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 Colony-stimulating factor 1 (CSF1) regulates the pro-
liferation and differentiation of myelomonocytic cells 
and is involved in the initiation and maintenance of the 
macrophage immune response. Microglia are the resi-
dent macrophages of the CNS. They are supposed to con-
tribute to the removal of  � -amyloid (A � ) from the brain 
 [1] . Especially brain macrophages of myelomonocytic 
 origin seem to restrict cerebral amyloid deposition  [2] . 
A �  increases neuronal expression of CSF1  [3] , and neu-
ronal damage leads to up-regulation of both CSF1 and its 
receptor in microglial cells  [4] . CSF1 enhances the capac-
ity of microglial cells to phagocytose A �   [5] . Thus, up-
regulation of CSF1 in Alzheimer’s disease (AD) and in 
APP-transgenic mice  [3, 6]  may represent the, admitted-
ly insufficient, activation of an A �  clearance pathway. 
CSF1-deficient osteopetrotic  (op/op)  mice have reduced 
numbers and functional impairment of myelomonocytic 
cells including microglia  [7–9] . Observations suggesting 
that these mice may deposit congophilic, A �  antibody-
reactive material in the brain resembling amyloid plaques 
of AD patients and APP-transgenic mice have been re-
ported  [10, 11] . These depositions may be associated with 
reduced density of pyramidal cells in the CA1 and CA3 
regions of the hippocampus. Moreover,  op/op  mice ex-
hibit subtle neurodevelopmental defects  [12]  and in-
creased neuronal vulnerability  [13, 14] , suggesting that 
CSF1 may also have trophic effects on neurons  [15] .
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 Abstract 
  Background:  Colony-stimulating factor 1 (CSF1) regulates 
the proliferation and differentiation of myelomonocytic 
cells. Microglial cells of CSF1-deficient mice are reduced in 
number and are functionally impaired. CSF1-deficient mice 
exhibit subtle neurodevelopmental defects, enhanced neu-
ronal vulnerability. Moreover, it has been reported that these 
mice may have amyloid-plaque-like depositions in the brain 
at an early age. The human  CSF1  gene maps to chromosome 
1p21–p13, a region previously linked to Alzheimer’s disease 
(AD). Thus,  CSF1  is a functional and positional candidate 
gene for AD.  Objective:  We assessed if genetic variability of 
 CSF1  may influence the risk for AD.  Methods:  We conducted 
a population-based case-control association study with 3 
single nucleotide polymorphisms (SNPs) across the  CSF1  lo-
cus in a sample of n = 185 (rs3093054, rs756325) and n = 327 
(rs1058885) individuals.  Results:  None of the 3 investigated 
SNPs was associated with the risk for AD in our sample.  Con-
clusion:  These data do not support the hypothesis that ge-
netic variability of  CSF1  influences the risk for AD. 
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  We assumed that genetic variability of  CSF1  may mod-
ify amyloid deposition and neurodegeneration in the hu-
man brain and thereby the risk for Alzheimer’s disease. 
To test this hypothesis we conducted a genetic case-con-
trol association study in a series of n = 327 individuals 
(183 healthy control subjects and 144 cases of sporadic 
AD, sample 2,  table 1 ) from Switzerland. Diagnoses were 
made according to the National Institute of Neurological 
and Communicative Disorders and Stroke/Alzheimer’s 
Disease and Related Disorders Associations (NINCDS-
ADRDA) criteria for probable AD. Dementia and mem-
ory deficits in control subjects were excluded by neuro-
psychological testing, consisting of the Consortium to 
Establish a Registry for Alzheimer’s Disease (CERAD) 
neuropsychological test battery and the Mini-Mental 
State Examination (MMSE). The sample is characterized 
in  table 1 . The local ethics committee approved the study, 
and informed consent was obtained from all participants 
prior to the investigation.

  The human  CSF1  gene maps to chromosome 1p21–
p13,  � 4.3 cM off the peak marker D1S1678 of a region 
previously linked to AD  [16] . It comprises 18,898 bp (base 
pairs 110165499–1101843397 of the chromosomal se-
quence) with 10 exons and encodes a 554-amino-acid 
protein. To span the whole locus we used 1 marker up-
stream (rs3093054) and 1 marker downstream (rs756325) 
of the gene. We genotyped rs1058885 (T/C, Leu/Pro) to 
tag the highly variable exon 6, which harbours 6 of 8 de-
scribed non-synonymous  CSF1  single nucleotide poly-
morphisms (SNPs) within a sequence of  � 470 bp. In-
formation on SNPs was derived from the NCBI SNP 
 database (http://www.ncbi.nlm.nih.gov/SNP). Geno-
types were determined from genomic DNA by Pyrose-
quencing TM . The following oligonucleotides were used 
 for PCR and sequencing: rs1058885, forward AGGC-
TCTCC CAGGATCTCAT, reverse biotin-TTCACTTG-
CTGG TCC TCCTT, sequencing CCCAGGATCTCAT-
CAC; rs3093054, forward biotin-GGAGGGTGGAG-
AGAAGAACA, reverse AGTGGGACTTGCAGCGTCT, 

sequencing GGATCTGCTTGATGTGG; rs756325, for-
ward biotin-TTCCTCCCCTCAAAAGGATT, reverse 
GGGTCACAAAGGACTCAAGC, sequencing CCTG-
GTGGATTTAGGG. The investigated SNPs and their 
haplotypes are characterized in  table 2 .

Group size Age
years

Females
%

APOE �4 
positive, %

Sample 1 (n = 185) 129/56 66.689.3/70.789.1 49.6/53.6 31.0/57.1
Sample 2 (n = 327) 183/144 67.089.1/70.288.0 49.2/51.4 32.2/57.9

Sample 1 was used for all 3 investigated SNPs. Sample 2 includes sample 1 and was 
used only for rs1058885. Results are those of healthy control subjects/AD patients.

Table 1. Characteristics of the 
investigated samples

Table 2. Pairwise linkage disequilibrium of the 3 investigated 
CSF1 SNPs

rs3093054 rs1058885 rs756325

rs3093054
[pos. –2,494 bp
C/G, MAF 0.35 (G)
HWE p = 0.1]

D� = 0.078
r2 = 0.006
�2 = 1.935
p = 0.164

D� = 0.221
r2 = 0.015
�2 = 5.493
p = 0.019

rs1058885
[pos. 13,009 bp (AA 408)
T/C (L/P), MAF 0.4 (C)
HWE p = 0.18]

D� = 0.839
r2 = 0.204
�2 = 72.777
p = 0.000

rs756325
[pos. +5,709 bp
A/G, MAF 0.14 (G)
HWE p = 0.77]

rs105885 and rs756325 formed haplotypes for which the ga-
metic phase could be predicted with a probability of >95% for all 
individuals with genotypes for both contributing SNPs. Three 
haplotypes were common (T/A, 84.3%; C/A, 39.9%; C/G, 25.3%), 
and 1 haplotype was rare (T/G, 2.2%). None of the 4 haplotypes 
was associated with AD (T/A, p = 1.0; C/A, p = 0.62; C/G, p = 
1.0; T/G, p = 0.08; Fischer’s exact test). rs3093054 was not in 
 linkage disequilibrium with rs1058885 and was weakly linked to 
rs756325. The left column characterizes the investigated SNPs. 
Pos. = position relative to the gene; – = a position 5� upstream; 
+ = a position 3� downstream of the gene; AA = affected amino 
acid; MAF = minor allele frequency. The p value is the signifi-
cance of the deviation from Hardy-Weinberg equilibrium 
(HWE).
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  None of the 3 markers or their haplotypes were associ-
ated with AD risk in a sub-sample of n = 185 individuals 
(sample 1,  table 1 ), using  �  2  tests and forward uncondi-
tional logistic regression controlling for apolipoprotein E 
( APOE ), age and sex ( tables 2 ,  3 ). Because linkage to AD 
on chromosome 1 was predominantly observed in  APOE 
  �  4  allele carriers  [16] , we also stratified for  APOE   � 4. In 
the  � 4-positive subset (n = 71) we found a borderline sig-
nificance of rs1058885 (linear-by-linear  �  2  test, p = 0.03). 
To corroborate this observation we increased the sample 
size to n = 327 (sample 2,  table 1 ). In the enlarged sample 
the effect was disrupted (linear-by-linear  �  2  test, p = 
0.06), and rs1058885 also remained negative in the com-
bined  sample  of   APOE-  �  4 -allele-positive (n = 140) and 
-negative participants ( table 3 ).

  Based on functional and positional criteria,  CSF1  was 
selected as a candidate risk gene for AD. In summary our 
data do not support the hypothesis that genetic variabil-

ity of  CSF1  may contribute to the risk for sporadic AD in 
the investigated population. We emphasize that the pres-
ent study does not exclude  CSF1  as an AD susceptibility 
gene because of 2 main reasons. (I) Low statistical power: 
the relative risk associated with the minor alleles of the 3 
SNPs that would have been detectable with 80% power at 
a significance level of p = 0.05 (n = 185) was between 0.13 
and 0.37 or 2.47 and 3.10, respectively. Conversely, the 
power to reach a significance level of p = 0.05 for the ob-
served relative risks was between 4 and 11%. (II) Low res-
olution: with 3 SNPs across the  CSF1  locus the resolution 
was about 9 kb. The linkage disequilibrium and allele fre-
quencies of the investigated markers did not capture the 
whole genetic variability of  CSF1 . 

  CSF1 may play an important role in the regulation of 
the microglial response to amyloid pathology in AD. 
Over-expression of the CSF1 receptor facilitates the 
phagocytosis of antibody-opsonized A �  by microglial 
cells  [17] , which is a potentially important mechanism in 
immune therapy of AD. Future studies could assess if 
 CSF1  SNPs are associated with responsiveness to active 
or passive A �  vaccination, if CSF1 may serve as a bio-
marker to monitor the microglial response to this treat-
ment, or if CSF1 has a therapeutic potential alone or as an 
adjuvant in the immune therapy of AD.
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Table 3. Genotypic distribution of the three CSF1 SNPs between 
AD cases and healthy control subjects 

rs3093054 AD (n = 54) HCS (n = 123) Total (n = 177)

C/C 22 (40.7%) 49 (39.8%) 71 (40.1%)
C/G 26 (48.1%) 63 (51.2%) 89 (50.3%)
G/G 6 (11.1%) 11 (8.9%) 17 (9.6%)

OR = 1.03, 95% CI = 0.64–1.65, Pearson �2 = 0.01, 
1 d.f., p = 0.91 (p = 0.95)

rs1058885 AD (n = 144) HCS (n = 183) Total (n = 327)

T/T 53 (36.8%) 70 (38.3%) 123 (37.6%)
T/C 65 (45.1%) 81 (44.3%) 146 (44.6%)
C/C 26 (18.1%) 32 (17.5%) 58 (17.7%)

OR = 1.04, 95% CI = 0.76–1.43, Pearson �2 = 0.07, 
1 d.f., p = 0.79 (p = 0.80)

rs756325 AD (n = 54) HCS (n = 124) Total (n = 178)

A/A 37 (68.5%) 92 (74.2%) 129 (72.5%)
A/G 15 (27.8%) 31 (25.0%) 46 (25.8%)
G/G 2 (3.7%) 1 (0.8%) 3 (1.7%)

OR = 1.39, 95% CI = 0.75–2.58, Pearson �2 = 1.11, 
1 d.f., p = 0.29 (p = 0.31)

There was no significant association of the investigated SNPs 
with the diagnosis of AD. Statistics refer to the comparison of the 
2 alleles of the respective SNPs between the AD and the HCS 
group. p values in brackets were obtained by forward uncondi-
tional logistic regression, correcting for age, sex, presence or ab-
sence of at least 1 APOE �4 allele and the respective other CSF1 
SNPs. HCS = Healthy control subjects.
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