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ABSTRACT

Objective: The aim of the study was to investigate the use of a novel hyaluronic acid/polycaprolactone
material formeniscal tissue engineering and to evaluate the tissue regeneration after the augmentation of the
implant with expanded autologous chondrocytes. Two different surgical implantation techniques in a sheep
model were evaluated. Methods: Twenty-four skeletally mature sheep were treated with total medial me-
niscus replacements, while two meniscectomies served as empty controls. The animals were divided into two
groups: cell-free scaffold and scaffold seeded with autologous chondrocytes. Two different surgical tech-
niques were compared: in 12 animals, the implant was sutured to the capsule and to themeniscal ligament; in
the other 12 animals, also a transtibial fixation of the horns was used. The animals were euthanized after 4
months. The specimens were assessed by gross inspection and histology. Results: All implants showed ex-
cellent capsular ingrowth at the periphery.Macroscopically, no difference was observed between cell-seeded
and cell-free groups. Better implant appearance and integrity was observed in the group without transoss-
eous horns fixation. Using the latter implantation technique, lower joint degeneration was observed in the
cell-seeded group with respect to cell-free implants. The histological analysis indicated cellular infiltration
and vascularization throughout the implanted constructs. Cartilaginous tissue formation was significantly
more frequent in the cell-seeded constructs. Conclusion: The current study supports the potential of a novel
HYAFF/polycaprolactone scaffold for total meniscal substitution. Seeding of the scaffolds with autologous
chondrocytes provides some benefit in the extent of fibrocartilaginous tissue repair.

INTRODUCTION

LESIONS OF THE MENISCUS are frequently observed in

orthopedic practice. Injury or loss of meniscal tissue

potentially leads to pain, knee dysfunction, and osteoar-

thritis at long term.1–3 Healing of ruptured menisci is

usually limited to the vascularized areas in the outer one-

third of the meniscus.4,5 Studies have demonstrated that
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healing of the knee is inversely related to the amount of

meniscal tissue resected.6,7 However, a large proportion

of meniscal tears observed at arthroscopy remain irrepara-

ble, and partial, subtotal, or even total meniscectomy is

often necessary, regardless of the recognized consequence.

In cases of extensive destruction and complete loss of the

meniscus, only two methods are available in clinical

practice today for meniscal substitution: allograft trans-

plantation and collagen meniscus implantation. In cases of

extensive destruction with a meniscal rim left intact, the

collagen meniscus implant (CMI) is used for partial me-

niscus substitution. Complete loss of the meniscus can only

be treated by allograft transplantation. In properly selected

patients, meniscal allografts based on various preservation

techniques (fresh, fresh frozen, and cryopreserved) have

been shown to heal to the capsule and relieve pain. How-

ever, their long-term success, durability, safety, and chon-

droprotective effects are still uncertain.8,9

The CMI (ReGen Biologics, Franklin Lakes, NJ) is

the only scaffold used so far in a clinical setting,10–14 even

if CMI cannot be considered as total meniscal substitute as

a residual rim of the original meniscus is necessary to fix

the implant. Despite improvements in pain and self-

evaluation,12 the histological and magnetic resonance ima-

ging (MRI) results remain controversial.10,13,15

Several materials have been tested as partial meniscus

substitutes in animal models. Veth et al.16 used carbon fiber

for meniscus repair in dogs, with unsatisfactory results.

Small intestinal submucosa (SIS) was successfully used to

repair posterior vascular meniscal defects,17 but not for

total substitution. Total meniscus substitution remains dif-

ficult and has been poorly described in the literature. A

polyvinyl alcohol–hydrogel meniscus in rabbits showed

promising results in terms of chondroprotection, but cer-

tain unresolved problems persisted, such as durability of

the polymer, the fixation method, and complete tissue re-

generation in a material that does not adhere to tissue.18,19

Tienen et al.20 applied two different porous polyester

urethane polymers as meniscus prostheses in dogs. Al-

though they also showed promising results in respect of

tissue formation, one of the materials (aromatic 4,4,-di-

phenylmethanediisocynate based) is thought to degrade

into toxic products. Other porous polymer implants did not

prevent cartilage degeneration or were not suitable as me-

niscal substitutes because of poor tissue ingrowth related to

polymer degradation rate, and poor mechanical proper-

ties.21–23

Tissue engineering has recently been proposed as a

possible solution for meniscal regeneration.15,24–28 There

have, however, been very few animal studies reported in

the literature that have investigated the possibility of using

cells in a partial or total meniscal substitute.15,24 Walsh

et al.25 used a collagenous sponge loaded with mesenchy-

mal stem cells to heal a partial meniscus defect in rabbits

and reported that the presence of cells augmented the repair

process but did not prevent degenerative osteoarthritis.

Martinek et al.15 reported better macroscopic and histo-

logical results in CMI implants seeded with meniscal fi-

brochondrocytes in comparison to cell-free implants in

sheep. However, the tissue-engineered meniscus was bio-

mechanically unstable and the implant size reduced during

the 3-month observation period. The authors suggested that

an improvement in scaffold and cell seeding procedure is

required before human application.

Different cell sources have also been analyzed in vitro

to find the most suitable source for cell augmentation of

tissue-engineered meniscus. Articular chondrocytes showed

the highest capacity for generating tissues with cellular and

matrix phenotypes including glycosaminoglycan expres-

sion similar to those of both the inner and outer meniscus

regions.29 Moreover, cartilage harvesting from a minorly

loaded joint area would be less damaging to the joint as

compared to healthy meniscal tissue harvesting. The sur-

gical technique used in animal models for total meniscal

replacement has also not been highly investigated and

consistent, as authors use different animal models (rabbit,

dog, and sheep) and diverse surgical techniques.

In a previous study, a new resorbable biomaterial con-

sisting of hyaluronic acid (HYAFF; Fidia Advanced Bio-

polymers [FAB], Abano Terme, Italy) and polycaprolactone

(PCL) was tested for total meniscal substitution in an in vivo

study in sheep. Tissue integration between the joint capsule

and the implant was observed with tissue formation, cellular

infiltration, and vascularization.30 Our hypothesis was that

the application of a tissue engineering approach, using cells

seeded onto this scaffold, would offer some benefits in pa-

tients submitted to total meniscectomy by increasing the

biological response and remodeling processes. Therefore,

the aim of the current study was to investigate the feasibility

of using this novel material for meniscal tissue engineering

and to evaluate the tissue regeneration after the augmenta-

tion of the implant with autologous articular chondrocytes

expanded ex vivo. The secondary aim was to evaluate two

different surgical scaffold implantation techniques in an

animal model: suture to the capsule and to the meniscal

ligament, with or without transtibial fixation of the horns.

MATERIALS AND METHODS

Study design

All procedures were approved by the Technical, Scien-

tific, and Ethics Committees of both experimentation cen-

ters (Rizzoli Orthopaedic Institute and Vienna University)

and by the Italian and Austrian Ministries of Health. The

study was performed by strictly following National Laws

on animal experiments (Law by Decree 116/92 and TVG,

BGBI No. 501/1988, 169/1999, and 136/2001).

Twenty-six skeletally mature female adult sheep, mean

age 3.1 years (� 1.8 years) (13 Bergamasca–Massese,

70� 5 kg body weight [b.w.], and 13 Austrian Stone sheep,
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55� 11 kg b.w.) were acquired from authorized farms,

and kept in quarantine for at least 7 days before use.

Under general anesthesia, animals underwent medial total

meniscal meniscectomy of the right stifle joint and were

divided into two groups. The cell-seeded group (n¼ 12)

received total medial meniscal replacement by the im-

plantation of a scaffold seeded with autologous chon-

drocytes, while in the cell-free group (n¼ 12), a meniscus

was replaced by a cell-free scaffold.

In each animal group (cell seeded and cell free), two dif-

ferent surgical techniques of scaffold implantation were

compared: in six animals of each group, the implant was

sutured to the capsule and to the meniscal ligament (R ani-

mals) (Fig. 1). In the other six animals of each group, the

implantation was performed in the same way, but also the

transtibial fixation of the horns was used (V animals) (Fig. 2).

In the cell-free group, the left stifle joints served as non-

operated joints for comparison. In the cell-seeded group, the

cartilage biopsy was performed from non-weight-bearing

areas of the left stifle joint to obtain the chondrocyte culture.

The medial meniscus was left untouched, and these joints

were used as sham controls in order to see the impact of

the arthrotomy in a healthy joint. The cells harvested from

the sheep were expanded and then seeded onto the scaffold

as described below. Each group had one empty control

(two animals) with total medial meniscectomy left un-

treated. In the empty controls, medial meniscectomy was

performed using the same surgical technique as described

above without insertion of a meniscus device.

All sheep received an external plaster (Scotch/Soft Cast;

3M Health Care, St. Paul, MN) to limit motion at the op-

erated limb for 5 days, as described by Dorotka et al.31 Free

movement within the cage was permitted immediately after

surgery. After 2 weeks, the stitches were removed and the

sheep were returned to the external stabling fields until the

end of the experiment (16 weeks).

Surgical procedure

Surgery was conducted under general anesthesia. General

anesthesia was performed following a standardized proto-

col: premedication with 10 mg/kg ketamine i.m. (Ketavet

100; Farmaceutici Gellini SpA, Aprilia, Latina, Italy),

0.3 mg/kg xylazine i.m. (Rompun Bayer AG, Leverkusen,

Germany), and 0.0125 mg/kg atropine sulfate s.c.; induction

with 6 mg/kg sodium thiopentone i.v. (2.5%); maintenance

with oxygen, NO2, and 2–3% fluothane (Halothan; Hoechst

AG, Frankfurt, Germany) under assisted ventilation (Servo

Ventilator 900 D; Siemens, Munich, Germany). A blood

analysis was performed from the radial vein. Antibiotics

(cefalosporin 1 g/day for 5 days) and analgesics (ketoprofen

500 mg/day for 3 days) were administrated postoperatively,

and a veterinarian checked the animals’ health.

An anteromedial arthrotomy was performed. The medial

collateral ligament (MCL) was cut slightly above the joint

line. This was necessary to achieve good exposure of the

posterior aspect of the joint. The meniscus was cir-

cumferentially dissected from the capsule; the posterior

horn of the meniscus was exposed by flexion, external ro-

tation, and valgus stress of the joint; the meniscus was

detached at its posterior and anterior horns. No residual

meniscal rim was left. In 12 sheep (6 cell freeþ 6 cell

seeded), the implant was sutured to the capsule at the level

of the original meniscal rim, the anterior and posterior

horns of the implant being fixed to the meniscal ligaments

(R group, Fig. 1). In the other 12 sheep (6 cell freeþ 6 cell

seeded), the implantation was performed in the same way,

but, additionally, two 3-mm tunnels were drilled with a

guide wire from the medial tibial condyle to the footprints

of the anterior and posterior meniscal horns. Two non-

resorbable anchoring sutures were inserted through the

implant at its horns, pulled through the bone tunnels, and

tied to each other in a knot on the tibial surface (V group,

Fig. 2). The capsule was closed. The MCL was recon-

structed with four sutures, using resorbable sutures. The

skin was closed by standard surgical techniques.

FIG. 1. Surgical technique used in R group of animals: implant

was sutured to the capsule, the anterior and posterior horns of the

implant being fixed to the meniscal ligaments.
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Biomaterial and implant

Porous scaffold preparation. The scaffold was a porous

blend of polycaprolactone (PCL) and HYAFF, a class

of hyaluronan-derived polymers obtained by a coupling

reaction (FAB), with a pore size of 200–300 mm. The

meniscus-like composite devices were produced by a

lamination technique using molds that were designed ac-

cording to original sheep menisci. Polycaprolactone (PCL)

pellets of 294 mg/mL (Mw¼ 65,000; Aldrich, St. Louis, MO)

were dissolved in a tetrahydrofuran/dimethyl sulfoxide 80/

20 (w/w) solution, by stirring the components at 458C. A

mixture of salts consisting of 93.9% (w/w) sodium chloride

(with granulometry 315–400 mm), 3.5% (w/w) sodium

bicarbonate (with granulometry 140–315 mm), and 2.6%

(w/w) citric acid (with granulometry inferior to 200 mm)

was prepared. Successively, PCL solution and HYAFF-11

p75 HE powder (supported by FAB) at a ratio of PCL/

HYAFF 70/30 (w/w) were mixed with salts, until a homo-

geneous paste was obtained. The ratio of polymers to salts

was 1/10. The salts increase the porosity of the structure

and ensure the interconnection of pores.

The paste obtained was then poured in a meniscus-

shaped Teflon mold containing a polylactic acid (PLA) net.

The meniscus device was augmented with circumferential

PLA fibers, which protruded at the anterior and posterior

horns and could be pulled through transosseous tunnels.

PLA fibers were arranged in the mold, and the remaining

paste was used as matrix to fill it. The samples obtained

were left in air for 24 h and immersed in bidistilled water

for 1 day. Subsequently, they were immersed in bidistilled

water at 408C for 5 h to remove the solvents. The porous

scaffolds were then left in bidistilled water for a further 5

days, changing the water everyday for complete removal of

salts and any residual solvents. The samples were removed

from molds and immersed in an ethanol/water 70/30 (w/w)

solution, followed by placement in an Edwards lyophili-

sator to remove the water. The porous scaffolds obtained

were immersed in a 8 mg/mL hyaluronic acid solution and

lyophilized again. The structures were finally sterilized

through g radiation (2.5 Mrad). The length of the final

implants was 32 mm, and the diameter was 22 mm. The

height of the implant at the periphery was 6 to 8 mm.

The final implants were analyzed by scanning electron

microscopy (Leica, Solms, Germany), microtomography

(SkyScan, Kontich, Belgium), and microCT.

The in vivo degradation time can be estimated on the

basis of the behavior of the individual components. PCL

degrades slowly by hydrolytic chain scission of the ester

linkage.32 PCL loses its in vivo molecular weight slowly

(up to 12 months, depending on the polymer composition),

but loses its mechanical stability much earlier (between 12

and 16 weeks).33 HYAFF-11� degrades by deesterification

in 3–4 months in vivo.34

Implant assessment

Porous scaffolds were cut along the cross section and

subjected to analysis for evaluating the pore average size by a

scanning electron microscope (Leica, 420). The material in-

vestigated was characterized by highly interconnected pores

with an average pore size of 250mm (Fig. 3A, B). Moreover,

the porous scaffolds displayed a large surface area, which

should support cell attachment and tissue ingrowth.

Porous scaffolds, sheep medial menisci, and meniscus

devices prepared were analyzed by a SkScan microtomo-

graph allowing a spatial resolution of 5 mm corresponding

to near 1�10�7 cubic mm voxel size, making a nonde-

structive three-dimensional (3D) reconstruction of the po-

rous samples inner structure from two-dimensional X-ray

shadow projections (Fig. 3C, D). Several parameters ob-

tained from the microtomographic analysis, including total

volume (Vtot), specific volume (n), empty index (e), and

porosity (P), were evaluated through CTAn software. The

results are shown in Table 1.

FIG. 2. Surgical technique used in V group of animals: implant

was sutured to the capsule, the anterior and posterior horns of the

implant fixed with nonresorbable anchoring transtibial sutures.
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MicroCT analysis was also undertaken to perform 3D

reconstructions of sheep medial meniscus (Fig. 4A). Using

data from these 3D reconstructions and Materialise

MIMICS software, 3D CAD drawings have been designed

and used to produce the appropriate molds (Fig. 4B).

Cell–scaffold construct preparation

Cartilage biopsies were taken from the left stifle joints.

An anteromedial arthrotomy was performed, and cartilage

was harvested from the non-weight-bearing areas of the

trochlea. The cartilage biopsies were put into sterile 50 mL

tubes with nutrient medium and sent to FAB for the

cell seeding procedure. Chondrocytes were isolated by se-

quential enzymatic digestions. Cartilage was incubated for

30 min with 0.1% hyaluronidase (Sigma, St. Louis, MO),

1 h with 0.5% pronase (Sigma), and 1 h with 0.2% colla-

genase (Sigma) at 378C. The isolated chondrocytes were

then centrifuged for 10 min at 1800 rpm, and the pellet

was washed twice with Dulbecco’s modified Eagle’s me-

dium (DMEM) supplemented with 10% fetal calf serum

(FCS; Sigma). The cells were cultured under conventional

monolayer culture conditions at 378C in 5% carbon diox-

ide. The medium was changed every 3–4 days. After the

third to fourth passage, chondrocytes had uniformly ac-

quired a fibroblastic, dedifferentiated morphology and were

then dynamically seeded onto the meniscus prototype at a

density of 25�106 cells/cm3 (i.e., 40�106 cells/scaffold) in

a mixed flask (50 rpm) in a volume of 100 mL of DMEM,

supplemented with 10% FCS (complete medium) (Fig. 5).

Medium was removed 24 h after seeding and replaced by

complete medium supplemented with 10 mg/mL insulin,

0.1 mM ascorbic acid, and 1 ng/mL transforming growth

factor beta 1 (TGFb1). Media were changed twice a week

thereafter. After 14 days of spinner flask culture, prototypes

were ready for in vivo implantation.

Evaluation

Specimen preparation and gross inspection. Sixteen

weeks after surgery, the sheep were euthanized under

general anesthesia by endovenous administration of Tanax

(Hoechst, Frankfurt am Main, Germany). A sample of

FIG. 3. Images of porous structure obtained through scanning electron microscopy analysis (A, B) and with microtomograph Skyscan

1072 (C, D).

TABLE 1. VALUES OF PARAMETERS OBTAINED THROUGH

TOMOGRAPHIC ANALYSIS PERFORMED ON POROUS SCAFFOLDS

Vtot (mm3) 22.36

Vs (mm3) 7.12

Vv (mm3) 15.24

n 3.14

e 2.14

P 0.68
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blood was taken for analysis to detect infection or allergic

reactions. A radiographic examination was performed, and

the joints were assessed clinically for swelling and stability.

The clinical examination of ligament stability was per-

formed under anesthesia in comparison to the contralateral

joint before the resection of the joint. Under sterile condi-

tions, the right and the left joints were opened through the

previous approach, a swab for microbiological analysis and

a synovial aspirate were taken, and the presence of effusion

or popliteal cysts was documented. Synovial fluid was ana-

lyzed for the presence of inflammatory cells.

The joint was resected in toto, and the restoration of the

MCL was inspected. Joint status was assessed using the

Gross Assessment of Joint Changes Score published by

Jackson et al.,35 which scores 12 different areas of the joint,

including the femoral and tibial cartilage, the patella, its

femoral groove, the menisci, and the femoral junction. A

Gross Evaluation of Meniscus Implant Score was used

to assess implant outcome.30 This includes nine different

categories: implant size, implant integration, implant po-

sition, horn position, implant shape, presence of tears, im-

plant surface, tissue quality, and condition of the synovia.

In this system, the minimum total score is 9, indicating an

excellent outcome, and the maximum total score is 27

points. The specimens were photographed, and then the

implant was dissected from the tibia.

Histological evaluation. The meniscal implants were cut

into an anterior part and a posterior part at the level of the

MCL. Consecutive 3-mm slices (inner to outer) were cut to

produce blocks allowing histological sections that showed

inner and outer regions, superior and inferior surfaces of the

potentially regenerated meniscus, and attachment to the

joint capsule. Of each implant, two central and two pe-

ripheral blocks were evaluated. A synovial biopsy from the

medial compartment adjacent to the meniscal implant was

taken from each joint. Tissue blocks were fixed in 10%

neutral-buffered formalin and processed into paraffin wax.

Paraffin sections were cut at 3–4 mm and stained with (i)

hematoxylin and eosin for assessment of cellular features,

(ii) alcoholic toluidine blue for assessment of glycosami-

noglycan content, and (iii) picro-sirius red for assessment

of collagen deposition.

Sections were blindly evaluated by an experienced os-

teoarticular pathologist (D.M.S.). Blocks of synovium were

assessed for the presence of synovial cell hyperplasia/

hypertrophy and an inflammatory cell infiltrate. Blocks of

meniscal implant were assessed for the presence of residual

scaffold, cellularity, foreign body response, inflammatory

cell (lymphocytes, plasma cells, and neutrophils) infiltrate,

blood vessel ingrowth, fibrous and cartilaginous matrix, and

integration of the implant with the joint capsule. Cartila-

ginous matrix was identified as being present if cells in an

area of tissue had a spherical/chondroid appearance and the

surrounding matrix showed metachromasia in alcoholic

toluidine blue–stained sections. Integration was scored as

being good if there was no discontinuity between the im-

plant and original joint capsule. Histological features were

scored as being either present or absent.

For assessment of chondroprotective effects of the

scaffold, sections were cut from formalin-fixed and paraf-

fin-embedded transverse blocks through central, anterior,

and posterior parts of the tibial plateau and femoral con-

dyle. Sections were stained with hematoxylin and eosin

and alcoholic toluidine blue, and scored blindly by D.M.S.

using a modified Mankin grading system—Structure: Intact

surface 0, Surface fissures 1, Surface fissures to mid zone 2,

Surface fissures to deep zone 3, Complete loss of articular

cartilage 4; Cells: Normal 0, Some hypercellularity 1,

Clusters/cloning 2, Hypocellularity 3, Complete loss of

articular cartilage 4; Proteoglycan staining: Normal 0,

Slight reduction 1, Moderate reduction 2, Severe reduction

3, No dye noted 4. Scores from each of the blocks from a

tibial plateau or femoral condyle were averaged to provide

a score for that joint. The results shown are the mean� SD

of the average score for each group.

Statistical analysis

Statistical analysis was performed using the SPSS v.12.1

software (SPSS, Chicago, IL). Assessments were made in

the absence of knowledge of whether implants were seeded

or unseeded. Subsequently, results were tabulated against

the nature of the implant, that is, seeded or unseeded in

both R and V groups (Student’s t test). Univariate ANOVA

with Tukey’s post hoc test was used to compare data among

all groups. Data were considered significant with p< 0.05.

RESULTS

Engineered graft characterization

Stirring of the cell suspension in the mixed flask, where

the meniscus-shaped scaffold was fixed, resulted in a cell

distribution predominantly at the edges and at the periphery

FIG. 4. 3D reconstructions of a sheep medial meniscus (A, top)

and of medial meniscus device (B, bottom).
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of the scaffold as assessed by MTT staining 1 day after the

beginning of cell seeding (Fig. 3). After a total of 14 days

of culture, cells and extracellular matrix were still confined

at the scaffold surface (Fig. 5). Sulfated glycosaminogly-

cans (GAG) staining was not evident in the extracellular

matrix that had accumulated after 14 days. This was in

agreement with low measured GAG amounts (average

GAG/DNA: 4.5� 0.9 mg/mg) and may be explained by the

relatively low initial density of cells achieved after seeding.

Clinical assessment

All animals tolerated surgery well and survived the

postsurgical period. When dissecting the knees, one animal

belonging to the R group (cell seeded, R13) showed signs

of severe osteoarthritis in both implanted and contralateral

sham control knee. Therefore, this sheep was excluded

from the postexplant evaluation. For the remaining sheep,

gait was normal without limp. All joints were stable. No

differences in gait and joint stability were found between

left nonoperated limbs and the limbs where cartilage har-

vesting was performed (sham controls).

All sheep showed soft tissue swelling on the medial as-

pect of the operated joints. A mild effusion in the form of

a clear synovial fluid was detected in nine joints (four

cell free, three cell seeded, one sham control, and one

nonoperated control). There were no signs of synovitis.

Comparison of postoperative and preoperative radiographs

revealed no signs of fracture.

Implant gross assessment

The results are summarized in Table 2A and B. Better

evaluation scores were observed in R group respect to V

group, where transosseous sutures were used but no sig-

nificant differences were detected among groups. While

pooling data of R and V sheep, no statistically significant

difference was observed between cell-seeded and cell-free

groups: the mean meniscus score was 20 (cell seeded and

cell free).

Figures 6 and 7 illustrate macroscopic appearance of

meniscal implant in different groups. All implants showed

excellent capsular ingrowth at the periphery. In fact, the

integration was complete in 11 cases, and partial in the

others. The implant was dislocated in five cases (two cell

free and three cell seeded). All dislocations were noted in

the V group where the transtibial fixation of the horns was

used. The anterior horns were anatomically positioned and

firmly attached in all cases except for two joints. A slight

extrusion of the implants at the periphery and wrinkling in

the posterior region were frequently observed, probably

causing mechanical problems and the detachment of the

horns in the posterior aspect of the joint space, especially

FIG. 6. Macroscopic appearance of meniscal implant in cell-

free group.

FIG. 5. (A) Seeding and culture of sheep articular chondrocytes in a meniscus-shaped brain factor 1 (BF-1) scaffold in a mixed flask

under continuous stirring. (B) MTT staining after 1 day of culture in the mixed flask. The top picture is a view of the top surface of the

scaffold, and the bottom picture is a representative cross section. Violet dots correspond to areas stained with MTT and indicate the

presence of metabolically active cells. (C) Safranin-O staining of a construct cross section after 14 days of culture in mixed flask. Scaffold

network is strongly stained in dark red, whereas the formed tissue, predominantly present at the scaffold edges, is negatively stained.
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when the transtibial fixation was used. The menisci proto-

types had maintained the meniscus-like or mixed shape

in 21 cases; in 3 cases implants were out of shape. Ten

implants (four cell free and six cell seeded) had a full-

substance tear. Nine of those were observed in the V group.

The surface of the biomaterial in all cases was completely

covered with a shiny, smooth synovium-like tissue, which

showed signs of blood vessel formation. Slightly hyperemic

synovium was observed in the majority of the cases. No

synovial hypertrophy or fibrosis was noted.

Joint gross assessment

The results are summarized in Table 3A and B. The

meniscectomy controls showed a score of 14 and 13, re-

spectively. Joint degeneration in the nonoperated joints

(mean score: 1.2) and in sham controls (mean score: 1.1)

was negligible. No statistically significant difference was

noted between cell-seeded (5.8) and cell-free (8.0) groups

when data were pooled. There was, however, significantly

lower joint degeneration observed in R group cell-seeded

implants as compared to R group cell-free implants

( p< 0.01).

In the operated joints, the reconstruction of the MCL had

healed in all cases. Variable degrees of cartilage damage

were observed in the operated joints (min 2 and max 13).

The score of sheep R13 was 18 in the operated knee and 7

in the sham-operated knee, confirming the presence of

spontaneous osteoarthritis development and supporting the

exclusion of this animal from the histological evaluation.

The subchondral bone was exposed in four cases of cell-

free group and in one sheep of cell-seeded group. The

thickness of the medial joint capsule was noted in all op-

erated joints where the MCL resuturing was performed.

Histological evaluation

There was no evidence of a significant inflammatory cell

infiltrate in the synovium of joints that contained either

cell-seeded or cell-free implants.

The results of the histological assessment of the meniscal

implants are summarized in Table 4. Residual scaffold with

an associated foreign body response consisting of a mixed

giant cell and mononuclear histiocyte infiltrate was pres-

ent in all the implants. In general, the foreign body reac-

tion was florid, but focally in some of the implants, areas of

TABLE 2A. GROSS EVALUATION OF THE MENISCUS IMPLANT SCORE IN R ANIMALS (MIN. 9–MAX. 24 POINTS)

Cell free Cell seeded

R23 R9 R10 R11 R12 R14 R24 R25 R26 R27 R28

Integration 3 3 2 3 2 3 2 2 3 2 3

Implant position 2 3 3 3 2 2 2 2 3 2 3

Horn position 2 3 2 3 2 3 2 2 3 2 3

Shape 2 3 2 3 2 3 2 2 3 2 2

Tears 2 3 2 2 1 3 2 2 3 2 3

Surface 3 3 3 3 3 3 3 3 3 3 3

Size 3 3 3 3 2 3 2 2 3 2 3

Tissue 2 2 2 2 2 2 1 1 2 1 2

Synovia 2 3 2 3 3 3 1 2 2 2 3

Total score 21 26 21 25 19 25 17 18 25 18 25

Mean score� SD 20.7� 3.6 23.2� 3.0

TABLE 2B. GROSS EVALUATION OF THE MENISCUS IMPLANT SCORE IN V ANIMALS (MIN. 9–MAX. 27 POINTS)

Cell free Cell seeded

V6 V13 V21 V36 V41 V45 V1 V2 V17 V35 V38 V39

Integration 3 3 2 2 3 2 2 2 2 2 3 3

Implant position 2 2 1 2 3 1 1 2 1 1 2 2

Horn position 3 3 2 1 3 2 2 3 1 2 3 3

Shape 3 2 1 2 2 2 2 2 1 2 2 1

Tears 3 2 1 1 1 1 1 1 1 1 2 1

Surface 3 3 3 3 3 3 3 3 3 3 3 3

Size 2 3 2 3 3 3 2 2 2 3 3 2

Tissue 1 2 1 1 1 1 1 1 1 1 1 1

Synovia 3 3 2 2 2 2 2 2 3 2 2 2

Total 23 23 15 17 21 17 16 18 15 17 21 18

Mean� SD 19.3� 3.4 17.5� 2.1
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hypocellularity were evident. In addition to the foreign

body reaction, all implants showed extensive vasculariza-

tion with an admixture of blood vessels including small

muscular arteries. Cellular tissue (Fig. 8A) was present

in all of the implants to a degree that varied from area to

area in the implant and did not appear to be related to cell

seeding. In contrast, small foci of cartilaginous differenti-

ation (Fig. 8B) were significantly more commonly seen in

the cell-seeded constructs ( p< 0.001). These foci of car-

tilage differentiation were present predominantly within

fibrous tissue covering the tip of the implants, and weak

metachromatic staining of tissue centrally within the im-

plants was seen in only two of the cell-seeded implants and

one unseeded implant. Scattered, small numbers of lym-

phocytes and plasma cells were present in both cell-seeded

and unseeded implants with no statistically significant dif-

ference. Small numbers of neutrophils were seen in only

two implants, one seeded and the other unseeded.

All the implants were covered by a smooth-surfaced fi-

brovascular tissue of variable thickness, which was in con-

tinuity with the adjacent capsule/synovium. This surface

tissue appeared to be contributing to the macroscopically

assessed integration in all of the implants. Histologically,

however, there appeared to be differences in the integration

of the cell-seeded and unseeded implants with the capsule. In

all 12 cell-free implants, there was an apparently tight in-

tegration between the implant and the capsule (Fig. 8C).

However, similar appearances were only seen in seven of the

cell-seeded implants. In the other five cases, the cell-seeded

implants showed a split in the tissue section along the line

FIG. 7. Macroscopic appearance of meniscal implant in cell-

seeded group.

FIG. 8. Histological features of meniscus implants. A prominent foreign body reaction to residual scaffold was present in all cases.

(A) HandE-stained section, �40. Foci of cartilaginous metaplasia as demonstrated by metachromatic staining were identified pre-

dominantly at the tips of implants. (B) Alcoholic toluidine blue–stained section,�20. Integration with the joint capsule was identified as

being either good (C) or poor (D) as identified by the absence or presence of splits in the tissue between implant and host capsule. (C, D)

HandE-stained sections,�5.
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where the implant met the capsule (Fig. 8D), or, in some

instances, a flattened cystic-like space was present.

Mankin scores

The results are shown in Table 5. The articular cartilage

in each of the groups of sheep showed evidence of osteo-

arthritic changes. In general, the histological changes of

osteoarthritis were more severe on the tibial plateau than on

the femoral condyles for both the R group and the V group.

There was no significant difference in the Mankin scores

when cell-seeded and non-cell-seeded implants were

compared in either group. Mankin scores in treated sheep

were not better than those of control sheep (tibial plateaux

4.5þ 1.44; femoral condyles 3.8þ 1.9).

DISCUSSION

Experimental studies concerning synthetic devices made

of polyurethane,36,37 polytetrafluoroethylene,38 and polyes-

ter carbon39 as possible alternatives to meniscus allografts

have yielded unsatisfactory results in terms of biocompati-

bility, material properties, and chondroprotection. In a dog

model, the resorbable bovine collagen scaffold developed

by Stone et al.40 for regeneration of meniscal tissue showed

host tissue ingrowth and formation of fibrocartilage resem-

bling a normal canine meniscus after 9 and 12 months.12 A

clinical trial concerning CMI revealed encouraging re-

sults,10,11,13,14 but long-term, histological and MRI results

are controversial and evidence of chondroprotection is still

pending. In contrast to the present study, the CMI is used for

partial meniscal substitution because a residual rim of the

original meniscus is necessary to fix the CMI, which makes

the comparison of our results difficult.

In the current study, we have investigated the feasibil-

ity of using a new resorbable biomaterial consisting of

TABLE 3A. GROSS ASSESSMENT OF JOINT CHANGES SCORE IN R ANIMALS (MIN. 48–MAX. 0 POINTS)

Cell free Cell seeded

Sheep Implanted knee Nonoperated knee Sheep Implanted knee Sham-operated knee

R23 11 1 R9 3 0

R24 10 2 R10 4 1

R25 11 3 R11 2 0

R26 7 1 R12 6 1

R27 13 2 R14 6 1

R28 4 1

Mean� SD 9.3� 3.2 1.6� 0.8 4.2� 1.7 0.6� 0.5

TABLE 3B. GROSS ASSESSMENT OF JOINT CHANGES SCORE IN V ANIMALS (MIN. 48–MAX. 0 POINTS)

Cell free Cell seeded

Sheep Implanted knee Nonoperated knee Sheep Implanted knee Sham-operated knee

V6 6 3 V1 7 1

V13 6 0 V2 9 1

V21 9 0 V17 8 0

V36 8 0 V35 9 3

V41 6 2 V38 7 3

V45 6 0 V39 5 1

Mean� SD 6.8� 1.3 0.8� 1.3 7.5� 1.5 1.2� 1.2

TABLE 4. HISTOLOGICAL FEATURES OF IMPLANTS

Implant

Cell free Cell seeded

Total V R Total V R

Residual scaffold 12 6 6 11 6 5

Foreign body reaction 12 6 6 11 6 5

Hypocellular areas 10 4 6 9 4 5

Blood vessels 12 6 6 11 6 5

Fibrosis 12 6 6 11 6 5

Cartilage metaplasia

Tip 1 1 0 8 4 4

Central 2 0 2 1 1 0

Integration

Good 12 6 6 7 5 2

Poor 0 0 0 5 1 4

Inflammatory infiltrate

Lymphocytes 9 3 6 10 5 5

Plasma cells 5 0 5 7 2 5

Neutrophils 1 1 0 1 1 0

The table shows the number of implants with each of the described

histological features. V: Vienese sheep; R: Rizolli sheep.
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hyaluronic acid and polycaprolactone for total meniscal

substitution in a sheep model with two different surgical

scaffold implantation techniques. Previously, we tested the

feasibility of hyaluronic acid and polycaprolactone (PCL)

scaffold for total meniscal replacement.30 We also explored

whether seeding the scaffold with autologous articular

chondrocytes was beneficial for meniscal regeneration.

Promising results were obtained by culturing autologous

and allogenic chondrocytes on a Vycril mesh scaffold in the

treatment of meniscal tears in pigs.24,27 Therefore, the aim

of the study was to assess whether there was an advantage

to using chondrocyte-seeded scaffolds. Autologous chon-

drocytes were used as we have previously demonstrated

that, both in vitro and following ectopic implantation, ex-

panded articular chondrocytes were superior to meniscal

cells, synovial cells, or fat pad cells in their capacity to

reach phenotypes typical of the inner and outer meniscus

regions.29 Moreover, it has recently been established that

the phenotype of articular chondrocytes may adapt upon

exposure to specific regimes of physical forces, thereby

generating tissue structures resembling some aspects of the

complex structure and function of native meniscus.41 The

choice was also influenced by the fact that harvesting

articular cartilage from a minorly loaded joint area would

be less damaging than harvesting part of healthy menis-

cus or little meniscal tissue probably remained after me-

niscectomy. Destroyed meniscus tissue that is removed

during resection cannot be considered a healthy tissue for

cell isolation.

Different fixation techniques are used for total and partial

meniscal transplantation in clinical practice. For total al-

lograft transplantation, rigid horn fixation with bone blocks

is usually used, even if some authors have proposed less

rigid and more physiological suturing technique.42 Al-

though the issue of the fixation technique in humans is

extensively studied,43 there are no studies comparing dif-

ferent techniques in animal model. In sheep models, the

meniscus transplant horns are generally fixed with trans-

osseous sutures.9,15,20,21,23 Considering that most of the

animal studies reports high incidence of implant lesions at

longer follow-up,9,15,23 we have decided to compare two

different implant fixation techniques to determine a most

suitable animal model for total meniscal substitution. The

degree of damage seen in the meniscal implants at the

completion of our study appears related to the implant

fixation technique used. We have used two different fixa-

tion techniques allowing comparison between transtibial

horn fixation with less rigid and more physiological fixation

to the joint capsule. The general joint stability was not

compromised in both groups. A higher incidence of tears

and implant dislocations and worse implant and joint ap-

pearances was observed in cases where transtibial, rigid

fixation of the horns was utilized (V animal group). It is

likely that a too rigid horn fixation in this weight-bearing

large animal model does not allow for physiological

movement of the meniscal horn, and resulted in overly high

mechanical stresses on the implant leading to a higher in-

cidence of graft tears. Similar results were reported by

Kelly et al.,9 who observed complete radial tears in all

meniscal implants with rigid horn fixation at 12-month

follow-up. This can be not predictable to utilize in humans,

but it appears likely that the less-rigid fixation technique is

preferable for total meniscal substitution in a sheep model.

A high incidence of implant tears and clefts, especially in

cases with a transtibial rigid fixation of the horns, was

detected, indicating that the mechanical properties of the

scaffold were probably not sufficient in the current model.

As such, the biomechanical properties of the material need

to be improved for future experimentation, possibly by

insertion of a stronger resorbable net inside the scaffold.

Whether similar problems encountered in this sheep model,

such as implant tears, would be encountered in the human

clinical setting is less clear. Although sheep were im-

mobilized in cast, full weight bearing cannot be completely

avoided in a sheep model,44 whereas controlled rehabili-

tation with limited weight bearing and range of motion in

humans may reduce these problems.

The implants appeared to be well tolerated immunologi-

cally by the sheep with no evidence macroscopically or

microscopically of a significant synovitis or lympho-

plasmacytic infiltrate. There was, however, a prominent

foreign body giant cell response to the implant, presumably

part of the physiological resorption process,34,45 which was

similar in cell-seeded and cell-free constructs. Reaction to

foreign material may be nonimmune or elicit an immune

response with memory. The intense, predominantly mac-

rophage and giant cell infiltrate into the scaffolds used in the

current study is suggestive of a foreign body response

without an immune component. However, it has been shown

recently that the extent of cellular infiltration may not be an

indicator of a potentially important immunological re-

sponse. Porcine small intestinal submucosa (SIS) has been

used as a scaffold for the treatment of large meniscal defects

in dogs with some degree of promise.17 Histological eval-

uation shows little evidence of an inflammatory cell infil-

trate in association with SIS scaffolds 12 weeks to 1 year

following implantation. Although this may suggest a lack of

an immunological response, it is becoming clear that SIS

graft recipients do amount a helper T type 2–restricted im-

mune response.46 Nevertheless, this is not associated with

graft rejection. In the case of SIS, the most likely cause of

TABLE 5. MANKIN SCORES

V group R group

Tibial

plateaux

Femoral

condyles

Tibial

plateaux

Femoral

condyles

Cell free 7.0þ 1.0 3.2þ 1.2 5.7þ 2.4 3.8þ 1.1

Cell seeded 6.9þ 1.0 3.8þ 1.2 6.3þ 3.4 3.7þ 2.9

Results are given as mean� SD.
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this immune response is the presence of trace amounts of

porcine DNA.47 Although xenogeneic material is not used in

the current study and infiltration of the scaffolds by lym-

phocytes and plasma cells is limited, the possibility of an

immunological response that may contribute to graft de-

struction cannot be excluded.

Histological analysis of the implant material confirmed

the gross findings of tissue formation within and upon the

implant with bonding to the capsule. The tissue ingrowth

consisted of a fibrovascular connective tissue with a foreign

body response to the implant material. Collagen appeared

as a fine fibrillar network without orientation. Blood vessels

were present throughout the implants without suggestion of

formation of vascular and avascular areas as might be ex-

pected in normal menisci. Our findings are similar to those

achieved with 3-month samples of the CMI dog model,

where immature vascular connective tissue with fibroblasts,

numerous capillaries, and a fine fibrillar matrix were

seen.12 The impact of the giant cell reaction is difficult to

estimate. Neither the synovial biopsies nor the smears re-

vealed acute inflammatory cells.

Although no significant difference was shown between

cell-seeded and cell-free implants at 4-month follow-up

macroscopically, histological analysis did demonstrate de-

position of a cartilaginous matrix only in cell-seeded im-

plants, which may become more evident following longer

observation. As the matrix is seen predominantly in the

cell-seeded constructs, it is likely that the implanted cells

are involved in its production. Moreover, the distribution of

the cartilaginous matrix at the edges and the tip of the

implant is directly related to the distribution of cells and

matrix in the scaffold at the time of grafting. In this regard,

more homogenous and efficient seeding of the inner two-

thirds of the scaffold could probably improve the overall

mechanical and biological properties of the implant.

The current study supports the idea that a novel

hyaluronic-acid-polycaprolactone (HA-PCL) scaffold has

the potential for total meniscal substitution as it is not re-

jected and induces tissue ingrowth. There are, however,

some limitations with regard to the biological and me-

chanical properties of the scaffold. Less rigid and more

physiologic fixation technique of total meniscus implant is

considered preferable in sheep model and recommended for

further animal studies. Seeding of the scaffolds with au-

tologous articular chondrocytes provides some benefit with

more fibrocartilaginous tissue being produced also at early

stages of regeneration (4 months). Significant amounts of

scaffold remain at 4 months associated with a foreign body

reaction. It might be expected that a foreign body reaction

would last as long as there is a foreign (scaffold) material

present. In the presence of a brisk foreign body reaction, it

is more likely that a reparative fibrous tissue will arise

rather than a situation where committed tissue differentia-

tion is seen. Follow-up of at least a year in animal model

would appear to be necessary to assess how long the bio-

material remains in the tissue and to what extent a foreign

body inflammatory or immune response is present.

Longer-term animal studies are necessary to fully eval-

uate how long the scaffold material remains in situ and

whether this aids or delays meniscus tissue regeneration.

These further studies will also provide additional infor-

mation on the role of cell augmentation in promoting fi-

brocartilaginous tissue regeneration in complete meniscal

substitution.
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