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1 Summary of thesis 
Physiological barriers maintain and safeguard homeostasis of certain body compartments by an 

increased resistance against free diffusion. Distribution and pharmacokinetics of drugs can be altered 

as well, if they have to cross these barriers in order to reach their target. Knowledge of the 

physicochemical and structural requirements for drug permeation is a key topic in drug design, 

development, and clinical application. 

 

To assess processes on cellular barriers, in vitro methods are usually applied to elucidate single 

transport mechanisms or to study isolated transport. As the pharmacokinetics of a living system are 

often more complex and composed by a concatenation of several barriers, in vivo methods are 

required. However, this time consuming and expensive testing is not suited to answer the need for 

high-throughput screening of thousands of compounds in chemical databases. For these purpose in 

silico methods are ideally suited, which produce computational models to predict pharmacokinetics, 

drug distribution, or transport across single barriers. As these models are information compressions, 

they can give by themselves new insights into the process they predict. 

 

In the present thesis, in silico models were developed to predict intestinal absorption, blood brain 

barrier permeation, drug permeation into breast milk, and active drug transport by the ATP binding 

cassette (ABC) transporter MRP2. In addition, a nature inspired modeling paradigm, ant colony 

optimization, was adapted and applied in the field of antimalaria drug therapy. These projects can be 

summarized as follows: 

 

The first project concerned the modeling of human intestinal absorption. After oral administration and 

intestinal dissolution, a drug has to cross the gut wall in order to become available for the body. The 

process is mostly determined by passive diffusion and active transport. Active export and import of 

molecules on the enterocyte is regulated by a multitude of transport proteins and metabolic enzymes. 

A dataset of small drug-like compounds, on which information on their human intestinal absorption was 

available, was collected. Models trained on these data predicted human intestinal absorption with high 

accuracy. Several machine learning methods were compared as well as different feature sets. The 

features used to predict intestinal absorption resembled those known from modeling passive diffusion, 

which are measures of charge and lipophilicity. The models revealed also less commonly used 

descriptors to model human intestinal absorption, such as gravitational indices and moments of inertia. 

 

The aim of the second project was to develop computational models to predict blood brain barrier 

(BBB) permeation. Development of new central nervous system (CNS) active drugs is hampered by 

limited brain permeation. As invasive methods have proven themselves to be ineffective and risky for 

patients, systemic application is the preferred route for drug administration into the brain. Hence, BBB 

permeability is a feature absolutely mandatory for any drug, which targets the CNS. Limited passive 

diffusion and active efflux and influx systems account for the complexity of this highly regulated barrier. 

To establish our models, a database of 163 compounds with information on the in vivo surface 
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permeability product (LogPS) in rats was collected. Decision trees performed with high accuracy (CCR 

of 90.9 - 93.9%.) and revealed descriptors of lipophilicity and charge, which were yet described in 

models of passive BBB permeation. However, other descriptors as measures for molecular geometry 

and connectivity could be related to an active drug transport component. Moreover, a fragment-based 

approach indicated the involvement of stereochemistry to predict LogPS values.  

 

The third project explores the physicochemical and structural requirements for drugs to pass from 

maternal blood into breast milk. While experimental assessment in humans is limited, computational 

methods are appropriate to model drug permeation into breast milk. Data preparation for these models 

was a challenging endeavor. Endpoints were reported in imprecise ways, which asked for a careful 

selection and binning of the instances. Despite these facts, the 10-fold cross-validated decision trees 

predicted the endpoint with high accuracy (CCR: 85.3 - 95.3%). Prominent descriptors were measures 

of molecular size, branching, charge and geometry. Importance of polar fragments was revealed by a 

fragment-based analysis.  

 

The efflux transporter MRP2, a member of the ABC transporter family, was subject of the fourth study. 

Efflux transporters contribute substantially to barrier function by extruding potentially toxic substances. 

Three datasets were assembled from literature for MRP2 substrates, inducers, and inhibitors. For 

inducers and inhibitors, decision trees with high accuracy were grown. However, the substrate dataset 

did not qualify for decision tree induction, due to an underrepresentation of negative instances. 

 

The fifth project deals with an ant colony optimization (ACO) algorithm, which was adapted for 

fragment based feature selection. The paradigm was tested to predict antimalarial activity of 

molecules. ACO was able to reveal chemical substructures characterizing antimalarial drug activity, 

which comprised passive diffusion through the erythrocyte membrane and parasite toxicity. The 

paradigm outperformed other algorithms such as decision trees or artificial neural networks on the 

same dataset.  
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2 Aim of thesis 
Drugs have to cross several physiological barriers in the body in order to reach their target. Some of 

these barriers consist of specialized cells, which can exhibit increased tight connections between each 

other to reduce free diffusion. At these cell layers molecules can be actively transported with and 

against concentration gradients by a multitude of transport proteins. Barriers are found in the intestinal 

wall, the central nervous system, and the lactating breast epithelium. While they help to maintain 

homeostasis within the body and prevent permeation of toxic substances, these barriers can also 

substantially alter drug distribution or even completely prevent access to the site of action. It was 

therefore the aim of the present work to develop computational models using modern machine learning 

methods to predict drug permeation across physiological barriers.  

  

We initially assessed human intestinal absorption using computational methods. After oral 

administration and intestinal dissolution, a drug has to cross the gut wall in order to become available 

for the body. Knowledge of intestinal absorption capacity is desirable as low intestinal absorption of a 

drug may limit its clinical application.  

 

The second project aims to create methods to predict drug brain penetration, which is substantially 

restricted by the blood brain barrier. Knowledge on blood brain barrier permeation is therefore critical 

to develop drugs, which target the central nervous system.  

 

The aim of the third project was to explore physicochemical and structural requirements for drug 

passage from maternal blood into breast milk. This topic is of particular relevance for drug safety in 

nursing. As ethical constraints limit in vivo experiments, computational methods are ideally suited to 

model this endpoint.  

 

It was the aim of the fourth project to study a representative of the ABC transporter family, MRP2, as 

efflux transporters contribute substantially in maintaining barrier functions.  

 

In the final study, we aimed to adapt an ant colony optimization algorithm to perform a fragment based 

feature selection. The paradigm was tested on the highly combined endpoint of antimalarial drug 

activity, which comprises passive diffusion through the erythrocyte membrane and toxic action on the 

parasite.  
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3 Introduction 

3.1 A historical perspective 
The use of drugs is as old as mankind. In fact, the use of herbal medicines might even predate modern 

homo sapiens. Findings of various different medicinal plants in Neanderthal tombs (60 000 years BC) 

indicate their use as remedies.[1] The 5300 year old “Oetzi” or “iceman” found in the Tyrolean Alps was 

carrying two pieces of birch fungus (Pitoporus betulinus) with him. It is nowadays believed that he 

knew of its beneficial effects (antibiotic and anti-inflammatory) and that it served him as an early first-

aid kit.[2-4]  

 

Despite its long history, drug discovery as a systematic, scientific, and multidisciplinary endeavor exists 

not much longer than a century. A dramatic development in chemistry induced a quantum leap of 

pharmaceutical sciences in the 19th century: The benzene theory formulated by Auguste Kekulé in 

1865 led to intensive research on coal-tar derivatives, especially for their use as dyes.  

 

The application of dyes inspired medical and pharmaceutical science. Paul Ehrlich discovered in the 

early 19th century a selective affinity of dyes for biological tissues. His observations led him to postulate 

the existence of “chemoreceptors” that should be exploited as therapeutic targets. With his statement 

“Corpora non agunt nisi fixata”, he was the first to formulate a basic principle of modern pharmacology. 

Namely, that active components have to bind their corresponding molecular target structure in order to 

cause a specific action. This theory was further refined by Emil Fischer (Key-lock principle, 1890) and 

Daniel E. Koshland (induced fit concept).[5] It became clear that a drug candidate should exhibit high 

target selectivity in order to be a good therapeutic. On the other hand, unspecific binding made a drug 

more prone to cause unwanted or toxic side effects.  

 

Although, knowledge on target structures grew during the first decades of the 20th century, the 

greatest “block buster” drugs were still discovered by serendipitous accidents. The most famous 

example is probably the discovery of penicillin by Sir Alexander Fleming due to a fungus contamination 

of his bacterial cultures. His discovery conquered some of mankind's most ancient scourges, including 

syphilis, gangrene and tuberculosis. The more targeted identification of specific sites of action led also 

to remarkable results. William Campell for example isolated the avermectins from a soil sample 

collected from a golf course in Japan, which proved powerful against parasites. From systematic series 

of compounds, the semi-synthetic ivermectin turned out to be the most effective drug and was 

marketed ever since.[6] Another example of a success story was the development of Cyclosporine A. 

The immunosuppressive effect of the drug was discovered in a screening test developed by Hartmann 

F. Stähelin in Basel.[7] 

 

In the late 1970s, genomic science led to a fast identification of drug target structures. In vitro assays 

were developed to quickly screen compounds for specific pharmacological properties. An automation 

of these experiments allowed for high-throughput screening, where thousands of compounds could be 
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screened on one day. Despite the initial euphoria, its success stayed far behind expectations: although 

the number of molecules tested rose from 200 000 in 1990 to over 50 Million in 2000, the productivity 

of pharmaceutical industry, with respect of bringing new drugs to marked, could not be improved ever 

since.[8] 

 

Many of these high-troughput screened compounds failed in the late and costly stage of drug 

development due to their unexpected or unfavorable pharmacokinetic behavior. The efficacy and 

safety of a drug is detrimentally dependent on its absorption characteristics, its tissue distribution, 

metabolism, as well as its excretion. A quick metabolism and elimination of a drug could abolish any 

therapeutic concentration on the target site, while a slow clearance leading to high plasma levels could 

cause toxic side effects. Several cellular and biochemical barriers can hamper distribution into body 

compartments and make predicting drug pharmacokinetics a challenging endeavor.  

 

3.2 Pharmacokinetics in Drug Discovery 
Depending on the application route and formulation, pharmacokinetics and bioavailability of a drug can 

substantially vary. The preferred route of administration is per oral since it is safe, cost-effective, and 

associated with high patients compliance. Low intestinal absorption of a drug may limit its clinical 

application, except in settings where the compounds target lies within the gastro-intestinal lumen (e.g., 

vancomycin, mesalazine). However, most orally applied drugs have to cross the intestinal epithelium 

and will be exposed to hepatic metabolism before reaching their site of action.  

 

Limiting factors for intestinal drug absorption include low solubility or chemical instability in the 

gastrointestinal tract (GIT), high gastrointestinal metabolism, and poor intestinal membrane 

permeability.[9] Absorption kinetics are highly dependent on a compound’s solubility and hence galenic 

formulation, which influences exact location of dosage form disintegration in the GIT.[10] After 

intestinal absorption, molecules are transported via the portal vein to the liver where they might be 

subjected to hepatic metabolism. Metabolism can be pronounced to such an extent that a drug can be 

completely withdrawn from circulation by the first liver passage. For compounds undergoing extensive 

hepatic first pass metabolism, other administration strategies have to be found.1  

 

To bypass intestinal absorption and hepatic metabolism, drugs could be applied intravenously. 

Intravenous application (i.v.) has the advantage to make drugs immediately available for distribution as 

they reach circulation without prior hepatic metabolism. Other invasive methods comprise sub- or 

intracutaneous application.2 However, injections are associated with a certain infection risk and are 

generally not favored for self-application by a patient. 

 

                                                        
1 One could think of pro-drug administration, where the active drug component becomes available just after being metabolized in 

the liver. However, this strategy requires a functional liver parenchyma.  
2 A major drawback is related to the varying constitution of the subcutaneous tissue depending on the body part. Varying blood 

flow rate and subcutaneous fat content can substantially alter drug kinetics.   
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A more elegant and non-invasive way to avoid first pass metabolism is the application over the 

mucosal tissue. Drugs diffuse passively into the submucosal capillaries and into venous circulation. 

Determinants for passive diffusion are molecular size, lipophilicity, and charge. Besides the buccal 

mucosa, other mucosal tissues can be used for drug application as well. Nasal and rectal applications 

are available for many drugs.[11] 

 

Although the drug application via the skin seems at first glance very attractive, it is hampered to a 

certain extent by the physiological function of the epidermis, which is to safeguard the body from 

environmental impacts. To reach dermal microcirculation a drug has to diffuse through the numerous 

layers of epidermis.3  As a result transdermal drug delivery can be delayed and prolonged, and is 

sometimes hard to control. Typical application domains are treatment of ischemic heart disease 

(nitroglycerine patch) and acute and chronic pain (opioid patches, like buprenorphine or fentanyl 

patches).[12, 13] 

 

In cases where the pharmacological target is hardly reachable from the circulation (e.g., due to 

barriers) one could consider direct application into the target organ, surgically or by injection.4 

However, this administration route does usually not qualify for self-application. Trained staff and a 

medical facility are needed for safe administration. Thus, a single dosing becomes much more tedious 

and expensive than an oral formulation would and limits the drugs application range dramatically. 

Moreover, there are targets that do not qualify for direct application.5 This is especially the case when 

strongly invasive surgical procedures would be needed and the potential risk of infections demands for 

an exhaustive risk-benefit assessment. In these cases, scientific ingenuity is needed to improve 

pharmacokinetic properties to qualify for safer application routes. However, one of the greatest 

obstacles is to overcome pharmacological barriers. 

 

3.2.1 Barriers 

Where body compartments are more sensitive to fluctuations of nutrients or exposure to xenobiotics, 

they need the ability to control and influence passage of molecules from circulation. Highly specialized 

cells fulfill this task by establishing biological barriers. Molecular trafficking can be controlled by active 

transport, often in combination with an increased tightness of the cellular layer, where the whole 

process is catalyzed. The characteristics of these barriers depend substantially on their location and 

the physiological requirements of the protected organ. We will discuss some of these barriers in the 

following in more detail.  

 

                                                        
3 Of which, the stratum corneum imposes the major diffusion barrier as it mainly consists of several layers of dead ceratinocytes. 

Compounds would have to diffuse intercellularily through this inert barrier. In comparison, diffusion over the stratum lucidum, 

granulosum, spinosum, and germinativum of the epidermis is much faster due to a higher fluid content in these living cells. 
4 For the anti-angiogenetic agent Pegaptanib used in age-related wet macular degeneration the intravitreal injection is the 

common and most effective application route.[14] 
5 E.g., the brain. 
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3.2.1.1 Intestinal absorption  

One of the first hurdles an orally administered compound encounters after dissolution in the gut is its 

intestinal absorption, i.e. its passage from the gut lumen into the portal vein. The cellular barrier in the 

GIT is mediated by a simple columnar epithelium of enterocytes. Current understanding indicates that 

passive diffusion (transcellular and paracellular) is a determining factor in drug absorption.[15] 

 

The cellular membrane of the enterocyte consists of a self-assembling phospholipid bilayer. The 

aliphatic parts are oriented towards the inside, while the polar phosphate and head groups are directed 

toward the watery surrounding (e.g., cytosol and gut lumen). Before a compound moves by Brownian 

motion through the membrane it has to withdraw hydrating water molecules and to brake up hydrogen 

bonds. Generally, the higher the hydrogen bonding capacity, the more energy the permeation will cost 

and consecutively the poorer is the molecule’s absorption. Due to this energy-consuming step, 

lipophilic and uncharged compounds permeate much better than their polar counterparts.[16, 17] 

Molecules passing through the polar head groups of the phospholipids encounter tightly packed lipid 

chains in the glycerol backbone. Hence, small molecules pass this region more readily than greater 

structures. Typically, measures of lipophilicity (polar surface area [PSA], partition coefficient [LogP]), 

size (molecular weight), and charge (hydrogen bonding capacity, PSA) are used to predict intestinal 

absorption in rules of thumb.[16, 18] The majority of molecules diffusing passively will take the 

transcellular route due to the great exchange area on the microvilli. But also paracellular diffusion 

occurs.[19, 20] Tight junctions between enterocytes control this undirected transport by claudine-pores, 

which act like a molecular sieve. Only small molecules (180-200kD) and mostly cations are able to 

cross. [21] 

 

However, many vital substances are neither lipophilic, nor small (e.g., sugars and proteins) and will not 

diffuse passively in efficient manner through the enterocyte membrane. To ensure sufficient supply of 

such poorly permeable yet indispensable molecules, selective transport is warranted by several 

transmembrane transport proteins and channels. Beside specific import of molecules, there exists as 

well active extrusion of potentially noxious substances on the enterocyte. As they can transport their 

substrates against a concentration gradient, efflux transporters can modify absorption considerably. In 

enterocytes, transporters are physiologically involved in absorptive uptake (from the gastric lumen 

through the epithelial cells into the blood), in efflux (from the epithelial cell membrane back into the 

gastric lumen), and in secretory efflux (from the blood into the gastric lumen). 6 

 

Active influx and efflux at the level of the enterocyte are regulated by several transport systems, such 

as the influx transporter PEPT1 (Section 3.2.3.2) and the well-known efflux transporter P-glycoprotein 

(P-gp) (Figure 1) (Section 3.2.3.1).[23-25] 

                                                        
6 Digoxin is secreted by P-gp form blood into the gastric lumen.[22] 
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Figure 1 - A schematic view of enterocytes is given. On the apical side (gut lumen) P-glycoprotein (P-

gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) mediate 

efflux. Influx transporter peptide transporter 1 (PEPT1) mediates di- and tripeptide uptake. On the 

basal side (blood) multidrug resistance protein 3 (MRP3) transports substrates into the blood. 

 

There is clear evidence that transport proteins interplay with metabolic enzymes. The effect of 

enterocytic cytochrome P450 (CYP450) metabolism, even though small when compared to the effect 

of hepatic CYP450, still serves as an example of metabolic degradation of the parent substance 

resulting in lower plasma levels.[26, 27]  

 

3.2.1.2 Blood brain barrier 

Development of new CNS active drugs is hampered by limited brain permeation. As invasive methods 

have proven themselves to be ineffective and risky for patients, the systemic application is the 

preferred route for drug administration into the brain.[28, 29] Hence, blood brain barrier (BBB) 

permeability is a feature absolutely mandatory for any drug, which targets the CNS. It is desirable to 

have estimates on a compounds behavior at the BBB as early as possible in the drug development 

process.  

 

The microvascular endothelial cells of the brain establish the BBB. The membrane of brain endothelial 

cells exhibit negatively charged polar head groups, which oppose acids.[17]7 Circumferential tight-

junctions connecting adjacent cells eliminate paracellular leakage and seal the physical barrier against 

paracellular diffusion of blood borne molecules (Figure 2). Lack of endothelial fenestration enforces the 

cellular barrier additionally.  

 

 

                                                        
7 Acids penetrate poorly the BBB due to the negatively charged head groups of the lipid bilayer. This is also reflected in the fact 

that approximately 75% of the most prescribed drugs are basic, 19% are neutral, and only 6% are acids.[30] 
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Figure 2 - A schematic intersection of a cerebral microvessel is shown. The microvascular endothelial 

cell (E) constitutes the blood brain barrier, which controls passage of molecules from the blood (B) into 

the brain. Tight junctions establish high intercellular resistance. The brain microvascular endothelial 

cells stand in close contact to astrocytes (A), neurons (C) and pericytes (D), which are thought to 

modify endothelial cell characteristics. 

 

Therefore, most compounds have to take the transcellular route in order to cross the BBB. Small 

gaseous molecules (e.g., O2, CO2) and small lipophilic agents (e.g., ethanol) cross the endothelial cell 

membrane by passive diffusion.[31]8  

 

The process of passive permeation is well described and major physicochemical determinants 

summarized in rules of thumb, which are lipophilicity,9 molecular weight, and measures of molecular 

polarity.[32-36] However, such expert-based rules do not accurately reflect the complexity of 

interactions as they disregard the pharmacokinetic processes mediated by transport proteins.[37] 

Typically, several anti-cancer drugs, corticosteroids, and anti-epileptics are well-documented examples 

where molecular properties for brain penetration would seem to be fulfilled but in fact significantly lower 

CNS concentrations are achieved due to their susceptibility to active transport.[38, 39] Physiologically, 

the ABC transporter super family and solute carriers mediate active transport across the BBB and 

constitute a biochemical barrier to safeguard the brain tissue from potentially toxic compounds, such 

as xenobiotics. 

 

                                                        
8 High lipophilicity improves brain permeation, which is nicely demonstrated on the example of morphine: Addition of methyl 

groups to morphine produces codein, which penetrates 10 fold better into the brain. When two acetyl groups are added, which 

make the compound even more lipophilic, heroin is produced which further increases permeability (up to 100 fold). 
9 However exaggerated lipophilicity makes a compound susceptible for nonspecific binding. It is therefore important to balance 

lipophilicity in order to achieve optimal pharmacokinetics. 



 Introduction 

 

- 18 - 

 

 

 

 

Figure 3 - An intersection of microvascular endothelial cells is shown. Influx is mainly mediated by 

organic anion transporting polypeptides OATP2A2 and OATP2B2. P-glycoprotein (P-gp), breast 

cancer resistance protein (BCRP) and multi drug resistance protein 4 (MRP4) are examples of efflux 

transporters. 

 

P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) are the most 

prominent and best characterized representatives and show the highest mRNA expression levels of all 

ABC transporters on the human BBB.[40-44] Their impact on substrate drug uptake has been shown to 

be, at least for P-gp, clinically relevant.[45] There are speculations that both transporters act together 

to prevent brain entry of several toxic compounds (Section 3.2.3).[46-48] Only a very small proportion 

of compounds show enhanced permeation due to uptake transporters (Figure 3). The physiological 

role of these transporters is uptake of nutrients like sugars, peptides, amino acids, and other 

endogenous compounds (Section 3.2.3).[49, 50] 

 

In the past, the most commonly used brain penetration data were derived from in vivo pharmacokinetic 

studies, which produced a drug in brain to drug in plasma/blood ratio at steady state. Usually its 

logarithm was used termed LogBB. This measure can give some indication of distribution in the brain, 

however it suffers from limitations.10 Single time point measurements might not accurately reflect brain 

penetration due to varying kinetics in plasma and brain. Moreover, LogBB reflects a volume of 

distribution that is determined largely by cytoplasmic binding of drugs in brain and much less by BBB 

permeability. This measurement cannot resolve whether the fraction of free drug is camouflaged by 

nonspecific or specific binding nor does it provide any information on active transport.[51] Therefore, 

the permeability surface product values are recommended, which are usually calculated from internal 

carotid artery perfusion studies in rats, given as its logarithm, LogPS. This procedure is considered 
                                                        
10 The term was loosely applied for variously calculated data: LogBB was sometimes derived from area under thr curve (AUC) 

values, steady state or single time point measurements. In order to make use of these values, the scientist had to have 

knowledge on how the data were derived. 
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superior to blood/brain partitioning measurements at steady state, as it lacks systemic distribution 

effects, which distort brain penetration substantially.[51] 

 

3.2.1.3 Blood milk barrier 

To date, experts estimate a nursing rate of 60–90% in western countries11 and breastfeeding is 

considered the best nutrition for the first months of a baby's life.[52-56] While in general mother and 

baby profit from nursing, maternal medication intake can impose a safety concern. As many drugs 

pass easily into breast milk, babies can be accidentally exposed to medication. Although the majority 

of drugs do not impose a hazard, some cases of significant infant intoxication exist.[57] 

 

Almost all lactating women receive some medication immediately postpartum and during nursing.[58]12 

Despite its social, economic, and medical impact, compatibility of drug intake in nursing is still a 

relatively unexplored field. Ethical constraints hamper clinical trials and animal tests give only a rough 

estimate of human pharmacokinetics. As a consequence, for many drugs only case reports exist.13  

 

Passive diffusion is a leading mechanism of drug passage into breast milk.[61, 62] To our knowledge, 

highly passive diffusing molecules are determined by factors such as low molecular weight, high 

lipophilicity, and low polarity (Section 3.2.1.1).[63] Pharmacokinetics and plasma protein binding in 

maternal circulation determines the amount of drug, which becomes available for excretion.  

 

Although excretion into breast milk is predominantly guided by passive diffusion, the occurrence of 

drug accumulation in human and animal milk suggests the presence of active transport in the 

mammary gland.[61, 64-66] The lactating mammary gland epithelium has to secrete vitamins and 

nutrients against a concentration gradient. Coherently, a multitude of transport proteins were found to 

be expressed.[67, 68] 

 

Members of the ABC transport protein family, like breast cancer resistance protein (BCRP, ABCG2), 

are expressed on the mammary gland epithelium.[64-66] Surprisingly, in the lactating breast, BCRP 

concentrates drugs, carcinogens, and toxins into milk.[69, 70] This behavior stands in sharp contrast to 

its detoxifying function in other organs, for example in the placenta, where it transports noxious 

substances against a concentration gradient from fetal to maternal circulation (Section 3.2.1.4). 

Herwaarden and co-worker suspected that toxin accumulation in breast milk is most likely due to a 

usurped physiological mechanism. BCRP might serve to concentrate vitamins and nutrients in breast 

milk as secretion of Riboflavin (Vitamin B2) by BCRP has been shown.[71] 

 

                                                        
11 The nursing rate in developing countries is presumably even much higher. 
12 An increased vulnerability to psychiatric conditions (e.g., depression)[59] and treatment re-uptake after pregnancy leads to a 

high incidence of drug prescriptions in breastfeeding mothers. 
13 Consequently, manufacturers’ information on drugs is often overly cautious due to lacking experimental experience. Hence, 

mothers are often advised to stop nursing rather than to risk drug exposure for the baby.[60]  
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The probability of adverse events from accidental drug intake via maternal milk might rise with 

increasing exposure (e.g., accumulation), but toxicity of a compound also depends significantly on drug 

clearance of the infant. To link milk plasma/serum ratios (MP) with infant drug clearance and milk 

intake a simplified "Exposure Index" has been proposed by Ito and co-workers:  

 

 
 

where A is a coefficient (10ml/kg/min), M/P ratio is the milk plasma ratio, and Clearance is the drug 

clearance of the infant expressed as ml / kg / min. [72] Infantile drug clearance depends highly on renal 

and hepatic metabolism and excretion. Characteristically, the glomerular filtration rate of a newborn 

achieves adult values 3-5 months after birth, while tubular secretion rate matures more slowly, 

accounting for prolonged elimination half-lives.[73] Expression of drug efflux transporters on liver and 

gut wall, such as P-gp and BCRP might be highly subjected to individual development.[74] Estimating 

drug clearance in infants is therefore a difficult undertaking. 

 

3.2.1.4 Placenta barrier 

The physiological function of the placenta is the exchange of gas, import of nutrients as well as export 

of fetal waste products. Moreover, it has a protective function as it saves the fetus from toxic 

compounds from maternal circulation. In contrast to former beliefs, the placenta barrier does not 

mandatorily protect against harmful drug exposure, as the Thalidomide scandal in the 1950s 

impressively demonstrated.[75]  

 

In the placenta, the main diffusion barrier is mediated by the fetal syncytiotrophoblasts, which directly 

invade the uterine wall. The predominant mechanism of molecule exchange is transcellular diffusion 

(Section 3.2.1.1). Active transport mechanisms support passive permeation of glucose, peptides, and 

other vital molecules (Section 3.2.3). ABC transporters like BCRP and P-gp are strongly expressed 

and mediate efflux on the syncytiotrophoblasts.[76] 

 

3.2.2 Metabolism 

Once absorbed, drugs are transported via the portal venous system into the liver, where hepatocytes 

absorb and modify molecules to increase water-solubility. Drug uptake on level of hepatocytes 

happens mostly against concentration gradients and is facilitated by a multitude of transport proteins 

(Section 3.2.3). After modification, drugs are either eliminated (via bile) or re-circulate into systemic 

blood flow and are distributed in the body. 

 

The compulsory shunting of intestinally absorbed molecules to the liver accomplishes two important 

tasks. Nutrients, such as fats or sugars, are modified and/or stored and noxious substances can be 

removed from circulation before they are distributed in the body. The liver exhibits the capability of 
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eliminating drugs completely in the first passage from portal venous circulation. Hence, hepatic first 

pass metabolism can influence bioavailability considerably.  

 

Metabolic modification can also lead to activation of drugs. This principle is exploited by pro-drugs. 

While the administered compound is inactive, the drug is activated by biotransformation in the liver. 

This strategy was applied to improve absorption of the drug oseltamivir, where the active ingredient 

(oseltamivir carboxylate) exhibits poor intestinal absorption capacity. By methylation the drug becomes 

absorbable orally and is almost completely hydroxylized in the liver to its active component.[77] Pro-

drugs can also be used to enforce oral application, e.g., to avoid i.v. drug abuse.14 

 

To reach the site of metabolism substances have to be efficiently transported into the hepatocyte. 

Principally, the same active and passive transport mechanisms are involved as in enterocytes (Figure 

4).  

 

Figure 4 - Schematic view of transport proteins on hepatocytes. Organic anion transporting polypeptide 

OATP1B1 mediates influx of substrates into the cells. After metabolic modification, compounds are 

either excreted apically into the bile canaliculi (A) or transported back into circulation (B) for renal 

excretion or/and systemic distribution. In the hepatocyte, P-glycoprotein (P-gp), breast cancer 

resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) mediate apical export. Multidrug 

resistance protein 3 (MRP3) and 4 (MRP4) transport substrates back into the blood flow. 

 

Transport proteins are of particular importance in hepatic clearance. They enhance biotransformation 

by facilitating uptake into hepatocytes, where molecules encounter metabolizing enzymes (Section 

3.2.2). They also mediate clearance by increasing the efflux of metabolites into the bile canaliculi or 

back into the blood stream. Single transport proteins are discussed in Section 3.2.3.  
                                                        
14 Valorone N is a mixture of the opiate tilidine and the opioid antagonist naloxone. It is claimed that due to naloxone’s high first 

pass metabolism, oral administration is mandatory to experience a pharmacological effect of tilidine. When applied 

intravenously, naloxon becomes systemically available and antagonizes the effects of tilidine.  
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3.2.2.1 Sites of metabolism 

Although, the majority part of metabolism takes place in the liver, metabolic enzymes are practically 

ubiquitarily expressed and contribute substantially to modification and excretion of nutrients and 

xenobiotics.  

 

Intestinal metabolism can affect drug absorption. On the other hand, several drugs and nutrients (e.g., 

green tea extract or hypericum) can induce intestinal metabolic enzymes, such as CYP 450. [78, 79] In 

the brain, glial cells and neurons express metabolic enzymes and there is further evidence that also 

brain endothelial cells have a metabolic function, at least in disease.[80-83] The list could be 

continuously elongated. However, the wide spread presence of metabolic enzymes underlines their 

impact on both the maintenance of homeostasis and also drug excretion.  

 

3.2.2.2 Molecular mechanisms of metabolism 

Metabolism is usually a two-step process, which has not necessarily to occur in sequence. The first 

reaction is characterized by modification of molecular structures by oxidation, hydroxylation, or 

reduction. Step two-reactions are usually additions (conjugations) of polar groups, such as glucuronic 

acid, amino acids, or glutathione, which increase hydrophilicity. A compound does not mandatorily 

need to undergo step one before step two, if it already has a functional group qualifying for 

conjugation. 

 

The most prominent phase I enzymes are monooxygenases which include the CYP450 family. They 

are localized on the endoplasmic reticulum and abundantly expressed in hepatocytes. CYPs are also 

found in the intestine, colon, lung, brain, and skin.[84, 85] Several members of the CYP protein family 

show polymorphisms, which led to unexpected pharmacokinetics of substrate drugs in certain 

populations.[86, 87] Numerous drugs and herbal preparations are inducers of CYP and complicate 

drug therapy considerably. [88] 

 

Uridine 5'-diphospho-glucuronosyltransferases (UGT)15 play the predominant role in phase two of 

metabolism. Substrate molecules are conjugated to either a glucuronic acid moiety, a hydroxyl 

carboxylic acid or an amine group. Glucuronisation increases water solubility and hence eases renal 

and biliary elimination. Some hereditary diseases are connected with UGT abnormalities or 

deficiencies, such as Gilbert-Meulengracht Syndrome16 and Crigler-Najjar17 Syndrome. 

                                                        
15 UGT is expressed practically in all animals and plants, except in cats (genus felis), where it accounts for a series of unusual 

toxicities.[89]  
16 Gilbert-Meulengracht Syndrome is characterized by a mild hyperbilirubinemia and is found in approx. 5% of the population. 

The disease is caused by a reduced activity of UGT1A1. Substrate drugs show an increased toxicity in these patients (e.g., 

Irinotecan). However phenobarbital can induce and restore activity of UGT1A1.  
17 Crigler-Najjar Syndrome is a very rare autosomal recessive disease. Type 1 is characterized by sever non-hemolytic 

hyperbilirubinemia caused by a complete lack of UGT1A1. Untreated, the hyperbilirbunemia leads to severe brain damage or 

even death. In Type 2, disease is less severe, as UGT1A1 expression is reduced and not completely abolished.  
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Besides UGT, sulfotransferase, glutathion-S-transferase, and N-acetyltransferase catalyze phase II 

metabolism, conjugating sulfate groups, glutathion, and amines, respectively. After conjugation, 

compounds are subjected either to excretion in the bile or to recirculation into the systemic blood flow 

for renal clearance. 

 

3.2.3 Active Transport across membranes 
Transport proteins have specified substrates and exploit individual transport mechanisms. Some 

transport their substrates along the concentration gradient (facilitated diffusion) while others use 

energy to overcome this gradient actively.[90] In contrast to passive diffusion, these active transport 

processes exhibit saturation kinetics (Figure 5). 

 

Principally speaking, transport occurs when the drug contains a moiety that is similar to transporters 

natural substrate or if it has structural elements that facilitate binding to the transport protein (e.g., P-

gp). Transporters affect absorption, distribution and toxicity properties in various ways, which have to 

be considered in drug development. 

 

For certain drugs, an enhanced intestinal absorption can be observed, despite unfavorable 

physicochemical properties.[50] Examples of these drugs are peptidomimetics, like beta-lactam 

antibiotics or ACE inhibitors, and anti-viral, and anti-cancer, drugs which are transported via PEPT1. 

[91-93] Inversely, some molecules are badly or not absorbed (e.g., anti-cancer drugs) due to efflux 

transporters.[94] They can oppose distribution or enhance elimination.  Competitive inhibition as well 

as induction of transporters can additionally modify pharmacokinetics.[95]  

 
 

 

Figure 5 - Diagram of active (dashed line) and passive transport (continuous line) kinetics. Active 

transport is characterized by an increased uptake until all transporters operate at full capacity, i.e. are 

saturated. Transport rates are stabilized regardless of excess substrate. Passive diffusion shows a 

linear kinetics, which continuously increases with increasing concentrations. 
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Owing to the finite number of transport proteins on the cell surface, active transport can be saturated if 

substrate is available in sufficiently high concentrations. The flux of molecules increases until the 

maximum capacity of the transport proteins is reached. Above this level the flux does not increase. 

This effect is not seen in passive diffusion, which exhibits linear and not saturation kinetics (Figure 5).18 

Transporters are found at barrier membranes throughout the body. Some of the most important ones 

shall be discussed in more detail.  

 

3.2.3.1 ABC transport proteins 

P-Glycoprotein (P-gp, ABCB1) is probably the best-characterized member of the ABC transporter 

super family. It is an ATP-dependent drug efflux pump exhibiting broad substrate specificity.[96, 97] P-

gp exhibits 12 trans-membrane domains (Figure 6). To undergo transport, substrates have to attach to 

the binding domains of P-gp, of which one appears to be within the cellular membrane. By 

hydrolyzation of two ATP molecules on the ATP binding regions, P-gp changes conformation, opening 

a pathway for the substrate to be extruded into the extracellular fluid.[90, 98] 

 

 

Figure 6 - Schematic view of P-glycoprotein, with typical 12 trans-membrane domains. The ATP-

binding sites are indicated by dark grey boxes (A1 and A2). 

 

P-gp was discovered, as decreased drug concentrations and a consecutive multidrug-resistance in 

tumor cells was observed.[96] It has a protective and excretory function in physiological tissues, and is 

abundantly expressed on several barriers. Thierbaut and co-workers demonstrated the expression of 

the transporter on the apical side of enterocytes, hepatocytes, brain endothelial cells, and the proximal 

tubule of the kidney. [99]  

 

P-gp exhibits broad substrate specificity and can substantially influence pharmacokinetics in clinically 

                                                        
18 This holds in the case of stable concentration gradients. 
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relevant manner.19 In the intestine it reduces or abolishes uptake of substrates, whereas it enhances in 

the liver and kidney clearance of substrates into bile and urine, respectively.[90] Schinkel and co-

workers reconfirmed its relevance in drug transport as they found significantly elevated substrate levels 

in P-gp deficient mice. [98, 102, 103]20 

 

P-gp plays a detrimental role in supporting cellular barriers such as the BBB or placenta barrier. 

Recent reports even indicate P-gp expression on the mammary gland epithelium. [104, 105] The 

intentional application of P-gp inhibitors as a "chemo-sensitizer" in order to enhance efficacy of drugs 

or to reduce the active component in a single dose was recently discussed.[106-108] Although 

tempting, this approach might harbor risks. Inhibition of this transporter, which is expressed in many 

tissues might corrupt its protective function in other organs as well, e.g., the BBB (Section 3.2.1.2), 

potentially leading to acute intoxication by overdose.  

 

Breast cancer resistance protein (BRCP, ABCG2) was identified from chemotherapeutically resistant 

breast cancer cells.[109] It is a "half" ABC transporter as it exhibits only six trans-membrane 

domains.[110] Physiologically, BCRP shows high expression levels in the gastro intestinal tract, liver, 

kidney, brain endothelium, mammary gland and the reproductive organs.[111] Physiologically, BCRP 

contributes to efflux of porphyrines and shares many substrates with P-gp. As both transporters are 

often found in co-localization and show a broad substrate overlap, it was suspected that they work in a 

concerted manner. Gastrointestinally expressed, it limits absorption of its substrates, such as 

sulfasalazil.[112] In reproductive organs, BCRP safeguards sensitive tissues from noxious agents. 

Additionally, the transporter is found on the apical membrane of the hepatocytes, where it mediates 

together with P-gp and MRP2 excretion.[90] BCRP substrates comprise antiviral drugs (e.g., 

zidovudine), statins (e.g., rosuvastatin), antibiotics (e.g., ciprofloxacin), and calcium channel blockers 

(e.g., azidopine).[111, 113] The extraordinary role of BCRP in the lactating breast is discussed in 

Section 3.2.1.3. 

 

The multidrug resistance proteins (MRPs, ABCC family) share less than 15% amino acid identity with 

other members of the ABC transport protein family. The similarity resides almost exclusively with the 

nucleotide biding domains. MRPs are primary active transporters and mediate the ATP-dependent 

unidirectional transport of lipophilic substances conjugated with glutathione, glucuronate, or sulfate and 

conjugated and unconjugated amphiphilic anions. The expression of MRPs was first described in the 

doxorubicin selected lung cancer cell line H69AR, which showed resistance to many chemotherapeutic 

agents.[114] Their expression was thereafter confirmed for a broad range of human tumors and 

various healthy human tissues.[115] The family of the MRPs consists of at least six members, of which 

MRP3 (ABCC3) and MRP4 (ABCC4) have a certain role in disposition, and the apically localized 

                                                        
19 When rifampicin, a potent inducer of P-gp, is coadministered with digoxin, a P-gp substrate, the absorption ratio of digoxin was 

significantly reduced.[100] The inverse effect was observed when quinidin, an inhibitor, is given instead of rifampicin. Serum 

levels of digoxin increased up to two- and threefold in healthy subjects.[101]  
20 In fact, serum levels of P-gp substrate ivermectin were 20 times higher than in wild type animals. 
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MRP2 (ABCC2; also known as cMRP or cMOAT) is suspected to have emerging clinical importance. 

[90, 116, 117] MRP2 is strongly expressed on the apical canalicular membrane of hepatocytes, where 

it promotes biliary efflux of glucuronides, sulfates, glutathion, and amphiphilic organic anions.[118] 
However, MRP2 is also found on apical membranes, on the proximal tubules of the kidney, in the 

intestine, as well as on the placenta, and in the lung.[119-121] It is often co-localized with phase two 

metabolism enzymes (e.g., UGT), which produce some of MRP2's substrates.[122] Moreover, it was 

shown that vectorial transport in MRP2 transfected cells happened only in presence of influx 

transporters, such OATPs, which indicates that MRP2 might mediate drug interaction in coordination 

with influx transporters and metabolism.[123-125] MRP2's presence on the human BBB is debated.[90] 

However, its overexpression was associated with phenytoin resistant epilepsy in rats.[126, 127] 
 

Physiologically, the transport protein plays an important role, as its localization on many apical 

membranes (e.g., in the liver or kidney) makes MRP2 the final elimination step for many drugs and 

xenobiotics.[128] Dysfunctional expression or inhibition of MRP2 can results in unusual toxicities, like 

the conjugated hyperbilirubinemia in Dubin-Johnson syndrome.[129]21 MRP2 can alter 

pharmacokinetic properties of anti-cancer drugs (e.g., methotrexate and mitoxantrone), antibiotics 

(e.g., ampicillin and rifampicin), angiotensin receptor antagonists (e.g., valsartan and olmesartan).[90, 

131, 132] The exact substrate binding sites and mechanisms leading to induction and inhibition are not 

yet completely elucidated.[133] Moreover, the controversial role of glutathion as transport stimulator 

and co-transported agent indicates the complexity of the process.[134, 135]   

 

3.2.3.2 PEPT1/2 

The tertiary active peptide influx transporter PEPT is expressed in two isoforms, PEPT1 and PEPT2. 

Both are expressed on the proximal tubule of the kidney, while PEPT1 is exclusively found on the 

apical membrane of enterocytes.[90] It typically recognizes di- and tripeptides, but not individual amino 

acids. Peptides are internalized against a concentration gradient in co-transport with a proton. In order 

to keep the intracellular proton concentration low, the Na+/H+-Exchanger protein 3 extrudes protons on 

the apical side in exchange with Na+-ions. A basolaterally located Na+/K+-ATPase maintains 

intracellular Na+ ion concentrations. PEPT transports not only peptides but also drugs, which resemble 

peptides. Peptide-like drugs, like beta-lactam antibiotics and ACE inhibitors are absorbed in higher 

concentrations, as their physicochemical properties would let expect.[91, 92] 22 

 

                                                        
21 The autosomal recessive Dubin-Johnson Syndrome exhibits a deficiency for MRP2 and is characterized by intermitting 

hyperbilirubinaemia. Though it seems that MRP3 may rescue the export of conjugates across the basolateral membrane. This 

was also reported for other conditions where the canalicular secretion of MRP2 substrates is impaired.[130].  
22 To improve unfavorable intestinal absorption, drugs can be linked to an amino acid rest to resemble peptide structure and 

become PEPT1 substrates. The pro-drug valacylovir achieved 50% better absorption ratios by conjunction to valin than to its un-

linked parent compound acyclovir.[136] Other successfully modified drugs are L-dopa (L-Dopa-L-Phe) and gangcyclovir 

(valgangyclovir).[137] 
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3.2.3.3 OATP 

Organic anion transporting polypeptides (OATP) are a family of influx transporters, which 

physiologically import conjugated and unconjugated bilirubin, bile acids, conjugated steroids, and 

thyroid hormones.[138-140] OATP1B1, OATP1B3, OATP2B1 are mainly expressed on the sinusoidal 

membrane of hepatocytes where they mediate substrate influx from the blood flow. [141] 

 

OATP1B1 is probably the best-characterized member of this family. It is difficult to estimate the role of 

OATP1B1 in drug-drug interaction in isolation as OATPs share many substrates with other transport 

proteins (e.g., MRP2) and metabolic enzymes.[142] However, several drugs are known to be 

transported by OATP1B1, such as statins, ACE inhibitors, and angiotensin II receptor antagonists. A 

typical substrate often used in experimental settings is the antihistamine fexofenadine.[141] A typical 

inhibitor of OATP1B1 is cyclosporine as its coadministration lead to increased statin levels.[143] OATP 

polymorphisms can cause marked differences in pharmacokinetics. A polymorphism of OATP1B1 lead 

to reduced substrate specificity of simvastatin, which increased the risk of drug induced 

myopathy.[144]23 

 

OATP1A2 is mostly located at the luminal membrane of small intestine and the BBB.[146] Its 

physiological and drug substrates resemble those of OATP1B1. Its uptake function can be inhibited by 

naringin found in grapefruit and orange juice.[147, 148] 

 

3.2.4 Ways to assess pharmacokinetics 
Assessment of pharmacokinetics is a complex and difficult endeavor as it becomes clear from the 

multitude of processes involved outlined above. In vitro models can give information on 

pharmacokinetics on the cellular level. In order to assess pharmacokinetics as a more realistic 

multistep process, animal models are usually needed, however, this has the significant disadvantage 

that testing compounds in vivo is expensive and time consuming. As nowadays, pharmaceutical 

companies harbor chemical libraries of millions of molecules, computational methods pose an 

economic and efficient alternative to screen for potential lead compounds. In silico methods can 

compress immense quantities of information in predictive models. By the mathematical projections of 

molecules they can reveal new mechanistic explanations of the process itself.   

                                                        
23 Interestingly, fluvastatin seems not to be affected by this polymorphism.[145] 
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3.3 QSAR, Quantitative Structure Activity Relationship 

3.3.1 Fundamentals 

The first attempts to relate chemical structure and biological action were taken in the mid-19th century 

in the field of toxicology. In 1863, Cros stated in his thesis a relationship of toxicity and water solubility 

of primary aliphatic alcohols.[149] He related pharmacological behavior to molecular properties, which 

in turn were determined by a compounds structure. Crum-Brown and Fraser refined this 

observation.[150] They stated that the physiological action of a molecule in a certain biological system 

(!) is a function (ƒ) of its chemical constitution (C): 

 

 
 

From this, they deduced, that an alteration in chemical constitution ("C) would be reflected in a change 

of biological activity ("!). 

 

3.3.1.1 Similarity principle 
A fundamental prerequisite for QSAR was the formulation of the similarity principle. It relates chemical 

structure to functional behavior, stating similar structures exhibit similar activity. In 1874, Körner 

proposed the first correlations between molecular structures and physicochemical properties.[151, 152] 

His work dealt with the ortho-, meta-, and para- derivatives of benzene. The different colors of the 

derivatives were related to the differences in chemical structure. The indication of ortho-, meta-, or 

para-substitution can be seen as the first molecular descriptor.24 

 
First quantitative property-activity studies (QSPR) in classical meaning where published in 1893 by 

Charles Richet. He correlated water solubility of ethanol, diethyl ether, urethan, paraldehyde, amyl 

alcohol and absinth extract with their lethal doses in dogs.[154] He stated, “plus ils sont solubles, 

moins ils sont toxiques”, the more water soluble, the less toxic compounds are. This was the first 

inverse linear relationship formulated of solubility and biological activity. 

 
At the turn of the century, several works correlated narcotic drug potential to water/oil partition 

coefficients, to molecular chain length, or to surface tension.[155-157]25 Louis Plack Hammett 

compared in 1938 dissociation rates of different benzoic acid derivatives with meta- and para- 

                                                        
24 A decade later, Mills found a relationship between structure and melting and boiling point of a homologous series of 

compounds.[153] 
25 Overton positively correlated narcotic potential of drugs with their solubility in olive oil. His observations were independently 

reconfirmed by Meyer and were put forward as the Meyer-Overton hypothesis. However, the thereof resulting lipid theories 

cannot explain receptor-mediated reactions. 
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substituents.[158] He observed that similar substitutions on different aromatic compounds resulted 

similar effects, which led him to deduced the seminal Hammett equation, which states 

 

 

 

where # is the reaction constant, depending solely on the reaction type, $ is the substituent constant 

depending on the substitute. K and K0 are the dissociation constants of two distinct molecules. In other 

words, the reaction depends solely on the reaction type and the substitute group. 

 

In the end of the 1940s, the first relationships of biological activities to theoretical numerical indices 

were drawn. Examples are the Wiener Index and the Platt Number derived from graph theory (Section 

4.2.3).[159-162] In the following decade, a multitude of features were derived from the graph theory, 

marking the beginning of systematic studies on molecular descriptors. 

 

In mid-1960s, Hansch and co-workers gave the quantitative structure activity/property relationship 

(QSAR/QSPR) approach its modern face, by publishing their pioneering work on structure activity 

relationships in plant growth regulators and their dependency on Hammett constants and 

hydrophobicity.[163] They determined a series of octanol-water partition coefficients (LogP) and 

introduced a new hydrophobic scale to characterize permeation of molecules through hydrophilic 

environments, such as blood or membranes. 

 

3.3.1.2 Dimensionality 
Dimensionality of QSAR models usually refers to the techniques and descriptors used to create them. 

In the beginnings of QSAR, activity was related to experimentally assessable parameters and those 

deducible from chemical notation, i.e., physicochemical properties. These features are usually referred 

to as one-dimensional (1D) descriptors (e.g., molecular weight).  

 

At the end of the 1960s, Free and Wilson proposed modeling biological responses on substitution 

effects on common molecular skeletons.[164] Additionally, introduction of graph theory lead to 

descriptors, which make statements on connectivity of molecules as a whole. The molecular graph is a 

two-dimensional representation of a compound and hence the thereof deduced descriptors are usually 

termed two-dimensional (2D) descriptors. 

 

The consideration of actual spatial distribution and geometry of a molecule led to three-dimensional 

(3D) descriptors. These are typically charged partial surface area (cPSA) introduced by Stanton and 

Jurs, and gravitational indices by Katritzky and co-workers.[165, 166] It was debated that the 

connection table holds enough implicit sterical information that effective use of 3D coordinates would 

not add much more geometrical information.[167]  
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The introduction of induced fit modeling expanded the dimensionality to four-dimensional (4D) and 

even higher dimensional levels. Although higher dimensional models hold in general more information, 

it was argued that increasing dimensionality does not mandatorily yield superior models.[168] 

Generally, the model should be suited to reflect the underlying data and to meet the demands of their 

application. There are completely different requirements on a database screening compared to a single 

molecule analysis using pharmacophores and computing conformational changes. For these reasons, 

the question on superiority of models cannot be finally answered. 

 

3.3.2 Applicability Domain 

Whether a QSAR model can establish an accurate and reliable prediction of an unseen structure, is 

determined by its applicability domain. It is defined as the information space a model has been 

generated on. The accurateness of predictions is only warranted within the scope of its applicability 

domain and this holds usually true for interpolation rather than for extrapolation. 

 

As no generally acknowledged measure for the applicability domain has jet been proposed, it is 

recommendable to describe it with the most relevant parameters, which are usually the 

(physicochemical) descriptors used to create the model. The molecules can be represented in the 

multi-dimensional space spanned by their descriptors and can be compared for structural similarity. 

However, the perception of similarity is subjective and a multitude of measures exist. Different 

endpoints require individual measures of similarity. Common similarity measures are summarized in 

Table 1. 

 

Similarity measure Notation 

Tanimoto coefficient  

Hamming distance  

Euclidian distance  

 

Table 1 - Three similarity measures and their formulas are given. I is the intersection of the samples A 

and B. 
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4 Materials and methods 

4.1 Molecular representation 
One of the most fundamental prerequisites for computational chemistry is the formulation and definition 

of an accurate and unique chemical structure representation. The seminal idea of applying a graph 

theoretical approach to molecular representations revolutionized chemistry.[169] One could deduce 

from a chemical structure a two-dimensional hydrogen depleted molecular graph, where atoms and 

bonds are represented by vertices and edges, respectively. The simplest chemical graphs do not 

discriminate higher ordinal bonds or atom types. This made application of mathematical operations 

from the field of graph theory possible for molecules. A multitude of molecular descriptors (Section 

4.2.3) and the SMILES representation for chemical structures (Section 4.1.1) are deduced from this 

pioneering idea.  
 

4.1.1 Simplified Molecular Input Line Entry System (SMILES) 

David Weininger defined in the late 1980s the SMILES concept that has become a standard through 

out computational chemistry. He proposed a string representation of molecules based on the chemical 

graph theory.[170, 171] Molecules are represented as ASCII string, which is human legible and easy to 

compute. While atoms are represented by their atomic symbols, branching points are indicated by 

parentheses and a numeric label indicates ring connection points. Lower case letters indicate 

aromaticity. Disconnected elements, such as salts, are indicated with a point (Table 2). 
 

SMILES notation Generic name Structure 

C Methane 

 

O Oxygen 
 

CC(=O)O Acetic acid 
 

C1CCCCC1 Cyclohexane 

 

c1ccccc1 Benzene 

 

[Na+].[Cl-] Sodium chloride  

 

Table 2 - Examples for SMILES notation, the corresponding generic names and three-dimensional 

structure are given.  



    Materials & Methods 

 

- 32 - 

If not specified, bonds are implicitly assumed to by single or aromatic bonds. Multiple bonds can be 

specified using the equality sign (=) and the number sign (#) for double and triple bonds, respectively. 

Table 3 gives an overview.  

 

SMILES notation Generic name Structure 

C-C-O (or simply CCO) Ethanol 

 

O=C=O Carbon dioxide  

C#N Cyanide 
 

 

Table 3 - Bond notation of SMILES notation is illustrated. 

 

4.1.2 SMILES Arbitrary Target Identification (SMARTS) 

Typically, chemical databases are screened for similarity regarding molecular structure or activity. An 

efficient way to find resembling molecules would be a substructure search, i.e., the formulation of a 

subgraph of the molecular representation. The subgraph can then be used as a search pattern. 

SMART language is closely related to the SMILES code and allows for efficient search query 

definition.[172] SMARTS is built on the SMILES language, but is extended with logical operators and 

wild cards for bond or atom types. Some examples are given in Table 4. Equipped with these 

additional features, SMARTS language is a very efficient way to specify sensible search queries. 
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SMARTS Short explanation Example 1 Example 2 

[#6]~[#6] 
Two carbon atoms (atom 

No. six) connected by any 

bond 
 

 

[a] Any aromatic atom 

  

[!c] Not a aromatic carbon 

  

[O]~[*] Any atom connected by 

any bond to oxygen 
 

 

 

Table 4 - A selection of SMARTS expressions and a short explanation is given. Additionally, two 

example structures are shown, which fulfill the corresponding SMARTS query.  

 

4.1.3 Fingerprints 

Fingerprints represent structural information on a compound as a feature vector and were initially 

intended for similarity or substructure search. The feature vector does not necessarily hold information 

in numerical form and can represent structural features also as a bit vector, where every bit codes for 

presence or absence of a chemical substructure. This is especially advantageous when large 

databases have to be screened for similarity. Once all fingerprints have been computed for a set of 

molecules, overlaps of bits can be compared in order to prescreen for similar fragments. 

 

Which chemical substructures or properties are used to describe the molecules depends on the type of 

fingerprint used. Therefore, the vectors may also substantially vary in length. They range from 3D 

pharmacophore keys, which can be exceedingly extended, over fixed length 2D fingerprints, hashing 

connectivity patterns or chemical fragments to 1D features. Extended connectivity fingerprints were 

designed to explicitly consider features relevant for molecular activity and capture the local atomic 

neighborhood.[173] Another set of broadly used fingerprints are the fixed length 166 bit MACCS keys. 

Initially defined by the company MDL,26 these fingerprints are most commonly used binary fragment-

based keys.[174] All bits in the set represent a predefined set of chemical fragments (e.g., a aromatic 

ring structure or double bound oxygen) represented as SMARTS strings, which can either be present 

                                                        
26 The company MDL (now known as Symyx, which has merged with the company Accelrys) also developed the MDL mol file, a 

standard chemical file format. 
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(bit set to ON) or not (bit set to OFF). In order to compare the ability of fingerprints to describe a 

dataset, one could use the so-called "fingerprint darkness". This concept refers to the fraction of bits 

set to ON in a binary vector. It is obvious that the more features a fingerprint captures the more 

discriminatory power it has.  

 

4.2 Descriptors 
Descriptors are probably best explained as mathematical representation of chemical properties. When 

applied in QSAR, they desirably help to identify molecules with comparable activity but at as high 

structural diversity as possible.27 This conflicting situation might be a reason that we are in a 

continuous search for new molecular representations. In the following section, we will discuss some of 

the most widely used descriptors. 

 

4.2.1 Constitutional descriptors 

Constitutional descriptors are features that reflect molecular composition without any geometrical or 

topological information. In the early days of QSAR, some of these features were manually determined 

for a set of compounds but nowadays it is general practice to compute these features, which holds the 

advantage of not underlying experimental variation.  

 

4.2.1.1 Atom count descriptors 
Count descriptors are a relatively simple way to get information on molecular constitution. Atom 

numbers (or atom count) is the simplest measure for molecular size. Usually only non-hydrogen atoms 

are counted. The information index on size (Isize) can be derived thereof, which gives the total 

information content on atom counts. The formula is adapted from [175] 

 

 
 

where the atom count A can also take hydrogen atoms into account, depending on its definition. Other 

count descriptors assess the contribution of heteroatoms (heteroatom count) or functional groups, like 

hydrogen bond donors and acceptors (Section 4.2.2.1). 

 

4.2.1.2 Bond count descriptors  
Bond number or edge counting refers to the simplest graph invariant of the molecular graph where also 

multiple bonds are considered as single edges. As a result it does not discriminate chemically non-

equivalent groups. If information on molecular saturation is desired from the set of constitutional 

descriptors, double-, triple-, or aromatic-bond counts can be considered. Bakken and Jurs proposed 

the multiple carbon bond index to assess carbon bonds by their simple addition.[176] Another 

                                                        
27 Favorably, descriptors should be easily computable and not underlie experimental variation. 
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constitutional measures for unsaturation is the multiple bond count (b*), which was expressed by [175] 

as 

 
 

where B represents all bonds in the molecule and !* is the conventional bond order. 28 

 

4.2.1.3 Rotatable bonds count 

Rotatable bonds count is the sum of bonds, which can freely rotate around themselves, giving 

indications on molecular flexibility. A rotatable bond is typically a single bond between two non-terminal 

heavy atoms.29, 30 Moreover, they should not be part of a ring structure. However, potentially rotatable 

bonds like hydroxyl or methyl groups are often not included in calculations. Several QSAR studies 

imply that molecular flexibility is an important feature to describe interactions with biological 

targets.[177-179] 

 

4.2.1.4 Molecular weight 

Molecular weight (MW) is probably the simplest measure of molecular size. In contrast to simple atom 

or bond count descriptors the feature holds information on atom types. It is easily calculated by 

summing up the individual atomic weights of the compound, which is expressed as  
 

 

 

where i runs over all atoms (A) in the molecule and m is the atomic mass. The formula is adapted from 

[175]. Molecular weight is despite its simple calculation a fundamental parameter to describe biological 

and pharmacological behavior of compounds, as size plays a crucial role in permeation capacity and 

passive diffusion. Several rules of thumb use molecular weight to determine drug absorption and 

permeation (Section 3.2.1.1 and 3.2.1.2). 

 

                                                        
28 Note that for saturated molecules, b* = 0. 
29 Non-terminal can also designate, in this context, a heteroatom connected to hydrogen. 
30 This bond should not be a triple bond, unless it is connected to another atom. 
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4.2.1.5 Partition coefficient (LogP) 

The partition coefficient P measures the distribution of a compound between a hydrophobic and an 

aqueous phase.31 It is probably the oldest and most widely used measure for lipophilicity. For easier 

handling, in place of P, its decadic logarithm LogP is commonly used.  

 

Lipophilicity substantially influences a compound's distribution within the body. Hydrophobic 

compounds will eagerly permeate through lipid bilayers and enrich in lipidic environments (e.g., CNS), 

while their hydrophilic counterparts will distribute in aqueous compartments (e.g., blood serum).  

Several computational methods were proposed to calculate LogP. The most widely used ones are 

atom-centered (aLogP, xLogP) and fragment centered approaches (cLogP). 

 

Moriguchi proposed a very generalized method to assess partition coefficients computationally 

(xLogP).[180] He proposed a regression analysis, where 13 structural elements of each molecule are 

determined and weighed in an equation. Ghose and co-workers introduced an atom-centered method, 

which considers the lipophilic contribution of each atom in dependence of immediate atomic 

neighborhood (aLogP).[181, 182] Both methods can be applied to a wide spectrum of molecules 

regardless of their complexity but in certain cases at the expense of accuracy. However, it can be 

helpful to get a rough estimate at very low computational expense.  

 

The hydrophobic fragmental constants proposed by Leo and Hansch are probably the most accurate 

way of determining LogP values.[183] Non-overlapping fragments are generated by a simple set of 

rules, and their fundamental hydrophobic constants are determined. For simple compounds only 

containing one functional group this method is very accurate. For more complex structures, containing 

more than one functional group, correction factors were derived to improve LogP prediction.32 Its 

computational implementation by Chou and Jurs became known as the calculated LogP (cLogP).[184] 

 

4.2.2 Electronic Descriptors 

Distribution and amount of a molecule's electricity is fundamental for its reactivity and behavior in 

chemical and biological systems. 

 

4.2.2.1 Hydrogen bonding descriptors 
Hydrogen bonding can be described as a dipol-dipol interaction between a hydrogen atom and 

electronegative atoms, which are usually constituted by oxygen, nitrogen or fluorine. Although 

hydrogen bonds are not as strong as covalent binding, they are still stronger than van der Waals 

interactions.  

                                                        
31 The lipid phase has changed over time from olive oil to octanol and n-alkanes.  

32 This extensive list of fragments and correction factors holds information on proximity effects, hydrogen bonding, branching and 

many more.  
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However, the strength and distance of the bond depends on the kind of electronegative atom 

involved.33 

 

Hydrogen bonds occur when strong positive molecular charge attracts a lone pair of electrons on a 

heteroatom. Generally, we designate a heteroatom with covalently bound hydrogen as a hydrogen 

bond donor. A heteroatom with a lone pair of electrons is termed hydrogen bond acceptor. However, a 

hydrogen bond donor can also accept hydrogen bonds and vice versa. Carbon can principally also 

participate in hydrogen bonding, if it is bound to an electronegative atom which decentralizes the 

electron cloud, leaving the molecule with a positive partial charge. 

 

In a pharmacological context, a compound with strong hydrogen bonding capacity shows reduced 

permeation capacity. In order to permeate lipidic membranes hydrogen bonds have to be broken from 

the watery phase of e.g., blood serum, which is an energy-consuming step. This fact found reflection in 

several rules of thumb. For example, Lipinski’s Rule of Five generally associates high hydrogen donor 

and acceptor counts with bad "drug-ability" and brain permeation. Notably, the number of hydrogen 

bond donors is considered to be more detrimental for brain penetration than the number of hydrogen 

bond acceptors.[186, 187]  

 

4.2.2.2 Charged partial surface area 

Stanton and Jurs introduced charged partial surface area (cPSA), which describes the distribution of 

charge on the molecular surface. In this way, the descriptors consider features responsible for polar 

interaction between molecules. The molecular surface was defined as the overlap of the atomic van 

der Waals radii, which is traced by a sphere, representing a solvent molecule.[165] The molecular 

electron distribution is then projected on this accessible surface area.[188] Stanton and Jurs derived 

25 descriptors that combined the solvent accessible surface with partial atomic charge. Table 5 

summarizes the descriptors as they are implemented in the Chemical Development Kit (CDK) (Section 

4.6.3).[189] 

                                                        
33 The bond strength varies between 155 kJ/mol of fluorine bound hydrogen to fluorine and 8kJ/mol of nitrogen bound hydrogen 

to oxygen.[185] 



    Materials & Methods 

 

- 38 - 

 

Descriptor Summary 

pPSA1, pNSA1 Partial positive and negative surface area  

pPSA2, pNSA2 Partial positive and negative surface area multiplied by the total 

positive charge on the molecule  

pPSA3, pNSA3 Charge weighted partial positive and negative surface area 

dPSA1 Difference of pPSA-1 and pNSA-1 

dPSA2 Difference of fPSA-2 and pNSA-2 

dPSA3 Difference of pPSA-3 and pNSA-3 

fPSA1, fPSA2, fPSA3 pPSA1, pPSA2, pPSA3 / total molecular surface area 

fNSA1, fNSA2, fNSA3 pNSA1, pNSA2, pNSA3 /total molecular surface area 

wPSA1, wPSA2, wPSA3 pPSA1, pPSA2, pPSA3 multiplied by total surface area, divided 

by 1000 

wNSA1, wNSA2, wNSA3 pNSA1, pNSA2, pNSA3 multiplied by total surface area, divided 

by 1000 

rPCG, rNCG Relative positive and negative charge 

rPCS, rNCS Relative positive and negative charged surface area  

tHSA Sum of solvent surface area atoms with partial charge less than 
0.2 

rHSA tHSA / total molecular surface area 

 

Table 5 - Listing of cPSA descriptors as they are implemented in the Chemical Development Kit (CDK).  

 

In 2000, Ertl and co-workers proposed a fragment-based method to assess PSA, called TPSA. Single 

polar fragments are summed up to calculate surface contribution.[190] There exist two options for 

TPSA computation. The first variant considers only strongly polarizing fragments, which contain 

nitrogen and oxygen groups (TPSA[NO]). The second option considers additionally weak polarizing 

fragments like sulfur and phosphorus (TPSA[tot]).[175]  

 

The topological method (TPSA) may be superior to conventional cPSA calculations regarding 

computation time,34 and in addition, one does not require a 3D molecular geometry as it relies on a set 

of predefined polar features. However, a discrimination of positive and negative charge is not 

performed by TPSA, which reduces its information content. Moreover, its applicability for higher 

                                                        
34 Ertl stated a two to three order of magnitude decrease in computation time. 
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molecular structures such as antibodies or proteins remains questionable, as in the initial study 

exclusively small molecules and drug-like structures were considered.35 

 

4.2.3 Topological descriptors 

Topological or connectivity descriptors are derived from the molecular graph. Topological indices are 

typically graph invariants, which means that they are not conformation or representation sensitive. 

Weighting schemes for edges or vertices can add additional information. 

 

4.2.3.1 Adjacency matrix 

The adjacency matrix is a fundamental graph theoretical matrix. It considers the immediate neighbor 

hood of single atoms in a molecule, i.e., whether two vertices are connected by an edge or not. The 

matrix entries equal one (1), if two vertices are connected and zero (0) if they are not. 

 

Figure 7 - Atom numbering of 2-Methylpenthane and corresponding molecular graph is shown. 

 

Although the symmetric adjacency matrix (Table 6) does not account for multiple bonds, this 

information can be introduced by adding weighting schemes. From the adjacency matrix, we can 

derive the vertex degree (%) by adding up each row.[175]  

                                                        
35 Accessibility of polar substructures could be reduced due to folding effects. 
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Atom 1 2 3 4 5 6 %  

1 0 1 0 0 0 0 1 

2 1 0 1 0 0 1 3 

3 0 1 0 1 0 0 2 

4 0 0 1 0 1 0 2 

5 0 0 0 1 0 0 1 

6 0 1 0 0 0 0 1 

 

Table 6 - Adjacency matrix with corresponding vertex degree (") is given for the molecule shown in 

Figure 7. 

 

From the adjacency matrix, path counts can be derived, where the path from the vertex i is counted to 

any other vertex in the graph. The path order is defined as the length of the path. 

 

4.2.3.2 Weighted matrices 

The principle of an augmented adjacency matrix was proposed by Randic.[191-193] He replaced zero 

values from the symmetry axis of the adjacency matrix by characteristic values for atom types in the 

molecule (e.g., physicochemical properties). Its vertex degree is analogously called augmented vertex 

degree.  
 

The Burden matrix (Table 7) and its eigenvalues were proposed by Burden in 1989.[194] In analogy to 

the augmented adjacency matrix, the Burden matrix replaces the diagonal zeros by atomic numbers of 

the corresponding atoms. The edges are weighted by their corresponding bond order, taking also 

aromaticity into account. 
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Atom 1 2 3 4 5 6 %  

1 6 0.11 0 0 0 0 6.11 

2 0.11 6 0.1 0 0 0.11 6.23 

3 0 0.1 6 0.1 0 0 6.2 

4 0 0 0.1 6 0.11 0 6.21 

5 0 0 0 0.11 6 0.01 6.12 

6 0 0.11 0 0 0.01 6 6.22 

 

Table 7 - The Burden matrix is given for the molecule depicted in Figure 7. Here, diagonal elements 

are the atomic numbers (i.e., carbon). If atoms are connected, conventional bond order is put into the 

matrix (i.e., 0.1 for single bonds, 0.2 for double bond, 0.3 for triple bonds and 0.15 for aromatic bonds). 

Terminal bonds are augmented by 0.01. 

 

A popular extension of the Burden matrix are the eigenvalue-based BCUTS descriptors, where 

diagonal elements are replaced by varying weights.[195] 

 

4.2.3.3 Kappa shape indices  

Kier proposed in 1985 and 1986 the kappa shape indices &, which relate the hydrogen depleted 

chemical graph (Pi) to a minimally (Pmin) and a maximally (Pmax) connected reference graphs in a way 

that their relationship holds as follows[196]: 

 

 

 

By putting the chemical graph in relation to different reference graphs, Kier proposed three kappa 

indices, which give information on different aspects of molecular shape. For the &1 index, the minimal 

graph was defined as the linear graph, while the maximum graph is the complete graph, where every 

vertex is connected to each other. The information rising form &1 is related to numbers of cycles in a 

molecule (Figure 8). 



    Materials & Methods 

 

- 42 - 

 
 

 
 

Figure 8 - For #1, the maximal and minimal graph (Pmax and Pmin ) are the complete and the linear 

graph, respectively. 

 

The &2 index measures spatial distribution of atoms in a molecule. Reference graph extremes are the 

linear and the star graph (Figure 9). 

 

 

Figure 9 - For #2, the maximal graph (Pmax) is the star graph, while the minimal one (Pmin) is the linear 

graph. 

 

The &3 index encodes information on centrality of molecular branching, as its values increase when 

molecules are not branching or only branching at their extremities. Upper limit is the twin star graph 

while the under limit is the linear graph (Figure 10). 
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Figure 10 - For #3, the maximal and minimal graph (Pmax and Pmin) are the twin star and the linear 

graph, respectively. 

 

4.2.4 Geometrical Descriptors 
Although geometrical descriptors differ in definition, they all deal with actual molecular spatial 

distribution and shape. Usually, 3D-coordinates are derived from computational force fields or from 

christallographic data. An example is the length over breadth descriptor, where maximum and 

minimum ratio of molecular length and breadth are considered. Other typical measures are 

gravitational indices, or the principal moments of inertia. 

 

4.2.4.1 Gravitational Index 
Gravitational indices give information on intramolecular mass distribution. In other words, they describe 

molecular density and cohesion. Molecules can be considered either with or without hydrogen atoms. 

Gravitational Indices four to six consider all atom pairs, regardless of whether they are bonded or not. 

Wessel and co-workers also proposed the use of the square and cubic root of the descriptors.[197] 

 

4.2.4.2 Principal moments of inertia 

Another way of quantifying mass distribution is the consideration of molecular rotational dynamics by 

the principal moments of inertia. According to Todeschini and co-workers the moment of inertia for any 

of the three principal axes X, Y, and Z is defined as 

 

 

 

A is the atom number of a molecule, i stands for the i-th atom in that molecule, while m is the atomic 

mass and r is the perpendicular distance to the considered axis.[175] Moment of inertia, calculated 

along the three principal axes as well as their ratios are used for modeling. 
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4.2.4.3 Radius of Gyration 

Closely related to moments of inertia is the radius of gyration (RG). The descriptor assesses the 

molecular compactness by relating atomic distance from the center of molecular mass to molecular 

weight. This can be formulated as follows, adapted from [198]  

 

 

 

Analogously to the formula of the moment of inertia, A is the atom number of a molecule, i stands for 

the i-th atom in the molecule, while m is the atomic mass and r is the perpendicular distance to the 

considered axis. Molecular weight is abbreviated as MW. 

 

4.2.4.4 Petitjean Shape Indices 

Petitjean proposed in 1992 the shape coefficient (I), which measures molecular anisotropy based on 

the graph theoretical approach. He used minimal (generalized radius [R]) and maximal (generalized 

diameter [D]) paths in the molecule and defined the following relationship:[199] 

 

 
 

He suggested that this index would correlate graph theoretical and geometrical shapes. Bath proposed 

the geometrical shape index by extending Petitjean’s principle. He applied the geometrical matrix 

instead of a graph theoretical one.[200] However, he relativized Petitjean's claims by his observation 

that there is only a low degree of correlation between these two measures. 

 

4.3 Machine learning paradigms 

4.3.1 Decision tree induction (DTI) 

Human learning is characterized by splitting problems into smaller sub-problems, in order to ease 

classification. This principle is mimicked by decision tree induction (DTI). The paradigm is efficient and 

powerful in solving even non-linearly separable problems. Moreover, the trees branches can be read 

as single rules, which eases practical implementation and their use to predict future instances. A tree 

grows by splitting data on its attributes (i.e., splitting criteria) in smaller subsets (Figure 11). This 

process is then recursively repeated on the subsets, until a certain degree of purity is achieved. This 

process is termed recursive partitioning. Tree growth is terminated, if either the leaves contain only one 

class (e.g., have reached perfect purity) or further splitting does not improve purity.  
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Figure 11 - A dummy decision tree of the famous Fisher's Iris data set is shown.[201] 

 

Concerns were raised, that DTI is highly vulnerable and unstable when no stratification is used in 

generating test and training sets.[202] Perturbing the training set would then cause significant changes 

in the predictor. To avoid such shortcomings, one could typically use y-scrambling, where endpoints 

are randomly perturbed. The model trained on such data can then be used to uncover randomly 

correlating features.  

 

4.3.1.1 Pruning  
The aim of pruning is to simplify the final tree and improve its predictivity by reducing overfitting and 

noise. Pruning generally replaces a node or a whole subtree with a leaf,36 sometimes at the expense of 

accuracy on the training set but for the sake of avoiding overfitting on unseen instances. The decision 

whether a node shall be replaced or not, could be made by comparing the error on the hold out data of 

the pruned and unpruned tree. If the error becomes smaller, the original tree will be pruned. Pruning 

can be applied during tree growth (forward pruning), which is advantageous as it would avoid time-

consuming subtrees growth for futile branches. However, post pruning considers the tree after its 

complete building. It offers the possibility to overcome situations, where single splitting attributes have 

less discriminatory power than the consecutive combination of them. In this case, the branch would 

have been prematurely terminated by forward pruning. Most DTI algorithms apply backward pruning. 

 

                                                        
36 In subtree raising, nodes are replaced with nodes below them.  
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4.3.1.2 Classification and regression tree (CART) 
Leo Breimann introduced in 1984 the classification and regression tree algorithm (CART). It produces 

binary trees, which can handle categorical and ordinal and continuous data. Depending on the data 

trained on, CART builds regression or classification trees. CART uses backward pruning.[203] For 

splitting criterion selection, CART maximizes Gini impurity.[204, 205] The Gini impurity (also called Gini 

coefficient) is a measure for curve deviation from chance line. It gives indications on the distance of a 

curve (e.g., ROC curve or a cumulative curve) to the chance line, which allows drawing conclusions on 

its slope or it's information content (Figure 12). 

 

 
 

Figure 12 - The curve illustrates the improvement of classification by splitting criteria added. The 

diagonal is the chance line or the line of no discrimination. A is the area under the curve, while A+B 

indicates the area under the chance line which equals 0.5. 

 

The diagonal line of the ROC area indicates the chance line or perfect equality in cumulative curves. 

The area under this curve equals 0.5. The Gini impurity can accordingly be formalized as  

 

 
 

where A stands for the area under the curve. This formulation is independent of the curve's deviation 

(i.e., concave or convex). The Gini impurity is scaled from 0 to 1, where 0 stands for total equality and 

the value 1 stands for perfect inequality. CART applies the coefficient to decide whether a criterion is 

worth splitting on. A good splitting criterion with high discriminatory power has preferably a value near 

1. This indicates that it has a very unequal distribution in the dataset, i.e., it will have a high 

discriminatory power.  
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4.3.1.3 Chi-squared automatic interaction detector (CHAID)  

CHAID is the oldest DTI paradigm, proposed in 1964 by Sonquist.[206] Typically, CHAID uses forward 

pruning, in contrast to most of the other DTI algorithms. Attributes for splitting are chosen by the chi-

square test. The chi square test rates which child node adds the most information to the tree. The null 

hypothesis states that there is no difference in information between child and parent node. With an 

increasing chi-square, the information a child node adds to the tree diverges from the null hypothesis, 

hence a real information gain exists. The node with highest chi-square, i.e., the feature that adds the 

maximum information compared to the parent is selected to split on. In contrast to CART, CHAID 

handles exclusively categorical data.  
 

4.3.1.4 Random Forests 

In 2001, Breimann and Cuttler introduced the principle of Random Forests (RF).[207] As the name 

implies, Random forests consist of multiple decision trees. Principally, any DTI paradigm can be use to 

create a random forest. Each tree is grown to maximal depth with a randomly composed subset of all 

available features and is not pruned.[208] The final prediction is yielded by a majority vote of all trees 

on the final classifier. Random forests were praised as outperforming many other machine learning 

paradigms and efficiently handling enormous data and feature sets. However, they are suspected to be 

susceptible to overfitting and noise.[209]37 
 

4.3.2 Artificial neural networks (ANN) 

The ANN paradigm is an abstraction of a biological network of neurons. Instances are represented as 

vectors containing their features.[210] Each feature is passed to one of the input neurons to which a 

weight is assigned. Based on these weights, input is passed to the output layer over a number of 

interspersed optional hidden layers. The output layer combines these signals to produce a result. 

Initially, weights are set to random values. As the network is repeatedly presented with training 

instances, these weights are adjusted so that the total output of the network approximates the 

observed endpoint values associated with the instances. 
 

4.3.3 Support vector machines (SVM) 

Support vector machines (SVM) were introduced by Cortes and Vapnik.[211] A major advantages of 

SVM are their low computational expanse, as they do not search for separating hyperplanes by 

considering all instances but only those data points which confine borders of classes. Moreover, the 

paradigm exhibits an extraordinary robustness concerning classification of noisy data as the separating 

"solution plane" is spanned with maximal distance to the class borders of the training set, thus allowing 

also correct classification of instances lying even nearer to the decision plane than instances from the 

original training set did. The output of the SVM is basically a plane equation, which is solved for new 

instances as either >1 or <-1, while for instances exactly on the plane it is 0. 
                                                        
37 Segal argued that Breiman used datasets for testing RF which could hardly be overfitted. 
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As SVM is in principle a linear paradigm, it could be considered useless in solving non-linear problems. 

However, in theory for any non-linear problem, a linear solution can be found by sufficient (some times 

up to infinite) up-transformation of the original feature space. It is evident, that such models would 

become difficult to computationally handle as well as they would increasingly suffer from an overfitting 

bias. To avoid unreasonably high dimensionalities of the feature space, kernel tricks are usually 

applied.[212] Kernels implicitly transform the feature space into an inner product space searching for 

meaningful linear solutions, which can then be computed without an explicit transformation of the 

original space. Common kernel functions include the polynomial kernel 
 

 
 

and the radial basis function (rbf) kernel.  
 

 
 

In SVM with rbf kernels, there are two learning meta-parameters that greatly influence performance 

(Cost [c] and gamma [']). Determining these parameters is an optimization task.  
 

4.3.4 Naive Bayes 

Thomas Bayes' (1702-1761) theorem was posthumously published and was to revolutionize the 

doctrine of probability.38 He stated that one could deduce the conditional probability Y given X (Y|X)39, 

when we know the unconditional (prior) probabilities of X and Y and of their conjunction, the conditional 

probability X given Y (X|Y). Then the following statement holds true 
 

 
 

Bayes' theories had a revival in the 1950's and proved especially useful in conjunction with Markov 

chain methods (Bayesian networks).[214, 215] Additionally, Naive Bayes are very robust against 

missing values: the probability ratios are based on the actual number of occurrence and not on the 

instance number. On the other hand, one must take care that none of the probabilities equals zero. 

This could be the case if a particular attribute or condition does not occur in conjunction with the other 

one. Hence, this particular fraction would equal zero and due to multiplications, the final estimate 

would have a zero occurrence. To avoid such shortcomings one should introduce an a priori probability 

to every case, also known as Laplace estimator. 

                                                        
38 It is thought that Thomas Bayes, an English mathematician and Presbyterian minister, did not publish his observations during 

his lifetime as he calculated a value of less than 1 for the probability of god's existence. In fact, Stephen D. Unwin used his 

theorem and calculated a probability of 67% that god exists.[213] 
39 (Y|X) is also called the posterior probability. 
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Naive Bayes presumes independence of prior probabilities. However, this precondition is rarely fulfilled 

by real world data. Therefore one could argue that such a simplified approach would produce rather 

over-optimistic classifiers. However, Naive Bayes predicted very strong on realistic data and frequently 

outperformed rather sophisticated machine learning paradigms (Section 5.1).[216, 217] Zhang 

discussed reasons and conditions under which this effectiveness cannot be accounted to overfitting. 

He stated, that if variable dependence is equally distributed between classes or is canceled out, Naive 

Bayes would produce reasonable results.[218] Another explanation was proposed by Domingos, who 

argued that Naive Bayes' performance is owed to the so-called zero-one loss function.[219] This 

function defines the error as the number of incorrectly allocated class labels to classified 

instances.[220] This means that Naive Bayes are still able to assign the correct class to an instance, 

although the exact probability estimate might be poor.[219] In accordance to Ockham’s Razor, simple 

solutions should be preferred to complicated ones and Naive Bayes is therefore an elegant technique 

worth considering. In fact, its intriguing clearness and its robustness to missing values makes it a good 

choice for machine learning. 

 

4.3.5 K-nearest neighbor  

The K-nearest neighbor (KNN) paradigm is a lazy learning paradigm. This means the classifier does 

not produce a model in advance but compares new instances at runtime with its known instance 

space, which is spanned by its instance database. New, unseen instances are assigned to the class of 

its immediate neighborhood.[221] The concept of neighborhood can be measured in various ways of 

which two are illustrated in Table 8. 

 

Distance measures Illustration Equation 

Euclidian distance 

 

 

Manhattan/city block 

distance40 

 

 

 

Table 8 - Euclidian distance and Manhattan or city block distance are illustrated. 

                                                        
40 Manhattan distance approaches Euclidian distance with increasing resolution.  
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4.3.6 LAZAR 

The LAZAR engine [222] is a lazy learning fragment-based predictor. Relevant fragments are 

determined by finding all linear fragments in the training dataset (without size limits) and removing 

those that are statistically insignificant (p<0.95) in the chi-square test. Remaining relevant fragments 

are used to determine activity-specific similarities of all compounds in the training set with a weighted 

Tanimoto index. LAZAR classifies unknown compounds with a modified k-nearest-neighbor (KNN) 

algorithm. 

 

4.3.7 Notes on lazy learning 

In contrast to methods which produce a model during the training period (i.e., eager learning methods), 

lazy learning paradigms compare unseen instances at runtime to their knowledgebase. Therefore, lazy 

classifiers do not use any information compression. This is an advantage, when new instances should 

be incorporated into the classifier: the paradigm can be easily extended by simply adding these new 

instances to the database. However, for the same reasons, lazy learning classifiers have a reduced 

portability compared to models produced by eager learning paradigms.  

 

4.4 Feature selection and optimization tasks 
Without reducing the abundance of descriptors we are able to generate, one runs the risk of detecting 

meaningless correlations with highly accurate predictions, i.e., overfitting models. The obvious solution 

is to propose a hypothesis of the relationships involved. This should be in fact the starting point of 

every statistical analysis of data. Ideally, we base feature selection on our mechanistic knowledge of 

the process which should be modeled. Once we have reduced the feature space, we could still end up 

with too many descriptors compared to the size of the dataset. Generally, we should adapt the feature 

number to the instance set size. For this purpose, a feature reduction algorithm could be helpful. These 

paradigms are designed to pick out the variables with low intercorrelation and strong explanatory 

power.  

 

Best first feature selection (BFS) searches the feature space for the best combination of samples, 

continuously expanding the feature set (or reducing it, depending on the direction of the search). 

Forward selection starts with comparing all features in isolation and selecting the best performing one, 

according to BFS's heuristic function. To this selected feature, one of the remaining features is 

combined and again tested, incrementally expanding the feature set. When no more improvement can 

be obtained by adding new features the search is terminated. Backward selection starts with the whole 

feature set, reducing it by one feature and testing whether the new set performs better. If this is the 

case, the set is decremented and tested again. The paradigm terminates the search if the result cannot 

be improved. Accordingly, backward search will generally end up with bigger features sets than 

forward selection.[223]  
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Feature selection is essentially an optimization problem, where we do aim to find a solution, but will not 

mandatorily end up with the best one.  At first glance, this might be disappointing; however, although 

available computing power is rapidly growing, there are many problems which are inherently non-

solvable in reasonable time. For these so-called nondeterministic polynomial problems (NP), the best 

solution cannot be found in on polynomial time. Although we cannot find the best solution, we still are 

capable of finding a reasonable solution by a heuristic optimization. Heuristic procedures are often 

more reliable and robust than searching for the best solution (Figure 13).41  

Figure 13 - A target function is shown. Solutions for the local maxima (C and B) are easier found and 

most likely more robust than the solution on the global maximum (A). Minor deviations of the target 

function from the global maximum can lead to a substantially decreased performance. If a solution is 

found on a plateau (B), the function will perform robustly even if deviations in the target function do 

occur. 

 

A typical example of an optimization problem which is NP-hard is the "traveling salesman"-problem: 

given a list of cities and their corresponding pairwise distance, the shortest tour has to be found, 

visiting every city only once (Figure 14). 

 

Figure 14 - An abstraction of the traveling salesman problem is shown. The agent (here an ant) has to 

visit every point only once, but using the shortest route. 

                                                        
41 E.g., in engineering, robust solutions are preferred to isolated global maxima as in real life applications deviations in 

parameters of the target function are often seen. 
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In recent years, the field of natural computing has produced intriguing heuristics for such optimization 

problems. Ant Colony Optimization (ACO), was introduced in the 1990s, where real world ants foraging 

behavior is simulated.[224] When real-world ants find a food source, they will return in a more or less 

direct way back to their colony, marking the path with a pheromone track, which should guide other 

ants to the same food source. Pheromones are subjected to evaporation, which will eventually lead to 

a preference for shorter paths as more and more ants will use the one, which exhibits the most 

pheromone. In this way, the colony exhibits a tendency to converge. Once convergence is reached, 

ants will be unlikely to explore other paths. This holds for virtual as well as for real-world ants: in the 

so-called "double bridge" experiment, an obstacle hinders direct access to a food source. The ants will 

nevertheless find a path around it and the path will then be reinforced. However, when the obstacle is 

removed, the ants will still follow the prior, and now suboptimal, path.42  

 

In ACO, ants are abstracted agents scurrying about a graph at random until finding a solution (a food 

source). Other ants explore the graph and weigh their choices of route by previously deposited 

pheromones. The optimization has been successfully applied to a fragment based feature selection 

task (Section 5.5). 

 

4.5 Quality measures 

4.5.1 Confusion matrix and derived metrics 

Results from classification can be represented as a contingency or confusion matrix (Table 9). Each 

row represents instances in a predicted class, while each column represents instances in the actual 

class. In this way, exact numbers of truly classified positives (TP), truly classified negatives (TN), 

falsely classified positives (FP) and falsely classified negatives (FN) are presented in tabular form.  

 

Table 9 - The confusion matrix is depicted. In TP and FP indicate true and false positive instances, FP 

and FN true and false negative instances, respectively. 

 

                                                        
42 The experiment was conducted using the argentinian ant species Iridomyrmex humilis [225]  Linepithema humile, and Lasius 

niger.[226] 
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In presence of a confusion matrix one can easily compute quality measures of which we will discuss 

the most important. 

 

Accuracy (Formula 1) is the measure of proximity of a value to its actual (true) value. It is a common 

measure to start performance analysis. 

 

Formula 1 – Accuracy, where TN and TP stand for true positive and negative instances. N0 and N1 

stand for all positive and all negative instances. 

 

However, the measure underlies the accuracy paradox, which states that a model with a given 

accuracy might have a higher predictive power than a model with higher accuracy. This problem arises 

as the measure does not take false classified instances into account. A model predicting a highly 

unbalanced dataset is considered below (Table 10). Assigning all instances to the majority class would 

produce a useless model, but with higher accuracy than in highly unbalanced datasets to predict. 

 

 

 

Table 10 - The confusion matrix for a hypothetical classification is given to illustrate the accuracy 

paradox. Accuracy of both predictors is indicated. The right example assigns all instances to the 

majority class resulting in a useless model, but exhibiting a higher accuracy than the left predictor, 

which has actually discriminatory power. 

 

Precision or positive predictivity is a measure for reproducibility and assesses the degree of variance in 

measurements performed repeatedly under the same conditions. 
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Formula 2 - Precision TP and FP stand for true and false positive classified instances. 

 

It is the proportion of positive test results, which were correctly assigned. In a clinical context, it is a 

most important quality measure for diagnostic tests as it reflects the probability that a positive result 

reflects a tested condition. It is important to note that a method or a test can exhibit high accuracy but 

low precision and vice versa (Figure 15). However, it would be desirable to have both, high precision 

and high accuracy. 

 

 

Figure 15 - Target A shows bullet holes with high accuracy and low precision. The holes in target B 

show a high precision, but low accuracy. 

 

Recall or sensitivity measures the rate of positive instances classified positively, while specificity 

assesses the correctly classified negative instances. Although both performance estimates give an 

intuitive quality estimate, they should not be used independently of each other. 

 

 

Table 11 - Confusion matrix is shown to illustrate the composition of the quality measures 

recall/sensitivity and specificity. 
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The formula for recall/sensitivity and specificity are indicated below: 

 

 

 

 

 

4.5.2 Corrected classification rate and Matthews correlation coefficient 

It is trivial, that assignment of all instances to the majority class, (i.e., a perfect overfitting), would 

produce a recall/sensitivity of 100%, which overestimates the actual predictive power (i.e., accuracy 

paradox). For this reason, accuracy, recall/sensitivity, and precision are usually not considered in 

isolation. Especially in unbalanced datasets, where overfitting might easily occur, the use of measures 

that consider also falsely classified instances is an advantage. Usually, a combined measure such as 

the corrected classification rate (CCR) or Matthews correlation coefficient (MCC) is used. 

 

 

 

Formula 3 - CCR, where TN and TP refer to compounds classified as true negatives and true positive 

instances. N0 are all negative and N1 are all positive instances.  

 

 

 

Formula 4 - In the MCC formula, additionally falsely negative (FN) and falsely positive (FP) classified 

molecules are considered. 
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4.5.3 Receiver operating characteristics (ROC) 

Another approach to analyze classification performance is the use of receiver operating characteristics 

(ROC) curves.43 ROC graphs depict relative tradeoffs between benefits (true positives, TP) and cost 

(false positives, FP) in a two-dimensional plot. Sensitivity is usually depicted on the ordinate and the 

reciproque of specificity (1-specificity) is represented on the abscissa. In other words, every correctly 

classified instance will increase steepness of the discontinuous curve, while incorrectly classified ones 

decrease it by stepping further on the abscissa. A perfect classifier would yield a point in the upper 

most left corner, while points on diagonal dividing the ROC space (also known as chance line, or "line 

of no-discrimination") represents a complete random guess. All points lying under the no-discrimination 

line indicate poor classifiers, but can simply be inverted to become predictive.  

 

One of the favorable advantages of ROC curves is their insensitivity to skewed datasets as they 

consider only TP and FP. For model comparison, the area under the ROC curve (AUC) is usually used. 

Interestingly, the AUC of a classifier is equivalent to the probability that the classifier will rank a 

randomly chosen negative instance. This is equivalent to the Wilcoxon test of ranks and is closely 

related to the Gini coefficient (Section 4.3.1.2), which is twice the area between the diagonal and the 

ROC curve. Moreover, ROC curves are often used for model optimization tasks. This can be done by 

determination of optimal thresholds or cutoff points. A frequently used measure for evaluating model 

effectiveness is the J-index, first introduced in the medical literature by Youden.[227] 

 

 

 

Youden's J is measured over all cut points on the ROC curve to find the maximum vertical distance 

from the curve to the chance line in the upper left corner, ranging between zero an one. The intuitive 

interpretation of Youden's J index is that its maximal value is the point on the curve farthest from 

chance in the upper left corner of the ROC space. 

 

4.6 Validation 

4.6.1 Holdout validation 

There are several approaches to validate machine-learning models. Holdout validation is a commonly 

used method, where the data is split in a test and training set. One-third is usually held out for testing, 

while the other two thirds are used for training. Holdout validation has the distinct advantage of taking a 

short time to compute. However, the drawback of this procedure is the difficulty to predict whether a 

sample drawn in such way will be representative for the data or not. When a class is underrepresented 

                                                        
43 Introduced in world war II for analysis of radar signals, they were employed in the 1950 in psychophysics to assess human 

detection of weak signals. From there, ROC found extensive use in the medical field for evaluations of diagnostic tests and 

medical decision-making. Recently they have been used increasingly in machine learning and data mining. 
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or even missing in the training set, the classifier will not be able to consider it appropriately. Moreover, 

when validated, the method will almost completely fail to classify, as the missing class will be 

overrepresented in the test set. This holds also for the opposite: when test sets consist exclusively of 

the majority class, validation is prone to be over optimistic. One might address this issue by refining the 

partitioning scheme and distributing variance of individual attributes evenly over training and test set, 

e.g., using stratified datasets. However, there is considerable information crossover between both sets, 

again increasing the risk of overfitting. 

 

4.6.2 K-fold cross-validation 

In k-fold cross-validation, a data set is randomly divided into k subsets.[228] Of these subsets, k-1 sets 

are recombined to make up a training set, with the resulting model tested against the remaining 

instances. This procedure is repeated k times until all instances have served both as training and test 

data, thereby making sure that no classes are left out. This procedure is basically k-fold repetition of 

holdout validation. It is evident that it makes much more efficient use of the data. Consequently, 

independence on dataset composition increases and variance in performance is reduced the higher k 

is selected. The most extreme example is leave-one-out (LOO) cross-validation, where all instances 

are used for training except for one, which is used for testing. However, k is usually set to 10. 

 

4.6.3 Software used 
Molecular descriptors were generated with the open-source cheminformatics package Chemical 

Development Kit (CDK, Version 1.2.3, 2009, http://sourceforge.net/projects/cdk).[189] For several 

descriptors, 3D structures had to be derived from SMILES representations by the Ghemical force field  

(http://www.uku.fi/~thassine/projects/ghemical/).[229] We used Weka [223] (Version 3.6; 

http://www.cs.waikato.ac.nz/~ml/Weka/) for RF, SVM, ANN, KNN, and Naive Bayes. We performed 

DTI with PASW Statistics version 18 for Windows (http://www.spss.com/statistics/) and linear 

correlation analysis with R (http://www.r-project.org/). Chemical structure diagrams were created using 

ChemAxon MarvinSketch (Version 5.2.5; http://www.chemaxon.com/).  LAZAR is available at 

http://www.in-silico.de/. Tanimoto coefficient calculations and grid screening for SVM meta-parameters 

were done with in-house software. 
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5 Projects 

5.1 Combinatorial QSAR Modeling of human Intestinal Absorption  
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Abstract 
Intestinal drug absorption in humans is a central topic in drug discovery. In this study, we use a broad 

selection of machine learning and statistical methods for the classification and numerical prediction of 

this key endpoint. Our dataset is based on a selection of 458 small drug-like compounds with FDA 

approval.  

 

Using easily available tools, we calculated one- to three-dimensional physicochemical descriptors and 

used various methods of feature selection (best-first backward selection, correlation analysis, and 

decision tree analysis). We then used decision tree induction (DTI), fragment-based lazy-learning 

(LAZAR), support vector machine classification, multilayer perceptrons, random forests, k-nearest 

neighbor and Naive Bayes analysis to model absorption ratios and binary classification (well-absorbed 

and poorly absorbed compounds). 

 

Best performance for classification was seen with DTI using the chi-squared analysis interaction 

detector (CHAID) algorithm yielding corrected classification rate of 88%, (Matthews correlation 

coefficient of 75%). In numeric predictions, the multilayer perceptron performed best achieving root 

mean squared error of 25.823 and a correlation coefficient of 0.6. In line with current understanding is 

the importance of descriptors such as lipophilic partition coefficients (LogP) and hydrogen bonding. 

However, we are able to highlight the utility of gravitational indices and moments of inertia, reflecting 

the role of structural symmetry in oral absorption. 

 

Our models are based on s diverse dataset of marketed drugs representing a broad chemical space. 

These models therefore contribute substantially to the molecular understanding of human intestinal 

drug absorption and qualify for a generalized use in drug discovery and lead optimization.   
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Introduction 
See Section 3.2.1.1. 

 

Materials and Methods 

Dataset 
The dataset used for the present study is based on a list of FDA approved small molecule drugs (n = 

458) for which experimental data were available and sufficiently documented.[230] Omissions were 

due to missing information. Intestinal absorption (%Abs) is defined as the percentage of the dose 

absorbed from the gastrointestinal tract following oral administration. This is not necessarily the same 

as the amount of drug reaching systemic circulation, which is also affected by pre-systemic metabolism 

(e.g., hepatic first-pass effect). The arithmetical mean was used wherever an absorption range was 

given. We also did not omit compounds that are known substrates of efflux transporters such as P-

glycoprotein (e.g., digoxin) because insufficient information on specific absorption and excretion 

pathways was supplied in the original data source.  

 

As classification algorithms require nominal class labels as end points, we re-coded the numerical 

absorption ratios into three different ordinal classes (“TRUE”, “UNKNOWN”, “FALSE”, see Table 12). 

Thresholds were determined so as to produce sufficiently large number of instances for each class. 

 

Class label %ABS Number of Instances 

true a ! 80% 303 

unknown 30% < a < 80% 82 

false a " 30% 73 

 

Table 12 - Ordinal classes and corresponding absorption values (%Abs). 

 

To achieve a better separability, members of the class "UNKNOWN" were exempted from classification 

learning. This class, corresponding to moderately absorbed compounds, was clearly underrepresented 

in the data source and hence was not deemed suitable for modeling. For numerical predictions, the 

entire dataset was used. Pre-study analysis (data not shown) indicated that data transformation, i.e. 

linearization, does not improve model performance. 

 

Lastly, the data source provided generic drug names but no structural information. We therefore 

retrieved the corresponding structures from the National Library of Health database PubChem 

(http://pubchem.ncbi.nlm.nih.gov/). For salts, the counterion was removed prior to further processing. 
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Descriptors 
See Section 4.2. 

An overview is given in Table 13. For a full list and explanations see Section 4.2. 

 

Class Type 

Charge Analysis Hydrogen bonding capacity 

 Charged partial surface descriptors  

 Partitioning coefficients  

 Molecular polarizability 

Constitutional Counts of atoms, rings, and bonds 

 Length over breadth descriptors 

 Gravitational indices 

 Moment of inertia  

 Molecular weight 

Topological Eccentric connectivity index 

 Weighted Burden matrix 

 Kier-Hall kappa shape indices 

 Petitjean number and index 

 Wiener path and polarity numbers 

  Zagreb Index 

 

Table 13 - Overview of descriptors (n = 80) used in this study. A detailed listing of all features is given 

in the supporting information. 

 

The structural information retrieved from PubChem was two-dimensional. For certain descriptors, 

however, three-dimensional structures are required. We extrapolated these using OpenBabel (Version 

2.2.3, http://www.openbabel.org/) to perform a search of lowest energy conformers within the 

‘Ghemical’ force field.[229] 
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Machine learning techniques 

Decision tree induction 

See Section 4.3.1. 

 

Random forest 

See Section 4.3.1.4 

 

Artificial neural networks 

See Section 4.3.2 

 

K-nearest Neighbor 

See Section 4.3.5. 

 

LAZAR 
See Section 4.3.6. 

 

Support vector machines 

See Section 4.3.3. 

 

Naive Bayes and Bayesian nets 

See Section 4.3.4. 

Bayesian nets represent probability distributions as directed acyclic graphs, where each node 

represents an attributes probability. Predictions are made by summing up probabilities for each 

instance. For learning the networks presented here, we used the K2 algorithm.[231] 

 

Cross-validation 
See Section 4.6.2. 

All models were built with k=10, except for LAZAR where k=n (leave-one-out (LOO) cross-validation). 

Other means of validation are possible (e.g., holdout validation) and have been used in the past (Table 

19). 
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Chemical similarity 
See Section 3.3.1.2. 

 

Feature reduction 
See Section 4.4. 

In this study, we compare several approaches: 

1. Best first feature selection (BFS) using a greedy hill-climbing algorithm.[223] 

2. Linear correlation analysis (CFS) by performing linear regressions for every descriptor. The nine 

best correlating (by measure of R2) were selected. 

3. DTI splitting criteria (DTIS) were used as the final subset. Features were taken from DTI models 

produced beforehand. 

 

Quality measures 
See Section 4.5 

 

Receiver operating characteristics (ROC) 
See Section 4.5 

 

Comparison of numerical predictors and classifiers 
The results of numerical models cannot be directly compared with those of the classification 

paradigms. One approach is the comparison of numerically predicted absorption with the classes from 

the original dataset by means of receiver operating characteristics (ROC) and their areas under the 

curve (AUC).  

 

Results 

Dataset 
Drugs used for modeling and simulation cover a broad chemical range (Tanimoto coefficient: 0.702). 

This seems reasonable considering the dataset consists of commercially available drugs and thereby 

exhibit certain similarities, e.g., drug like properties. The mean (±SEM) weight of molecules within the 

database was 346.1 (±8.3).  
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Figure 16 - Ordinal classes and corresponding absorption values (%Abs). 

 

The present dataset exhibits a bimodal distribution with accumulation of compounds at 100%Abs and 

0%Abs (Figure 16). This clearly reflects the two major routes of applications of common drugs (oral 

(high %Abs) or i.v. and topical administration (low %Abs)). 



    Projects 

 

- 65 - 

 

Feature Reduction 
The descriptors selected by the different means of feature reduction are summarized in Table 14.  

 

Best first Set Correlation Set DTI Set 

aLogP (LogKow aLogP2) Molar refractivity (AMR) aLogP2 (LogKow 
aLogP2) 

bCUTS (highest atom 
weighted) bCUTS (lowest atom weighted) H- bond donor count 

H- bond donor count H- bond acceptor count  H- bond acceptor count  
H- bond acceptor count  gravitational index 4 molecular weight 

gravitational index 4 gravitational index H1 longest aliphatic chain 
descriptor 

moment of inertia descriptor 
(Z-axis) gravitational index H2 tPSA 

moment of inertia descriptor 
(XY-axis) 

length over breadth descriptor 
(LOBMAX) rNCS 

pPSA3 pPSA2  
dPSA1 pPSA3  
dPSA3   
fNSA2   
fNSA3   
tPSA   
rHSA     

 

Table 14 - In order to avoid overfitting, we applied three different selection methods to identify the most 

relevant physicochemical features in a complete descriptor set. The best first algorithm uses a greedy 

hill-climbing algorithm and revealed 13 features (BFS). A linear correlation of each feature with the 

endpoint was performed and the nine descriptors with highest R2 were used for modeling (CFS). For 

the final set, we used the seven splitting criteria revealed by Classification and Regression Trees  

(CART), which was produced beforehand (DTIS). For a more detailed listing of all descriptors see 

supporting information. 

 

All methods selected descriptors from the charged partial surface area (cPSA) subset, partition 

coefficients and hydrogen bonding capacity, reflecting well-known properties of drug absorption. 

Strikingly, measures of molecular symmetry and mass distribution (gravitational indices, moments of 

inertia, longest aliphatic chains) are singled out as well. To our knowledge, compound shape is not 

widely used in modeling these end points.  
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Model Performance 

Classification models 

The most effective classification model in our study was built by DTI with the CHAID algorithm (CCR: 

0.88, MCC: 0.75, Figure 17), followed closely by the CART algorithm (CCR: 0.84, MCC: 0.70, Figure 

18). 

 

 

Figure 17 - Decision tree with Chi-squared interaction detector (CHAID). A maximum depth of five 

nodes and a minimum five cases in the parent and two cases in the child node were allowed for tree 

growth. Splitting criteria (boxes) and corresponding cut off values are given. Leaves are depicted as 

rounded boxes. Predictions achieved a corrected classification rate (CCR) of 0.88 (MCC: 0.75). The 

whole descriptor set was used (n = 80) for decision tree induction. 
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Figure 18 - Classification of human oral absorption with CART (classification and regression tree) 

decision tree. The 10-fold cross-validated tree performed with corrected classification rate (CCR) of 

0.84 (MCC: 0.7). The Gini coefficient was used as homogeneity measure. 

 

Of all methods applied on reduced feature sets, Bayesian techniques performed best (using the BFS 

subset, CCR: 0.81, MCC: 0.62). Other paradigms such as SVM did not achieve similar performance 

with any of the feature sets. Classification models are summarized inTable 15.  
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 Whole Feature Set   

Method Specificity Sensitivity CCR MCC 
LAZAR 0.438 0.974 0.706 0.529 
CART 0.740 0.947 0.843 0.698 

CHAID 0.822 0.944 0.883 0.751 

Random Forest 0.589 0.947 0.768 0.583 
     
 Best first Set    

Method Specificity Sensitivity CCR MCC 
SVM rbf 0.644 0.934 0.789 0.597 

SVM polynomial 0.521 0.974 0.747 0.596 
Multilayer Perceptron 0.534 0.974 0.754 0.607 

KNN 0.534 0.974 0.754 0.607 
Naive Bayes 0.685 0.934 0.809 0.629 

Bayesian Nets 0.699 0.934 0.816 0.639 

     
 Correlation Set   

Method Specificity Sensitivity CCR MCC 
SVM rbf 0.575 0.974 0.774 0.639 

SVM polynomial 0.521 0.967 0.744 0.578 
Multilayer Perceptron 0.589 0.970 0.780 0.641 

KNN 0.603 0.931 0.767 0.558 
Naive Bayes 0.521 0.931 0.726 0.492 

Bayesian Nets 0.616 0.957 0.787 0.628 
     
 CART Set    

Method Specificity Sensitivity CCR MCC 
SVM rbf 0.479 0.970 0.725 0.553 

SVM polynomial 0.521 0.974 0.747 0.596 
Multilayer Perceptron 0.589 0.964 0.776 0.623 

KNN 0.589 0.947 0.768 0.583 
Naive Bayes 0.671 0.941 0.806 0.632 

Bayesian Nets 0.685 0.941 0.813 0.643 

 

Table 15 - We used the ordinal classes "true" (!80 %Abs) and "false" (" 30 %Abs) for classification. 

Compounds of the class “unknown" (30% < %Abs < 80%) were omitted from learning to achieve better 

separability for classifiers. Apart from sensitivity and specificity, highest values of corrected 

classification rates (CCR) and Matthews correlation coefficients (MCC) are in boldface. Results are 

shown for the whole dataset, best first feature selection (BFS), linear correlation analysis (CFS) and 

decision tree splitting criteria (DTIS). 
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Numerical models 

The multilayer perceptron yielded the strongest numerical predictions (using the CFS subset, RMSE: 

25.823, R2: 0.600). Performance is illustrated in Figure 19. 
 

 

Figure 19 - Scatterplot of predicted (y-axis) vs. observed (x-axis) %abs values. Best models on 

numeric %abs values are given. A) Multilayer Perceptron on best first feature set (BFS) B) Multilayer 

Perceptron on linear correlation analysis set (CFS). C) Support vector machines with rbf kernel on 

decision tree splitting criteria (DTIS).  

 

SVMs with the rbf kernel achieved comparable efficacy on the DTIS subset (RMSE of 26.953; R2: 

0.590). Other methods did not perform as well (Table 16). 
 

 Best first Set 

Method CC RMSE 
SVM rbf 0.574 27.648 

SVM polynomial 0.561 27.807 
Multilayer Perceptron 0.590 26.390 

 Correlation Set   
Method CC RMSE 

SVM rbf 0.559 27.828 
SVM polynomial 0.546 28.535 

Multilayer Perceptron 0.600 25.823 

 DTI Set  
Method CC RMSE 

SVM rbf 0.590 26.953 
SVM polynomial 0.544 28.773 

Multilayer Perceptron 0.588 26.099 
 

Table 16 - Prediction of %Abs was assessed using Support vector machines with kernels and 

multilayer perceptron. Methods were applied on reduced feature sets: best first feature selection 

(BFS), linear correlation analysis (CFS) and decision tree splitting criteria (DTIS). As quality measures 

root mean squared error (RMSE) and correlation coefficient (R2) are given. Best results are given in 

boldface. 
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Recoding of numerical predictions into classes 

As a means of salvaging predictive power from the rather mediocre numerical models, we attempted to 

recode the predicted %Abs values into classes based on a retrospective analysis using ROC curves 

(see Table 17 and Figure 20)  

 

Threshold 30 Best first Set     

Method Specificity Sensitivity CCR MCC AUC 
SVM rbf 0.164 0.875 0.519 0.590 0.786 

SVM polynomial 0.137 0.835 0.486 0.546 0.786 
Multilayer Perceptron 0.329 0.686 0.508 0.715 0.746 

  Correlation Set       
Method Specificity Sensitivity CCR MCC AUC 

SVM rbf 0.205 0.818 0.512 0.586 0.755 
SVM polynomial 0.110 0.871 0.490 0.496 0.767 

Multilayer Perceptron 0.301 0.719 0.510 0.655 0.757 
 CART Set         

Method Specificity Sensitivity CCR MCC AUC 
SVM rbf 0.205 0.871 0.538 0.579 0.780 

SVM polynomial 0.110 0.875 0.492 0.479 0.773 
Multilayer Perceptron 0.205 0.637 0.421 0.681 0.774 

 

Table 17 - Performance of numeric models is shown after recoding into classification scale. We applied 

cut-off values from initially set ordinal classes. For performance measurement only positive class (! 80 

%Abs) and negative class (" 30 %Abs) was used. Compounds classified as unknown were omitted. 

The corrected classification rate (CCR), Matthews correlation coefficient (MCC), specificity, sensitivity 

and area under the ROC curve (AUC) are indicated for each model. Best results for coefficients are 

given in boldface for all reduced feature sets: best first feature selection (BFS), linear correlation 

analysis (CFS) and decision tree splitting criteria (DTIS). 
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Figure 20 - ROC curves are shown of best recoded models according to highest achieved corrected 

classification rates (CCR) and Matthews correlation coefficients (MCC). Multilayer perceptron on best 

first feature set (BFS) (1), linear correlation analysis set (CFS) (2) and decision tree-splitting criteria 

(DTIS) (3). Support vector machines with rbf kernel on BFS (4), CFS (5) and DTIS (6). 

 

For each model, optimal thresholds were selected by determining the one with the highest Youden 

index (J). Instances were recoded into the two-class case according to these thresholds. Models and 

their performance after recoding are summarized in Table 18. The SVM model with the rbf kernel was 

most precise (CCR: 0.72; MCC: 0.47, using the BFS subset), outperforming the MP model. 



    Projects 

 

- 72 - 

 
  Best first Set         

Method Thopt  Specificity Sensitivity CCR MCC 
SVM rbf 82.0 0.541 0.836 0.689 0.398 

SVM polynomial 79.6 0.613 0.842 0.727 0.464 

Multilayer Perceptron 78.3 0.723 0.739 0.731 0.443 
      

  Correlation Set       
Method Thopt Specificity Sensitivity CCR MCC 

SVM rbf 78.9 0.574 0.842 0.708 0.430 
SVM polynomial 78.0 0.526 0.901 0.714 0.471 

Multilayer Perceptron 68.4 0.538 0.896 0.717 0.468 
      
 CART Set         

Method Thopt Specificity Sensitivity CCR MCC 
SVM rbf 83.9 0.570 0.809 0.689 0.391 

SVM polynomial 83.4 0.602 0.754 0.678 0.358 
Multilayer Perceptron 72.3 0.619 0.840 0.729 0.461 

 

Table 18 - Optimal cut points for thresholds were determined using the maximization of the Youden 

indices in receiver operating characteristics analysis. Specificity, sensitivity, CCR and MCC for all 

models are indicated at the optimal threshold (Thopt). The best results are given in boldface for all 

reduced feature sets: best first feature selection (BFS), linear correlation analysis (CFS) and decision 

tree splitting criteria (DTIS). 

 

Discussion 

Dataset 

Our dataset of 458 substances covers a broad range of small molecule drugs as indicated by the high 

value of dissimilarity within the descriptor space employed. The distribution of absorption ratios is 

bimodal with a small peak at the low end of the spectrum and a larger one for highly absorbed 

molecules (Figure 16). This reflects the desire to bring to market orally administrable drugs. Models 

based on this dataset should therefore best be applied in late-stage drug development. Even though 

the dataset is unbalanced, the sensitivity of our models is not impaired. 

 

Wang et al. [232] proposed to use drug subsets with similar pharmacological targets when modeling 

human intestinal absorption. While this approach may be of use in late-stage optimization, we feel that 

general physiological features cannot be deduced when examining such restricted data sets. 

 

Our models intentionally disregard mechanistic minutiae of intestinal absorption (e.g., transcellular 

versus paracellular pathways) as we are predicting the final endpoint of human intestinal absorption 
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and not specific pathways. Members of our group have shown the validity of this approach for even 

more complex endpoints.[233] Furthermore, the original data source does not provide sufficient 

information on the specific absorption kinetics and metabolism on the level of the intestinal epithelium.  

 

Feature Selection 
All feature sets include descriptors of PSA. Palm et al. demonstrated its correlation with human 

intestinal absorption and the CACO-2 cell model.[234] In models of Winiwarter et al. [235], polar 

surface area (PSA) was emphasized as one of the most important parameters to predict drug 

permeability. However, it was reported that an excellent sigmoidal relationship with high correlation 

could be established between the absorbed fraction after oral drug administration to humans and 

PSA.[236] In line with other groups [237, 238] we clearly disapprove of this approach. As a single 

feature, PSA is not a reliable criterion to distinguish poorly absorbed from well-absorbed compounds. 

Seven descriptors of the cPSA set appear in the BFS set of features. It is important to note that while 

all of these concern charge analysis, they are distinctly different. Nonetheless, we performed an 

additional analysis and found low intercorrelation between these features (ravg 0.59 ± 0.06 SEM). 

Highest rsig (0.90) is seen for dPSA3 and fNSA2, both of which are derived from central descriptors of 

the cPSA set. Specifically, fNSA2 puts charge into relation with molecular topology while dPSA3 

weighs positive against negative charge contributions. Therefore, both contribute distinct molecular 

information to the models and hence have not been removed from the final dataset. Additionally, any 

intercorrelation is penalized by cross-validation and does not introduce an overfitting bias. 

 

According to current understanding, the feature selection paradigms singled out descriptors of 

lipophilicity, charge (e.g., aPol), hydrogen bonding descriptors, and molecular weight (as selected in 

CART DTI trees). These features are already known from studies of human jejunal permeability 

(LogPeff) [18, 235] and deconvolution studies of human absorption rate constants.[239] Zhao et al. 

further demonstrated that hydrogen bonding is the rate-limiting step in absorption kinetics.[240] 

 

Repeated inclusion of gravitational Indices (CHAID, BFS, CFS), moments of inertia (BFS), length over 

breadth (CFS), and longest aliphatic chain (BFS, CART) indicate the importance of molecular mass 

distribution and geometry in modeling oral absorption. This seems reasonable as smaller molecules 

have better passive permeation capability than compounds with long aliphatic motifs. Moreover, BCUT 

descriptors [241] were selected by two paradigms (CHAID, BFS). These features are defined as 

eigenvalues of modified connectivity matrices with frequent application in drug discovery [242]. Their 

discriminatory power for aqueous solubility is well known [243] and therefore confirms the importance 

of this physicochemical property in absorption kinetics. 

 

Best first feature reduction and linear correlation are two commonly used means of reducing 

dimensionality of the descriptor space. The use of features selected from DTI models learned from the 

same data is rather unusual. We consider this a valid approach in that the feature set provides a 

mechanistical theory, which the models created a posteriori seek to verify. There is no unreasonable 
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flow or leakage of information into the learning process (as in an overfitting bias) compared to reducing 

features using the other paradigms. 

 

Individual Models 
The DTI algorithms provided the strongest models (Table 15). Other paradigms, such as SVM 

classifiers, showed far weaker performance. These observations are in line with other studies.[177, 

233] DTI often outperforms other machine learning methods when moderately sized and skewed 

datasets are used. Table 19 gives a summary of recent modeling attempts. Comparable performance 

is achieved only by work based on DTI and Gaussian kernels such as Obrezanova et al. [244] who, 

however, fail to cross-validate their models. In terms of accuracy, our models (DTI) are only rivaled by 

work by Shen [245], which, again is not cross-validated. Remarkably, many studies choose not to 

employ cross-validation, resulting in accuracy measures which overestimate their power in unseen 

data. Hou et al. [246] reported very strong models in a comparable context using SVM. Predictions 

achieved MCC of up to 0.89. Their dataset, however, had been artificially expanded by extrapolating 

%Abs values from bioavailability data. Moreover, the inclusion of redundant descriptors may have lead 

to overfitting, as has been reported previously [238].  

 

It is worth noting that the PSA descriptors of CDK also contain the fragment-based method (tPSA) 

introduced by Ertl et al..[247] Inclusion of different PSA paradigms does not introduce redundancy. The 

method established by Ertl et al. considers molecule fragments, which might only be exposed to the 

environment when drugs are dissolved in the aqueous intestinal lumen. Other implementations focus 

on charge and total molecular surface area. 

 

On reduced features, Naive Bayes and Bayesian nets performed well. Their impressive results seem 

at first glance surprising, especially as these paradigms assume independence of variable. Although 

this is rarely given in real world data, dependence can be minimized by eliminating redundant and 

therefore non-independent features. It can be argued that with the splitting of data into test and training 

sets, the independence bias is not equally distributed over both sets. Predictions of unseen data 

should then be interpreted with caution.[218] This assumption holds less well in the case of randomly 

performed cross-validation. The quality measures presented here might therefore give a more realistic 

estimate of the predictive power. Provided that the compound of interest fits the chemical space 

analyzed in this study, Naive Bayes models should classify it correctly. 



    Projects 

 

- 75 - 

 

Work N CV Paradigm R2 RSME CCR MCC Acc Sens. Spec. 

Zhao et al., 
2001[248] 241 No Regression 0.74 14 - - - 0.95 0.72 

Niwa et al., 
2003[249] 86 No 

ANN (general 
regression) - 22.8 

- 
- - - - 

Niwa et al., 
2003[249] 86 No 

ANN 
(probabilistic) - - 0.75 0.612 80% 1 0.5 

Bai et al., 
2004[250] 1260 No DTI (CART) - - - - 

79 - 
86% - - 

Liu  et al., 
2005[251] 

169 Yes 
SVM 

(gaussian 
kernel) 

0.73 14.08 - - - 0.98 0.66 

Jones et al., 
2005[252] 241 No Kernel - 22% - - - 0.9 0.46 

Deconinck et 
al.,2005[253] 141 Yes DTI (CART) - - - - 65% 0.89 0 

Iyer et al., 
2006[254] 

188 No 
Membrane-
Interaction 

QSAR 
0.68 - - - - - - 

Hou et al., 
2007[238] 455 No 

Genetic 
programming - - - 0.836 - 1 0.64 

Yan et al., 
2008[255] 552 No PLS 0.83 18.18 - - - - - 

Yan et al., 
2008[255] 552 No 

SVM (rbf 
kernel) 0.89 16.53 - - - - - 

Reynolds et al., 
2009[256] 567 No 

Nonlinear 
regression 0.84 35 - - - - - 

Obrezanova et 
al., 2010[244] 260 No Kernel - - - - 91% - - 

Obrezanova et 
al., 2010[244] 

260 No 
DTI 

(unspecified 
algorithm) 

- - - - 85% - - 

Shen et al., 
2010[245] 578 No 

SVM 
(polynomial) - - 0.928 0.909 98% 0.998 0.859 

Shen et al., 
2010[245] 578 No SVM (rbf) - - 0.948 0.932 98% 0.998 0.897 

Guerra et al., 
2010[257] 202 Yes ANN - - - - 73% - - 

Suenderhauf et 
al., 2010 458 Yes DTI (CHAID) - - 0.883 0.752 92% 0.944 0.882 

Suenderhauf et 
al., 2010 458 Yes DTI (CART) - - 0.843 0.698 91% 0.947 0.740 

Suenderhauf et 
al., 2010 458 Yes 

ANN 
(numeric) 0.6 25.823 - - - - - 

Suenderhauf et 
al., 2010 458 Yes 

ANN 
(recoded) - - 0.717 0.468 79% 0.896 0.538 

 

Table 19 - Representative models for human intestinal absorption are summarized. Indicating size of 

dataset used (n), the use of cross-validation (CV), paradigm and algorithm used and performance 

estimates (coefficient of determination [R2], root mean squared error [RMSE], corrected classification 
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rate [CCR], Matthews correlation coefficient [MCC], accuracy [Acc], sensitivity and specificity). 

Accuracy was calculated as true hits (true positives and true negatives) divided by n. 

 

The numeric models presented here exhibit low predictive power as visualized in Figure 19. This might 

be caused by the bimodal distribution of the dataset. The clustering of compounds around low and high 

levels of absorption reflects the two major galenic classes of drug: orally and intravenously 

administered compounds. Hence, the instance space is not entirely covered (Figure 16). Regression 

models are likely to perform badly on such data. Indeed, the achieved R2 values range from 0.544 to 

0.600, confirming that linear regression models are a completely inappropriate method type for the 

present dataset. This holds even in the case where compounds are grouped together (such that a 

group has similar activities), because of the linear model's constant slope. It would be more 

appropriate to perform binning of instances into two classes and analyze them by classification. 

Because focusing on two classes can improve numeric models, we stress the importance of choosing 

appropriate algorithms for the dataset at hand. 

 

It also should be noted that we succeeded in producing models of high accuracy (up to 92% with DTI) 

without specifically incorporating the influence of efflux transporters such as P-gp. This indicates that 

these are not major influencing factors. The poorer performance of numerical models therefore seems 

to be intrinsic to the paradigms. 

 

Numeric vs. Classification 
Comparison of classification and numeric models is not straightforward. Numeric measures of 

accuracy are RMSE or R2. In a classification system, confusion matrices and corresponding quality 

measures (CCR, MCC) are used. Both model types may therefore not be compared directly. In an 

attempt to do so indirectly, we translated numeric predictions into a classification scale. As expected, 

performance of numeric models was worse compared to genuine classification. We analyzed 

predictions with ROC graphs (Figure 20) to estimate predictive power for the well-absorbed class. 

Models achieved a reasonable sensitivity, which is reflected in high AUC values (Table 17). In other 

words, numerical models tended to generally overestimate absorption ratios. By determining optimal 

cut-off values using the best Youden Index, we markedly improved models in terms of specificity. 

Treated in this fashion, we state that numeric and classification models perform comparatively strong 

(Table 15, Table 18) 

 

Conclusion 
While intestinal absorption of drugs in humans is mostly governed by passive diffusion, it is potentially 

influenced by several other factors. Our models can be seen as a combined endpoint analysis as they 

disregard, among other aspects, the location of absorption and specifics of administration (e.g., 

galenics, counterions). Performance, however, is not impeded by these generalizations. The dataset 
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comprises the entire range of absorption ratios and has a great chemical diversity in the descriptor 

space employed. 

 

Although we used differing approaches to reduce features, certain descriptors were present in all sets. 

Descriptors of charge and lipophilicity reflect the current understanding of drug absorption in humans. 

Our models show the importance of molecular shape and complexity on absorption. Small size, little 

branching, and equal distribution of mass (as represented by descriptors of the moments of inertia) 

seem to be of advantage in oral absorption. 

 

The advantages of computational methods in the prediction of oral absorption have been described 

previously, e.g., Norinder et al.[15] In clinical practice, drugs fall into just two categories with little 

overlap: those which are orally administrable and those for which other routes of administration have to 

be taken (for example intravenous injection or topical application). Therefore, specific numerical 

values, such as absorption ratios are often considered to be of less importance than classification. 
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Abstract 
Drug penetration into the central nervous system is dependent on a molecule’s ability to cross the 

blood brain barrier (BBB). Limited passive diffusion and active efflux and influx systems account for the 

complexity of this highly regulated process. It was our aim establishing models of drug permeation 

including both active and passive transport systems. 

 

We collected a database of 163 compounds where information on the in vivo surface permeability 

product (LogPS) in rats was available. We used the DRAGON toolkit and the Chemical Development 

Kit (CDK) to calculate physicochemical descriptors. Decision trees were induced on both descriptor 

sets. We were able to establish models with corrected classification rates (CCR) of 90.9% - 93.9%. An 

Ant colony optimization (ACO) based binary classifier was used to search for the most predictive 

chemical substructures. The best model yielded a CCR of 89%. 

 

Decision trees revealed descriptors of lipophilicity (partition coefficient) and charge (polar surface 

area), which were also described in models of passive diffusion. However, measures of molecular 

geometry and connectivity could be related to an active drug transport component.  
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Introduction 
See Section 3.2.1.2. 

Development of new central nervous system (CNS) active drugs is hampered by limited brain 

permeation. As invasive methods have proven themselves to be ineffective and risky for patients, the 

systemic application is the preferred route for drug administration into the brain.[28, 29] Hence, blood 

brain barrier (BBB) permeability is a feature absolutely mandatory for any drug which targets the CNS. 

It is desirable to have estimates on a compounds behavior on level of the BBB as early as possible in 

the drug development process.  

 

The process of passive brain permeation is well characterized and accurate computational models to 

predict molecule behavior exist.[33-36] Major physicochemical determinants are lipophilicity, molecular 

weight, and measures of molecular polarity.[32] However, such expert-based rules do not accurately 

reflect the complexity of interactions as they disregard the biochemical processes mediated by 

transport proteins.[37]  

 

Computational models to discriminate substrates, inhibitors, and inducers of P-glycoprotein (P-gp) 

have successfully been established.[258] It is tempting from a mechanistic point of view to join the 

various models for passive diffusion and active transport to predict brain penetration in general. 

However, every model suffers from a varying degree of uncertainty which accumulates the more of 

them are concatenated. To avoid such shortcomings, it is more efficient to generate a single model of 

a complex phenomenon rather than sequentially apply model after model. Members of our group have 

shown the feasibility and validity of this approach.[259, 260] 

 

We applied modern machine learning algorithms to predict this highly complex endpoint. We 

assembled 163 in vivo BBB permeability-surface area (PS) product (LogPS) experiments from 

literature. LogPS values are usually calculated from internal carotid artery perfusion studies in rats. 

This procedure is considered superior to other methods like blood/brain partition measurement at 

steady state (LogBB), as it lacks systemic distribution effects, which distort brain penetration 

substantially.[51] The majority of high quality data found in literature was gathered in rats. We decided 

to omit data acquired in other species to avoid interspecies variability and reduce noise in our models.  

 

Materials & Methods!

Dataset 
We assembled a dataset of 163 small molecules from literature where information on in vivo BBB 

permeability-surface area (PS) product, usually given as its logarithm (LogPS), was available.[51, 261-

273] Besides wild type animal data, we found also LogPS values from transgenic rats. Single 
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transporter knockout animals are particularly useful when active transport mechanisms are studied. 

However for the present work we exclusively used data from wild type animals, as we aimed to model 

brain penetration entirely under physiological conditions (i.e. including also active transport). 

 

The paradigms used in the present study were classification algorithms. We therefore aimed to split 

data in two classes, according to cut-off values published literature.[274, 275] LogPS values >= -2 

were judged as readily penetrating the brain and received the label "CNSp+" (n = 70), while measures 

<= -3 were labeled "CNSp-" (n = 61). To increase discriminatory power of our models, values between 

-2.1 and -2.9 were exempt from classification learning (n = 32). The final dataset used consisted 

therefore of 131 compounds. 

 

Structural information was retrieved from the National Library of Health database PubChem 

(http://pubchem.ncbi.nlm.nih.gov/). For salts, we removed the counterion prior to further 

considerations. Conversion to three-dimensional structure representation was achieved by using 

lowest energy conformers within the Ghemical force field.[229] 

 

Physicochemical descriptors 
See Section 4.2 and 4.6.3. 

 

Fingerprints 
See Section 4.1.3. 

 

Machine learning techniques 

Decision tree induction 

See Section 4.3.1. 

CHAID and CART were grown to a maximum depth of 3 and 5 nodes, respectively. We set minimum 

cases for parent nodes to 10 instances and allowed 5 cases in the child nodes. 

 

Ant colony optimization 

Ant colony optimization is a natural computing paradigm introduced by Dorigo et al.[224] The algorithm 

uses an abstraction of ants foraging behavior to select meaningful features. Higher-dimensional QSAR 

studies, e.g., ligand docking, routinely apply ACO alongside other optimization paradigms. With a few 

modifications, ACO can be used as a feature selector, i.e. to identify attributes that carry information on 

the endpoint of interest. For this study, we applied a variant of ACO algorithm recently published by our 

group (Section 5.5). 
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Cross-validation 

See Section 4.6. 

 

Chemical Similarity 
See Section 3.3.2. 

 

Quality measures 

See Section 4.5. 

 

Software used 
See Section 4.6.3. 

 

Results!

Chemical Similarity 
The Tanimoto coefficient for our dataset (n = 131) was 0.282. This great dissimilarity indicates that the 

data span a reasonable chemical space. 

 

DTI performance 
Decision trees using CHAID algorithm trained with Dragon descriptors yielded the best results (Figure 

21). This tree classified compounds with a CCR of 93.9% (MCC: 87.9%).  
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Figure 21 - Chi-squared automatic interaction detector (CHAID) was trained on the whole feature set 

provided by DRAGON toolkit (n= 4885). The resulting model performed with a corrected classification 

rate of 93.9%. "CNSp+" indicates good permeation and "CNSp-" stands for bad brain permeation. 

 

Features were topological polar surface area (tPSA[NO]) derived from polar fragments (i.e., oxygen 

and nitrogen), the Balaban Y Index (Y-Index), the distance of lipophilic pharmacophore groups 

(CATS2D 02 LL), 3DMoRSE descriptor weighted by polarizability (Mor27p), and spectral mean 

absolute deviation from the edge adjacency matrix, weighted by bond order (SpMAD EA [bo]). When 

trained with CDK descriptors, the paradigm performed slightly worse, achieving a CCR of 90.9% 

(MCC: 81.7%) (Figure 22). 



    Projects 

 

- 84 - 

 

 

Figure 22 - The tree built by Chi-squared automatic interaction detector (CHAID) on CDK descriptors 

(n= 81) is shown. The cross-validated model achieved a corrected classification rate of 90.9%. When a 

molecule reaches a leave indicating "CNSp+" it is judged to exhibit good brain permeation. When 

"CNSp-" is reached, the molecule will not pass the BBB. 

 

Splitting criteria were partition coefficient (aLogP), charge weighted partial positive surface area 

divided by total molecular surface area (fPSA), hydrogen bond acceptor count (hBondAcceptors), and 

rotatable bonds count (rotatable bonds). Models created with CART paradigm could not match the 

performance of CHAID. Trained on DRAGON and CDK feature sets it yielded a CCR of 90.8% (MCC: 

81.6%) and CCR of 89.8% (MCC: 79.9%), respectively. Trees are summarized in Figure 24 and Figure 

26. 
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. 

 

 

Figure 23 - Classification and regression tree (CART) on DRAGON descriptors (n= 4885). The 

corrected classification rate was 90.8%. 

 

When trained with Dragon descriptors, CART used the amount of van der Waals volume having 

polarizability over one (P_VSA_p2), three-dimensional (3D) autocorrelation weighted for polarizability 

(TDB05p), and 3D-MoRSE descriptor, weighted by ionization potential (Mor10s).  Partition coefficient 

(aLogP), topological polar surface area (tPSA), and highest eigenvalue weighted for the lowest atom in 

the Burden matrix (BCUTS) were chosen. Table 20 gives a comprehensive summary of model 

performance. Features used for classification are given in Table 21. 

 

 DRAGON CDK 

 CHAID CART CHAID CART 

CCR 93.9 90.8 90.9 89.8 

MCC 87.7 81.6 81.7 79.9 

Spec 93.4 90.2 91.8 86.7 

Sens 94.3 91.4 90 92.9 

 

Table 20 - Performance of chi squared automatic interaction detector (CHAID) and classification and 

regression tree (CART) on Chemical Development Kit (CDK) and DRAGON descriptors is 

summarized. Corrected classification rate (CCR), Matthews correlation coefficient (MCC), Specificity 

(Spec), and Sensitivity (Sens) are given. All models presented were cross-validated and quality 

measures indicate a realistic performance estimate for unseen data. 
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Figure 24 - We summarized the result of classification and regression tree (CART) on CDK descriptors 

(n= 81). The predictive power of the cross-validated model was 89.8%. 

Descriptor 
sets Paradigm Splitting criteria Comment 

DRAGON CHAID tPSA(NO) 
Topological polar surface area (only considering Nitrogen 

and Oxygen) 

  Yindex Balaban Y index 

  CATS2D_02_LL CATS2D descriptor lipophillic-lipophillic at lag 02 

  Mor27p 
3D-MoRSE descriptor, weighted by polarizability (signal 

27) 

  SpMAD_EA(bo) 
Spectral mean absolute deviation from the edge 

adjacency matrix, weighted by bond order 

 CART P_VSA_p_2 P_VSA-like descriptor, weighted on polarizability (bin2) 

  TDB05p 
3D topological distance based descriptors- lag 5 weighted 

by polarizability 

  Mor10s 3D-MoRSE descriptor, weighted by I-state (signal 10) 

CDK CART aLogP Partition coefficient as defined by Ghose-Crippen 

  BCUTS 
The number of highest eigenvalue, weighted for the 

lowest atom 

  tPSA Topological polar surface area 

 CHAID aLogP Partition coefficient as defined by Ghose-Crippen 

  fPSA3 
Charge weighted partial negative surface area/ total 

molecular surface area 

  hBondAcceptors Hydrogen bond acceptor count 

  rotatable bonds Rotatable bonds count 

Table 21 - Features revealed by DTI to predict brain permeation are shown. Descriptor sets, paradigm, 

and its selected criteria as well as a short explanation of the descriptor is given. 
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ACO performance 
The best performing subset of fingerprints revealed by ACO is summarized in Table 22. This subset of 

chemical substructures performed with a CCR of 82% (MCC: 64%). Figure 27 shows the ROC curve 

and cutoff point (circle). The corresponding area under the curve (AUC) was 0.89. 

 

Figure 25 - The ROC curve is depicted corresponding to the best fingerprint set revealed by ant colony 

optimization (ACO). Cut off value is indicated by red circle. Fingerprints were selected from the 

MACCS key set (n= 166). This subset consisted of nine fingerprints and achieved a corrected 

classification rate of 82%. 
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Table 22 - The fingerprints selected from the MACCS keys are given with their internal number (No), 

SMART code, and a short explanation of the substructure. In the sample structure, A stands for any 

atom, X for a heteroatom, and R any molecular rest. 

No Sample Structure SMARTS Descripton

23 !"#$%!"&$'%!"($)%!"($
Nitogen connected to 
carbon atom, which is 
connected to two Oxigen 
atoms.

36 !"*&+$ Any heterocycle containing 
a sulfur atom.

60 !"*&$,!"($
Oxigen and Sulfur 
connected by a double 
bond.

82 -%!./0$%!1"&21"*21/3

Any atom connected to 
CH2, which is itself 
connected to a heteroatom 
with at least one hydrogen 
atom.

122 -%!"#$'%-)%-
Any atom connected to 
Nitrogen. Nitrogen has to 
be connected with any two 
additional atoms.

130 !1"&21"*$%!1"&21"*$ Two heteroatoms connected 
to each other.

145 -*%-%-%-%-%-%*
Six ring structure, occuring 
twice in molecule (They do 
not have to be directly 
connented).

150 -14-4-14- One intramolecular chirality 
centre. 

156 !"#$%-'%-)%- Nitrogen connected to any 
three atoms.
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Discussion 

Dataset 
The low level of chemical similarity (Tanimoto coefficient = 0.282) reflects the broad chemical space 

covered by our dataset. We restricted the present dataset to results of experiment in rats. For this 

reason, our dataset seems at first glance smaller compared to other work published in the field. We 

feel that artificially expanding datasets by mixing data from different species would introduce noise into 

deduced models. Moreover, we only used results from experiments conducted in wild type animals in 

order to not intentionally exclude any actively transported compounds. Active transport plays a major 

role in BBB permeation and can alter pharmacokinetics of a drug substantially.[276] Moreover, one can 

hardly assure purity of a dataset including only passively transported molecules. The characterization 

of active transport mechanisms is still an ongoing topic of research and active transport mediated by 

yet unknown transporters could remain undetected when saturation occurs at very low concentrations.  

 

In the past, it was criticized that binning in CNS positive and CNS negative substances referred to 

presence or absence of pharmacological CNS activity, respectively.[277] We met these justified 

concerns in our considerations. Pharmacological activity is a qualitative and inadequate measure for 

brain permeation capacity and it is advisable to use a quantitative permeability measure like LogPS for 

classification instead. In the present study, the distinction in positively and negatively classified 

molecules refers to compounds with LogPS values <=-2mg/ml/s and >=-3mg/ml/s, respectively. 

 

Decision tree models 
One of the main advantages of DTI is the human-readable output they produce. Our models did not 

only predict this highly combined endpoint with excellent performance, but also gave insights into the 

biological processes involved. Interestingly, some features revealed were already used in models of 

passive brain permeation. Descriptors of lipophilicity and charge are frequently used to predict 

membrane permeation. It is therefore not surprising that three out of four paradigms selected partition 

coefficient (aLogP), the distance of lipophilic pharmacophore groups (CATS2D 02 LL) and/or polar 

surface area (PSA) as splitting criteria.  

 

When we compared trees using CDK descriptors, we found that both paradigms set a much lower 

threshold for splitting on aLogP than earlier defined rules do.[33, 278-280] This could be an indication 

for active transport involvement. Recent studies refer to increasing lipophilicity as a major rate-limiting 

feature for P-gp interactions and played a predominant role in DTI models predicting P-gp inhibitors 

and substrates.[258, 281] We could therefore not confirm the opinion that high lipophilicity would be 

generally associated with good brain permeation.[179] While we found that it was clearly an important 

feature to split data on, aLogP unfolded its predictive power for the present endpoint only in 

combination with other descriptors. 
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Polar surface area was present in virtually all models. Other groups observed a corresponding role of 

this feature in CNS penetration.[179] Generally, our models revealed that polar molecules (PSA) were 

associated with bad BBB permeation. The cutoff value for classifications varied substantially between 

our models, but generally spoken higher molecular polarity hindered passage into the hydrophobic 

milieu of the brain endothelial cells. The tree grown by CHAID with Dragon descriptors used tPSA as 

the root splitting criterion. Although earlier work implies that PSA values over 60-90 Å2 are generally 

associated with bad brain permeation, the paradigm detected in combination with connectivity 

measures positive instances.[278, 282, 283] This is in line with other work, where high capacity for 

polar interaction and low connectivity were crucial features of P-gp substrates.[258, 284] 
 

We observed that CHAID attributed good BBB permeation for compounds with less than four hydrogen 

bond acceptors. This is an interesting finding as it is generally agreed that hydrogen bond acceptors 

are less confining for passive diffusion than donors are. Additionally, thresholds to classify were set at 

much higher levels (usually around 8 or 10) than our model suggests. However, we can see parallels 

to other work, where high hydrogen bond basicity was associated with P-gp substrates.[285] 

Accordingly, Norinder and Haeberlein reported that compounds exhibiting less than five nitrogen and 

oxygen ([O+N]) entities would readily enter the brain.[286] This threshold corresponds with the cutoff 

value set in our model. 
 

In the CDK CHAID tree, an increase in rotatable bonds was associated with bad brain permeability. 

Interestingly, these findings were contrasting to observations of Iyer at al., who stated that increasing 

molecular flexibility was associated with an increasing permeation. They argued that the number of 

rotatable bonds were proportional to molecular weigh. Consecutively, an increase in rotatable bonds 

would clandestinely refer to a relationship of molecular weight and brain permeation. We found a rather 

low correlation between these two descriptors (R2 = 0.74) (Figure 26) in our present study and feel that 

mass, although to a certain extent present, did not contribute substantially to our classification. 

Figure 26 - Scatterplot matrix of intercorrelation molecular weight and rotatable bonds count is shown. 

The coefficient of determination (R2) was 0.74. 
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Remarkably, although the whole feature set was at disposal for training, none of the paradigms 

selected explicitly molecular weight to classify. This finding is in accordance to the opinion of Abraham 

and co-workers, who stated a less significant role of the descriptor in predicting brain penetration as 

certain rules of thumb imply.[287] Diminished permeation capacity with increasing number of rotatable 

bonds could also refer to potential conformational bulkiness of a molecule. Rotatable bonds are 

defined as any single bond not involved in a ring structure or connected to a non-terminal heavy atom. 

In fact, a high number of rotational bonds implied that an extended conformation could roll up into 

spherical shape. In other words, a molecule could potentially permeate the BBB worse than its 

molecular weight would indicate owing to a bulky shape. The number of rotatable bonds would then 

add additional information to models by taking also account of geometrical features rather than simply 

considering molecular mass. The importance of geometry in predicting brain penetration was 

substantiated by other DTIs. Our strongest model (CHAID trained on DRAGON descriptors) included 

edge adjacency matrix indices (SpMAD EA[bo]) to give information on molecular connectivity. The 

three-dimensional (3D) topological autocorrelation (TDB 05 p, weighted for polarizability) selected by 

CART represents the information gain from comparing topological and Euclidian distances of atoms in 

a molecule. Again, this descriptor refers to molecular conformation, as folded chains will have much 

lower values than stretched ones.[288] Spectral indices like the mass weighted Burden matrix 

(BCUTS) refer to molecular topology and complexity. Moreover, both DTI paradigms selected 3D-

MoRSE descriptors from DRAGON features. These autocorrelation descriptors consider the three-

dimensional molecular representation based on electron diffraction patterns. Schuur and co-workers 

pointed out their use as a measure for mass distribution and branching of a molecule.[289] Although 

different weighting schemes were used (polarizability for CHAID and intrinsic state for CART), both 

trees associated lower values with good permeation. 

 

Fragment based approach 
The fingerprints selected by binary ACO classification reconfirmed our findings from descriptor based 

machine learning. The repeated inclusion of ring features indicates a strong contribution of lipophilicity, 

which is involved in passive and active transport processes across the BBB. Heteroatoms were 

present in seven out of nine fingerprints, of which four included explicitly nitrogen and/or oxygen 

atoms. This could relate, in analogy to our findings using DTI, to hydrogen bonding capacity and 

polarity of a molecule. However an interesting structural feature was fingerprint No. 150, which refers 

to anticlockwise chirality. To our knowledge stereoselectivity has not yet been used to predict brain 

penetration capacity. However, in vivo studies confirm involvement of stereoselectivity of drug uptake 

on the BBB.[290, 291]  
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Conclusions 

Our decision trees reconfirmed the involvement of lipophilicity, size, and charge in predicting brain 

penetration. Additionally, we shed light on features such as molecular geometry, connectivity, and 

stereochemistry, which are less commonly used in the field. 

 

One could argue that the data underlying our models was derived from rodents and might not 

accurately reflect the situation in humans. Due to ethical constraints LogPS measurements in man are 

not feasible. There is little data from intra-operative microdialysis experiments conducted in patients 

who underwent neurosurgery. Hence, these reports do most likely reflect pathophysiological conditions 

and are therefore inapt to model the healthy BBB.  

 

Rats are commonly used as an animal model to conduct pharmacokinetic experiments. However, 

performing in vivo perfusion studies is time consuming, costly and requires experience. In addition, 

these experiments are highly invasive and stand in contrast to general attempts to reduce animal tests. 

Our models are suitable to predict drug brain permeation in wild type rats and could therefore 

contribute also to save animal numbers. 
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Abstract 
It is commonly agreed that breastfeeding is highly beneficial for mother and child. However, maternal 

medication intake can impose a risk for the baby as many drugs appear in mother milk. Despite its 

social, economic, and medical impact, safety of drug intake in nursing is still a relatively unexplored 

field. We aimed to computationally model drug passage into mother milk. The work presented here is a 

novel approach to holistically assess active and passive transport processes in the mammary gland 

epithelium. 

 

We assembled a dataset of small molecule drugs (n=90) and used the DRAGON toolkit and the 

Chemical Development Kit (CDK) to generate physicochemical descriptors. From these feature sets 

decision trees were grown. Performance in models using DRAGON features was outstanding and 

achieved corrected classification rates of 85.3% - 95.3%. Prominent splitting criteria were descriptors 

of molecular size, branching, charge and geometry. A fragment-based analysis revealed structural 

elements referring to polarity and to involvement of an active transport component. 

 

We consistently observed strong predictive power in all of our models, which underlines the viability of 

the present dataset. Descriptor and fragment based models shed light on the molecular requirements 

to identify safe drugs in nursing. The classifiers presented here will ease decision making in clinical 

settings or drug design even if no experimental data are available. 
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Introduction 
See Section 3.2.1.3. 

Drugs accumulating in mother milk are likely to become increasingly available to the baby. Considering 

the immature metabolism and drug clearance of the baby, serum levels could rise above therapeutic 

concentrations and cause side effects. Therefore, models including actively transported structures, 

which could lead to drug accumulation, are of substantial importance, both in drug development and 

safety monitoring in the clinical setting. 

 

Materials & Methods 

Dataset 

We assembled a dataset of 90 compounds for which information on human breast milk excretion 

profiles was available. The initial dataset was based on 162 marketed small molecule drugs from the 

therapeutic drug database.[230] The source supplied either qualitative (e.g., descriptive) or quantitative 

(numeric data) information on endpoints. We therefore classified compounds accordingly to Table 23 

as excreted (BM+, n = 40) or non-excreted (BM-, n= 50) drugs.  

 

Class label Qualitative label from source Quantitative label from 
source n 

BM+ Accumulation Milk levels > maternal blood 
levels  40 

 Same/ greater/ higher than 
maternal blood levels 

Milk levels 1-40x higher than 
maternal blood level  

 Therapeutic concentrations, 
Freely diffusing 

Milk/maternal blood ratio 1.5 or 
8.5:1  

 Clinically significant/ 
extensively secreted   

BM- Traces, minimally, negligible, 
not secreted <= 1% of maternal blood level 50 

  Very/ extremely low/ small 
quantities     

 

Table 23 - Class label assignment was performed as shown. The source supplied information on drug 

presence in mother milk either qualitatively (e.g., nominal quantification) or quantitatively (e.g., 

milk/plasma ratios). Due to varying detection techniques, maternal drug concentrations were measured 

either in plasma, serum or blood. For reasons of readability, we refer to these different values as 

maternal blood levels. We denoted compounds passing into breast milk as BM+ (n = 40) and non-

permeating molecules as BM- (n=50). 
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Compounds not meeting these requirements were exempt from learning, for the sake of classifier 

quality. We did not exclude any compounds which are known substrates of active transport and/or are 

known to accumulate in milk.  

 

The data source contained generic names. Corresponding structures were retrieved from the National 

Library of Health database, PubChem.[292] As the paradigms used cannot handle disconnected 

structures, we removed counterions form salts prior to their consideration.  

 

Descriptors 
See Section 4.2 and 4.6.3. 

To derive descriptors from chemical structure we used the commercial DRAGON toolkit. To ease 

reproducibility of our models we also applied descriptors calculated with the open source CDK 

software. 

 

Chemical fingerprints 
See Section 4.1.3. 

To get insight into structural requirements for safe drugs in nursing, we performed a fragment-based 

analysis. 

 

Decision tree induction 
See Section 4.3.1. 

In this study, we set maximum tree depth to five nodes for CART, and to three nodes for CHAID, 

respectively. We allowed a minimum of 10 instances in the parent and 5 cases in the child node.  

 

Ant colony optimization 
See Section 5.5. 

 

Chemical Space 
We assessed the chemical space spanned by our dataset calculating the Tanimoto coefficient 

spanned by the MACCS keys using the Open Babel toolkit and in-house software.[293] Keys of every 

molecule were compared to the remaining set. The resulting similarities were then averaged over the 

whole dataset (n=90) to receive an overall similarity value.  

Quality measure 
See Section 4.5. 
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Cross-validation 
See Section 4.6.2. 

 

Software used 
See Section 4.6.3.  

In-house software was available for ACO (Section 5.5.). 

 

Results 

Chemical Space 
We calculated an overall similarity of 0.333 for our dataset using Tanimoto coefficient. This is a low 

level of similarity and represents a reasonable chemical space on which to base machine learning. 

Models created will most likely interpolate well for future small molecule drugs.  

 

Performance of machine learning methods 
Both DTI paradigms achieved the strongest models when trained on DRAGON descriptors. 

Classification and regression tree (CART) produced the best model in our study, achieving a CCR of 

95.3% (MCC: 91%) closely followed by Chi-squared interaction detector (CHAID), which performed 

with a CCR of 92.5% (MCC: 87.1%). Figure 27 and Figure 28 show the corresponding trees.  
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Figure 27 - We show the CART built on DRAGON features. The tree predicted with CCR of 95.3% 

(MCC: 91%). SpDIAM_AEA(dm) is the spectral diameter from augmented edge adjacency (AEA) 

matrix, weighted by dipole moment. Mor28s stands for the MoRSE3D descriptors at lag 28, weighted 

by I-state. MATS7i and GATS7i are 2D autocorrelation matrices at lag 7 weighted by their ionization 

potential (i), defined by Moran and Geary, respectively. BM+ and BM- denote permeating and not 

permeating compounds, respectively. 
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Figure 28 - The CHAID tree built on DRAGON descriptors is shown. The paradigm achieved a 

performance of CCR: 92.5% (MCC: 87.1%). First splitting criterion was R4s, the R autocorrelation at 

lag 4 weighted by intrinsic state from the GETAWAY descriptors. Eig07_AEA(bo) is a descriptor of the 

edge adjacency indices. It stands for the eigenvalue number 7 from the augmented edge adjacency 

matrix weighted by bond order. MATS7e and GATS6m are both 2D autocorrelations, defined by Moran 

and Geary. MATS was weighted for electronegativity and GATS was weighted for mass. BM+ indicates 

permeating and BM- not permeating compounds. 

 

Performance in these models was outstanding, but to a certain extent at expense of interpretability. 

When we trained the paradigms on CDK features, more intuitive features were chosen.  
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Figure 29 - When CART performed on CDK features the depicted tree was grown. Splitting criteria 

were gravitational Index 4, Kier Hall kappa shape index, molecular weight, and molar refractivity. The 

paradigm achieved a performance of CCR: 85.3% (MCC: 70.2%). BM+ stands for permeating 

molecules and BM- for not permeating ones. 

 

However, predictions of CART performed with CCR of 85.3% (MCC: 70.2%)(Figure 29) and CHAID 

with CCR of 85% (MCC: 70.7%)(Figure 30). Table 24 summarizes DTI performance on all feature sets. 

 

Descriptors Paradigm CCR(%) MCC(%) SENS SPEC 

DRAGON CHAID 92.5 87.1 1 85 

 CART 95.3 91 98 92.5 

CDK CHAID 85 70.7 80 90 

 CART 85.3 70.2 92.5 78 

 

Table 24 - We present the performance of DTI on DRAGON and CDK descriptors. Corrected 

classification rate (CCR) and Matthews correlation coefficient (MCC) for all DTI models are given. 
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CART tree trained on DRAGON features achieved the best performance (indicated in bolt face). 

Sensitivity and specificity are given as SENS and SPEC, respectively. 

 

 

Figure 30 - We present the tree grown with CHAID on CDK descriptors. The paradigm selected 

gravitational index four, relative positive charge (rPCG), partial positive surface area multiplied by total 

positive charge on the molecule (pPSA2), and the difference of pPSA2 divided by molecular surface 

and partial negative surface area multiplied by total negative charge on the molecule (dPSA2). RPCG, 

pPSA2, and dPSA2 belong to the charged polar surface areas descriptors (cPSA). CHAID achieved a 

performance of CCR: 85% (MCC: 70.7%). BM+ indicates permeating and BM- not permeating drugs. 

 

Our analysis of structural requirements for safe drugs in nursing revealed 10 relevant fingerprints which 

are listed in Table 25. The molecular fragments performed with a CCR of 83% (MCC: 66%) and an 

area under the curve (AUC) of 0.85. The corresponding ROC curve is depicted in Figure 31. 

 



    Projects 

 

- 102 - 

 

Figure 31 - The ROC curve achieved of best-performing ACO model is shown. The 10 fingerprints from 

the MACCS keys performed with a CCR of 83% (MCC: 66.2%). The area under the curve (AUC) was 

0.85. The cutoff point taken as maximum Youden’s J is indicated by a circle. 
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No Sample Structure SMARTS Description 

51 

 

[#6]~[#16]~[#8] Carbon bound sulfoxide. 

82 

 

*~[CH2]~[!#6;!#1;!H0 
Methylene connected to a heteroatom 
with at least one hydrogen atom and to 
an additional molecule. 

97 

 

[#7]~*~*~*~[#8] Nitrogen connected to oxygen via any 
three atoms. 

122 

 

*~[#7](~*)~* 
Any atom connected to nitrogen. 
Nitrogen has to be connected with any 
two additional atoms. 

139 
 

[O;!H0] Oxygen with at least one hydrogen 
(e.g., hydroxy group). 

149 

 

[C;H3,H4] More than one methyl group. 

153 

 

[!#6;!#1]~[CH2]~* Heteroatom with methylene group, 
connected to a rest. 

159 

 

[#8] More than one oxygen atom. 

162 

 

a Aromatic atom.  

163 

 

*1~*~*~*~*~*~1 Six-membered ring structure, occurring 
twice in molecule. 

 

Table 25 - The 10 best performing MACCS Keys selected by ACO are shown. We give the number 

(No) in the fingerprint set, a sample structure, the corresponding SMART keys, and a short explanation 

of the chemical fragment. 
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Discussion 
Our dataset exhibited a reasonable dissimilarity to interpolate for existing and future small molecule 

drugs. This is an advantage, if safety estimates are needed and no experimental data are available. In 

terms of size, our dataset might be considered modest compared to others. However, division in test 

and training sets dramatically reduces the effective size of data used for creating models. We 

overcame this problem by cross-validating our models, thus using the whole chemical space available. 

Additionally, k-fold cross-validation resulted in a realistic performance estimate as the data subsets 

were randomly composed. Therefore, we considered our models in terms of size competitive with other 

models using holdout validation. 
 

We felt that a numeric prediction approach would not be sensible due to the inherent fuzziness in 

reporting quantities of compounds detected in mother milk. We therefore decided to restore 

discriminatory power by partitioning compounds into two classes. 
 

Classifiers trained with DRAGON descriptors achieved excellent performance. However one could 

argue that the selected splitting criteria are not easily interpretable and traceability of trees is 

hampered to a certain extent. Although the CDK trees could not hold with the strong performance 

given in DRAGON based models, they yielded more intuitive features. Interestingly, these splitting 

criteria did largely reflect our current knowledge of the process. 
 

Typically, molecular size and weight substantially determine the membrane permeation capacity. While 

small compounds readily undergo passive diffusion, bulky ones will be sterically hindered. An earlier 

study by Meskin and co-workers revealed a negative correlation of molecular weight and milk plasma 

ratios.[294] We could reconfirm his observation in our CART model trained with CDK descriptors, 

where lower values were associated with well-permeating compounds. 
 

Additionally, CART classified drugs exhibiting molar refractivity over the critical threshold as 

permeating drugs (BM+). Molar refractivity refers to molecular shape and compactness. Tightly packed 

compounds would more readily permeate through membranes than highly branching ones. 

Gravitational index 4 considers the mass distribution related to intramolecular distances accounting for 

the bulk cohesiveness. Information on molecular graph complexity gave topological shape descriptors 

of second order (Kappa shape Index, Kier 2) included by CART. Other groups confirmed the role of 

molecular density and complexity in the permeation capacity.[178, 295] 
 

Lipophilicity plays a delicate role in determining permeability. It is certainly a prerequisite for membrane 

interactions and permeation into milk. However, in maternal circulation, high lipophilicity hampers 

solubility and enhances serum protein binding, counteracting a compound's distribution and eligibility to 

be secreted. None of our models selected partition coefficient (LogP), although some seminal work 

accounted for the descriptors dominant role in estimating drug diffusion into breast milk.[63, 296] In 

these studies, the number of features was restricted by an expert-based preselection. We agree with 
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Agatonovic and co-workers, who stated that with higher dimensional descriptors at hand, machine 

learning paradigms can select more refined measures of lipophilicity than LogP.[295]  
 

Molecular polarity played a key role in models trained with CDK descriptors. Polarity refers to a 

compounds hydrophilic potential and can be seen as an indirect measure for lipophilicity. Namely, 

charged polar surface area descriptors were prominent splitting criteria in the CHAID tree. We 

observed a certain tendency in compounds with low polarity (i.e., more lipophilic drugs) to better 

permeate into mother milk. However, thresholds set in our models were subtle and reflected the narrow 

scope of this attribute. 
 

All splitting criteria selected from the DRAGON set relied on weighted matrices. Weighting schemes 

are used to encode chemical information on bonds or molecules that is not contained in a molecular 

graph. SpDiam_AEA(dm) and Eig07_AEA(bo) belong to the edge adjacency indices, where spectral 

diameter and eigenvalue of the augmented edge adjacency (AEA) matrix are considered. Bond 

matrices based on the chemical graph theory encode information on intramolecular connectivity. The 

weighting schemes considered bond order (bo) and dipole moment (dm). The importance of 

connectivity and molecular polarity corresponds with our findings from CDK descriptors. 
 

Spatial autocorrelation descriptors, such as Moran's (MATS) and Geary’s (GATS) autocorrelation were 

chosen by both paradigms. Autocorrelation descriptors evaluate a certain atomic property for every 

atom in the molecule. Both features selected by CART used molecular ionization potential (i) as 

weighting property. The involvement of ionization could refer to an ion-trapping effect as breast milk 

exhibits a lower pH than human plasma. Electronegativity (e) and molecular mass (m) were the 

weighting schemes selected by CHAID. Observations from CDK learned trees confirmed involvement 

of charge and mass in predicting BM-/BM+ compounds. Two features were weighted by intrinsic state. 

Namely, these were R4s from the GETAWAY descriptor containing information on molecular branching 

and Mor28s from the 3D MoRSE descriptors which encodes three-dimensional information based on 

electron diffraction.[297, 298] Intrinsic state gives information on the electrotopological state of a 

molecule. 
 

Our fragment-based approach gave information on structural requirements for safe drugs, e.g., poorly 

permeating compounds. The repeated selection of amides, oxygen, and hydroxy groups indicates 

involvement of hydrogen bonding capacity and molecular polarity. Other strongly polarizing groups, 

such as sulfoxyde are likely to oxydize amino acids, e.g., cysteine, at the binding site of transporters 

through irreversible addition of a thiol group.  
 

Interestingly, fingerprint fragments revealed by ACO included six-membered rings and aromaticity. We 

found these features also in typical substrates of BCRP such as chemotherapeutics (e.g., 

mitoxantrone), antivirals (e.g., zidovudine), and antibiotics (e.g., ciprofloxacin).[299] However, there is 

evidence that the mammary gland epithelium expresses a multitude of transport proteins including 

other ABC transporters such as P-gp (MDR1).[300] In contrast to BCRP, studies indicate an apical to 
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basolateral transport, which would counteract drug accumulation in breast milk.[104] As both proteins 

share certain substrates, the complexity of molecular interplay may be potentiated. In earlier models of 

metabolic enzymes and P-gp, constitutional and connectivity measures played key roles to predict 

substrates.[177] Thus, we were not surprised to find parallels between our results and those from other 

models of these transporters.  

 

Conclusions 
Excretion of drugs into breast milk remains poorly understood. Beside passive diffusion form plasma to 

milk, other transport mechanisms exist for various compounds, as evidenced by the emergence of 

further transport proteins that play a role in mother milk composition. Excretion and reabsorption 

processes additionally confound the issue. Therefore, our approach to predict breast milk excretion 

beyond separation into active and passive processes seems sensible. Although our models do not 

compensate for careful assessment of single biological mechanisms involved, they are able to predict 

the drug presence in human breast milk.  

 

Acknowledgements 
Claudia Suenderhauf was supported by the Swiss National Foundation (Grant No. 323530-119218). 

 



    Projects 

 

- 107 - 

 

5.4 A Computational Assessment of MRP2: Prediction of Substrates, 

Inducers, and Inhibitors.  
 

 Claudia Suenderhauf, Felix Hammann, and Jörg Huwyler 

 

 

 

 

 Pharmaceutical Technology 

 Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50,  

 CH-4056 Basel, Switzerland 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted to Journal of Drug Metabolism and Pharmacokinetics 

 



    Projects 

 

- 108 - 

 
 

Abstract 
Multidrug resistance protein 2 (MRP2) plays an important role in drug clearance and efflux. As both, 

the functional loss and overexpression were associated with pharmacokinetics alteration of several 

drugs, knowledge on structural and physicochemical requirements for MRP2 drug interaction is 

desirable. We performed a computational analysis based on a small molecule datasets from literature 

providing information on MRP2 inhibitors (n = 277), inducers (n= 122) and substrates (n= 76). 

 

Decision trees were induced and resulting models predicted inhibitors and inducers with a corrected 

classification rate (CCR) of 87.3 - 87.6%, 84 - 90.9%, respectively. Our tree models used descriptors of 

charge and molecular complexity along with connectivity measures to predict MRP2 inhibitors and 

inducers. 
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Introduction 
See Section 3.2.3.1. 

Despite the clinical implications of MRP2 on drug excretion, knowledge on requirements for MRP2 

interaction is mostly restricted to results of single compound analysis. Quantitative structure activity 

relationship (QSAR) analysis is ideally suited to summarize these data to get more generalized 

information on physicochemical properties involved. Moreover these techniques enable 

implementation of fast and accurate screening techniques for future drug development. Computational 

methods have already been successfully applied to model drug behavior of other ABC transporters, 

such as P-gp and BCRP.[258, 299, 301] It was our intention to contribute to the ongoing discussion on 

the chemical requirement for MRP2 interaction, by presenting a decision tree approach to predict this 

highly complex endpoint. The production of easily interpretable rules is certainly an advantage of 

decision tree induction. They can easily be implemented to apply them on unseen compounds to 

predict MRP2 inhibitors, inducers and substrates.  

 

Materials & Methods  

Data sets 
We assembled three datasets of small molecules from published literature. The dataset concerning 

MRP2 inducing compounds consisted of 122 entities. We found 52 inducers and labeled them as  

“MRPind+”. All molecules that were explicitly found to not induce MRP2 expression received the labeled 

“MRPind-”.  

 

We collected a set of 277 compounds where information of their inhibitory function on MRP2 was 

available. We found 146 Inhibitors (label = “MRP2inh+”) and 131 non-inhibitors (label= “MRP2inh-”). The 

data set for MRP2 substrates consisted of 77 molecules, of which only 10 were explicit non-substrates.  

 

Descriptors  
See Section 4.2.  

 

Decision Tree Induction  
See Section 4.3.1 

We used classification and regression trees (CART) to induce trees for the current study.[204] A prior 

feature reduction was not needed as decision trees perform implicitly by themselves a feature 

selection. To grow trees we restricted splitting in parent nodes to a minimum of five instances and in 

child nodes to a minimum of two cases. CART was grown to a maximum depth of five levels.  
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Quality measures 
See Section 4.5. 

 

Cross-validation 

See Section 4.6.2. 

 

Software 

See Section 4.6.3. 

 

Results  
MRP2 Inducers: 

The best performing trees for MRP2 inducers were created on DRAGON features (CCR: 90.9%). The 

paradigm produced models with 83.5% CCR on CDK features. Figure 32 shows the corresponding 

tree. 



    Projects 

 

- 111 - 

 
 

 
 

Figure 32 - Classification and regression tree (CART) trained on DRAGON features. The paradigm 

achieved a corrected classification rate (CCR) of 90.9%. Splitting criteria were eigenvalue of the 

augmented adjacency matrix weighted for dipole moment (Eig02_AEA[dm]), Schultz molecular 

topological index by valence vertex degrees (SMTIV), Balaban like index from the Barysz matrix 

weighted by polarizability (J_Dz[p]), spectral moment from the Barysz matrix weighted by 

ionization(SM1_Dz[i]), mass weighted largest Burden eigenvalues (SpMax_B[m]), number of six 

membered rings (nR06), molecular electrotopological variation (DELS), mass weighted Burden matrix 

(SpMAD_B[m]), bond order weighted spectral moment of the augmented adjacency matrix 

(SM02_AEA[bo]). MRP2ind+ indicates MRP2 inducers while MRP2ind- indicates non-inducers. 
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Figure 33 - Decision tree induced on CDK features is shown. The tree achieved a correct classification 

rate of 83.5%. Features selected were polarizability weighted BCUTS, gravitational Index four, relative 

positive charge (rPCG), molar refractivity, charge weighted partial positive surface area (pPSA3), bond 

count, moment of inertia on the z-axis, and relative sum of solvent accessible surface areas of atoms 

with absolute value of partial charges less than 0.2 (rHSA). MRP2ind+ and MRP2ind- indicates MRP2 

inducers and non-inducers, respectively. 

 

MRP2 Inhibitors: 

The best model for MRP2 inhibitors was produced with the CART paradigm on DRAGON features, 

yielding a CCR of 87.6% (Figure 34). The corresponding tree using CDK features predicted the 

endpoint with 87.3% CCR (Figure 35).  
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Figure 34 - The best decision tree predicting MRP2 inhibitors on DRAGON features with corrected 

classification rate (CCR) of 87.6% is shown. Splitting criteria were Hosoya like index form the chi 

matrix (Ho_X), dipole moment weighted eigenvalue of the edge adjacency matrix (Eig03_EA[dm]), 

distance/detour ring index of order 9 (D/Dtr09), pharmacophore pair distance of hydrogen donors and 

lipophilic groups (CATS2D_07_DL), edge degree weighted eigenvalue of the augmented adjacency 

matrix (Eig14_AEA[ed]), squared Moriguchi octanol water partitioning coefficient (sLogP2), bond order 

weighted leading eigenvalue of the augmented adjacency matrix (SpMax_AEA[bo]), polarizability 

weighted Balaban like index from the Barysz matrix (J_Dz[p]), sum of Sanderson electronegativity 

(Se), double bound oxygen count (O-058), average van der Waals volume weighted Wiener-like index 

from the Barysz matrix (WiA_Dz[v]), average vertex sum of the chi-matrix (AVS_X). MRP2inh- and 

MRP2inh+ indicates non-inhibitor and inhibitor, respectively. 
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Figure 35 - Classification and regression tree trained on CDK features is shown. MRP2 inhibitors and 

non-inhibitors are indicated as MRP2inh+ and MRP2inh-, respectively. Features selected include 

moment of inertia in the z-axis, charge weighted partial positive surface area (pPSA3), partition 

coefficient (aLogP), aromatic atom count, the sum of the absolute difference between atomic 

polarizabilities of all bonded atoms in the molecule (bPol), charge weighted partial positive surface 

area (wPSA3) and partial negative surface area (wNSA2) multiplied by molecular surface, partial 

negative surface area multiplied by total negative charge (pNSA2), Wiener polarity number (Wiener 

polarity num.), gravitational index one and four (grav. Index 1, grav. Index 4), relative sum of solvent 

accessible surface areas of atoms with absolute value of partial charges less than 0.2 (rHSA), charge 

weighted partial negative surface area divided by total surface (fNSA3), and relative negative charge 

(rNCS). The paradigm performed with a corrected classification rate (CCR) of 87.3%. 
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Performance of CART predicting MRP2 inhibitors and inducers on both feature sets is summarized in 

Table 26. 
 

Dataset Feature Set CCR (%) MCC (%) SENS (%) SPEC (%) 

MRP2 Inducers CDK 83.5 66.8 94.2 72.9 

 DRAGON 90.9 83.4 84.6 97.1 

MRP2 Inhibitors CDK 87.3 76.0 95.2 79.4 

 DRAGON 87.6 76.8 95.9 79.4 

 

Table 26 - A summary of the 10-fold cross-validates decision trees on MRP2 inducers and inhibitors is 

given. Trees were trained on DRAGON and CDK features.  Corrected classification rate (CCR), 

Matthews correlation coefficient (MCC), sensitivity (Sens), and specificity (Spec) are indicated. Best 

models are highlighted in bold letters. 

 

MRP2 Substrates: 

Our dataset of MRP2 substrates was strongly skewed, in a way that only 10 compounds were judged 

to be non-substrates. The number of these negative compounds would be by far to small to make 

adequate assumptions on their chemical requirements. Although our decision trees could discriminate 

between these unbalanced groups, interpretability was severely reduced because of the small class 

size (data not shown). 
 

Discussion  
We presented three new datasets assembled form literature for MRP2 inhibitors, inducers, and 

substrates. The data consisted only of experiments conducted on human MRP2. Compared to other 

transporters, reports on MRP2 drug interaction were relatively rare in literature. Ideally, one would 

create a database on a high-throughput screening. However, these are still missing for MRP2. This 

might be due to the highly interactive character of transporter and enzyme interplay on level of the 

polarized cell. The establishment of a potent in vitro essay, such as MRP2 expressing polarized cells, 

is a challenging endeavor. Interestingly, relevant directed transport occurs only in presence of 

coexpressed basolateral uptake transport.[302, 303] Moreover, there is evidence that minimal 

mutations in MRP2 lead to broader substrate specificity and activity.[131, 304, 305] Further analysis of 

single nucleotide polymorphisms will hopefully lead to more specific essays for substrate testing. 

Another issue, which is hard to address is the saturation capacity of the transporter. The experimental 

data published is mostly restricted to a careful analysis of single compounds, which holds that 

information. However, for the present study, we decided to use a simplified view by binning 

compounds in positive or negative classes, regarding their activity. This procedure would allow for 

models with higher discriminatory power, as it would compensate for differences in experimental 

settings and show a reduced vulnerability for overfitting. 



    Projects 

 

- 116 - 

For inhibitors and inducers we assembled well balanced datasets, in terms of positive compounds not 

outweighing positive ones. They readily qualified for computational analysis. This did not hold for our 

MRP2 substrate dataset. Although we assembled 66 substrate compounds, only 10 molecules were 

reported to be explicitly not substrates of MRP2. We feel that non- transported compounds suffer from 

a positive publication bias, despite their impact for drug development. Although our decision trees 

could discriminate between these unbalanced groups, interpretability was severely reduced (data not 

shown). The computational analysis led most likely to a projection of the dataset instead of the 

effective requirements for MRP2 substrates.  

 

As discussed before, adequate essays for MRP2 substrates involve a multitude of factors such as 

influx transporters and probably also metabolic enzymes, which transform parent compounds. The 

proximity and interaction with phase I and II enzymes underlines this assumption. Structures with high 

lipophilicity and charge are typically metabolized by cytochromes.[177] Such compounds could likely 

be prone to prior metabolism before undergoing secretion by MRP2. Hence, it would be tempting to 

assess every metabolism and transport step by a single model and then concatenate these to predict 

general drug excretion. We feel that such an approach would introduce error accumulation, as every 

single model suffers from an individual degree of uncertainty. Several studies showed that for creation 

of robust and noise resistant computational models, simplification to end- and starting point is a valid 

and beneficial procedure.[259, 260]  

 

Decision trees of MRP2 inducers and inhibitors were highly accurate in discriminating active and 

inactive compounds. The best model for inhibitors was achieved on DRAGON features, yielding 

predictions of 87.6% accuracy (Table 26). Inducers were predicted with 90.9% accuracy. This is a 

remarkable performance as all models were cross-validated. Our models for inhibitors outperformed 

recent modeling attempts by Zhang et al. and Pedersen et al., who reported an accuracy of 77% and 

72%, respectively.[306, 307] In both studies, no cross-validation was applied. 

 

To our knowledge, MRP2 shares many inhibitors and inducers with other ABC transporters like P-gp or 

BCRP. Certain resemblance of the splitting criteria revealed by our trees with earlier studies 

concerning P-gp modeling does therefore not surprise. A computational analysis of P-gp interactions 

revealed an involvement of lipophilicity and aromaticity to discriminate inhibitors form non-

inhibitors.[258] A study of BCRP inhibition used exclusively lipophilicity and polarizability to 

discriminate inhibitory compounds.[308] We are therefore not surprised to find these features in both 

trees for MRP2 inhibitors. While in models of P-gp inhibitors ring bonds played a dominant role,[258] 

MRP2 inhibitors seemed to be more dependent on charge distribution, reflected by repeated selection 

of cPSA descriptors. Interestingly, our findings reconfirmed a recent study of Pedersen at al., where 

they state a correlation of lipophilicity, polarity, and aromaticity with MRP2 inhibitors. [307] A relatively 

unusual feature to classify inhibitors on, is the molecular mass distribution, quantified by gravitational 

indices. Trees trained on CDK features selected the first and the fourth index for discrimination. These 

indices could be seen as a refined measure for molecular mass introduction. Additionally, the 

descriptor holds information on molecular connectedness and geometry. Although not commonly used 
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to study ABC transporters, gravitational indices and moment of inertia have been used to model 

cytochrome P450 (CYP) inhibitors.[177] This could be an indication of the transporter's interplay with 

phase one enzymes like CYPs. However, we found also a links to hepatotoxicity prediction studies. 

Drugs associated with toxicity were generally more lipophilic and charged than safe compounds. [259] 

 

MRP2 inducers were generally compacter and bulkier molecules than non-inducers were and showed 

a tendency for higher polarity. However, we could not generally associate smaller size with inducer 

activity as proposed by Pedersen.[307] Our CDK features tree indicated a rather fine discrimination, 

where additional features such as charge distribution and molecular interconnectedness are taken into 

account. In the tree built with DRAGON descriptors, we saw a tendency of inducers exhibiting lower 

numbers of six-ring structures, which indicated that they are less lipophilic than non-inducers. We 

stress that the splitting criterion cannot be interpreted in isolation, as charge weighted connectivity is a 

dominant factor in this tree. 

 

Interestingly, we found in consistency with a comparable study of P-gp,[258] that decision trees for 

inhibitors were more complex and deeper than those for inducers. This could reflect the multitude of 

possible drug interactions leading to transporter inhibition. While it was argued that MRP2 inducers 

would bind on one of the transporter’s two binding sites, the example of P-gp teaches us that 

transporter inhibition can involve far more complex mechanisms. 

 

Conclusion 
We were able to present three datasets concerning MRP2 inhibitors, inducers and substrates of 

reasonable size to apply computational methods on them. The models produced predicted their 

endpoint with high discriminatory power. Although the establishment of HTS screening for MRP2 could 

improve standardization and quantity of data available, we feel that decision trees can substantially 

contribute to extrude information even out of inhomogeneous data. An advantage of DTI is their rule-

based output, which can easily be implemented without any specialized software. In this way, our 

models will, besides their contribution to our knowledge on MRP2 interaction, also serve as sensitive 

screening tools in drug development and toxicity screening. 
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Abstract 
Chemical fingerprints encode the presence or absence of molecular features and are available in many 

large databases. Using a variation of the Ant Colony Optimization (ACO) paradigm, we describe a 

binary classifier based on feature selection from fingerprints. We discuss the algorithm and possible 

cross-validation procedures. As a real-world example, we use our algorithm to analyze a Plasmodium 

falciparum inhibition assay and contrast its performance with other machine learning paradigms in use 

today (decision tree induction, random forests, support vector machines, artificial neural networks). Our 

algorithm matches established paradigms in predictive power, yet supplies the medicinal chemist and 

basic researcher with easily interpretable results. Furthermore, models generated with our paradigm 

are easy to implement and can complement virtual screenings by additionally exploiting the pre-

calculated fingerprint information. 
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Introduction 
Chemical fingerprints, which are in essence hashes calculated from molecular structures, are 

frequently used in large chemical database.[309] These fixed-length strings encode a variety of 

molecular properties, oftentimes the presence or absence of a substructural motif.[310, 311] Using 

fingerprints, it is possible to quantify chemical similarity, restrict searches to a number of promising 

candidates, and so on.[312, 313] A variety of distance measures exist to determine proximity between 

two molecules and also to define clusters of similar structures.[309, 314] 

 

According to the similarity principle, molecules with closely related structures are likely to exhibit the 

same activity.[315] While similarity may be defined as small distance from a selected point (e.g., a 

centroid in clustering), one may also construct a plane of separation within the attribute space to 

distinguish one type of molecule from another. A typical example of this approach are support vector 

machines,[316] and these have been successfully employed in many quantitative structure-activity 

relationship (QSAR) studies.[317] 

 

Statistical models often rely on a number of physicochemical descriptors, which are rarely available in 

chemical databases. Screening an entire database therefore requires retrieving the complete set of 

structures and subsequently calculating these properties. On the other hand, fingerprints already 

contain many properties calculated upon insertion into the database. A classification scheme based on 

fingerprints could therefore save data traffic and computing power. 

 

Such a classifier would need to find a subset of attributes present in a list of desirable molecules and 

absent in a list of negative controls. This feature selection is essentially an optimization problem. In 

recent years, the field of natural computing has produced intriguing heuristics for optimizations in 

engineering and the natural sciences. Ant Colony Optimization (ACO), a paradigm introduced in the 

1990s,[224] has drawn a special amount of attention. Real-world ants are abstracted as agents able to 

traverse a graph while they deposit a pheromone whose intensity decays over time. An ant scurrying 

about the graph at random until it finds a food source initiates the process. It then returns to the 

starting point in a more or less direct trajectory. Other ants explore the graph and weigh their choices 

of route by previously deposited pheromones. Eventually, shorter (i.e., more efficient) paths will 

extrude a more intense signal and become points of convergence.  

 

Here, we propose a binary classifier that uses an ACO variant to select relevant molecular fragments. 

Modifications of ACO have been proposed previously for variable selection and reduction of 

dimensionality.[318] They have also found application in the field of drug discovery, where they, 

however, were used in ensemble prediction settings (as feature reduction prior to e.g., linear 

regression [319, 320] or support vector machines [320] QSAR/QSPR studies of anti-HIV activity and 

human serum albumin binding activity, respectively). ACO is also often employed (along with other 

optimization paradigms) in protein ligand-docking studies.[321] While ACO has been applied to 
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molecular binary classification (e.g., as an estimator of splitting criteria in decision tree induction),[322] 

we are not aware of its solitary use in fragment analysis. 

 

The variant described by us can be visualized with the ant colony at the center and various single 

fingerprint flags as the vertices of edges of equal length radiating from the center, i.e. a complete 

bipartite graph S1,n where n is the number of fingerprint flags (Figure 36). From this, the method 

compiles a subset of flags that are associated with a given label or activity. 

 

 

Figure 36 - Sample graphical depiction of the ant colony feature selection problem for twelve different 

attributes. Edges are of equal length, with the colony at the center (*). 

 

Theory 

Fingerprints 
For a molecule A, a fingerprint F with n elements takes the form of an attribute vector FA  [309] 

 

 
 

The fingerprints used in this context are dichotomous (or binary), i.e. each element fxA corresponds to a 

bit with encodes the presence (ON) or absence (OFF) of a feature within the molecule A. 
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Classification problem 
The problem can be stated as follows: given a total of n positions in a set F of fingerprints bits, find the 

subset S of magnitude m (m<n, S ! F) so that the subset of features Q (Q ! F) present in all active 

compounds has maximum specificity and sensitivity compared to the set of inactive compounds. 

Initially, a fixed number na of ants, each with the ability to select m features, explore the feature space 

at random, and return to the nest. This random exploration is implemented by assigning a random 

amount of pheromone ! (range 0 to 1) to each feature at the start of a run. Here, a heuristic fitness 

function H rates each ant’s performance, and ants are ranked by quality of their subset. The best k (k < 

na) ants are selected and deposit a constant amount ! of pheromone on the edges connecting 

members of their subset to the nest. The other ants are ignored. All n edges are allowed to evaporate 

their pheromone trails by a constant linear term d, and a new cycle is initiated. Again, na ants are 

created. Each ant now generates a random number ri for each i of the n edges connected to the nest 

(0 " rn " 1) and ranks their attractiveness by choosing those with a maximal value for the term 

 

! 

ai = ri" i  
 

where !i is the intensity of the pheromone signal on edge i, and ri the random weight. With the 

introduction of the random term, exploration of other combinations is encouraged. Over a given 

number of cycles, information-rich features are reinforced and increasingly become part of subsets 

until ants will almost uniformly choose these same features (Figure 37). Chart 1 further illustrates the 

proposed method. 
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Chart 1 - Pseudocode representation of learning algorithm. 

KeyLength: length of fingerprint key in bits 

m: number of features in ant memory 

n: number of ants to create per cycle 

k: number of ants to keep per cycle, where k <= n 

Pheromones: list of length KeyLength containing pheromone intensities associated with keys 

 

Initialize Pheromones with random floating point values from the range [0, 1] 

 

repeat for a given number of cycles 

 repeat for each of n ants 

  copy Pheromones to Pheromones’ 

  multiply every position in Pheromones’ with random floating point number from the 

   range [0, 1] 

  find m positions in Pheromones’ with highest value 

  compute fitness H and store with ant 

 end repeat 
 

 select k ants with highest H and repeat for each of m features in ant memory add constant 

  pheromone amount ! to corresponding value in Pheromones 

 

 for each position in Pheromones subtract constant linear evaporation rate 

end repeat 

 

Output: the list of pheromone intensities Pheromones  
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Figure 37 - Visualization of evolution of a solution over a number of cycles as produced by the software 

written for this study. Initially, many different attributes are being explored until several strong attributes 

are converged upon (indicated by intensity of pheromone trail). 

 

Heuristic fitness function H 
The heuristic fitness function H used in this study first finds the cardinality ci of the intersection Ii of the 

subset S of features being evaluated and the entire set of features Mi (Mi ! F) of each molecule i in a 

training dataset such that 

!
 

Depending on the original parameterization of the ant agents, ci will take on values between 0 and 

cardinality of S. The fitness function determines ci for every instance in the training set and group 

instances by this value. Sensitivity and specificity of S for active molecules can be ranked by the area 

under the curve (AUC) of receiver operating characteristic (ROC) curves, as ci as a cut-off value 

increases. This AUC is also the return value of H(S) for a subset S. A pseudocode representation is 

given in Chart 2. 
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Chart 2 - Pseudocode representation of heuristic fitness function H. 

 

Statement of models 
The ROC curves are used further to determine the cut-off point with optimal sensitivity and specificity. 

The Youden index [323] J given as  

 

J = Sensitivity + Specificity – 1 

 

is maximal for this point (Section 4.5.3). A model built in this fashion can therefore be stated as the set 

of features indicative of activity and the minimum number of features required to qualify as active. A 

model P built with m features and cut-off point at p features takes the form of 

 

P = {{x1, x2, …, xm}, p} 

 

As an illustration, consider a sample model M trained from a set of 100 possible binary keys to select 

the 10 keys associated with a given activity. This might look as follows: 

 

M = { { 4, 12, 15, 23, 38, 42, 61, 89, 90, 95 }, 3 } 

 

For an instance to be classified as active, 3 or more of the 10 features would need to be present in its 

key vector, e.g., a molecule with a vector  

 

Mol1 = { 10, 12, 19, 20, 23, 38, 49, 50, 67, 70, 82, 83, 100 } 

 

would classify as active (as the intersection with the key vector in model M has a cardinality of 3).  

 

TrainingData: training data with binary labels and fingerprint keys 

AntMemory: set of m keys 

 

repeat for each instance in TrainingData 

 compute hits (i.e. ci) as the number of keys present in both the instance and AntMemory 

 sort and divide instances in TrainingData by hits 

 continuously combining groups of instances ordered by value of hits, compute true and  

  false positive rates for all instances as coordinates 

 calculate the area under the curve formed by these points 

end repeat 

 

Output: area under the curve 
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Cross-validation procedure 
To avoid overfitting (i.e., creating overly complex models with very high predictive accuracy on training 

data by extracting too many parameters from the known data at the expense of not being able to 

predict unseen compounds), we used k-fold cross-validation (CV). Here, a data set is randomly 

recombined into k subsets (here k=10).[324] Of these, k-1 are re-combined to make up a training set 

which is tested against the remaining subset. This process is repeated k times until all instances have 

served as training and test data, thereby making sure that no classes are left out. Sets were 

permutated using the Fisher-Yates-Shuffle algorithm as detailed by Knuth.[325] 

 

We evaluated three different ways of combining the different models: averaging of pheromone weights 

in every fold (averaged model), selection of most frequently employed attributes (frequency model), 

and combination of attributes most frequently selected by elite ants (elite ants model), i.e. the single 

best performing ant within a run. For averaging, the pheromone weights associated with each of the n 

attributes are normalized to a range (0, 1). Next, all of the k pheromones for a given attribute are 

summed up. The result is a list of n combined pheromone weights ranging from 0 to k, allowing them to 

be ranked. Attributes of the highest rank are selected and make up the final model. For the frequency 

model, the highest-ranking attribute of each fold is selected. In order to create the elite ants model, the 

software stores the single best performing ant of each fold. The corresponding feature sets are 

combined in the same manner as in the frequency model. 

 

Performance measures 
See Section 4.5. 

 

Plasmodium falciparum growth inhibitor assay 

Dataset and preparation 

Models were learned from data of a high-throughput SYBR Green proliferation assay of P. falciparum 

(Pf) infected red blood cells published by Plouffe et al.[326] The data was retrieved from PubChem 

(http://pubchem.ncbi.nlm.nih.gov/) and contains a total of 1,272 compounds (201 active, 349 inactive, 

and 722 inconclusive). We omitted compounds labeled as inconclusive, as well as those for which not 

every CDK descriptor could be calculated (n=3). We removed disconnected small fragments such as 

counterions prior to any calculation in analogy to McGregor and Pallai.[310] 

 

We evaluated three fingerprint keys (MACCS (MDL), STANDARD, EXTENDED) available in the latest 

stable Chemical Development Kit (Version 1.2.7).[327] The 166 bit MDL key [310] was used in the final 

model as it is the best documented of the three and has been optimized to allow for clustering of 

bioactive substances in the context of drug discovery. The concept of fingerprint darkness refers to the 

fraction of bits set to ON, i.e. we consider fingerprints with more bits set to ON as darker. The 

characteristics of the three different keys evaluated are given in Table 27. 
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Key Class mean% max% min% sd% 
MACCS negative 29.7 49.4 4.8 7.8 
 positive 24.1 49.4 1.2 9.2 
 total 26.1 49.4 1.2 9.1 
Standard negative 9.9 49.9 0.1 8.3 
 positive 17.1 60.1 0.8 9.6 
 total 12.5 60.1 0.1 9.4 
Extended negative 10.2 51.4 0.1 8.4 
 positive 17.6 59.7 0.8 9.6 
 total 12.9 59.7 0.1 9.6 

 

Table 27 - Mean fingerprint darkness (number of bits set over total number of bits), with minimum 

(min%), maximum (max%) percentages and standard deviation in percent (sd%) of the 166 bit MACCS 

key and the 1024 bit standard and extended keysets. 

 

Of these, the MACCS 166 bit key shows the greatest darkness (26.1%), implying that it is capable of 

reflecting the most features with the least computational effort. 

 

Training of models 

We let the classifier learn over 100 cycles with to produce models of with a magnitude of 10. Ants 

deposited a pheromone amount ! = 0.1 which evaporated by d = 0.05 within cycles. We performed 100 

runs using the three different modes of cross-validation outlined above. This amounted to a total of 300 

models. For comparison, we created models with a decision tree induction algorithm (J4.8, a C4.5 

variant), random forests (RF) of ten trees with five attributes each,[328] support vector machines 

(SVM) using a polynomial kernel function, and artificial neural networks (ANN) with a single hidden 

layer. In line with other current studies, models were learned in a 10-fold cross-validated context.[260, 

329] The numerical attributes used in this process were the 1D and 2D descriptors (n = 27) available in 

the CDK (molecular weight, calculated partitioning coefficient (LogP), topological polar surface area, 

BCUT metrics, fragment complexity, atom and bond counts of aromatic and of all atoms, hydrogen 

bond donor and acceptor counts, Kier-Hall shape indices, Petitjean number, number of rotatable 

bonds, atomic polarizability, length of largest chain and largest aliphatic chain, as well as length of 

largest " chain).[330] 

 

Model performance 

The classification results of the best performing models for each mode of cross-validation are shown in 

Table 28. All three CV procedures achieve comparable CCRs of 0.84 to 0.87 - values that match those 

of the other paradigms implemented. An elite ant model achieved the highest CCR (0.87). Its 

associated ROC curve has a high area under the curve of 0.91 and is given in Figure 38. It is readily 

apparent from Table 29, which presents the substructural motifs selected by the model, that the binary 

ACO classifier retrieves fragments with a mechanistical relevance. 
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 TP TN FN FP CCR MCC Accuracy 

Elite ACO Model (Run 36) 171 307 29 40 0.87 0.73 0.87 

Frequency ACO Model (Run 17) 169 294 31 53 0.85 0.68 0.85 

Averaged ACO Model (Run 16) 162 303 38 44 0.84 0.68 0.85 

J48 156 313 44 34 0.84 0.69 0.86 

RF 155 316 45 31 0.84 0.70 0.86 

SVM 157 317 43 30 0.85 0.71 0.87 

ANN 161 296 39 51 0.83 0.65 0.84 

 

Table 28 - Results of binary ant colony optimization (ACO) classification using three different cross-

validation paradigms and comparison with established machine learning paradigms. The data consists 

of 547 instances (positive: 200, negative: 347). J48: decision tree induction, RF: random forests, SVM: 

support vector machines, ANN: artificial neural networks. Performance is measured as corrected 

classification rate (CCR), Matthews correlation coefficient (MCC), and accuracy. 

 

Figure 38 - Receiver operating characteristic curve for the best performing classification model in this 

study (area under the curve = 0.91). The circle denotes the cut-off point from which on instances are 

classified as positive. 
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Index Depiction SMARTS Comment 

25 

 

[#7]~[#6](~[#7])~[#7] trisamino / imino 

methylene. 

49 

 

[!+0] presence of charge. 

75 
 

*!@[#7]@* interposition of nitrogen. 

86 
 

[C;H2,H3][!#6;!#1][C;H2,H3] carbon – heteroatom – 

carbon chain. 

124  
[!#6;!#1]~[!#6;!#1] two connected 

heteroatoms. 

127 
 

*@*!@[#8] oxygen connected to any 

ring system via a single 

bond. 

137 

 

[!C;!c;R] any heterocycle. 

140 
 

[#8] presence of oxygen. 

144 
 

*!:*:*!:* aromatic ring substituted 

in ortho-position by two 

non-aromatic substituents. 

161 
 

[#7] presence of nitrogen. 

 

Table 29 - Fingerprint keys associated with a Plasmodium falciparum growth inhibition as determined 

by binary ant colony optimization classification. Substructural motifs are given with their position 

(index), SMILES arbitrary target specification (SMARTS) along with an image and an explanation. 

 

For instance, the presence of nitrogen and oxygen atoms in different frameworks (keys 25, 75, 127, 

140, and 161) is characteristic of drug-like molecules (hydrogen bonding capacity) as well as important 
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for successfully overcoming cellular membranes. They are also present in molecules which exert 

oxidative stress, to which P. falciparum is very sensitive. The prevalence of both nitrogen and oxygen 

are high in small molecule drugs. Of course, some rare examples exist which contain neither 

(noteworthy members of this class are lindane and mitotane, two chemotherapeutic agents) and many 

molecules contain exclusively one these atom species (e.g., nitrogen in amitryptiline, selegeline, and 

memantine, and oxygen in ivermectin, digoxin, and cholecalciferol). This shows how the substructures 

identified by the paradigm need to be interpreted together. For example, nitrogen appears in other 

keys (keys 25 (trisamino / imino methylene) and 75). Presence of one of these more complex 

substructures therefore automatically increases the score and, by consequence, the likelihood of 

positive classification. In the same vein, molecules lacking keys 25 or 75 can improve their score by 

offering other hydrogen binding sites, e.g., oxygen (keys 140 and 127), thereby increasing their drug-

likeness. 

 

A key enzyme in the life cycle of Pf, the cysteine protease Falcipain-2 (FP-2) that degrades 

hemoglobin (Hb), can be inhibited by certain epoxysuccinates and aziridinyl substituents in quinone 

rings (perceived, amongst others, by keys 86 and 137) have been shown to enhance antiplasmodial 

activity by inhibiting Pf glutathion reductase.[331] The life cycle of Pf is particularly vulnerable during 

the erythrocytic stage as its metabolism is largely anaerobic and hence sensitive to oxidative stress. 

 

Conclusions 
We investigated whether binary classification of molecular activity using a variation of the ACO 

paradigm could become a valid alternative to other ML classification methodologies. Analysis of the Pf 

inhibition assay by Plouffe et al. shows the high degrees of accuracy achieved by our models and their 

competitiveness with established ML methods.[326] 

 

The different modes of CV produce similarly powerful classifiers. From Table 28 it is evident that these 

models stem from different runs, i.e. the choice of CV influences the final performance, and no final 

ranking can be made between these modes. Therefore, we consider it advisable to calculate all three 

to maximally exploit the information extracted by the learning process. 

 

The information provided to the binary ACO learning algorithm was in essence a list of the presence or 

absence of substructural motifs or fragments, i.e. two-dimensional structural information. We, 

therefore, explicitly learned the alternative ML methods from two-dimensional descriptors as well to 

ensure a level playing field. Arguably, one might see better performance of the established ML 

methods with a different choice of descriptors. Conversely, other fingerprint keys could improve the 

results of binary ACO classification. 

 

We chose MACCS over the other available fingerprint keys in CDK because of its length (166 bits vs. 

1024 bits for Standard and Extended) and its high ratio of keys set to on. Notably, the molecules 

tagged as negative have a higher fingerprint darkness than the positive instances, i.e., the inactive 
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compounds are actually captured better than the active ones. When one learns a model to distinguish 

active compounds by presence of certain features from such a data set, it is apparent that the 

algorithm cannot simply associate fingerprint darkness of a compound with activity. 

 

The substructures encoded in the MACCS fingerprint are oftentimes ambiguous or very general, and 

features selected by our algorithm can overlap (e.g., keys 25 and 161). Still, models perform well and 

robustly in a cross-validated setting. This indicates that the subsets of keys are more than the sum of 

their parts, i.e. the individual contribution of a key must be seen in the context of the entire subset. 

Also, a feature that is recognized by several keys is amplified (or deemed more important) in the 

perception of the classifier. 

 

Binary ACO models can benefit the drug discovery process in two principle ways. First, the models 

provide an explicit fragment analysis directly accessible to human interpretation. Medicinal chemists 

can use them as guides for further development. Secondly, models can be applied directly to existing 

databases without any further calculations if both use the same fingerprinting scheme. This is in 

contrast to more elaborate numerical methods (e.g., SVM or ANN) where a) a number of 

physicochemical descriptors need to be computed, and b) the software implementation of the classifier 

itself is complex. In fact, binary ACO models learned from fingerprints could be implemented as native 

database queries. 

 

Of the learning paradigms employed in this study, decision tree induction took the least time to 

produce models. This, of course, does not consider the time required for calculating descriptors, 

performing intercorrelation analysis, and checking for missing values. Support vector machines had the 

most time-intensive learning process. For SVM, we are not considering the tedious process of 

optimizing learning parameters. Similar considerations, of course, have also to be made when applying 

the binary ACO algorithm. Proper choice of the model size, m, influences not only the interpretability 

and performance on unseen data, but also the time required to learn models. The number of cycles 

being spent on learning contributes directly to the computational expense. In summing up, the 

proposed algorithm ranks with SVMs in terms of time consumption for learning. A more thorough 

profiling does not seem called for, as the learning paradigms differ in practice in the amount of data 

preparation and optimization they require.  

 

In the future, this algorithm could be extended to numerical predictions, i.e. the learning process could 

correlate number of keys present with the degree of activity. Additionally, instead of merely identifying 

keys contributing to activity, a variant of the algorithm proposed here might single out detrimental 

features and incorporate them in the predictions. 

 

Software used 
See Section 4.6.3.  
Feature selection was performed using in-house software.  
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6 Conclusion and outlook 
It was the aim of the present thesis to assess drug transport across several physiological barriers using 

computational methods. As these barriers are found on different sites in the body such as the intestinal 

wall, the CNS, and the lactating breast epithelium, they vary in their characteristics and degree of 

tightness. However, all of them are able to alter drug distribution and pharmacokinetics. Generally, one 

could use in vitro methods to gain information on pharmacokinetics on the cellular level. However, 

these models are limited as they do not reflect complexity of the living system. Therefore, 

pharmacokinetic studies are ideally performed in vivo. Both methods can be time consuming and 

expensive, which does not meet the requirements for fast screening of chemical libraries. Meeting the 

demand for efficient ways to assess thousands of compounds for their pharmacokinetic behavior, in 

silico methods were developed to predict several relevant endpoints. The information content, which 

these models hold in turn shed new light on the processes involved. In the present thesis, it could 

indeed be shown that pharmacokinetic modeling can be applied to different barriers: 

 

In the first study, robust and accurate models were presented to predict human intestinal absorption. 

Emphasis was put on comparing different feature sets and performance of various machine learning 

paradigms. Although a variety of approaches was used, models revealed uniformly well-known 

features, such as measures of charge and lipophilicity, but also descriptors which are less commonly 

used to model human intestinal absorption, such as structural symmetry.  

 

Models for drug brain penetration reconfirmed the importance of well-known physicochemical features 

from other models, such as lipophilicity, size, and charge. However, substructure analysis and decision 

trees added new perspectives for predicting brain penetration, such as the involvement of 

stereochemistry. The underlying data were based on experimental LogPS values retrieved from rats. 

Although LogPS data of mice were available, they were not included into the present models to avoid 

bias due to relevant effects in different species. Ideally, a prediction for drug brain penetration would be 

based on data retrieved in humans. Hopefully, such data could be acquired in the future with non-

invasive techniques. 

 

Data preparation for the models dealing with prediction of drug permeation from maternal plasma into 

breast milk was a challenging endeavor. The data underlying these models was retrieved from 

literature, where information was available from nursing mothers. However, the quantities of drug 

retrieved in breast milk were often reported in an ambiguous manner. In order to produce meaningful 

and predictive models, numerous drugs with ambiguous endpoints had to be excluded from learning. 

Although it would be desirable to have a bigger data source of numeric data, models created on these 

imprecise endpoints performed with exceptional accuracy. Breast milk varies in nutrient composition 

regarding proteins and fat content during the lactating period. It is most likely that this change in 

composition would also have impacts on drug permeation. Future studies might address this issue by 

establishing models for single lactating periods.  
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In the study of MRP2 substrates, inducers and inhibitors, three new datasets retrieved from literature. 

Decision tree models of inducer and inhibitors data, as well as the substructure search for substrates, 

revealed insights in the requirements for MRP2 interaction. However, for these endpoints no gold 

standard for experimental settings and data acquisition has yet been defined. The complexity of influx, 

metabolic enzyme, and MRP2 interplay hampered the development of robust in vitro models, which 

would qualify for high-throughput screening. While the cross-validated models presented here 

performed strongly, models based on uniformly acquired data would probably yield even more 

information.  

 

In our last project, an ant colony optimization algorithm was presented to perform fragment based 

feature selection. The paradigm was tested on the highly combined endpoint of predicting drugs with 

antimalarial activity. The chemical fingerprints selected gave direct information on structural 

requirements for drug activity, without distinguishing different action mechanisms. By implementing an 

extension for numerical predictions, fingerprints could be correlated with different levels of activity.  The 

paradigm could be additionally enhanced to make statements on structural requirements for inactive 

compounds.  

 

The accuracy and performance the models presented here is encouraging and shows that 

pharmacokinetic endpoints can be successfully assessed by computational methods. The adaption of 

new machine learning techniques and advances in data acquisition will therefore offer additional 

perspectives for in silico methods. 
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7.3 Supporting information Project 5.1  
 

%Abs Ordinal Class SMILES 

2 FALSE CC1OC(OC2C(O)C(O)C(OC3C(O)C(O)C(O)OC3CO)OC2CO)C(O)C(O)C1NC4C=C(CO)C(O)C(O)
C4O 

50 UNKNOWN CCCC(=O)Nc1ccc(OCC(O)CNC(C)C)c(c1)C(=O)C 

90 TRUE CC(=O)CC(c1ccc(cc1)[N+](=O)[O-])c2c(O)c3ccccc3oc2=O 

95 TRUE CC(=O)Nc1ccc(O)cc1 

99 TRUE CC(=O)Nc1nnc(s1)S(=O)(=O)N 

90 TRUE CC(=O)NC(CS)C(=O)O 

90 TRUE Cc1cnc(c[n+]1[O-])C(=O)O 

90 TRUE COc1cc(C)c(C=CC(=CC=CC(=CC(=O)O)C)C)c(C)c1C 

17 FALSE Nc1nc(O)c2ncn(COCCO)c2n1 

85 TRUE CC(C)(C)NCC(O)c1ccc(O)c(CO)c1 

0 FALSE OCC=C1C[N+]2(CC=C)CCC3(C2CC1C4=CN5C6C(=CN7C43)C8CC9C6(CC[N+]9(CC=C)CC8=C
CO)c%10ccccc5%10)c%11ccccc7%11 

1 FALSE NCCCC(O)(P(=O)(O)O)P(=O)(O)O 

100 TRUE CC(C)CCCC(C)C1CCC2C(=CC=C3CC(O)CC(O)C3=C)CCCC12C 

80 TRUE O=c1[nH]cnc2[nH]ncc12 

90 TRUE Fc1ccc(cc1)C(N2CCN(CC2)c3nc(NCC=C)nc(NCC=C)n3)c4ccc(F)cc4 

90 TRUE NC1(CC2CC3CC(C2)C1)C3 

10 FALSE CC1(C)SC2C(N=CN3CCCCCC3)C(=O)N2C1C(=O)O 

50 UNKNOWN NC(=N)NC(=O)c1nc(Cl)c(N)nc1N 

100 TRUE CCC1(CCC(=O)NC1=O)c2ccc(N)cc2 

50 UNKNOWN CCCCc1oc2ccccc2c1C(=O)c3cc(I)c(OCCN(CC)CC)c(I)c3 

95 TRUE CN(C)CCC=C1c2ccccc2CCc3ccccc13 

70 UNKNOWN CCOC(=O)C1=C(COCCN)NC(=C(C1c2ccccc2Cl)C(=O)OC)C 

95 TRUE Clc1ccc2Oc3ccccc3N=C(N4CCNCC4)c2c1 

90 TRUE CC1(C)SC2C(NC(=O)C(N)c3ccc(O)cc3)C(=O)N2C1C(=O)O 

35 UNKNOWN CC1(C)SC2C(NC(=O)C(N)c3ccccc3)C(=O)N2C1C(=O)O 

100 TRUE CC(C)(C#N)c1cc(Cn2cncn2)cc(c1)C(C)(C)C#N 

80 TRUE CC(=O)Oc1ccccc1C(=O)O 

90 TRUE COc1ccc(CCN2CCC(CC2)Nc3nc4ccccc4n3Cc5ccc(F)cc5)cc1 

44 UNKNOWN CC(C)NCC(O)COc1ccc(CC(=O)N)cc1 

95 TRUE CN1C2CCC1CC(C2)OC(=O)C(CO)c3ccccc3 

23 FALSE CC(=O)OCC1OC(S)C(OC(=O)C)C(OC(=O)C)C1OC(=O)C 

90 TRUE CN1CCC(=C2c3ccccc3CCc4cccnc24)CC1 

87 TRUE Cn1cnc([N+](=O)[O-])c1Sc2[nH]cnc3ncnc23 

37 UNKNOWN CCC1OC(=O)C(C)C(OC2CC(C)(OC)C(O)C(C)O2)C(C)C(OC3OC(C)CC(C3O)N(C)C)C(C)(O)CC(C
)CN(C)C(C)C(O)C1(C)O 

0 FALSE CC1(C)SC2C(NC(=O)C(NC(=O)N3CCNC3=O)c4ccccc4)C(=O)N2C1C(=O)O 

1 FALSE CC1C(NC(=O)C(=NOC(C)(C)C(=O)O)c2csc(N)n2)C(=O)N1S(=O)(=O)O 

95 TRUE NCC(CC(=O)O)c1ccc(Cl)cc1 

37 UNKNOWN CCOC(=O)C(CCc1ccccc1)NC2CCc3ccccc3N(CC(=O)O)C2=O 

100 TRUE NS(=O)(=O)c1cc2c(NC(Cc3ccccc3)NS2(=O)=O)cc1C(F)(F)F 

100 TRUE CC(=O)Nc1ccc(OC(=O)c2ccccc2OC(=O)C)cc1 

70 UNKNOWN NC(CO)C(=O)NNCc1ccc(O)c(O)c1O 

100 TRUE CNCCc1ccccn1 

85 TRUE CC(C)NCC(O)COc1ccc(CCOCC2CC2)cc1 

100 TRUE CC(C)(Oc1ccc(CCNC(=O)c2ccc(Cl)cc2)cc1)C(=O)O 
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95 TRUE CNCCCCOc1ccccc1Cc2ccccc2 

100 TRUE OC(CCN1CCCCC1)(C2CC3CC2C=C3)c4ccccc4 

90 TRUE CC(C)NCC(O)COc1ccc(COCCOC(C)C)cc1 

35 UNKNOWN CC(C)CC1N2C(=O)C(NC(=O)C3CN(C)C4Cc5c(Br)[nH]c6cccc(C4=C3)c56)(OC2(O)C7CCCN7C1=
O)C(C)C 

50 UNKNOWN CN(C)CCC(c1ccc(Br)cc1)c2ccccn2 

100 TRUE CCCC1OC2CC3C4CCC5=CC(=O)C=CC5(C)C4C(O)CC3(C)C2(O1)C(=O)CO 

80 TRUE CCCCNc1cc(cc(c1Oc2ccccc2)S(=O)(=O)N)C(=O)O 

95 TRUE CC(NC(C)(C)C)C(=O)c1cccc(Cl)c1 

100 TRUE O=C1CC2(CCCC2)CC(=O)N1CCCCN3CCN(CC3)c4ncccn4 

95 TRUE Cn1cnc2n(C)c(=O)n(C)c(=O)c12 

100 TRUE CC(CCCC(C)(C)O)C1CCC2C(=CC=C3CC(O)CC(O)C3=C)CCCC12C 

72 UNKNOWN CC(CS)C(=O)N1CCCC1C(=O)O 

80 TRUE NC(=O)N1c2ccccc2C=Cc3ccccc13 

90 TRUE CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC43C)C(=O)O)OC(=O)CCC(=
O)O 

60 UNKNOWN CC(Cc1ccc(O)c(O)c1)(NN)C(=O)O 

95 TRUE CCOC(=O)n1ccn(C)c1=S 

95 TRUE CC(C)(C)NCC(O)COc1cccc2NC(=O)CCc12 

80 TRUE COc1ccccc1OCCNCC(O)COc2cccc3[nH]c4ccccc4c23 

60 UNKNOWN Nc1nc(cs1)C(=NOCC(=O)O)C(=O)NC2C3SCC(=C(N3C2=O)C(=O)O)C=C 

0 FALSE CON=C(C(=O)NC1C2SCC(=C(N2C1=O)C(=O)O)CSc3nc(C)c(CC(=O)O)s3)c4csc(N)n4 

0 FALSE COC1(NC(=O)Cc2cccs2)C3SCC(=C(N3C1=O)C(=O)O)COC(=O)N 

50 UNKNOWN COCC1=C(N2C(SC1)C(NC(=O)C(=NOC)c3csc(N)n3)C2=O)C(=O)OC(C)OC(=O)OC(C)C 

94 TRUE CC=CC1=C(N2C(SC1)C(NC(=O)C(N)c3ccc(O)cc3)C2=O)C(=O)O 

0 FALSE CON=C(C(=O)NC1C2SCC=C(N2C1=O)C(=O)O)c3csc(N)n3 

55 UNKNOWN CCN(CC)C(=O)Nc1ccc(OCC(O)CNC(C)(C)C)c(c1)C(=O)C 

90 TRUE CC1=C(N2C(SC1)C(NC(=O)C(N)c3ccccc3)C2=O)C(=O)O 

100 TRUE OC(=O)COCCN1CCN(CC1)C(c2ccccc2)c3ccc(Cl)cc3 

100 TRUE CC(CCC(=O)O)C1CCC2C1(CCC3C2C(CC4C3(CCC(C4)O)C)O)C 

95 TRUE C[N+](C)(C)CC(=O)[O-] 

95 TRUE OC(O)C(Cl)(Cl)Cl 

85 TRUE OCC(NC(=O)C(Cl)Cl)C(O)c1ccc(cc1)[N+](=O)[O-] 

95 TRUE CNC1=Nc2ccc(Cl)cc2C(=[N+]([O-])C1)c3ccccc3 

100 TRUE CCN(CC)CCCC(C)Nc1ccnc2cc(Cl)ccc12 

20 FALSE NS(=O)(=O)c1cc2c(N=CNS2(=O)=O)cc1Cl 

80 TRUE CN(C)CCC(c1ccc(Cl)cc1)c2ccccn2 

96 TRUE CN(C)CCCN1c2ccccc2Sc3ccc(Cl)cc13 

100 TRUE CCCNC(=O)NS(=O)(=O)c1ccc(Cl)cc1 

60 UNKNOWN CN(C)C1C2CC3C(=C(O)C2(O)C(=O)C(=C1O)C(=O)N)C(=O)c4c(O)ccc(Cl)c4C3(C)O 

65 UNKNOWN NS(=O)(=O)c1cc(ccc1Cl)C2(O)NC(=O)c3ccccc32 

60 UNKNOWN CCOC(=O)C(CCc1ccccc1)NC2CCCN3CCCC(N3C2=O)C(=O)O 

90 TRUE CNC(=NC#N)NCCSCc1nc[nH]c1C 

95 TRUE CCn1nc(C(=O)O)c(=O)c2cc3OCOc3cc12 

99 TRUE CC(C)(Oc1ccc(cc1)C2CC2(Cl)Cl)C(=O)O 

77 UNKNOWN OC(=O)c1cn(C2CC2)c3cc(N4CCNCC4)c(F)cc3c1=O 

95 TRUE COC1CN(CCCOc2ccc(F)cc2)CCC1NC(=O)c3cc(Cl)c(N)cc3OC 

100 TRUE CN(C)CCCC1(OCc2cc(C#N)ccc21)c3ccc(F)cc3 

100 TRUE CCC1OC(=O)C(C)C(OC2CC(C)(OC)C(O)C(C)O2)C(C)C(OC3OC(C)CC(C3O)N(C)C)C(C)(CC(C)C
(=O)C(C)C(O)C1(C)O)OC 

75 UNKNOWN OCC=C1OC2CC(=O)N2C1C(=O)O 

95 TRUE CN1C(=O)CC(=O)N(c2ccccc2)c3cc(Cl)ccc13 
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95 TRUE CCOC(=O)C(C)(C)Oc1ccc(Cl)cc1 

95 TRUE Cc1ncsc1CCCl 

95 TRUE CN(C)CCCN1c2ccccc2CCc3ccc(Cl)cc13 

80 TRUE [O-][N+](=O)c1ccc2NC(=O)CN=C(c3ccccc3Cl)c2c1 

100 TRUE Clc1cccc(Cl)c1N=C2NCCN2 

100 TRUE CC1CCCC(C)N1NC(=O)c2ccc(Cl)c(c2)S(=O)(=O)N 

93 TRUE CN1CCN(CC1)C2=Nc3cc(Cl)ccc3Nc4ccccc24 

90 TRUE Coc1ccc2CC3C4C=CC(O)C5Oc1c2C54CCN3C 

100 TRUE COc1cc2CCC(NC(=O)C)c3cc(=O)c(OC)ccc3-c2c(OC)c1OC 

95 TRUE CC(=O)OCC(=O)C1(O)CCC2C3CCC4=CC(=O)CCC4(C)C3C(=O)CC21C 

1 FALSE OC(COc1cccc2oc(cc(=O)c12)C(=O)O)COc3cccc4oc(cc(=O)c34)C(=O)O 

75 UNKNOWN ClCCN(CCCl)P1(=O)NCCCO1 

100 TRUE NC1CONC1=O 

40 UNKNOWN 
CCC1NC(=O)C(C(O)C(C)CC=CC)N(C)C(=O)C(C(C)C)N(C)C(=O)C(CC(C)C)N(C)C(=O)C(CC(C)C
)N(C)C(=O)C(C)NC(=O)C(C)NC(=O)C(CC(C)C)N(C)C(=O)C(NC(=O)C(CC(C)C)N(C)C(=O)CN(C)
C1=O)C(C)C 

95 TRUE CC(=O)OC1(CCC2C3C=C(Cl)C4=CC(=O)C5CC5C4(C)C3CCC21C)C(=O)C 

80 TRUE [O-][N+](=O)c1ccc(cc1)c2ccc(C=NN3CC(=O)NC3=O)o2 

90 TRUE Nc1ccc(cc1)S(=O)(=O)c2ccc(N)cc2 

0 FALSE Coc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)C 

90 TRUE CNCCCN1c2ccccc2CCc3ccccc13 

70 UNKNOWN CCC12CC(=C)C3C(CCC4=CCCCC34)C2CCC1(O)C#C 

83 TRUE CCNC(C)Cc1cccc(c1)C(F)(F)F 

100 TRUE CN1CCC23C4Oc5c3c(CC1C2C=CC4OC(=O)C)ccc5OC(=O)C 

100 TRUE CN1C(=O)CN=C(c2ccccc2)c3cc(Cl)ccc13 

90 TRUE CC1=Nc2ccc(Cl)cc2S(=O)(=O)N1 

90 TRUE OC(=O)Cc1ccccc1Nc2c(Cl)cccc2Cl 

30 FALSE OCC1CCC(O1)n2cnc3c(O)ncnc23 

90 TRUE CCN(CC)C(=O)N1CCN(CC1)C 

90 TRUE CCC(=C(CC)c1ccc(O)cc1)c2ccc(O)cc2 

90 TRUE OC(=O)c1cc(ccc1O)c2ccc(F)cc2F 

90 TRUE CC1OC(CC(O)C1O)OC2C(C)OC(CC2O)OC3C(C)OC(CC3O)OC4CCC5(C)C(CCC6C5CCC7(C)C(
CCC67O)C8=CC(=O)OC8)C4 

80 TRUE CC1OC(CC(O)C1O)OC2C(C)OC(CC2O)OC3C(C)OC(CC3O)OC4CCC5(C)C(CCC6C5CC(O)C7(C
)C(CCC67O)C8=CC(=O)OC8)C4 

97 TRUE COc1ccc2CC3C4CCC(O)C5Oc1c2C54CCN3C 

90 TRUE CN(C(=O)C(Cl)Cl)c1ccc(OC(=O)c2ccco2)cc1 

90 TRUE Coc1ccc(cc1)C2Sc3ccccc3N(CCN(C)C)C(=O)C2OC(=O)C 

90 TRUE CN(C)CCOC(c1ccccc1)c2ccccc2 

3 FALSE OP(=O)([O-])C(Cl)(Cl)P(=O)(O)[O-] 

95 TRUE CC(C)N(CCC(C(=O)N)(c1ccccc1)c2ccccn2)C(C)C 

80 TRUE CCN(CC)C(=S)SSC(=S)N(CC)CC 

78 UNKNOWN O=C(OC1CC2CC3CC(C1)N2CC3=O)c4c[nH]c5ccccc45 

93 TRUE Clc1ccc2n(C3CCN(CCCn4c(=O)[nH]c5ccccc45)CC3)c(=O)[nH]c2c1 

0 FALSE NCCc1ccc(O)c(O)c1 

95 TRUE CN(C)CCC=C1c2ccccc2CSc3ccccc13 

65 UNKNOWN Coc1cc2nc(nc(N)c2cc1OC)N3CCN(CC3)C(=O)C4COc5ccccc5O4 

100 TRUE CN(C)CCC=C1c2ccccc2COc3ccccc13 

93 TRUE CC1C2C(O)C3C(N(C)C)C(=C(C(=O)N)C(=O)C3(O)C(=C2C(=O)c4c(O)cccc14)O)O 

55 UNKNOWN NCCCC(N)(C(F)F)C(=O)O 

60 UNKNOWN CCOC(=O)C(CCc1ccccc1)NC(C)C(=O)N2CCCC2C(=O)O 

80 TRUE CSc1ccc(cc1)C(=O)c2[nH]c(=O)[nH]c2C 
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100 TRUE CNC(C)C(O)c1ccccc1 

0 FALSE CC1C(C(CC(O1)OC2CC(CC3=C(C4=C(C(=C23)O)C(=O)C5=C(C4=O)C=CC=C5OC)O)(C(=O)CO
)O)N)O 

90 TRUE CCC(=C)C(=O)c1ccc(OCC(=O)O)c(Cl)c1Cl 

80 TRUE CCC(CO)NCCNC(CC)CO 

90 TRUE CCc1cc(ccn1)C(=S)N 

100 TRUE CCC1(C)CC(=O)NC1=O 

5 FALSE CC(O)(P(=O)(O)O)P(=O)(O)O 

73 UNKNOWN CCc1cccc2c3CCOC(CC)(CC(=O)O)c3[nH]c12 

40 UNKNOWN CCOC(=O)C=C(C)C=CC=C(C)C=Cc1c(C)cc(OC)c(C)c1C 

73 UNKNOWN CC(=O)OCC(CCn1cnc2cnc(N)nc12)COC(=O)C 

40 UNKNOWN NC(=Nc1nc(CSCCC(=NS(=O)(=O)N)N)cs1)N 

90 TRUE NC(=O)OCC(COC(=O)N)c1ccccc1 

100 TRUE CCOC(=O)C1=C(C)NC(=C(C1c2cccc(Cl)c2Cl)C(=O)OC)C 

80 TRUE OC(=O)CCC(=O)c1ccc(cc1)c2ccccc2 

95 TRUE CCNC(C)Cc1cccc(c1)C(F)(F)F 

75 UNKNOWN CC(C)OC(=O)C(C)(C)Oc1ccc(cc1)C(=O)c2ccc(Cl)cc2 

85 TRUE CC(C(=O)O)c1cccc(Oc2ccccc2)c1 

100 TRUE CC(C)(C)NC(=O)C1CCC2C3CCC4NC(=O)C=CC4(C)C3CCC12C 

95 TRUE FC(F)(F)COc1ccc(OCC(F)(F)F)c(c1)C(=O)NCC2CCCCN2 

80 TRUE Cc1onc(c1C(=O)NC2C3SC(C)(C)C(N3C2=O)C(=O)O)c4c(F)cccc4Cl 

90 TRUE OC(Cn1cncn1)(Cn2cncn2)c3ccc(F)cc3F 

100 TRUE Nc1nc(=O)[nH]cc1F 

75 UNKNOWN Nc1nc(F)nc2n(cnc12)C3OC(COP(=O)(O)O)C(O)C3O 

95 TRUE CC(=O)OCC(=O)C1(O)CCC2C3CCC4=CC(=O)CCC4(C)C3(F)C(O)CC21C 

95 TRUE CCOC(=O)c1ncn-2c1CN(C)C(=O)c3cc(F)ccc32 

95 TRUE Fc1ccc(cc1)C(N2CCN(CC=Cc3ccccc3)CC2)c4ccc(F)cc4 

80 TRUE CC1(C)OC2CC3C4CC(F)C5=CC(=O)C=CC5(C)C4C(O)CC3(C)C2(O1)C(=O)CO 

28 FALSE Fc1c[nH]c(=O)[nH]c1=O 

95 TRUE CNCCC(Oc1ccc(cc1)C(F)(F)F)c2ccccc2 

100 TRUE OCCN1CCN(CCC=C2c3ccccc3Sc4ccc(cc24)C(F)(F)F)CC1 

100 TRUE CCC(CC)CCN1C(=O)CN=C(C2CCCCC2F)c3cc(Cl)ccc13 

95 TRUE CC(C(=O)O)c1ccc(c(F)c1)c2ccccc2 

90 TRUE CC(C)C(=O)Nc1ccc([N+](=O)[O-])c(c1)C(F)(F)F 

20 FALSE CCC(=O)OC1(C(C)CC2C3CC(F)C4=CC(=O)C=CC4(C)C3(F)C(O)CC21C)C(=O)SCF 

95 TRUE CC(C)n1c(C=CC(O)CC(O)CC(=O)O)c(c2ccc(F)cc2)c3ccccc13 

90 TRUE COCCCCC(=NOCCN)c1ccc(cc1)C(F)(F)F 

75 UNKNOWN Nc1nc(=O)c2nc(CNc3ccc(cc3)C(=O)NC(CCC(=O)O)C(=O)O)cnc2[nH]1 

65 UNKNOWN Coc1ccc(CC(C)NCC(O)c2ccc(O)c(NC=O)c2)cc1 

20 FALSE OC(=O)P(=O)(O)O 

50 UNKNOWN CC1OC1P(=O)(O)O 

34 UNKNOWN CCC(=O)OC(OP(=O)(CCCCc1ccccc1)CC(=O)N2CC(CC2C(=O)O)C3CCCCC3)C(C)C 

65 UNKNOWN NS(=O)(=O)c1cc(C(=O)O)c(NCc2ccco2)cc1Cl 

100 TRUE CC1C(O)CCC2(C)C1CCC3(C)C2C(O)CC4C(=C(CCC=C(C)C)C(=O)O)C(CC43C)OC(=O)C 

60 UNKNOWN NCC1(CC(=O)O)CCCCC1 

90 TRUE Coc1ccc(CCN(C)CCCC(C#N)(C(C)C)c2cc(OC)c(OC)c(OC)c2)cc1OC 

5 FALSE Nc1nc(O)c2ncn(COC(CO)CO)c2n1 

100 TRUE Cc1ccc(C)c(OCCCC(C)(C)C(=O)O)c1 

100 TRUE CCC12CCC3C(CCC4=CC(=O)CCC34)C2C=CC1(O)C#C 

60 UNKNOWN CCC12C=CC3=C4CCC(=O)C=C4CCC3C2CCC1(O)C#C 

98 TRUE Cc1ccc(cc1)S(=O)(=O)NC(=O)NC2C(O)C3(C)CCC2C3(C)C 
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100 TRUE Cc1cnc(cn1)C(=O)NCCc2ccc(cc2)S(=O)(=O)NC(=O)NC3CCCCC3 

95 TRUE COc1ccc2c(c1)C(=O)N(CCc3ccc(cc3)S(=O)(=O)NC(=O)NC4CCCCC4)C(=O)C2(C)C 

95 TRUE COc1ccc(Cl)cc1C(=O)NCCc2ccc(cc2)S(=O)(=O)NC(=O)NC3CCCCC3 

17.5 FALSE C[N+]1(C)CCC(C1)OC(=O)C(O)(C2CCCC2)c3ccccc3 

95 TRUE COCCOc1cnc(NS(=O)(=O)c2ccccc2)nc1 

100 TRUE CN1C2CCCC1CC(C2)NC(=O)c3nn(C)c4ccccc34 

100 TRUE OC1(CCN(CCCC(=O)c2ccc(F)cc2)CC1)c3ccc(Cl)cc3 

100 TRUE Nnc1nncc2ccccc12 

70 UNKNOWN NS(=O)(=O)c1cc2c(NCNS2(=O)=O)cc1Cl 

90 TRUE CCN(CCO)CCCC(C)Nc1ccnc2cc(Cl)ccc12 

90 TRUE CCCCCC(=O)OC1(CCC2C3CCC4=CC(=O)CCC4(C)C3CCC21C)C(=O)C 

95 TRUE CC(C)Cc1ccc(cc1)C(C)C(=O)O 

82 TRUE CCCCCCCN(CC)CCCC(O)c1ccc(NS(=O)(=O)C)cc1 

30 FALSE CC1OC(CC(N)C1O)OC2CC(O)(Cc3c(O)c4C(=O)c5ccccc5C(=O)c4c(O)c23)C(=O)C 

0 FALSE OCC1OC(CC1O)n2cc(I)c(=O)[nH]c2=O 

16 FALSE CC#CCC(C)C(O)C=CC1C(O)CC2CC(=CCCCC(=O)O)CC12 

5 FALSE CC(O)C1C2CC(=C(N2C1=O)C(=O)O)SCCNC=N 

90 TRUE CN(C)CCCN1c2ccccc2CCc3ccccc13 

19 FALSE CC(C)(C)NC(=O)C1CN(Cc2cccnc2)CCN1CC(O)CC(Cc3ccccc3)C(=O)NC4C(O)Cc5ccccc45 

100 TRUE COc1ccc2n(C(=O)c3ccc(Cl)cc3)c(C)c(CC(=O)O)c2c1 

95 TRUE NNC(=O)c1ccncc1 

85 TRUE CC(C)NCC(O)c1ccc(O)c(O)c1 

90 TRUE CC(=CC=CC(=CC(=O)O)C)C=CC1=C(C)CCCC1(C)C 

90 TRUE COC(=O)C1=C(C)NC(=C(C1c2cccc3nonc23)C(=O)OC(C)C)C 

85 TRUE CCC(C)n1ncn(c2ccc(cc2)N3CCN(CC3)c4ccc(OCC5COC(Cn6cncn6)(O5)c7ccc(Cl)cc7Cl)cc4)c1=O 

60 UNKNOWN COC1CC(OC2C(C)OC(CC2OC)OC3C(C)C=CC=C4COC5C(O)C(=CC(C(=O)OC(C)CC6(CCC(C)C
O6)OC(C)CC=C3C)C54O)C)OC(C)C1O 

100 TRUE Fc1ccc(cc1)C(=O)C2CCN(CCn3c(=O)[nH]c4ccccc4c3=O)CC2 

100 TRUE CN1C(=O)CN2C(=O)C=C(C)OC2(c3ccccc3)c4cc(Cl)ccc14 

90 TRUE CC(C(=O)O)c1cccc(c1)C(=O)c2ccccc2 

95 TRUE OC(=O)C1CCn2c(ccc12)C(=O)c3ccccc3 

90 TRUE CN1CCC(=C2c3ccsc3C(=O)Cc4ccccc24)CC1 

95 TRUE CCOC(=O)C1=C(C)NC(=C(C1c2ccccc2C=CC(=O)OC(C)(C)C)C(=O)OCC)C 

2 FALSE OCC1OC(O)(CO)C(O)C1OC2OC(CO)C(O)C(O)C2O 

98 TRUE Nc1nnc(c(N)n1)c2cccc(Cl)c2Cl 

85 TRUE Cc1c(CS(=O)c2nc3ccccc3[nH]2)nccc1OCC(F)(F)F 

95 TRUE C1CN2CC(N=C2S1)c3ccccc3 

100 TRUE CC(C)(C)NCC(O)COc1cccc2C(=O)CCCc12 

95 TRUE CCN(CC)CC(=O)Nc1c(C)cccc1C 

25 FALSE NCCCCC(NC(CCc1ccccc1)C(=O)O)C(=O)N2CCCC2C(=O)O 

100 TRUE CCN(CC)C(=O)NC1CN(C)C2Cc3c[nH]c4cccc(C2=C1)c34 

75 UNKNOWN OC(=O)C(=O)Nc1cc(C#N)cc(NC(=O)C(=O)O)c1Cl 

98 TRUE Ccn1cc(C(=O)O)c(=O)c2cc(F)c(N3CCNC(C)C3)c(F)c12 

65 UNKNOWN CN(C)C(=O)C(CCN1CCC(O)(CC1)c2ccc(Cl)cc2)(c3ccccc3)c4ccccc4 

90 TRUE CCOC(=O)N1CCC(=C2c3ccc(Cl)cc3CCc4cccnc24)CC1 

90 TRUE OC1N=C(c2ccccc2Cl)c3cc(Cl)ccc3NC1=O 

66 UNKNOWN CCCCc1nc(Cl)c(CO)n1Cc2ccc(cc2)c3ccccc3c4nnn[nH]4 

95 TRUE CNCCCC1(CCC2c3ccccc31)c4ccccc24 

7.5 FALSE COC(=O)Nc1nc2cc(ccc2[nH]1)C(=O)c3ccccc3 

90 TRUE CCN(CCCCOC(=O)c1ccc(OC)c(OC)c1)C(C)Cc2ccc(OC)cc2 

90 TRUE Cc1cccc(Nc2ccccc2C(=O)O)c1C 
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77.5 UNKNOWN OC(C1CCCCN1)c2cc(nc3c(cccc23)C(F)(F)F)C(F)(F)F 

100 TRUE CC(=O)OC1(CCC2C3C=C(C)C4=CC(=O)CCC4(C)C3CCC21C)C(=O)C 

100 TRUE CCOC(=O)C1(CCN(C)CC1)c2ccccc2 

100 TRUE CCC1(CCCCN(C)C1)c2cccc(O)c2 

0 FALSE CC(O)C1C2C(C)C(=C(N2C1=O)C(=O)O)SC3CNC(C3)C(=O)N(C)C 

90 TRUE COc1ccc2C3CCC4(C)C(CCC4(O)C#C)C3CCc2c1 

55 UNKNOWN CN(C)C(=N)NC(=N)N 

95 TRUE Cn1cc[nH]c1=S 

95 TRUE CC(CO)NC(=O)C1CN(C)C2Cc3cn(C)c4cccc(C2=C1)c34 

80 TRUE COC(=O)C(C1CCCCN1)c2ccccc2 

90 TRUE CC1CC2C3CCC(O)(C(=O)COC(=O)CCC(=O)O)C3(C)CC(O)C2C4(C)C=CC(=O)C=C14 

100 TRUE CCC(CO)NC(=O)C1CN(C)C2Cc3cn(C)c4cccc(C2=C1)c34 

90 TRUE CCN(CC)CCNC(=O)c1cc(Cl)c(N)cc1OC 

64 UNKNOWN CC1Nc2cc(Cl)c(cc2C(=O)N1c3ccccc3C)S(=O)(=O)N 

95 TRUE COCCc1ccc(OCC(O)CNC(C)C)cc1 

95 TRUE Cc1ncc([N+](=O)[O-])n1CCO 

0 FALSE CC1(C)SC2C(NC(=O)C(NC(=O)N3CCN(C3=O)S(=O)(=O)C)c4ccccc4)C(=O)N2C1C(=O)O 

70 UNKNOWN CN1CCN2C(C1)c3ccccc3Cc4ccccc24 

100 TRUE COCC(=O)OC1(CCN(C)CCCc2nc3ccccc3[nH]2)CCc4cc(F)ccc4C1C(C)C 

20 FALSE Clc1ccc(COC(Cn2ccnc2)c3ccc(Cl)cc3Cl)c(Cl)c1 

100 TRUE Cc1ncc2CN=C(c3ccccc3F)c4cc(Cl)ccc4-n12 

90.6 TRUE CC#CC1(O)CCC2C3CCC4=CC(=O)CCC4=C3C(CC21C)c5ccc(cc5)N(C)C 

82.5 TRUE CC1=NC(=O)C(C=C1c2ccncc2)C#N 

100 TRUE CN(C)C1C2CC3Cc4c(ccc(O)c4C(=O)C3=C(O)C2(O)C(=O)C(=C1O)C(=O)N)N(C)C 

100 TRUE Nc1cc(nc(N)[n+]1[O-])N2CCCCC2 

88 TRUE CCCCC(C)(O)CC=CC1C(O)CC(=O)C1CCCCCCC(=O)OC 

95 TRUE Clc1ccc(cc1)C(=O)NCCN2CCOCC2 

100 TRUE CCOC(=O)N=c1c[n+]([n-]o1)N2CCOCC2 

95 TRUE CCOC(=O)Nc1ccc2Sc3ccccc3N(C(=O)CCN4CCOCC4)c2c1 

37.5 UNKNOWN CN1CCC23C4Oc5c3c(CC1C2C=CC4O)ccc5O 

0 FALSE COC1(NC(=O)C(C(=O)O)c2ccc(O)cc2)C3OCC(=C(N3C1=O)C(=O)O)CSc4nnnn4C 

80 TRUE COc1ccc2cc(CCC(=O)C)ccc2c1 

30 FALSE CC(C)(C)NCC(O)COc1cccc2CC(O)C(O)Cc12 

92.5 TRUE CCN(CC)CCOC(=O)C(CC1CCCO1)Cc2cccc3ccccc23 

100 TRUE OC1CCC2(O)C3Cc4ccc(O)c5OC1C2(CCN3CC6CCC6)c54 

90 TRUE CCn1cc(C(=O)O)c(=O)c2ccc(C)nc12 

95 TRUE Oc1ccc2CC3N(CC=C)CCC4(C5Oc1c24)C3(O)CCC5=O 

100 TRUE Oc1ccc2CC3N(CC4CC4)CCC5(C6Oc1c25)C3(O)CCC6=O 

100 TRUE Coc1ccc2cc(ccc2c1)C(C)C(=O)O 

2.5 FALSE CCCc1c2oc(cc(=O)c2cc3c(=O)cc(C(=O)O)n(CC)c13)C(=O)O 

99 TRUE CCc1nn(CCCN2CCN(CC2)c3cccc(Cl)c3)c(=O)n1CCOc4ccccc4 

97.5 TRUE CN1CCOC(c2ccccc2)c3ccccc3C1 

5 FALSE NCC1OC(OC2C(N)CC(N)C(O)C2O)C(N)C(O)C1O 

1.5 FALSE CN(C)C(=O)Oc1cccc(c1)[N+](C)(C)C 

95 TRUE COC(=O)C1=C(C)NC(=C(C1c2cccc(c2)[N+](=O)[O-])C(=O)OCCN(C)Cc3ccccc3)C 

100 TRUE [O-][N+](=O)OCCNC(=O)c1cccnc1 

100 TRUE CN1CCCC1c2cccnc2 

90 TRUE COC(=O)C1=C(C)NC(=C(C1c2ccccc2[N+](=O)[O-])C(=O)OC)C 

53 UNKNOWN COCCOC(=O)C1=C(C)NC(=C(C1c2cccc(c2)[N+](=O)[O-])C(=O)OC(C)C)C 

100 TRUE COC(=O)C1=C(C)NC(=C(C1c2ccccc2[N+](=O)[O-])C(=O)OCC(C)C)C 
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95 TRUE [O-][N+](=O)c1ccc2NC(=O)CN=C(c3ccccc3)c2c1 

95 TRUE [O-][N+](=O)c1ccc(C=NN2CC(=O)NC2=O)o1 

70 UNKNOWN CNC(=C[N+](=O)[O-])NCCSCc1csc(CN(C)C)n1 

100 TRUE CCC12CCC3C(CCC4=CC(=NO)CCC34)C2CCC1(OC(=O)C)C#C 

100 TRUE CNCCC=C1c2ccccc2CCc3ccccc13 

100 TRUE CC1COc2c(N3CCN(C)CC3)c(F)cc4c(=O)c(cn1c24)C(=O)O 

3 FALSE OC(=O)c1cc(N=Nc2ccc(O)c(c2)C(=O)O)ccc1O 

65 UNKNOWN COc1ccc2[nH]c(nc2c1)S(=O)Cc3ncc(C)c(OC)c3C 

59 UNKNOWN Cc1nccn1CC2CCc3c(C2=O)c4ccccc4n3C 

100 TRUE CN(C)CCOC(c1ccccc1)c2ccccc2C 

5 FALSE CC1OC(OC2CC(O)C3(CO)C4C(O)CC5(C)C(CCC5(O)C4CCC3(O)C2)C6=CC(=O)OC6)C(O)C(O)
C1O 

98 TRUE OC1N=C(c2ccccc2)c3cc(Cl)ccc3NC1=O 

16 FALSE CC[N+]1(C)C2CC(CC1C3OC32)OC(=O)C(CO)c4ccccc4 

100 TRUE CC(C)NCC(O)COc1ccccc1OCC=C 

100 TRUE CCN(CC)CC#CCOC(=O)C(O)(C1CCCCC1)c2ccccc2 

60 UNKNOWN CN(C)C1C2C(O)C3C(=C(O)C2(O)C(=O)C(=C1O)C(=O)N)C(=O)c4c(O)cccc4C3(C)O 

0 FALSE CC(=O)OC1C(CC2C3CCC4CC(OC(=O)C)C(CC4(C)C3CCC12C)[N+]5(C)CCCCC5)[N+]6(C)CCC
CC6 

77 UNKNOWN COc1ccnc(CS(=O)c2nc3cc(OC(F)F)ccc3[nH]2)c1OC 

90 TRUE COc1ccc(Cc2nccc3cc(OC)c(OC)cc23)cc1OC 

100 TRUE Fc1ccc(cc1)C2CCNCC2COc3ccc4OCOc4c3 

100 TRUE CC(C)(C)NCC(C)(O)COc1ccccc1C2CCCC2 

40 UNKNOWN CC(C)(S)C(N)C(=O)O 

30 FALSE CC1(C)SC2C(NC(=O)Cc3ccccc3)C(=O)N2C1C(=O)O 

0 FALSE NC(=N)c1ccc(OCCCCCOc2ccc(cc2)C(=N)N)cc1 

100 TRUE CC1C2Cc3ccc(O)cc3C1(C)CCN2CC=C(C)C 

100 TRUE CCCC(C)C1(CC)C(=O)NC(=O)NC1=O 

95 TRUE CC(=O)CCCCn1c(=O)n(C)c2ncn(C)c2c1=O 

60 UNKNOWN CCCN1CC(CSC)CC2C1Cc3c[nH]c4cccc2c34 

95 TRUE CCCC(NC(C)C(=O)N1C(CC2CCCCC21)C(=O)O)C(=O)OCC 

100 TRUE OCCN1CCN(CCCN2c3ccccc3Sc4ccc(Cl)cc24)CC1 

100 TRUE O=C1C(C(=O)c2ccccc12)c3ccccc3 

90 TRUE CCC1(C(=O)NC(=O)NC1=O)c2ccccc2 

12 FALSE CCOC(=O)C1(CCN(CCC(O)c2ccccc2)CC1)c3ccccc3 

25 FALSE CC(COc1ccccc1)N(CCCl)Cc2ccccc2 

95 TRUE CCC(c1ccccc1)c2c(O)c3ccccc3oc2=O 

95 TRUE CCCCC1C(=O)N(N(C1=O)c2ccccc2)c3ccccc3 

90 TRUE CC(N)C(O)c1ccccc1 

90 TRUE O=C1NC(=O)C(N1)(c2ccccc2)c3ccccc3 

70 UNKNOWN Fc1ccc(cc1)C(CCCN2CCC(CC2)n3c(=O)[nH]c4ccccc34)c5ccc(F)cc5 

90 TRUE CC(C)NCC(O)COc1cccc2[nH]ccc12 

25 FALSE CN1CCN(CC(=O)N2c3ccccc3C(=O)Nc4cccnc24)CC1 

86 TRUE NS(=O)(=O)c1cc(cc(N2CCCC2)c1Oc3ccccc3)C(=O)O 

100 TRUE CN1C(=C(O)c2ccccc2S1(=O)=O)C(=O)Nc3ccccn3 

80 TRUE CN1CCC(=C2c3ccsc3CCc4ccccc24)CC1 

100 TRUE CN1C(CSCC(F)(F)F)Nc2cc(Cl)c(cc2S1(=O)=O)S(=O)(=O)N 

30 FALSE C[n+]1ccccc1C=NO 

34 UNKNOWN CCC(C)C(=O)OC1CC(O)C=C2C=CC(C)C(CCC(O)CC(O)CC(=O)O)C12 

90 TRUE O=C(C1CCCCC1)N2CC3N(CCc4ccccc34)C(=O)C2 

57 UNKNOWN COc1cc2nc(nc(N)c2cc1OC)N3CCN(CC3)C(=O)c4ccco4 
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75 UNKNOWN CCC1(C(=O)NCNC1=O)c2ccccc2 

100 TRUE CCCN(CCC)S(=O)(=O)c1ccc(cc1)C(=O)O 

82.5 TRUE CCN(CC)CCNC(=O)c1ccc(N)cc1 

95 TRUE CNNCc1ccc(cc1)C(=O)NC(C)C 

100 TRUE OC(CCN1CCCC1)(C2CCCCC2)c3ccccc3 

90 TRUE CC(C)NC(=N)NC(=N)Nc1ccc(Cl)cc1 

80 TRUE CC(CN1c2ccccc2Sc3ccccc13)N(C)C 

95 TRUE CCCNCC(O)COc1ccccc1C(=O)CCc2ccccc2 

10 FALSE CC(C)[N+](C)(CCOC(=O)C1c2ccccc2Oc3ccccc13)C(C)C 

95 TRUE CCC(=O)OC(Cc1ccccc1)(C(C)CN(C)C)c2ccccc2 

95 TRUE CC(C)NCC(O)COc1cccc2ccccc12 

62.5 UNKNOWN CCCc1cc(=O)[nH]c(=S)[nH]1 

95 TRUE CNCCCC1c2ccccc2C=Cc3ccccc13 

4 FALSE OC(=O)c1cc2ccccc2c(Cc3c(O)c(cc4ccccc34)C(=O)O)c1O 

100 TRUE NC(=O)c1cnccn1 

100 TRUE CCCN1CC(CC2Cc3c(O)cccc3CC21)NS(=O)(=O)N(CC)CC 

60 UNKNOWN CCOC(=O)C(CCc1ccccc1)NC(C)C(=O)N2Cc3ccccc3CC2C(=O)O 

63 UNKNOWN Oc1ccc(cc1)c2sc3cc(O)ccc3c2C(=O)c4ccc(OCCN5CCCCC5)cc4 

60 UNKNOWN CCOC(=O)C(CCc1ccccc1)NC(C)C(=O)N2C(CC3CCCC32)C(=O)O 

50 UNKNOWN CNC(=C[N+](=O)[O-])NCCSCc1ccc(CN(C)C)o1 

80 TRUE CC(=CCO)C=CC=C(C)C=CC1=C(C)CCCC1(C)C 

50 UNKNOWN COC1C=COC2(C)Oc3c(C2=O)c4C5=NC6(CCN(CC(C)C)CC6)NC5=C(NC(=O)C(=CC=CC(C)C(O)
C(C)C(O)C(C)C(OC(=O)C)C1C)C)C(=O)c4c(O)c3C 

60 UNKNOWN Nc1nc2ccc(OC(F)(F)F)cc2s1 

97 TRUE Cc1nc2CCCCn2c(=O)c1CCN3CCC(CC3)c4noc5cc(F)ccc45 

95 TRUE CC(NCCc1ccc(O)cc1)C(O)c2ccc(O)cc2 

95 TRUE CCCN(CCC)CCc1cccc2NC(=O)Cc21 

75 UNKNOWN OC(=O)c1ccccc1O 

30 FALSE CC(C)(C)NC(=O)C1CC2CCCCC2CN1CC(O)C(Cc3ccccc3)NC(=O)C(CC(=O)N)NC(=O)c4ccc5cccc
c5n4 

10 FALSE CCCC[N+]1(C)C2CC(CC1C3OC32)OC(=O)C(CO)c4ccccc4 

100 TRUE CC(Cc1ccccc1)N(C)CC#C 

5 FALSE OCC1OC(Oc2cccc3C(C4c5cccc(OC6OC(CO)C(O)C(O)C6O)c5C(=O)c7c(O)cc(cc47)C(=O)O)c8cc
cc(O)c8C(=O)c23)C(O)C(O)C1O 

100 TRUE CC(C)NCC(O)c1ccc(NS(=O)(=O)C)cc1 

82 TRUE Cc1cn(C2OC(CO)C=C2)c(=O)[nH]c1=O 

0 FALSE CN(N=O)C(=O)NC1C(O)OC(CO)C(O)C1O 

100 TRUE Nc1ccc(cc1)S(=O)(=O)Nc2ncccn2 

95 TRUE Cc1cc(C)nc(NS(=O)(=O)c2ccc(N)cc2)n1 

85 TRUE Cc1cc(NS(=O)(=O)c2ccc(N)cc2)no1 

25 FALSE OC(=O)c1cc(N=Nc2ccc(cc2)S(=O)(=O)Nc3ccccn3)ccc1O 

90 TRUE CC1=C(CC(=O)O)c2cc(F)ccc2C1=Cc3ccc(cc3)S(=O)C 

32.5 UNKNOWN CCN1CCCC1CNC(=O)c2cc(ccc2OC)S(=O)(=O)N 

100 TRUE CNS(=O)(=O)Cc1ccc2[nH]cc(CCN(C)C)c2c1 

0 FALSE 
Cc1ccc(cc1NC(=O)c2cccc(NC(=O)Nc3cccc(c3)C(=O)Nc4cc(ccc4C)C(=O)Nc5ccc(c6cc(cc(c56)S(=
O)(=O)O)S(=O)(=O)O)S(=O)(=O)O)c2)C(=O)Nc7ccc(c8cc(cc(c78)S(=O)(=O)O)S(=O)(=O)O)S(=O)
(=O)O 

95 TRUE Nc1c2CCCCc2nc3ccccc13 

95 TRUE CN1C(=O)C(O)N=C(c2ccccc2)c3cc(Cl)ccc13 

100 TRUE CN1C(C(=O)Nc2ccccn2)C(=O)c3sccc3S1(=O)=O 

95 TRUE COc1cc2nc(nc(N)c2cc1OC)N3CCN(CC3)C(=O)C4CCCO4 

80 TRUE CN(CC=CC#CC(C)(C)C)Cc1cccc2ccccc12 

100 TRUE CC(C)(C)c1ccc(cc1)C(O)CCCN2CCC(CC2)C(O)(c3ccccc3)c4ccccc4 
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95 TRUE COc1cc2CCN3CC(CC(C)C)C(=O)CC3c2cc1OC 

90 TRUE c1nc(cs1)c2nc3ccccc3[nH]2 

34 UNKNOWN Nc1nc2[nH]cnc2c(=S)[nH]1 

60 UNKNOWN CSc1ccc2Sc3ccccc3N(CCC4CCCCN4C)c2c1 

90 TRUE CC1CC2=C(CCC(=O)C2)C3CCC4(C)C(CCC4(O)C#C)C13 

0 FALSE CC1(C)SC2C(NC(=O)C(C(=O)O)c3ccsc3)C(=O)N2C1C(=O)O 

80 TRUE Clc1ccccc1CN2CCc3sccc3C2 

100 TRUE CC(C)(C)NCC(O)COc1nsnc1N2CCOCC2 

100 TRUE CCS(=O)(=O)CCn1c(C)ncc1[N+](=O)[O-] 

0 FALSE NCC1OC(OC2C(N)CC(N)C(OC3OC(CO)C(O)C(N)C3O)C2O)C(N)CC1O 

100 TRUE CC(N)C(=O)Nc1c(C)cccc1C 

90 TRUE C(C1=NCCN1)c2ccccc2 

95 TRUE CCCCNC(=O)NS(=O)(=O)c1ccc(C)cc1 

99 TRUE Cc1ccc(cc1)C(=O)c2ccc(CC(=O)O)n2C 

66 UNKNOWN COc1ccc2c(cccc2c1C(F)(F)F)C(=S)N(C)CC(=O)O 

50 UNKNOWN NCC1CCC(CC1)C(=O)O 

100 TRUE Clc1cccc(c1)N2CCN(CCCn3nc4ccccn4c3=O)CC2 

85 TRUE Cc1nnc2CN=C(c3ccccc3Cl)c4cc(Cl)ccc4-n12 

100 TRUE CN1CCN(CCCN2c3ccccc3Sc4ccc(cc24)C(F)(F)F)CC1 

100 TRUE OC(CCN1CCCCC1)(C2CCCCC2)c3ccccc3 

95 TRUE COc1cc(Cc2cnc(N)nc2N)cc(OC)c1OC 

80 TRUE CC(CN(C)C)CN1c2ccccc2CCc3ccccc13 

53 UNKNOWN Cc1c(C)c2OC(C)(COc3ccc(CC4SC(=O)NC4=O)cc3)CCc2c(C)c1O 

95 TRUE CCCC(CCC)C(=O)O 

0 FALSE 

CNC(CC(C)C)C(=O)NC1C(O)c2ccc(Oc3cc4cc(Oc5ccc(cc5Cl)C(O)C6NC(=O)C(NC(=O)C4NC(=O)
C(CC(=O)N)NC1=O)c7ccc(O)c(c7)-
c8c(O)cc(O)cc8C(NC6=O)C(=O)O)c3OC9OC(CO)C(O)C(O)C9OC%10CC(C)(N)C(O)C(C)O%10)c
(Cl)c2 

92 TRUE COc1ccc(cc1)C(CN(C)C)C2(O)CCCCC2 

90 TRUE COc1ccc(CCN(C)CCCC(C#N)(C(C)C)c2ccc(OC)c(OC)c2)cc1OC 

80 TRUE NC(CCC(=O)O)C=C 

95 TRUE CC(=O)CC(C1C(=O)Oc2ccccc2C1=O)c3ccccc3 

73 UNKNOWN Cc1cccc(C)c1NC(=O)c2cc(c(Cl)cc2O)S(=O)(=O)N 

85 TRUE Nc1ccn(C2CCC(CO)O2)c(=O)n1 

95 TRUE CN(C)C(=O)Cc1c(nc2ccc(C)cn12)c3ccc(C)cc3 

95 TRUE CN1CCN(CC1)C(=O)OC2N(C(=O)c3nccnc23)c4ccc(Cl)cn4 

95 TRUE CN(C)CCOC1=Cc2ccccc2Sc3ccc(Cl)cc13 

92 TRUE CC1=NN=C2N1C3=C(C=C(C=C3)Cl)C(=NC2)C4=CC=CC=C4 

90 TRUE CC1CC2C3CCC4=CC(=O)C=CC4(C3(C(CC2(C1(C(=O)CO)O)C)O)F)C 

100 TRUE C(C1C(C(C(C(O1)O)O)O)O)O 

95 TRUE CCN(CC)C(C)C(=O)C1=CC=CC=C1 

10 FALSE C(CN(CC(=O)[O-])CC(=O)[O-])N(CC(=O)[O-])CC(=O)[O-] 

100 TRUE CCO 

100 TRUE CC12CCC3C(C1CCC2(C#C)O)CCC4=C3C=CC(=C4)O 

100 TRUE C(C(C(C(C(=O)CO)O)O)O)O 

100 TRUE CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O 

0 FALSE CC(=O)N(CC(CO)O)C1=C(C(=C(C(=C1I)C(=O)NCC(CO)O)I)C(=O)NCC(CO)O)I 

0 FALSE C1=C(C(=C(C(=C1I)I)NC(=O)COCCOCCOCC(=O)NC2=C(C(=CC(=C2I)I)I)C(=O)O)C(=O)O)I 

90 TRUE C1C(C2C(O1)C(CO2)O[N+](=O)[O-])O[N+](=O)[O-] 

100 TRUE C1C(C2C(O1)C(CO2)O[N+](=O)[O-])O 

0 FALSE CCNC(=O)C1CCCN1C(=O)C(CCCN=C(N)N)NC(=O)C(C(C)C)NC(=O)C(C(C)C)NC(=O)C(CC2=C
C=C(C=C2)O)NC(=O)C(CO)NC(=O)C(CC3=CNC4=CC=CC=C43)NC(=O)C(CC5=CN=CN5)NC(=
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O)C6CCC(=O)N6 

10 FALSE C[N+](C)(C)CC(CC(=O)[O-])O 

100 TRUE CCC12CCC3C(C1CCC2(C#C)O)CCC4=CC(=O)CCC34 

57 UNKNOWN C1=C(C=C(C(=C1I)OC2=CC(=C(C(=C2)I)O)I)I)CC(C(=O)O)N 

90 TRUE C1CC(=C(N2C1C(C2=O)NC(=O)C(C3=CC=CC=C3)N)C(=O)O)Cl 

76 UNKNOWN C(CS(=O)(=O)[O-])S 

90 TRUE C1=CC(=CN=C1)C(=O)[O-] 

0 FALSE CC(C1C(=O)NC(CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N1)CCCCN)CC2=CNC3=CC=CC=
C32)CC4=CC=CC=C4)NC(=O)C(CC5=CC=CC=C5)N)C(=O)NC(CO)C(C)O)O 

90 TRUE CCCC1=NC=CC(=C1)C(=S)N 

95 TRUE CC(C(C1=CC=CC=C1)O)NC 

15 FALSE C[N+]1=CC=CC(=C1)OC(=O)N(C)C 

80 TRUE COC1=CC2=C(C=CN=C2C=C1)C(C3CC4CCN3CC4C=C)O 

30 FALSE COC1C(CC2CN3CCC4=C(C3CC2C1C(=O)OC)NC5=C4C=CC(=C5)OC)OC(=O)C6=CC(=C(C(=C
6)OC)OC)OC 

45 UNKNOWN C1=NC(=NN1C2C(C(C(O2)CO)O)O)C(=O)N 

1 FALSE C(C1C(C(C(C(O1)OC2(C(C(C(O2)OS(=O)(=O)[O-])OS(=O)(=O)[O-])OS(=O)(=O)[O-
])COS(=O)(=O)[O-])OS(=O)(=O)[O-])OS(=O)(=O)[O-])OS(=O)(=O)[O-])OS(=O)(=O)[O-] 

2 FALSE 
C1C2C(=O)NC(C3=CC(=CC(=C3)O)OC4=C(C=CC(=C4)C(C(=O)N2)N)O)C(=O)NC5C6=CC(=C(C
(=C6)OC7=C(C=C(C=C7)C(C8C(=O)NC(C9=CC(=CC(=C9C2=C(C=CC(=C2)C(C(=O)N8)NC5=O)
O)O)O)C(=O)O)O)Cl)O)OC2=C(C=C1C=C2)Cl 

0 FALSE 
C1CC(N(C1)C(=O)C2CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N2)CC(=O)N)CCC(=
O)N)CC3=CC=CC=C3)CC4=CC=C(C=C4)O)NC(=O)CNC(=O)CNC(=O)CN)C(=O)NC(CCCCN)C(=
O)NCC(=O)N 

95 TRUE CN1C2=C(C(=O)N(C1=O)C)NC=N2 

80 TRUE CC(CN1C2=CC=CC=C2SC3=CC=CC=C31)CN(C)C 

100 TRUE CC(CCC(=O)O)C1CCC2C1(CCC3C2C(CC4C3(CCC(C4)O)C)O)C 

0 FALSE C1=NC2=C(C(=N1)N)N=CN2C3C(C(C(O3)CO)O)O 

70 UNKNOWN CC1=C2C(=C(C(=C1C)OC(=O)C)C)CCC(O2)(C)CCCC(C)CCCC(C)CCCC(C)C 

95 TRUE C1CN(CCN1CCC=C2C3=CC=CC=C3SC4=C2C=C(C=C4)Cl)CCO 

 

7.4 Supporting information Project 5.5 
CID Outcome SMILES 

24867529 Active COC1=CC2=C(C=CN=C2C=C1)[C@H]([C@H]3C[C@H]4CCN3C[C@H]4C=C)O 

11957564 Active C1CCC(CC1)[Si](CCCN2CCCCC2)(C3=CC=C(C=C3)F)O 

3068143 Active CC[C@H]1CN2CCC3=CC(=C(C=C3[C@@H]2C[C@@H]1C[C@@H]4C5=CC(=C(C=C5CCN4)O
C)OC)OC)OC 

24867531 Active COC1=CC2=C(C=CN=C2C=C1)[C@H]([C@@H]3C[C@H]4CCN3C[C@H]4C=C)O 

2733504 Active C1=CC=C2C(=C1)C3=CC=CC=C3[I+]2 

6239 Active CCN(CC)CCCC(C)NC1=C2C=C(C=CC2=NC3=C1C=CC(=C3)Cl)OC 

11957453 Active C[N+](C)(CCC(=O)CC[N+](C)(C)C1=CC=C(C=C1)CC=C)C2=CC=C(C=C2)CC=C 

6604151 Active C1=CC(=CC=C1C(=N)N)OCCCCCOC2=CC=C(C=C2)C(=N)N 

9853645 Active CC1=[N+](C2=CC=CC=C2C(=C1)N)CCCCCCCCCCCCCC[N+]3=C(C=C(C4=CC=CC=C43)N)C 

11957525 Active C1=CC(=C(C=C1CN=C(N)NC(=O)C2=C(N=C(C(=N2)Cl)N)N)Cl)Cl 

10440396 Active C[N+](C)(CCCCCC[N+](C)(C)CCCN1C(=O)C2=CC=CC3=C2C(=CC=C3)C1=O)CCCN4C(=O)C5
=CC=CC6=C5C(=CC=C6)C4=O 

824226 Active C1=CC(=CC=C1C2=NC3=C(N2)C=C(C=C3)C4=NC5=C(N4)C=C(C=C5)N)N 

184822 Active CCCNC[C@@H](COC1=CC=CC=C1C(=O)CCC2=CC=CC=C2)O 

60703 Active C1CN(CCC1CC2=CC=C(C=C2)F)CC(C3=CC=C(C=C3)Cl)O 

36708 Active CCCNCC(COC1=CC=CC=C1C(=O)CCC2=CC=CC=C2)O 

2812 Active C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4 

24867458 Active CC(C)[C@@]1(C(=O)N2[C@H](C(=O)N3CCCC3[C@@]2(O1)O)CC4=CC=CC=C4)NC(=O)[C@
@H]5C[C@H]6[C@@H](CC7=CNC8=CC=CC6=C78)N(C5)C 

11957606 Active CC[N+](CC)(CC)COC1=CC=C(C=C1)/C=C/C2=CC=CC=C2 
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5326739 Active C1=CC=C2C(=C1)C(=C(N2)C3=C4C=CC=CC4=NC3=O)NO 

5280754 Active 
CCC1C(=O)N(CC(=O)N(C(C(=O)NC(C(=O)N(C(C(=O)NC(C(=O)NC(C(=O)N(C(C(=O)N(C(C(=O)
N(C(C(=O)N(C(C(=O)N1)C(C(C)C/C=C/C)O)C)C(C)C)C)CC(C)C)C)CC(C)C)C)C)C)CC(C)C)C)C(
C)C)CC(C)C)C)C 

126941 Active CN(CC1=CN=C2C(=N1)C(=NC(=N2)N)N)C3=CC=C(C=C3)C(=O)N[C@@H](CCC(=O)O)C(=O)O 

107656 Active CC1=C(C(=C2CCC(OC2=C1C)(C)CN3CCN(CC3)C4=NC(=NC(=C4)N5CCCC5)N6CCCC6)C)O 

51082 Active C1=CC(=C2C(=C1NCCNCCO)C(=O)C3=C(C=CC(=C3C2=O)O)O)NCCNCCO 

5614 Active CC(C)(C)C1=CC(=CC(=C1O)C(C)(C)C)C=C(C#N)C#N 

4477 Active C1=CC(=C(C=C1[N+](=O)[O-])Cl)NC(=O)C2=C(C=CC(=C2)Cl)O 

3213 Active CC1=C2C(=C(C3=C1C=CN=C3)C)C4=CC=CC=C4N2 

11957726 Active CCCN(CCC)[C@@H]1CCC2=C(C=CC(=C2C1)O)F 

11957700 Active CCC1=CC=CC=C1OC[C@H](CN[C@H]2CCC3=CC=CC=C3C2)O 

11957587 Active 
CC[C@@H](C)[C@@H]1[C@H](CC[C@@]2(O1)C[C@@H]3C[C@H](O2)C/C=C(/[C@H]([C@H]
(/C=C/C=C/4\CO[C@H]5[C@@]4([C@@H](C=C([C@H]5O)C)C(=O)O3)O)C)O[C@H]6C[C@@H
]([C@H]([C@@H](O6)C)O[C@H]7C[C@@H]([C@H]([C@@H](O7)C)O)OC)OC)\C)C 

11957499 Active C[C@@H]1CC[C@]2([C@@H](C[C@H]([C@H](O2)[C@H](C)C(=O)C3=CC=CN3)C)C)O[C@@H
]1CC4=NC5=C(O4)C=CC(=C5C(=O)O)NC 

10236521 Active CCCN(CCC)[C@H]1CCC2=C(C=CC(=C2C1)O)F 

4605800 Active C1CC2=C3C(=CC=C2)N(S(=O)(=O)N3C1)CCN4CCC(=CC4)C5=CNC6=C5C=CC(=C6)F 

42890 Active C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](CC3=C(C4=C(C(=C23)O)C(=O)C5=C
C=CC=C5C4=O)O)(C(=O)C)O)N)O 

24195776 Active CCCN1CCC2=CC=CC3=C2C1CC4=C3C(=C(C=C4)O)O 

11957469 Active C[C@H]1CCC/C=C/C2C[C@@H](C[C@]2(C/C=C/C(=O)O1)O)O 

5329255 Active C1=CC(=C(C=C1/C=C(/C(=O)NCCCNC(=O)/C(=C/C2=CC(=C(C=C2)O)O)/C#N)\C#N)O)O 

1318 Active C1=CC2=C(C3=C(C=CC=N3)C=C2)N=C1 

73334 Active CCNC(=O)N1CCN(CC1)CCCC(C2=CC=C(C=C2)F)C3=CC=C(C=C3)F 

24867476 Active CC(C)C[C@H]1C(=O)N2CCCC2[C@]3(N1C(=O)[C@](O3)(C(C)C)NC(=O)[C@H]4CN([C@@H]5
CC6=C(NC7=CC=CC(=C67)C5=C4)Br)C)O 

148673 Active COC1=C(C=CC(=C1)NS(=O)(=O)C)NC2=C3C=CC=CC3=NC4=CC=CC=C42 

5770 Active CO[C@H]1[C@@H](C[C@@H]2CN3CCC4=C([C@H]3C[C@@H]2[C@@H]1C(=O)OC)NC5=C4
C=CC(=C5)OC)OC(=O)C6=CC(=C(C(=C6)OC)OC)OC 

24867499 Active C=CCN1CCC2=CC=CC3=C2C1CC4=C3C(=C(C=C4)O)O 

24867538 Active C[C@]12CC=C3C([C@@H]1CC[C@@H]2C(=O)CN4CCN(CC4)C5=NC(=NC(=C5)N6CCCC6)N7
CCCC7)CCC8=CC(=O)C=C[C@@]83C 

11957693 Active COC1=CC=C(C=C1)CCCOC2=C(C=CC(=C2)CCN3C=CN=C3)OC 

11957671 Active CCCN(CCC1=CC=CC=C1)C2CCC3=C(C2)C=CC=C3O 

443390 Active COC1=C(C=C2C(=C1)CCN2C(=O)NC3=CC(=CC(=C3)C4=CN=CC=C4)F)C(F)(F)F 

441276 Active 
CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@](C3[C@@H]([C@@](C2(C)C)(C[C@@H
]1OC(=O)[C@@H]([C@H](C5=CC=CC=C5)NC(=O)C6=CC=CC=C6)O)O)OC(=O)C7=CC=CC=C
7)(CO4)OC(=O)C)O)C)OC(=O)C 

107759 Active COC1=CC=CC=C1CNCCCCCCNCCCCCCCCNCCCCCCNCC2=CC=CC=C2OC 

64927 Active CCN(CC)CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl 

65341 Active CCCC(C1=CC=CC=C1)(C2=CC=CC=C2)C(=O)OCCN(CC)CC 

122215 Active CCCCCCCCCC[Si](C)(C)CCC(=O)NC(CC1=CC=C(C=C1)C)C2=CC=CC=C2 

16759248 Active CCCCN1C2CCC1CC(C2)OC(C3=CC=C(C=C3)F)C4=CC=C(C=C4)F 

5702010 Active CN1CCC2=CC=CC3=C2C1CC4=C3C(=C(C=C4)O)O 

9951033 Active C1[C@H](O[C@H](C2=C1C(=C(C=C2)O)O)CN)C34CC5CC(C3)CC(C5)C4 

10649 Active CC1=[N+](C2=CC=CC=C2C(=C1)N)CCCCCCCCCC[N+]3=C(C=C(C4=CC=CC=C43)N)C 

24867491 Active C[C@@]1(C(=O)N2[C@H](C(=O)N3CCCC3[C@@]2(O1)O)CC4=CC=CC=C4)NC(=O)[C@@H]5
C[C@H]6[C@@H](CC7=CNC8=CC=CC6=C78)N(C5)C 

41114 Active CC1=C(C(C(=C(N1)C)C(=O)OCCN(C)CC2=CC=CC=C2)C3=CC(=CC=C3)[N+](=O)[O-])C(=O)OC 

10047903 Active CC(COC1=CC=C(C=C1)/C=C/C2=CC=CC=C2)[N+](C)(C)C 

441325 Active CCCCC1=C(C2=CC=CC=C2O1)C(=O)C3=CC(=C(C(=C3)I)OCCN(CC)CC)I 

62978 Active COC1=C(C=C2C(=C1)C(=NC(=N2)N3CCN(CC3)C(=O)C4COC5=CC=CC=C5O4)N)OC 

11957656 Active C=CCN1C2[C@]3([C@]4(C5=C(C2)C=CC(=C5O[C@@H]4/C(=N/N=C\6/[C@H]7OC8=C(C=CC9
=C8[C@]72[C@](C(C9)N(CC2)CC=C)(CC6)O)O)/CC3)O)CC1)O 

24360 Active CC[C@@]1(C2=C(COC1=O)C(=O)N3CC4=CC5=CC=CC=C5N=C4C3=C2)O 

9874535 Active COC1=CC(=CC(=C1OC)OC)C2=C(N(C(=O)C3=C2C=CC(=C3)OCC4=CC=CC=N4)C5=CC=C(C



    Appendix 

 

- 167 - 

=C5)N)C(=O)OC 

5702295 Active C1=CC=C(C=C1)CN=C(N)NC(=O)C2=C(N=C(C(=N2)Cl)N)N 

5287844 Active C1=CC2=C(/C(=C/3\C4=C(C=C(C=C4)Br)NC3=O)/N=C2C=C1)NO 

71420 Active CN(C)C(=O)C(CCN1CCC(CC1)(C2=CC=C(C=C2)Cl)O)(C3=CC=CC=C3)C4=CC=CC=C4 

68635 Active C[N+]1=C2C(=C3C=CC4=C(C3=C1)OCO4)C=CC5=CC6=C(C=C52)OCO6 

54900 Active C1CCN(CC1)CCOC2=CC=C(C=C2)C(=O)C3=C(SC4=C3C=CC(=C4)O)C5=CC=C(C=C5)O 

443600 Active CCCCC[C@H](CC(=O)NO)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1CO 

11957578 Active CC(C)C1=C2C[C@](CCC2=CC(=C1)F)(CCN(C)CCCC3=NC4=CC=CC=C4N3)OC(=O)C5CC5 

6435335 Active CCOC(=O)NC1=C(N=C(C=C1)NCC2=CC=C(C=C2)F)N 

11957719 Active CC[C@@]12C=CCN3[C@@H]1[C@]4(CC3)C([C@]([C@@H]2OC(=O)C)(C(=O)OC)O)N(C5=CC
(=C(C=C45)[C@]6(CC7CC(CN(C7)CCC8=C6NC9=CC=CC=C89)(CC)O)C(=O)OC)OC)C 

11957677 Active CCCCCCCCCC(=O)NC(CN1CCOCC1)[C@@H](C2=CC=CC=C2)O 

104895 Active CCCCCCC(C)(C)C1=CC(=C(C=C1)[C@@H]2C[C@@H](CC[C@H]2CCCO)O)O 

11957588 Active C1=CC(=CC=C1C(C2=CC=C(C=C2)F)OCCCC3=CN=CN3)F 

1730 Active C1=CC(=CC=C1C(=O)O)[Hg]Cl 

24867482 Active C[C@]1(CCCC(C1)C(C)(C)NC(=O)CBr)NCC(COC2=CC=CC=C2CC=C)O 

5282483 Active C1CN(CCN1CC/C=C\2/C3=CC=CC=C3SC4=C2C=C(C=C4)C(F)(F)F)CCO 

3060974 Active CC1=CC(=C(C(=C1)C)N=C2C=C3C4=CC(=C(C=C4CCN3C(=O)N2C)OC)OC)C 

203135 Active CN1C2CCC1CC(C2)OC(C3=CC=CC=C3)C4=CC=C(C=C4)Cl 

173603 Active CCCN1CCC2=C3C1CC4=C(C3=CC(=C2)O)C(=C(C=C4)O)O 

60662 Active CC(C)[C@H]1C2=C(CC[C@@]1(CCN(C)CCCC3=NC4=CC=CC=C4N3)OC(=O)COC)C=C(C=C2
)F 

11957481 Active CC(C)C[C@@H](C(=O)O)NC(=O)[C@H]([C@@H](CC1=CC=CC=C1)N)O 

5280343 Active C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O 

10921 Active C[N+](C)(C)CCCCCCCCCC[N+](C)(C)C 

2544 Active CC1(C2CCC(C1(C)C(=O)O)O2)C(=O)O 

10321498 Active CCN(CC)C(=O)C1=CC=C(C=C1)[C@H](C2=CC(=CC=C2)OC)N3C[C@@H](N(C[C@H]3C)CC=
C)C 

5281847 Active CC1=C(C(=C(C(=C1O)C(=O)C)O)CC2=C(C3=C(C(=C2O)C(=O)/C=C/C4=CC=CC=C4)OC(C=C3
)(C)C)O)O 

176157 Active CCCN(CC1CC1)C2=NC(=NC(=C2Cl)NC3=C(C=C(C=C3Cl)Cl)Cl)C 

11497466 Active CC1=C(C=CC(=C1)C2=NOC(=N2)C)C3=CC=C(C=C3)C(=O)NC4=CC(=C(C=C4)OC)N5CCN(CC
5)C 

9951825 Active C1=CC=C(C(=C1)N)S/C(=C(\C(=C(/SC2=CC=CC=C2N)\N)\C#N)/C#N)/N 

3108 Active C1CCN(CC1)C2=NC(=NC3=C2N=C(N=C3N4CCCCC4)N(CCO)CCO)N(CCO)CCO 

2545 Active CC12C3CCC(C1(C(=O)OC2=O)C)O3 

24867460 Active CCCC1O[C@@H]2C[C@H]3[C@@H]4CCC5=CC(=O)C=C[C@@]5(C4[C@H](C[C@@]3([C@@
]2(O1)C(=O)CO)C)O)C 

11957716 Active C[C@]12CCC3C([C@@H]1CC[C@]2(C#N)O)CCC4=CC5=NC6=NC7=CC=CC=C7N6C=C5C[C
@]34C 

11957542 Active CC(C)C[C@@H](C(=O)NCCCCN=C(N)N)NC(=O)C1C(O1)C(=O)O 

5283454 Active CCCCCCCC/C=C\CCCCCCCC(=O)NCCO 

24867497 Active C[C@@H]1C2[C@@H]([C@H]3C(C(=O)/C(=C(/N)\O)/C(=O)[C@]3(C(=O)C2=C(C4=C1C=CC=C
4O)O)O)N(C)C)O 

10098248 Active CC(C)(C)NC(=O)C1CN(CCN1C(=O)OCC2=CC=CC=C2)C3=NC4=CC(=C(C=C4C(=N3)N)OC)OC 

5405 Active CC(C)(C)C1=CC=C(C=C1)C(CCCN2CCC(CC2)C(C3=CC=CC=C3)(C4=CC=CC=C4)O)O 

4748 Active C1CN(CCN1CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)Cl)CCO 

3396 Active C1CN(CCC12C(=O)NCN2C3=CC=CC=C3)CCCC(C4=CC=C(C=C4)F)C5=CC=C(C=C5)F 

24867511 Active CC(C)C1[C@@H]2C[C@@H]3CC4=C(C=CC(=C4C(=C3C(=O)[C@@]2(C(=O)/C(=C(/N)\O)/C1=
O)O)O)O)N(C)C 

9852041 Active CC1=NC=CC(=C1)CN2C(=C(C3=C(C2=O)C(=NC=C3)OCC4=NC=CC=N4)C5=CC(=C(C(=C5)O
C)OC)OC)C(=O)OC 

67356 Active C1CN(CCN1CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)C(F)(F)F)CCO 

29976 Active COC1=CC(=CC(=C1OC)OC)C(=O)OCCC[NH+]2CCC[NH+](CC2)CCCOC(=O)C3=CC(=C(C(=C3
)OC)OC)OC 

24867479 Active CC(C)(C)[C@@]1(CCN2CC3C4=CC=CC=C4CCC5=C3C(=CC=C5)[C@@H]2C1)O 

16362 Active C1CN(CCC1N2C3=CC=CC=C3NC2=O)CCCC(C4=CC=C(C=C4)F)C5=CC=C(C=C5)F 
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4712 Active C1=CC(=CC=C1C2=NC(=C(N2)C3=CC=NC=C3)C4=CC=C(C=C4)F)[N+](=O)[O-] 

1967 Active CC1=C(C(=O)C(=C(C1=O)C)CCCCC#CCCCC#CCO)C 

11957714 Active CC[C@@]12C=CCN3[C@@H]1[C@]4(CC3)C([C@]([C@@H]2OC(=O)C)(C(=O)OC)O)N(C5=CC
(=C(C=C45)[C@]6(CC7CC(CN(C7)CCC8=C6NC9=CC=CC=C89)(CC)O)C(=O)OC)OC)C=O 

11957662 Active C1=CC(=CC(=C1)CCSC(=N)N)CCSC(=N)N 

11957527 Active C[C@@H]1OC[C@@H]2[C@@](O1)(C[C@H]([C@@H](O2)O[C@H]3[C@H]4COC(=O)[C@@H]
4[C@@H](C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O 

11647992 Active C1CN(CCC1(C2=CC(=CC=C2)C(F)(F)F)O)CCCC(=O)C3=CC=C(C=C3)F 

3559 Active C1CN(CCC1(C2=CC=C(C=C2)Cl)O)CCCC(=O)C3=CC=C(C=C3)F 

5312137 Active CN(C)S(=O)(=O)C1=CC\2=C(C=C1)NC(=O)/C2=C\C3=CC4=C(N3)CCCC4 

262093 Active C1=CC=C2C(=C1)C(=O)C(=C(C2=O)SCCO)SCCO 

11957570 Active CCCN(CCC)[C@@H]1CCC2=C(C1)C(=CC=C2)O 

11957495 Active CCN1C=NC2=C1N=C(N=C2NC3=CC(=CC=C3)Cl)N[C@@H]4CCCC[C@@H]4N 

6603857 Active CN(C)C1=NC=C2C(=C1)C(=NC=N2)NC3=CC4=C(C=C3)N(N=C4)CC5=CC=CC=C5 

5282407 Active C1CN(CCN1C/C=C/C2=CC=CC=C2)C(C3=CC=C(C=C3)F)C4=CC=C(C=C4)F 

66368 Active CC(C)NCC(COC1=CC=CC=C1CC=C)O 

9868848 Active CC(C1=CC=CC=C1)(C2=CC=C(C=C2)Cl)OCCC3CCCN3C 

3038495 Active COC1=CC=CC=C1N2CCN(CC2)CCCCNC(=O)C3=CC4=CC=CC=C4C=C3 

517348 Active C1CCN(C1)C(=S)[S-] 

104920 Active C1CN(CCN1CCCC2=CC=CC=C2)CCOC(C3=CC=C(C=C3)F)C4=CC=C(C=C4)F 

72430 Active CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C=O)NC(=O)OCC2=CC=CC=C2 

62969 Active CC(C)C(CCCN(C)CCC1=CC(=C(C=C1)OC)OC)(C#N)C2=CC(=C(C=C2)OC)OC 

5546 Active C1=CC=C(C=C1)C2=NC3=C(N=C2N)N=C(N=C3N)N 

11957577 Active C[C@@H](CN1CCC2=C1C=C(C=C2)Br)N 

644274 Active C1=CC(=CC=C1C(C2=CC=C(C=C2)Cl)N3C=C[N+](=C3)CC(C4=C(C=C(C=C4)Cl)Cl)OCC5=C(C
=C(C=C5)Cl)Cl)Cl 

3151 Active C1CN(CCC1N2C3=C(C=C(C=C3)Cl)NC2=O)CCCN4C5=CC=CC=C5NC4=O 

11957697 Active CN1CCC2=C(C(=C(C=C2C(C1)C3=CC(=CC=C3)Cl)O)O)Cl 

6603792 Active C1CCC(C1)N2C=C(C3=C2N=CN=C3N)C4=CC=C(C=C4)OC5=CC=CC=C5 

5487525 Active CC(C)(C)C1=CC(=C/C(=C(/N)\S)/C#N)C=C(C1=O)C(C)(C)C 

135348 Active C1CN(CCC1C(=O)C2=CC=C(C=C2)F)CCN3C(=O)C4=CC=CC=C4NC3=O 

132496 Active CCCCCCN(CCCCCC)C(=O)CC1=C(NC2=CC=CC=C21)C3=CC=C(C=C3)F 

119442 Active CC(C)C(CCCN(C)CCC1=CC(=C(C=C1)OC)OC)(C#N)C2=CC(=C(C(=C2)OC)OC)OC 

91505 Active CCN(CC)CC#CCOC(=O)C(C1CCCCC1)(C2=CC=CC=C2)O 

66366 Active CC(C)NC[C@H](COC1=CC=CC2=CC=CC=C21)O 

3957 Active CCOC(=O)N1CCC(=C2C3=C(CCC4=C2N=CC=C4)C=C(C=C3)Cl)CC1 

24867500 Active CN(C)C1[C@@H]2CC3[C@@H](C4=C(C=CC(=C4C(=C3C(=O)[C@@]2(C(=O)/C(=C(\N)/O)/C1=
O)O)O)O)Cl)O 

11957722 Active CCN(CC)C(=O)N[C@@H]1C[C@H]2[C@@H](CC3=CNC4=CC=CC2=C34)N(C1)C 

11957605 Active C1CN2CCC1C(C2C(C3=CC=CC=C3)C4=CC=CC=C4)NCC5=CC=CC=C5I 

5282408 Active CN1CCC(=C2C3=C(C(=O)CC4=CC=CC=C42)SC=C3)CC1 

71587 Active C1CN(CCN1CCCN2C3=CC=CC=C3C=CC4=CC=CC=C42)CCO 

11957579 Active CC(C(C1=CC=C(C=C1)O)O)N2CCC(CC2)CC3=CC=CC=C3 

6604029 Active C1=C(C=C(C(=C1O)O)O)/C(=C(\C=C(C#N)C#N)/N)/C#N 

5702062 Active CC(=O)O 

62882 Active CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O 

6014 Active CC(CN1C2=CC=CC=C2SC3=CC=CC=C31)N(C)C 

2051 Active COC1=C(C=C2C(=C1)C(=NC=N2)NC3=CC(=CC=C3)Cl)OC 

11957725 Active C1CCN(CC1)CC2=CC(=CC=C2)OCCCNC3=NC4=CC=CC=C4S3 

11957483 Active C=CCN1CCC2=C(C(=C(C=C2[C@H](C1)C3=CC=CC=C3)O)O)Br 

9909521 Active C=CCN1CCC2=C(C(=C(C=C2C(C1)C3=CC=CC=C3)O)O)Cl 

4519262 Active CC(C)C1=CC2=C(C=C1)N(C(=C2SC(C)(C)C)CC(C)(C)C(=O)[O-])CC3=CC=C(C=C3)Cl 

238053 Active CN1C2CCC1CC(C2)OC(C3=CC=CC=C3)C4=CC=CC=C4 
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71401 Active C1=CC(=C(C(=C1)Cl)CC(=O)N=C(N)N)Cl 

28693 Active CN1C[C@@H](C[C@H]2[C@H]1CC3=CN(C4=CC=CC2=C34)C)CNC(=O)OCC5=CC=CC=C5 

24867540 Active CCCCCCCC(=O)O[C@@H]1[C@H](C(=C2C1[C@@](C[C@H]([C@]3([C@H]2OC(=O)[C@@]3(
C)O)O)OC(=O)CCC)(C)OC(=O)C)C)OC(=O)/C(=C\C)/C 

11957658 Active CS(=O)(=O)O 

11957596 Active CN([C@@H]1CCCC[C@@H]1N2CCCC2)C(=O)CC3=CC(=C(C=C3)Cl)Cl 

719408 Active C1=CC=C(C=C1)NC(=S)NC2=NC=CS2 

73314 Active CC(C)CN(C)C1=NC(=C(N=C1Cl)C(=O)N=C(N)N)N 

66064 Active CN1CCN(CC1)CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)C(F)(F)F 

6240 Active CN(C)CCCN1C2=CC=CC=C2SC3=C1C=C(C=C3)Cl 

5578 Active COC1=CC(=CC(=C1OC)OC)CC2=CN=C(N=C2N)N 

11957590 Active CC1=C2CCCC2=C(C=C1)OCC(C(C)NC(C)C)O 

11957508 Active C1CN(C=CC1N2C3=CC=CC=C3NC2=O)CCCC(=O)C4=CC=C(C=C4)F 

11957471 Active CN(C)CC/C=C/1\C2=C(C=C(C=C2)Cl)SC3=CC=CC=C31 

11417991 Active C1CN(CCC1OC(=O)C(C2=CC=CC=C2)C3=CC=CC=C3)CCCl 

9604979 Active CS(=O)(=O)O 

6604176 Active CC1=C(C2=C3N1[C@@H](COC3=CC=C2)CN4CCOCC4)C(=O)C5=CC=CC6=CC=CC=C65 

13770 Active CN1CCC(=C2C3=CC=CC=C3C=CC4=CC=CC=C42)CC1 

11957553 Active C1CN(CCN1CCCC2=CC=CC=C2)CCOC(C3=CC=CC=C3)C4=CC=CC=C4 

11538542 Active CCOC(=O)C1=C(N(C(=C(C1C2=CC(=CC=C2)[N+](=O)[O-])C(=O)OC)C)CC#C)C 

10008573 Active CN1C=C(N=C1C2=CC=C(C=C2)OCC(CNCCOC3=CC(=C(C=C3)O)C(=O)N)O)C(F)(F)F 

5289419 Active COC1=CC\2=C(C=C1)NC(=O)/C2=C\C3=CN=CN3 

5288209 Active CC1=C(C(CCC1)(C)C)/C=C/C(=C/C=C/C(=C/C(=O)NC2=CC=C(C=C2)O)/C)/C 

5281032 Active CN1CCN(CC1)CCCN2C3=C(SC4=CC=CC=C24)C=CC(=C3)Cl 

4350931 Active CN1CCC2=CC=CC=C2CC3=C(CC1)C4=CC=CC=C4N3 

133633 Active C1CN(CCC1(C2=CC=C(C=C2)Cl)O)CC3=CNC4=CC=CC=C43 

66062 Active CN1CCCCC1CCN2C3=CC=CC=C3SC4=C2C=C(C=C4)SC 

62878 Active C1CNC[C@H]([C@@H]1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4 

60839 Active CCC1=CC(=CC=C1)N(C)C(=NC2=CC=CC3=CC=CC=C32)N 

3885 Active CC1(CCC2=C(O1)C3=CC=CC=C3C(=O)C2=O)C 

24867502 Active CN1CCC2=C3C1CC4=C(C3=CC(=C2)O)C(=C(C=C4)O)O 

11957699 Active C1CN(C2=CC=CC=C21)C(=O)C(CC3=CC(=C(C=C3)O)O)C#N 

11957600 Active C1C[C@@H]([C@@H](NC1)C2=CC=CC=C2)OCC3=CC(=CC(=C3)C(F)(F)F)C(F)(F)F 

11957569 Active C1CN=C(N1)N(CC2=CC=C(C=C2)F)C3=C(C=CC=C3Cl)Cl 

11226716 Active CC1=C(C=CC(=C1)C2=NOC(=N2)C)C3=CC=C(C=C3)C(=O)N4CCC5=C4C=C6C(=C5)OCC67C
CN(CC7)C 

10314472 Active CN[C@@H]1C[C@H](C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl 

9601084 Active C=CCN1CC[C@]23[C@@H]4/C(=N/NC(=O)C5=CC=CC=C5)/CC[C@]2([C@H]1CC6=C3C(=C(C
=C6)O)O4)O 

6438352 Active CN1CCN(CC1)C2=NC3=C(C=CC(=C3)C(F)(F)F)N4C2=CC=C4 

3014059 Active C[N+]1(CCC(CC1)OC(=O)C(C2=CC=CC=C2)C3=CC=CC=C3)C 

2733525 Active CC/C(=C(\C1=CC=CC=C1)/C2=CC=C(C=C2)OCCN(C)C)/C3=CC=CC=C3 

456201 Active CC(=O)N1CCN(CC1)C2=CC=C(C=C2)OC[C@H]3CO[C@](O3)(CN4C=CN=C4)C5=C(C=C(C=C
5)Cl)Cl 

68546 Active COC1=C(C=C2C(=C1)C(=NC(=N2)N3CCN(CC3)C(=O)C4=CC=CO4)N)OC 

68539 Active CN(C)CCCN1C2=CC=CC=C2CCC3=C1C=C(C=C3)Cl 

9279 Active CC(C)[N+](C)(CCOC(=O)C1C2=CC=CC=C2OC3=CC=CC=C13)C(C)C 

1794 Active C1CCCN(CC1)C2=NC(=C(N=C2Cl)C(=O)N=C(N)N)N 

24867541 Inactive 

C[C@H]1[C@H]([C@@](C[C@@H](O1)O[C@@H]2[C@H]([C@@H]([C@H](O[C@H]2OC3=C4
C=C5C=C3OC6=C(C=C(C=C6)[C@H]([C@H](C(=O)N[C@H](C(=O)N[C@H]5C(=O)NC7C8=CC(
=C(C=C8)O)C9=C(C=C(C=C9[C@H](NC(=O)[C@H]([C@@H](C1=CC(=C(O4)C=C1)Cl)O)NC7=
O)C(=O)O)O)O)CC(=O)N)NC(=O)[C@@H](CC(C)C)NC)O)Cl)CO)O)O)(C)N)O 

24867536 Inactive 
C1=CC(=C[N+](=C1)[C@H]2C(C([C@@H](O2)COP(=O)([O-
])OP(=O)(O)OC[C@@H]3[C@@H]([C@H]([C@@H](O3)N4C=NC5=C4N=CN=C5N)OP(=O)(O)[
O-])O)O)O)C(=S)N 
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24867535 Inactive CC([C@H]([C@H]1CNC2=C(N1)C(=O)N=C(N2)N)O)O 

24867530 Inactive C1=CC=C(C(=C1)C(=O)N[C@@H](CCC(=O)[O-])C(=O)[O-])C(=O)[O-] 

24867525 Inactive C1C(C(C(C(C1N)OC2C(C(C(C(O2)CO)O)O)N)O[C@@H]3[C@H]([C@H]([C@H](O3)CO)OC4C(
C(C(C(O4)CN)O)O)N)O)O)N 

24867522 Inactive CC(=C)[C@@H]1C2[C@@H]3[C@@]4([C@](C1C(=O)O2)(C[C@@H]5[C@]4(O5)C(=O)O3)O)C 

24867518 Inactive C1C=CN(C=C1C(=O)N)C2C(C(C(O2)COP(=O)([O-])OP(=O)([O-
])OC[C@@H]3[C@@H]([C@H]([C@@H](O3)N4C=NC5=C4N=CN=C5N)OP(=O)([O-])[O-])O)O)O 

24867514 Inactive CSC1=NC2=C(C(=N1)N)N=CN2[C@H]3[C@@H]([C@H]([C@H](O3)COP(=O)([O-])OP(=O)([O-
])[O-])O)O 

24867513 Inactive CN1CCC[C@H]1C2=CN=CC=C2 

24867509 Inactive [Li+] 

24867503 Inactive CCNC(=O)[C@@H]1[C@@H]([C@H]([C@@H](O1)N2C=NC3=C2N=CN=C3N)O)O 

24867493 Inactive C[C@]12CCC3C([C@@H]1CCC2=O)CC=C4[C@@]3(CC[C@@H](C4)OS(=O)(=O)[O-])C 

24867492 Inactive CC[C@@H](C)C1CN[C@@H]([C@H]1CC(=O)O)C(=O)O 

24867487 Inactive CCNC(=O)[C@@H]1[C@@H]([C@H]([C@@H](O1)N2C=NC3=C2N=C(N=C3N)NCCC4=CC=C(
C=C4)CCC(=O)O)O)O 

24867481 Inactive CCCC 

24867470 Inactive C1=CN2[C@H]3[C@H]([C@H]([C@H](O3)CO)O)OC2=NC1=N 

24867469 Inactive C[C@]12CCC3C([C@@H]1CC[C@@H]2O)CCC4[C@@]3(CC[C@H](C4)O)C 

24867466 Inactive CNC(=O)[C@@H]1[C@@H]([C@H]([C@@H](O1)N2C=NC3=C2N=CN=C3N)O)O 

24867465 Inactive CC1(O[C@@H]2[C@H](C(O[C@@H]2O1)[C@@H](CO)O)OCCCN(C)C)C 

24848913 Inactive CC(=NCCCC(C(=O)O)N)N 

23682212 Inactive CC(=O)[C@H]1CCC2[C@@]1(CCC3C2CC=C4[C@@]3(CC[C@@H](C4)OS(=O)(=O)[O-])C)C 

23681235 Inactive C1CC(C(C2=CC=CC=C2C1)O)CC(=O)[O-] 

23681234 Inactive C1=CC(=CC=C1C(/C=C/C(=O)[O-])O)Cl 

23681233 Inactive CCCCCN(CCCCC)C(=O)C(CCC(=O)[O-])NC(=O)C1=CC(=C(C=C1)Cl)Cl 

23681059 Inactive C[C@@H](C1=CC2=C(C=C1)C=C(C=C2)OC)C(=O)[O-] 

23679632 Inactive C1=CC=C(C=C1)C2(C(=O)NC(=N2)[O-])C3=CC=CC=C3 

23676659 Inactive CCCCCC(CCCC(=O)[O-])O 

23668244 Inactive COC1=C(C=CC(=C1)C(CO)O)OS(=O)(=O)[O-] 

23663954 Inactive C1=CC(=CN=C1)CC2=CC3=C(C=C2)OC(=C3)C(=O)[O-] 

16760703 Inactive CCCC(CCC)C(=O)[O-] 

16759251 Inactive CC(=O)NCCC(=O)C1=C(C=CC(=C1)OC)CN=O 

16757702 Inactive C[N+]1(C2CC(CC1C3C2O3)OC(=O)C(CO)C4=CC=CC=C4)C 

16219752 Inactive COC(=O)C(CCCN=C(N)N[N+](=O)[O-])N 

13830713 Inactive CNC1=NC=NC2=C1N=CN2[C@H]3[C@@H]([C@H]([C@H](O3)CO)O)O 

12997925 Inactive C1=CC=C(C=C1)NC2=NC=NC3=C2N=CN3[C@H]4[C@@H]([C@H]([C@H](O4)CO)O)O 

12906333 Inactive C[N+]1(C2CC(CC1C3C2O3)OC(=O)C(CO)C4=CC=CC=C4)C 

11957723 Inactive C[C@]12CCC3C(C1CC[C@@H]2NCCCCCCN4C(=O)C=CC4=O)CCC5=C3C=CC(=C5)OC 

11957708 Inactive CN(C)CCCCSC(=N)N 

11957705 Inactive CCN(CC)CCOC(=O)C1=CC(=C(C=C1OC)N)Cl 

11957702 Inactive CC1C2=C(C(=O)N(C1=O)C)N=CN2 

11957691 Inactive C[C@H]1[C@@H]([C@H]([C@H]([C@@H](O1)OP(=O)(NC(CC(C)C)C(=O)NC(CC2=CNC3=CC=
CC=C32)C(=O)[O-])[O-])O)O)O 

11957681 Inactive CNC1=CC(=NC(=N1)NC)NS(=O)(=O)C2=CC=C(C=C2)N 

11957668 Inactive CCCN1CCO[C@H]2[C@H]1COC3=C2C=C(C=C3)O 

11957663 Inactive C1C[C@H]([C@H](NC1)C(=O)O)C(=O)O 

11957648 Inactive C[N+](C)(C)CCC(=O)C1=CC=CC2=CC=CC=C21 

11957647 Inactive CC1=CC=C(C=C1)C(=O)O[C@H]([C@@H](C(=O)O)OC(=O)C2=CC=C(C=C2)C)C(=O)O 

11957639 Inactive C1CC(NC(C1)CCN)CCN 

11957622 Inactive C[Se]C[C@@H](C(=O)O)N 

11957621 Inactive COC1=C(C=CC(=C1)CCN)O 

11957614 Inactive CC(=O)O 

11957608 Inactive CC(C)(CCP(=O)(O)O)C(=O)O 
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11957601 Inactive CN1C=C(N=C1)CCN 

11957593 Inactive CC1=CNN=C1 

11957581 Inactive CC(=NCCCC[C@H](C(=O)O)N)N 

11957565 Inactive CC(=O)O 

11957562 Inactive CC(C)[N+]1(C2CCC1CC(C2)C(=O)OC(CO)C3=CC=CC=C3)C 

11957558 Inactive CC1=C(C(=O)NO1)CC(C(=O)O)N 

11957555 Inactive C1CNCC(=C1)C(=O)O 

11957538 Inactive CC(C)C[C@@H](C(=O)O)NC(=O)[C@@H]([C@@H](CC1=CC=CC=C1)N)O 

11957537 Inactive CO[C@H]1CC=C2CCN3[C@]2(C1)C4=C(CC3)COC(=O)C4 

11957520 Inactive C1=C2C(=CC(=C1Cl)Cl)N=C(N2)[C@H]3[C@@H]([C@@H]([C@H](O3)CO)O)O 

11957517 Inactive CC(C)(C)NCC(COC1=CC=CC2=C1NC(=O)N2)O 

11957491 Inactive CN1C(=NC(=O)C(=N1)[O-
])SCC2=C(N3C([C@@H](C3=O)NC(=O)/C(=N\OC)/C4=CSC(=N4)N)SC2)C(=O)[O-] 

11957485 Inactive C[N+](C)(C)COP(=O)([O-])OP(=O)([O-
])OC[C@@H]1[C@H]([C@H]([C@@H](O1)N2C=CC(=NC2=O)N)O)O 

11957478 Inactive C[N+](C)(C)CCOC(=O)CBr 

11957464 Inactive CCN(CC)C1=NC=NC2=C1N=CN2[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)([O-
])OP(=O)(C(P(=O)(O)[O-])(Br)Br)[O-])O)O 

11957441 Inactive C1CCN(C1)CCOC(=O)CC2=CC(=C(C=C2)Cl)Cl 

11953777 Inactive C1[C@H]([C@@H]([C@H](N1)CO)O)O 

11665606 Inactive COC1=C(C=C(C=C1)CCN)O 

11601888 Inactive C[C@@H]1O[C@@H](CS1)C[N+](C)(C)C 

10404739 Inactive C(CC(=O)N[C@H](CSN=O)C(=O)NCC(=O)O)[C@@H](C(=O)O)N 

10018826 Inactive CCCN1CCCC2C1CC3=CN=C(N=C3C2)N 

9964741 Inactive CN(C)C(=NCCC[C@@H](C(=O)O)N)N 

9922558 Inactive CC(CC1=CNC2=C1C=C(C=C2)O)N 

9884487 Inactive CC[N+](CC)(CC)CC(=O)NC1=C(C=CC=C1C)C 

9855833 Inactive C[C@H](CC1=CC=CC=C1)NCC#C 

9836150 Inactive CC1=C(C2=C(N1)C=CC(=C2)O)CCN 

9795082 Inactive CC1=C(C(=CC=C1)C)NC(=O)C[N+](C)(C)C 

9604977 Inactive CC1=N/C(=N\NC2=CC=C(C=C2)C(=O)[O-])/C(=C(C1=O)C=O)COP(=O)([O-])[O-] 

9549280 Inactive CC(=O)/C(=C(/NC1=C(C=CC(=C1)Br)Br)\O)/C#N 

6918215 Inactive CCCCCCCCCCCCCCCCCCOC[C@H](COP(=O)([O-])OCC[N+](C)(C)C)OC 

6917797 Inactive C1CC(CN(C1)CCC=C(C2=CC=CC=C2)C3=CC=CC=C3)C(=O)O 

6917794 Inactive CCCN(CCC)C1CCC2=C(C1)C(=CC=C2)O 

6604094 Inactive C1CN(CC2=CC=CC=C21)C(=N)[NH3+] 

6603931 Inactive CCCN1C2=C(C(=O)N(C1=O)CCC)NC(=N2)C3=CC=C(C=C3)OCC(=O)NC4=CC=C(C=C4)C#N 

6603901 Inactive CCCC1=C(C=CC(=C1O)C(=O)C)OCCCOC2=CC=C(C=C2)OCC(=O)O 

6603697 Inactive C(/C=C\C(=O)O)N 

6532796 Inactive CC1=N/C(=N/NC2=C(C=C(C=C2)S(=O)(=O)[O-])S(=O)(=O)[O-])/C(=C(C1=O)C=O)COP(=O)([O-
])[O-] 

6440459 Inactive C1COCCN1C(=O)NCCNCC(COC2=CC=C(C=C2)O)O 

6436473 Inactive C1CN(CC1)CC#CCN2C(=O)CCC2 

6419997 Inactive C1=C(NC=N1)CCNC(=O)CCN 

6419304 Inactive COC1=CC=C(C=C1)C2=N[N+](=C(C=C2)N)CCCC(=O)O 

6409633 Inactive C/C(=N\O)/C(=O)C 

6324610 Inactive CCOC(=O)C12CC1/C(=N/O)/C3=CC=CC=C3O2 

6093162 Inactive CC1C(O1)P(=O)([O-])[O-] 

6093160 Inactive 
C1=CC(=CC(=C1)NC(=O)NC2=CC=CC(=C2)C(=O)NC3=C4C(=CC(=CC4=C(C=C3)S(=O)(=O)[O
-])S(=O)(=O)[O-])S(=O)(=O)[O-])C(=O)NC5=C6C(=CC(=CC6=C(C=C5)S(=O)(=O)[O-
])S(=O)(=O)[O-])S(=O)(=O)[O-] 

5702253 Inactive C1CNCC2=C1C(=O)NO2 

5702251 Inactive C1=CC(=CC=C1C(=O)NCCN)Cl 

5702250 Inactive CCCCCCCCCCCCCCCCCC(=O)OC(CC(=O)O)C[N+](C)(C)C 
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5702214 Inactive CCN(CC)CCNC(=O)C1=C(C=CC(=C1)S(=O)(=O)C)OC 

5702206 Inactive CC(=O)O 

5702160 Inactive C1=C(N=C(S1)N=C(N)N)CSCC/C(=N/S(=O)(=O)N)/N 

5462653 Inactive C(CN)C#N 

5353800 Inactive CN(C)C(=O)/N=N/C(=O)N(C)C 

5353788 Inactive CCO/C(=N/C1=C[N+](=NO1)N2CCOCC2)/[O-] 

5312115 Inactive C[C@H](CC1=CC2=C(C=C1)OC(O2)(C(=O)[O-])C(=O)[O-])NC[C@@H](C3=CC(=CC=C3)Cl)O 

5311302 Inactive CNC1=NC=NC2=C1N=CN2[C@H]3C[C@@H]([C@H](O3)COP(=O)(O)[O-])OP(=O)(O)[O-] 

5310987 Inactive C(/C=C/C(=O)O)N 

5310956 Inactive C1[C@@H]([C@H]1C(=O)O)[C@@H](C(=O)O)N 

5284443 Inactive CNC[C@@H](C1=CC(=CC=C1)O)O 

5282759 Inactive CCCCCCC/C=C\CCCCCCCCC(=O)O 

5281708 Inactive C1=CC(=CC=C1C2=COC3=C(C2=O)C=CC(=C3)O)O 

5281670 Inactive C1=CC(=C(C=C1O)O)C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O 

4549312 Inactive CC1=CC=CC=C1CNC2=NC=NC3=C2N=CN3C4C(C(C(O4)CO)O)O 

4234241 Inactive C1CC2C(C1)C3CC2CC3OC(=S)[S-] 

4177957 Inactive CC1=C(C2=C(N1C(=O)C3=CC=CC=C3)C=CC(=C2)OC)CC(=O)O 

3870203 Inactive C1=C(C=C(C(=C1[N+](=O)[O-])O)O)[N+](=O)[O-] 

3864541 Inactive CCN1C=C(C(=O)C2=C1N=C(C=C2)C)C(=O)[O-] 

3519541 Inactive CC(C)(C)C1=CC(=CC(=C1O)C(C)(C)C)CC(C)(C)C=O 

3074827 Inactive CC1(CCC(CC1)NC(=O)[C@H](CCC(=O)O)N)C 

3040551 Inactive C[C@H]([C@H](C1=CC=C(C=C1)O)O)NCCC2=CC=C(C=C2)O 

3035523 Inactive C1=CC(=CC=C1CN2C=CNC2=S)O 

3033332 Inactive CN/C(=C\[N+](=O)[O-])/NCCSCC1=CC=C(O1)CN(C)C 

2837663 Inactive CC(C)(C(COC1=CC=CC2=C1N(C(=O)C=C2OC)C)O)O 

2794990 Inactive C(CCN=C(N)N)CN 

2735510 Inactive C[N+](C)(C)CC=O 

2734952 Inactive C(=NN)(N)N 

2734687 Inactive C(=NN)(N)N 

2733517 Inactive C1[C@@H](N[C@@H]1C(=O)O)C(=O)O 

2733277 Inactive COC(=O)C(CC1=CC=C(C=C1)Cl)N 

2724466 Inactive C1CCC(CC1)(C(=O)O)N 

2723891 Inactive C(CC(=O)O)[C@@H](C(=O)O)N 

2723890 Inactive COC1=C(C=CC(=C1)C(CO)O)O 

1617430 Inactive C(CC[C@H](C(=O)O)N)CCP(=O)(O)O 

1549098 Inactive C([C@@H](C(=O)O)N)S(=O)O 

736715 Inactive C1=C(NC=N1)/C=C/C(=O)O 

689043 Inactive C1=CC(=C(C=C1/C=C/C(=O)O)O)O 

688272 Inactive CCN1CCC[C@H]1CNC(=O)C2=C(C=CC(=C2)S(=O)(=O)N)OC 

657346 Inactive C[C@H]1OC[C@H](O1)C[N+](C)(C)C 

656765 Inactive CCN1C2=CC(=C(C=C2NC1=O)Cl)Cl 

656717 Inactive C[C@]1(CC2=CC(=C(C(=C2C1=O)Cl)Cl)OCC(=O)O)C3CCCC3 

451515 Inactive CC1=CN(C(=O)NC1=O)[C@H]2C[C@H]([C@H](O2)CO)N=[N+]=[N-] 

449215 Inactive C1[C@@H](C(=O)NO1)N 

447196 Inactive C1=C(C(=O)NC(=O)N1C[C@@H](C(=O)O)N)I 

446727 Inactive C1[C@@H]([C@H](O[C@H]1N2C=C(C(=O)NC2=O)/C=C/Br)CO)O 

443586 Inactive C1=C(C=C(C=C1O)O)[C@@H](C(=O)O)N 

443239 Inactive [C@H]([C@@H](C(=O)O)O)(C(=O)O)N 

442897 Inactive CC(CO)(C1CC2=C(C3=CC=CC=C3N=C2O1)OC)O 

441350 Inactive C[C@](CC1=CC=C(C=C1)O)(C(=O)O)N 

441334 Inactive CC(C)(C)NCC(C1=CC(=CC(=C1)O)O)O 
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441333 Inactive CC(C)NCC(C1=CC(=CC(=C1)O)O)O 

440005 Inactive C(C[C@@H](C(=O)O)N)CN=C(N)N[N+](=O)[O-] 

439744 Inactive C1=CC(=C(C=C1C[C@@H](C(=O)O)N)I)O 

439280 Inactive C1=CC2=C(C=C1O)C(=CN2)C[C@@H](C(=O)O)N 

433294 Inactive [Li+] 

377339 Inactive C1C(C(C(C(N1)CO)O)O)O 

260390 Inactive CNCCC1=CNC2=C1C=C(C=C2)O 

205536 Inactive C1=C(ONC1=O)CN 

198382 Inactive C1C(C=CC=C1C(=O)O)N 

194216 Inactive CC1=C(N2[C@@H]([C@@H](C2=O)NC(=O)C(C3=CC=CC=C3)N)SC1)C(=O)O 

175540 Inactive CC(C)NC[C@@H](COC1=CC=C(C=C1)CC(=O)N)O 

169743 Inactive CCN1CCC2=C(CC1)OC(=N2)N 

169373 Inactive CC1=C(N2[C@@H]([C@@H](C2=O)NC(=O)C(C3=CCC=CC3)N)SC1)C(=O)O 

167529 Inactive C=CC[C@@H](C(=O)O)N 

160453 Inactive C1=CC=C2C(=C1)C(=O)N(C2=O)[C@@H](CCC(=O)O)C(=O)O 

160436 Inactive C1=CC2=C(C=C1O)C(=CN2)CCN 

157991 Inactive CC(=O)N[C@H](C(=O)O)C(C)(C)SN=O 

155107 Inactive C1CNCC=C1C(=O)O 

145685 Inactive C1=C(NC=N1)CC(=O)O 

135313 Inactive C(CC(=O)O)[C@@H](C(=O)O)N=C(N)N 

120729 Inactive CC1(CCCC(N1C)(C)C)C 

114924 Inactive CCCCCCCCCCCCCCSCC(=O)O 

107812 Inactive C(CS(=O)O)N 

104766 Inactive C1C[C@](C[C@@H]1C(=O)O)(C(=O)O)N 

104762 Inactive C1=NC(=C(N1[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O)O)C(=O)N 

102542 Inactive COC1=C(C=CC(=C1)C(CN)O)O 

102484 Inactive C1=CC(=CC=C1C(CN)O)O 

99562 Inactive CN1C=NC2=C1C(=O)N(C(=O)N2C)CC#C 

97587 Inactive C(CN)CP(=O)(O)O 

92913 Inactive CC(CC1=CC=CC=C1)N(C)CC#C 

92222 Inactive C1=CC(=C(C=C1C[C@H](C(=O)O)N)O)O 

92136 Inactive C(C[C@@H](C(=O)O)N)CC(=O)O 

89034 Inactive CS(=N)(=O)CC[C@@H](C(=O)O)N 

84003 Inactive C1CN2C(=CC=C2C(=O)C3=CC=CC=C3)C1C(=O)O 

80289 Inactive C1=CC=C(C=C1)C(=N)N 

74724 Inactive C[N+](C)(C)CCO 

71417 Inactive CCN(CC)CCNC(=O)C1=CC=C(C=C1)NC(=O)C 

69398 Inactive C(CCN)CC(=O)O 

66449 Inactive C1=CC(=CC=C1CCN)O 

66091 Inactive C1=C(NC=N1)C[C@@H](C(=O)O)N 

66068 Inactive CCN(CC)CCNC(=O)C1=CC=C(C=C1)N 

57004 Inactive C(CC(C(F)F)(C(=O)O)N)CN 

55918 Inactive C1CC(=O)NN=C1C2=CC=C(C=C2)N3C=CN=C3 

40958 Inactive C1C(=C(N2[C@H](S1)[C@@H](C2=O)NC(=O)C(C3=CC=CC=C3)N)C(=O)O)Cl 

40632 Inactive CC1=CN(C(=O)C=C1)C2=CC=CC=C2 

40539 Inactive C([C@@H](C(=O)O)N)N1C(=O)NC(=O)O1 

39912 Inactive C[C@@H](C1=CC=C(C=C1)CC(C)C)C(=O)O 

39859 Inactive CC(C)(C)NCC(C1=CC(=C(C=C1)O)CO)O 

39562 Inactive C1=CC=C2C(=C1)C(=NN2CC3=C(C=C(C=C3)Cl)Cl)C(=O)O 

39214 Inactive CC1=NC=C(C(=N1)N)CNC(=O)N(CCCl)N=O 

31307 Inactive C[C@]12C[C@@H]([C@]3([C@H]([C@@H]1C[C@H]([C@@]2(C(=O)CO)O)O)CCC4=CC(=O)C
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=C[C@@]43C)F)O 

31195 Inactive C(P(=O)(O)[O-])(P(=O)(O)[O-])(Cl)Cl 

24066 Inactive C1C[C@@H](O[C@@H]1CO)N2C=CC(=NC2=O)N 

22880 Inactive CN[C@H](CC(=O)O)C(=O)O 

22475 Inactive C[N+](C)(C)CCOC(=O)CCC(=O)OCC[N+](C)(C)C 

22411 Inactive CC(=O)SCC[N+](C)(C)C 

18343 Inactive C[C@@H]1[C@H]([C@H]([C@@H](O1)N2C=C(C(=O)NC2=O)F)O)O 

18283 Inactive CC1=CN(C(=O)NC1=O)[C@H]2C=C[C@H](O2)CO 

17882 Inactive C[N+]1(C2CCC1CC(C2)OC(=O)C(CO)C3=CC=CC=C3)C 

16817 Inactive C[C@H]1[C@@H](C[C@H](O1)C[N+](C)(C)C)O 

16486 Inactive C1CN[C@@H]1C(=O)O 

13347 Inactive CSC(=N)N 

12035 Inactive CC(=O)N[C@@H](CS)C(=O)O 

11545 Inactive C[N+](C)(C)CC(=O)O 

11236 Inactive C(=O)(N)NN 

10729 Inactive C1=NC2=C(NC1=O)NC(=NC2=O)N 

10255 Inactive CC(=C)[C@H]1CN[C@@H]([C@H]1CC(=O)O)C(=O)O 

9539 Inactive C(CCNCCCN)CN 

9532 Inactive C(CCN)CN 

9444 Inactive C1=NC(=NC(=O)N1[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O)N 

9433 Inactive CN1C2=C(C(=O)N(C1=O)C)NC=N2 

9367 Inactive CC(C)NNC(=O)C1=CC=NC=C1 

9363 Inactive CCN(CC)C(=O)C1=CC(=C(C=C1)O)OC 

9082 Inactive C(CS)N 

8743 Inactive C1=C(NC(=CC1=O)C(=O)O)C(=O)O 

8246 Inactive CN(C)C(=O)OC1=CC=CC(=C1)[N+](C)(C)C 

7550 Inactive C[N+]1=CC=CC(=C1)OC(=O)N(C)C 

7172 Inactive CNCC(C1=CC=C(C=C1)O)O 

6322 Inactive C(C[C@@H](C(=O)O)N)CN=C(N)N 

6252 Inactive C1=CN(C(=O)N=C1N)[C@H]2[C@H]([C@@H]([C@H](O2)CO)O)O 

6207 Inactive C(COCCOCCN(CC(=O)O)CC(=O)O)N(CC(=O)O)CC(=O)O 

6198 Inactive COC1=CC2=C(C=C1)NC=C2CCN 

6172 Inactive CC[N+](CC)(CC)CCOC1=C(C(=CC=C1)OCC[N+](CC)(CC)CC)OCC[N+](CC)(CC)CC 

6114 Inactive CC(C[N+](C)(C)C)OC(=O)C 

6112 Inactive C1CSS[C@@H]1CCCCC(=O)O 

6076 Inactive C1[C@@H]2[C@H]([C@H]([C@@H](O2)N3C=NC4=C3N=CN=C4N)O)OP(=O)(O1)O 

6035 Inactive C1[C@@H]([C@H](O[C@H]1N2C=C(C(=O)NC2=O)Br)CO)O 

5961 Inactive C(CC(=O)N)[C@@H](C(=O)O)N 

5960 Inactive C([C@@H](C(=O)O)N)C(=O)O 

5938 Inactive C[N+](C)(C)CCCCCC[N+](C)(C)C 

5917 Inactive C1CCC2=NN=NN2CC1 

5860 Inactive C[N+]1(C2CCC1CC(C2)OC(=O)C(CO)C3=CC=CC=C3)C 

5849 Inactive C[N+]1(CCCC1)CCCCC[N+]2(CCCC2)C 

5831 Inactive C[N+](C)(C)CCOC(=O)N 

5818 Inactive C1=C(NC=N1)CCN 

5723 Inactive COC1=C(C=CC(=C1)C2=NNC(=O)C=C2)OC(F)F 

5665 Inactive C=CC(CCC(=O)O)N 

5593 Inactive CCN(CC1=CC=NC=C1)C(=O)C(CO)C2=CC=CC=C2 

5520 Inactive CP(=O)(C1=CC[NH2+]CC1)[O-] 

5503 Inactive CC1=CC=C(C=C1)S(=O)(=O)NC(=O)NN2CCCCCC2 

5429 Inactive CN1C=NC2=C1C(=O)NC(=O)N2C 



    Appendix 

 

- 175 - 

5426 Inactive C1CC(=O)NC(=O)C1N2C(=O)C3=CC=CC=C3C2=O 

5355 Inactive CCN1CCCC1CNC(=O)C2=C(C=CC(=C2)S(=O)(=O)N)OC 

5335 Inactive C1=CC=C(C=C1)N2C(=CC=N2)NS(=O)(=O)C3=CC=C(C=C3)N 

5242 Inactive C(=O)(C(=O)[O-])N 

5123 Inactive C1=CN(C(=O)NC1=O)CC(C(=O)O)N 

4971 Inactive CC1=C(C2=CC3=C(C(=C(N3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1N2)C)CCC(=O)O)CCC
(=O)O)C)C=C)C)C=C 

4943 Inactive CC(C)C1=C(C(=CC=C1)C(C)C)O 

4922 Inactive CCCN(CCC)C(=O)C(CCC(=O)O)NC(=O)C1=CC=CC=C1 

4909 Inactive CCC1(C(=O)NCNC1=O)C2=CC=CC=C2 

4843 Inactive C1CC(=O)N(C1)CC(=O)N 

4838 Inactive C1CNCCC1S(=O)(=O)O 

4779 Inactive C1=CC=C(C(=C1)CP(=O)(O)O)C2=CC(=CC=C2)CC(C(=O)O)N 

4740 Inactive CC(=O)CCCCN1C(=O)C2=C(N=CN2C)N(C1=O)C 

4652 Inactive C1=CC(=CC=C1CC(C(=O)O)N)Cl 

4650 Inactive C1=CC(=O)C=CC1=O 

4488 Inactive C1=CC(=CC(=C1)NC2=C(C=CC=N2)C(=O)O)C(F)(F)F 

4389 Inactive C1CC(N(C1)C(=O)CCC(=O)O)C(=O)O 

4386 Inactive C1=CC=C(C=C1)NC2=CC=CC=C2C(=O)O 

4362 Inactive CCN1C(=O)C=CC1=O 

4353 Inactive CC(=O)NBr 

4201 Inactive C1CCN(CC1)C2=NC(=N)N(C(=C2)N)O 

4197 Inactive CC1=C(C=C(C(=O)N1)C#N)C2=CC=NC=C2 

4038 Inactive CC1=C(C(=C(C=C1)Cl)NC2=CC=CC=C2C(=O)[O-])Cl 

3857 Inactive C(C(C(=O)O)N)P(=O)(O)O 

3845 Inactive C1=CC=C2C(=C1)C(=O)C=C(N2)C(=O)O 

3825 Inactive CC(C1=CC=CC(=C1)C(=O)C2=CC=CC=C2)C(=O)O 

3758 Inactive CC(C)CN1C2=C(C(=O)N(C1=O)C)NC=N2 

3727 Inactive C(C(=O)N)I 

3657 Inactive C(=O)(N)NO 

3454 Inactive C1=NC2=C(N1COC(CO)CO)NC(=NC2=O)N 

3446 Inactive C1CCC(CC1)(CC(=O)O)CN 

3433 Inactive CC1=NC2=C(N1)C(=O)N(C(=O)N2CC3=CC=CO3)C 

3373 Inactive CCOC(=O)C1=C2CN(C(=O)C3=C(N2C=N1)C=CC(=C3)F)C 

3331 Inactive C1=CC=C(C=C1)C(COC(=O)N)COC(=O)N 

3291 Inactive CCC1(CC(=O)NC1=O)C 

3132 Inactive C1=CC=C(C=C1)CC(CS)C(=O)NCC(=O)O 

3125 Inactive CC(CC1=CC=C(C=C1)O)(C(=O)O)N 

3122 Inactive C(CCC(C(=O)O)N)CCP(=O)(O)O 

3019 Inactive CC1=NS(=O)(=O)C2=C(N1)C=CC(=C2)Cl 

2944 Inactive C1=C(NC(=NC1=O)N)N 

2935 Inactive C(CC(=O)NCS(=O)(=O)O)C(C(=O)O)N 

2910 Inactive C1C2CC(C1C=C2)C3NC4=CC(=C(C=C4S(=O)(=O)N3)S(=O)(=O)N)Cl 

2907 Inactive C1CNP(=O)(OC1)N(CCCl)CCCl 

2796 Inactive CCOC(=O)C(C)(C)OC1=CC=C(C=C1)Cl 

2763 Inactive CC(C)(C(=O)O)OC1=CC=C(C=C1)C2CC2(Cl)Cl 

2733 Inactive C1=CC2=C(C=C1Cl)NC(=O)O2 

2727 Inactive CCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)Cl 

2576 Inactive CCCC(C)(COC(=O)N)COC(=O)NC(C)C 

2519 Inactive CN1C=NC2=C1C(=O)N(C(=O)N2C)C 

2471 Inactive CCCCNC1=C(C(=CC(=C1)C(=O)O)S(=O)(=O)N)OC2=CC=CC=C2 
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2331 Inactive C1=CC=C(C=C1)C(=O)N 

2284 Inactive C1=CC(=CC=C1C(CC(=O)O)CN)Cl 

2266 Inactive C(CCCC(=O)O)CCCC(=O)O 

2249 Inactive CC(C)NCC(COC1=CC=C(C=C1)CC(=O)N)O 

2244 Inactive CC(=O)OC1=CC=CC=C1C(=O)O 

2207 Inactive C(CP(=O)(O)O)C(C(=O)O)N 

2196 Inactive COC1=CC=C(C=C1)C(=O)N2CCCC2=O 

2145 Inactive CCC1(CCC(=O)NC1=O)C2=CC=C(C=C2)N 

2141 Inactive C(CN)CNCCSP(=O)(O)O 

2123 Inactive CN(C)C1=NC(=NC(=N1)N(C)C)N(C)C 

2094 Inactive C1=C2C(=NC=NC2=O)NN1 

2083 Inactive CC(C)(C)NCC(C1=CC(=C(C=C1)O)CO)O 

2071 Inactive C1CC(C2=C1C=C(C=C2)C(=O)O)(C(=O)O)N 

1989 Inactive CC(=O)C1=CC=C(C=C1)S(=O)(=O)NC(=O)NC2CCCCC2 

1986 Inactive CC(=O)NC1=NN=C(S1)S(=O)(=O)N 

1893 Inactive C1=CC2=C(C(=C1)[N+](=O)[O-])NN=C2 

1779 Inactive C1=C(C=C2C(=C1Cl)C(=O)C=C(N2)C(=O)O)Cl 

1775 Inactive C1=CC=C(C=C1)C2(C(=O)NC(=O)N2)C3=CC=CC=C3 

1774 Inactive CC1(CCC=[N+]1[O-])C 

1742 Inactive C1=CC(=CC=C1C(=O)NN)O 

1738 Inactive COC1=C(C=CC(=C1)CC(=O)O)O 

1727 Inactive C1=CN=CC=C1N 

1678 Inactive C(C[N+](=O)[O-])C(=O)O 

1676 Inactive CCCN1C2=C(C(=O)NC1=O)NC=N2 

1645 Inactive C1=CC(=CC(=C1)N)C(=O)N 

1641 Inactive C1=CC(=CC=C1C(CN)CP(=O)(O)O)Cl 

1564 Inactive C1=CC(=CC=C1C(CN)(CS(=O)(=O)O)O)Cl 

1390 Inactive CN1C=CN=C1 

1365 Inactive CN1C2=C(N=C1C3=CC=C(C=C3)S(=O)(=O)O)N(C(=O)N(C2=O)CC=C)C 

1340 Inactive C1=CC2=C(C=CNC2=O)C(=C1)O 

1256 Inactive CC(=C)C1CCC(=CC1)C(=O)O 

1245 Inactive COC1=C(C=CC(=C1)C(C(=O)O)O)O 

1233 Inactive C1=C(ONC1=O)C(C(=O)O)N 

1232 Inactive C1CN(C(=O)C1N)O 

1228 Inactive C1CN(CC(N1)C(=O)O)CCCP(=O)(O)O 

1222 Inactive CC(C1=CC=C(C=C1)C(=O)O)(C(=O)O)N 

1216 Inactive C(CC(C(=O)O)N)CP(=O)(O)O 

1123 Inactive C(CS(=O)(=O)O)N 

1066 Inactive C1=CC(=C(N=C1)C(=O)O)C(=O)O 

1046 Inactive C1=CN=C(C=N1)C(=O)N 

903 Inactive CC(=O)NCCC1=CNC2=C1C=C(C=C2)O 

896 Inactive CC(=O)NCCC1=CNC2=C1C=C(C=C2)OC 

650 Inactive CC(=O)C(=O)C 

564 Inactive C(CCC(=O)O)CCN 

401 Inactive C1C(C(=O)NO1)N 

275 Inactive C(CON=C(N)N)C(C(=O)O)N 

178 Inactive CC(=O)N 

119 Inactive C(CC(=O)O)CN 

 


