimine complex (at a 1:1.5 ratio) 

diluted in serum-free DMEM was added to the cells. Three days after 

transfection the medium was harvested, cleared by centrifugation, and 

concentrated. The His6-tagged proteins were purified by IMAC as described 

above. The buffer was exchanged to 25 mM HEPES pH 7.5, 150 mM NaCl 

using centrifugal protein concentrators (Sartorius Stedim Biotech). 

Size exclusion chromatography coupled multi-angle light 

scattering (SEC-MALS) 

The SEC-MALS experiments were conducted on an Agilent 1100 HPLC-system 

(Agilent Technologies) with an analytical-grade Superdex 200HR 10/30 column 

(GE Healthcare) coupled to the Wyatt miniDAWNTristar (Wyatt Technologies). 

The system was equilibrated in 25 mM HEPES pH 7.5, 150 mM NaCl at 20°C 

prior to the experiments. For each run 100 μg of VEGFR-2 ECD alone, VEGF-

A121 alone, VEGFR-2 ECD/VEGF-A121 complex, VEGFR-2 ECD/6C8/VEGF-A121 

complex, and VEGFR-2-ECD/6G9/VEGF-A121 were loaded onto the 

SEC-column. The elution profiles were recorded as UV-absorbance at 280 nm 

and as the intensity of Rayleigh scattering at three different angles. In the case 

of VEGFR-2 ECD/6C8/VEGF-A121 and VEGFR-2 ECD/6G9/VEGF-A121, 

VEGFR-2 ECD was mixed with the inhibitor at a 1:3 molar ratio and incubated 

for 60 min at 4°C. VEGF-A121 was added to the receptor at a molar ratio of 1:1.1 

(receptor:ligand). The ASTRATM software (Wyatt Technologies) was used to 

calculate the weight average Molecular masses (Mr).  
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Ribosome display 

Ribosome display was performed by Molecular Partners AG,Schlieren, as 

described in (Zahnd et al., 2007) and (Binz et al., 2004). 

Epitope-mapping ELISA 

Epitope-mapping ELISA was performed by Molecular Partners AG, Schlieren, 

using Surface Plasmon Resonance (ProteOn XPR36, Biorad, Switzerland) 

(Reference: Dr. Kaspar Binz, Molecular Partners AG, Zürich-Schlieren, 

Switzerland). 

Results 

Role of membrane-proximal Ig-homology domains 4 and 7 in 

receptor activation 

In the crystal structure of the c-Kit receptor, two amino acids R381 and E386 in 

the E-F loop of D4 were identified that form salt bridges mediating homotypic 

interaction of receptor monomers. Sequence alignment showed that this 

dimerization motif is conserved among several type III and type V RTKs and is 

also found in D7 of VEGFR-2. Based on this alignment, we generated a series 

of VEGFR-2 D7 mutants where parts of or the entire loop containing this 

dimerization motif were mutated (Fig. 7-1). 
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Fig. 7-1: Schematic representation of the βE-βF loop in VEGFR-2 D7 and 
sequences of generated mutants 
Mutated amino acids are indicated in red, wild type amino acids in blue 

We transiently expressed these mutant receptors in HEK293 cells and 

generated stably expressing retrovirus-infected PAE cell lines. To create 

amphitropic retroviruses, VEGFR-2 constructs were cloned into the pLIB 

retroviral expression vector providing a ψ+ packaging signal. The packaging cell 

line HEK293 Ampho expressing the viral gag, pol, and env genes, was 

transfected with the retroviral expression vector. The viral genomic transcript 

containing the target gene and a selectable neomycin resistance marker was 

packaged into infectious virus and subsequently used to infect PAE cells. 

Transiently or stably transfected cells were starved, stimulated with VEGF-A165 

for 10 min, and lysed. Ligand-induced VEGFR-2 activation was determined by 

immunoblotting with anti-phosphoY1175 and anti-VEGFR-2 antibodies. All 

mutants except mutant xD7EF, whose phosphorylation was completely blocked, 

retained some autophosphorylation activity both in stable (Fig. 7-2) and in 

transiently transfected cells (Fig.7-12). The ratio of phosphorylation normalized 

to total VEGFR-2 compared to wt (wt value set to 1.0) was: RRRK: 0.490.09; 

RR: 0.530.05;R: 0.530.13; EDE: 1.550.04; ED: 1.070.53; D: 1.060.67; 

xD7EF: 0.02. 
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Fig. 7-2: The conserved dimerization motif in D7 is crucial for 
ligand-induced activation of VEGFR-2 
Ligand-induced activation of VEGFR-2 is compromised by mutation of the 
EF-loop in D7. PAE cells stably expressing the indicated VEGFR-2 mutants 
were generated by retroviral transduction. Cells were stimulated with 1.5 nM 
VEGF-A165 for 10 min at 37°C. Cell lysates were analzed on immunoblots with 
phospho-specific antibody pY1175 and anti-VEGFR-2 antibody. 

Point mutations of these sites gave rise to partially defective receptors 

presumably due to compensatory interactions mediated by other charged amino 

acids in the βE-F loop. Mutation of all charged amino acids in the βE-F loop 

completely blocked receptor activation in both transiently and stably transfected 

cell lines and thus showed that D7 interaction plays an essential role in receptor 

activation. These data show that the homotypic interactions between D7 in 

receptor dimers revealed in the published VEGFR-2 D7 structure (Yang et al., 

2010) are indispensable for receptor activation. 

For D4, which may also be involved in receptor dimerization (Ruch et al., 2007) 

but has not yet been as extensively studied as D7, we generated mutants 

where the entire domain was either replaced by D5 of VEGFR-1 (3/5) or deleted 

(Δ4). Mutants were transiently or stably transfected into HEK293 and PAE cells. 

Both mutants were completely inactive in the phosphorylation assay (Fig. 7-3, 

Fig. 7-13, and Fig. 7-14). The ratio of phosphorylation normalized to total 

VEGFR-2 compared to wt (wt value set to 1.0) was: 3/5: 0.06; Delta4: 0.01. 

These data show that D4 is also required for correctly positioning receptor 

monomers in active dimers.  



Dissertation Edward Stuttfeld Allosteric inhibition of VEGFR-2 signaling 

110 
 

 

Fig. 7-3: LIgand-induced activation of VEGFR-2 is compromised by 
mutation of D4 
PAE cells stably expressing VEGFR-2 3/5 or VEGFR-2 Δ4 were stimulated with 
1.5 nM VEGF-A165 for 10 min at 37°C. Cell lysates were analyzed on 
immunoblots with phospho-specific antibody pY1175 and anti-VEGFR-2 
antibody. 

Isolation and characterization of Ig-homology domain-specific 

DARPins 

To test whether VEGFR-2 activation can be blocked with reagents specifically 

binding to D4 or D7, we selected DARPins binding to single Ig-domains of the 

VEGFR-2 ECD. The selected DARPins were verified on recombinant VEGFR-2 

ECD protein. A total of 18 DARPins was isolated and their affinities determined 

by surface plasmon resonance (confidential data, Molecular Partners AG, 

Schlieren). All DARPins bound the receptor with high affinity with Kds below 

10 nM. To determine the specificity of each DARPin, an ELISA with distinct 

ECD proteins encompassing various Ig-homology domains was performed. 

DARPin 6G9 bound to D1-7, D2-3, and D2-4. DARPin 6C8 was shown to be 

specific for D1-7 and D2-4. DARPin 7H4 bound to D1-7 and D7 (Fig. 7-4). In 

conclusion, DARPin 6G9 is specific for D2-3, DARPin 6C8 for D4, and DARPin 

7H4 for D7.  
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Fig. 7-4: DARPin specificity for VEGFR-2 ECD 
Specificity of DARPins 3C8, 4E7, 6C8, 6G9, and 7H4 against VEGFR-2 ECD 
was determined by ELISA. Proteins used were: D1-7, D7, D2-3, and D2-4. 
BG: background signal. 

To verify that these DARPins recognized VEGFR-2 also when expressed on 

cells, we analyzed receptor binding by fluorescence microscopy using a series 

of distinct receptor-expressing cells. HEK293 cells expressing wt or mutant 

VEGFR-2 (VEGFR-2 Δ4) were fixed, permeabilized, and incubated with 

DARPins. DARPins were labeled with anti-His5 and fluorescently labeled 

anti-mouse antibodies. DARPins 6C8 and 6G9 both recognized the receptor on 

the cell surface as well as in intracellular vesicles following ligand stimulation 

(Fig. 7-5). As expected, 6G9 bound both wt as well as D4 deleted VEGFR-2. In 

agreement with the epitope-mapping ELISA, 6C8 only recognized wt VEGFR-2, 

but not D4 deleted receptor. Control are shown in Fig. 7-15. 
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Fig. 7-5: DARPin 6C8 binds to D4 and DARPin 6G9 to D2-3 
HEK293 cells were transiently transfected with VEGFR-2wt (top) or Delta4 
mutant (bottom), fixed, and stained with DARPin 6G9 or 6C8, anti-His, and 
anti-mouse Cy3 antibodies (red). As a control (left panels), cells were stained 
with a commercially available anti-VEGFR-2 antibody and an Alexa488 labeled 
secondary antibody (green). 

 

Effect of DARPins on ligand-mediated receptor dimerization 

Next, we analyzed whether inhibitors of D4 affected ligand-mediated receptor 

dimerization. Receptor dimerization was determined by MALS using 

recombinant receptor ECD protein incubated with ligand in the presence or 

absence of DARPins. DARPin 6G9 specific for D2-3 completely blocked 

receptor dimerization (Fig. 7-6). Incubation of VEGFR-2-ECD with the DARPin 

6G9 showed three peaks with calculated Mrs of 110.6, 28.7, and 18.7 kDa, 

corresponding to one VEGFR-2 ECD molecule in complex with the DARPin 

6G9, unbound VEGF-A121, and unbound DARPin 6G9, respectively. On the 

other hand, the D4-specific DARPin 6C8 incubated with VEGFR-2 ECD and 

ligand gave rise to two peaks with apparent Mrs of 217.2 and 20.4 kDa. The 

20.4 kDa species represented the unbound DARPin 6C8, the 217.2 kDa 

species consisted of VEGFR-2 ECD bound to the DARPin and to VEGF-A121. 

This is supported by the fact that the elution volume of VEGFR-2 

ECD/6C8/VEGF-A121 shifts to a lower value compared to VEGFR-2 

ECD/VEGF-A121 alone. This complex apparently contains one or two DARPin 

molecules since the theoretical Mrs of the individual components are expected 

to form complexes of 235 kDa for a 2:2:2 (VEGFR-2/VEGF/DARPin) complex 

and 217 kDa for a 2:2:1 complex. These results clearly show that DARPin 6G9 
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inhibits ligand binding of VEGFR-2, whereas DARPin 6C8 does not.  

 

Fig. 7-6: DARPin 6C8 does not interfere with dimerization of VEGFR-2 ECD 
whereas DARPin 6G9 prevents dimerization in the presence of VEGF 
Receptor ECD proteins were incubated with ligand in the presence of DARPin 
6G9 (top panel) or 6C8 (bottom panel) an analyzed by MALS. After MALS 
analysis, proteins were analyzed by SDS-PAGE to confirm their identity. 

Functional characterization of receptor-inhibitory DARPins 

All 18 DARPins specifically binding to the ECD of VEGFR-2 were tested for 

their ability to inhibit VEGFR-2 activation (Fig. 7-16). PAE cells expressing 

VEGFR-2 were incubated with DARPins for 30 min before stimulation with 

VEGF-A165 (Fig. 7-7 top). DARPin 6G9 completely blocked receptor kinase 

activation. Most interestingly, the D4-specific DARPin 6C8, which does not 



Dissertation Edward Stuttfeld Allosteric inhibition of VEGFR-2 signaling 

114 
 

block ligand binding, also inhibited receptor phosphorylation. Furthermore, 

DARPin 6G9 completely inhibited VEGF-A165 induced PLCγ1 phosphorylation 

whereas 6C8 led to a significant decrease in phosphorylation (Fig. 7-7 bottom). 

 

Fig. 7-7: DARPins 6G9 and 6C8 inhibit VEGFR-2 activation and 
downstream signaling 
PAE-VEGFR-2 cells were incubated with 100 nM DARPins for 30 min at 37°C 
and subsequently stimulated with 1.5 nM VEGF-A165 for 10 min at 37°C. Cell 
lysates were analyzed on immunoblots with phospho-specific antibody pY1175, 
anti-VEGFR-2 antibody (top) and phospho-PLGγ1, anti-PLCγ1 antibody 
(bottom). 

Immunofluorescence of VEGFR-2 expressing PAE cells incubated with 

DARPins 30 min prior to stimulation showed that the receptor was retained on 

the cell surface (Fig. 7-8), while receptor was rapidly internalized in the absence 

of DARPins following ligand stimulation. Therefore, both DARPin 6C8 and 6G9 

blocked internalization of the receptor and were thus functional in live cells. 

 

Fig. 7-8: DARPins 6G9 and 6C8 inhibit VEGFR-2 internalization after 
stimulation 
PAE-VEGFR-2 cells were incubated with DARPin 6G9 or 6C8 30 min prior to 
ligand stimulation. Cells were fixed before stimulation (left panel) or 30 minutes 
after stimulation with 1.5 nM VEGF-A165 (three right panels). Membrane-bound 
and internalized VEGFR-2 was detected with an anti-VEGFR-2 antibody.  
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To analyze the effect of the inhibitory DARPins on endothelial cell sprouting, we 

embedded BAEC spheroids in collagen gels containing 100 nM of DARPins. 

Both DARPins led to significantly decreased relative sprouting compared to 

controls which clearly showed VEGF-dependent sprouting (Fig. 7-9).  

 

Fig. 7-9: DARPins6G9 and 6C8 inhibit sprouting of BAECs in the EC 
spheroid sprouting assay 
(A) BAECs were embedded in collagen gels containing 100 nM DARPins. 
Collagen gels were overlaid with 1.5 nM VEGF-A165 and sprouting was 
analyzed after 24h.Cells were fixed and visualized with a TRITC-labeled 
anti-phalloidin antibody. (B) Relative sprouting (number x average length of 

sprouts), *p < 0.05, ****p < 0.0001. Error bars represent  SEM.  

 
We further monitored endothelial cell sprouting by live-cell imaging. Spheroids 

stimulated with VEGF-A165 were incubated in the presence or absence of 

DARPin 6C8 and monitored for 16 h. Representative pictures are presented in 

Fig. 7-10 (without DARPin) and Fig. 7-11 (with DARPin 6C8) and confirmed 

inhibition of BAEC sprouting by DARPin 6C8.  
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Fig. 7-10: Live cell imaging of endothelial cell sprouting 
Sprouting of BAEC spheroids was monitored over 16 h after adding 1.5 nM 
VEGF-A165. Figures show six representative time points (A: 0 h, B: 3.2 h, 
C: 6.4 h, D: 9.6 h, E: 12.8 h, F: 16 h). Arrowheads indicate emerging and 
growing sprouts. 

 

Fig. 7-11 Inhibition of endothelial cell sprouting by DARPin 6C8 
Sprouting of BAEC spheroids was monitored over 16 h after VEGF-A165 
incubation in the presence of DARPin 6C8. Figures show six representative 
time points (A: 0 h, B: 3.2 h, C: 6.4 h, D: 9.6 h, E: 12.8 h, F: 16 h). 
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Discussion 

We demonstrated that homotypic interactions between D7 previously indicated 

in the VEGFR-2 D7 structure (Yang et al., 2010) are required for receptor 

activation. These interactions are mediated by a conserved pair of basic and 

acidic amino acids in the loop linking the βE and βF strands. Point mutation of 

these residues gave rise to only partially defective receptors presumably due to 

compensatory interactions mediated by other charged amino acids in the loop. 

Mutation of the entire βE-F loop, however, completely blocked receptor 

activation in both transiently and stably transfected cell lines and thus confirmed 

that D7 interactions play essential critical roles in receptor activation. Our 

results are partially contradictory to the recently published functional data (Yang 

et al., 2010). Yang et al showed that also point mutations in the βE-F loop are 

sufficient to strongly compromise the ligand-induced activation of VEGFR-2, 

whereas our data show this only when the entire loop was mutated. There are 

various explanations for this observation: the cells used by Yang et al. for the 

generation of stable lines are NIH-3T3 cells, a non-endothelial fibroblast cell line 

not involved in angiogenesis. We believe that our PAE cells are more 

representative of endothelial cells and thus better suited for functional analysis. 

In addition, some of the receptor mutants employed in the study were chimeric 

receptors composed of the VEGFR-2 ECD linked to the transmembrane and the 

cytoplasmic domain of PDGFR. The regulation of such chimeric receptors might 

differ from that of authentic receptors and not adequately reproduce the in vivo 

situation in developing vessels expressing wild type VEGFR receptors.   

The EM structure of the ECD of VEGFR-2 published by our laboratory revealed 

that, in addition to D7, D4 may also be involved in homotypic interactions 

between ligand-bound receptor dimers (Ruch et al., 2007). In agreement with 

functional data published earlier on VEGFR-1 (Barleon et al., 1997), we suggest 

that D4 is also involved in stabilizing receptor dimers. To investigate the role of 

D4 in receptor activation and in intracellular signaling, we generated PAE cells 

stably expressing VEGFR-2 mutants where D4 was either deleted (Δ4-mutant) 

or replaced by D5 of VEGFR-1 (mutant 3/5), a domain which up to now has not 

been shown to play a specific role in receptor activation. Receptor 

phosphorylation assays demonstrated that, in contrast to the wild type 
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VEGFR-2, D4 mutants were not active upon VEGF-A stimulation, showing that 

this domain is indispensable for receptor activation. By manual sequence 

alignment, Yang et al. identified a conserved amino acid sequence motif, 

“D/E-x-G”, in D4 that was similar to the dimerization motif in D4 of c-Kit and 

PDGFR (Yang et al., 2010). In their study, mutation of the conserved D392 to A 

did not lead to receptor inactivation, neither did the mutations of residues E387 

and R391, which they claimed to be the non-conserved pair of amino acids with 

opposite charges responsible for the generation of salt bridges in D4 (similar to 

R726 and D731 in D7). We propose that similar to the D7 mutants, 

compensatory interactions are mediated by other charged amino acids in this 

loop, such as for example E390. Furthermore, D4-D4 interactions might be 

mediated through different interfaces, as proposed earlier (Yang et al., 2008). 

This seems highly probable since the sequence identity between D4 of 

PDGFR-α and VEGFR-2 is only 20% making a definitive conclusion based on 

sequence alignment nearly impossible. The results obtained with our 

D4-specific inhibitor clearly confirm the essential role of this domain in receptor 

activation and show that the membrane-proximal domains of the ECD act as 

allosteric regulators of VEGFR-2. 

We showed earlier that activation of VEGFR-2 requires specific positioning of 

two intracellular kinase domains relative to each other in response to 

conformational changes mediated by the TMD (Dell'Era Dosch and Ballmer-

Hofer, 2010). Dimerization is hence necessary but not sufficient for receptor 

activation and downstream signaling, and requires exact positioning of the 

kinase domains relative to each other in receptor dimers. We now show that 

such an orientation requires also homotypic interactions between the 

membrane-proximal Ig-homology domains in the ECD in the full length receptor. 

As proposed for D4 of the c-Kit receptor (Lemmon and Ferguson, 2007), we 

suggest that the weak interactions between ECD domains D4 and D7 in dimeric 

VEGFR-2 are important for proper alignment of receptor monomers and 

assume that the specific orientation resulting from ECD-mediated dimerization 

resulting from ligand binding leads to a conformational reorganization of the 

juxtamembrane domain and subsequently of the intracellular kinase domain, 

leading to kinase activation.  
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In this study we provide functional evidence for the findings described in our 

earlier EM structure of the VEGFR-2 ECD (Ruch et al., 2007). We demonstrate 

the importance of ECD Ig-homology domains D4 and D7 in VEGFR-2 activation 

and signaling. As a result, we conclude that interference with these homotypic 

contacts in the VEGFR-2 ECD might represent a novel and effective way of 

inhibiting VEGFR-2 signaling. In a next step, we therefore developed specific 

binders for Ig-homology domains D4 and D7 of the VEGFR-2 ECD. The 

advantage of such VEGFR-2 inhibitors over those targeting the receptor ligand-

binding domain or VEGF itself is that they bind to the receptors with high 

specificity and are not competed by excessive amounts of ligand secreted by 

neighboring cells. This allows for distinct targeting of VEGFR-2 and we 

anticipate less side effects than those reported for the commercially available 

angiogenesis inhibitors targeting VEGF-A (Mack, 2009). The clinically most 

advanced VEGFR-2 inhibitor so far is Ramucirumab (IMC-1121) (Spratlin, 

2011), a chimeric antibody against the ligand-binding domain of VEGFR-2. 

Although this antibody is currently in phase III clinical trials 

(http://clinicaltrials.gov/ct2/results?term=ramucirumab), the nature of its 

mechanism of action reduces its specificity and affinity. This is due to the fact 

that the ligand-binding domain of all VEGFRs is relatively conserved and that 

such molecules actively compete with the natural ligand. 

To test our hypothesis in vitro we screened DARPin libraries against the entire 

ECD of VEGFR-2 and identified a number of compounds that targeted the 

ligand-binding domain of VEGFR-2. As expected, these DARPins completely 

abolished ligand-induced VEGFR-2 activation and were subsequently used as a 

positive control in our experiments. Furthermore, we identified DARPin 6C8 

which binds specifically to D4 of the ECD. Incubation of cells expressing 

VEGFR-2 with the inhibitor prior to stimulation with VEGF led to significantly 

decreased receptor activation. In addition, downstream signaling to PLCγ1 was 

also compromised and sprouting of multicellular spheroids was significantly 

reduced. We have thus discovered a potent mechanism of inhibition of VEGFR-

2 activation which is independent of natural ligand concentration. 

To further define the binding mode of this inhibtor, we investigated the 

dimerization status of ECD proteins in the presence of DARPin 6C8. As 

http://clinicaltrials.gov/ct2/results?term=ramucirumab
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expected, the DARPin still enabled ligand binding. More importantly, 6C8 did 

not interfere with receptor dimerization. This confirms that homotypic 

interactions in the ECD are dispensable for receptor dimerization as shown for 

RTKs such as c-Kit (Yuzawa et al., 2007), PDGFR (Yang et al., 2008), and 

VEGFR-2 (Yang et al., 2010), but dimerization itself is not sufficient for 

activation of VEGFR-2 (Dell'Era Dosch and Ballmer-Hofer, 2010).  

Our inhibitor apparently suppresses VEGF-mediated receptor activation and 

downstream signaling by interfering with the correct three dimensional 

organization of receptor monomers in active dimers. This is a novel approach of 

receptor inhibition. The only related inhibitor in clinical trials so far is the 

dimerization blocking inhibitor Pertuzumab, an antibody against ErbB2 (Franklin 

et al., 2004; Badache and Hynes, 2004). Pertuzumab blocks ErbB2 

heterodimerization with other members of the ErbB family. At the time of writing, 

Tvorogov et al. reported a monoclonal antibody against D5 of VEGFR-3 which, 

by inhibiting VEGFR-2/VEGFR-3 heterodimerization, suppresses signal 

transduction, migration, and sprouting of microvascular endothelial cells 

(Tvorogov et al., 2010). In addition, Kendrew et al. generated a human antibody 

in a Xenomouse which binds to D4-7 of VEGFR-2 and suppresses VEGFR-2 

activation (Kendrew et al., 2011). However, they did not demonstrate the 

antibody‟s mode of action and did not investigate its binding stoichiometry and 

epitope. 

In summary, we have identified a high affinity inhibitor specific for D4 of 

VEGFR-2 that shows exquisite binding specificity for this receptor and functions 

independently from ligand binding. Potent high affinity inhibitors targeting D4 of 

VEGFR-2 ECD could in the future be employed in clinical applications such as 

tumor vasculature imaging or anti-angiogenic treatment in diseases such as 

cancer or macular degeneration. 
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Supplementary Information 

 

 

 

Fig. 7-12: Schematic representation of VEGFR-2 mutants. 
Green spheres represent the Ig-homology domains in the ECD of VEGFR-2. 
Shown are VEGFR-2 wt, VEGFR-2 Delta4, VEGFR-2 Delta5, VEGFR-2 3/5, 
and VEGFR-2 D7 mutants. 

 

Fig. 7-13: Ligand-induced activation of VEGFR-2 is compromised by 
mutation of D4 and D7 
HEK293 cells were transiently transfected with the indicated VEGFR-2 mutants 
and stimulated with 1.5 nM VEGF-A165 for 10 min at 37°C. Cell lysates were 
analysed on immunoblots with phospho-specific antibody pY1175 and 
anti-VEGFR-2 antibody. 
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Fig. 7-14: Ligand-induced activation of VEGFR-2 is compromised by 
mutation of D4. 
We adjusted the expression level of the VEGFR-2 mutant constructs by titrating 
the amount of DNA used for transfection. HEK293 cells were transiently 
transfected with the indicated VEGFR-2 mutants. Amount of DNA used for 
transfection was varied to obtain a comparable expression level between the 
mutants. Amounts were 0.5 and 1 μg for the wt construct and 2, 1.5, 1.75 μg for 
Delta 4. Cells were stimulated with 1.5 nM VEGF-A165 for 10 min at 37°C. Cell 
lysates were analysed on immunoblots with phospho-specific antibody pY1175 
and anti-VEGFR-2 antibody. 

 

Fig. 7-15: Stainings of VEGFR-2 on cells with DARPins are specific. 
Control stainings were performed. DARPins and antibodies used are indicated 
in white writing on the figure. 
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Fig. 7-16: DARPins3C8, 6G9, and 6C8 inhibit VEGFR-2 activation. 
PAE-VEGFR-2 cells were incubated with 100 nMDARPins for 30 min at 37°C 
and stimulated with 1.5 nM VEGF-A165 for 10 min at 37°C. Cell lysates were 
analysed by immunoblot with phospho-specific antibody pY1175 and 
anti-VEGFR-2 antibody. 
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Table 7-1: Primers used for cloning VEGFR-2 3/5 mutant. 

Construct Orientation 5 – 3 sequence 

pcDNA5 FRT VEGFR-2 

3/5 

forward 5´GCA CAT TTG TCA GGG TCC ATG AAA 

AAC CAG ACC CGG CTC TCT ACC 3´ 

 reverse 5´GAT TAG AGA TTT CTC ACC AAT CTG 

GGG TGG CAC ATC TGT GAT ATA AAA 

GC 3´ 

 

 

 

Table 7-2: Primers used for cloning VEGFR-2 domain 7 mutants. 
The codons introducing the mutations are underlined. 

Construct Orientatio

n 

5 – 3 sequence 

pcDNA5 FRT VR2 R forward 5´CCGGAACCTCACTATCCGCGCAGTGAGG

AAGGAGGACGAAGG3´ 

pcDNA5 FRT VR2 D forward 5´AGTGAGGAAGGAGGCCGAAGGCCTCTA

CACCTGCC3´ 

pcDNA5 FRT VR2 

xD7EF 

forward 5´GGGAACCGGAACCTCACTATCGCCGCAG

TGGCCTCAGCCGCCGAAGGCCTCTACACC

TGCCAG3´ 

pcDNA5 FRT VR2 RR forward 5´GGG AAC CGG AAC CTC ACT ATC 

GCCGCA GTG GCC AAG GAG GAC GAA 

GGC CTC TAC ACC TGC CAG3´ 

pcDNA5 FRT VR2 RRR forward 5´GGG AAC CGG AAC CTC ACT ATC 

GCCGCA GTG GCCTCA GAG GAC GAA 

GGC CTC TAC ACC TGC CAG3´ 

pcDNA5 FRT VR2 ED forward 5´GGG AAC CGG AAC CTC ACT ATC CGC 

AGA GTG AGG AAG GCCGCC GAA GGC 

CTC TAC ACC TGC CAG3´ 

pcDNA5 FRT VR2 EDE forward 5´GGG AAC CGG AAC CTC ACT ATC CGC 

AGA GTG AGG AAG GCCGCCGCC GGC 

CTC TAC ACC TGC CAG3´ 

Reverse primer (for all 

above) 

reverse 5´ACA GGG ATT GCT CCA ACG TAG 3´ 
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Table 7-3: Primers used for cloning pLIB constructs. 
The codons introducing the restriction sites or the mutations are underlined. 

Construct Orientation 5 – 3 sequence 

pLIB VEGFR-2 wt forward(SalI 

restriction site 

underlined) 

5´GAT CGT CGA CAT GGA GAG 

CAA GGT GCT GCT GGC CG 3´ 

 reverse(NotI 

restriction site 

underlined) 

5´TAG ACT CGA GCG GCC GCT 

CAC AGA TCC TCT TC 3´ 

pLIB VEGFR-23/5  forward/reverse 

as first entry 
 

pLIB VEGFR-2 K868M  forward/reverse 

as first entry 
 

pLIB VEGFR-2 R  forward/reverse 

as first entry 
 

pLIB VEGFR-2 D  forward/reverse 

as first entry 
 

pLIB VEGFR-2 RD forward/reverse 

as first entry 
 

pLIB VEGFR-2 RR forward 5´GGG AAC CGG AAC CTC ACT ATC 

GCCGCA GTG GCC AAG GAG GAC 

GAA GGC CTC TAC ACC TGC CAG 

3´ 

 

pLIB VEGFR-2 RRR forward 5´GGG AAC CGG AAC CTC ACT ATC 

GCCGCA GTG GCCTCA GAG GAC 

GAA GGC CTC TAC ACC TGC CAG 

3´ 

 

pLIB VEGFR-2 ED forward 5´GGG AAC CGG AAC CTC ACT ATC 

CGC AGA GTG AGG AAG GCCGCC 

GAA GGC CTC TAC ACC TGC CAG 

3´ 

pLIB VEGFR-2 EDE forward 5´GGG AAC CGG AAC CTC ACT ATC 

CGC AGA GTG AGG AAG 

GCCGCCGCC GGC CTC TAC ACC 

TGC CAG 3´ 

Reverse primer (for the 

four constructs: RR, RRR, 

ED, EDE) 

reverse 5´ACA GGG ATT GCT CCA ACG TAG 

3´ 
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8 Conclusion 

VEGFRs are the major regulators of angiogenic and lymphatic development. In 

addition, VEGFR signaling associated with pathological angiogenesis is 

involved in a number of pathological conditions such as in cancer and in various 

ischemic and inflammatory diseases (Carmeliet and Jain, 2000). Hence, 

structural studies of this receptor system are expected to further contribute to 

elucidate the molecular mechanism underlying receptor activation and to 

identify new target sites on the receptor for the development of new inhibitory 

drugs. During this project, I showed that binding of individual VEGFR-1 ligands 

gave rise to conformationally similar ligand/VEGFR-1 ECD complexes. The 

complexes are characterized by heterotypic ligand/receptor and homotypic 

receptor/receptor interactions in the membrane proximal Ig-homology domains, 

as reported for VEGFR-2 and type III RTKs (Ruch et al., 2007; Yang et al., 

2010; Yuzawa et al., 2007; Yang et al., 2008). Furthermore, this is the first study 

addressing the thermodynamic contribution of individual Ig-homology domains 

of VEGFR-1 to ligand binding. My data showed that the presence of 

VEGFR-1 D4-7 increases ligand binding affinity due to enthalpic contributions. 

Surprisingly, I discovered that Ig-homology domain 1 blocks PlGF-1 binding to 

VEGFR-1 D1-3, but not to D1-7. However, the mechanism explaining this 

phenomenon remains unclear.  

In a second project, we aimed at inhibiting VEGFR-2 signaling by targeting the 

homotypic receptor/receptor interactions that are formed upon ligand binding. 

We showed that a DARPin binding to Ig-homology domain 4 leads to decreased 

VEGFR-2 phosphorylation without preventing the formation of the 

VEGF-A/VEGFR-2 complex. This inhibitor also affected downstream signaling 

to PLCγ1 and inhibited sprout formation of endothelial cell spheroids. In this 

study we thus describe a new way to inhibit VEGFR-2 that may complement 

other treatments such as receptor inactivation with low Mr inhibitors binding to 

the kinase domain and may improve the efficiency of anti-angiogenic therapy. 
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8.1 Therapeutic potential of targeting VEGFR ECD 

Several drugs targeting VEGF-mediated pathological angiogenesis have been 

developed so far including small molecule kinase inhibitors, a VEGF-trap, and 

antibodies against VEGF or VEGFR-2. Here we describe a new mechanism to 

inhibit VEGFR-2 signaling. The identified DARPin binds to the receptor without 

interfering with ligand binding and does not prevent receptor ligand complex 

formation that is needed for kinase activation. At the time of writing, similar 

approaches were published for VEGFR-2 and VEGFR-3 using antibodies 

(Kendrew et al., 2011; Tvorogov et al., 2010). 

A number of studies on type III and V RTKs highlighted the importance of low 

affinity homotypic interactions in the ECD for receptor activation. In c-Kit, 

PDGFRs, and VEGFRs, receptor dimerization is not sufficient for kinase 

activation, in addition the kinase domains need to be positioned in a specific 

orientation for full activity. Thus, the described interactions serve as valuable 

targets and may lead to the development of inhibitors interfering with RTK 

signaling, even though such inhibitors may not fully prevent receptor 

phosphorylation.  

The fact that ligand binding to the receptor is not affected by such inhibitors is a 

clear advantage over other therapeutic approaches. First of all, only signaling 

pathways driven by the targeted receptor would be blocked. Drugs that are 

used in therapy targeting VEGF itself block all VEGF mediated functions, in 

particular all functions mediated through VEGFR-1 and -2. Furthermore, kinase 

inhibitors display additional off-target effects by blocking additional cellular 

kinases (Ivy et al., 2009). Based on the discovery of soluble VEGFR-1 and 

VEGFR-2 variants in humans, additional mechanisms to regulate the VEGF 

concentration have been proposed (Kendall and Thomas, 1993; Ebos et al., 

2004). These soluble receptors sequester freely diffusable VEGF thereby 

spatially regulating the VEGF concentration. In contrast to molecules that 

prevent ligand binding such as Ramucirumab (IMC-1121), the identified DARPin 

would not interfere with this additional level of VEGF regulation (Spratlin, 2011). 

Furthermore, ligand binding blocking agents are susceptible to increased ligand 

concentrations due to competition for the same binding site. At high ligand 
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concentrations such agents are less effective, as described for a VEGFR-3 

ligand blocking antibody (Tvorogov et al., 2010). Tvorogov and colleagues 

therefore showed that combined application of the ligand binding blocking 

antibody and an antibody against Ig-homology domain 5 displayed the most 

prominent effect on endothelial and lymphatic cell sprouting. The identified 

DARPin against Ig-homology domain 4 of VEGFR-2 may complement existing 

anti-angiogenic therapies and enhance the efficiency of the treatment. 

Although DARPin 6C8 blocked biological functions of VEGFR-2 such as 

endothelial cell sprouting, residual receptor phosphorylation was still observed. 

This means that distinct signaling pathways are still activated by membrane 

localized VEGFR-2. However, signaling pathways that require receptor 

internalization or coreceptor binding might be blocked by the presence of our 

allosteric inhibitors. Hence, these new allosteric inhibitors display biased 

antagonistic signaling, i.e. not all signaling pathways are affected by the 

inhibitor.  

8.2 Outlook 

The final aim of our study is to understand the molecular mechanism underlying 

VEGFR activation. In addition, the question remains how different ligands lead 

to distinct patterns of receptor tyrosine phosphorylation and activation of 

downstream signaling pathways. A crystal structure of any VEGFR ectodomain 

alone as well as in complex with one of the ligands may elucidate the molecular 

basis of binding specificity and receptor activation. Including VEGFR ECDs from 

other organisms in future crystallization screens may be required to get better 

diffracting crystals. In addition, inhibitors such as scFvs or DARPins can be 

raised against VEGFR-1 ECD and be added in crystallization screens to 

promote crystal growth. To date, all available crystal structures of VEGFs only 

reveal the structure of the folded core unit. However, the C-terminal tail plays an 

important role in coreceptor binding, which is known to further modulate signal 

output (Cébe-Suarez et al., 2006; Cebe-Suarez et al., 2008). Thus, structural 

data of a VEGF/VEGFR/Neuropilin complex would help to understand how 

coreceptors influence the overall topology of the VEGF/VEGFR complex. In 
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addition, low resolution structural data of the full length VEGFR may further 

contribute to dissect the molecular interactions involved in the process of 

receptor activation, from ligand binding to the ectodomain to proper positioning 

and activation of the intracellular kinase domain.  

We showed that targeting the Ig-homology domain 4 of VEGFR-2 effectively 

inhibited receptor activation and endothelial cell sprouting in vitro. In order to 

characterize its therapeutic potential, data for mouse animal models are 

required. Therefore, cross-reactivity of DARPin 6C8 with mouse VEGFR-2 has 

to be tested. In case mouse VEGFR-2 can be targeted by our DARPins, the 

application of the inhibitors to treat mouse tumor models might be assessed. 

Hereby, the application of the DARPin alone or in combination with other VEGF 

or VEGFR-2 targeting agents can be characterized. In vivo data from mouse 

tumor models may then show whether a DARPin targeting Ig-homology 

domain 4 of VEGFR-2 is applicable in anti-cancer therapy. 

Furthermore, the described DARPins can be used in crystallization experiments 

of VEGFR-2 ECD protein. The addition of DARPins to promote crystallization of 

difficult targets has been successfully used (Sennhauser and Grutter, 2008). In 

addition, a crystal structure of VEGFR-2 ECD in complex with DARPin 6C8 may 

explain the mode of inhibition. 
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9 Appendix 

Table A-1: Primers used for cloning the VEGFR-1 and VEGFR-2 
expression plasmids 

Construct Primer sequences Primer 
name 

pcDNA3-
VEGFR-2 
D7-GCN4 

for: CCGCCTCTGTGGGTTTGCCTGAGCGTGTGGCACCCACGAT 
rev: GGAGCGAACGACCTACACCGAACTGAGATACCTACAGCG 

ES04 
847 

pcDNA3-
VEGFR-2 
D7 

for: ATGGAGAGCAAGGTGCTGC 
rev: GTGATGCTGGAAGTAGAGGTTCTCCAAGTTCGTCTTTTCCTGGGC 

ES12 
CR5 

pcDNA3-
VEGFR-2 
D6 

for: CGCCTCTGTGGGTTTGCCTAGGGGTCCTGAAATTACTTTGC 
rev: GGTGATGCTGGAAGTAGAGGTTCTCGGGTGCCACACGCTCTAGG 

ES25 
ES26 

pcDNA3-
VEGFR-2 
D6-7 

for: CGCCTCTGTGGGTTTGCCTAGGGGTCCTGAAATTACTTTGC 
rev: GTGATGCTGGAAGTAGAGGTTCTCCAAGTTCGTCTTTTCCTGGGC 

ES25 
CR5 

pcDNA3-
VEGFR-2 
2xD4-GSL 

for: GCTAGGTACCCCTTTTGTTGCTTTTGGAAGTGG 
rev: GCTATCCGGAACCGCCTCCACCAATCTGGGGTGGGACA 
        TACACAAC 

ES8F 
ES8R 

pcDNA3-
VEGFR-2 
2xD7-GSL 

for: GCTAGGTACCCCCACGATCACAGGAAACCTGG 
rev: GCTATCCGGAACCGCCTCCACCGGCACCTTCTATTATGAAAAATG 
        CCTCC 

ES7F 
ES7R 

pcDNA3-
VEGFR-2 
D6-7-GSL 

for: CCGCCTCTGTGGGTTTGCCTGGTACCATTACTTTGCAACCTGACATGCAGC 
rev: GATGGTGATGCTGGAAGTAGAGGTTCTCCGAATTCGTGGCACCTT 
        CTATTATGAAAAATGCCTCC 
GS-linker: CAGTCCTAGAGCGTGTGGCAGGTGGAGGCGGTTCAGGCGG 
Kpn2I-site: GTGTGGCAGGTGGAGGCGGTTCCGGAGGAGGTGGCTCTGG 
                    CGGTGG 

ES1F 
 
ES1R 
 
ES2F 
ES3F 

pcDNA3-
VEGFR-2 
D6-4-GSL 

for: GCTAGGATCCCCTTTTGTTGCTTTTGGAAGTGG 
rev: GCTAGAATTCGTAATCTGGGGTGGGACATACACAAC 

ES9F 
ES9R 

pcDNA3-
VEGFR-2 
xxx-
N704Q 

for: GATCATGTGGTTTAAAGATCAAGAGACCCTTGTAGAAGACTCAGGC 
rev: GGAGCGAACGACCTACACCGAACTGAGATACCTACAGCG 

ES23 
847 

pcDNA3-
VEGFR-2 
xxx-
N721Q 

for: GAAGGATGGGAACCGGCAACTCACTATCCGCAGAGTGAGG 
rev: GGAGCGAACGACCTACACCGAACTGAGATACCTACAGCG 

ES24 
847 

pcDNA3-
VEGFR-2 
xxx-
N675Q 

for: CACGATCACAGGAAACCTGGAGCAACAGACGACAAGTATTGGGGAAAG 
rev: GTGATGCTGGAAGTAGAGGTTCTCCAAGTTCGTCTTTTCCTGGGC 

ES37 
 
CR5 

pcDNA3-
VEGFR-2 
xxx-
N631Q 

for: ATGACATTTTGATCATGGAGCTTAAGCAAGCATCCTTGCAGGACCAAG 
rev: GTGATGCTGGAAGTAGAGGTTCTCCAAGTTCGTCTTTTCCTGGGC 

ES36 
 
CR5 

pcDNA3-
VEGFR-2 

for: AAGAACTTGGATACTCTTTGGAAATTGCAAGCCACCATGTTCTCTC 
       AAAGCACAAATGACATTTTGATCATG 

ES35 
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xxx-
N613/619
Q 

rev: GTGATGCTGGAAGTAGAGGTTCTCCAAGTTCGTCTTTTCCTGGGC CR5 

pcDNA3-
VEGFR-2 
xxx-
N580Q 

for: CACTGCAGACAGATCTACGTTTGAGCAACTCACATGGTACAAGCTTGGC 
rev: GTGATGCTGGAAGTAGAGGTTCTCCAAGTTCGTCTTTTCCTGGGC 

ES34 
 
CR5 

pPICZαA-
VEGFR-2 
D7-GCN4 

for: GCTGAATTCGAGCGTGTGGCACCCACG 
rev: GATGGTCGACGGATCCACGCGGAACCAGACCAACCAGTTTTTTCA 
        GACGAGC 

ES21 
ES22 

pColdI-
VEGFR-2 
D7 

for: CAAAGTGCATCATCATCATCATCATCTGGTTCCGCGTGGATCCGA 
       GCGTGTGGCACCCACG 
rev: GATTCTGTGCTTTTAAGCAGAGATTACCTACAAGTTCGTCTTTTCCT 
        GGGC 

ES29 
 
ES30 

pFLmb-
VEGFR-1 
D1-7-N32 

for: CCAGAGCCGCATCTCCTGAACTGAGTTTAAAAGGCAC 
rev: TGTCTGCCCTCGATTCCTTGAACAGTGAGGTATGCTG 

ES47 
ES42 

pFLmb-
VEGFR-1 
D1-6-N32 

for: CCAGAGCCGCATCTCCTGAACTGAGTTTAAAAGGCAC 
rev: TGTCTGCCCTCGATTGCTTCCTGATCTCTGATTGTAATTTC 

ES47 
ES46 

pFLmb-
VEGFR-1 
D1-5-N32 

for: CCAGAGCCGCATCTCCTGAACTGAGTTTAAAAGGCAC 
rev: TGTCTGCCCTCGATATCTGTGATATAAAAGCTTATGTTTCTTC 

ES47 
ES45 

pFLmb-
VEGFR-1 
D1-4-N32 

for: CCAGAGCCGCATCTCCTGAACTGAGTTTAAAAGGCAC 
rev: TGTCTGCCCTCGATGGCAGTGAGGTTTTTAAACACATTTG 

ES47 
ES44 

pFLmb-
VEGFR-1 
D1-3-N32 

for: CCAGAGCCGCATCTCCTGAACTGAGTTTAAAAGGCAC 
rev: TGTCTGCCCTCGATTTTATCATATATATGCACTGAGGTGTTAAC 

ES47 
ES40 

pFLmb-
VEGFR-1 
D1-7-N27 

for: CCAGAGCCGCATCTTCAAAATTAAAAGATCCTGAACTGAG 
rev: TGTCTGCCCTCGATTCCTTGAACAGTGAGGTATGCTG 

ES39 
ES42 

pFLmb-
VEGFR-1 
D1-6-N27 

for: CCAGAGCCGCATCTTCAAAATTAAAAGATCCTGAACTGAG 
rev: TGTCTGCCCTCGATTGCTTCCTGATCTCTGATTGTAATTTC 

ES39 
ES46 

pFLmb-
VEGFR-1 
D1-5-N27 

for: CCAGAGCCGCATCTTCAAAATTAAAAGATCCTGAACTGAG 
rev: TGTCTGCCCTCGATATCTGTGATATAAAAGCTTATGTTTCTTC 

ES39 
ES45 

pFLmb-
VEGFR-1 
D1-4-N27 

for: CCAGAGCCGCATCTTCAAAATTAAAAGATCCTGAACTGAG 
rev: TGTCTGCCCTCGATGGCAGTGAGGTTTTTAAACACATTTG 

ES39 
ES44 

pFLmb-
VEGFR-1 
D1-3-N27 

for: CCAGAGCCGCATCTTCAAAATTAAAAGATCCTGAACTGAG 
rev: TGTCTGCCCTCGATTTTATCATATATATGCACTGAGGTGTTAAC 

ES39 
ES40 

pFLmb-
VEGFR-1 
D2-7 

for: CCAGAGCCGCATCTGGTAGACCTTTCGTAGAGATGTACAG 
rev: TGTCTGCCCTCGATTCCTTGAACAGTGAGGTATGCTG 

ES43 
ES42 

pFLmb-
VEGFR-1 
D2-6 

for: CCAGAGCCGCATCTGGTAGACCTTTCGTAGAGATGTACAG 
rev: TGTCTGCCCTCGATTGCTTCCTGATCTCTGATTGTAATTTC 

ES43 
ES46 

pFLmb-
VEGFR-1 
D2-5 

for: CCAGAGCCGCATCTGGTAGACCTTTCGTAGAGATGTACAG 
rev: TGTCTGCCCTCGATATCTGTGATATAAAAGCTTATGTTTCTTC 

ES43 
ES45 

pFLmb-
VEGFR-1 

for: CCAGAGCCGCATCTGGTAGACCTTTCGTAGAGATGTACAG 
rev: TGTCTGCCCTCGATGGCAGTGAGGTTTTTAAACACATTTG 

ES43 
ES44 
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D2-4 

pFLmb-
VEGFR-1 
D2-3 

for: CCAGAGCCGCATCTGGTAGACCTTTCGTAGAGATGTACAG 
rev: TGTCTGCCCTCGATTTTATCATATATATGCACTGAGGTGTTAAC 

ES43 
ES40 

pFLmb-
VEGFR-1 
D4-7 

for: CCAGAGCCGCATCTGTGCTTGAAACCGTAGCTGG 
rev: TGTCTGCCCTCGATTCCTTGAACAGTGAGGTATGCTG 

ES41 
ES42 

pFLmb-
VEGFR-1 
D4-6 

for: CCAGAGCCGCATCTGTGCTTGAAACCGTAGCTGG 
rev: TGTCTGCCCTCGATTGCTTCCTGATCTCTGATTGTAATTTC 

ES41 
ES46 

pFLmb-
VEGFR-1 
D4-5 

for: CCAGAGCCGCATCTGTGCTTGAAACCGTAGCTGG 
rev: TGTCTGCCCTCGATATCTGTGATATAAAAGCTTATGTTTCTTC 

ES41 
ES45 

pFLmb-
PlGF-
1_1fzv 

for: CCAGAGCCGCATCTCTGCCTGCTGTGCCCCC 
rev: TGTCTGCCCTCGATCCTCCGGGGAACAGCATCG 

ES67 
ES68 
 

pFLmb-
PlGF-
1_1rv6 

for: CCAGAGCCGCATCTGAGGTGGAAGTGGTACCCTTCC 
rev: TGTCTGCCCTCGATCATCTTCTCCCGCAGAGGC 
 

ES63 
ES64 
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Fig. A-1: Electron Microscopy of the VEGFR-1 ECD/VEGF-A121 complex 
6260 particles were windowed in 70x70 pixel windows and classified in 50 
groups. Scale bar, 15 nm. 
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Fig. A-2: Electron Microscopy of the VEGFR-1 ECD/PlGF-1 complex 
2203 particles were windowed in 70x70 pixel windows and classified in 20 
groups. Scale bar, 15 nm. 

 

Fig. A-3: Electron Microscopy of the VEGFR-1 ECD/VEGF-B complex 
1234 particles were windowed in 70x70 pixel windows and classified in 20 
groups. Scale bar, 15 nm. 
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Fig. A-4: Raw EM image of VEGFR-1 D1-7 
Scale bar, 200 nm. 
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Fig. A 5: Raw EM image of VEGFR-1 D1-7/VEGF-A121 
Scale bar, 200 nm. 
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Fig. A 6: Raw EM image of VEGFR-1 D1-7/PlGF-1 
Scale bar, 200 nm. 
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Fig. A 7: Raw EM image of VEGFR-1 D1-7/VEGF-B 
Scale bar, 200 nm. 
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