
Innovative approaches to monitor mutant 

huntingtin and to facilitate its degradation in 

Huntington’s disease models  

 

 

Inauguraldissertation 
 
 

zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

von 

 

 

Barbara Baldo 

aus Italien 

 

 

Basel, 2011 



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von 

 

 

Fakultätsverantwortlicher: Prof. Dr. Martin Spiess 

Dissertationsleiter: Dr. Klemens Kaupmann 

Korreferent: Prof. Dr. Markus Rüegg 

 

 

Basel, 18.10.2011  

 

Prof. Dr. Martin Spiess 

     Dekan



 

 

 

 

 

 

 

 

 

 

 

To Tim



I 
 

CONTENTS 

 

 

TABLE OF ABBREVIATIONS ............................................................................. 1 

1 SUMMARY ........................................................................................................ 3 

2 INTRODUCTION .............................................................................................. 5 

2.1 Huntintgton’s disease ...................................................................................................... 5 

2.1.1 Historical background ................................................................................................ 5 

2.1.2 Clinical features of Huntington‟s disease ................................................................... 7 

2.1.3 Neuropathology of Huntington‟s disease ................................................................... 8 

2.1.4 The genetics of Huntington‟s disease and intergenerational anticipation ................ 11 

2.1.5 Therapies for Huntington‟s disease .......................................................................... 14 

2.2 Huntingtin protein ......................................................................................................... 16 

2.2.1 Wild-type huntingtin ................................................................................................ 16 

2.2.2 Gain or loss of function? .......................................................................................... 18 

2.2.3 Possible mechanisms of mutant huntingtin toxicity ................................................. 19 

2.2.4 Mutant huntingtin aggregation ................................................................................. 22 

2.3 Heat shock protein 90 (Hsp90) ..................................................................................... 24 

2.3.1 Hsp90 isoforms and structure ................................................................................... 24 

2.3.2 Hsp90 cycle: Co-chaperones and client proteins ..................................................... 26 

2.3.3 Heat shock response (HSR) ...................................................................................... 27 

2.3.4 The role of heat shock proteins in disease: cancer and neurodegeneration.............. 28 

2.4 Time resolved fluorescence resonance energy transfer (TR-FRET) ........................ 30 

2.4.1 Fluorescence resonance energy transfer (FRET) ..................................................... 30 

2.4.2 Time resolved FRET (TR-FRET) ............................................................................ 32 

 

 

 



II 
 

4 RESULTS.......................................................................................................... 35 

4.1 A screen for enhancers of clearance identifies mutant huntingtin as an heat shock 

protein 90 (Hsp90) client protein. ........................................................................................... 35 

4.1.1 SUMMARY ............................................................................................................. 36 

4.1.2 INTRODUCTION .................................................................................................... 36 

4.1.3 MATERIALS AND METHODS ............................................................................. 38 

4.1.4 RESULTS ................................................................................................................. 41 

4.1.5 DISCUSSION .......................................................................................................... 51 

4.2 TR-FRET based duplex immunoassay reveals an inverse correlation of soluble and 

aggregated mutant huntingtin in mouse models of Huntington’s disease ........................... 54 

4.2.1 SUMMARY ............................................................................................................. 55 

4.2.2 INTRODUCTION .................................................................................................... 55 

4.2.3 MATERIALS AND METHODS ............................................................................. 56 

4.2.4 RESULTS ................................................................................................................. 60 

4.2.5 DISCUSSION .......................................................................................................... 79 

5 GENERAL DISCUSSION AND PERSPECTIVES ..................................... 82 

6 REFERENCES ................................................................................................. 86 

APPENDIX ........................................................................................................... 115 

AKNOWLEDGEMENTS .................................................................................... 116 

CURRICULUM VITAE ...................................................................................... 118 



1 
 

TABLE OF ABBREVIATIONS 

 

AD  Alzheimer‟s disease 

AGERA  agarose gel electrophoresis for resolving aggregates  

ALS  amyotrophic lateral sclerosis 

BDNF   brain-derived neurotrophic factor  

DMEM  Dublecco‟s modified eagle medium  

DMSO  dimethylsulfoxide  

DN  dominant negative 

ES  embryonic stem 

Ex1  exon 1 of huntingtin protein 

FBS  fetal bovine serum 

FRET  Förster resonance energy transfer 

GABA  gamma-aminobutyric acid 

GP  globus pallidus 

HD  Huntington‟s disease  

HDAC  histone deacetylase  

HDF   hereditary disease foundation  

HEAT  Huntingtin Elongation factor 3, the PR63/A subunit of protein phosphatase 2A and 

the lipide kinase Tor  

HdhQ150 KI full length huntingtin mouse model  

HRS  heat shock response 

Hsf1  heat shock factor 1 

Hsp  heat shock protein 

Htt  huntingtin protein 

Htt573Q25 fragment of 573 aminoacids of huntingtin protein with 25 glutamines  

Htt573Q72 fragment of 573 aminoacids of huntingtin protein with 72 glutamines 

KI  knock in 

mut Htt mutant huntingtin 

MRI  magnetic resonance imaging 

MSNs  medium-sized projection spiny neurons 



2 
 

NES  nuclear export factor  

NMDA  N-methyl D-aspartate 

PBS  phosphate buffered saline  

PGC-1 peroxisome-proliferator-activated receptor coactivator-1

PD  Parkinson‟s disease 

polyQ  polyglutamine 

PTM  post translational modifications 

R6/2   transgenic exon1 mutant huntingtin mouse model  

RSL   rheoswitch ligand 

SBMA  spinal bulbar muscular atrophy 

SCA  spinocerebellar atrophy 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Tb  terbium 

TF  transcription factor 

TR-FRET  time resolved FRET 

Tris   tris(hydroxymethyl)-aminomethan 

UPS  ubiquitin-proteasome system 



3 
 

1 SUMMARY 

 

Huntington‟s disease (HD) is a dominant genetic neurodegenerative disease caused by a mutation 

in the exon 1 of the huntingtin gene. The clinical symptoms, such as motor disturbances (chorea), 

cognitive decline and psychiatric impairments are usually developed by the patients in mid-life. 

Mutant huntingtin protein presents an amplification of a polyglutamine repeat at its N-terminus, 

which induces conformational changes and leads to neurotoxicity, impairment of cell 

homeostasis and neuronal cell death. The neuropathology of HD is characterized by a progressive 

degeneration of the brain starting from the striatum and spreading to other regions such as cortex, 

hypothalamus and cerebellum. In addition to the diffused brain atrophy, HD patients are also 

affected by multiple peripheral symptoms which contribute to worsening disease progression and 

eventually lead to death approximately two decades after onset. 

The mechanisms leading to the toxicity induced by mutant huntingtin are not well understood. 

However the acquisition of a misfolded conformation and the formation of intracellular 

inclusions constituted by shorter fragments of the mutant protein are considered important in the 

neurodegenerative process. 

In my thesis project I have investigated mechanisms to enhance the cellular degradation of 

mutant huntingtin. A second focus was on the development of an immunoassay to detect and 

quantify aggregates in HD models. 

I analyzed the data obtained form a high through-put screen aimed to identify small molecular 

weight compounds decreasing mutant huntingtin levels in cells. Among all compounds screened, 

only inhibitors of heat shock protein 90 (Hsp90) showed a significant effect on mutant huntingtin 

clearance. I therefore investigated the mechanisms of Hsp90 chaperone inhibition and the 

reduction of soluble mutant huntigtin levels. Data from biochemical assays demonstrated that 

mutant huntingtin degradation is enhanced upon compound treatment and that the protein is 

cleared through the ubiquitin-proteasome system. This was independent from the heat shock 

response induced after pharmacological Hsp90 inhibition. Co-immunoprecipitation experiments 

suggested that mutant huntingtin is a client protein of Hsp90.  The results were replicated in 

different cellular models including full length mutant huntingtin expressed from the endogenous 

locus, thus highlighting the importance of Hsp90 in stabilizing soluble mutant huntingtin and 

suggesting the possible application of Hsp90 inhibitors as therapies in HD.  
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In the second project I developed a sensitive method to detect mutant protein aggregates in HD 

models. To this purpose I implemented the already established time resolved fluorescence 

resonance energy transfer (TR-FRET) based immunoassay for the detection of soluble mutant 

and wild-type huntingtin. A mixture of either donor or acceptor fluorophore labeled single 

monoclonal antibody directed against an epitope exposed on the huntingtin aggregate surface was 

used. This strategy allowed for energy transfer and therefore a measurable TR-FRET signal, only 

in presence of mutant aggregated protein. I could demonstrate the sensitivity of the bioassay on a 

microtiter set up both as a single assay and in a duplex combination with the previously 

developed TR-FRET assay for soluble huntingtin. 

I applied the TR-FRET for aggregated huntingtin to samples from R6/2 and HdhQ150 mice, 

expressing exon 1 and full length mutant huntingtin, respectively. In brain homogenates from 

both models there was an age-dependent, inverse correlation between soluble and aggregated 

mutant huntingtin. These findings supported the importance of the relation between aggregated 

and soluble protein in disease progression. Furthermore, I detected the inverse correlation also in 

peripheral tissues of R6/2 mice where the presence of aggregates was previously demonstrated 

with other methods. An in-depth analysis of R6/2 samples in a combination of TR-FRET and size 

exclusion chromatography suggested a differential specificity of the two antibody combinations 

used for different aggregate populations. The TR-FRET method provides a new means to 

characterize the aggregation process as well as to test the efficacy of possible disease modifying 

treatments for HD. 
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2 INTRODUCTION 

 

2.1 Huntintgton’s disease  

Huntington‟s disease (HD) is an autosomal-dominant neurodegenerative disease, with a 

prevalence of 5-12 people over 100‟000 individuals (Spinney, 2010). Usually the symptoms 

appear around the 40
th

 year of age and consist of motor dysfunction (chorea) as well as 

psychiatric disturbances and cognitive decline. Progressive neuronal cell death is observed 

primarily in the striatum and cortex of the patients, but in late-stages of the disorder it is extended 

to all brain areas (Henley et al., 2006, Vonsattel, 2008, Vonsattel et al., 2008).  

HD is caused by the amplification of a polyglutamine (polyQ) repeat in the huntingtin protein 

(Htt). Above a threshold of 36-39 glutamines the disease develops with 100% penetrance. Mutant 

huntingtin (mut Htt) acquires a misfolded conformation gaining aberrant functions and its 

cleavage products assemble into intracellular insoluble aggregates. These phenomena are thought 

to be the cause of toxicity, homeostasis impairment and consequent neuronal cell death (Ross and 

Tabrizi, 2011). 

The function of wild-type (wt) Htt and the pathomechanism of mut Htt are largely unknown. 

Current therapies are mainly directed at improving the symptoms, rather than targeting the cause 

of disease. Further insights in the molecular pathways involved are thus needed in order to 

develop new therapeutic strategies aimed to slow the progression or to delay disease onset.  

 

2.1.1 Historical background 

The term “chorea” derives from the Greek expression choreia (dance) and usually it is used to 

describe quick pathological movements of the limbs which can be compared to dancing or piano 

playing. The Swiss physician Paracelsus used for the first time this term in the 16
th

 century, while 

describing the uncoordinated movements of some of his patients. Only later this phenomenon 

was shown to be one of the hallmarks of the disease. During the Salem Witch trials (17
th

century) 

women were persecuted because of odd behaviors and unconventional movements. Nowadays it 

is thought that some of them were indeed affected by HD. At the beginning of the 19
th

 century 

multiple American and Norwegian physicians described a disease defined as “chronic hereditary 

chorea”, which was inherited by affected parents and characterized by involuntary movements 
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and psychiatric disturbances (Waters, 1842, Dunglison, 1848, Lund, 1860). Nevertheless, the first 

official description of the disease was written in 1872 by the  physician George Huntington in his 

report On Chorea (Figure 1). He examined several generations 

of a family with individuals presenting common symptoms, 

such as chorea, involuntary movements and psychiatric 

disturbances.  Without knowing it, George Huntington 

described in detail what then will be defined, following the 

Mendelian theories, a disorder with autosomic dominant 

inheritance. In his report he highlighted three peculiar aspects 

of the disease: the hereditary nature, the tendency to insanity 

and suicide, and the manifestation of severe symptoms only in 

adult life. As a result of his accurate observations he provided a 

meticulous description of the motor symptoms characterizing 

the disease and their progression (Huntington, 1872). 

The first time the disease was addressed as “Huntington‟s 

Disease” was after the death of the folk singer Woody Guthrie in 1967, an event that brought to 

the initiation of the Committee to Combat Huntington's Disease (now the Huntington‟s disease 

Society of America). One year later, in 1968, after experiencing HD in his wife's family, Dr. 

Milton Wexler was encouraged to start the Hereditary Disease Foundation (HDF). Both these 

associations were aimed at increasing the awareness of HD and rising funding to support research 

to cure genetic illnesses. The HDF together with a group of researchers in 1983 identified the 

chromosomal localization of the mutation causing the disorder (Gusella et al., 1983) and a few 

years later characterized the gene encoding for the huntingtin protein, responsible for HD (The 

Huntington‟s Disease Collaborative Research Group, 1993). Since then research has achieved 

relevant progresses towards the understanding of HD pathogenesis. Multiple animal models 

mimicking the disorder have been developed (Mangiarini et al., 1996, Hodgson et al., 1999, 

Wheeler et al., 1999, Lin et al., 2001, Gray et al., 2008) and multiple molecular pathways and 

aggregation dynamics have been investigated. In spite of all these efforts the pathogenic 

mechanism of action of mut Htt has not yet been unveiled and all the therapies currently available 

are ineffective in modulate disease progression (Ross and Tabrizi, 2011).   

Figure 1: George Huntington.

On Chorea (1872). Online source

from Columbia University

libraries blog.
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2.1.2 Clinical features of Huntington’s disease 

Huntington‟s disease is caused by a single mutation leading to the amplification of a CAG repeat 

in the gene encoding for the Htt protein. The motor and cognitive symptoms observed in HD can 

be confused at early stages with other neurodegenerative disorders, like Huntington‟s Disease-

like 2 (Walker et al., 2003, Margolis et al., 2004, Greenstein et al., 2007, Rudnicki et al., 2008) or  

dentatorubropallidoluysian atrophy (Nakano et al., 1985, Ross et al., 1997).  

 Mut Htt is expressed ubiquitously and 

throughout the whole life of the patients, 

however the disease becomes manifest with its 

first symptoms only in mid-life (Ross and 

Tabrizi, 2011). The first motor disturbances are 

mild, as slight uncontrolled involuntary 

movements normally occurring in the distal 

extremities. Clumsiness and difficulties in 

smooth eye movements are also observed 

(Brandt et al., 1984, Penney et al., 1990, Roos, 

2010). The motor symptoms progress slowly, 

spreading from distal to more proximal and 

axial, leading to characteristic extra pyramidal 

disturbances such as walking and movement 

impairment. Involuntary movements and chorea 

(rapid, uncontrollable movements) are present 

all the time the patient is awake. Patients also 

develop dystonia (sustained muscle contractions 

causing twisting and repetitive movements or 

abnormal postures), bradykinesia (slowness of 

movements) and akinesia (difficulty in starting movements) (Rosenblatt et al., 2003). 

Psychiatric, cognitive and behavioral disturbances are present since the early stages of the 

disease, often before the motor signs become obvious (Figure 2). Psychiatric symptoms include 

depression, anxiety, low self esteem, increased passive behavior and, in later stages, psychosis 

and schizophrenia. The patients manifest progressive disturbances in cognitive executive 

Figure 2. Clinical status and neurobiology of

Huntington’s Disease progression.

First signs and psychomotor symptoms of

Huntington disease begin years before the motor

symptoms diagnosis. These consist mainly of

behavioral and cognitive changes which correlate

with first neurobiological changes. In the early

stages of the disease neuronal dysfunction has an

important role, however in the progression of the

disease neuronal cell death is the predominant

feature. Adapted from Ross and Tabrizi, 2011
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functions such as planning and organizing simple daily events, as much as language and memory 

impairment (Marder et al., 2000, Bates, 2002). 

Juvenile HD cases express polyQ stretches exceeding 60 repeats and this correlates with an early 

appearance of the first symptoms, often before the 20
th

 year of age (Perutz and Windle, 2001, 

Walker, 2007) (see chapter 2.1.4). Young HD patients manifest disturbances which significantly 

differ from the adult pathology such as learning deficits, bradykinesia, hypokinesia, rigidity and 

dystonia, without appearance of chorea. Epileptic events are also frequently reported (Quarrell 

OWJ, 2009).  

Beside the neurological features, HD patients develop a variety of peripheral symptoms, such as 

muscle atrophy, weight loss despite constant caloric intake and metabolic abnormalities 

(Kirkwood et al., 2001). Interestingly, recent studies showed that weight loss and metabolic 

dysfunction correlate with CAG repeat length and disease progression (Mochel et al., 2007, Aziz 

et al., 2008). The general endocrine imbalance is attributed to a dysfunction in the hypothalamic-

pituitary-adrenal axis, leading to progressive increase of the levels of corticosteroids (Heuser et 

al., 1991, Leblhuber et al., 1995, Bjorkqvist et al., 2006, Aziz et al., 2007), reduced levels of 

testosterone (Markianos et al., 2005) and higher tendency to develop diabetes mellitus (Farrer, 

1985). Sleep and circadian rhythm disturbances have been lately described, indicating a possible 

REM phase reduction occurring before the onset of choreic movements (Arnulf et al., 2008). 

HD patients progressively loose the ability to sustain themselves and develop behavioral changes, 

thus becoming more and more dependent on their families and clinicians for their daily care 

(Nance, 2007). Death normally occurs 15-20 years after age-of-onset, mainly caused by 

infections, heart failure, pneumonia and suicide (Chiu and Alexander, 1982, Nance and Sanders, 

1996, Roos, 2010). 

 

 2.1.3 Neuropathology of Huntington’s disease 

The pathological hallmark of HD is the progressive atrophy of the brain, leading to a global loss 

of more than 40% of its mass over disease progression (Gusella, 2001, Gil and Rego, 2008). The 

shrunken appearance of the brain involves in first place the striatum but is then extended to other 

regions as cortex (especially layers V and VI), brain stem, spinal cord, hippocampus, cerebellum 

and thalamus (Marsh et al., 2003, Hedreen et al., 1991, Halliday et al., 1998, Li and Li, 2004, 

Vonsattel et al., 2008) (Figure 3). Recent studies have shown also a degeneration of the 
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hypothalamus, consistent with progressive loss of somatostatin-positive neurons and orexin-

secreting neurons (Kremer et al., 1990, Kremer et al., 1991, Petersen et al., 2005). Histology 

studies performed on postmortem brains allowed to establish the first classification of the 

pathology using a system divided in 5 grades. This classification correlates both with severity of 

the neuropathology (cerebral atrophy)  and clinical progression; with grade 0 identifying a brain 

with no discernible atrophy 

and grade 4 identifying the 

widespread pathology 

(Vonsattel et al., 1985) 

(Figure 3). Recent studies 

have been investigating the 

development of the disease 

by using magnetic resonance 

imaging (MRI), aiming to 

identify cortical 

abnormalities also in 

presymptomatic patients (Rosas et al., 2003, Kassubek et al., 2004, Rosas et al., 2006). 

Longitudinal studies, such as PREDICT HD and TRACK HD, using in parallel MRI and analysis 

of behavioral and cognitive parameters, tried to identify early changes and possible early-stage 

biomarkers (Paulsen et al., 2006, Tabrizi et al., 2009).  The selective degeneration of the striatum, 

presenting massive neuronal loss and astrogliosis sets the base for the uncontrolled and 

involuntary movements, impulsive behavior and diminished cognitive performances of HD 

patients (Crossman, 1987, Reiner et al., 1988, Albin et al., 1989, Montoya et al., 2006). Among 

the different neuronal populations in the striatum the most affected neurons are the medium-sized 

projection spiny neurons (MSNs), while large and medium-sized aspiny interneurons are 

relatively spared (Ferrante et al., 1985, Graveland et al., 1985, Vonsattel et al., 1985, Ferrante et 

al., 1986).  

The striatum, which comprises the caudate nucleus and putamen, is one of the nuclei constituting 

the basal ganglia, together with the substantia nigra (pars compacta and reticulata), the globus 

pallidus and the subthalamic nucleus. The basal ganglia are deep brain nuclei implicated in 

multiple crucial functions, but with a major role in the regulation of normal voluntary movements 

(Gerfen CR, 1996). They do not communicate directly with the spinal cord but receive the 

Figure 3: Brain of a Huntington’s Disease patient in late stage

compared to a healthy individual. A general atrophy of the brain is

observed in Huntington‟s Disease patients. The degeneration affects

primarily the striatum but then spreads to cortex and all brain regions.

Adapted from Marsh et al., 2003

Normal HD
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primary input from the cortex, and send their output back to the prefrontal, premotor and motor 

cortex, via the connection with the thalamus (Andre et al., 2010, Chakravarthy et al., 2010). 

The MSNs constitute nearly 95% of the neurons in the striatum. They are inhibitory neurons 

releasing the neurotransmitter gamma-aminobutyric acid (GABA), and are responsible of 

carrying the output from the striatum to the globus pallidus (GP). MSNs can be divided  into two 

populations on the basis of their axonal projections, neuropeptide release and expression of 

dopamine receptors (Gerfen et al., 1990, Gerfen, 1992, Surmeier et al., 2007, Andre et al., 2010),  

thus constituting two different pathways to their target nuclei.   

Normal HD

 

Figure 4. Basal ganglia function in intact brain and during HD progression. Plain and dotted lines represent 

excitatory and inhibitory pathways respectively. A: Simplified representation showing normal basal ganglia circuitry. 

In healthy individuals the thalamus is regulated by the direct (green) and indirect (blue) pathways, both acting on the 

GPi/SNr with opposite effects, thus resulting in a controlled balance of initiations and regulation of voluntary 

movements. B: HD basal ganglia. The indirect pathway is primarily affected in the disease progression resulting in a 

stronger inhibition of the GPi and consequent disinhibition of the thalamus. This event causes abnormal movements 

(chorea) and hyperkinesia. The progressive degeneration of MSNs belonging to both direct and indirect pathways 

results in both the uncontrolled movements and in the appearance of hypokinesia, probably due to the lack of 

function of the direct pathway on the GPi.  GPe: external segment of the globus pallidus; GPi: internal segment of 

the globus pallidus; SNc: substantia nigra pars compacta; SNr: substantia nigra pars reticulata; STN: subthalamic 

nucleus. Modified from Andre’ et al., 2011, Chakravarthy et al., 2010.  

 

MSNs projecting from the striatum to the external segment of the globus pallidus (GPe) 

constitute the indirect pathway, express D2 Dopamine receptors and release the neuropeptide 

Enkephalin (Figure 4, blue lines). MSNs projecting from the striatum to the internal segment of 

the Globus Pallidus (GPi) and to the substantia nigra pars reticulata, constitute instead the direct 

pathway, express D1 Dopamine receptors and release Substance P (Figure 4, green line) (Joel, 

2001, Gertler et al., 2008). The inhibitory effect generated on the GPi by the direct pathway 

produces a disinhibition of the thalamus and the consequent initiation of voluntary movements. 

On the contrary, the indirect pathway projects to the GPe, which connects to the subthalamic 
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nucleus and the GPi. This pathway results in an inhibition of the thalamic function, thus resulting 

in a regulation of the voluntary movement (Contreras-Vidal and Stelmach, 1996).  Interestingly 

the two pathways show a differential susceptibility to the neurodegenerative process in HD. The 

indirect pathway is particularly vulnerable to the cell loss from the very early stages of the 

disease (Reiner et al., 1988, Albin et al., 1992, Richfield et al., 1995, Deng et al., 2004) leading to 

the hypothesis that the choreic movements are caused by the loss of inhibitory effect on the 

thalamus. On the other hand at late stages the neurons of the direct pathway also start to 

degenerate consequently inducing the appearance of akinesia and dystonia in HD patients (Albin 

et al., 1990) (Figure 4). The higher susceptibility of MSNs to the HD neurodegenerative process, 

compared to the relative sparing of medium sized interneurons and cholinergic interneurons, 

seems to be related also to higher mut Htt expression in MSNs (Ferrante et al., 1997).  

 

2.1.4 The genetics of Huntington’s disease and intergenerational anticipation 

HD is caused by the amplification of a CAG trinucleotide repeat at the 5‟ end of the exon 1 (Ex1) 

of the Huntingtin gene, IT15, which is located on the short arm of the chromosome 4p16.3 (The 

Huntington‟s Disease Collaborative Research Group, 1993). The disease is transmitted with 

autosomal dominant inheritance, following the classical mendelian fashion. Normal individuals 

have a number of CAG lower than 36, most commonly between 17 and 20 (Imarisio et al., 2008), 

while patients with over 39 CAG develop the disease with 100% penetrance (Gusella and 

MacDonald, 2006, Sturrock and Leavitt, 2010, Finkbeiner, 2011). Individuals with a number of 

glutamines between 36 and 39 show incomplete penetrance and may not develop symptoms or 

only in late age (Figure 5). Patients homozygous for mut Htt develop symptoms at the same age 

as heterozygous, although it has been reported that they experience a more severe clinical course 

(Squitieri et al., 2003).  



12 
 

Expanded CAGNormal CAG

CAG repeat number

N
u

m
b

e
r
 o

f
 a

l
l
e

l
e

s

 
 

Figure 5. Distribution of normal and expanded CAG allele size in Huntington disease. A clear distinction 

between the normal individuals and the affected ones can be emphasized by looking at the alleles distribution. Two 

distinct populations can be identified with normal alleles from controls, unaffected or lower alleles of affected 

individuals shown in white and expanded CAG alleles depicted in black. The yellow rectangle represents the alleles 

with 36-39 CAG repeats which lead to disease development with incomplete penetrance. Adapted from Sturrock and 

Leavitt, 2010.  

 

The length of the polyQ stretch correlates with the onset of the disease in  50-70% of the cases 

(Gusella and MacDonald, 2006, Gusella and MacDonald, 2009, Finkbeiner, 2011), although this 

correlation is stronger in the presence of longer CAG repeats  rather than with shorter polyQ 

stretches (Myers, 2004) (Figure 6). Besides polyQ length, the onset of the disease seems to be 

influenced also by modifying genes and environment (Rubinsztein et al., 1996, McNeil et al., 

1997, Wexler et al., 2004, Li et al., 2006a, Quarrell et al., 2007). Progression and gravity of the 

symptoms seem not to be affected by the length of the CAG repeats (Squitieri et al., 2002, 

Rosenblatt et al., 2006). 
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Figure 6. Correlation between age of onset and CAG repeats. There is an inverse correlation between the size of 

the CAG repeat (y-axis) and the age of onset (x-axis). Among the population with large repeat number the 

correlation is strong, while it becomes weaker in presence of shorter CAG repeat (55 or lower). The red line 

represents the threshold between healthy population and HD patients. Adapted from Myers, 2004.  
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Patients with adult onset of the disease show a number of CAG around 40, whereas juvenile cases 

present with triplet repeats over 60 (Gusella and MacDonald, 2006). CAG triplets between 27 

and 35 normally do not lead to HD development however, due to the meiotical instability of the 

CAG repeats, they can in some cases undergo genetic amplification and reach the pathogenic 

threshold in the following generation, causing de novo cases of HD (Myers, 2004, Semaka et al., 

2006). The even higher instability of longer CAG repeats leads to intergenerational amplification 

and consequent earlier onset of the disease, phenomenon defined as “genetic anticipation” 

(Ridley et al., 1988, Ridley et al., 1991, Ranen et al., 1995). This event was first studied in 

myotonic dystrophy, a disorder caused by instable triplet repeats and then extended to other 

trinucleotide repeat diseases (Howeler et al., 1989). The meiotic instability of polyQ stretches and 

consequent amplification is more pronounced during male gametogenesis, thus leading to higher 

paternal transmission of longer CAG repeats (Kremer et al., 1995). Individuals with long CAG 

stretches present higher rate of amplification, confirming the size-dependent instability of the 

repeats (Harley et al., 1992, Lavedan et al., 1993, Trottier et al., 1994, Ranen et al., 1995, Bates, 

2002). The molecular mechanisms underlying CAG expansion and amplification are not 

completely clarified. Molecular studies have confirmed a higher instability of the CAG repeats in 

sperm, which could explain the gender differences in the amplification (Leeflang et al., 1995, 

Telenius et al., 1995). However, other studies also raised the hypothesis that somatic mosaicism 

could play a role in modulating the onset of the disease (Swami et al., 2009). Expansions, but to a 

smaller degree also contractions, are typical events in trinucleotide repeat sequences (Wheeler et 

al., 2007). One explanation for their occurrence is the formation of single stranded DNA hairpins 

and unusual structures during DNA replication, recombination events and DNA repair 

mechanisms (Maurer et al., 1996, Mirkin, 2007). However these events can account mainly for 

germline and some somatic instability, as they mainly occur in dividing cells, as reported for HD 

lymphoblasts (Cannella et al., 2009). Interestingly, higher CAG expansions have been observed 

in striatum and cortex, thus suggesting triplet instability in post mitotic neuronal cells and a 

correlation with HD neurophatology (Telenius et al., 1994, Shelbourne et al., 1999, Kennedy et 

al., 2003, Gonitel et al., 2008).  

Besides CAG repeat length, environmental factors and other genetic modifiers could also 

influence HD onset and progression (Wexler et al., 2004, Gayan et al., 2008). One possible 

modifier has been located in the chromosome 4p16, close to the huntingtin gene itself (Djousse et 

al., 2004, Norremolle et al., 2009), whereas other genetic modulators of HD development are 
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TP53, human caspase activated DNase (hCAD) (Chattopadhyay et al., 2005), ASK1 and 

MAP2K6  (Arning et al., 2008), different subunits of the NMDA receptor, NR2A and NR2B 

(Arning et al., 2005), PGC-1a polymorphisms and genes downstream of its cascade (Che et al., 

2011, Taherzadeh-Fard et al., 2011), as well as HAP-1 (Metzger et al., 2008).  

Although these and other modifiers seem to modulate HD onset, no functional studies have yet 

proved a direct relationship, thus asserting the need for further investigation.  

 

2.1.5 Therapies for Huntington’s disease  

The treatments currently used in the medical practice are solely aimed to alleviate the motor and 

psychiatric symptoms occurring in HD, without significantly affecting disease progression (Ross 

and Tabrizi, 2011). Three strategies have been mainly followed to developed therapeutic 

approaches:  improvement of the motor symptoms, improvement of psychiatric symptoms and 

enhancement of neuroprotection (Bonelli and Hofmann, 2004, Bonelli and Hofmann, 2007). 

Choreic movements, as well as other motor dysfunctions such as dystonia, rigidity and akinesia 

are targeted. Treatment with Tetrabenazine, a conventional antipsychotic which depletes 

monoamine uptake, brought improvement of symptom severity but with the appearance of 

several side effects such as depression, sedation, accelerated functional decline and dystonia 

(Ondo et al., 2002, Leavitt and Hayden, 2006). Also Haloperidol and several atypical 

neuroleptics showed promising improvements in the motor symptoms but were accompained by 

multiple side effects (Barr et al., 1988, Gimenez-Roldan and Mateo, 1989). NMDA antagonists, 

as Amantadine, Ketamine and Riluzole, have been tested following the theory of neuronal 

exitotoxicity caused by enhanced release of excitatory neurotransmitters proposed by DiFiglia 

and colleagues (DiFiglia, 1990).   However in spite of improvement on choreic impairment and 

behavioral symptoms in some trials, several contradictory studies have been reported and side 

effects have been observed (Mestre et al., 2009, Bonelli and Hofmann, 2007). Important to notice 

is that not all the trials followed the Unified HD Rating Scale to rate the symptoms (Huntington 

Study Group, 1996), thus resulting in high inconsistencies and difficulties in their interpretation. 

Depression in HD patients correlates with lower metabolic activity in the basal ganglia and in the 

cingulate cortex (Mayberg et al., 1992). The administration of antidepressant agents such as 

fluoxetine and clozapine produced potential beneficial effects in some trials (De Marchi et al., 
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2001, Bonuccelli et al., 1994, Colosimo et al., 1995), while antidepressants and neuroleptics had 

only limited beneficial effects (Bonelli and Hofmann, 2007).  

Neuroprotection strategies have been also evaluated, aimed to decrease neuronal susceptibility to 

mut Htt toxicity. Several studies explored the possibility to modulate glutamate transmission, 

enhancing bioenergetic mechanisms or exerting antioxidant properties. However, the lack of 

reliable markers to evaluate treatment efficacy results in difficult interpretation (Bonelli and 

Hofmann, 2007). Trials with Creatine, aimed to potentiate the depleted oxidative mitochondrial 

functions, showed changes in brain metabolites (Bender et al., 2005) and increase in creatine 

concentrations, combined with a decrease in 8OH2‟dG, a marker of DNA oxidation injury 

(Hersch et al., 2006). However nor cognitive improvement in HD patients were observed 

(Verbessem et al., 2003). The administration of coenzyme Q10, a component of the 

mitochondrial electron transport chain (Crane et al., 1989), showed only a weak trend of 

improvement (Koroshetz et al., 1997, Huntington Study Group, 2001) without heavy side effects. 

Promising results of a combinatorial therapy of creatine and coenzyme Q10 in models of PD and 

HD (Yang et al., 2009, Menalled et al., 2010) supported further studies in this direction.  

Other approaches were aimed to decrease the apoptotic rate and cell death.  In this context, the 

enhancement of highly unsaturated fatty acid concentrations in the cell membranes produced 

contrasting results, showing only weak motor symptoms improvements and atrophy reduction 

(Rosser, 2002, Puri et al., 2005, Puri et al., 2008, Huntington Study Group, 2008). On the other 

hand the caspase and neuronal apoptosis inhibitor Minocycline produced improvement in motor 

and psychiatric symptoms, however rising concerns on its safety (Reynolds, 2007, Bonelli et al., 

2003, Bonelli et al., 2004). 

Taken together, the inconsistence among the trials and the lack of proofs for drugs efficacy 

underline the need for further investigation and design of more specific therapies.   
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2.2 Huntingtin protein 

2.2.1 Wild-type huntingtin 

Huntingtin is a protein of 3144 amino acids, ubiquitously expressed, and containing at its N-

terminus a polyQ repeat followed by a polyproline domain. It has very limited sequence 

homology with other proteins and its biological functions are only poorly understood. It has an 

essential role in development, as embryonic lethality has been observed in gene knock out models 

(Duyao et al., 1995, Nasir et al., 1995, Zeitlin et al., 1995). Interestingly the protein affects adult 

life as well, since mice with conditional Htt knock down in testis and brain develop 

neurodegeneration and sterility (Dragatsis et al., 2000). On the contrary, the presence of the mut 

Htt seems not to abolish essential functions of the wt protein considering that patients undergo 

normal development and that HD symptoms appear only in late stages of life.  

Htt is mainly localized in the cytoplasm with only a small portion in the intranuclear 

compartment (Hoogeveen et al., 1993, Kegel et al., 2002). Interaction with mitochondria 

(Rockabrand et al., 2007), endoplasmic reticulum (ER) as well as late endosomes and autophagic 

vesicles was described (Atwal et al., 2007, Atwal and Truant, 2008). Htt is also thought to play a 

role in regulating vesicle trafficking to the extracellular matrix via its association to the Golgi 

apparatus (Strehlow et al., 2007), microtubules and synaptic vesicles (Velier et al., 1998, 

Gutekunst et al., 1999). Interestingly in patients and cell models of HD the wt Htt localization 

seems to be influenced by the presence of mut protein (De Rooij et al., 1996, Sapp et al., 1997). 

Phosphorylation

3144

- COOHN2H -

 

Figure 7. Huntingtin protein. Schematic representation of the structure of the huntingtin protein (3144aa). The 

localizations of a putative nuclear export sequence (NES1), the polyglutamine region (PolyQ) and the polyproline 

region (PolyP) are indicated. The blue bars correspond to the HEAT motifs, which are thought to be responsible for 

protein-protein interactions. Towards the C-terminus there is symbolized a highly conserved Nuclear export signal 

(NES2). The huntingtin protein undergoes multiple post translational modifications in the aminoterminal region, 

such as ubiquitination, sumoylation, phosphorylation and palmitoylation (blue arrows) thought to modulate mutant 

huntingtin toxicity. Multiple proteases cleave the huntingtin protein generating shorter fragments (red and green 

arrows), which, in the presence of polyglutamine expansions, tend to form intracellular inclusions. Adapted from 

Imarisio et al., 2008. 
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28-36 HEAT (huntingtin elongation factor 3, the PR63/A subunit of protein phosphatase 2A and 

the lipide kinase Tor) repeat motifs spread throughout the whole protein length (Andrade and 

Bork, 1995, Takano and Gusella, 2002). They consist of ~50 amino acids assembled in two anti-

parallel -helices forming a helical hairpin (Li et al., 2006b). They mediate protein-protein 

interactions important for cytoplasmic-nuclear transport, microtubule dynamics and chromosome 

segregation (Neuwald and Hirano, 2000) (Figure 7). 

Htt contains a highly conserved nuclear export signal (NES) at the C-terminus (Xia et al., 2003) 

and a putative export sequence in the first 17 amino acids, whose association with the nuclear 

exporter Trp seems impaired by the presence of mut protein (Cornett et al., 2005). On the 

contrary Htt does not present a classical importin -dependent sequence which could explain the 

nuclear localization of the protein. This suggests a possible interaction with transcription factors 

mediating its translocation to the nuclear compartment (Truant et al., 2007). 

Multiple post translational modifications (PTM) contribute to modulate Htt functions and occur 

mainly in the first 17 amino acids preceding the polyQ stretch. In this region were identified 

SUMOylation (Steffan et al., 2004, Truant et al., 2007), ubiquitination (Kalchman et al., 1996) 

and phosphorylation (Thompson et al., 2009, Warby et al., 2009). Other PTM, which are 

localized also in more C-terminal regions, are phosphorylation (Humbert et al., 2002, Rangone et 

al., 2005, Schilling et al., 2006, Colin et al., 2008, Warby et al., 2009), acetylation (Jeong et al., 

2009, Cong et al., 2011), and palmitoylation (Yanai et al., 2006, Ohyama et al., 2007, Goytain et 

al., 2008). The presence of mut Htt could contribute to the modulation of some of the described 

PTMs, thus influencing the localization, molecular interactions and toxic potential (Luo et al., 

2005, Anne et al., 2007, Reijonen et al., 2008, Zala et al., 2008, Jeong et al., 2009). 

Both wt and mut Htt are targets for multiple intracellular proteases, including caspase 1,3,6,7 and 

8 (Goldberg et al., 1996, Kim et al., 2001, Sun et al., 2002, Graham et al., 2006), calpain (Gafni 

and Ellerby, 2002, Landles et al., 2010) and some other cellular proteases (Kim et al., 2006, 

Graham et al., 2011) which cleave the protein and produce fragments of different lengths. The 

role of shorter fragments is still unknown however, mut Htt fragments assemble in oligomers and 

aggregates which could play an important role during HD development (Chapter 2.2.4). 

The cellular functions of wt Htt are not well understood. Some studies attributed a possible anti-

apoptotic role of the protein through the inhibition of caspase 3, caspase 8 and caspase 9 cleavage 

cascades (Rigamonti et al., 2000, Rigamonti et al., 2001, Gervais et al., 2002, Leavitt et al., 2006, 

Zhang et al., 2006). 
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A role of Htt in regulating trafficking and production of brain-derived neurotrophic factor 

(BDNF), a regulator of striatal cells survival (Nakao et al., 1995, Alcantara et al., 1997), has been 

proposed. Wt Htt interacts and sequesters in the cytoplasm the transcriptional factor complex 

repressor-element 1 transcription factor/ neuron-restrictive silencer factor (REST/ NRSF) thus 

blocking the repressive function of neuron-restrictive silencer element (NRSE) and promoting 

BDNF transcription (Zuccato et al., 2003).  It also regulates BDNF vesicular transport associating 

with HAP1 (Htt associated protein 1) and the p150 subunit of dynactin (Gauthier et al., 2004, Wu 

et al., 2010, Yang et al., 2011). Mut Htt impairs these functions thus resulting in lower levels and 

availability of BDNF in striatal cells (Zuccato et al., 2001, Zuccato et al., 2005) (Chapter 2.2.3).  

Htt is involved in the regulation of endocytic and vesicular transport through the association with 

Huntingtin interacting protein-1 (HIP1) (Kalchman et al., 1997, Legendre-Guillemin et al., 2005) 

and 14 (HIP14) (Singaraja et al., 2002, Yanai et al., 2006, Huang et al., 2011). Furthermore its 

interaction with PSD95 (postsynaptic density 95) and the modulation of HIP1 activity influences 

postsynaptic signaling and suggest a role in the mechanism of NMDA-mediated excitotoxicity in 

HD (Sun et al., 2001, Fan and Raymond, 2007, Metzler et al., 2007). 

2.2.2 Gain or loss of function? 

It is still under debate if HD is caused by a loss of function of the wt or a gain of function of mut 

Htt. Studies on HD lymphoblast showed that mut Htt homozygous condition leads to higher 

fragments accumulation and more severe mitochondrial impairment than the heterozygous 

(Maglione et al., 2006, Squitieri et al., 2006), while in Drosophila, depletion of wt Htt accelerates 

the neurodegeneration caused by mut Htt (Zhang et al., 2009), thus speaking in favor of the loss 

of function of the wt protein.  In contrast, in vivo studies reported that the heterozygous 

inactivation of the wt Htt did not produce any disease phenotype (Duyao et al., 1995), while 

mouse models expressing mut Htt in addition to normal levels of the wt, develop the disease with 

obvious neurodegenerative phenotypes (Mangiarini et al., 1996, Reddy et al., 1998, Hodgson et 

al., 1999, Lin et al., 2001, Shehadeh et al., 2006). The dependence of the manifestation of HD 

phenotypes on the presence of mut Htt was also confirmed in lentiviral rat models of the disease 

(de Almeida et al., 2002, Regulier et al., 2003). Mouse embryonic stem (ES) cells expressing Htt 

with different polyQ length showed HD like gene profiles if compared with the knock out line, 

thus favoring the hypothesis of a gain of function of the mut Htt (Jacobsen et al., 2011). 

Furthermore down-modulation of both wt and mutant Htt by RNA interference ameliorated 
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disease phenotypes in vivo (Harper et al., 2005, Rodriguez-Lebron et al., 2005, Machida et al., 

2006, Franich et al., 2008). Overall these results seem to support mainly the conclusion that the 

cell impairment occurring in HD is linked to a gain of function of the mut Htt, although the loss 

of function hypothesis could not be completely excluded, thus suggesting a possible contribution 

of both events in HD pathology. 

 

2.2.3 Possible mechanisms of mutant huntingtin toxicity 

The amplification of the polyQ tract in the mut Htt protein triggers multiple intracellular events 

which impair the cell homeostasis, enhance toxicity and lead to neuronal cell death. The cause of 

mut Htt toxicity is still unknown but several lines of evidence support a contribution of multiple 

mechanisms rather than a unique toxic event (Figure 8). 

 

Figure 8. Pathogenic mechanisms in Huntington’s disease. Multiple cellular pathways have been implicated in the 

pathogenesis of HD. A: mut Htt acquires a conformational change that leads to abnormal folding of the protein, 

inducing molecular chaperones intervention. Full-length mut Htt is cleaved by proteases in the cytoplasm and its 

fragments are partially ubiquitinated and targeted to the proteasome for degradation, probably impairing the 

clearance pathways. B/C/D: mut Htt fragments accumulate in the cell cytoplasm and unusually associate with several 

proteins causing impairment of calcium signaling and homeostasis and mitochondrial dysfunction. E: mut Htt 

translocates to the nucleus impairing gene transcription and forming intranuclear inclusions. F: the mutation in 

huntingtin alters vesicular transport and recycling.  Adapted from Zuccato et al., 2010.          
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Mutant Htt establishes aberrant associations with several proteins and transcription factors (TF), 

modulating their activity and leading to transcriptional dysregulation (Cha, 2000, Gomez et al., 

2006, Thomas, 2006, Kazantsev and Hersch, 2007, Zuccato et al., 2010) (Figure 8B, E). Aberrant 

gene expression in HD has been reported in several multiple microarray studies (Borovecki et al., 

2005, Hodges et al., 2006, Anderson et al., 2008), mouse models (Luthi-Carter et al., 2002a, 

Luthi-Carter et al., 2002b) and primary neuronal cultures (Runne et al., 2008), suggesting that 

transcriptional dysregulation contributes to disease development and proposing potential 

biomarkers (Borovecki et al., 2005, Runne et al., 2007, Lovrecic et al., 2009).  

The association of mut Htt expanded polyQ region with transcriptional regulators containing 

polyQ-rich sequences can impair gene transcription (Gerber et al., 1994, Perutz et al., 1994). Mut 

Htt can also associate with CREB-binding protein (CBP) repressing its activity and related 

transcription (Steffan et al., 2000, Cong et al., 2005). This event alters histone acetylation levels 

and increases cell toxicity in HD cell and mouse models (Jiang et al., 2006; Klevytska et al., 

2010). The connection between mut Htt and histone acetylation suggested histone deacetylase 

(HDAC) inhibitors as possible therapeutic agents. HDAC inhibition slowed the 

neurodegenerative process and improved the phenotypes in Drosophila (Steffan et al., 2001, 

Pallos et al., 2008) and in HD mouse models (Ferrante et al., 2003, Gardian et al., 2005, Thomas 

et al., 2008). The TF Sp1 has been shown to associate with mut Htt and consequently impair (Li 

et al., 2002) transcription and activity of members of the transcriptional machinery such as TFIID 

and TFII130 (Chen-Plotkin et al., 2006, Qiu et al., 2006). The normal interaction with 

REST/NRSF previously described (Chapter 2.2.1) (Zuccato et al., 2003), is impaired in the 

presence of mut Htt hence allowing the translocation of the repressor into the nucleus, and 

decreasing BDNF transcription and transport (Zuccato et al., 2007, Zuccato and Cattaneo, 2007) 

(Figure 8B).  

A role of mut Htt in mitochondrial homeostasis has been proposed (Figure 8D). The CREB-

dependent peroxisome-proliferator-activated receptor coactivator-1 (PGC-1), which is 

important in mitochondrial biogenesis and respiration (Herzig et al., 2001, Puigserver and 

Spiegelman, 2003), was downregulated in HD mouse models (Cui et al., 2006) and its activity 

was impaired (Weydt et al., 2006, Cui et al., 2006). Mitochondrial dysfunction seems to play be 

an important event in neurodegeneration, since neuronal cells require high energy production to 

support their activities (Beal, 2007, Kann and Kovacs, 2007). During their metabolic functions 

mitochondria produce reactive oxygen species (ROS) but at the same time are subjected to ROS 
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damage itself. In neurodegenerative diseases excessive production of ROS and deficits in the 

antioxidative system have been observed (Facecchia et al., 2011). In HD, reduced glucose uptake 

in the cortex and striatum (Antonini et al., 1996, Ciarmiello et al., 2006), decreased aconitase 

activity (Tabrizi et al., 1999, Tabrizi et al., 2000, Kim et al., 2005) and decreased activity of the 

complexes II, III and IV (Orr et al., 2008, Shirendeb et al., 2011) were described. Additionally, in 

different models of HD mut Htt has been shown to interact with p53, an important pro-apoptotic 

factor (Steffan et al., 2000, Ryan et al., 2006), enhancing its activity and leading to mitochondrial 

dysfunction and apoptosis (Bae et al., 2005, Zhang et al., 2009) (Figure 8D). 

The misfolded conformation of mut Htt and its aggregated form induce an impairment of 

ubiquitin-proteasome system (UPS) mediated protein degradation, thus promoting toxicity and 

accumulation of non-degraded proteins (Jana et al., 2001) (Figure 8A). The UPS does not 

efficiently degrade misfolded mut Htt (Holmberg et al., 2004, Venkatraman et al., 2004) probably 

due to its inability to cleave between polyQ residues, resulting both in a physical blockage for 

other substrates to reach the 20S catalytic core and in an accumulation of mut Htt fragments 

(Waelter et al., 2001). UPS impairment has been demonstrated in a HD striatal cell line as well as 

in a mouse model (Hunter et al., 2007, Wang et al., 2008b). Mut Htt aggregates seem to influence 

the proteasome activity either by direct interaction (Martin-Aparicio et al., 2001), or by 

sequestering proteasome subunits, ubiquitin residues and heat shock proteins (Hsp), such as 

Hsp70 and Hsp40 (Wyttenbach et al., 2000, Bence et al., 2001, Holmberg et al., 2004). In 

contrast there has been evidence of proteasome impairment and UPS deficit also prior to 

aggregates formation (Bennett et al., 2005, Bennett et al., 2007). Furthermore, some studies 

observed enhancement of proteasome activity (Diaz-Hernandez et al., 2003) and enzymatic 

changes which do not always correlate with an impairment of the UPS (Bett et al., 2006), 

suggesting that further investigation in the field is required. Mut Htt also impairs calcium 

signaling and homeostasis, as well as neurotransmitter transport and recycling (Zuccato et al., 

2010) (Figure 8C/F).  
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2.2.4 Mutant huntingtin aggregation 

Full length mut Htt is cleaved by caspases, calpains and proteases into shorter fragments which 

aggregate and potentially contribute to HD neurophathology (Gafni and Ellerby, 2002, 

Wellington et al., 2002, Ratovitski et al., 2009, Landles et al., 2010).  

Mutant protein aggregation is a common feature among neurodegenerative diseases. However the 

role of inclusions in development and progression of the disorders is still controversial, as they 

can be considered either a cellular defense mechanism against mutant proteins or toxic species 

themselves. Intranuclear inclusions were detected in the cortex and striatum of juvenile and adult 

HD patients (DiFiglia et al., 1997, Hoffner et al., 2007) (Figure 9), in cell culture (Cooper et al., 

1998) and in vitro (Lunkes et al., 1999).   

 

Figure 9. Huntingtin intranuclear inclusions in brain regions from HD patients. A/B. Cortical pyramidal 

neurons in juvenile HD patients; C. Striatal neurons in juvenile HD patient; D. Cortex of an adult HD patient; E. 

Cortex of a presymptomatic adult HD patient. Adapted from DiFiglia et al., 1997. 
 

The length of mut Htt fragments, as much as the increased number of polyQ residues, influences 

aggregate formation both in vitro and in vivo (Li and Li, 1998, Martindale et al., 1998, Legleiter 

et al., 2010). Mut Htt N-terminal fragments selectively accumulate in the processes and axonal 

terminals of striatal neurons, inducing neuritic degeneration in cell culture and in vivo (Li et al., 

2000). The transgenic mouse model, R6/2, expressing the Ex1 form of the protein presents 

massive aggregation load and HD-like phenotypes develop as early as 3 weeks of age, suggesting 

a possible toxic role of the inclusions (Mangiarini et al., 1996). 

A proposed polymerization process suggests that elongated polyQ stretches acquire a “polar 

zipper” conformation through hydrogen bonds between the amides (Perutz, 1995, Perutz, 1996) 

and consequently assemble in water rich -sheet structures (Figure 10).  
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monomer polar-zipper -sheet fibrils aggregates  

Figure 10. Polymerization process leading to mut Htt aggregates formation. Mut Htt fragments derived from 

proteolitic cleavage of the full length protein assemble in polar-zipper structures through the polyQ regions, forming 

intermolecular hydrogen bounds. The association of multiple polar-zippers results in the formation of b-sheet 

structures which gain stability with higher polyQ repeats. Before forming the high molecular weight aggregates 

intermediate insoluble fibrils are constituted. Combined figure created respectively from Zuccato et al., 2010; Perutz 

et al. 2002; Singer and Dewji, 2006; Poirier et al., 2002; Gutenkust et al., 1999. 
 

Electron microscopy studies revealed that the -sheet conformation forms fibrillar structures with 

a morphology similar to β-amyloid fibrils in Alzheimer‟s disease, prion rods and yeast prion 

protein Sup35 (Perutz et al., 2002b). Hence also in HD the phenomenon leading to aggregates 

formation could be triggered by a nucleation process (Huang et al., 1998, Scherzinger et al., 

1999). Since single helical turns with 20 polyQ residues are unstable, the formation of stable -

sheet structures requires more than 40 residues, which assemble in double helical turns, are 

stabilized by hydrogen bonds and become nuclei for further helical growth (Perutz et al., 2002a). 

From the growing nuclei to the large aggregates occurs the formation of protofibrillar 

intermediates, which are Congo red sensitive, and could represent the toxic species (Poirier et al., 

2002).  

The sequences flanking the polyQ expansion appear important in the aggregation process. The 

first 17 amino acids of mut Htt accelerate the polymerization events through hydrophobic 

interactions within the amphipathic -helical structure (Rockabrand et al., 2007, Tam et al., 2009, 

Thakur et al., 2009), while the polyProline region inhibits aggregation in wt conditions by 

assembling into a helix conformation (Bhattacharyya et al., 2006, Darnell et al., 2007). Both 

flanking regions acquire aberrant folding in the presence of an elongated polyQ, thus suggesting 

their possible role in aggregation (Saunders and Bottomley, 2009, Lakhani et al., 2010, 

Williamson et al., 2010). Interestingly, the formation of oligomeric and fibrillary intermediates 

during the aggregation process (Olshina et al., 2010, Ramdzan et al., 2010) raises the question if 

these species rather than the high molecular weight aggregates are the cause of toxicity (Sanchez 

et al., 2003, Arrasate et al., 2004, Ross and Poirier, 2005). 
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Several approaches have been pursued aiming to reduce mut Htt aggregation to modulate 

toxicity. One strategy has been to modulate the cleavage of full length mut Htt acting on the 

caspase activity with small molecules and thus improving toxicity and cell viability in HD cell 

and mouse models (Ona et al. 1999, Wellington et al., 2000, Leyva et al. 2010). Modulation of 

chaperone levels in vitro formation of fibrils (Muchowski et al., 2000, Guzhova et al., 2011) as 

these proteins, such as Hsp70 and Hsp40, are known to interact with mut Htt oligomers (Lotz et 

al., 2010). Moreover the induction of heat shock response in cell culture reduced mut Htt 

aggregation and toxicity (Jana et al., 2000, Wacker et al., 2004, Herbst and Wanker, 2007). 

Further investigation is required in order to investigate the aggregation dynamics, their role in 

HD development and possible strategies to modulate these events. 

2.3 Heat shock protein 90 (Hsp90) 

Heat shock protein 90 (Hsp90) is one of the main abundant proteins in the eukaryotic cell, 

constituting 1-2% of the total protein. It belongs to the family of molecular chaperones and 

contributes to maintain cellular homeostasis by regulating protein biogenesis and refolding, as 

well as cellular proliferation, differentiation and apoptosis. The Hsp90 cycle is a complex and 

highly regulated mechanism which, in order to be functional, involves several co-chaperons and 

energy consumption. The destiny of the client proteins depends on this cycle, which can lead 

either to their stabilization and activation or degradation (Taipale et al., 2010). 

2.3.1 Hsp90 isoforms and structure  

Hsp90 protein is present in the cell as two major cytoplasmic isoforms, Hsp90 and Hsp90, 

inducible and constitutive respectively (Csermely et al., 1998), an endoplasmatic reticulum (ER) 

associated form, Grp94 (Sorger and Pelham, 1987), and a mitochondrial form, TRAP1/Hsp75 

(Song et al., 1995, Chen et al., 1996, Felts et al., 2000). The sequences of Grp94 and TRAP1 

have only 50 and 60% homology with the cytosolic forms, due to the presence of targeting motifs 

and a C-terminal sequence responsible for the retention in the specific compartment (Sorger and 

Pelham, 1987, Felts et al., 2000). Grp94 plays a role in cell viability and innate immunity 

(Randow and Seed, 2001) while the function of TRAP1 is not completely understood. It presents 

an ATP binding domain which can be inhibited by Hsp90 inhibitors (e.g. Geldanamycin) but 

does not dimerize nor interact with classical Hsp90 co-chaperones, thus suggesting a differential 

role from the cytoplasmic isoforms (Felts et al., 2000). On the contrary, the functions and role of 
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Hsp90 and  have been widely studied. Hsp90 exists in a dimeric form,  or , to be 

completely functional (Wayne and Bolon, 2007), although  monomers or heteromers exist, as 

well as trimeric and hexameric forms of unknown function (Lee et al., 2011). The C-terminus of 

the protein is responsible of the dimerization process, since truncated Hsp90 constructs remain in 

monomeric form (Figure 11A). It also contributes to the ATP/ADP hydrolysis as confirmed by 

truncated forms with decreased ATP activity (Richter et al., 2001). Crystallographic studies 

showed that the C-terminus folds in two pairs of helices which pack together in order to 

constitute a four helices bundle (Pearl and Prodromou, 2006).  

A B

 

Figure 11. Hsp90 structure and ATP dependent conformational changes. A: Cristal structure of Hsp90 dimeric 

conformation, through the association of the C-terminal domain. B: ATP dependent shift of the conformation to a 

closed state. The association of the N-terminal domains due to ATP and the complex with a client brings the 

monomers approximately 20Å closer. Adapted from Ali et al, 2006 
 

The N-terminus of the protein consists of a sequence of 25kDa responsible for the binding with 

ATP through the formation of a / sheet pocket extending from the surface. Classical Hsp90 

inhibitors are known to interact with this portion of the protein (Obermann et al., 1998, Panaretou 

et al., 1998). The N-domains in the dimer associate in an ATP dependent manner, closing the 

chaperone around the co-factors or client proteins (Ali et al., 2006) (Figure 11B). 

The segment connecting the N and the C-terminus consists of two  domains and seems 

responsible for the client protein binding and catalytic activity (Pearl and Prodromou, 2006). 

The ATP hydrolysis happening at the N-terminus of the chaperone is associated with the 

transition from a closed state to an open hydrophobic state (Csermely et al., 1993, Grenert et al., 

1997, Sullivan et al., 1997), regulating the association of the Hsp90 dimer with co-chaperones 

and client proteins.  
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2.3.2 Hsp90 cycle: Co-chaperones and client proteins  

Hsp90 interacts with several co-chaperones (Pearl and Prodromou, 2006). These proteins belong 

to different classes and associate with Hsp90 through specific domains. The co-chaperones Hop 

and the E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) are characterized by the 

presence of a so called tetratricopeptide repeat (TRP) domain, a helical coil structure formed by 

concatenated helical hairpins, which binds at the extreme C-terminus of Hsp90 (Das and Liang, 

1998, Scheufler et al., 2000). Another important co-chaperone is p23, a small acidic protein 

which does not contain a TRP motif and binds directly at the N-terminus of Hsp90. This 

association is influenced by ATP/ADP hydrolysis, hence the co-chaperone is released from the 

complex in the presence of Hsp90 inhibitors (Johnson and Toft, 1995, Johnson et al., 1996).  

The Hsp90 cycle is divided into an open state, when ADP is bound to the chaperone, and a closed 

state, when ATP is present in the binding pocket (Csermely et al., 1993, Grenert et al., 1997, 

Sullivan et al., 1997, Taipale et al., 2010) (Figure 12). The ATP hydrolysis highly influences the 

kinetics of the cycle by modulating the structure of the complex, as elucidated by fluorescence 

resonance energy transfer studies (Hessling et al., 2009).  

 
Open (Immature) 

state

Closed (Mature)

state

 

Figure 12. Hsp90 cycle. Hsp90 and other co-chaperones interact in a dynamic, ATP/ADP dependent cycle in order 

to stabilize and refold client proteins. During the open (immature) state Hsp90 is primarily associated to HOP, and 

consequently interacts with the complex Hsp70 and Hsp40, which are delivering the client protein. In the later phase, 

ATP and p23 are binding to the complex, inducing the release of the other co-chaperones and the stabilization of the 

client protein. When the correct folding is achieved or an activating stimulus is received, the hydrolysis of ATP to 

ADP leads to the release of p23 and the client, bringing back Hsp90 to the original open state. Adapted from Taipale 

et al, 2010. 
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The Hsp90 cycle is highly regulated by the interplay of the different co-chaperones, which induce 

conformational changes in the complex and recruit the client proteins, thus regulating the 

ATP/ADP hydrolysis and Hsp90 activity (Phillips et al., 2007). Hsp90 activity and interactions 

can be modulated by several PTM, such as phosphorylation, HDAC6 dependent acetylation and 

nytrosilation (Taipale et al., 2010). 

More than 200 Hsp90 client proteins have been already identified (Picard, 2011). They belong to 

multiple families, such as steroid hormone receptors (Sanchez et al., 1985, Filipeanu et al., 2011), 

kinases (Sato et al., 2000, Basso et al., 2002, Lee et al., 2011), transcription factors (Nadeau et 

al., 1993, Bharadwaj et al., 1999, Muller et al., 2004, Walerych et al., 2004), proteins involved in 

cell cycle, cellular structure and homeostasis (Basto et al., 2007, Park et al., 2007).  

Interestingly, when a client protein after multiple cycles of chaperone binding cannot fold 

properly, it is released from Hsp90 and degraded through the UPS (Taipale et al., 2010). CHIP is 

considered a “quality control” E3 ligase which typically associates with Hsp90 and Hsp70 to 

modulate the balance between protein folding and degradation (Connell et al., 2001, Murata et 

al., 2001). However other E3 ligases, such as of the RING-cullin family (Petroski and Deshaies, 

2005), could be involved in the process, as was recently reported for ErbB2 and Hif-1 

degradation (Morishima et al., 2008, Ehrlich et al., 2009).   

 

2.3.3 Heat shock response (HSR) 

To respond to acute and chronic proteotoxic damage the cell induces a complex and efficient 

defense mechanism called heat shock response (HSR). This cascade of events is responsible to 

ensure stress adaptation, recovery and survival (Gidalevitz et al., 2011). The cellular homeostasis 

is compromised by several insults, such as temperature and pH fluctuations or exposition to 

oxidative stress or heavy metals (Lindquist, 1986, Morimoto, 1998). These events influence the 

protein dynamics, inducing covalent modification and conformational changes, thus favoring the 

exposure of hydrophobic domains and aggregation. The cell counteracts these unfavorable 

conditions with activation of trancription factors and chaperones through the HSR (Wu, 1995, 

Gidalevitz et al., 2011). The first response to the stress is the activation of the transcription factor 

Hsf1, which in the inactive monomeric form is bound to Hsp90 (Morimoto, 1998, Whitesell and 

Lindquist, 2009).  Four different forms of HSF are expressed in vertebrates but only Hsf1 is 
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known to actively contribute to the HSR (Morimoto, 1998, Akerfelt et al., 2007). In response to 

an insult monomeric Hsf1 is released from Hsp90, translocates into the nucleus and forms an 

active trimer, able to induce the transcription of several Hsp (Lis and Wu, 1993, Vabulas et al., 

2010). The Hsp promote protein re-folding and rescuing of cellular homeostasis, also acting as a 

negative control on the Hsf1 and HSR activation (Shi et al., 1998). The whole mechanism is 

regulated by fine positive and negative feedbacks loops (Wu, 1995, Gidalevitz et al., 2011) and 

Hsf1 activation and attenuation is controlled by several PTMs such as phosphorylation, 

sumoylation and acetylation (Hong et al., 2001, Guettouche et al., 2005, Westerheide et al., 

2009).  

2.3.4 The role of heat shock proteins in disease: cancer and neurodegeneration 

Aggregates and unfolded mutated proteins are a common feature in both oncological and 

neurodegenerative disorders. Hsp90 and Hsp70 have been studied in oncology in association with 

mechanisms of resistance to therapy and prevention of apoptosis (Ciocca and Calderwood, 2005, 

Schmitt et al., 2007), since these chaperones normally prevent cells from undergoing 

inappropriate autonomous cell death (Khalil et al., 2011). Even though the molecular mechanisms 

underlying resistance are unknown, the use of Hsp inhibitors as possible therapeutic agents has 

been explored. This approach would allow a decrease in the levels of Hsp in the cell, thus 

enhancing cell death and triggering the degradation of mutant oncogenic proteins (Schmitt et al., 

2007, Li et al., 2009). Hsp90 inhibitors such as Geldanamycin (Kamal et al., 2004) have shown 

efficacy as cancer treatments , however further optimizations are needed to improve the  potency 

and to reduce toxicity and side effects (Taldone et al., 2008, Taldone et al., 2009, Sankhala et al., 

2011). 

Neurodegenerative diseases are often characterized by misfolded proteins which aggregate and 

induce cell toxicity. Chaperones are known to co-localize with intracellular inclusions (Sherman 

and Goldberg, 2001, Muchowski and Wacker, 2005) and the HSR is impaired during aging 

(Meriin and Sherman, 2005). As potential therapeutic strategies Hsp90 inhibition as well as the 

enhancement of HSR have been discussed (Brown, 2007). The role of chaperones in 

neurodegeneration has been explored in multiple diseases such as Parkinson‟s disease (PD) 

(Auluck et al., 2002, Falsone et al., 2009), Alzeihmer‟s disease (AD) (Yoo et al., 1999, Evans et 

al., 2006), Amyotrophic Lateral Sclerosis (ALS) (Takeuchi et al., 2002, Batulan et al., 2006) and 

polyglutamine diseases (Adachi et al., 2003, Hansson et al., 2003). 
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A strategy widely explored is the possibility to enhance mutant protein degradation through 

Hsp90 inhibition. As described previously Hsp90 can bind to client protein and stabilize them 

(Chapter 2.3.2). The association of a mutant protein to Hsp90 could thus promote disease 

progression. On the contrary the use of Hsp90 inhibitors, which block the ATP binding site of the 

chaperone, could facilitate mutant protein release from the complex and UPS mediated 

degradation (Luo et al., 2010) (Figure 13).  This has been demonstrated to be the case for 

Leucine-rich repeat kinase 2 (LRRK2), a protein kinase involved in PD, which is stabilized by 

the interaction with Hsp90 (Wang et al., 2008c) and upon Geldanamycin treatment is released 

from the complex and driven to the UPS by CHIP mediated Ubiquitination (Hurtado-Lorenzo and 

Anand, 2008, Ding and Goldberg, 2009, Ko et al., 2009).  

 

Figure 13. Mechanism of action of Hsp90 inhibitors on client protein degradation. Hsp90 could play a role in 

stabilizing mutant proteins such as LRRK2 or AR, thus contributing to disease progression. Its inhibition would 

therefore enhance UPS mediated mutant protein degradation and therefore ameliorate the disease phenotypes. 

Adapted from Luo et al., 2010.  

 

In the context of polyQ diseases it has been demonstrated that the mutant androgen receptor 

(AR), responsible of spinal bulbar muscular atrophy (SBMA) associates with Hsp90. The use of 

Hsp90 inhibitors can modulate this interaction inducing AR clearance and improving SBMA 

phenotypes (Waza et al., 2006a, Waza et al., 2006b, Tokui et al., 2009). Overexpression of CHIP 

also induces amelioration of phenotypes and UPS mediated degradation of AR (Waza et al., 

2005, Adachi et al., 2007).  

In HD has been shown that R6/2 mice have reduced levels of Hsp compared to wt (Hay et al., 

2004) and the HSR induced by Hsp90 inhibitors is weaker in aging mice (Labbadia et al., 2011). 

Interestingly, studies on primary neuronal cultures showed that the different levels of expression 

of Hsp70 could influence susceptibility to mut Htt and toxicity (Tagawa et al., 2007). 
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Furthermore, Hsp70 and Hsp40 associate with mut Htt oligomers in vitro in the classical ATP 

dependent way (Lotz et al., 2010) and influence aggregates formation (Chai et al., 1999, Jana et 

al., 2000), also when added exogenously (Novoselova et al., 2005).  Interestingly, the Hsp90 

inhibitor Geldanamycin improved eye degeneration and body inclusion formation in Drosophila 

HD models (Fujikake et al., 2008) and reduced the formation of aggregates in cell culture models 

of HD increasing Hsp70 and Hsp40 levels (Sittler et al., 2001).  

Taken together these results suggest a promising role of Hsp90 inhibition in neurodegeneration, 

to potentiate the impaired HSR, influence aggregation, and modulate mutant protein clearance. 

Further studies in HD would be needed to characterize the possible use of this approach in 

modulating mut Htt toxicity. 

2.4 Time resolved fluorescence resonance energy transfer (TR-FRET) 

2.4.1 Fluorescence resonance energy transfer (FRET) 

Energy transfer based on electron transfer or exchanging mechanisms is a phenomenon widely 

seen in nature (Schaferling and Nagl, 2011). In biological environments, where the distances 

between molecules are between 2-10nm it is normally referred to as fluorescence resonance 

energy transfer (FRET). This phenomenon has been described for the first time by the German 

scientist Theodor Förster in 1948, and it is based on the dipole-dipole energy coupling between 

two fluorescent molecules in close proximity to each other. In order to consent the energy 

transfer, the emission and absorption spectra of the two fluorophores involved should be 

overlapping (Figure 14A). This would allow that the excitation of the donor fluorophore results in 

the emission of the acceptor (Stryer, 1978, Alvarez-Curto et al., 2010). The efficiency of transfer 

decays as a function of the inverse sixth power of the distance (r) between the two fluorophores, 

as depicted in the relation derived by Förster: 

E=1/[1+(r/R0)
6
] 

R0 represents the Förster radius, which is the distance needed between the two fluorophores to 

obtain an energy transfer of 50% and it can be calculated as: 

R0 = [2.8 * 1017 * κ2 * QD * εA * J(λ)]1/6 nm 

Where
2
 is the orientation factor between the dipoles, which usually is different from 90° in 

order to avoid oscillation abolishing the signal. QD is the fluorescence quantum yield of the donor 

when acceptor is absent, εA the maximum acceptor extinction coefficient and J(λ) being the 



31 
 

overlap integral between donor and acceptor spectra. As R0 is dependent on all these factors the 

best distance for two fluorophores in aqueous solution is between 2 and 7 nm (Wu and Brand, 

1994, Patterson et al., 2000) (Figure 14B). 

The FRET technology has been widely applied to investigate intermolecular and intramolecular 

interatcions. FRET has been used for example in the determination of protein interactions on 

microarray assays (Schaferling and Nagl, 2011), or in the study of G coupled protein receptors 

(GPCR) (Alvarez-Curto et al., 2010). In this regard it needs to be said that a FRET signal does 

not necessarily mean that a direct interaction between two proteins has occured, while on the 

other hand an absence of signal may not be derived by a missing interaction but may be due to 

one of the parameters discussed above.   

A B
 

Figure 14. Fluorescence resonance energy transfer. A: spectral representation of the energy transfer. Absorbance 

and emission are depicted with plain and dotted lines, respectively. In order to obtain the energy transfer the two 

spectra have to overlap. B: Distance dependence of FRET signal expressed in terms of Förster distance R0. Adapted 

from Schäferling and Nagl, 2011.       

 

The classical FRET has some limitations, like the overlap between the two spectra which could 

lead to photobleaching and bleed-through. The excitation of the acceptor in this case would not 

occurr because of the energy transfer but as a direct effect of the light excitation. 

For high-throughput screening purposes the FRET technology shows high susceptibility to 

artifacts. These events could be caused by autofluorescence of compounds and other components 

of the solution (buffers, cell lysates, and detergents) which can not be easily distinguished from 

an authentic signal. The presence of such artifacts in high-throughput screens, where normally the 

number of replicates and compound concentration are n=1, could heavily affect the robustness, 

significance and reliability of the results obtained.  
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2.4.2 Time resolved FRET (TR-FRET) 

In order to overcome the limitations of the classical FRET, an improvement of the technology, 

defined Time Resolved FRET (TR-FRET) has been developed (Degorce et al., 2009). The TR-

FRET is also based on the energy transfer between two proximal fluorophores, but takes 

advantage of the use of rare earth ions as donor fluorohores. These long lived fluorophores 

coupled with a delay between excitation and emission, prevent the generation of signals due to 

autofluorescence or bleed-through (Figure 15). 

 

 
Figure 15. Time resolved FRET. Schematic representation of the fluorescence signals derived from the labeled 

fluorophores and background in a homogeneous sample system. After excitation of the sample the fluorescence of 

the background (grey line) and the direct excitation of the acceptor fluorophore (dark blue) decay rapidly. The 

emission of the donor fluorophore on the other hand has a very long lived emission of up to 1ms (black). The delay 

of ~100μs before the fluorescence measurement allows the separation between the signal and the background 

fluorescences described. A measurable signal will be obtained when donor and acceptor fluorophores are in close 

proximity, thus allowing the energy transfer. Adapted from  Degorce et al, 2009. 
 

The ions used belong to the family of the lanthanides and the most commonly used are samarium 

(Sm), europium (Eu), terbium (Tb), and dysprosium (Dy). They show specific photophysic 

properties, such as a large Stoke's shifts and extremely long emission half-lives (from µsec to 

msec) when compared to more traditional fluorophores. The cryptate lanthanides are engulfed in 

a structure constituted of an organic trisbypyridine cryptate (Alpha, 1987), which provides the 

energy absorption and allows a controlled energy release to the central ion, overcoming the poor 

absorption capacity of the lanthanides (Mathis, 1993). The ion consequently produces long lived 
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fluorescence, with excitation and emission separated by hundreds of nanometers. This results in a 

low background and interference from photobleaching (Dickson et al., 1995). Another advantage 

of the use of these rare earth ions is the presence of an R0 of over 9nm, significantly higher than 

the one normally presented by other fluorophores, and therefore favoring the development of 

assays to measure the interaction between macromolecules (Mathis, 1993). The possibility to 

measure independently at the wavelength relative to donor and acceptor allows the generation of 

a value derived from the ratio between the two signals, thus allowing  to correct assay volume 

errors, as much as signal errors due to quenching or scattering. These properties of TR-FRET 

confer higher reliability and robustness to the method, if compared to other assays (Imbert et al., 

2007). This kind of assay has already been used for several applications such as the detection of 

enzymatic reactions (Bazin et al., 2001), kinase assays, protease assays and the study of post 

translational modifications (Dudek and Horton, 2010, Riddle et al., 2006, Horton and Vogel, 

2010). In the field of neurodegeneration a TR-FRET based immunoassay has been developed in 

order to detect and quantify soluble mut Htt, in a high-throughput applicable manner (Paganetti et 

al., 2009). The use of a combination of two antibodies, directed towards the N-terminus of the 

protein and the polyQ tract allowed a sensitive measurement of mut Htt in different cell types, 

HD animal models as well as in human HD patient samples (Weiss et al., 2009a). The use of Tb 

as a donor fluorophore allows the excitation of two different acceptors simultaneously, d2 and 

Alexa488, as it has multiple emission spectra (Degorce 2009). This advantage consents the 

development of multiplex assays which in the case of HD favor the simultaneous detection of wt 

and mutant protein, using a single donor antibody, Tb labeled, and two acceptors, d2 or Alexa488 

labeled,  and specific for one or the other Htt form (Weiss et al., 2010).  

Overall the TR-FRET technology prevents the appearance of several artifacts, but in high-

throughput applications one must be aware of other artifacts, for example driven by the structures 

of the compounds used (Imbert 2007). The possibility to develop multiplex assay taking 

advantage of the photophysic properties of the fluorophores suggests the possibility to apply the 

technology to investigate the modulation of protein-protein interactions and eventually soluble 

protein and protein aggregates in the same sample. 
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3 AIMS OF THE THESIS 

The mechanisms leading to Huntington‟s disease pathogenesis and to the huntingtin induced 

neurotoxicity are currently unknown. The misfolded conformation acquired by mutant huntingtin 

and the formation of oligomers and aggregates are considered to be potential toxic mechanisms. 

For this reason, my first goal was to investigate strategies to decrease the cellular levels of mutant 

misfolded huntingtin in HD cell models and explore the molecular pathways involved.  

Starting from Hsp90 inhibitor compounds identified from a high-throughput screen aimed at 

identifying modulators of mut Htt degradation, I characterized the molecular interaction of mut 

Htt with the Hsp90 chaperone complex. My data elucidate degradation pathways of mut Htt and 

point to a role of Hsp90 in maintaining its stability in HD cell models.  

Another goal of my studies was the development of a method based on time resolved resonance 

energy transfer to efficiently detect and quantify mut Htt aggregates in HD models. The first 

objective was to establish a technology which was sensitive, simple and applicable in a high 

through-put set up. I used two antibodies binding to different mut Htt epitopes to investigate their 

specificity for different aggregate species. Together with a previously developed assay for soluble 

mut Htt, the newly developed assay facilitates the simultanous measurement of soluble and 

aggregated mutant protein in biological samples. I thus investigated the two forms of mut Htt in 

different HD models, to better characterize disease progression. The mut Htt aggregate assay is 

considered a potential means to monitor the effect of therapeutic treatments for HD.   
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4.1.1 SUMMARY 

Mechanisms to reduce the cellular levels of mutant huntingtin (mut Htt) provide promising 

strategies for treating Huntington‟s disease (HD). To identify compounds enhancing the 

degradation of mut Htt we performed a high throughput screen, using a hippocampal HN10 cell 

line expressing a 573 amino acid mut Htt fragment. Several hit structures were identified as heat 

shock protein 90 (Hsp90) inhibitors. Cell treatment with these compounds reduced levels of mut 

Htt as measured by time-resolved Fluorescence resonance energy transferassays and western 

blots, without overt toxic effects. To characterize the mechanism of mut Htt degradation, we used 

the potent and selective Hsp90 inhibitor NVP-AUY922. In HdhQ150 embryonic stem (ES) cells 

and in ES derived neurons, NVP-AUY922 treatment substantially reduced soluble full-length 

mut Htt levels. In HN10 cells, Hsp90 inhibition by NVP-AUY922 enhanced mut Htt clearance in 

the absence of any detectable heat shock protein 70 (Hsp70) induction. Furthermore, inhibition of 

protein synthesis with cycloheximide or overexpression of dominant-negative heat shock factor 1 

(Hsf1) in HdhQ150 ES cells attenuated Hsp70 induction, but did not affect NVP-AUY922 

mediated mut Htt clearance. Together, these data provided evidence that direct inhibition of 

Hsp90 chaperone function was crucial for mut Htt degradation, rather than heat shock response 

induction and Hsp70 upregulation. Co-immunoprecipitation experiments revealed a physical 

interaction of mut Htt with the Hsp90 chaperone complex. Hsp90 inhibition disrupted the 

interaction and induced clearance of mut Htt through the ubiquitin proteasome system. Our data 

suggest that mut Htt is an Hsp90 client protein and that Hsp90 inhibition may provide a means to 

reduce mut Htt in HD. 

 

4.1.2 INTRODUCTION 

Huntington‟s disease (HD) is a progressive neurodegenerative disease characterized by brain 

atrophy, motor, cognitive and psychiatric symptoms. Patients also suffer from muscle atrophy, 

weight loss and metabolic disturbances. HD is caused by the expansion of a trinucleotide repeat 

resulting in an elongated glutamine stretch close to the N-terminus of the huntingtin protein (The 

Huntington‟s Disease Collaborative Research Group, 1993). The length of the polyglutamine 

expansion correlates with disease onset (Ross and Tabrizi, 2011). The dominant mode of 

inheritance supports the hypothesis that the extended polyglutamine stretch confers a toxic gain 
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of function to huntingtin, possibly due to structural changes of the mutant protein, and aberrant 

interactions with different cellular pathways. Multiple potential pathogenic mechanisms of 

mutant huntingtin (mut Htt) have been proposed including proteasome impairment, mitochondrial 

dysfunction, transcriptional dysregulation, impaired intracellular transport, and cell death induced 

by the formation of toxic aggregates containing N-terminal mut Htt fragments (DiFiglia et al., 

1997, Fecke et al., 2009, Ross and Tabrizi, 2011). Reversal of inducible mut Htt overexpression, 

RNA interference and antisense oligonucleotide studies have all demonstrated amelioration of 

HD-like symptoms upon reduction of mut Htt expression levels (Yamamoto et al., 2000, DiFiglia 

et al., 2007, McBride et al., 2008, Sah and Aronin). Therefore, mechanisms to reduce the cellular 

load of the disease-causing mut Htt protein, such as via enhancement of its clearance and 

degradation, represent promising therapeutic strategies. 

Heat shock proteins play an important role in protein folding and quality control. In the context of 

polyglutamine diseases, such as HD, heat shock protein 70 (Hsp70, Hspa1a/b), Hsp40 (Dnajb1) 

and Hsp90 (Hsp90aa1, Hsp90ab1) have been the subject of several studies. Elevation of Hsp70 

levels has been found to be neuroprotective in several animal models (Turturici et al., 2011). For 

instance, Hsp70 overexpression suppressed neuropathology and improved motor function in a 

spinocerebellar ataxia mouse model (Cummings et al., 2001). Further, Hsp70 and Hsp40 

attenuated assembly of polyglutamine proteins into amyloid-like fibrils (Muchowski et al., 2000, 

Lotz et al., 2010). 

Hsp90 comprises about 1-2 percent of total cellular protein (Taipale et al., 2010). It uses ATP 

hydrolysis to fold and maturate client proteins and interacts with more than 20 co-chaperones. 

Notably, Hsp90 is described to preferentially bind to partially folded intermediates suggesting a 

role in the maturation of metastable proteins, late in their folding pathway (Pratt and Toft, 2003, 

Taipale et al., 2010). Currently more than 200 Hsp90 clients have been identified, including a 

range of oncogenic proteins (Kamal et al., 2004).  Hsp90 inhibitors, such as the geldanamycin 

derivatives 17-allylamino-17-demethoxygeldanamycin (17-AAG) and 17-

dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) as well as other structural 

classes, including NVP-AUY922, are in clinical development as cancer therapies (Kamal et al., 

2003, Kamal et al., 2004). Pharmacological inhibition of Hsp90 induces a heat shock response 

(HSR) after release of the transcription factor heat shock factor-1 (Hsf1) from the Hsp90 

chaperone complex. Hsf1 in turn induces the expression of other heat shock proteins such as 

Hsp70 (Taipale et al., 2010, Turturici et al., 2011). Upregulation of Hsp70 after Hsp90 inhibition, 
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using geldanamycin, inhibited mut Htt exon1 protein aggregation (Sittler et al., 2001) whereas 

loss of Hsp70 exacerbated pathogenesis in a mouse model of HD (Wacker et al., 2009). 

We conducted a high throughput screen aimed at identifying molecules enhancing degradation or 

clearance of soluble mut Htt. Among the non-toxic hits identified reducing mut Htt levels without 

overt toxic and non-specific effects, a single class of compounds possessed a known mechanism 

of action, Hsp90 inhibition. Unexpectedly, the HSR induced after Hsp90 inhibition was not 

required for the degradation of soluble mut Htt. We provide evidence that mut Htt is a client 

protein of Hsp90 and that the chaperoning function of Hsp90 is critical for maintaining the 

stability of mut Htt in different cellular systems. Pharmacological inhibition of Hsp90 

destabilizes mut Htt and facilitates its clearance through the ubiquitin proteasome system (UPS). 

 

4.1.3 MATERIALS AND METHODS 

 

High throughput screening. 

The screen was conducted in a 1536-well format as described previously (Paganetti et al., 2009). 

Picogreen (Invitrogen, #P11495; 1:1200) and caspase 3/7 (Promega, #G8091) assays to exclude 

putative toxic compounds were performed according to instructions from the manufacturer. 

Cell lines- HN10-Htt cell lines were cultured as described (Weiss et al., 2009b). Htt expression 

was induced by the addition of 750 nM RSL1 to the growth medium. Mouse embryonic stem 

(ES) cells expressing 1000 aa or full length mut Htt (Q145) from the ROSA26 locus, and 

HdhQ150 ES cells (Lin et al., 2001) were cultured in 3i–medium (Ying et al., 2008). Neurons 

were derived from ES cells as described (Bibel et al., 2007). HEK293T cells were cultured in 

DMEM supplemented with Glutamax (Invitrogen, #32430) and 10% fetal calf serum.  

 

Plasmids and transient transfections. 

 HEK293T cells were transfected using Lipofectamine 2000 (Invitrogen, #11668-019). The 

following plasmids were used in transient transfections: human Htt573Q72/ pER (CMV 

promoter); hemagglutinin (HA) tagged ubiquitin/ pSG5 (SV40 promoter). Hsf1 dominant 

negative/ pcDNA5 (Heldens et al., 2010); GFP/ pLL3.7 (CMV promoter). 
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Western Blot and antibodies. 

 Cells were harvested and lysed in ice-cooled lysis buffer (phosphate buffered saline, Invitrogen 

#14190; 1 % Triton X100), containing protease inhibitors (Roche complete, 11836145001). 

Lysates were kept on ice for 15 min before centrifugation for 10 min at 13000 rpm at 4 °C. The 

BCA assay (Thermo Scientific, 23227) was used for protein quantification. Samples were diluted 

in NuPAGE loading buffer (Invitrogen, NP0007; NP0009) and heated 10 min at 95 °C. The 

samples (ES cells: 15 µg; HN10 cells: 10 µg) were loaded onto 4-12 % NuPAGE Bis-Tris gels or 

3-8 % Tris-acetate gels (Invitrogen, NP0335, EA03752). Semi dry protein transfer (Ancos, 

LV8428062) to PVDF membranes (Millipore, Immobilon-P PVH00010) was performed in 

NuPAGE transfer buffer (Invitrogen, NP0006-1) for one hour at 15 V  and the membrane was 

then incubated for one hour in 20 mM Tris-Cl, 137 mM NaCl, pH 7.6, 0.1 % Tween 20, 5 % (w/ 

v) dried milk. Incubation with primary antibodies was done over-night (o/N) at 4 °C; before 

secondary horseradish peroxidase conjugated goat anti-mouse (Chemicon, AP127P) or goat anti-

rabbit antibodies (Jackson ImmunoResearch, 111-035-144) were applied for one hour. The ECL 

reagent (GE Healthcare, Amersham) was used for protein visualization. Densitometric 

quantification of Hsp70 was done from X rays using the ImageJ software (signals were 

normalized to tubulin). The following primary antibodies were used: 2B7 (anti Htt; custom 

production by NanoTools, Freiburg, Germany); MW1 (anti polyQ; Developmental Studies 

Hybridoma Bank; (Ko et al., 2001); Hsp90 (Stressgen SPS-771; Stressgen SPA-830); Hsp25 

(Stressgen SPA-801); Hsp40 (Stressgen SPA-400); Hsp70 (Stressgen SPA-810); Hsf1 (Stressgen 

SPA-901); α-tubulin (Abcam ab28037); Akt (Cell Signalling 9272); phospho-Akt (Cell 

Signalling 9271), ubiquitin (Millipore MAB1510); p23 (Alexis ALX-804-023); HA (Roche 

12CA5).  

 

Co-immunoprecipitation. 

 HN10 and ES cells were lysed (dounce homogenizer) in ice-cold IP lysis buffer (20 mM Tris-

HCl pH 7.4, 50 mM NaCl, 5 mM MgCl2, 1 mM EDTA, 20 mM Na-molybdate, 4 mM Na-

orthovanadate, 0.02 % Nonidet-P40, Roche complete protease inhibitors). The samples were left 

on ice for 15 min and centrifuged 10 min, 13000 rpm at 4 °C. 150 µl of lysate (approximately 

150 µg protein) were incubated o/N with 2 µg of Hsp90 or p23 antibody. Afterwards the samples 

were incubated for 30 min with 15 µl of protein G-sepharose 4 fast flow beads (GE Healthcare, 

17-0618-01) and subsequently washed three times with lysis buffer and once in lysis buffer 
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containing 20 mM Hepes pH 8.0. NuPAGE loading buffer was added to the dried beads and the 

samples heated for 10 min at 95 °C. 

 

Compounds. 

NVP-AUY922 was synthesized at Novartis (10 mM stock solution in dimethylsulfoxide 

(DMSO)). Proteasome inhibitors epoxomicin and MG132 (Calbiochem (#324800; #474790); 

cycloheximide (Sigma-Aldrich), and RSL1 (New England Biolabs) were used. 

 

Ubiquitination assay.  

HEK293T cells were transiently transfected with HA-ubiquitin and Htt573Q72 plasmids. After 

24 hours the medium was replaced and the cells treated o/N with Hsp90 and/ or proteasome 

inhibitors. Two days after transfection the cells were lysed  in 50 mM HEPES pH 8.0, 250 mM 

NaCl, 5 mM EDTA, 0.1 % Nonidet-P40; Roche complete protease inhibitors) and aliquots 

(approximately 500 µg total protein) were incubated o/N with 5 µg of anti Htt 2B7 antibody and 

subsequently for 30 min with 15 µl of protein G-sepharose 4 beads. HA-ubiquitin 

immunoprecipitation was done using an anti-HA magnetic beads kit (µMACS HA, Miltenyi 

Biotec).  

 

Time resolved fluorescence resonance energy transfer (TR-FRET). 

 Assays were performed as described previously (Paganetti et al., 2009, Weiss et al., 2009a, 

Weiss et al., 2010). Briefly, cells were lysed in PBS, 1 % Triton X100 and incubated at room 

temperature for 30 min with shaking. Then 5 µl of lysate (HN10 cells: 2 µg; ES cells: 5 µg) was 

transferred to a low-volume plate (Greiner Bio-one, #784080) and 1 µl of antibody mix added. 

For detection of Htt573Q72 expressed from the HN10 cell line the antibodies 2B7-Terbium (Tb)/ 

β1-d2 (intact Htt573Q72) or 2B7-Tb/ MW1-d2 (total Htt573Q72) were used. Mut Htt expressed 

from HdhQ150 cells was measured with 2B7-Tb, MW1-D2. Fluorophore labeling of antibodies 

was performed by CisBio Bioassays (Parc Marcel Boiteux, France). TR-FRET measurements 

were done after one hour incubation at room temperature using an EnVision Reader (Perkin 

Elmer, excitation 320 nm, time delay 100 msec; integration time 400 msec). Values (means from 

at least 3 experiments ± SD; duplicate or triplicate determinations) are expressed as ratio between 

the emission at 665 nm and 620 nm; background signals (antibodies in lysis buffer) were 

subtracted. The t-test was used to assess significance. 
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4.1.4 RESULTS 

 

A high throughput screen identifies Hsp90 inhibitors as enhancers of mutant huntingtin 

degradation.  

Our aim was to identify mechanisms to reduce cellular levels of soluble mutant huntingtin (mut 

Htt). To this end screening of the Novartis compound library (approximately 2 x 10
6 

compounds) 

was performed, using a mouse hippocampal HN10 cell line expressing an inducible β1 epitope 

tagged, 573 amino acid N-terminal fragment of human Htt with 72 glutamine residues 

(Htt573Q72) as described (Weiss et al., 2009b). This cell line does not produce readily detectable 

mut Htt aggregates. Soluble mut Htt levels were measured using a sensitive, homogeneous time-

resolved fluorescence resonance energy transfer (TR-FRET) assay (Paganetti et al., 2009, Weiss 

et al., 2010). Toxic compounds and structures which interfered with the TR-FRET assay readout 

were excluded as described (Paganetti et al., 2009). Compounds affecting mut Htt levels by 

inhibition of the inducible expression system were identified in HN10 cells expressing Gaussia 

luciferase from the expression vector as used for mut Htt (not shown). The remaining hits were 

then selected for further validation (Figure 16A). Compounds reducing mut Htt protein levels 

were confirmed in concentration response curves and effects compared to readouts for 

cytotoxicity, such as caspase 3 activation and DNA fragmentation (Figure 16B). After review of 

the chemical structures it became apparent that several hits, comprising different structural 

classes, had previously been characterized to act by a common mechanism of action, ATP 

competitive inhibition of Hsp90. Hsp90 inhibitory activity of compounds identified from the 

screen was confirmed in radicicol binding assays as described (not shown) (Schilb et al., 2004). 

The compounds caused a concentration-dependent reduction of the Htt573Q72 protein expressed 

in the HN10 cell line as measured by TR-FRET and western blot readouts, without overt 

cytotoxic effects (Figure 16B).  
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Figure 16. A high throughput screen identifies Hsp90 inhibitors as modulators of mut Htt degradation. A. 

Visualization of primary screen data for compounds with known mode of action. The Hsp90 inhibitor compounds are 

labeled. The dotted line denotes the cut-off used for hit selection (3 x SD). B. Examples of profiles of three different 

Hsp90 inhibitor structures identified from the screen by biochemical (upper panel) and western blot analysis (lower 

panel). TR-FRET detection of the entire Htt573Q72 fragment was measured with the antibody combination (2B7-Tb 

and β1-d2) binding to the N-terminal 17 amino acids of Htt and to the C-terminal β1 tag, respectively (intact Htt). 

MW1-d2 binds to the polyQ region of mut Htt and in combination with 2B7-Tb to detect N-terminal mut Htt 

fragments (total Htt). DNA fragmentation (picogreen) and caspase 3 activation assays were done to assess 

cytotoxicity.  
  

For further characterization of the mechanism of mut Htt clearance after Hsp90 inhibition we 

used a potent and selective Hsp90 inhibitor compound that had previously been described, NVP-

AUY922 (Brough et al., 2008, Eccles et al., 2008). In a similar manner to the Hsp90 inhibitors 

shown under Fig. 16B, NVP-AUY922 concentration-dependently reduced Htt573Q72 protein 

levels. o/N application of 30 nM or higher concentrations to HN10-Htt573Q72 cells significantly 

reduced mut Htt protein as evidenced by western blots and quantified using TR-FRET (p < 0.001; 

Figure 17A, C). The expression of endogenous wild-type (wt) Htt in HN10 cells was also 

reduced, however with lower efficacy (Figure 17A). NVP-AUY922 treatment reduced the levels 
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of phosphorylated Akt (pAkt) and to a lesser extent also of the non-phosphorylated form, as 

expected for an Hsp90 client protein (Pratt and Toft, 2003). Interestingly, in HN10 cells NVP-

AUY922 did not induce Hsp70 protein expression, an established marker for the HSR after 

Hsp90 inhibition (Figure 17; Figure 19A) (Taipale et al., 2010, Turturici et al., 2011). The 

observed potency of NVP-AUY922 correlated well with IC50 values from binding experiments of 

21 nM and 8 nM at Hsp90β and Hsp90α, respectively (Eccles et al., 2008).  

To rule out the possibility that the observed effects of NVP-AUY922 on Htt degradation were 

mediated by interference with the inducible expression system used, cells were cultured in 

medium without the inducer ligand RSL1 from the time of Hsp90 inhibitor application onwards 

(Figure 17D, F). Under these conditions Htt573Q72 protein clearance was also significantly 

enhanced compared to DMSO, vehicle treatment (p < 0.001). To assess the selectivity of the 

effect over wt Htt, the Hsp90 inhibitor was applied to a HN10 cell line expressing both the 

mutant (Htt573Q72) and the wt (Htt573Q25) Htt fragments. NVP-AUY922 treatment affected 

both mutant and wt forms however the decline of mut Htt appeared more pronounced compared 

to the wt (Htt573Q72) fragment (Figure 17B, E).  
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Figure 17. Pharmacological Hsp90 inhibition induces mut Htt degradation. HN10-Htt cell lines were cultured 

three days in medium containing RSL1 to induce Htt expression. The cells were then treated with NVP-AUY922 as 

indicated in RSL1 containing medium (A-C, „steady state‟, harvest after 24h) or in medium without RSL1 to turn off 

inducible Htt expression (D-F, „wash out‟, harvest after 16h). Western blot analysis (A, D) and TR-FRET 

quantification (C, F) of NVP-AUY922 effects in HN10-Htt573Q72 cells. B, E. Western blots of HN10 cells co-

expressing mutant (Htt573Q72) and wt (Htt572Q25) fragments (2B7 antibody). mut Htt quantification by TR-FRET 

was done with 2B7-Tb and MW1-d2 antibodies; values are expressed as 665 nm/ 620 nm emission ratios; **p < 

0.001, n = 3. 

 

We extended our studies to knock-in HdhQ150 ES cells expressing full-length mut Htt (Figure 

18). As observed for the HN10 cell line, the presence of NVP-AUY922 reduced both mutant and 

wt Htt, as shown by western blots with mut Htt- (MW1) and pan-selective Htt antibodies (2B7; 

Figure 18A). The MW1 antibody binds to expanded polyQ only and does not detect wt Htt 

(Weiss et al., 2010). In contrast to HN10 cells NVP-AUY922 induced a strong up-regulation of 

Hsp70 in ES cells (Figure 17, Figure 18). Lysates were analyzed at different time points after 
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initiating treatment (Figure 18B). 0.3 µM NVP-AUY922 caused a significant reduction of mut 

Htt compared to control treated cells after 36 hours (p < 0.01; Figure 18B).  
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Figure 18. NVP-AUY922 application reduces levels of full-length mut Htt in HdhQ150 ES cells and in ES 

derived neurons. HdhQ150 ES cell (heterozygous) western blot data for mut Htt and selected marker proteins after 

o/N application (A) or application of 0.3 µM NVP-AUY922 for different time frames (B) are shown. Lower panel in 

B: quantification of mut Htt by TR-FRET (2B7-Tb; MW1-d2; *p = 0.012; **p = 0.006 versus DMSO at time points, 

n = 3). C. ES cells expressing full-length mut Htt with 145 glutamine derived neurons residues were differentiated 

into neurons and cultured for 14 days. NVP-AUY922 at the different concentrations indicated was applied o/N or for 

the indicated time points; upper panel: western blots, lower panel: quantification of mut Htt by TR-FRET (2B7-Tb, 

MW1-d2); *p = 0.002; **p < 0.001 (versus DMSO, n = 3). 

 

To investigate the effect of Hsp90 inhibition on full-length human mut Htt in a neuronal context, 

mouse ES cells expressing mut Htt were differentiated into neurons as described (Bibel et al., 
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2007). NVP-AUY922 reduced concentration- and time-dependently mut Htt protein levels as 

measured by western blot and TR-FRET (Figure 18C). As observed with HdhQ150 ES cells, 

NVP-AUY922 caused a concentration-dependent induction of Hsp70 protein expression (Figure 

18C). 

 

Inhibition of Hsp90 chaperone function rather than induction of a heat shock response is 

critical for NVP-AUY922 induced degradation of soluble mut Htt. 

 Pharmacological Hsp90 inhibition can facilitate protein degradation either through disruption of 

the Hsp90 chaperone/ client protein complex or indirectly via Hsf1 mediated upregulation of 

other heat shock proteins, such as Hsp70 and Hsp40. We noted a lack of Hsp70 and Hsp25 

(Hspb1) induction after NVP-AUY922 treatment in the HN10 cell line used in the primary screen 

(Figure 19A) suggesting that the HSR is not essential for the degradation of soluble mut Htt after 

Hsp90 inhibition. Application of 0.3 µM of the protein synthesis inhibitor cycloheximide to 

HN10 cells for 24 hours did not block NVP-AUY922 induced mut Htt degradation (Figure 19B). 

Similarly, cycloheximide did not affect mut Htt degradation in HdhQ150 cells, but completely 

abolished Hsp70 induction (Figure 19C). Furthermore, overexpression of dominant negative Hsf1 

(Hsf1-DN) (Heldens et al., 2010) in HdhQ150 cells attenuated Hsp70 induction but did not block 

mut Htt degradation induced by NVP-AUY922 (Figure 19D). The data suggested that Hsp90 

inhibition mediated degradation of soluble mut Htt was independent of Hsp70 induction. 
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Figure 19. Degradation of mut Htt after Hsp90 inhibition does not require induction of Hsp70. A. Western 

blots analysis of expression of heat shock proteins in lysates from HN10-Htt573Q72 (HN10) and HdhQ150 cells. In 

contrast to HdhQ150 cells, 0.3 µM NVP-AUY922 does not induce Hsp70 and Hsp25 in HN10 cells. B. C. 

Application of 0.3 µM cycloheximide for 24 hours to HN10 (B) or HdhQ150 cells (C) does not abolish mut Htt 

degradation induced by 0.3 µM NVP-AUY922 (24 h application; control DMSO; n = 4). HN10-Htt573Q72 cells 

were cultured in medium without expression inducer ligand RSL1 from the time of compound addition on („wash 

out‟). In HdhQ150 cells 0.3 µM cycloheximide abolishes Hsp70 induction. D. Transient overexpression (36 hours) 

of Hsf1-DN in HdhQ150 cells attenuates NVP-AUY922 induced Hsp70 induction (*p < 0.01 versus GFP; n = 3) but 

does not affect mut Htt degradation (**p < 0.001 versus DMSO, n = 6). B-D. upper panels: mut Htt TR-FRET and 

Hsp70 quantifications, lower panels: western blots. 

 

mut Htt is a client protein of Hsp90. 

 Co-immunoprecipitation experiments were performed on HN10-Htt573Q72 cells treated for 4 

hours with NVP-AUY922 (5 µM) or DMSO (Figure 20A). An antibody directed against Hsp90 

co-immunoprecipitated Htt573Q72 as well as the Hsp90 co-chaperone p23 (Johnson and Toft, 

1995) from lysates of DMSO, but not from NVP-AUY922 treated cells. Likewise, Htt573Q72 
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and Hsp90 were co-immunoprecipitated by p23 antibodies from lysates of DMSO but not from 

NVP-AUY922 treated cells (Figure 20A). Pharmacological Hsp90 inhibition promotes 

dissociation of p23 from the Hsp90/ client protein complex (Johnson and Toft, 1995) and thus the 

absence of co-immunoprecipitation after compound treatment, provided a control for Hsp90 

inhibition by NVP-AUY922. Hsp90/ mut Htt co-immunoprecipitation was also observed in 

lysates from ES cells expressing either an N-terminal 1000 amino acid fragment or full-length 

mut Htt (Figure 20B). Again, the molecular interaction was disrupted after Hsp90 inhibitor 

treatment. In summary, the co-immunoprecipitation data suggested that mut Htt is a client protein 

of Hsp90 and that inhibition of Hsp90 chaperoning activity led to destabilization and subsequent 

degradation of mut Htt. 
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Figure 20. Mut Htt interacts with the Hsp90 chaperone complex.  A. Induced HN10-Htt573Q72 cells were 

incubated for 4 hours with NVP-AUY922 (5 µM) or DMSO in medium without expression inducer ligand RSL1 

(„wash out‟). Immunoprecipitation was done using the antibodies as indicated. Whole cell lysates (lysate) were 

loaded as control. B. Anti Hsp90 antibody co-immunoprecipitates mut Htt from ES cell lines expressing either a full 

length (fl) or a 1000 amino acid N-terminal fragment transgene (1000aa) with 145 glutamine residues. NVP-

AUY922 or DMSO application was for 4 hours. Note that full length transgenic mut Htt (fl) migrates close to wt Htt 

endogenously expressed from the cells, and that there is a non specific band at the size of the 1000aa fragment 

detected with Htt antibody 2B7.  

 

Hsp90 inhibition facilitates mut Htt degradation through the proteasome. 

 To investigate further the mechanisms of mut Htt clearance after Hsp90 inhibition HN10-

Htt573Q72 cells were treated with NVP-AUY922 at different concentrations in the presence or 
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absence of the proteasome inhibitor epoxomicin. In the presence of NVP-AUY922 mut Htt levels 

were again reduced as measured by both western blot and TR-FRET (Figure 21A, B). 

Epoxomicin co-treatment attenuated mut Htt degradation suggesting that mut Htt clearance after 

Hsp90 inhibitor treatment was, at least in part, mediated through the proteasome. To further 

investigate mut Htt degradation kinetics HN10-Htt573Q72 cells were cultured for three days in 

medium containing 750 nM of the mut Htt expression inducing ligand RSL1. Subsequently the 

cells were cultured in non-inducing medium (wash out) in the presence or absence of 5 µM NVP-

AUY922 and/ or 50 nM epoxomicin. Western blot analysis and mut Htt quantifications by TR-

FRET demonstrated that Htt573Q72 degradation was not significantly affected by epoxomicin 

when applied alone. However, Hsp90 inhibition by NVP-AUY922 facilitated mut Htt 

degradation, which was partially attenuated by proteasome inhibition with epoxomicin (Figure 

21C, D). We concluded that mut Htt became a substrate for the ubiquitin proteasome system 

(UPS) when released from the Hsp90 complex. 
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Figure 21. Hsp90 inhibition induces proteasome-dependent Htt degradation. Induced HN10-Htt573Q72 cells 

were treated o/N with epoxomicin and/ or NVP-AUY922 at different concentrations indicated A, B. Application of 

NVP-AUY922 reduces mut Htt protein and this effect is partly attenuated by 200 nM epoxomicin. A. mut Htt 

western blot detection with 2B7; B. mut Htt quantification by TR-FRET; n = 3. C. Hsp90 inhibition accelerates mut 

Htt degradation kinetics. HN10-Htt573Q72 cells were cultured in medium without expression inducer ligand RSL1 

from the time of NVP-AUY922/ epoxomicin treatment on. D. Quantification of NVP-AUY922 induced mut Htt 

degradation by TR-FRET (n = 3) in the presence or absence of 50 nM epoxomicin. Cells as under (C) were harvested 

at different time points indicated. NVP-AUY922 induced mut Htt degradation is partly reversed by epoxomicin. 
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Ubiquitination of mut Htt is increased upon Hsp90 inhibition. 

 Proteasomal degradation requires protein polyubiquitination. We failed to conclusively 

demonstrate ubiquitination of the Htt573Q72 fragment expressed from the HN10 cell line, 

probably due to limited detection sensitivity (not shown). Therefore, we switched to a transient 

expression system. Plasmid constructs expressing hemagglutinin-tagged (HA) ubiquitin and 

Htt573Q72 were transiently transfected into HEK293T cells. The cells were then treated over-

night with the Hsp90 inhibitor NVP-AUY922 in the presence or absence of the proteasome 

inhibitor MG132. Immunoprecipitation was conducted with antibodies directed against HA and 

Htt (Figure 22). Proteasome inhibition revealed basal levels of mut Htt ubiquitination that 

increased robustly in the presence of Hsp90 inhibition, supporting the conclusion that Hsp90 

inhibition triggered Htt ubiquitination (Figure 22).  
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IP: HA

WB: Htt
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Figure 22. Mut Htt is ubiquitinated upon Hsp90 inhibition. HEK293T cells were transiently transfected with 

expression constructs for Htt573Q72 and HA-tagged ubiquitin. 24 hours later 1 µM NVP-AUY922, 5 µM 

proteasome inhibitor MG132 or a combination of the two was applied o/N. Immunoprecipitation was performed 

using anti-HA (Roche, 12CA5) and anti-Htt antibodies (2B7). 
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4.1.5 DISCUSSION 

 

We identified Hsp90 inhibitors as enhancers of mut Htt degradation from a high throughput 

compound screen. The screen was aimed at exploring mechanisms reducing cellular levels of 

soluble mut Htt as this would be expected to lead to a reduction of the total cellular pool of mut 

Htt including aggregates and other, potentially toxic intermediate forms of mut Htt. Treatment 

with the potent and selective Hsp90 inhibitor NVP-AUY922 reduced mut Htt levels in different 

cell types including ES derived neurons (Figure 17, Figure 18).  

To investigate a possible selective effect on mut Htt, a HN10 cell line co-expressing both mutant 

(Htt573Q72) and wt (Htt573Q25) forms was analyzed. NVP-AUY922 induced reduction of 

mutant Htt573Q72 appeared to be more pronounced compared to the wt Htt573Q25 fragment 

(Figure 17 B, E). However, different expression levels of mutant and wt Htt forms in this cell line 

and potentially different degradation kinetics in the absence of Hsp90 inhibition (see Figure 17E; 

DMSO) prevented a definite conclusion. In HdhQ150 cells both mutant and wt full-length Htt 

were influenced by Hsp90 inhibitor treatment. However, substantially lower protein expression 

levels of mutant compared to wt Htt prohibited a meaningful quantification of NVP-AUY922 

effects in this cell line. In summary, although a somewhat preferential effect on mut Htt cannot 

be excluded it is evident that Hsp90 inhibition by NVP-AUY922 enhanced the clearance of both 

mutant and wt Htt (Figure 17, Figure 18). Genetic inactivation of both Htt alleles is lethal during 

development, demonstrating essential functions of wt Htt (Duyao et al., 1995). Therefore, the 

value of mechanisms targeting both mutant and wt Htt remains questionable. However, siRNA 

and antisense oligonucleotide approaches targeting both mutant and wt Htt ameliorated HD-like 

symptoms and did not produce overt side effects in animal models (Sah and Aronin, 2011), 

suggesting that a concomitant decrease of both mutant and wt Htt may be beneficial in HD. 

Disruption of the Hsp90-client complex facilitates proteasomal degradation of client proteins 

(Taipale et al., 2010). Hsp90 inhibitors also induce a stress response via Hsf1 leading to 

upregulation of other heat shock proteins such as Hsp70 and Hsp40. This can mediate an indirect 

clearance of protein aggregates especially via Hsp70-dependent E3 ubiquitin ligases (Taipale et 

al., 2010, Turturici et al., 2011). We identified Hsp90 inhibitors in a screen using an Htt573Q72 

overexpressing hippocampal HN10 cell line. In this cell line mut Htt however was reduced after 

Hsp90 inhibitor treatment in the absence of any detectable Hsp70 induction (Figure 17, Figure 
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19). In contrast, the Hsp70 antibody used readily detected a strong upregulation of Hsp70 after 

NVP-AUY922 treatment of mouse HdhQ150 ES cells and in mouse ES derived neurons (Figure 

18, 19). In support of the HN10 cell data, a previous study on rat primary hippocampal neurons 

documented a lack of Hsf1 and Hsp70 induction after heat shock, in contrast to several other 

neuronal cell types investigated (Kaarniranta et al., 2002). Inhibition of protein synthesis with 

cycloheximide or overexpression of dominant negative Hsf1 attenuated Hsp70 induction in 

HdhQ150 cells but did not inhibit NVP-AUY922 induced mut Htt degradation (Figure 19) 

demonstrating that disruption of the Hsp90-client protein complex, rather than Hsp70 induction, 

facilitated mut Htt clearance. Studies on the androgen receptor (AR) mutated in spinobulbar 

muscular atrophy further support the notion that destabilizing the Hsp90/ client protein complex 

can induce clearance of polyglutamine proteins independently of a HSR. 17-AAG-induced 

clearance of mutant AR appeared uncoupled from Hsp70 as only limited amounts of Hsp70 and 

Hsp40 were induced in vivo (Waza et al., 2005). Furthermore, the Hsp90 inhibitor 17-DMAG 

enhanced proteasomal clearance of mutant AR even when Hsp70 induction was blocked by 

siRNAs (Tokui et al., 2009). Moreover, Hsp90 inhibition blocked the formation of mutant AR 

aggregates in Hsf1 knock-out mouse embryonic fibroblasts that cannot induce Hsp70 and Hsp40 

(Thomas et al., 2006). In summary, the data provide strong evidence that the mechanism of 

Hsp90 inhibitor mediated degradation of soluble mut Htt is the disruption of the Hsp90/ mut Htt 

client protein complex. Of note, a recent study has revealed an impairment of the HSR in HD 

mouse models (Labbadia et al., 2011). Our data suggest that the HSR is not essential for Hsp90 

mediated degradation of soluble mut Htt. 

Co-immunoprecipitation revealed a physical interaction of mut Htt with the Hsp90 chaperone 

complex (Figure 20) and pharmacological inhibition of Hsp90 induced mut Htt degradation 

(Figure 16 - 19). Thus, considering established criteria for Hsp90 clients (Taipale et al., 2010), 

our data support the conclusion that mut Htt is a client protein of Hsp90. Proteasome inhibition 

partially attenuated the clearance of mut Htt after NVP-AUY922 treatment (Figure 21), 

demonstrating that degradation through the ubiquitin proteasome system (UPS) is facilitated after 

release of mut Htt from the Hsp90 chaperone complex. In support of this degradation pathway 

mut Htt ubiquitination was increased after Hsp90 inhibition (Figure 22). Possibly, Hsp90-

associated mut Htt remains protected from the intervention of ubiquitin-ligases, thereby 

explaining why mut Htt becomes a substrate for UPS-degradation when dissociated from the 

Hsp90 complex. Nevertheless, in the presence of NVP-AUY922, mut Htt degradation was only 
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partially attenuated by proteasome inhibition. This may provide evidence for additional, yet to be 

elucidated, epoxomicin-independent cellular degradation pathways of mut Htt. The cellular 

mechanisms of mut Htt degradation and a possible contribution of altered UPS functionality to 

disease pathology are still under debate. While some studies reported an impairment of the UPS 

others concluded that mut Htt does not lead to proteasomal dysfunction (Bowman et al., 2005, 

Bennett et al., 2007, Hunter et al., 2007, Ortega et al., 2010). In the transgenic R6/2 models of 

HD, which is characterized by rapid disease progression, proteasome activity was not altered 

compared to wt mice (Bett et al., 2006).  

In conclusion, our data show that clearance of soluble Htt in different cellular systems including 

ES derived neurons can be induced via Hsp90 inhibition. Mut Htt is stabilized by the Hsp90 

chaperone complex and pharmacological inhibition facilitates mut Htt release and proteasomal 

degradation. This effect is independent of a general HSR and Hsp70 induction. Since Hsp90 

inhibition is expected to influence a variety of client proteins it is currently uncertain if targeting 

Hsp90 is selective enough to provide a means for therapeutic intervention in HD. However, 

further investigation of Hsp90 inhibitors and of mechanisms targeting Hsp90 co-chaperone 

functions in HD appear warranted. 
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4.2.1 SUMMARY 

Huntington disease (HD) is an inherited neurodegenerative disorder caused by the amplification 

of a polyglutamine stretch at the N-terminus of the huntingtin protein. N-terminal fragments of 

the mutant huntingtin (mut Htt) aggregate and form intracellular inclusions in brain and 

peripheral tissues. Aggregates are an important hallmark of the disease, translating into a high 

need to measure and quantify them in vitro and in vivo. We developed a one-step TR-FRET 

based immunoassay to quantify soluble and aggregated mut Htt in cell and tissue homogenates.  

Strikingly, quantification reveals inverse correlation of soluble and aggregated mut Htt in primary 

neuronal cell cultures, transgenic R6/2 and HdhQ150 knock-in HD mice. These results 

emphasize the assay‟s efficiency for highly sensitive and quantitative detection of soluble and 

aggregated mut Htt and its application in high throughput screening and characterization of HD 

models. 

 

4.2.2 INTRODUCTION 

Huntington‟s disease (HD) is an autosomal dominant neurodegenerative disease caused by the 

amplification of a polyglutamine (polyQ) stretch at the N-terminus of the huntingtin protein (Htt) 

(The Huntington‟s Disease Collaborative Research Group, 1993). N-terminal fragments of 

mutant Htt (mut Htt) are generated by proteolytic cleavage and acquire a misfolded conformation 

through the polyQ stretch, leading to the formation of nuclear and cytoplasmic aggregates 

(Hazeki et al., 1999, Lunkes et al., 2002, Wang et al., 2008a, Landles et al., 2010). 

HD is characterized by progressive deposition of these insoluble aggregates involving the 

formation of intermediate states (fibrils and oligomers), whose precise composition and structure 

is still under investigation (Hoffner et al., 2005, Ratovitski et al., 2009, Legleiter et al., 2010). 

Whether the aggregates have a toxic role is still controversial (Gutekunst et al., 1999, Kuemmerle 

et al., 1999, Wanker, 2000) but the correlation between disease status and aggregate load found in 

post-mortem brains from HD patients highlights the importance to quantify their formation 

(DiFiglia et al., 1997, Gutekunst et al., 1999, Maat-Schieman et al., 1999). 

When expressed in mice, mut Htt is highly pathogenic. For instance, R6/2 mice express an Exon1 

mut Htt fragment with ~200 polyQ and develop an aggressive form of the disease with strong 

aggregation in the brain and peripheral tissues (Mangiarini et al., 1996, Stack et al., 2005). 
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HdhQ150 knock-in mice, generated by introducing 150 polyQ in the endogenous Htt gene, show 

slower aggregate formation and disease progression (Mangiarini et al., 1996, Stack et al., 2005, 

Woodman et al., 2007, Sathasivam et al., 2010).  

In order to evaluate a treatment effect on the modulation of aggregate load and to better 

characterize the role of aggregated and soluble mut Htt in the disease, sensitive and quantitative 

detection methods for different forms of mut Htt are essential. Currently mut Htt aggregate 

determination involves labor-intensive biochemical techniques (filter trap or AGERA (Wanker et 

al., 1999, Weiss et al., 2008)), a Seprion ligand based ELISA (Sathasivam et al., 2010), or 

immunohistochemistry assays which are often semiquantitative, therefore not sensitive enough to 

detect small variations (Hazeki et al., 2002, Mitsui et al., 2006).  

In this study we combined the advantages of a TR-FRET assay - sensitivity, robustness, speed, 

usage of small volumes and duplexing potential - with the principle of using a single monoclonal 

antibody for detection of aggregated mut Htt, as shown for ELISA based detection of multimeric 

-synuclein or amyloid- peptide in human samples (El-Agnaf et al., 2006, Fukumoto et al., 

2010). The development of this new technology enables for the simultaneous quantification of 

small variations in mut Htt aggregate load during disease progression in comparison to changes 

affecting the soluble pool of the mutant protein. Next to its application for characterizing HD 

models, due to its sensitivity and simplicity, the method is also applicable to high throughput 

screenings to evaluate modifiers of disease progression. 

 

4.2.3 MATERIALS AND METHODS 

 

Antibodies. 

MW1 and MW8 antibodies were developed by Paul Patterson (Ko et al., 2001) and obtained from 

the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and 

maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. 

Generation and characterization of 2B7 was described previously (Weiss et al., 2009a). 4C9 

antibody was raised against the human polyproline region in exon1 of the Huntingtin protein. 

Generation and characterization of 1 antibody was described previously (Paganetti et al., 1996). 
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Tissue homogenization and aggregates ultracentrifugation. 

Crude tissue homogenates were prepared by homogenization in 10 volumes (w/v) of PBS+1% 

TritonX100+Complete Protease Inhibitor (Roche, Switzerland) using preCellys tubes (Precellys) 

and 2 lysis cycles of 10” at 6000rpm. Total homogenate protein concentration was determined 

with BCA assay (Thermo Scientific). 

For the generation of soluble and insoluble, aggregates mutant Huntingtin fractions, 1ml R6/2 

and wt brain tissues (~100ug) were homogenized using a dounce homogenizer in PBS+1% 

TritonX100 and centrifuged at 13.000rpm for 5min. 100ul of the supernatant was kept to be 

analyzed with AGERA (Start fraction), while 500ul were subsequently ultracentrifuged at 

160000g for 1.5h.The resulting supernatant was transferred to a fresh tube (Supernatant fraction). 

Pellet was resuspended and washed with lysis buffer. After a final ultracentrifugation step at 

160000g, the pellet was resuspended in 500ul lysis buffer (Pellet fraction). The three fractions 

were analyzed in parallel with AGERA and TR-FRET for the detection of soluble and aggregated 

Htt. 

 

Agarose gel electrophoresis for resolving aggregates. 

Biochemical aggregate detection was performed using agarose gel electrophoresis for resolving 

aggregates (AGERA) assay as previously described (Weiss et al., 2008). Briefly, 1.8g agarose 

was dissolved in 100ml 375mM Tris HCl pH 8.8 by boiling in a microwave. SDS was added to a 

final concentration of 0.1% and gels were poured. 50ug of homogenates were loaded per lane. 

AGERA gel was run at 100V in Tris Glycine SDS Running Buffer (Invitrogen). The gel was then 

blotted at 15V for 1h on a PVDF membrane (Immobilon-P, Millipore), blocked with 5% milk for 

1h at RT and incubated over night with primary antibody, used at a concentration of 1.5ug/ml in 

2% milk diluted in TBS+0.1% Tween. After washing, membranes were incubated for 2h with 

HRP anti mouse secondary antibody 1:10000 in 2% milk diluted in TBS+0.1% Tween and 

developed using ECL (GE Healtcare). 

 

Time resolved fluorescence resonance energy transfer for soluble and insoluble huntingtin 

detection. 

Antibody labeling with terbium (Tb), d2 and Alexa488 fluorophores was performed by CisBio 

Bioassays. Time resolved fluorescence resonance energy transfer (TR-FRET) detection of soluble 

mutant huntingtin protein in a singlex readout was performed as described (Weiss et al., 2009a).  
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In brief, 5µl tissue homogenate sample was transferred to low-volume wells of white 384-

microtiter plates (Greiner, USA). 1µl detection buffer (50mM NaH2PO4, 400mM NaF, 0.1% 

BSA and 0.05% Tween+antibody mix) was added with the final antibody amount per well for 

soluble mutant huntingtin detection being 1ng 2B7-Tb+10ng MW1-d2. TR-FRET readout was 

performed with an EnVision Reader (Perkin Elmer, USA). After the excitation of the donor 

fluorophore terbium at 320nM and a time delay of 100µs, the resulting terbium and d2 emission 

signals were read at 620nm and 665nm respectively. 

Single TR-FRET detection of insoluble, aggregated mut Htt was performed either by using MW8 

antibody labeled with Terbium (donor) or d2 fluorophores (acceptor), or by 4C9 antibody labeled 

with Terbium (donor) or Alexa488 fluorophore (acceptor). TR-FRET protocol was similar to the 

one used for soluble mutant Huntingtin with following modifications: when using Alexa488 

labeled 4C9 antibody as an acceptor antibody, Alexa488 specific emission signal was quantified 

at 520nm. Duplex TR-FRET assay for simultaneous quantification of soluble and aggregates FR-

TRET was performed by addition of 1µl of 1ng 2B7-Tb + 10ng MW1-d2 and 1ng 4C9-Tb +10 

ng 4C9-Alexa containing antibody mix per well. 

 

Animal models. 

Heterozygous R6/2 mice (Mangiarini et al., 1996) and heterozygous HdhQ150 knock-in mice 

(Lin et al., 2001) were obtained from the laboratory of G. P. Bates. R6/2 were on a mixed 

C57BL/6 x CBA/Ca background. The colony was maintained by breeding them with 

B6xCBA/CaF1 females. HdhQ150 mice were maintained on a C57BL/6J background. The 

offspring were genotyped by polymerase chain reaction (PCR) using DNA obtained from ear 

punches. The animals were housed in a temperature-controlled room that was maintained on a 

12h light/dark cycle. Food and water were available ad libitum. Animals were sacrificed by 

decapitation in deep isoflurane narcosis. Tissues were then collected immediately and were snap-

frozen on a metal plate placed on dry ice. All experiments were carried out in accordance with 

local guidelines for the care and use of laboratory animals. 
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Analysis of soluble and insoluble mut Htt aggregates by Size Exclusion Chromatography. 

A) Analysis of mut Htt aggregates in the supernatant by Size Exclusion Chromatography and TR-

FRET. 

Soluble Fractions: Half brain tissues from R6/2 were homogenized with Precellys according to 

the manufacturer instructions in 500 µL of sample buffer (1% Triton X-100 in PBS), Complete 

Protease Inhibitor (Roche) and PhosSTOP phosphatase inhibitor cocktail (Roche) and finally 

sonicated for 10s.Brain extracts were then clarified by ultra-centrifugation for 30 min at 100,000 

g. Supernatant were filtered through 0.45 um membrane and fractionated by SEC on a Superdex 

200 10/300 column. All of the SEC experiments were performed at 4 °C with a flow rate of 0.5 

ml/min. The elution was one column volume. The total protein loaded on the column were 1.7 

mg in a sample volume of 500 µl . Protein standards with 0.5% Triton X-100 in PBS were used 

to estimate size of Htt aggregatess (standard data not shown). Fractions (250 µl volume/fraction) 

were collected in 96-well plate format and 10µl from each were applied for TR-FRET 

measurement with indicated antibody combination.   

B) Analysis of mut Htt aggregates in the pellet by TR-FRET. 

Insoluble Fractions: Pellet from R6/2 brain homogenate obtained by centrifugation at 100‟ 000 g 

(density separation) were washed once (PBS + 1% Triton X-100) and resuspended in 2% Triton 

X-100 in PBS. 10µl of the suspension were assayed to TR-FRET measurement with indicated 

antibody combinations. 

 

Primary neuronal cultures. 

Animals were maintained in accordance with Duke University Medical Center Institutional 

Animal Care and Use Committee guidelines (approval #A248-08-09). Cortico-striatal co-cultures 

were prepared as described (Kaltenbach et al., 2010). Briefly, striata and cortices were dissected 

from E18 embryonic rat brains and dissociated separately. 5x10
6
 cells were counted and 

transfected (Nucleofector, Lonza) with plasmids expressing Htt exon1 fragment carrying 73 CAG 

expansion or a control plasmid. Neurons were plated onto 96-well plates containing previously 

isolated astroglia feeder layers (2000 cells/well) and cultured in Neurobasal media (Invitrogen) 

supplemented with 5% fetal calf serum (Sigma-Aldrich), 2 mM glutamine (Glutamax, 

Invitrogen), 10 mM potassium chloride, and 5 µg/mL gentamicin at 37°C in 95% 02/5%CO2.  

BDNF (Sigma) was diluted in Neurobasal media, added to the neurons immediately after plating 

and replenished every other day until analysis. For TR-FRET analysis, cells were resuspended in 
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lysis buffer (PBS+1%TritonX100+Complete Protease Inhibitor tablet, Roche), shaken vigorously 

for 30 minutes at 4
o
C and then stored at -80

o
C.  

 

Statistics. 

The data in the graphs correspond to the average of TR-FRET signals relative to the wt samples 

and the bars are representative of the standard deviation (SD) among the replicates. The 

significance has been calculated with two-tailed, homoscedastic, t-student test.  

Error bars = standard deviation; * = p<0.05; ** = p<0.01; *** = p<0.001 

 

4.2.4 RESULTS 

 

Huntingtin antibodies detect high molecular weight aggregates with different specificity. 

We have recently reported a TR-FRET based immunoassay for the detection of soluble mut Htt 

species in cell lysates and tissue homogenates (Weiss et al., 2009b, Weiss et al., 2010). The first 

question we addressed is whether we could detect large mut Htt aggregates using the same 

technology but with aggregate specific antibodies. The combination of both detection systems for 

soluble and aggregated mut Htt would allow us to track the protein aggregation over time in 

biological samples.  

The assay for soluble mut Htt utilizes two labeled monoclonal antibodies directed towards 

proximal N-terminal epitopes. One of the antibodies, MW1, is specific for the elongated polyQ 

stretch through which mut Htt aggregates. The epitope would therefore be masked in presence of 

mut Htt aggregates, resulting in loss of TR-FRET signal (Figure 23A, upper panel). In contrast, 

mut Htt aggregates will present multiple binding sites for one single antibody in close proximity. 

This would allow simultaneous binding of the monoclonal antibody labeled with donor and 

acceptor fluorophores and thus generation of a TR-FRET signal (Figure 23A, lower panel).  
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Figure 23. Htt antibodies detect mut Htt aggregates with different affinities. A: Representation of the principle 

behind Htt-aggregate detection by TR-FRET. Soluble mut Htt protein can be recognized utilizing two antibodies A 
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and B directed against different, sterically unblocked epitopes. The close proximity of donor (A) and acceptor (B) 

fluorophores results in a TR-FRET signal in this state (I, left box). When mut Htt protein forms insoluble aggregates 

only antibody A recognizes it, as the specific epitope is still sterically unblocked. In contrast, antibody B, directed 

against the expanded polyQ-stretch – red region in Htt-exon1 protein – can no longer bind. Under these conditions, 

A and B are not in close enough proximity to result in signal (I, right box). On the contrary, a mixture of antibody A 

labeled with either donor or acceptor fluorophore results in a TR-FRET signal for aggregated (II, right box) but not 

for the soluble Htt (II, left box).  

B: High molecular weight mut Htt aggregates in brain homogenates of 12 week-old wt or R6/2 mice are specifically 

detected by MW8 and 4C9 antibodies on an AGERA blot. MW1 antibody shows an unspecific signal in both WT 

and R6/2 brains. Similar to 1, an amyloid-beta specific control antibody, 2B7 antibody does not detect mut Htt 

aggregates from R6/2 brain.  

C: mut Htt aggregates were successfully immunoprecipitated with 4C9 and MW8 antibody, only weakly with 2B7 

and  MW1, but not with 1 or the control (G-Sepharose beads). Samples were resolved on AGERA blot and detected 

with MW8. 

 

The first challenge was therefore to find the right antibodies for a TR-FRET based assay specific 

and selective for mut Htt aggregate detection (antibodies used in this study are presented in 

Figure 24). We first performed AGERA blotting using brain homogenates of wild-type (wt) and 

R6/2 transgenic mice. 4C9 and MW8 antibodies showed specific mut Htt aggregate detection in 

R6/2 when compared to wt homogenates (Figure 23B). In contrast, MW1 and 2B7 antibodies 

were not aggregates specific and resulted in a diffuse and mut Htt unspecific signal in wt as well 

as R6/2 samples. Negative control antibody 1 directed against -amyloid peptide, failed to 

recognize mut Htt aggregates. 

As the TR-FRET assay is based on antibody-antigen interactions in solution, we wanted to 

further validate the specific binding of 4C9 and MW8 to mut Htt aggregates by 

immunoprecipitation. Aggregates were efficiently immunoprecipitated by 4C9 and MW8 but not 

by 2B7, MW1 and 1 antibodies, confirming the specificity of these two antibodies for high 

molecular weight complexes of mut Htt in solution (Figure 23C). These results indicate that 4C9 

as well as MW8 antibodies are mut Htt aggregate specific tools for the development of a TR-

FRET based immunoassay for mut Htt aggregates.  

MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPPPPQLPQPPPQAQPLLPQPQPPPPPPPPPPGPAVAEEPLHRP

Y Y Y Y

Htt- Exon1 (human)

2B7 MW1 4C9 MW8

1            7             13     17                                                               40                       52  71                      82            90  

 

Figure 24. Exon1-protein sequence of human huntingtin containing a 23Q polyglutamine stretch. Epitopes of 

the anti-huntingtin antibodies used in the study (2B7, MW1, 4C9 and MW8) are underlined.  
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TR-FRET detection of aggregated mut Htt. 

Having demonstrated that 4C9 and MW8 detect mut Htt aggregates by AGERA and 

immunoprecipitation methods, we proceeded to evaluate whether 4C9 and MW8 could detect 

mut Htt aggregates via TR-FRET, based on our model in Figure 23A. The antibodies were 

labeled with donor or acceptor fluorophores, respectively Terbium (Tb) and d2 or Alexa488 

(Alexa). Wt and R6/2 brain homogenates from 12 weeks old mice were analyzed with 4C9 Tb - 

4C9 Alexa (4C9/4C9), MW8 Tb - MW8 d2 (MW8/MW8) and 2B7 Tb - 2B7 d2 (2B7/2B7) as a 

negative control pair. As expected, use of the 2B7/2B7 combination did not result in a mut Htt 

aggregate-specific signal, whereas a significant difference between wt and R6/2 samples was 

obtained with the two antibody combinations MW8/MW8 and 4C9/4C9 (Figure 25A), indicating 

the specificity of mut Htt aggregate detection based on TR-FRET.  
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Figure 25. Antibody pairs expected to detect mut Htt aggregates work for TR-FRET. A: TR-FRET assay on 

brain homogenates of 12 week-old wt or R6/2 with a mixture of one mut Htt antibody labeled with either donor or 

acceptor fluorophore. Antibodies 4C9 or MW8 detect a mut Htt specific signal in R6/2 brains whereas 2B7 fails to 

detect TR-FRET signal (n=3, 0.5μg protein loaded per 384-well). 
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B: Brain homogenates of 12 week-old wt or R6/2 mice (starting fraction) were separated by ultracentrifugation into a 

soluble (supernatant) and an insoluble (pellet) fraction (n=2). AGERA blot with MW8 antibody shows that all mut 

Htt aggregates were recovered in the pellet fraction whereas no mut Htt specific aggregates were found in the 

supernatant fraction. 

C/D: TR-FRET assay for ultracentrifugation fractions shows that MW8/MW8 and 4C9/4C9 specifically detect 

insoluble aggregated mut Htt but not soluble protein recovered in the supernatant fractions.  

E: Age dependent increase of insoluble aggregated mut Htt in 4 and 12 week-old R6/2 brain homogenates is detected 

by TR-FRET using MW8/MW8 and 4C9/4C9. In contrast, TR-FRET analysis with 2B7/MW1 reveals a correlating 

decrease in soluble mut Htt over time (n=3). 

F: Time dependent increase of insoluble aggregated mut Htt is detected by TR-FRET using the MW8/MW8 and 

4C9/4C9 in rat primary striatal-cortical co-cultures lysates transiently transfected with YFP or Exon1-Htt with 73Q 

(n=3 per condition). TR-FRET analysis with 2B7/MW1 shows a decrease in soluble mut Htt over time.  

Error bars = standard deviation; * = p<0.05; ** = p<0.01; *** = p<0.001. 

 

To further prove the specificity of the new TR-FRET assay for mut Htt aggregates, we separated 

12 weeks R6/2 mice brain homogenates into soluble (supernatant) and insoluble (pellet) fractions 

by ultracentrifugation with a force of 160 000g. Under this condition, all insoluble aggregates 

sediment. All aggregates present in the starting fraction were recovered in the pellet fraction as 

shown by AGERA blot (Figure 25B). This result is concordant with previous results where 

ultracentrifugation was used to identify different populations of purified tagged mut Htt (Olshina 

et al., 2010). Next we analyzed the three fractions by TR-FRET. Both the 4C9/4C9 and 

MW8/MW8 combinations specifically recognized the aggregated mut Htt in the starting 

homogenate and in the pellet fractions, but failed to generate any signal in the supernatant (Figure 

25C, D). In contrast, 2B7/MW1 combination generates signal in the starting homogenate and in 

the supernatant, consistent with the specificity for soluble mut Htt (Weiss et al., 2009a) (Figure 

26).  
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Figure 26. WT and R6/2 brain homogenates were separated into a fraction containing soluble mut Htt (supernatant 

fraction) or insoluble aggregated mut Htt (pellet fraction). TR-FRET analysis of the fraction reveals that the 2B7/MW1 

antibody pair detects only soluble mut Htt present in the supernatant fraction but not aggregated mut Htt.  
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Taken together, we have shown that 4C9/4C9 as well as MW8/MW8 assays detect specifically 

insoluble mut Htt aggregates, while 2B7/MW1 antibody combination is specific for soluble mut 

Htt. These results confirmed the hypothesis we claimed in our aggregation model (Figure 23A). 

To our knowledge this is the first time that a simple one-step assay detects specifically non-

tagged insoluble mut Htt aggregates in solution.  

We proceeded to use the new TR-FRET assays to characterize mut Htt aggregation in biological 

samples over time. Previous works showed an inverse correlation between aggregated and 

soluble mut Htt as a function of disease progression in R6/2 mice (Woodman et al., 2007, Weiss 

et al., 2009a, Sathasivam et al., 2010). We therefore asked if we could confirm this inverse 

correlation with the TR-FRET technology using antibody combinations for soluble (2B7/MW1) 

and aggregated mut Htt (MW8/MW8 and 4C9/4C9; (Figure 25E)). Indeed, analysis of R6/2 mice 

at disease onset (5 weeks of age) and late manifest state (11 weeks of age) show progressive 

formation of aggregated mut Htt with a correlating decrease of soluble mut Htt. This confirmed 

previous findings and underlined the robustness and specificity of the TR-FRET assay. 

Next to its application in tissue samples, we asked whether the mut Htt TR-FRET assay can be 

used in a screening format to quantify untagged mut Htt aggregates in neuronal cell cultures. To 

this aim, we used exon1-73polyQ or Yellow Fluorescent Protein (YFP) transiently transfected 

primary neuronal cortico-striatal co-cultures in 96 well microtiter plate. We monitored mut Htt 

aggregation over time using the TR-FRET assay. Both MW8/MW8 and 4C9/4C9 combination 

detected aggregated mut Htt 7 days after transfection, accompanied by a decrease of the soluble 

mut Htt 2B7/MW1 signal (Figure 25F). These results demonstrate that the TR-FRET assays 

allow for monitoring changes of aggregated and soluble untagged mut Htt in neuronal co-cultures 

grown in microtiter plates.  

We wanted to further verify the specificity of the 2B7/MW1 combination for soluble and 

4C9/4C9 or MW8/MW8 for aggregated mut Htt by an independent method. We therefore 

proceeded to resolve different mut Htt subpopulations from 4 and 8 week old R6/2 brains by 

using size exclusion chromatography (SEC) (Lotz et al., 2010). Analysis of the fractions with 

2B7/MW1 TR-FRET combination detected low molecular weight mut Htt species of around 

300kDa at 4 weeks of ages which decrease in intensity at 8 weeks of age. In contrast, 

MW8/MW8 and 4C9/4C9 TR-FRET detect high molecular weight mut Htt species around 

950kDa, whose intensity increases at 8 weeks of age. Intriguingly, heterogeneity did not change 
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temporally but the relative abundance of individual mut Htt aggregates did. No mut Htt TR-

FRET signals were observed when using wt brain homogenates as a control (data not shown).  

 

 

Figure 27. Detection of a subset of soluble mut Htt aggregates in R6/2 brain lysate at different age with a 

combination of Size Exclusion Chromatography and TR-FRET. Supernatant obtained from centrifuged R6/2 

brain homogenate was loaded onto a Superdex200 column and the fractions were analyzed by TR-FRET with 

indicated antibody combination.  Graphs show TR-FRET signal profiles of SEC eluted supernatant of R6/2 brain 

tissue homogenate at 4 weeks and 8 weeks of age (n=4 per age). Black line corresponds to 2B7/MW1, red to 

4C9/4C9 and blue to MW8/MW8 TR-FRET signal profile. Small inner graph indicates total protein elution profile 

by UV. Arrows indicate estimated size of main peaks in kDa by using protein standards in same running buffer 

(protein standard data not shown).  

Error bars = standard deviation. 

 

Another important observation was that in 4 weeks old mice the MW8/MW8 combination but not 

the 4C9/4C9 combination detected a subset of low molecular weight mut Htt aggregates, partially 

overlapping with the 2B7/MW1 signal (Figure 27). This result suggests that all three TR-FRET 
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assays recognize different Htt species, where 4C9/4C9 and MW8/MW8 preferentially bind to 

aggregates and 2B7/MW1 to soluble mut Htt. Moreover, these results verify the inverse 

correlation of soluble and aggregated mut Htt over time in R6/2 mice and identify specific 

smaller and larger Htt aggregates that are distinguishable with the different TR-FRET antibody 

combinations. 

We continued to investigate whether we could detect an inverse correlation of these mut Htt 

species during aging in different brain regions. To address this question, we analyzed different 

brain regions of female and male R6/2 mice at 4, 8, 12 and 15 weeks of age. For both genders and 

all brain regions we observed a consistent age-dependent decrease in soluble mut Htt associated 

with a progressive increase in aggregated mut Htt (Figure 28 and Figure 29). No significant 

differences between genders were found with the exception for soluble mut Htt in the cerebellum, 

which seemed to decrease more slowly in males than females. In cerebellum and hippocampus, 

aggregate deposition was less rapid than in the other brain regions when measured with the 

MW8/MW8 antibody pair but not with the 4C9/4C9 assay. These findings show that the inverse 

correlation between soluble and aggregated mut Htt found in total brain homogenates also occurs 

in sub-brain regions. 
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Figure 28. TR-FRET assay detects age- and disease-progression caused changes in soluble and insoluble mut 

Htt protein levels in female WT and R6/2 brain regions. Homogenates from different brain regions from wt and 

R6/2 female mice have been analyzed to detect soluble (2B7/MW1) and aggregated mut Htt (4C9/4C9; MW8/MW8) 

at different age (4, 8, 12 and 15 weeks). All regions analyzed showed a correlation between the decrease over time of 

soluble mut Htt signal and the progressive increase of the pool of aggregated mut Htt. Cerebellum shows a lower 

aggregation load, when analyzed with the 4C9 antibody but not with the MW8.  
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Figure 29. TR-FRET assay detects age- and disease-progression caused changes in soluble and insoluble mut 

Htt protein levels in male WT and R6/2 brain regions. Homogenates from different brain regions from wt and 

R6/2 male mice have been analyzed to detect soluble (2B7/MW1) and aggregated mut Htt (4C9/4C9; MW8/MW8) 

at different age (4, 8, 12 and 15 weeks). All the regions analyzed showed a correlation between the decrease over 

time of soluble mut Htt signal and the progressive increase of the pool of aggregated mut Htt in male animals (n= 3 

per age). Cerebellum shows a lower aggregation load, when analyzed with the 4C9 antibody but not with the MW8.  

 

 



71 
 

Duplex TR-FRET assay for simultaneous detection of soluble and aggregated mut Htt. 

To further enhance the simplicity of the detection method, we thought to develop a duplex assay 

which could simultaneously be used to measure both forms of the protein in the same biological 

sample, following the single pipetting-step procedure depicted in Figure 30 and using two 

different acceptor fluorophores (d2 and Alexa488) coupled to MW1 and 4C9 respectively which 

can be simultaneously excited by Terbium donors. 

5 μl 

biological 
sample
(e.g. R6/2 

tissue 
homogenate)

1 μl assay 

buffer 
(with 
antibody 

mix)

incubation

Automatic soluble and 

aggregated mhtt 
quantification

Low 

volume 
384-well  

Figure 30. Schematic representation of TR-FRET duplex assay. 5 μl biological sample are pipetted together with 

1 μl assay buffer containing 2B7 Tb, MW1 d2, 4C9 Tb and 4C9 Alexa into a low volume 384-well. After an 

incubation period, soluble and aggregated mut Htt are quantified. 

 

In a first step, to investigate a possible interference between the emission spectra of the two 

acceptor fluorophores, we measured in both channels the signals generated singularly by the 

antibody pairs 2B7/MW1 and 4C9/4C9. For this we analyzed brain homogenates of 11 week-old 

wt and R6/2 mice in presence or absence of the antibodies (Figure 31A, B). 
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Figure 31. Signal intensity analysis for the two readout channels used to quantify soluble mut Htt (2B7 Tb - 

MW1 d2 = d2 channel) and aggregated mut Htt (4C9 Tb - 4c9 Alexa = Alexa488 channel). Signal measurement 

of the two readout channels analyzing 0.5 μg protein of 11 week-old wt or R6/2 brain with or without addition of 

2B7 Terbium - MW1 d2 antibody (A) and with or without addition of 4C9 Terbium + 4C9 Alexa antibody (B) 

reveals no signal bleed-through of one measurement into the other readout channels enabling a homogeneous duplex 

quantification of soluble and aggregated mut Htt. Duplex quantification of soluble mut Htt and aggregated mut Htt in 

brain homogenates of 8 week-old wt or R6/2 mice utilizing (C) 1 μl assay buffer containing 1 ng 2B7 Tb, 10 ng 

MW1 d2, 1 ng 4C9 Tb and 10 ng 4C9-Alexa were added to 0.5 μg brain protein in 5 μl brain homogenization buffer 

in a 384-low volume well. All graphs: biological triplicates; background signal = 0.5 μg BSA in brain 

homogenization buffer.  

 

Since no bleed-through of the two channels was detected, we successfully applied the duplex 

readout for determining soluble and aggregated mut Htt by combining the two pairs of labeled 

antibodies in the same sample (Figure 31C). Importantly, the readout signals for soluble and 

aggregated mut Htt displayed an overlapping linear range, allowing for a simultaneous 

quantitative duplex readout for both forms of the protein (Figure 32). In summary, we have 

developed and validated a duplex assay using the 2B7 Tb-MW1 d2 combined with the 4C9 Tb-

4C9 Alexa488 antibody pair for detection of soluble and aggregated mut Htt in biological 

samples. 

 



73 
 

A B C

0

100

200

300

400

500

600

0.1 1 10 100

T
R

-F
R

E
T

 s
ig

n
a
l 
(b

a
c
k
g

ro
u

n
d

 d
e
d

u
c
te

d
 -

re
la

ti
v
e
 t

o
 w

t)

% R6/2 brain homogenate

2B7 Tb - MW1 d2

0

20

40

60

80

100

120

140

160

180

200

0.1 1 10 100

T
R

-F
R

E
T

 s
ig

n
a
l 
(b

a
c
k
g

ro
u

n
d

 d
e
d

u
c
te

d
 -

re
la

ti
v
e
 t

o
  
w

t)

% R6/2 brain homogenate

MW8 Tb - MW8 d2

0

10

20

30

40

50

60

0.1 1 10 100

T
R

-F
R

E
T

 s
ig

n
a
l 
(b

a
c
k
g

ro
u

n
d

 d
e
d

u
c
te

d
 -

re
la

ti
v
e
 t

o
 w

t)

% R6/2 brain homogenate

4C9 Tb -4C9 Alexa

 

Figure 32. Linear range for readout signals of the TR-FRET duplex assay. R6/2 brain homogenates were spiked 

into wt brain homogenates in 1:2 step dilutions into 384-wells. The TR-FRET signal obtained produced the linearity 

curves for soluble mut Htt (A; 2B7/MW1) and insoluble aggregated mut Htt (B-C; MW8/MW8, 4C9/4C9) 

 

 

Disease-progression related changes in soluble and aggregated mut Htt protein levels in 

R6/2 and HdhQ150 tissue. 

We proceeded to use the validated duplex TR-FRET assay for investigating the progression of 

soluble and aggregated mut Htt protein in multiple tissues isolated from R6/2 mice at 5 or 11 

weeks of age. We observed an age-dependent decrease in soluble mut Htt correlating with an 

increase in aggregated mut Htt in brain, muscle and liver (Figure 33). Notably, in testis, ear lobe 

and spleen, while we were able to detect high levels of soluble mut Htt, we did not observe any 

age-related changes in soluble levels nor any noticeable aggregation. 
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Figure 33. TR-FRET duplex assay detects age- and disease-progression caused changes in soluble and 

insoluble mut Htt protein levels in WT and R6/2 peripheral tissue homogenates. Tissues homogenates from wt 

and R6/2 mice of 5 and 11 weeks of age (n=3) were analyzed using the TR-FRET duplex assay. 0.5μg of protein 

homogenate in 6μl final volume per 384-well were analyzed to detect soluble mut Htt (2B7/MW1) and insoluble 

aggregated mut Htt (4C9/4C9). An age-dependent decrease in soluble mut Htt correlating with an increase in 

aggregated mut Htt is detected in R6/2 brain, muscle and liver. No significant changes in levels of aggregated mut 

Htt or soluble mut Htt levels were detectable in R6/2 testis, ear lobe, spleen and kidney.  

 

Having validated the successful application of the TR-FRET readouts in R6/2 mice, we asked 

ourselves whether we could also apply our methods to a milder HD mouse model. We therefore 

assessed the age-dependent soluble and aggregated mut Htt signal development in cortical and 

striatal homogenates of 2 to 10 months old heterozygote HdhQ150 mice which express one allele 

of endogenous full-length mut Htt with 150 glutamines. Similar to the data obtained from 

analysis of R6/2 brain, we observed an inverse correlation of soluble and aggregated mut Htt 
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signal in both brain regions and genders using 2B7/MW1 and MW8/MW8 (Figure 34 and Figure 

35).  
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Figure 34. TR-FRET detection of age- and disease-progression caused changes in soluble and insoluble mut 

Htt protein levels in female WT and heterozygous HdhQ150 brain regions. Cortical and striatal homogenates 

from wt and heterozygous HdhQ150 female mice at different ages (2, 4, 6, 8, 10 months) were analyzed with 

2B7/MW1 (soluble mut Htt) and MW8/MW8 (aggregated mut Htt) TR-FRET (n=3 per age). Both brain regions 

showed a correlation between a decrease of soluble mut Htt signal and a progressive increase of aggregated mut Htt 

over time.  
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Figure 35. TR-FRET detection of age- and disease-progression caused changes in soluble and insoluble mut 

Htt protein levels in male WT and heterozygous HdhQ150 brain regions. Homogenates from cortex and striatum 

from wt and heterozygous HdhQ150 male mice have been analyzed to detect soluble (2B7 Tb – MW1 d2) and 

aggregated mut Htt (MW8 Tb – MW8 d2) at different age (2, 4, 6, 8 months) (n=3 per age). Both brain regions 

showed a correlation between the decrease over time of soluble mut Htt signal and the progressive increase of the 

pool of aggregated mut Htt.  

 

Use of the 4C9/4C9 assay in this model was precluded by the fact that this antibody recognized 

the human-specific proline-reach region of Htt which is absent in mouse Htt (Figure 36). This 

result confirmed the value of the assays for quantification of two distinctive conformations of 

mut Htt and their inverse correlation in a physiologically more relevant animal model of HD. 
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Figure 36. 4C9/4C9 and 2B7/2B7 fail to detect aggregated mut Htt in heterozygous HdhQ150 mice. Samples 

from cortex and striatum homogenates from aging heterozygous HdhQ150 mice were analyzed with 4C9/4C9 and 

2B7/2B7. Both antibody combinations fail to produce a detectable TR-FRET signal. 4C9 is directed towards the 

polyproline region of the human Htt gene, not included in the knock in construct, therefore can not recognize the 

correct epitope (A) while 2B7 is specific for soluble mut Htt and it is not able to recognize the aggregated form, as 

demonstrated also in R6/2 homogenates (B).  
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4.2.5 DISCUSSION 

We have developed a simple and ultrasensitive duplex TR-FRET assay to simultaneously 

quantify non-tagged soluble and aggregated mut Htt in as little as 5µl biological sample material. 

By combining the TR-FRET assay with SEC we could show the specificity of our different assay 

readouts for distinct mut Htt subpopulations in brain homogenates of HD mice. The specificity 

for a subset of small and large mut Htt aggregates will help to identify and test mut Htt aggregate 

modifiers and distinguish at what stage (early or late) they could be effective. Interestingly, the 

combination of SEC and TR-FRET showed that the heterogeneity of mut Htt subpopulations did 

not change over time, but the relative abundance of individual mut Htt aggregates did. Our 

analysis of non-tagged mut Htt expressed in in vivo HD models leads to similar observations as 

previous works in which distinct species of GFP-tagged mut Htt in in vitro systems were 

identified (Olshina et al., 2010), even though mut Htt aggregation in cell culture may differ 

fundamentally from in vivo generated aggregates in brain as the neuronal context may lead to 

pathogenic interactions that still need to be identified.        

The ratio of the progressive decrease of soluble mut Htt at around 300kDa with a progressive 

increase in the aggregates species at around 950 kDa can be monitored and set in direct relation. 

This is important in order to analyze potential biological activity (e.g. toxicity) of the mut Htt 

aggregates. Interestingly, both MW8/MW8 and 4C9/4C9 detect high molecular weight 

aggregates as expected, but MW8/MW8 also recognized a smaller mut Htt aggregate species in 

young animals. It is likely that MW8 detects aggregate precursors (oligomers) that disappear with 

age, once large mut Htt aggregates are formed. These oligomers may be prone to be folded into 

larger aggregates indicating a regulated mechanism of inclusion body formation in cells. With the 

SEC purification together with the purity characterization by TR-FRET established, it will be 

interesting to test the biological activity and toxicity of these different mut Htt species in future 

studies. 

It has been previously shown that there is an inverse correlation between aggregated and soluble 

mut Htt levels in R6/2 brain (Woodman et al., 2007, Weiss et al., 2009a, Sathasivam et al., 2010). 

Analyzing multiple brain region isolated from R6/2 mice at different age we confirmed the 

previous observations and validate the specificity and value of the TR-FRET assay to provide a 

more detailed description of the changes occurring in soluble and aggregated Htt over time. 

While different regions of the brain contained comparable levels of soluble mut Htt, higher 

amounts of aggregated protein were detected in striatum and cortex over cerebellum, brain stem 
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and hippocampus, in line with earlier findings (Sathasivam et al., 2010). Interestingly, these 

differences were only apparent when using the MW8/MW8 but not the 4C9/4C9 combination, 

further indicating that MW8 could recognize different aggregates species.  

Combining the detection of soluble and aggregated mut Htt in a duplex assay with high 

specificity for both mut Htt forms, we were able to measure and compare both pools of the 

protein in brain and peripheral tissues from R6/2 mice. In all samples analyzed where an age 

dependent decrease in soluble mut Htt was observed, we detected a strong correlating progressive 

increase in the aggregated pool. These results suggest a mechanistic link between the mut Htt 

pools most likely through progressive recruitment of soluble mut Htt into aggregates.  

In contrast to in vitro aggregation studies in which clear concentration dependent aggregation 

kinetics of mut Htt are observed (Scherzinger et al., 1999, Chen et al., 2002), our findings 

indicate that the amount of intracellular soluble mut Htt does not always correlate with its 

propensity to aggregate in a cell. For example, testis contains high amounts of soluble mutant Htt 

protein but no aggregates were detected. Other proliferating tissues such as the liver displayed 

similar expression levels of soluble mutant Htt as testis but were characterized by age-dependent 

aggregate formation. This discrepancy in different tissues suggests that different proliferation 

rates may influence the propensity to develop aggregates by diluting mut Htt below the threshold 

needed for aggregation. Of note, previous works have reported that testis is highly degenerative 

in R6/2 mice and HD patients in absence of aggregates (Sathasivam et al., 1999, Van Raamsdonk 

et al., 2007, Moffitt et al., 2009). In light of the ongoing debate about mut Htt aggregate toxicity, 

these observations raise the intriguing possibility that the pathogenic mechanism could be 

different in the context of different tissues. Importantly, this would also imply that treatment 

attempts should be aimed not solely at the reduction of aggregates but also at upstream 

mechanisms to ameliorate the full spectrum of mut Htt pathology. 

  The detection of mut Htt aggregates in 4 months old heterozygote HdhQ150 mice using the 

MW8/MW8 assay highlights the sensitivity of the method. Interestingly, it has been recently 

reported that MW8 is directed against a neo-epitope at the C-terminus of Exon1 (Landles et al., 

2010). This could indicate the presence of a pure Exon1 population in this full-length mut Htt 

model, responsible for the aggregation process and specifically detectable with this antibody.  

A limitation in our TR-FRET assays – like in any immunodetection method – is that the 

antibodies require their respective epitopes to be sufficiently exposed on the aggregate surface. 

Each assay may thus be specific for a subpopulation of aggregates. In addition, as larger 
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aggregates have a lower surface to volume ratio than smaller aggregates, the TR-FRET signal 

intensity for large aggregates may be underrepresented in a heterogeneously sized pool. These 

limitations could be possibly overcome by further characterization of MW8 and 4C9 affinities to 

different aggregates populations. In addition, a better understanding of different aggregates 

populations measured by TR-FRET assays with specific antibodies could allow for a careful 

comparison to other technologies such as Seprion ELISA and to design experimental conditions 

to characterize changes occurring during disease progression or in response to treatment.  

In conclusion, we developed novel assays that are at the same time sensitive, efficient, simple and 

highly precise for quantification of aggregated and soluble mut Htt. We made use of our assays to 

characterize and quantify the inverse correlation between those two conformational states of the 

protein in different in vitro and in vivo HD models. The simplicity of the assay protocol coupled 

with the efficient quantification allows for the use of the method in high throughput screenings to 

identify modulators of the aggregation process, as well as in the evaluation of translational 

models of HD.  

The research pursued in this study supports the correlation between decrease of soluble and 

increase of aggregated mut Htt with disease progression in different HD models. Importantly, the 

ability to measure this tight relationship of the two mut Htt conformational pools over time could 

yield significant insights for the debate of mut Htt toxicity in HD.   
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5 GENERAL DISCUSSION AND PERSPECTIVES 

 

Huntington‟s disease (HD) is a progressive neurodegenerative disorder caused by the 

amplification of a polyQ stretch at the N-terminus of the huntingtin protein (Htt). The events 

leading to neuronal cell death are not yet well understood but the toxic gain of function of the 

misfolded mutant Htt (mut Htt) and the formation of intracellular aggregates unequivocally 

contribute to the pathological cascade (Ross and Tabrizi, 2011). The first goal of my thesis was to 

explore new approaches to modulate mut Htt levels in the cell, with the aim of unveiling the 

degradation pathways involved. This could lead to the identification of possible novel therapeutic 

approaches. Secondly, this work aimed to establish an innovative method to detect and monitor 

aggregate formation in HD models.  

We demonstrated that Hsp90 inhibitors, and in particular NVP-AUY922, are able to significantly 

reduce mutant huntingtin levels in different HD cell models, at concentrations comparable with 

previously reported data on the compound activity (Eccles et al., 2008). Interestingly we also 

showed, using a dominant negative construct of Hsf1 (Heldens et al., 2010), that the decrease of 

mutant huntingtin occurred independently from the induction of a heat shock response (HSR), 

thus favoring the hypothesis that huntingtin is a client protein of Hsp90. As was previously 

demonstrated for mutant androgen receptor, which is the cause of  SBMA (Waza et al., 2005, 

Thomas et al., 2006, Tokui et al., 2009), our work described the interaction between soluble mut 

Htt and Hsp90, and its modulation by Hsp90 inhibition. Interference with the complex enhances 

mutant huntingtin degradation through the ubiquitin proteasome system. This involves 

ubiquitination of mut Htt but degradation probably does not require additional chaperones such as 

Hsp70 (Chapter 4.1.4). Our findings suggest a possible role for Hsp90 in stabilizing 

polyglutamine expanded proteins causing neurodegenerative diseases. The effect of Hsp90 

inhibitors on wt and mut Htt degradation warrants further studies on this class of compounds as 

potential therapeutic agents. Moreover, previous studies reported that the induction of the HSR 

upon Hsp90 inhibition could be beneficial in modulating the toxicity and the by reducing mut Htt 

aggregate formation (Sittler et al., 2001, Fujikake et al., 2008). The novel findings from my 

studies suggest that Hsp90 inhibitors have the potential to enhance the degradation of both 

soluble and aggregated mut Htt protein. It would be interesting to further explore the effect of 

Hsp90 inhibitors in HD models producing both non-aggregated, soluble as well as aggregated 
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mut Htt protein, in order to explore whether an Hsp90 inhibition-mediated decrease of soluble 

mut Htt affects also the aggregation process. It would be also relevant to investigate if other 

degradation pathways, aside from the UPS, are involved in the clearance of soluble and 

aggregated protein upon Hsp90 inhibition. Our data suggest that the soluble protein is stabilized 

by Hsp90 and upon inhibition is degraded for the most part through the UPS. However it cannot 

be excluded that other pathways, such as chaperone mediated autophagy (CMA, Cuervo, 2010), 

could be involved in the clearance process. One could speculate that inhibiting Hsp90 triggers 

greater availability of free soluble mutant protein, hence multiple degradation pathways could be 

enhanced. A relationship between CMA, huntingtin and chaperones has been already investigated 

(Koga and Cuervo, 2010, Gamerdinger et al., 2011), thus further investigation could clarify the 

possible interplay between different clearance mechanisms and provide interesting inputs to 

design novel therapeutic strategies. 

Another interesting aspect of the interaction of Hsp90 and its client proteins is that the 

modulation of their association can influence the post-translational modification state on the 

target protein. This has been reported in the past for several Hsp90-client proteins such as Akt 

(Sato et al., 2000, Yun and Matts, 2005) and the co-factor Hsf1 (Akerfelt et al., 2007).  In this 

work we demonstrated that ubiquitination of mut Htt is enhanced after Hsp90 inhibition and 

release from the chaperone complex (chapter 4.1.4). Previous studies have shown that mut Htt 

can undergo multiple post-translational modifications, which can influence the protein 

degradation, localization and toxicity, as seen for phosphorylation events (Thompson et al., 2009, 

Atwal et al., 2011, Havel et al., 2011). It would be interesting to investigate the role, if any, of 

other post-translational mut Htt modifications upon Hsp90 inhibition. This could offer a wider 

range of possibilities for therapeutic approaches.  

Mut Htt fragments assemble into oligomers and aggregates which are thought to contribute to the 

neurodegenerative process (Ratovitski et al., 2009, Landles et al., 2010). The TR-FRET assay for 

the detection of aggregates described in this work allows a simple and robust means to monitor 

aggregation. As it is in a homogeneous format, thus avoiding multi-step protocols, this assay 

requires minimal handling time prior to signal acquisition, yet does not sacrifice sensitivity or 

specificity. Moreover, it is readily applicable to high-throughput applications. 

Using a TR-FRET based method to detect aggregates in biological samples results in a sound tool 

to investigate the progression of the pathology and potentially evaluate the effectiveness of HD 

treatments. The novel method could be used to detect aggregates in different models of the 
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disease using both in vitro and in vivo biological samples. These findings suggest the 

applicability of the TR-FRET for drug discovery purposes and monitoring of therapies aimed to 

modify the aggregate load. The role of the aggregates in the development of pathology is still 

controversial, thus a better understanding of different aggregate populations and their assembly 

kinetics could be an important step to further characterize disease progression. Previous studies 

showed the existence of different aggregates species (Poirier et al., 2002, Olshina et al., 2010) but 

their characterization is still only partial and difficult to be translated in vivo. The data presented 

in this thesis suggest that different detection antibodies could have preferential specificity for one 

aggregated species over another. This indicates that generating multiple assays with aggregate 

species specific antibodies could allow characterization of various aggregate populations and 

eventually an investigation of their toxicity and pattern of distribution among different brain 

regions and tissues. A key finding emerging from my data is the decrease over time of soluble 

mutant Htt in parallet to a progressive increase of the aggregates in HD models expressing either 

full length Htt or Ex1 fragment (chapter 4.2.4). This inverse correlation between soluble and 

aggregated pool suggests a progressive recruitment of the soluble into the inclusions, which 

would require further investigation. This correlation was detected not only in brain regions but 

also in peripheral tissues manifesting aggregates. On the other hand, tissues without aggregates, 

such as testis or ear lobe, did not present any difference in the soluble pool over time. These 

findings were in agreement with previous studies (Sathasivam et al., 1999, Sathasivam et al., 

2010) therefore affirming the significance and sensitivity of the new detection method. However, 

further experiments would be needed in order to understand the kinetics and dynamics of the 

aggregation process, as well as to unveil the correlation between aggregate species and 

degeneration.  

The possibility to detect and measure aggregates in peripheral tissue requires further optimization 

in order to be applied to human biological samples, thus providing a sound tool to monitor the 

effect of possible therapies modulating aggregation and understand the aggregates formation. The 

combination of this assay with the one developed previously for soluble mutant huntingtin (Weiss 

et al., 2009a, Weiss et al., 2010) allows a duplex readout able to explore the changes in both 

pools of the protein in the same biological sample during disease progression.  

The TR-FRET method is based on the use of high affinity antibodies thus suggesting that the 

assay could be translated to other neurodegenerative or aggregation-prone diseases. Interestingly 

ELISA assays have been developed for -synuclein and -amyloid (El-Agnaf et al., 2006, 
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Fukumoto et al., 2010) therefore suggesting a possible application of the TR-FRET assay in these 

diseases. 

Overall this thesis provides both new insights into the mechanisms influencing mutant huntingtin 

stability and degradation, and a robust and sensitive method to monitor aggregate formation and 

dynamics. Further experiments will be undertaken in order to translate the mechanism involving 

Hsp90 and Htt degradation in vivo or in more relevant models for the disease, and to apply the 

TR-FRET method to human biological samples and other neurodegenerative diseases. 
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APPENDIX 

 

Besides my PhD project, I also collaborated to another study pursued in our laboratory, aimed to 

explore the role of mTOR and autophagy in modulating mutant huntingtin aggregation. I 

contributed to this work performing some biochemical analysis and revising the paper, recently 

accepted in Journal of Neurochemistry.  

 

Induction of Autophagy with Catalytic mTOR Inhibitors Reduces Huntingtin 

Aggregates in a Neuronal Cell Model. 

Roscic A, Baldo B, Crochemore C, Marcellin D, Paganetti P 

 

Novartis Institutes for BioMedical Research, Neuroscience Discovery, Basel, Switzerland. 

 

Accepted in J Neurochem 2011 Aug 19. doi: 10.1111/j.1471-4159.2011.07435.x. [Epub ahead of print] 

 

SUMMARY 

 

Huntington's disease is a progressive neurodegenerative disorder caused by a CAG trinucleotide 

repeat expansion in the huntingtin gene. This expansion produces a mutant form of the huntingtin 

protein, which contains an elongated polyglutamine stretch at its amino-terminus. Mutant 

huntingtin may adopt an aberrant, aggregation-prone conformation predicted to start the 

pathogenic process leading to neuronal dysfunction and cell death. Thus, strategies reducing 

mutant huntingtin may lead to disease-modifying therapies. We investigated the mechanisms and 

molecular targets regulating huntingtin degradation in a neuronal cell model. We first found that 

mutant and wild-type huntingtin displayed strikingly diverse turn-over kinetics and sensitivity to 

proteasome inhibition. Then, we show that autophagy induction led to accelerate degradation of 

mutant huntingtin aggregates. In our neuronal cell model, allosteric inhibition of mTORC1 by 

everolimus, a rapamycin analogue, did not induce autophagy or affect aggregate degradation. In 

contrast, this occurred in the presence of catalytic inhibitors of both mTOR complexes mTORC1 

and mTORC2. Our data demonstrate the existence of an mTOR-dependent but everolimus-

independent mechanism regulating autophagy and huntingtin aggregate degradation in cells of 

neuronal origin. 
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