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2 Abstract 
 
 
 

 The first isoform of phosphoinositide 3-kinases (PI3K) had been found in 

Saccharomyces cerevisiae when screening for mutants not exhibiting normal vacuolar protein 

sorting (Vps), Vps34. Class III PI3K/Vps34 has long been worked on in regards to its role in 

endosomal sorting and autophagy, a process allowing cells to survive nutrient-deprived 

conditions. Most research groups have investigated the functions of Vps34 in the yeast model 

system Saccharomyces cerevisiae. Newer publications now use mammalian cell lines, 

Caenorhabditis elegans or Drosophila melanogaster, deciphering interesting differences 

between the various species in regards to Vps34 characteristics. Our cancer model system, 

melanoma tumors, are known to be very aggressive and their treatment difficult, due to 

mutations leading to drug resistance. Autophagy and whether its induction would be beneficial 

or not for cancer patients, has been the topic of discussions in the field lately.  

 In this work, we investigated the role of class III PI3K by two different methods, a 

pharmacological and a genetic approach. We started with natural compound screenings on 

hVps34 in genetically modified yeast systems. The pure fraction of Citrus medica extracts giving 

best results turned out to be limettin. Limettin inhibited hVps34 in both our in vivo yeast system 

and in in vitro kinase assays using the immunoprecipitated enzyme from HEK293 cells. Our 

candidate inhibitor seemed very specific for the human isoform, but still required quite high 

concentrations in the assays performed. Further chemical designing and eventual fitting to the 

hVps34 ATP binding pocket would be necessary to render this molecule into one of the first 

specific class III PI3K inhibitors.   

In addition to pharmacological approaches, class III PI3K state-of-the-art genetic 

knockdown experiments were done in melanoma cell lines in order to characterize this isoform’s 

role in melanoma more specifically. Vps34 is not essential in yeast, but leads to serious 

temperature sensitivity phenotypes. In one melanoma cell line (A375) tested, knockdown had 

similar as but milder effects than known in other cancer types. Two others though (A2058 and 

1205lu), did not tolerate the longterm loss of class III PI3K. We suppose that the importance of 

hVps34 depends on the genetic background of cell types. Further studies are required to define 

precisely which effectors determine the intolerance described i.e. which melanoma types could 

be targeted by inhibition of class III PI3K.  
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3 Introduction        

 

3.1 Early Publications on Phosphoinositide 3-kinases (PI3K) 

 

3.1.1 Yeast PI3K 

 

In 1986, Rothman and Stevens published the discovery of a group of yeast mutants that 

failed to properly sort CPY (carboxypeptidase Y) to the vacuole, the yeast’s lysosome. Their so 

called eight “vpl mutants” defined a new class of proteins required for sorting of vacuolar 

proteins during the secretory pathway (Rothman and Stevens 1986). Hence the first PI3K to be 

described in yeast was Vps34, which was one of the genes involved in vacuolar protein sorting, 

originally termed Vpt29 or Vpl7 (Robinson, Klionsky et al. 1988). At that time though, nothing 

was known about its kinase function yet. One of the first publications on PI3K activity in yeast 

was by Auger et al. in 1989. The authors claimed to have found PI3K lipid kinase activity in 

Saccharomyces cerevisiae, similarly to an enzymatic reaction phosphorylating D-3 position of 

the inositol ring which was at that time known in mammalian cells. Biochemical character of the 

PI3K enzyme seemed different in yeast. Yet not only PI-4P, as originally thought, but PI(3)P 

were found in liquid chromatography analysis of intact yeast cells labelled with (3H)inositol. 

These results suggested an important and conserved functional role in cell cycle for PI3K in 

eukaryotes (Auger, Carpenter et al. 1989). 

 

3.1.2 Mammalian PI3K isoforms 

 
One of the first publications on a kinase phosphorylating D-3 instead of D-4 position of 

inositol in mammalian cells was a manuscript by Whitman M et al. in 1987 where they used 

platelet-derived growth factor (PDGF)-stimulated murine fibroblasts. Phosphoinositide kinase 

activity was found to associate with anti-phosphotyrosine immunoprecipitates from these cells. 

A new class of lipids, phosphorylated at the D3-hydroxy-group of the inositol headgroup of 

phosphoinositides was discovered (Whitman, Kaplan et al. 1987; Wymann and Pirola 1998). 

Today, the members of the PI3K family are subdivided into three classes (Table 1), 

according to their in vitro substrate specificity, their structure and functional homologies. More 

details on the organization of PI3K were summarized later in a review by Marone et al. in 2008, 

from which publication the following scheme is adapted (Figure 1) (Marone, Cmiljanovic et al. 

2008). 
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Figure 1: Domain Structures of Mammalian PI3K isoforms 

The members of the phosphoinositide 3-kinase (PI3K) family are subdivided into three classes, 
according to their in vitro substrate specificity, their structure and functional homologies.   
The upper panel (a) displays the catalytic subunits, the lower panel (b) shows their adaptors/regulatory 
subunits. a) The catalytic subunits contain a core catalytic domain (PI3Kc), including the ATP-binding 
site and a regulatory subunit binding domain at their N-terminus. Other known domains are a Ras-
binding domain (RBD), a C2 domain (protein kinase C homology domain 2) and a PI3K accessory 
domain (helical, PI3Ka). Class II PI3K display several proline-rich (P) stretches, a PX (phox) and an 
additional C2 domain at their C-terminus. Class III PI3K, Vps34, only has a C2, PI3Ka and PI3Kc 
domain. b) The regulatory subunits/adaptors of class IA PI3K contain a proline-rich region and two SH2 
(Src-homology 2) domains, an interSH2 region (iSH2) that binds to the catalytic subunit. SH3 (Src-
homology 3) and BH (BCR homology) domains are found at the N-terminus of p85α and p85β. The 
structures of class IB adaptors are less well investigated. P150/hVps15, the adaptor of Vps34, contains a 
kinase domain, a HEAT (Huntingtin, Elongation Factor 3, protein phosphatase 2A and yeast TOR1) 
domain and several WD40 repeats. (Marone, Cmiljanovic et al. 2008) 
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3.1.3 PI3K in Other Model Organisms: Early to Recent Publications  

 
The fruitfly Drosophila melanogaster possesses one isoform of each three classes of 

PI3K, namely Pi3k_92D (dp110) with its regulatory subunit Pi3k57 (p67), PI3K_68D and 

Pi3k_59F (DVps34p). DVps34p is usually localized to perinuclear structures, reflecting the 

early endosomal compartment. Class III PI3K has a role in autophagosome biogenesis, acting 

together with Ird1 (Vps15/p150 homologue) and DAtg6 (Beclin1 homologue). This association 

was observed under both fed and starved conditions, consistent with findings in mammalian 

cells (more about autophagy in a later chapter). Apparently the kinase activity of DVps34p is 

sufficient to drive early but not later steps of autophagy. There are differences between 

phenotypes in class III PI3K and ESCRT (endosomal sorting complex required for transport) 

machinery mutants, suggesting that DVps34p has a more severe kinetic effect on 

autophagosome formation than on the fusion to the lysosome later on. The normal ESCRT 

pathway is not disrupted in mutants of DVps34p. Endocytic recycling seems to be affected 

though, as accumulations of Notch was found in DVps34p mutant cells of the eye imaginal 

disc. In contrast to mutations in Tor (target of rapamycin) (Zhang, Stallock et al. 2000), fly cells 

proliferate at a similar rate to control cells upon mutations in class III PI3K. Expression of 

kinase-defective isoforms also had no effect on the cell size in starved or refed flies. The same 

mutants exhibited no effect on phosphorylation of S6K-Thr398 or Akt/PKB-Ser505, substrates 

of TORC1 and TORC2 (TOR complexes 1 and 2). Starvation induced a shift from perinuclear 

structures to a more widely distributed pattern of DVps34p, presumably nascent 

autophagosomes. Class III PI3K in Drosophila seems to function downstream of TOR-

dependent nutrient signalling, in contrast to suggestions in mammalian cells (Byfield, Murray et 

al. 2005; Nobukuni, Joaquin et al. 2005; Juhasz, Hill et al. 2008). 

 

One gene of each PI3K class I to III has been found in the nematode Caenorhabditis 

elegans, named AGE-1 (p110) with regulatory subunit AAP-1 (p55), F39B1.1 and Let-512. A 

loss of function mutation in PI3K class IA causes entry into dauer stage, a condition related to 

prolonged life span as seen in other organisms (Vanhaesebroeck, Leevers et al. 1997). Loss of 

function of Let-512 is lethal, hence the gene name. This finding is in contrast to viable deletion 

mutants in yeast (Wymann and Pirola 1998). CeVps34 is ubiquitously expressed during 

development (arrest in larvae stage 3 or 4 upon mutation) and accumulates at a perinuclear 

localization, maybe even at the nuclear envelope, unlike in other organisms where it is usually 

found in endosomal compartments. Defects in endocytic uptake are a consequence of 

reduction of class III PI3K in worm, as this isoform is involved in membrane transport. Roggo et 

al. have demonstrated that Let-512 in worm is essential for vesicle budding even prior to the 

trans-Golgi network (TGN) (Roggo, Bernard et al. 2002). 
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Class 
Type 

Saccharomyces 
cerevisiae 

Caenorhabditis 
elegans 

Drosophila 
melanogaster 

Mammals 

 
Class I, 
catalytic 

 
not present 

 
AGE-1 (p110) 

 
Pi3k_92D 
(dp110) 

 
PIK3CA (p110α) 
PIK3CB (p110β) 
PIK3CD (p110δ) 
PIK3CG (p110γ) 

 
Class I, 
regulatory 

 
not present 

 
AAP-1 (p55) 

 
Pi3k57 (p67) 

 
PIK3R1 
(p85a/p55a/p50a) 
PIK3R2 (p85b) 
PIK3R3 (p55g) 
PIK3R5 (p101) 
PIK3R6 (p87/p84) 

 
Class II 

 
not present 

 
F39B1.1 

 
PI3K_68D 

 
PIK3C2A (PI3K-C2α) 
PIK3C2B (PI3K-C2β) 
PIK3C2G (PI3K-C2γ) 

 
Class III, 
catalytic 

 
VPS34p 

 
Let-512 

 
Pi3k_59F 
(DVps34p) 

 
PIK3C3  
(hVps34 or Vps34) 

 
Class III, 
regulatory 

 
VPS15p 

 
Vps15-like 

 
Ird1 

 
PIK3R4 (p150/vps15) 

Table 1: The PI3K family members in different species 

This table lists the homologs of PI3K isoforms in different species.  
Table adapated from (Vanhaesebroeck, Guillermet-Guibert et al.) 
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3.2 More Recent Knowledge of PI3K 
 

3.2.1 Class I PI3K 

 

Class I PI3K are found in all cell types, p110δ and p110γ mainly in leukocytes (Kok, 

Geering et al. 2009). This class of PI3K can be divided into two subgroups (Table 1): class I A 

(p110α, β and δ) which bind to regulatory subunit p85 type and class I B (p110γ) which binds 

p87 (p84/p87PIKAP/PIK3R6) or p101 (PIK3R5) (Vanhaesebroeck, Leevers et al. 1997). The 

p85 subunits contain Src homology 2 (SH2) domains which bind phosphorylated tyrosine 

(Figure 1).  

It was originally thought that class I A are activated by tyrosine kinases and class I B by 

G-protein coupled receptors only. Recent data though suggests that most class I PI3K might be 

activated by G-protein coupled receptors (GPCRs), either directly via Gβγ protein or indirectly 

via Ras for example (Figure 2). In general, p85 subunits provide at least three functions to p110 

proteins: stabilization, inactivation of their kinase activity in the basal unstimulated state and 

recruitment to phospho-tyrosine residues in receptor and adaptor molecules. They bring the 

catalytic subunits in contact with their lipid substrates in the membrane. In addition to the SH2 

domains do p85 isoforms contain a proline-rich region closer to their N-term (Vanhaesebroeck, 

Guillermet-Guibert et al.). Subunits p85 α and p85 β also contain an SH3 domain, a second 

proline-rich region and a BCR (breakpoint cluster region) homology (BH) domain (Chamberlain, 

Chan et al. 2008). There is evidence that p85 isoforms can interact with small GTPases such 

as Rac, Rho and Cdc42 (Vanhaesebroeck, Ali et al. 2005), but so far that was only checked in 

isolated p85, not when the subunit is in complex with p110. Mammals have five distinct p85 

isoforms with distinct biological functions (Vanhaesebroeck, Guillermet-Guibert et al.). Loss of 

p85 subunit often leads to changes in p110 expression, hence the clear interpretation of 

redundancy of regulatory subunits is difficult (Vanhaesebroeck, Ali et al. 2005).  

 p101 and p84/p87 regulatory subunits of p110γ are important for the relay of signals by 

Gβγ and Ras (Kurig, Shymanets et al. 2009). These subunits have distinct tissue distribution, 

but both help generation of PI(3,4,5)P3 at the plasma membrane. PI(3,4,5)P3 produced by 

p110γ in complex with the regulatory subunit p101 is endocytosed to motile vesicles associated 

with microtubules, so called “speckles”. For the first time, the authors suggest two diverse PI3Kγ 

complexes, depending on the interacting adaptor of p110γ. The choice of adaptor is leading to 

distinct PI(3,4,5)P3 pools at the plasma membrane, provoking specific cell responses e.g. only 

the regulatory subunit p84/p87 together with p110γ amplifies mast cell degranulation and 

allergic reactions (Bohnacker, Marone et al. 2009). 
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Figure 2: PI3K signalling pathways  

In this scheme isoforms of the PI3K family are depicted in their signalling pathway environments, showing 
typical effectors (such as proteins containing the domains PH, e.g. Akt/PKB binding PI(3,4,5P)3, PX or e.g. 
EEA1 or Hrs containing a FYVE domain binding PI(3)P) and in/outputs of the various kinases. Well-known 
downstream effects are rearrangement of the actin cytoskeleton, leading to polarity of a cell or migration 
of immune cells such as mast cells towards the site of inflammation, directed by class IB PI3K isoform 
(Collmann et al., unpublished data).  Lipid production of PI3K isoforms is usually balanced by 
phosphatases such as PTEN or SHIP. Upon mutations that occur in cancer cells, this important balance 
can be ablated, leading to uncontrolled signalling inputs and hence drastic changes in cell growth or 
migration control. (Prasad, Tandon et al. 2008; Vanhaesebroeck, Guillermet-Guibert et al.) 

 

All p110 subunits have a RBD (Ras binding domain). The contribution of Ras in PI3K 

activation is unclear in normal physiology and in diseases such as cancer where Ras can be 

constitutively activated. Ras is important for p87 bound to p110γ but not for p101 bound to 

p110γ activation (Bohnacker, Marone et al. 2009; Vanhaesebroeck, Guillermet-Guibert et al.). 

Ras is required for maximal signalling by the Drosophila melanogaster p110 class I PI3K 

(Orme, Alrubaie et al. 2006). Mice in which endogenous p110 α cannot interact with Ras (due 

to RBD mutations) are resistant to tumorigenesis induced by oncogenic Ras. This indicates that 

p110 α is an effector of oncogenic Ras in cancer development (Gupta, Ramjaun et al. 2007). 

p110β can be activated by binding to active RAB5 (Kurosu, Maehama et al. 1997). The RAB5-

binding site on p110 β involves the RBD and the C-terminal part of the helical domain. RAB5 is 

present on early endosomes (Kurosu and Katada 2001). P110β has been found in clathrin-

coated vesicles (Christoforidis, Miaczynska et al. 1999; Shin, Hayashi et al. 2005). There might 

be feedback loops between PI3K and GTPases, as PI3K are found both downstream and 

upstream of small GTPases (Vanhaesebroeck, Guillermet-Guibert et al.). GPCRs mainly 

transmit their signal through allosteric activation of heterotrimeric G proteins. It was tested in 

vitro  that Gβγ subunits directly activate p110β and γ but not p110α and δ (Kurosu, Maehama 

et al. 1997). Active Gα-GTP can even inhibit p110α (Ballou, Chattopadhyay et al. 2006; 

Taboubi, Milanini et al. 2007).  



 Introduction 

                                                                                                                                                                           
        

14 

PI(3,4,5)P3 gets converted to PI(4,5)P2 and PI(3,5)P2 by PI-3- or PI-5-phosphatases. A 

major PI-3-phosphatase is PTEN (phosphatase and tensin homologue deleted on chromosome 

10),  which is frequently inactivated in cancer and hence leading to PI3K activation. PTEN can 

couple to p110β (Vanhaesebroeck, Guillermet-Guibert et al.). PI(3,4,5)P3 and PI(3,4)P2 

coordinate the localization of multiple effector proteins which bind these lipids via their PH 

(pleckstrin homology)  domain, e.g. Akt/PKB or Btk. These lipids are mainly generated at the 

plasma membrane (Vanhaesebroeck, Guillermet-Guibert et al.).  

Class I PI3K do not have stable binding partners but can function as scaffolds, e.g. 

p110γ binding to PKC (protein kinase C) (Hirsch, Braccini et al. 2009; Lehmann, Muller et al. 

2009). PI3K can regulate small GTPases from Rac, Ras and Arf families by regulating their 

GEFs (guanine nucleotide-exchange factors) and GAPs (GTPase activating proteins) 

(Vanhaesebroeck, Leevers et al. 2001). Rac is positively regulated by all PI3K isoforms while 

RhoA is negatively regulated by p110δ and p110α does not affect RhoA at all (Eickholt, Ahmed 

et al. 2007; Papakonstanti, Ridley et al. 2007; Papakonstanti, Zwaenepoel et al. 2008).  

Tumour-specific somatic mutations were only found in p110α first (Samuels, Wang et al. 

2004). Later there were some mutations found in p110δ correlated to leukemia (Cornillet-

Lefebvre, Cuccuini et al. 2006). Most mutations in p110α are missense mutations that result in 

an amino acid substitution in so called “hot-spot regions” in the kinase domain or helical 

domain, while there are no mutations found so far in the RBD (Vogt, Kang et al. 2007; Zhao 

and Vogt 2008). “Hot-spot region” mutations examples are His1047Arg or Glu545Lys of p110α 

(Miled, Yan et al. 2007; Mandelker, Gabelli et al. 2009). Amplifications of the p110α gene are 

also reported and have been found for the other isoforms as well (Shayesteh, Lu et al. 1999; 

Kok, Geering et al. 2009). 

 

3.2.2 Class II PI3K 

 
Class II PI3Ks were discovered based on their sequence homology with class I and 

class III PI3K. Their functional context is still poorly understood. Yeast does not have any 

isoforms and only one isoform is found in both D. melanogaster and C.elegans. Mammals have 

three class II PI3K isoforms: PI3K-C2α, PI3K-C2β and PI3K-C2γ. They are molecules of 166-

190kDa in size (Vanhaesebroeck, Guillermet-Guibert et al.). PI3K-C2α and PI3K-C2β are 

broadly distributed in tissue, but PI3K-C2γ is more restricted to liver, breast and prostate tissue 

(Elis, Triantafellow et al. 2008; Kok, Geering et al. 2009).  

Pharmacological inhibitors have not been published so far. Sensitivity to pan-PI3K 

inhibitors are slightly different than for the other classes though. Usually these inhibitors are 

applied at high dosages that already affect class II PI3K, a possible side-effect that should be 

kept in mind for interpretations of PI3K isoform-specific functions (Virbasius, Guilherme et al. 

1996; Domin, Pages et al. 1997; Knight, Gonzalez et al. 2006).  



 Introduction 

                                                                                                                                                                           
        

15 

PX (phox) domain in the C-terminal end of PI3K-C2α can bind PI(4,5)P2, but today it is 

not clear what function this represents (Song, Xu et al. 2001; Stahelin, Karathanassis et al. 

2006). Class II PI3K do not have any regulatory subunits but contain extended N- and C-termini 

(Vanhaesebroeck, Guillermet-Guibert et al.) and Ras binding domains (RBD).  

Activation of class II PI3K might require the relocalization of a cytosolic pool to the 

plasma membrane. Many stimuli have been discovered to activate PI3K-C2α and β, e.g. 

insulin, EGF and PDGF, TNF-α, leptin and LPA (Figure 2). The exact mechanisms are often 

still unclear though (Arcaro, Zvelebil et al. 2000; Elis, Triantafellow et al. 2008).  

PI and PI(4)P are substrates of class II PI3K, whereas in vitro PI3K-C2α can produce 

PI(3,4,5)P3 from PI(4,5)P2 if activated by clathrin (Domin, Pages et al. 1997). PI(3)P are mainly 

localized in endosomes under unstimulated conditions and are bound by PX or FYVE domains. 

Examples of proteins containing such domains are PIKfyve (Fab1), EEA1, HRS (Vps27) or Alfy 

(Birkeland and Stenmark 2004; Di Paolo and De Camilli 2006; Hurley 2006; Lemmon 2008). It 

is still not known to what extent class II PI3K contribute to basal level PI(3)P.  

Downregulation of PI3K-C2α by RNAi does not affect the steady state levels of total 

PI(3)P at the plasma membrane, as demonstrated in L6 muscle cell lines. Eventually do class II 

PI3K contribute to the acute production of PI(3)P, e.g. PI3K-C2α generates the lipids at the 

plasma membrane upon insulin stimulation while there is no increase in lipids at the 

endosomes (Falasca, Hughes et al. 2007). Downregulation of PI3K-C2α but not PI3K-C2β 

leads to a reduction in cell proliferation and viability by induced apoptosis in more than half of 

23 cancer cell lines tested by Elis W. et al.  (Elis, Triantafellow et al. 2008).  

Genetic studies in fly (D. melanogaster, PI3K68D) and worm (C.elegans, F39B1.1) 

provide evidence for a possible link between class II PI3Ks and Tyr kinase signalling pathways 

but there is still investigation required for further details (Ashrafi, Chang et al. 2003; 

MacDougall, Gagou et al. 2004). Links between class II PI3K and EGFR have been proposed 

earlier in human carcinoma cell lines. (Arcaro, Zvelebil et al. 2000) 

In summary, class II PI3Ks are involved in cell migration, glucose metabolism, 

exocytosis, smooth muscle cell contraction and apoptosis (Falasca and Maffucci 2007). Viable 

and fertile null-mice exist for PI3K-C2β but there are no obvious phenotypes in epidermal 

differentiation, the only study done on this mouse strain so far (Harada, Truong et al. 2005). 

 

3.2.3 Class III PI3K 

 
Class III PI3K or Vps34, was originally identified in a screen for genes involved in 

endosomal sorting to the yeast vacuole, the equivalent of the mammalian lysosome (Robinson, 

Klionsky et al. 1988; Herman and Emr 1990). Vps34 is conserved from yeast to plants and 

mammals. It fulfills multiple functions through association with distinct multiprotein complexes. 

Vps34 forms a constitutive heterodimer with Vps15 (p150 in mammals) which is myristoylated 
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and hence locates the complex to intracellular membranes (Vanhaesebroeck, Guillermet-

Guibert et al.).  

In yeast, three complexes including Vps34 have been reported so far: The Vps34-

containing complex involved in autophagy consists of Vps34, Vps15, Atg14 and Vps30. The 

vacuole protein sorting complex contains Vps38 and Vps30 besides class III PI3K and its 

partner Vps15. In a third complex, Vps34 and Vps15 are interacting with Gprotein α subunit 

activated with GTP and lead to a pheromone response upon mating factor binding 

(Vanhaesebroeck, Guillermet-Guibert et al.).  

In mammals, there is also an autophagy complex containing Vps34 and p150 (Vps15), 

ATG14L (also known as barkor), Beclin1, UVRAG, Ambra1, Rubicon and Bif1 (Figure 3). As for 

endosomal trafficking there are different complexes, some consisting of UVRAG with Vps34 

and p150, others containing MTM1 in addition to the PI3K. Effectors are FYVE domain bearing 

proteins such as HRS or ESCRTII and III (Simonsen and Tooze 2009). Vps34-associated 

effector proteins might also regulate the catalytic activity of Vps34, e.g. Bif1 (Bax-interacting 

factor 1) which stimulates the kinase activity in the UVRAG-Beclin1 complex (Liang, Feng et al. 

2006; Takahashi, Coppola et al. 2007).  

Class III PI3K has a limited substrate specificity, generating PI(3)P from PI. It is not clear 

today, which effectors class III and II PI3K share and to what extent their functions overlap 

(Schu, Takegawa et al. 1993; Volinia, Dhand et al. 1995). Studies in C.elegans suggest that 

Vps34-independent sources of PI(3)P exist, as the phenotype of a Vps34-null mutant can be 

rescued by reducing PI(3)P-ase activity. Kinase dead versions could not rescue the deletion 

phenotype in yeast or worm though, hinting that the lipid kinase activity of Vps34 is important 

for its biological functions (Roggo, Bernard et al. 2002; Xue, Fares et al. 2003).  

It is still controversary in the field, whether Vps34 is regulated by extracellular stimuli 

(Figure 2). There is evidence for regulation by nutrients such as amino acids and glucose or 

GPCRs (Byfield, Murray et al. 2005; Nobukuni, Joaquin et al. 2005) in human cell lines while 

similar processes could not be confirmed in other model organisms such as Drosophila 

melanogaster (Juhasz, Hill et al. 2008). GPCR stimulation was proposed to happen in yeast 

during the pheromone response to mating factors. Pheromones lead to the activation and 

dissociation of G protein α subunit from Gβγ at the plasma membrane. It then passes on to the 

endosome where it binds and activates Vps34-Vps15 which leads to increase of PI(3)P 

formation and hence recruitment of PI(3)P-binding effectors. Interestingly, here it is Gprotein α 

subunit that activates the PI3K while it is Gβ γ that binds class I PI3K isoforms (Slessareva, 

Routt et al. 2006). A closer look into this topic is given in the following chapter “Nutrient 

Regulation”. 

Vps34 might also work as a scaffold protein. Homozygous deletions in yeast are viable 

but exhibit growth defects even under non-stressed conditions and, as mentioned before, 

defects in vacuolar protein sorting (Backer 2008). The global deletion of Vps34 in yeast and fly 
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is lethal and null-mice have not been reported so far (Vanhaesebroeck, Guillermet-Guibert et 

al.). All known biological functions of Vps34 in mammals are related to regulation of vesicular 

traffic, e.g. autophagy, endocytosis and phagocytosis. Some studies indicate that class III PI3K 

is controlling amino acid-dependent activation of S6 kinase 1 (Byfield, Murray et al. 2005; 

Nobukuni, Joaquin et al. 2005), this link is still under debate though.  

Vps34’s involvement in autophagy was first shown in yeast (Kihara, Noda et al. 2001). In 

flies, the role of class III PI3K in autophagy is strongly limited to the early formation steps of 

autophagosomes (Juhasz, Hill et al. 2008). In mammals, its role is still not well-defined. The 

origin of autophagosomes is still not clear, but there are links to the Golgi, plasma membrane 

and ER (endoplasmatic reticulum). Omegasomes are cup shaped vesicles formed from the ER 

membrane of amino acid starved mammalian cells, possibly representing nascent 

autophagosomes (Axe, Walker et al. 2008).  
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Figure 3: PI3K class III signalling pathway 

PI3K class III interacts with different effectors than the other isoforms. Shown above is the current view of 
hVps34 in its signalling environment in mammalian cells. Vps34 exists in different complexes: Complex I 
consists of Vps34, p150, Beclin1 and Atg14L/Barkor and is localized at the isolation membrane (IM) 
thought to be at the endoplasmatic reticulum (ER). There are two others, the Ambra1 and the UVRAG 
complex, both are required for autophagy and their name-giving proteins associate directly with Beclin1. 
Ambra1 positively affects Vps34 kinase activity. UVRAG stimulates Rab7 and hence fusion of the 
autophagosome with late endosomes, eventually by recruitment of BIF-1 that could provide the 
machinery to undergo membrane curvature. Literature is still unclear on this.  
Nuc= nucleus, ER= endoplasmatic reticulum, TGN= trans-Golgi network, MVB= multivesicular body 
(Simonsen and Tooze 2009) 
 

 

As Vps34 was found in yeast mutants defective for vacuolar protein sorting, endocytosis 

was checked in other organisms. In D. melanogaster, deletion leads to severe defects in 

pinocytosis (Juhasz, Hill et al. 2008). In mammals, the detailed role class III PI3K in 

endocytosis has been difficult to interpret due to the complexity of the mammalian endosomal 

system. It consists of early and late endosomes, marked by Rab5 and Rab7 respectively. The 

degradation pathway contains an intermediate compartment called multivesicular body (Futter, 

Collinson et al. 2001). Rab5 loaded with GTP interacts with the WD-repeats of Vps15 (p150), 

inducing enhanced PI(3)P production at the endosomes. Effector proteins such as EEA1, HRS 

and ESCRT proteins then bind and maturation of late endosomes, marked by Rab7, takes 

place. In the end, these vesicles fuse with acidic lysosomes, marked by LAMP1. This 



 Introduction 

                                                                                                                                                                           
        

19 

endosomal trafficking is also used for receptor sorting, e.g. for receptor Tyr kinase or 

transferring receptors. Upon Vps34 inhibition, recycling of transferring receptor or 

internalization of PDGF (platelet-derived growth factor) or EGF (epidermal growth factor) 

receptors are delayed (Siddhanta, McIlroy et al. 1998; Murray, Panaretou et al. 2002; Stein, 

Feng et al. 2003; Cao, Laporte et al. 2007; Cao, Backer et al. 2008). Various waves of PI(3)P 

accumulation happen during phagocytosis, probably through Vps34 (Ellson, Anderson et al. 

2001). Contrary to the normal endocytic pathway, in phagocytosis class III PI3K seems to act 

upstream of Rab5 by interaction with dynamin. Dynamin controls clathrin-mediated endocytosis 

(Kinchen, Doukoumetzidis et al. 2008).  

Many diseases are linked to mutations in enzymes that regulate the turnover of PI(3)P, 

such as members of the myotubularin family and PIKfyve. A specific role for class III PI3K is 

less clear, although processes like autophagy are certainly involved in infection and 

inflammation mechanisms (Levine and Kroemer 2008). A role for Vps34 in proliferation has 

been reported in cancer cell lines, but no deletions or inactivating mutations in the VPS34 gene 

have been observed so far. Vps34 might be involved in schizophrenia though (Siddhanta, 

McIlroy et al. 1998; Johnson, Overmeyer et al. 2006; Tang, Zhao et al. 2008). 

 

3.3 PI3K and Cancer 
 

Cancer cells evolve from a benign non-invasive state to metastatic tumors which 

proliferate aggressively out of their normal tissue context. Accumulation of genetic alterations 

lead to multiple inputs to signal transduction pathways, e.g. the PI3K pathway (Fig.4). 

Constitutive activation of PI3K promotes cell mass and cell cycle entry, inhibits apoptosis and 

enhances cell migration, all typical indicaters of cancer cells (Marone, Erhart et al. 2009). There 

are many reasons for increased PI3K activity resulting in abnormally high PI(3,4,5)P3 levels e.g. 

oncogenic Ras, loss of PTEN, constitutively activated protein tyrosine kinase receptors such as 

EGFR or PDGFR or mutated PI3K (mostly class Iα PI3K). PI(3,4,5)P3 are then bound by 

effector proteins containing a pleckstrin homology (PH) domain like Akt/PKB and GEFs 

signalling into growth and metastasis pathways (Wymann and Marone 2005) (Figure 4).  

SHIP1 is a haematopoietic-specific inhibitory enzyme mostly studied for its regulatory 

role in B and T cells, macrophages and mast cells (Rohrschneider, Fuller et al. 2000; Leung, 

Tarasenko et al. 2009). Observations in mice suggest a mechanism in which SHIP1 negatively 

regulates the PI3K pathway by hydrolysis of PI(3,4,5)P3 and might hence control cell 

proliferation in a cancer context (Bunney and Katan).  
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Figure 4: PI3K signalling complexity 

The PI3K signalling network has become complex and it seems to be involved in many diseases. Shown 
above are positive (green dots) and negative (red squares) regulations among the effectors of this pathway. 
Figure from Wymann and Marone, 2005.  
Constitutive activation of PI3K promotes cell mass and cell cycle entry, inhibits apoptosis and enhances cell 
migration, all typical indicaters of cancer cells (Marone, Erhart et al. 2009). There are many reasons for 
increased PI3K activity resulting in abnormally high PI(3,4,5)P3 levels, their lipid product. Examples are 
oncogenic Ras, loss of PTEN, constitutively activated protein tyrosine kinase receptors such as EGFR, 
PDGFR) or mutated PI3K (mostly PI3K class I α). PI(3,4,5)P3 are then bound by effector proteins containing a 
pleckstrin homology (PH) domain like Akt/PKB and GEFs signalling into growth and metastasis pathways 
(Wymann and Marone 2005). SHIP1 is a haematopoietic-specific inhibitory enzyme mostly studied for its 
regulatory role in B and T cells, macrophages and mast cells (Rohrschneider, Fuller et al. 2000; Leung, 
Tarasenko et al. 2009). 
 

 

3.3.1 PI3K and Melanoma (Skin cancer) 

 

Melanoma is a tumor with bad prognosis, especially once it has become metastatic. In a 

Swedish study on primary malignant melanoma, patients’ survival rate within the first five years 

of follow up were as low as 10-15% in both males and females. (Ragnarsson-Olding, Nilsson et 

al. 2009) Melanoma often exhibit already at early stages mutated B-Raf or constitutively 

activated N-Ras. If loss of PTEN occurs, there is an increase in aggressiveness of the tumor, 
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similar to what is seen upon up-regulation of PKB. Mutations in PI3K class I α happen very 

rarely in cutaneous melanoma, it is more likely that the protein is upregulated (Curtin, Stark et 

al. 2006; Omholt, Krockel et al. 2006; Stark and Hayward 2007).  

The PI3K pathway was originally targeted with the potent steroidal fungal metabolite 

wortmannin (Arcaro and Wymann 1993) or LY294002 (Vlahos, Matter et al. 1994), a pan-PI3K 

inhibitor with low potency, low specificity and high toxicity. These inhibitors also inhibit related 

proteins such as mTOR. More recent inhibitors like PI-103 and ZSTK474 led to improved 

specificity. Newer dual inhibitors affecting both mTOR and PI3K are in clinical trials now, 

treating patients with advanced malignancies. In a study by Marone et al. in 2009, we reported 

our results on NVP-BEZ235 tested in mice and in vitro. This compound blocked proliferation of 

melanoma cells by G1 cell cycle arrest and was well tolerated in mice. Both primary tumor (up 

to 60% reduction) and metastases were greatly reduced upon treatment while no adverse 

effects on the immune system was observed. Angiogenesis for the nutrient supply of the tumor 

was shown to be sensitive to the inhibitor tested, as we could see a clear reduction of 

neovascularization in mice treated with this compound. Most probably it was a combination of 

effects on the PI3K/mTOR pathway in addition to the VEGF receptor (vascular endothelial 

growth factor), as VEGFR inhibitors were not as efficient. NVP-BEZ235 not only reduced 

proliferation of tumor cells in mice but also augmented tumor necrosis (Marone, Erhart et al. 

2009).  

Tormo et al. described the therapeutic induction of autophagy in melanoma cells in a 

recent publication in Cancer Cell. The authors used three different mouse models: In the first 

mouse model, B16 melanoma cells were inoculated in immunocompetent mice. In their second 

model, they used GFP-labelled B16 or SK-Mel-103 cells in SCID-beige mice. Their third 

approach was a disease model using Tyr::NRASQ61K; INK4a/ARF-/- mice, that exhibit features 

similar to the human disease. These mouse models were used to show that melanoma cells 

retain an innate immune system response to recognize cytosolic double-stranded RNA 

(dsRNA) and start stress response programs to block tumor growth. The dsRNA was identified 

to be an inducer of autophagy, requiring Atg5 for the cell death process. Knockdown of Beclin1 

led to cellular senescence or cell death in many melanoma cell lines tested. As Atg5 

knockdown was lethal, too, they used Atg5-/- MEFs which showed a similar reaction to dsRNA 

as observed earlier in their melanoma cell lines. The authors conclude from their results that 

their artificial dsRNA induced an early but persistent autophagy and a late apoptotic program, 

hence killing the melanoma cells (Tormo, Checinska et al. 2009).  

Another publication describing apoptosis and autophagy induction in melanoma cell lines 

was written by Liu et al. They conclude that in a A375 melanoma cell line, application of 

polygonatum cyrtonema (PC) lectin induces cell death by autophagy followed by apoptosis 

through mitochondria-mediated ROS-p38-p53 pathways. Beclin1 levels were increased after 

treatment with PC lectin and mature forms of LC-3 were observed, all representing symptoms 
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of autophagy. ROS (reactive oxygen species) were generated and p38 (MAPK) and p53 (tumor 

suppressor involved in cell cycle control) activated as well, evidence for increased apoptosis 

(Liu, Cheng et al. 2009). 

  

3.4 Nutrient regulation 
 

There are two mTOR complexes (Figure 8), of which mTORC1 (containing mTOR, 

raptor, PRAS40 and mLST8) is rapamycin-sensitive and controls cell growth, metabolism and 

autophagy through various signals, among them amino acids. A typical readout is 

phosphorylation of downstream substrate S6K1 and 4EBP1.  

In the study of Byfield et al. in 2005, HEK293T cells overexpressing hVps34 exhibited a 

two-fold increase in S6K activity, similar to what can be observed upon stimulation with insulin. 

Blocking hVps34 function by overexpressing FYVE domain-construct did bind and hence block 

PI(3)P signalling indicated by ablation of EEA1 endosomal localization. Other attempts to block 

hVps34 by antibodies targeting the kinase or by application of siRNA gave similar results in 

HeLa cells. Overall, Byfield et al. suggested that both hVps34 and its product PI(3)P are 

required for both amino acid and insulin-stimulation of S6K1. They admit the possible 

differences in mammalian and yeast pathways, as observed for AMPK’s role in autophagy 

(Wang, Wilson et al. 2001; Byfield, Murray et al. 2005).  

Another group claimed to have found a link between mTORC1 and hVps34 in the same 

year, Nobukuni et al. working with siRNA technique in HEK293 and HeLa cells. Their results 

showed that effects of amino acids on S6K1 Thr398 phosphorylation are not mediated by 

TSC1/2. Wortmannin, a pan-PI3K inhibitor, did block the amino acid response though. It could 

be shown that this did not happen via class I PI3K. Under amino acid deprivation, little PI(3)P 

was detected in their cells. Upon knockdown of hVps34, they saw a coordinate reduction in 

amino acid-induced phosphorylation of S6K1. Hence they suggested hVps34 to be an 

upstream regulator of amino acid signal input towards mTORC1 (Nobukuni, Joaquin et al. 

2005) (Figure 5). Amino acid activation of mTORC1 increases growth while it suppresses 

autophagy. Hormones and growth factors activate the Tor complex through canonical signalling 

via PI3K class I, in contrast, amino acids stimulate the complex via PI3K class III.  

In a study by Gulati et al. in 2008, they claimed that amino acids induce an increase in 

intracellular calcium and in response enhanced binding of calmodulin (CaM) to hVps34 (Figure 

5). This binding then leads to activation of the mTORC1 signalling. Agents that increase 

calcium levels within the cell have been reported to induce S6K1 phosphorylation without 

inducing PKB activation. HeLa cells were treated with BAPTA-AM, a calcium chelator. 

Treatment caused an attenuation of S6K1 activation under restimulation with amino acids. 

Similar effects were seen after application of EGTA, another calcium chelator. To check 

calcium levels within the cells, Gulati et al. used a calcium-sensitive indicator called Fluo-4. 
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Addition of amino acids led to a rapid increase in calcium levels. Leucine alone induced a 

similar reaction, influx of extracellular calcium. Thapsigargin (calcium-ATPase inhibitor) 

treatment gave supporting results. Removal of leucine form the medium inhibited hVps34 

activity to the same extent as removal of total amino acids. Treatment with W7, a cell-

permeable CaM antagonist, blocked the phosphorylation of S6K1 Thr398 by amino acid 

stimulation. Calmodulin was found to interact with hVps34 if calcium was present in vitro and 

no treatment with EGTA was applied. SiRNA knockdown of hVps34 abrogated the interaction 

of CaM-beads with mTOR, but hVps34 and mTOR seem to interact independently of calcium 

and amino acids. Analysis of the sequence of hVps34 revealed a potential CaM-binding motif in 

the PI3K accessory domain. In their experiments, calcium seemed to stabilize the interaction 

between CaM and hVps34. Moreover, treatment with calcium chelators even abolished the 

kinase activitiy in vitro. Overall, this study showed that the rise in intracellular calcium levels 

increases the direct binding of calcium/CaM to a conserved motif in hVps34 which is required 

for kinase activity and increased signalling towards mTORC1 upon amino acid stimulation, 

especially leucine availability (Byfield, Murray et al. 2005; Nobukuni, Joaquin et al. 2005; 

Wullschleger, Loewith et al. 2006; Gulati, Gaspers et al. 2008). 

              

 

 
   

Figure 5: mTORC1 signal inputs 

 

According to Gulati et al. amino acids signal towards mTORC1 via calcium which then binds to calmodulin 
and triggers a response from hVps34. Due to a conformational change in the signalosome, mTORC1 
phosphorylates the ribosomal S6K1 upon this response by hVps34. (Gulati, Gaspers et al. 2008) 
 

 
 
Juhasz et al. generated mutants of the Drosophila melanogaster orthologue of hVps34 

which resulted in defects in autophagosome formation and endocytosis. In contrast to what has 

been described by other research groups (Byfield, Murray et al. 2005; Nobukuni, Joaquin et al. 

2005; Gulati and Thomas 2007), Juhasz et al. did not find any effects on TOR signalling in 

these Vps34 mutants in the fly. Instead they observed regulation through TOR and Atg1 of 

starvation-induced recruitment of PI3P to nascent autophagosomes. Their results suggest that 

at least in the fly, Vps34 is regulated by TOR-dependent nutrient signals at the site of 
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autophagosome formation. TOR mutants show a decrease in cell size, while neither Vps34 

mutants nor cells overexpressing kinase-dead Vps34 did. Proliferation was not affected either, 

indicating that in fly eye imaginal disc cells, TOR signalling is not compromised in Vps34 

mutants. Readouts such as phosphorylated Thr398 of S6K1 were not affected in Vps34-

deficient cells. According to their data, Vps34 seems to be acting downstream of TOR-

dependent nutrient signalling in the fruit fly (Juhasz, Hill et al. 2008). 

 

                                               

 

 

Figure 6: Schematic view of TOR’s in- and outputs 

 

According to Kim et al., amino acids signal towards Rags which then activate TOR to both block 
autophagy and trigger protein synthesis and cell growth. Unknown so far is if and how TSC1/2 complexes 
could block Rags. (Kim, Goraksha-Hicks et al. 2008)  
 

 
 
 
A recent review by Avruch et al. focuses on the mechanisms by which mTORC1 is 

regulated by amino acids. They state that there are both pro and contra to the involvement of 

class III PI3K in amino acid regulation of TOR signalling. Extracellular amino acids are capable 

of regulating hVps34 lipid kinase activity (Byfield, Murray et al. 2005), possibly through a 

calcium-dependent mechanism (Gulati, Gaspers et al. 2008). Depletion of hVps34 or hVps15 

(p150) inhibits S6K1 phosphorylation (Nobukuni, Joaquin et al. 2005). HVps34 can be co-

precipitated with mTOR, hence hVps34 might activate mTORC1 via generation of its lipid 

products, PI(3)P (Gulati, Gaspers et al. 2008). On the other hand, in fly (Juhasz, Hill et al. 

2008) and worm (Roggo, Bernard et al. 2002), no impact of Vps34 depletion was observed 

when TOR signalling was investigated.  
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Figure 7: Nutrient signalling input towards mTORC1 

Rag GTPases activate mTORC1 upon amino acid (AA) stimulation, mainly leucine and arginine. Whether 
MAP4K3 acts directly on Rags is content of discussions in the field today. (Sengupta, Peterson et al.; 
Zoncu, Efeyan et al.) 

 
  

Yan et al. in their recent publication in 2009 state that according to their studies, hVps34 

does require hVps15 (p150) for kinase activity also in nutrient regulation and does bind CaM in 

vitro, but they could not observe any effects after treatment with BAPTA-AM or W7. hVps34 

seemed unaffected by calcium chelation in vitro. In representative mammalian cells (here 

Chinese-hamster ovary cell line), hVps34 seems to be clearly regulated through ist interaction 

with hVps15 (p150), but independent of calcium and calmodulin (CaM). Yan et al. discovered 

that residual EGTA (calcium chelator) can block hVps34 activity, hence the putative 

misinterpretation of Gulati et al. The suggested CaM-binding motif in hVps34, which they had 

found by mutations in the helical domain, could also be an artefact. Mutations of this area were 

all hydrophobic-to-charged alterations which might simply disrupt the folding and hence lead to 

loss of activity of hVps34 (Yan, Flinn et al. 2009). 

In an attempt to find interacting partners of mTORC1 that have been hidden by technical 

issues so far, Sancak et al. discovered RagC, a small GTPase related to Ras (Figure 6 and 7). 

There are three other Rags, termed RagA, B and D. RagA and B are orthologues of yeast 

Gtr1p, while RagC and D are orthologues of yeast Gtr2p. As RagC copurifies with raptor and in 

yeast Gtr1p and 2 regulate microautophagy and vacuolar sorting, they checked for interaction 

of the mammalian proteins in HEK293T cells. Rags function as heterodimers, RagA/C or B/D 

(Figure 7 and 8). They do not directly stimulate kinase activity of mTORC1 in vitro, but regulate 
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the localization within the cell upon amino acid signalling. Sancak et al. propose that since both 

mTOR and Rheb are present in Rab7-positive endosomes after amino acid stimulation, amino 

acids might control the mTORC1 pathway via the Rag proteins in order for mTORC1 to meet its 

activator Rheb. This hypothesis would explain why activators of Rheb, e.g. insulin, do not 

stimulate the mTORC1 pathway when cells are in a nutrient deprived state (Sancak, Peterson 

et al. 2008; Sengupta, Peterson et al.; Zoncu, Efeyan et al.). 

Many signals, including amino acids, are known to activate mTORC1. Kim et al. 

identified the small GTPases Rags as activators of TORC1 in response to amino acid signals 

(Figure 6). In Drosophila melanogaster, knockdown of Rags led to suppression of stimulation of 

TORC1 by amino acids, while expression of constitutively active Rags (GTP-loaded) activated 

TORC1 when phosphorylation of dS6K at Thr398 was taken as readout. Rags are apparently 

regulating cell size as expected of a TOR regulator, as well as autophagy and survival during 

starvation. Especially dRagA could be shown to be involved in a nutrient response to amino 

acids (Kim, Goraksha-Hicks et al. 2008). 

Another player in the TOR nutrient sensing field has been discovered by Findlay et al. in 

Drosophila melanogaster. MAP4K3 (CG7097 in the fly), a Ste20 family member, seems 

required for maximal S6K/4EBP1 phosphorylation and regulates cell growth. It is itself 

regulated by amino acids but not insulin and insensitive to rapamycin, suggesting that MAP4K3 

is not downstream of TOR but upstream in this pathway. An almost complete knockdown of 

MAP4K3 was required to get efficient suppression of S6K1 phosphorylation at Thr398, while 

the effect seemed independent of TSC1/2 complexes. They picture MAP4K3 in a signalling 

branch parallel to TSC1/2, passing on signals from amino acid input towards mTORC1 

(Findlay, Yan et al. 2007). 

Nicklin et al. showed in 2009 that cellular uptake of L-glutamine and ist subsequent rapid 

efflux in the presence of essential amino acids (EEA) activates mTORC1. SLC1A5 (solute 

carrier family 1 member 5 or ASCT2), a high-affinity transporter for L-glutamine, regulates this 

uptake and loss of the sodium-dependent transporter results in reduction of cell growth and 

activation of autophagy. SLC7A5 (LAT1)/SLC3A2, a bidirectional transporter, regulates the 

simultaneous efflux of L-glutamine and transport of L-leucine/EEA into cells. The exchange of 

L-glutamine for L-leucine happens before S6K1 activation as they showed in HeLa cells. They 

claim that SLC1A5 and SLC7A5 may act upstream of TSC1/2 to mediate amino acid signals 

towards mTOR. The findings seemed independent of cell types, as similar results were 

obtained in MCF-7 breast cancer cells. SLC1A5 and L-glutamine suppressed autophagy in 

RT112 cells, a human urinary bladder carcinoma cell line. Overall, Nicklin et al. presented 

amino acid transporters upstream of mTORC1, which are involved in regulation of autophagy 

by bidirectional transport of AA (amino acids) (Nicklin, Bergman et al. 2009).  

Wang and Proud summarized today’s knowledge of nutrient control concerning TORC1 

in a review in Trends in Cell Biology in 2009. In order to illustrate the above mentioned 
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publications on the composition of mTOR complexes, Rags, upstream control of mTORC1 by 

amino acids and putative links between mTORC1 and autophagy/hVps34, figures from this 

article are pasted below  (Figure 8) (Wang and Proud 2009).  

 

           

Figure 8: Nutrient control controlled by mTORC1 

Schemes above illustrate today’s knowledge of nutrient control involving mTORC1 (details on left panel) 
and Rag GTPases. (Wang and Proud 2009) 
Left panel: mTOR consists of several domains; helical HEAT repeat domains found in many cytoplamic 
proteins, a FAT domain for stability (found in FRAP-ATM-TTRAP), a FRB domain which is bound by 
FKBP12-rapamycin upon inhibition of mTOR by rapamycin, a kinase domain and a C-terminal FAT 
domain (FATC). 
Right panel: Putative ways of extracellular stimulation via Rags towards mTORC1 are depicted in this 
scheme. Amino acids, mainly leucine, are thought to signal to MAP4K3 (in parallel to insulin signals 
towards TSC1/2), which then either stimulates mTORC1 or Rheb directly or via heterodimeric Rags that 
first need to activate mTORC1 prior to further signalling.  

 
 

3.5 Autophagy 
 

3.5.1 Yeast Autophagy 

 
Autophagic bodies in yeast were first described as such by Takeshige et al. in 1992. In 

their study they transferred mutants lacking different proteinases and carboxypeptidase Y 

(CPY) from a nutrient rich to a synthetic medium devoid of various nutrients and observed 

“spherical bodies” in the vacuoles that they called “autophagic bodies”. The contents of these 

400-900nm in diameter sized bodies were organelles usually found in the cytosol. 

Accumulation of autophagic bodies were not only induced by nitrogen starvation but also by 

depletion of nutrients such as carbon or single amino acids that in response caused cell cycle 

arrest. PMSF (phenylmethylsulfonyl fluoride) seemed to reversibly induce the same phenotype 

in wild type cells (Takeshige, Baba et al. 1992). 
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A year later, the same research group published a list of APG genes (later termed ATG 

genes). These were supposed to be involved in autophagy in yeast, i.e. APG1-15. Mutants 

defective for these genes did not accumulate autophagic bodies under nutrient-depleted 

conditions, were defective in protein degradation in the vacuoles induced by nitrogen starvation 

and lost viability much faster than wild type yeast if starved. Homozygous diploids of each APG 

mutant did not sporulate (Tsukada and Ohsumi 1993). 

“Autophagosomes” were first described by Baba et al. as double membraned structures 

that apparently fused with vacuoles, hence they were thought to be precursors of autophagic 

bodies (Figure 10 and 11). Electron microscopy was applied to investigate the process. They 

often detected a cup-shaped structure next to clusters of autophagosomes which they 

interpreted as newly forming autophagosomes. As for the origin of the membranes involved 

they assumed it to be either smooth ER (Dunn 1990) or from post-Golgi (Baba, Takeshige et al. 

1994). 

In yeast there are various flavours of autophagy, two major forms are macroautophagy 

and microautophagy. In macroautophagy, the initial sequestration takes place away from the 

vacuole, resulting in cytoplasmic compartments called autophagosomes (Figure 10). 

Microautophagy on the other hand describes a process where the limiting membrane of the 

vacuole starts to invaginate, pinching off small vesicles that contain material from the cytosol. A 

variation thereof is micropexophagy, where peroxisomes are taken up into the vacuole. Micro- 

and macroautophagy are not mechanistically identical in S. cerevisiae. Yeast possess yet 

another pathway to the Cvt-pathway, “cytoplasm-to-vacuole-transport”, which takes place 

constitutively. Maturation of prApe1 (precursor of mApe1, mature Ape1) can be used as a 

marker of autophagy in yeast strains defective for Cvt trafficking but not autophagy. A majority 

of genes are shared by the two distinct pathways, e.g. Vps34 and Atg9 are involved in both 

processes. On the other hand, Cvt9 is only part of the Cvt machinery and Atg17 only found 

during autophagy. Proteasomes are another location for degrading proteins in yeast, but this 

machinery requires specific polyubiquination signals on the proteins to be degraded or unfolded 

proteins for the UPR, unfolded protein response. Mitochondria are recycled in a process called 

mitophagy (Abeliovich and Klionsky 2001). 
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Figure 9: Autophagy and Endosomal trafficking complexes in yeast and mammals 

Although the complexes for autophagy and endosomal trafficking differ slightly in yeast (panel a) and 
mammalian cells (panel b), many homologs have been found already. (Vanhaesebroeck, Guillermet-
Guibert et al.)  

 

3.5.2 Autophagy in Mammalian Cells and in other Organisms 

 
In 1999, Liang et al. described Beclin1 (Figure 9), the human orthologue of yeast 

Atg6/Vps30, to be a tumor suppressor. Beclin1 is a Bcl-2-interacting, coiled-coil protein and is 

deleted in 40-75% of sporadic human breast cancers and ovarian cancers (Aita, Liang et al. 

1999). It has structural similarity to the yeast protein Atg6p, so that Beclin1 expression can 

promote autophagy in atg6 deletion mutants. The human cancer cell line MCF-7 does not 

express detectable endogenous Beclin1 levels. Upon stable conditional transfection with 

Beclin1, autophagic vacuoles marking nutrient deprivation-induced autophagy could be 

observed in these cells. No evidence of apoptosis was found, the nuclei appeared normal. 

Induced autophagy seemed to reduce proliferation rates and led to flatter appearance, larger 

size and increased contact inhibition of the cells. Clonigenicity in vitro was highly impaired and 

injection into nude mice gave rise to significantly less tumor formations. Out of eleven tested 

human breast carcinoma cell lines, only three expressed endogenous Beclin1 while all 32 

samples of normal breast epithelial tissue stained for strong Beclin1 immunoreactivity. The 

authors suggest that Beclin1 is a key enzyme in inhibition of tumorigenesis through autophagy 

(Liang, Jackson et al. 1999). 

Alfy, was discovered by Simonsen et al. in 2004. It represents a 400kD protein that 

contains a FYVE-domain and WD-40 repeats. Results in HeLa cells suggest that Alfy is indeed 

binding PI(3)P and colocalizes with protein granules and autophagic membranes. Alfy-positive 

structures accumulate in the cytoplasm after serum and amino acid starvation. These structure 

at least partially costain with autophagy markers such as LC-3 and hAtg5. The authors imply a 

scaffold role for Alfy in the autophagic machinery as it recognizes protein aggregates and 

localizes close to ubiquitin-loaded structures (Simonsen, Birkeland et al. 2004). 



 Introduction 

                                                                                                                                                                           
        

30 

Zeng et al. described a new role for Beclin1 in 2006. In U-251 glioblastoma cells 

immunoprecipitates contained not Bcl-2 but hVps34. Knockdown of Beclin1 blocked autophagy 

induced by nutrient deprivation or C2-ceramide. Endocytosis on the other hand was not 

impaired, as EGFR sorting or internalization of fluid phase markers such as HRP were not 

affected. Their results suggested that Beclin1 was not a simple chaperone or adaptor of the 

hVps34 complex in normal vesicular trafficking but mainly a positive regulator of the autophagic 

pathway (Zeng, Overmeyer et al. 2006). These findings were in agreement with results in 

Caenorhabditis elegans published earlier by another group (Melendez, Talloczy et al. 2003). 

The group of Vojo Deretic showed in 2006 that autophagy can be used as a mechanism 

to reduce bacterial load i.e. as defense against intracellular pathogens (Figure 13). In their 

study, they had a closer look at murine Irgm1 of the family of immunity related GTPases (IRG). 

IFN-γ (interferon γ) induces autophagy in macrophages, but expression of Irgm1 by itself 

already leads to onset of autophagy in macrophages. Cells exhibited a MDC 

(monodansylcadaverine)-positive profile, a preliminary marker for autophagic organelles. 

Classical inhibitors of autophagy e.g. wortmannin and 3-MA (3-methyladenine) inhibited this 

reaction. The autophagosome-like structures detected  in their experiments showed double-

membrane character, known as phagophores i.e. nascent autophagosomes. Irgm1 seemed 

important in early stages of autophagosome formation, in detail in LC-3 (human Atg8) 

maturation. Further steps of such autophagic processes seemed to depend on Beclin1 and the 

usual autophagy complex subunits. Similar results were obtained in human cell lines, U937, 

HEK293T and HeLa. Human macrophages behaved the same way, IRGM (human orthologue 

of murine Irgm1) inducing autophagy as seen earlier in murine cells. Unlike the IRG family in 

mice, the human IRGM is not activated by IFN-γ. Nonetheless did IRGM participate in IFN-γ or 

starvation induced autophagy in human macrophages, indicating a more general role for IRGM 

in autophagy. More details on the role of IRGM in defense against intracellular pathogens 

require further investigations (Singh, Davis et al. 2006). 

In 2006, Liang et al. identified a novel coiled-coil UV irradiation resistance-associated 

gene (UVRAG) that positively regulated the Beclin1-hVps34 complex. UVRAG is 

monoallelically mutated at a high frequency in human colon cancers, hence it is a candidate to 

be a tumor suppressor. UVRAG and Beclin1 interdependently induce autophagy. The new 

player promotes autophagy and suppresses proliferation and tumorigenicity of human colon 

cancer cells tested in their study (Liang, Feng et al. 2006). In a later publication, the same 

author claimed that UVRAG binds Beclin1 and interacts with the endosomal fusion machinery. 

Rab7 gets stimulated and autophagosomes then fuse with late endosomes, enhancing delivery 

of autophagic cargo to the lysosome. UVRAG-endosomal sorting is genetically separate from 

UVRAG-Beclin1-mediated autophagosome formation. UVRAG therefore functions as a 

multivalent trafficking effector (Liang, Lee et al. 2008). 
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Another positive regulator of autophagy directed by Beclin1 is Ambra1, discovered by 

Fimia et al. in 2007. Ambra1 (Activating molecole in Beclin1-regulated autophagy) bears a 

WD40-domain at its N-terminus and has a crucial role in embryogenesis. Ambra1 

downregulation led to reduced capability of Beclin1 to interact with hVps34 and also kinase 

activity of Vps34 was impaired in these cells. Upon functional deficiency, severe neural tube 

defects were observed in mouse embryos as autophagy was impaired, ubiquitinated proteins 

aggregated and cell proliferation became unbalanced while apoptosis was strongly increased 

(Fimia, Stoykova et al. 2007). 

To date it is not clear where the membranes of autophagosomes originate from. In 2008, 

Takahashi et al. published a study in which they describe Bif-1 (Endophilin B1), a member of 

the endophilin family. Bif-1 possesses membrane binding and liposome tubulation activities. 

Under nutrient deprivation conditions, Bif-1 accumulates in punctate structures that colocalize 

with LC-3, Atg5 and Atg9, markers of autophagosomes. Bif-1 positive vesicles were shown to 

fuse with Atg9-positive small membranes to form autophagosomes in both HeLa and COS7 

cells. As the N-BAR domain of Bif-1 interacts with Beclin1 through UVRAG and promotes 

activation of hVps34, they suggest Bif-1 to be a potential regulator of autophagosome formation 

(Takahashi, Coppola et al. 2007; Takahashi, Meyerkord et al. 2008). 

Axe et al. described autophagosome formation from membrane compartments 

connected to the endoplasmatic reticulum (ER) (Figure 10 and 11). They applied a novel 

protein termed DFCP1 (double-FYVE domain-containing protein 1)  and observed PI(3)P lipids 

translocating from unusual localizations on ER and Golgi membranes to autophagosomes upon 

amino acid starvation. Translocation was dependent on hVps34 and Beclin1 in the HEK293 

cells tested (Axe, Walker et al. 2008).  
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Figure 10: From omegasomes and autophagosomes 

According to Simonsen et al., omegasomes are precursors of autophagosomes. Omegasomes obtained 
their name from their “omega”-shape, originating from endoplasmatic reticulum (ER). (Simonsen and 
Stenmark 2008) 

 
 

 

                         

 

 

Figure 11: Autophagosome formation- three dimensional 

Three-dimensional scheme of autophagosome formation from ER. Early formation is controlled by Vps34, 
amongst other proteins. DFCP1 is a newly proposed marker for early autophagosomes, colocalizing with 
PI(3)P and LC3. (Axe, Walker et al. 2008) 

 
 
ESCRT complexes are involved in endosomal protein sorting, among many functions 

they are required for membrane fission during viral budding. Alix, binding members of ESCRT 

complex I and III, was hypothesized to control autophagy alike ESCRT proteins. Petiot et al. 

could show that Alix is not influencing the degradation of the EGFR and does not influence 

autophagy. Hence, autophagy requires the function of ESCRT proteins, but Alix is only required 

for viral budding and cytokinesis (Petiot, Strappazzon et al. 2008). More details on the ESCRT 
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machinery were described in an article by Wollert et al. in 2009, summarizing all the proteins 

involved. Structural information was nicely presented by Im et al. in Developmental Cell in the 

same year, see figure 11 below (Im, Wollert et al. 2009; Wollert, Yang et al. 2009).  

 

 
 

 

Figure 12: Structures of human versus yeast ESCRT-II 

Depicted are structures of alpha-helices of Vps20-ESCRT-II supercomplex, showing how the curvature of 
membranes during endosomal sorting might take place. (Im, Wollert et al. 2009) A) Digital modeling of 
Vps20 according to crystal structure of Vps24. B) Model of human ESCRT-II-Vps20 supercomplex. C) 
Yeast ESCRT-II-Vps20 supercomplex model. D) Proposed mechanism for negative curvature during 
membrane docking of human ESCRT-II-Vps20 supercomplex.   

 
The most recently discovered players in autophagic processes were described by 

Mauvezin et al. and Dikic et al., nicely reviewed by Spowart and Lum in 2010. DOR, a nuclear 

protein, is involved in stress-induced autophagy. It exits the nucleus and relocates to punctate 
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cytoplasmic structures, presumably autophagosomes upon stress. DOR does not remain 

associated with the autophagic machinery, hence it might be a cofactor to target material to the 

autophagosomes in a recycling manner. DOR has as well been found in Drosophila 

melanogaster, not to be mixed up with Dor, the homologue of Vps18. Nix is a selective 

autophagy receptor that mediates mitochondrial clearance and is found during maturation of 

reticulocytes (Mauvezin, Orpinell et al.; Novak, Kirkin et al.; Spowart and Lum). 

 

 

    

Figure 13: Autophagy- Endosomal sorting- Phagocytosis 

 
Vps34 is involved in all three processes, changing interactors but always binding to its adaptor 
p150/Vps15. The cell responds to a variety of stimulations, be it nutrient deprivation or GPCR-bound 
ligands. In the end cargo is transported to the lysosome in all cases, autophagy, endosomal trafficking or 
phagocytosis. (Vanhaesebroeck, Guillermet-Guibert et al. 2010)  

 
 

3.5.3 PI3K and Autophagy 

 
Inactivation of Atg orthologues in higher eukaryotes has shown that the autophagic 

machinery is highly conserved throughout evolution. 31 Atg genes have been described in 

yeast, of which 18 are involved in starvation-induced autophagosome formation. These core 

Atg proteins are divided into four subgroups: 1. Atg1/ULK1 and their regulators, 2. Vps34 

complex I (Vps34, Vps15/p150, Atg14/Atg14L and Vps30/Atg6/Beclin1 or their mammalian 

orthologues, together with Rab5) (Vps34 complex II contains Vps38/UVRAG instead of Atg14/L 



 Introduction 

                                                                                                                                                                           
        

35 

and plays a role in endosomal sorting), 3. Atg9 cycling complex, 4. ubiquitin-like proteins Atg12 

and Atg8/LC-3 and their conjugation systems.  

Other complexes seem important for autophagy function, such as COP I (coat protein 

complex I) which maintains ER-Golgi transport and hence endosomal/lysosomal function and 

also ESCRT complexes 0-III (endosomal sorting complex required for transport) which are 

required for MVB (multivesicular body) formation and sorting of ubiquitinated integral 

membrane receptors towards the MVB. Many ESCRT proteins are essential for autophagy, as 

deletion of Vps27/HRS or Vps4 (AAA-ATPase) results in accumulation of nondegradative 

autophagosomes. There are contradictory results though in yeast, challenging this hypothesis 

in favor of endosome-fusion-defect hypothesis.  

Another complex is the socalled HOPS (homotypic vacuole fusion and protein sorting) 

complex, containing Vps11, 16, 18, 33, 39/Vam6 and Vps41 in yeast. The HOPS complex 

regulates tethering and fusion of endosomes to the vacuole in yeast and lysosomal delivery 

and autophagosome maturation in the fly. If the same complex and function is conserved in 

mammalian cells still needs to be investigated, as mammalian UVRAG does not cover all 

functions of yeast Vps38 for example.  

The CORVET (class C core vacuole/endosome tethering) complex consisting of Vps3 

and 8 in addition to core proteins exists in yeast and interacts with Vps21, the orthologue of 

mammalian Rab5. CORVET and HOPS function overlap in certain cases, hence the eventual 

difference from yeast to human context.  

Another Vps34 complex contains Rubicon (RUN domain and cysteine-rich domain 

containing, Beclin1-interacting protein), which in contrast to Atg14L reduces hVps34 activity. 

(Figure 14) Rubicon is found both on early and late endosomes, possibly regulating autophagy 

at multiple steps (Simonsen and Tooze 2009). 

 

 

    

     

 

 

Figure 14: Autophagy players 

 
Rubicon and Atg14L both bind to Vps34-containing complexes regulating autophagy, they have distinct 
functions though. Rubicon reduces hVps34 activity, in contrast to Atg14L. (Zhong, Wang et al. 2009) 

 
 

Vergne et al. found Jumpy (MTMR14) , a PI(3)P phosphatase, to be associated with 

early autophagosomes. Jumpy controls the recruitment of Atg18 (WIPI-1) and affects the 
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distribution of Atg9 and LC-3. For the first time, the initiation of autophagy is controlled not only 

by PI(3)P producing kinase but also by a specific PI(3)P phosphatase which apparently is even 

linked to disease, e.g. congenital centronuclear myopathy (Vergne, Roberts et al. 2009). 

 

  

3.5.4 Cancer Therapy- Pro or Contra Autophagy? 

 
Beth Levine published a collection of questions and answers on autophagy and its role in 

cancer in Nature Cell Biology in 2007. An important evolutionary conserved function of 

autophagy is to help maintain the synthesis of essential proteins when nutrients are limited. 

Through protein recycling, activated autophagy can ensure cell’s survival even if general 

protein translation is shut down. In contrast to apoptosis that invariably leads to cell death, 

autophagy usually contributes to cell survival. It can induce a cell death program if the apoptotic 

machinery is impaired or when autophagy is strongly increased that the cells literally “eat 

themselves to death”. Cancer cells often confer resistance to apoptosis and many 

chemotherapeutic reagents induce autophagy. DNA damage is prevented by autophagy, 

probably by removing sources of oxidative stress, e.g. defective mitochondria or endoplasmatic 

reticulum. For these reasons, autophagic mechanisms can be considered beneficial for cancer 

therapy. On the contrary, some autophagy-specific genes might promote survival of cancer 

cells by allowing growth during poor nutrient conditions. When a tumor reaches 0.2-2mm in 

diameter , nutrients, growth factors and oxygen cannot diffuse efficiently to the cells at the 

center of the tumor mass due to inadequate vascularization. Hence autophagy might actually 

facilitate a tumor’s survival in some cases (Folkman 2006). So far, there are contradictory 

experimental results in the literature as for whether “autophagy is cancer’s friend or foe”. Most 

probably it depends on the individual circumstances (such as vascularization in tumor 

environment, stage of tumor development etc.) and genetic background of the cancer cells if 

autophagy should be turned on or off by chemical compounds and which proteins are best to 

target (Levine 2007). 

In a review in 2008, Jin and White state that due to its protective role in maintaining 

energy homeostasis and protein/organelle quality control, autophagy might be a tumor 

suppressing mechanism managing metabolic stress. Cellular damage manifests in activation of 

DNA damage response and may promote tumor initiation or drive cell-autonomous tumor 

progression. Autophagic processes usually localize to regions in solid tumors that are 

metabolically stressed. Defects in autophagy can then cause increased cell death and 

inflammation. These cytokine reactions lead to even more accelerated tumor progression. 

Hence, autophagy might be a tumor suppressor and future investigations should identify 

human tumors with deficient autophagy and develop more rational cancer therapies making 

use of the autophagy mechanisms (Jin and White 2008).   
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Dalby et al. published a recent review focusing on autophagy as a novel therapeutic 

strategy in cancer treatment. Autophagy has been described as programmed cell death type II 

(PCD-type II), a non-apoptotic form which is caspase-independent. Proapoptotic Bcl-2 family 

members such as Bak and Bax cause mitochondrial out membrane permeabilization and 

cytochrome c release. In knockout fibroblasts, resistance to apoptosis and induction of 

autophagic cell death was observed after starvation (Moretti, Attia et al. 2007). Several 

compounds have also been found to stimulate PCD-type II, e.g. rottlerin (Akar, Ozpolat et al. 

2007). Autophagy might therefore function as an alternative cell death program in cells which 

are apoptosis defective or in which it is hard to induce. Examples of cancer types where 

autophagy might be beneficial for treatment are pancreatic cancer and breast cancer.  PKCδ 

positively regulates the expression of TG 2 (tissue transglutaminase 2), which suppresses 

autophagic cell death. Knockdown or inhibition of either PKCδ or TG2 induces autophagic cell 

death with induction of apoptosis. TG2 is overexpressed in over 80% of pancreatic cancer cell 

lines and increased levels have been implicated in drug resistance. Targetting PKCδ or TG2 to 

induce autophagic cell death seems a promising therapeutic strategy for the treatment of 

pancreatic cancer. This hypothesis was already tested in nude mice bearing xenografts of TG2-

expressing human pancreatic cancer cells. Knockdown of TG2 in these cells inhibited cancer 

cell proliferation while no signs of apoptosis were observed. 

Another example was found in breast cancer cell line MCF-7 which do not express 

caspase 3. Hence they provide a higher threshold for the induction of apoptosis. 45-75% of all 

breast cancer tissue samples tested in that study had no detectable levels of caspase-3. When 

Bcl-2 was silenced in MCF-7 cells, autophagic but not apoptotic cell death was happening 

(Devarajan, Chen et al. 2002; Devarajan, Sahin et al. 2002) (Dalby, Tekedereli et al.). 

 

3.6 Drug Discovery and Inhibitors of PI3K 
 

During the last few years, various small molecule inhibitors of PI3K have been 

described. Most are not isoform-specific, as they target the catalytic site which exhibits a high 

homology between the different isoforms of PI3K, at least for the ATP-binding pocket. The x-

ray coordinates of p110γ revealed that many inhibitors such as wortmannin, LY294002 etc. 

bind to these conserved residues in a similar manner (Walker, Pacold et al. 2000). Studies on 

the structure of each isoform would be required in order to find better optimized compounds 

that selectively inhibit a specific isoform.  

A site mutagenesis study was done by Frazzetto et al. in 2008, replacing residues found 

in class I p110α by residues from p110β and vice versa. They claimed that certain inhibitors 

show a preference for p110α because of blocked interaction with non-conserved regions of 

p110β. The opposite was not observed though, challenging their hypothesis on the influence of 

this non-conserved regions adjacent to the catalytic site on the potency of an inhibitor. Other 
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groups support this view, suggesting that the non-conserved region of p110α (residues 852-59) 

remains a potential target for future compounds exhibiting greater selectivity for a PI3K isoform 

(Frazzetto, Suphioglu et al. 2008).  

Earlier on, Knight et al. published a pharmacological map of the PI3K family defining 

p110α’s role in insulin signalling. In order to investigate the unique roles of PI3K isoforms, the 

authors synthesized a diverse panel of PI3K inhibitors and checked for their target selectivity. 

Using crystal structures of three inhibitors (quinazolinone purine PIK-39, imidazoquinazoline 

PIK-90 and phenylthiazole PIK-93) bound to p110γ, they identified a conformationally mobile 

region that is uniquely exploited by selective inhibitors. Highly selective inhibitors projected out 

of the plane occupied by ATP, the most potent ones targeted deeper into a binding pocket that 

is not accessed by ATP (Ile 879, a residue structurally analogous to the gatekeeper residue in 

protein kinasese). When they applied these compounds, they found p110α to be the primary 

insulin-responsive PI3K isoform. P110β inhibitors had no effect on the other hand (Knight, 

Gonzalez et al. 2006). 

Apsel et al. published an article on the discovery of dual inhibitors of both tyrosine and 

phopshoinositide kinases in 2008. In certain cases it might be beneficial to target different 

kinases simultaneously. PP121 blocked proliferation of tumor cells by inhibition of oncogenic 

tyrosine kinases and PI3K through a hydrophobic pocket conserved in both enzyme classes. 

Related compounds had strong effects on mTOR and other kinases, such as PP242 blocking 

mTOR quite efficiently (Apsel, Blair et al. 2008). 

Another dual inhibitor was discovered by Maira et al., NVP-BEZ235. This imidazo(4,5-

c)quinoline derivative was shown to inhibit both PI3K and mTOR. Hence it exhibited in vivo 

antitumor activity in various tumor cell lines and prostate tumor (PC3M, highly metastatic 

human prostate tumor cell line) xenografts in mice respectively. BEZ235 possesses strong 

antiproliferative capacity by G1-arrest, but showed no effects on cell viability. Application of the 

compound was well tolerated in mice as body weight gain was still normal during/ 10 days after 

treatment. When tested in increasing ATP concentrations, the compound’s IC50 values 

increased in a linear manner. Results suggest that the compound binds to the ATP-binding 

pocket that is present in both PI3K and mTOR, competing with ATP. The specificity of the 

compound was tested in cell-based and by in vitro assays. The authors conclude that BEZ235 

is a dual pan-PI3K/mTOR inhibitor, applicable for both cellular and in vivo settings. Phase I 

clinical trials in cancer patients have started in 2008 (Maira, Stauffer et al. 2008).   

Dual targeting of both PI3K and mTOR was first applied as therapy in various melanoma 

cell lines and in xenografts in mice by Marone et al. in 2009 (see Publications), using the same 

compound NVP-BEZ235 presented by Maira et al. (Maira, Stauffer et al. 2008) and similar 

compounds. Exposure of the cells to these inhibitors resulted in complete G1-arrest shown by 

flow cytometry, other markers of cell cycle arrest proven by western blotting, but only negligible 

apoptosis levels. When the same cells were treated with pan-class I PI3K inhibitor ZSTK474 
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(Yaguchi, Fukui et al. 2006) or mTORC1 inhibitor rapamycin, only minor effects on cell 

proliferation were observed. A B16 mouse melanoma tumor model was used to test efficacy of 

tumor growth attenuation in both primary and lymph node metastatic sites. No obvious toxicity 

could be found, moreover, the mice displayed reduced numbers and significantly smaller tumor 

cells. The authors claim that neovascularization was blocked and necrosis of the tumor 

increased, suggesting that compounds targeting both PI3K and mTOR simultaneously could be 

beneficial in melanoma therapy (Marone, Erhart et al. 2009). 

A recent paper on the structure variation of class III PI3K was published by Miller et al. 

The crystal structure of Vps34 (Figure 15) revealed an ATP-binding pocket distinct from class I 

PI3K isoforms, explaining potency differences for many inhibitors. Vps34 seems to alternate 

between a closed form of the phosphoinositide-binding loop and C-terminal helix in the cytosol 

and an open form on the endo-membranes. 3-methyladenine (3-MA) is preferentially binding 

class III PI3K (via the hinge) over the the other classes, even if the IC50 is very high at 10mM 

in order to block autophagy. The ATP-binding pocket of Vps34 is more constricted than the 

corresponding pocket of class I isoforms, e.g. p110γ. The P-loop curls inward and the hinge 

between N-and C-lobes is shorter, too. Propeller-like inhibitors such as PIK-39 bind the other 

isoforms much better due to the increased rigidity of class III PI3K. The authors came up with 

PT210, a derivative of PIK93, with reversed kinase specificity. PT210 showed much higher 

IC50 for p110γ (4uM) than for Vps34 (450nM). This way of designing small molecule inhibitors 

according to their putative binding possibilities will be more and more applied in future drug 

design, not only for PI3K but also for other enzymes (Miller, Tavshanjian et al.). 
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Figure 15: Structural differences Vps34 versus p110gamma 

Panel A shows the major domains of Vps34 and PI3K class I, B depicts the structural folds of DmVps34’ 
helical and catalytic domains. Panel C is a model of how the lipid PI is bound by Vps34. Panel D is a 
close-up of the conformation changes (active/non-active) in p110gamma (grey) or DmVps34 (black). The 
ATP-binding pocket of Vps34 is more constricted than the pocket of p110gamma. The authors could prove 
a change in specificity of inhibitors for any of the isoforms depending on the accessibility of the ATP-
binding pocket by the small molecule inhibitors newly designed.  (Miller, Tavshanjian et al.) 
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4 Aim of Studies 
 

Class III PI3K is involved in many cellular processes, among them autophagy (Kihara, 

Noda et al. 2001). Autophagy helps the cell to survive nutrient-deprived conditions by “self-

eating” and recycling of organelles and metabolic waste. Especially cancer cells are confronted 

with lack of nutrients before angiogenesis is increased in their cellular surroundings. Whether 

autophagy is beneficial or not for cell survival in a cancer context and at what stage or for which 

cancer cells this might apply, is content of current discussions in the field (Folkman 2006; 

Levine 2007).  

To answer our main question on the importance of Vps34 and its involvement in cancer 

cell survival, we started both a genetic and a pharmacological approach: 

  

“What substance of natural origin will inhibit human Vps34? How specific? At what 

concentrations?” 

Our first approach was to screen a library of natural compounds for specific human 

Vps34 inhibitors in a genetically modified yeast model system. We made use of the temperature 

sensitive phenotype of Vps34 deletion mutants. Yeast PI3K deletion mutants were 

complemented with a hybrid human/yeast Vps34 construct which allowed us to screen for 

substances that abrogated growth at higher temperature. The crude plant extracts that showed 

hits in this first round screen were then fractionated and retested on yeast mutants. To avoid 

misleading side effects, we then tested the putative inhibitors on yeast Vps34 and rechecked for 

human PI3K class III specificity in mammalian cell lines. In vitro kinase assays were applied in 

the end to define the effective inhibitor concentration.  

 

 “How important is hVps34 for melanoma cell survival? What effects are observed upon 

temporary or longterm reduction or loss of the kinase? In which cell lines is it essential or is its 

loss tolerated? Could hVps34 be used as a drug target in patients?” 

The second approach, this time genetic, was done in human melanoma cell lines. We 

made use of knockdown methods by state-of-the-art siRNA or stable shRNA techniques in 

melanoma cell lines. Our aim was to characterize different melanoma cell lines upon hVps34 

loss, comparing our results to published data on other cell types. We asked whether targeting 

hVps34 might affect melanoma survival and hence the kinase might serve as a putative drug 

target in these cancer model systems.   
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5 Results          

 

5.1 Genetic Approach: Class III in Melanoma 

5.1.1 Varying endogenous levels of hVps34 and Beclin1 were found in 
melanoma cell lines 

 

To get a first hint of the importance of hVps34 (class III PI3K) in a melanoma cancer 

model system, we selected a variety of human melanoma cell lines with different genetic 

backgrounds (Table 2). The selection of melanoma cell lines expressing either all or only some 

PI3K class I isoforms were tested for protein levels of hVps34 and its interactor Beclin1 (hVps30 

or hAtg6). In order to compare the levels of these proteins, lysates of two melanocyte cell types 

and HEK293 as a standard lab cell line were checked as well. A2058, 1205lu and WM115 were 

selected as the only melanoma cell lines in this batch expressing all four PI3K class I isoforms. 

A375 are the only ones that express wild type PTEN (phosphatase and tensin homolog), a 

tumor suppressor protein counteracting production of PI(3,4,5)P3 by PI3K class I isoforms. All of 

the other melanoma cell lines in our selection have abnormally high levels of these lipids, 

leading to increased signalling inputs to downstream targets.  

 Metastatic A375 from the selection were chosen for further analysis as they exhibited 

low levels of both endogenous Beclin1 and hVps34 (Fig. 16). In contrast, A2058 and 1205lu 

were picked as examples for melanoma cell lines expressing high endogenous levels of these 

proteins.  

 

 PG-
02 

SchM-
99 

A2058 A375 1205lu WM115 SKMel23 SKMel28 HEK293 

PI3K class I 
isoforms 

α, β, 
δ  

α, β, δ α, β,γ, 
δ 

α, β, δ α, β,γ, 
δ 

α, β,γ, δ α, β, δ α, β, δ α, β, δ 

PTEN 
status 

WT WT mut WT mut mut mut mut WT 

Metastasis? none none low yes yes RGP/VGP unknown unknown none 

Melanoma 
origin 

none none lymph 
node 

malignant 
tumor 

lung early 
melanoma  

unknown malignant 
tumor 

none 

 

Table 2: Characteristics of Melanoma cell line Selection 

 

RGP/VGP= radial growth phase/ vertical growth phase; WT= wild type; mut= mutated, antibodies against 
PTEN could not detect PTEN in Western blots 
 
PG-02 and SchM-99 are melanocytes, HEK293 are human embryonic kidney cells, the others are all 
melanoma cell lines. 
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5.1.2 Lentiviral stable hVps34 knockdown in  HEK293 and A375 cell lines is 
tolerated 

 

 For further studies on the effect upon loss or reduction of hVps34 in a cellular context, 

melanoma A375 and standard epithelial lab cell line HEK293 were infected with shRNA-bearing 

lentiviruses to generate stable hVps34 knockdown cell lines. Mock shRNA transfections (lacking 

targeting sequence) and two constructs of shRNA bearing diverse targeting sequences were 

used for both cell lines. The two constructs termed pLKa and pLKb rendered different efficacy in 

knocking down of hVps34. We could observe a considerable reduction of hVps34 protein levels 

for pLKa- infected cells and almost endogenous levels of the protein if infected with pLKb 

(Figure 17C and D). If we compared untreated cells (later named control) with mock-infected 

cells, we saw an increase in Beclin1 protein levels, possibly originating from Beclin1-involved 

processes induced by the infection with lentivirus.  

Upon knockdown of hVps34, protein levels of its complex partner Beclin1 were always 

affected (Figure 17). Similar results were obtained in earlier experiments applying siRNA 

against hVps34, independent of the cell lines tested (Figure 17B).  

For later experiments with stable knockdowns, melanoma cell lines A2058 and 1205lu 

had to be dropped though, as transfections with shRNA-bearing viruses in these two cell lines 

were successful but none of the constructs resulted in viable stable knockdowns. Short term 

knockdown of hVps34 by siRNA in our preliminary experiments in A2058 and 1205lu already 

induced a decrease in proliferation (Figure 17A). A possible explanation for this phenomenon is 

based on the endogenously high protein levels of hVps34 in these melanoma samples, 

proposing that a threshold protein level of hVps34 is more essential in these cell lines.   

 
 

 

 

Figure 16: Varying endogenous levels 
of hVps34 and Beclin1 in melanoma 
cell line selection 

Endogenous protein levels of hVps34 
and Beclin1 were compared in 
melanoma cell lines and melanocytes. 
HEK293 were added as well in order to 
show the expressions in a standard cell 
line.  
Coomassie staining of the membranes 
was used as reference.  
Antibodies: see Materials and Methods 
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 A 

d1 d2 d3 d4 

B 

 

Figure17: hVps34 knockdown cell lines 

Panel A: Three different melanoma cell lines were 
transiently transfected with siRNA targeting hVps34. 
Proliferation is mainly affected in A2058 and 1205lu cell 
lines, four days after transfection. n= 3 
 
Panel B: Beclin1 protein levels seem to be reduced upon 
hVps34 targetting by siRNA, independent of the cell line.   
 
Panel C and D: HEK293 or melanoma A375 cell lines 
with stable knockdown of hVps34 via lentiviral 
transfections of shRNA.  
 
Loading control is tubulin. pLKa (plasmid Lentiviral 
Knockdown a) and pLKb are two shRNA constructs 
targeting different sites on the mRNA of hVps34. Stably 
transfected in the according cell lines, they give rise to 
different reduction of hVps34 protein levels, enabling us 
to test for hVps34 threshold levels for various effects. 
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5.1.3 Loss of hVps34 leads to vacuolarization in A375 melanoma but not in 
HEK293  

 

 Similar to published data on hVps34 knockdown in glioblastoma U251 (Johnson, 

Overmeyer et al. 2006), A375 bearing stable shRNA constructs knocking down hVps34 (pLKa) 

showed a so-called vacuolarization phenotype (Fig.18 upper panel). The lysosomes/late 

endosomes seemed to significantly increase in size and number. A375 with reduced hVps34 

protein levels (pLKa) showed ten times more vacuolarizations than mock-transfected cells. This 

effect was dose-dependent, as cells expressing the less-efficient shRNA construct (pLKb), 

exhibited lysosomes/late endosomes resembling mock-transfected or control cells (Fig.18).  

 To our surprise, the HEK293 stable knockdowns did not show the same phenotype, no 

matter how strong hVps34 protein levels were reduced (Fig. 18 lower panel and Fig. 17C for 

Western Blot). We suppose that the observed vacuolarization phenotype might have to do with 

the cancer-related changes in cell types, as previous publications on this phenotype were also 

done in cancer cells (Johnson, Overmeyer et al. 2006). Unfortunately we did not succeed in 

finding other melanoma cell lines with endogenous low levels of hVps34 (and its interactor 

Beclin1) that we could have stably knocked down. Further experiments on a bigger selection of 

melanoma cell lines would need to be done to test this hypothesis.  

 

 

C D 
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Figure 18: Loss of hVps34 leads 
to vacuolarization phenotype in 
A375 melanoma but not in 
HEK293 

 
As observed earlier (Johnson, 
Overmeyer et al. 2006), melanoma 
A375 stably transfected with shRNA 
against hVps34 show vacuolarization 
in a dose-dependent manner (pLKa vs. 
pLKb). HEK293 did not exhibit this 
phenotype.  
Bars of equal size in all pictures, 
phenotype visible at original
magnification 20x 

Figure 19:  Quantification 

 
Vacuolarization phenotype was quantified in A375 with reduced hVps34 protein 
levels, done in at least three independent experiments. We distinguished between big 
and small size of vacuolarization (grey bars). Solid black bars show total 
vacuolarization events. Blot from Figure 17D is added for information on knockdown. 
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5.1.4 Proliferation upon hVps34 reduction is affected in both A375 and 
HEK293 

  

 a) 

b) 
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Figure 20: a+b Proliferation slightly affected in both A375 and HEK293 upon stable knockdown of 
hVps34 

 

Untreated cells are shown as control cells, mock and stable knockdowns were grown in medium 

containing puromycin prior to the proliferation experiments. During the experiment, no selective antibiotic 

was applied and media were the same in all four samples per cell line shown. Data was obtained from at 

least three different experiments done in triplicates.   

 

As our stable knockdown cell lines seemed to grow slower in culture, proliferation was 

measured in both HEK293 and A375 cell lines by counting cell numbers over four days after 

plating. We compared untreated control cells, mock-infected or two different stable knockdown 

construct (pLKa and pLKb) bearing cell lines. Mock and control cell lines grew at similar rates 

while both knockdowns showed a slight but significant decrease of 20% in speed in HEK293 

(Figure 20a) after four days.  

In A375, cells transfected with mock and control cells grew at similar speed, along with the 

non-efficient knockdown construct (pLKb) bearing cells. Upon efficient knockdown of hVps34 

(pLKa), proliferation was again reduced by significant 20% (Figure 20b). Overall, these results 

show that hVps34 is certainly not essential in A375 which already have very low hVps34 basal 

protein levels endogenously. Loss of class III PI3K is still affecting proliferation though, even if 

not as much as seen in other melanoma cell lines (A2058 and 1205lu in our hands) which were 

not viable with reduced levels of hVps34. 

 

5.1.5  Cell size is only slightly increased in A375 and HEK293 upon hVps34 
loss 

 

As we had found similarities in the vacuolarization phenotype (Figure 18 and 19) between 

our knockdown cell lines and others in the literature, we wondered whether our A375 stables 

would exhibit another published phenotype. hVps34 loss in U251 cell line apparently increased 

cell size very strongly, resulting in cells double the original size or more (Johnson, Overmeyer et 

al. 2006). We could not observe such a big change in cell size by binocular microscope. To not 

miss any smaller increases in size, we used our cell counter, measuring either cell volume or 

total cell size over nucleus size. Our experiments in A375 (Figure 21b) and HEK293 (Figure 

21a) showed significant but only minor increases in cell size of about 10 to 15 % when 

measuring cell volume (in femto liters) or cell diameter (over nucleus size). The surprising 

difference might be cell type-dependent for the glioblastoma cell line as we could not observe 

such a big change neither in our stable knockdowns in HEK293 or A375 (Figure 21) nor in our 

preliminary siRNA experiments with more melanoma cell lines (not shown).   
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Figure 21: Mild effects on cell size upon hVps34 loss 

 

Untreated cells were taken as control, all stably transfected cell lines were treated with puromycin prior to 

the experiments. Cell size is shown as percentage of control cells for each cell line, measurements of cell 

volume were done in six experiments in triplicates.  
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5.1.6 PI(3)P production is maintained in A375 depleted for hVps34 but 
abolished upon treatment with pan-PI3K inhibitor wortmannin 

 

hVps34 produces most of the PI(3)P lipids in a cell, along with PI3K class II isoforms. We 

wondered whether there was a compensation by class II isoforms upon loss of hVps34 in our 

stable knockdown cells. Stable knockdowns of PI3K class III in A375 still maintained PI(3)P 

levels (Fig. 22 left panel). Tests with high levels of wortmannin, that also inhibit PI3K class II 

isoforms, abolished the lipid pools detected by transiently transfected marker eGFP-2xFYVEhrs 

(Fig. 22 right panel). We therefore suggest that the origin of these remaining lipid pools comes 

from PI3K class II isoforms. Knockdown of PI3K class II alpha is according to publications on 

this isoform and melanoma cell line (Elis, Triantafellow et al. 2008) affecting cell viability in 

A375, so it will be technically difficult to approach the question of PI(3)P origin. The same 

authors do not find class II beta to be essential in A375. Class II gamma is only found in liver, 

breast and prostate tissue, not skin, therefore we could exclude its contribution to the PI(3)P 

pools in hVps34 depleted cells.  

Further experiments would need to be done to check the PI(3)P  compensation 

hypothesis and elaborate which isoform of PI3K class II is required for homeostasis of PI(3)P 

pools in cells lacking hVps34. Eventually this applies for more cell lines than just A375 and was 

the reason for the other melanoma cell lines in our selection not to tolerate loss of hVps34. 

 

 

Figure 22: PI(3)P pool still present in A375 if hVps34 lost 

 
Bars of equal size in all pictures, two pictures are shown per condition. Vacuolarization phenotype is 

visible in stable A375 hVps34 knockdown cell line as seen before.PI(3)P are detected by marker eGFP-

2xFYVEhrs which was transiently transfected a day prior to microscopy experiments.     
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5.2 Pharmacological Approach: Yeast Screening 
 

 

USE OF TRANSGENIC YEAST TO DISCOVER   

MAMMALIAN PI-3-KINASE ISOFORM INHIBITORS OF NATURAL ORIGIN 

(manuscript in preparation) 

 

Ann C. Mertz1, Anna Melone1, Peter Küenzi2, Michael Adams2, Sabine Kiefer2, Matthias 

Hamburger2,  Matthias P. Wymann1 

 

1Institute of Biochemistry and Genetics, Center for Biomedicine, University of Basel, 

Mattenstrasse 28, CH-4058 Basel, Switzerland; 2Institute of Pharmaceutical Biology, University 

of Basel, Switzerland 

 

5.2.1 Abstract 

 

Phosphoinositide 3-kinase (PI3K) activity is found in all eukaryotic cells. These lipid 

kinases are linked to a diverse set of key cellular functions, including proliferation and motility, 

thus contributing to chronic inflammation and metastasis. Different PI3K isoforms seem to be 

involved in distinct cellular processes, but it is currently difficult to assess these functions due to 

the lack of PI3K isoform-specific inhibitors. We are therefore using Saccharomyces cerevisiae 

(Baker’s yeast) to screen PI3K/inhibitor interactions as exploratory genetic tools. Yeast strains 

are transformed with plasmids coding for hybrid yeast/mammalian PI3K class III (Vps34). By 

nature, Saccharomyces cerevisiae exclusively expresses a single PI3K isoform, Vps34p, a 

class III PI3K producing PtdIns 3-P. Here, a hybrid Saccharomyces cerevisiae/Homo sapiens 

Vps34p (Sc/Hs_Vps34p) was engineered to complement deletion of vps34 and allow growth at 

37°C. When this hybrid protein is inactivated, rescue is lost. Compounds which reduce growth 

rates of vps34 yeast expressing Sc/Hs_Vps34p can thus be identified as inhibitors of Vps34p. 

As this lipid kinase is involved in autophagy and phago/lysosome fusion processes, it is a 

putative drug target in cancer and inflammation. 

In our studies we screened various libraries of natural compounds for inhibitory effects 

on Vps34. The compounds were mixed extracts of different origins. Upon selection, these 

extracts were further fractionated and the fractions retested. In order to confirm the isoform-

specificity, the positive fractions were checked for inhibition of the other PI3K isoforms by 

applying them to mammalian cells.   

Our data suggests that a fraction of Citrus medica extract had inhibitory effects on the 

human but not the yeast Vps34p and did not affect the mammalian PI3K class I isoforms. 
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Structurally related chemicals applied at the same concentrations did not lead to an inhibition of 

hVps34 activity in the cell lines tested.  Further chemical engineering will show how this new 

hVps34 inhibitor candidate could be used for future drug designing of more potent but still 

specific hVps34 inhibitors.  

5.2.2 Materials and Methods  

 
Yeast media: YPD  (peptone (Life Technology), yeast extract (Becton Dickinson) , glucose 

(Sigma)) and SD-ura (Yeast Nitrogen Base without amino acids (Becton Dickinson), amino acid 

mix (AppliChem)). Agar for plates from DIFCO/Becton Dickinson. Plasmid transformation into 

yeast was performed by the LiCl method according to Gietz and Woods as published (Gietz, 

Schiestl et al. 1995). Plasmids used in this study: 

 
Plasmids used Gene Vector Origin 

Yeast    

Yeast Vps34 S.c. Vps34 YE195 (Gietz) This study 

Hybrid Vps34 Hybrid S.c./H.s. Vps34 YE195 (Gietz) This study 

KD of hybrid Vps34 Kinase-dead of 244 YE195 (Gietz) This study 
Mammalian    

PI(3)P detector EGFP-2xFYVEhrs pEGFP-C2 (Clontech)  gift (Harald Stenmark) 

 
Cloning of active and of kinase dead versions of hybrid S.c./H.s. Vps34. Induction of yeast 

plasmid expression by 50uM CuSO4 in appropriate media. Culture densities were measured at 

OD595nm on a BioPhotometer from Eppendorf. Localization of PI(3)P detector eGFP-2xFYVEhrs 

was monitored in HeLa grown in DMEMc from Sigma. Transfection into mammalian cells was 

performed with JetPEI from PolyPlus/Chemie Brunschwig. Coumarin and wortmannin were 

obtained from P.Küenzi and applied at specified concentrations from stock in DMSO. Hoechst 

dye was from Sigma. Antibodies for Western blots were as following: hVps34 (1:2000 in 5% milk 

in TBST, Zymed Laboratories, cat. 38-2100), phospho-MAPK (1:10’000 in 5% BSA in TBST, 

Sigma, cat. M8159), phospho-PKB Serine 473 (1:2000 in 5% BSA in TBST, Cell Signalling, cat. 

4051S), phospho-PKB Threonine 389 (1:2000 in 5% BSA in TBST, Cell Signalling, cat. 9206) 

and alpha-actin (1:10’000 in 5% milk in TBST, Sigma, cat. A5044). In vitro kinase assays were 

performed using hot ATP (P32) from Perkin Elmer and TLC plates from Merck were exposed to 

x-ray film from Fuji Film.  

 

5.2.3 Results    

 

5.2.3.1 Temperature Sensitivity and Compound Screen Idea 

 

Yeast vps34 deletion mutants display temperature sensitivity. When grown at normal 

room temperature they exhibit enlarged vacuoles, but are still viable (Emr 1994). Upon 
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temperature increase to 37°C, the deletion mutants cannot grow anymore (Fig. 1a). In order to 

make use of this phenomenon, we constructed various hybrid human/yeast Vps34-bearing 

plasmids (Fig. 1c) (later called “hybrid Vps34p”) that contained the human kinase domain. The 

necessary flanking nucleotides of yeast VPS34 to allow human VPS34 to rescue growth at 

higher temperature in a vps34 deletion mutant had to be determined (Fig. 1b and c, red box). 

We then checked for constructs that allowed growth at high temperature (Fig. 1a). After we had 

achieved this step, we planned to apply the system for primary screening of chemical 

compounds. Our screening idea was to screen for chemical compounds that inhibit the rescue 

phenotype by targeting the human kinase domain part of our hybrid construct. A kinase-dead 

version of this construct was used to ensure inhibitor specificity for the kinase function of 

Vps34p and served as a control (Fig. 1b and c). Another control used was the normal yeast 

Vps34p expressed from plasmid (Fig. 1a and c). 

Our chemical library contained crude plant extracts at first. Putative hVps34 kinase 

activity inhibiting plant extracts were thereafter fractionated by HPLC and purified fractions 

tested again at various concentrations dissolved in DMSO. The practical work flow is depicted 

schematically in figure 2a. Validation of the extracts/compounds was done according to figure 

2b, always considering results in triplicates.   

 

5.2.3.2 Growth of yeast vps34 deletion mutants are rescued by hybrid 
Vps34p 

 

Plasmid borne hybrid Vps34p led to rescue of growth at high temperature when 

expressed in vps34 mutants grown on YPD containing 50uM copper-sulfate (CuSO4) to induce 

expression. Yeast cultures bearing the hybrid Vps34p were growing to the same extent as cells 

expressing the normal yeast kinase. Only vps34 deletion mutants were clearly distinct in their 

growth behaviour at 37°C when compared to wild type (Fig. 1a). To make the yeast cells even 

more sensitive to the compounds in our library, we had planned to use erg6∆ mutants that 

render multidrug resistant (MDR) efflux pumps unfunctional, but these strains in combination 

with the deletion of VPS34 were too sick for screening. 

   

5.2.3.3 Extracts and pure fraction from Citrus medica inhibit growth of 
transformed mutant yeast at high temperature 

 

From all the crude plant extracts that were tested, we obtained the best results with 

ethanol extracts from Citrus medica. Yeast cells expressing hybrid Vps34 repeatedly showed 

defects in growth when treated with these extracts. The pure fractions were also tested, this 

time in varying concentrations diluted in DMSO. The effect was dose-dependent, giving up to 
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60% reduction in growth compared to vehicle-treated cells when in liquid culture (Fig.3a). Best 

results were obtained with fraction “MACMS2”, that turned out to be limettin (Fig. 3b). Limettin 

(5,7-dimethoxycoumarin) is part of the coumarin-related compounds and has a molecular weight 

of 206.19 g/mol. Structurally-related compounds (Fig. 3c) that are commercially available were 

checked for similar effects, but none of them showed comparable effects, even at high 

concentrations (Fig.3a).  

 

5.2.3.4 Pure fraction of Citrus medica compound does not influence class I 
PI3K isoforms 

 

In order to check for specificity of our most promising pure fraction of Citrus medica 

extracts (MACMS2/limettin), we treated HEK293 cells with different concentrations of the 

compound (Fig.4). Lower concentrations than those applied in yeast tests were checked. In 

general yeast requires higher dosages of kinase inhibitors than mammalian cells due to their 

efflux pumps which often cause multidrug resistance (MDR) in yeast (Prasad, Gaur et al. 2006). 

We chose HEK293 since all class I PI3K isoforms are expressed and endogenous hVps34 

levels are high when compared to other cell lines available in our lab. Wortmannin is a well-

known pan-PI3K inhibitor (Arcaro and Wymann 1993) and blocks phosphorylation of PKB/Akt at 

Serine 473 and phosphorylation of S6K1 at Threonine 389 at the concentration applied, hence 

we used it as a positive control. As a negative control we treated the cells with 10uM coumarin, 

a compound which is structurally related (Fig. 3c) to our putative hVps34 inhibitor and since it 

had not exhibited strong effects in yeast. Wortmannin led to the expected decreases of 

phosphorylation, but none of the other compounds had any effects as can be seen in Fig.4. 

pMAPK was checked to interpret any further downstream effects, but none were observed. 

 

5.2.3.5 Less PI(3)P detected by microscopy in HeLa treated with pure fraction 

 

A way to confirm the efficiency of our candidate hVps34 inhibitor MACMS2 in 

mammalian cells was via microscopy. We checked whether a GFP-labelled 2xFYVE domain 

originating from Hrs was still detecting PI(3)P lipids, the product of hVps34 kinase activity. 

PI(3)P usually localize at the endosomes in punctuate structures (Raiborg, Bremnes et al. 

2001). We used HeLa cells as a model system, as these cells are bigger than HEK293 and 

hence more suitable for microscopy. In cells treated with 200uM of putative inhibitor, we 

observed less GFP-dots per cell, which we interpreted as equal to less PI(3)P produced due to 

inhibition of the kinase. Cells observed by binocular microscope seemed to be healthy after the 

treatment, so no cytotoxicity assay was performed.  
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Wortmannin was once more used as positive control and led to total depletion of any 

PI(3)P, leaving only cytosolic GFP-signal. 100uM coumarin did not have any obvious effect on 

the GFP-signal when compared to vehicle-treatment (Fig.5).  

 

 

 

5.2.3.6 In vitro kinase assay confirms reduction of hVps34 activity upon short 
incubation with pure fraction 

 

As a last confirmation of the inhibitory effect of our compound MACMS2 on hVps34, we 

performed in vitro kinase assays with hVps34 immunoprecipitated from HEK293. 

Immunoprecipitated kinase was treated with a titration of MACMS2 ranging from 2uM to 200uM 

for 10 minutes prior to kinase reactions. As controls, treatment with 1uM wortmannin and 

overexpression of kinase-dead hVps34 was used to demonstrate clear inhibition of PI(3)P 

production (Fig. 6a). Comparing the quantified PI(3)P production of inhibitor treated hVp34, we 

observed a reduction of about 40% versus vehicle-treated kinase (Fig.6b). As seen in the 

growth studies in yeast at 37°C (Fig. 3a), we again documented a dose-dependence of the 

inhibitor. This recurrent dose-dependence of our putative hVps34 inhibitor suggests a real 

specificity for the human Vps34 kinase domain, even if working concentrations are high.   

 

5.2.4  Discussion 

 

hVps34 is involved in many cellular processes such as endocytosis, protein sorting to 

the lysosome (Wurmser and Emr 1998) and autophagy (Zeng, Overmeyer et al. 2006), and is 

therefore a rapidly expanding field nowadays. Further characterization of the presented 

compound-kinase interaction might be able to lead to more potent hVps34 inhibitors, a 

challenging task, as there are no specific class III PI3K inhibitors on the market to date. A recent 

publication (Miller, Tavshanjian et al.) opens up new possibilities to design class III-specific PI3K 

inhibitors. S. Miller et al. discovered differences in the ATP-binding pockets of class III versus 

class I PI3K isoforms. Wortmannin, the most popular pan-PI3K inhibitor (Arcaro and Wymann 

1993), clearly exhibits a difference in concentration required for inhibition (IC-50), even if it 

shows no stronger specificity for one class over the other.  

We suggest that MACMS2/limettin be used as a scaffold structure for more optimized 

specific hVps34 kinase activity inhibitors of the future. Now that the structure of hVps34’s ATP-

binding pocket is known in this field of research, drug designing can be implemented 

subsequently. Specific class III PI3K inhibitors promise to be interesting tools in future medical 
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treatment of various diseases such as neurodegenerative pathologies like Alzheimers Disease 

and many others (Chu, Zhu et al. 2007). 

 

 

 

 

 

 

 

 

5.2.5  Figures and Figure legends 

 

 

Figure 1a. 

Yeast cultures were grown overnight in appropriate media and spotted onto YPD plates containing 

50uM CuSO4 the day after. Three days later growth at 24°C was compared to 37°C i.e. increased 

temperature. Shown is a representative experiment which was repeated several times.   

 
Figure 1b Summary table- Rescue phenotypes  
 

 vps34 deletion Wildtype 

Plasmid 
expression 

24°C 37°C 24°C 37°C 

No plasmid 
 

+ - + + 

Yeast Vps34p 
 

+ + + + 

Hybrid S.c./H.s. 
Vps34p 

+ + + + 

 
+ growth observed 
- no growth observed 
Figure 1c.  
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The schematic drawing of cloning of the hybrid S.c./H.s. VPS34 plasmid, which includes the 

human kinase domain, flanked by yeast VPS34 nucleotides in order to allow for 

complementation of a vps34 deletion mutant (red box). All plasmids are based on a well-known 

Gietz vector, YE195, with copper-induction promotor.   
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Figure 2a. 

Schematic drawing of how the primary screen of crude plant extracts was achieved. Growth was 

supervised via OD600 measurements, tests done in triplicates. Drop-out medium SD-ura-trp was 

used in order to ensure expression of the appropriate plasmids. Copper at this concentration 

and over this period of time did not affect the growth of our yeast strains (tested prior to screen).   
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Figure 2b and c. 

One representative crude extract 96 well plate and its results from the primary screen is shown 

in Fig. 2b. Results were validated as described in the text box (lower panel, Fig. 2c). If plant 

extracts or pure fractions succeeded repeatedly in this validation (Fig. 2c), they were further 

examined for efficacy and specificity in mammalian cell lines. 
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Figure 3a-c.  

The most promising candidate hVps34 inhibitor “MACMS2” (3b) was tested further in varying 

concentrations to check for dose-dependence (3a). Certain effects on growth could already be 

observed at room temperature, but increased strongly upon culturing at 37°C. Structurally-

related compounds (3c) which are commercially available were tested in parallel, shown only at 

their highest concentration here. 

                   

a) 

 
 

b) c) 
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Figure 4.  

Effects of our most promising candidate hVps34 inhibitor on class I PI3K were not found when 

checking signalling pathways usually involved in PI3K related pathways. We here applied 

increasing concentrations on HEK293 cells, a cell line expressing all class I isoforms and high 

levels of class III PI3K i.e. hVps34. 
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Figure 5.  

Indirect confirmation of inhibitory effect of our most promising candidate compound on hVps34 

kinase activity. hVps34 product PI(3)P was detected by GFP-labelled FYVE-domains originating 

from Hrs, a well-known PI(3)P bindig protein. Hoechst staining is shown for orientation reasons. 

Treatment of the HeLa cells was for 1.5h prior to fixation of the cells.  
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Figure 6a. 

In vitro lipid kinase assay confirming inhibitory effect of our most promising candidate compound 

on hVps34 kinase activity. Recombinant hVps34 from HEK293 cells were treated for 10 minutes 

with candidate compound at varying concentrations. Wortmannin (WM) was used as positive 

control inhibitor and kinase-inactive (KR) recombinant hVps34 as negative control. TLC plates 

were exposed to x-ray film for 3h. Standard dilutions of lipids were spotted on the same plate to 

allow for approximate quantification of lipid produced.  
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Figure 6b. 

Inhibitory effect of candidate hVps34 inhibitor on kinase activity. Shown is a quantification of the 

lipid kinase assay results. Lipid production with vehicle-treated kinase was taken for 

normalization, percentage of kinase activity is depicted in the graph. IP was treated with 

candidate inhibitor for 10minutes prior to kinase assay. 

   

          

 

 
 

 

Figure 6c. 

Western blot of recombinant hVps34 expressed in HEK293. Both wild type (WT) and kinase-

inactive (KR, for control) form of hVps34 were expressed and immunoprecipitation via GST-tag 

was successful.  
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Romina Marone, Dominik Erhart, Ann C Mertz, Thomas Bohnacker, Christian Schnell, 
Vladimir Cmiljanovic, Frédéric Stauffer, Carlos Garcia-Echeverria, Bernd Giese, 
Sauveur-Michel Maira, Matthias P. Wymann. “Targeting Melanoma with Dual 
PI3K/mTOR Inhibitors”, published in Molecular Cancer Research, 2009 

 

6.2 “(E,Z)-3-(3’,5’-dimethoxy-4’-hydroxy-benzylidene)-2-indolinone 
(Indolinone) blocks mast cell degranulation” 
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7 Discussion           

 

 

7.1 Vps34 in disease model systems 
 
There are not many publications on hVps34 in a disease context yet, most researchers 

focus on its role in endosomal transport or autophagy. How class III PI3K is indirectly involved in 

various diseases, even if it has never been found to be the cause thereof, starts to get the 

attention of the field.  A recent article on hVps34 in an Alzheimer’s Disease (AD) model system 

links regulation of hVps34 kinase activity with cell-cycle control and prognosis of AD. During 

mitosis, Vps34 is phosphorylated at Thr159 of the C2 domain by Cdk1, negatively regulating its 

interaction with Beclin1 and hence inhibiting autophagy. This happens simultaneously to an 

increase in cyclin B levels during mitosis. Furuya et al. claim to have discovered the key 

mechanism by which autophagy is downregulated during mitosis, resulting from a decrease of 

PI(3)P production originally coming from inhibition of Vps34 kinase activity through Cdk1 

phosphorylation. Cdk5/p25, which is known to act on certain substrates of Cdk1, can 

phosphorylate the same position in the class III PI3K isoform. The authors suggest that 

phosphorylation of Thr159 in Vps34 is a key regulatory mechanism by which class III PI3K 

activity in cell-cycle control, development and human diseases such as Alzheimer’s Disease is 

controlled. (Furuya, Yu et al.) 

In our mammalian cell study, we used a cancer model system, i.e. a selection of melanoma 

cell lines with genetically different backgrounds. Our main focus was on the importance of 

hVps34 in these cells: Could the cells survive without hVps34 on short or long term? Is hVps34 

a putative target for drugs in melanoma therapy? Can we find a specific inhibitor for this isoform 

which is not affecting the other PI3K classes? Which function of hVps34 is essential, is its 

depletion balanced through production of PI(3)P by class II isoforms?  

 

7.1.1 Vps34 in melanoma 

 
 
hVps34, as an early regulator of autophagy, has been linked to a protective role in 

cellular and animal models of Alzheimer’s Disease (AD) and other neuropathies. (Furuya, Yu et 

al.) (Cao, Backer et al. 2008; Tang, Zhao et al. 2008) According to our knowledge, no articles 

have so far been published on functions of the class III PI3K isoform in the melanoma subset 

described in our study. The aim of our study was to describe the effects of genetic 

downregulation or pharmacological inhibition of hVps34 in a melanoma model system. Overall 

we found similarities between the characteristics of our subset of melanoma cell lines and 

published data on neuronal cell lines upon reduction or loss of hVps34. (Johnson, Overmeyer et 
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al. 2006) To our surprise, tolerance to loss of hVps34 was very diverse between individual 

melanoma cell lines tested. Short term and slow reduction of the kinase by siRNA technique 

was mildly affecting proliferation in many melanoma cell lines. On the other hand, stable 

knockdown via lentiviral expression of shRNA targeting hVps34 led to cell death in several 

melanoma cell lines (e.g. A2058 and 1205lu repeatedly in our hands) and was only tolerated in 

A375 melanoma cell line in our studies. The same genetic modulations did not abrogate viability 

in other cell types such as the standard lab cell line HEK293 and other cancer cell lines, e.g. 

breast cancer cell line MCF-7. Up to now we cannot explain which characteristics allowed loss 

of hVps34 in A375 while other melanoma cell lines would not tolerate a longterm reduction.  

Our results suggest that targeting class III PI3K isoform in certain melanoma types might 

be beneficial for patients by slowing down or even abolishing growth of the cancer cells while in 

other genetic contexts it would require additional inhibition of other effectors of the same 

pathway. Among the selection of melanoma we analyzed, only A375 with wildtype PTEN 

survived longterm knockdown of hVps34. We hypothesize that the PTEN status of the 

melanoma cell lines and hence its normal or upregulated PI(3,4,5)P3 signalling levels led to 

tolerance or loss of viability in the cell lines tested. This hypothesis requires more investigations 

on a wider selection of cell lines similar to A375 but with varying PTEN stati.   

 
 

7.2 Autophagy in melanoma 
 

Tormo et al. described the therapeutic induction of autophagy in melanoma cells in a 

recent publication in Cancer Cell (Tormo, Checinska et al. 2009). They used mouse models to 

show that melanoma cells retain an innate immune system response to recognize cytosolic 

double-stranded RNA (dsRNA) and start stress response programs to block tumor growth. The 

dsRNA was identified to be an inducer of autophagy, requiring Atg5 for the cell death process. 

Knockdown of Beclin1 led to cellular senescence or cell death in many melanoma cell lines 

tested. As Atg5 knockdown was lethal, too, they used Atg5-/- MEFs which showed a similar 

reaction to dsRNA as observed earlier in their melanoma cell lines. The authors conclude from 

their results that their artificial dsRNA induced an early but persistent autophagy and a late 

apoptotic program, hence killing the melanoma cells (Tormo, Checinska et al. 2009).  

Another publication describing apoptosis and autophagy induction in melanoma cell lines 

was written by Liu et al. They conclude that in A375 melanoma cell line, application of 

polygonatum cyrtonema lectin induces cell death by autophagy followed by apoptosis through 

mitochondria-mediated ROS-p38-p53 pathways. Beclin1 levels were increased after treatment 

with PC lectin and mature forms of LC-3 were observed. ROS (reactive oxygen species) were 

generated and p38 (MAPK) and p53 (tumor suppressor involved in cell cycle control) activated 

as well (Liu, Cheng et al. 2009). 
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In our studies we did not focus on autophagy in melanoma. It would be interesting to see 

though how increased or reduced autophagy levels influence the prognosis of melanoma 

patients. Genetic targeting of hVps34  turned out to be lethal for at least some melanoma cell 

types we had tested, but not for non-cancer cell line HEK293. As for the cell lines (melanoma 

A375 and standard HEK293) we could use for our long term knockdown study, we can predict 

milder effects on their proliferation and very little change in cell size, as no drastic changes 

were observed. Up to now we do not know enough about the possible side effects of loss of 

class III PI3K in in vivo systems i.e. whole organisms. So far there is no mouse model for 

hVps34 that we are aware of, which could give clues about systemic effects of this enzyme’s 

inhibition. From our mammalian cell line studies, we can suggest that at least in some 

melanoma types, chemical targeting of hVps34 as a regulator of autophagy would probably be 

beneficial for the patients.   

 
 

7.3 Phospholipids in melanoma 
 

Wu et al. published a review on the role of PTEN in melanoma. Loss of the tumor 

suppressor PTEN results in both aberrant cell growth and cell spreading/migration. So far, its 

role in melanoma has always been seen as a late event. (Wu, Goel et al. 2003) A more recent 

article by Lahtz et al. described the methylation status of PTEN as determining prognosis factor. 

Patients with methylated PTEN showed a decreased survival rate. (Lahtz, Stranzenbach et al. 

2010)  

In a so far unpublished study (collaboration with Anna Melone, University of Basel, 

Switzerland; data not shown) we investigated the role of phospholipids, i.e. especially the PI(3)P 

production, in a melanoma cell line and HEK293. Upon stable knockdown of hVps34, production 

of PI(3)P did not seem to be abrogated but somehow thought to be balanced by class II PI3K 

isoforms. PI(3)P levels were therefore assumed to be crucial for cell survival. They might locate 

mTOR and its complexes properly within the cell, be it under normal or nutrient deprived 

conditions. Or they serve as absolutely essential substrates for further phospho-modifications by 

class I PI3K isoforms and reduction of PI(3)P would hence lead to fatal effects in this signalling 

context. Today we know that an overload of PI(3,4,5)P3 (upon PTEN loss as found in many 

tumors) is causing increased signalling and generation of tumor cell characteristics. How a cell 

would react to the absolute loss of PI(3)P is not known. As these lipids are involved in 

endosomal sorting and autophagosome formation, we guess that transport from the endosomes 

would be severely affected which might be lethal for the cell. If not under nutrient rich conditions, 

a change in nutrient availability might certainly do so. We could assume that the melanoma  cell 

lines we had stably transfected with knockdown constructs against hVps34, had diverse PI(3)P 

levels from the beginning and hence relied more or less strongly on these lipids. Reduction of 
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the lipids upon knockdown might therefore have been too critical for the cell lines that usually 

produce high levels of PI(3)P, as they had high hVps34 levels. A375 on the other hand, which 

exhibit low levels of hVps34 endogenously, might have had an advantage in turning on class II 

PI3K to compensate for the reduction. We would need to measure and compare between cell 

lines the lipid levels in all the melanoma cell lines in our selection and in addition test HEK293 

and melanocytes as well.   

Detailed mechanisms underlying the importance of balanced phospholipid levels (here, 

PI(3)P) are content of current investigations.  
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8 Materials and Methods 
 

8.1 Protocols 
 

8.1.1 Yeast Cell Culture 

 
Yeast strains were grown in standard yeast extract-peptone-dextrose (YPD) medium (1% yeast extract, 2% 

bacto peptone, 2% glucose, yeast extract from Gibco BRL or DIFCO laboratories, bacto peptone from Becton 

Dickinson), or in SD (synthetic growth medium with 2% glucose, lacking essential amino acids, yeast nitrogen 

base from Becton Dickinson) minimal medium with ammonium sulfate or without, supplemented with essential 

amino acids as required for maintenance of plasmids. 

 

Transformation of yeast was performed according to Gietz et al., 1995. Yeast cells were harvested at an 

OD600 0.1-0.8 and washed once in 1ml sterile water. About 10
9
 yeast cells were incubated in 100 µl Li Acetate 

(pH 7.5) for 30 minutes at 25°C. 10 µl single stranded salmon sperm carrier DNA (20mg/ml) and 0.1-10µg of 

plasmid DNA were added and cells were incubated for 30 minutes at 25°C. Sterile 40% PEG 4000 solution 

was added to a final concentration of 35% and cells were incubated for 30 minutes at 25°C. Heat shock was 

performed at 42°C in a waterbath for 15 minutes and cells were incubated on ice for two minutes afterwards. 

500µl TE (10mM Tris-HCl, 1mM EDTA, pH 7.5) were added and cells were collected by centrifugation. The 

pellet was resuspended in TE and plated onto appropriate medium. 

 

8.1.2 Mammalian Cell Culture 

 
Cell lines were grown at 37°C in 5% CO2 incubators. Cell media for A375, 1205lu and WM115: RPMI 

complete. Cell media for HEK293, HEK293T, A2058, SKMel23, SKMel28 and PG-02 and SchM99: DMEM 

complete. Supplementation for complete media: 10% heat-inactivated FCS, 1% glutamine and 1% penicillin-

streptomycin (all Sigma-Aldrich).  

 

8.1.3 Molecular Biology 

 
RNA isolation 

Materials: 

- Various cells 

- Trizol (Invitrogen, 15596-026) or Tri-Reagent (Sigma, T9424) 

- Chloroform (Fluka, 25690) 

- Isopropanol 

- 75% (v/v) Ethanol 

- RNAse free water 

- Filter tips 
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Procedure: 

- Clean bench and pipettes carefully, wear gloves and lab coat to avoid contamination with RNAse. 

- RNA isolation was performed according to the manufacturer’s instruction, 

 details see: http://tools.invitrogen.com/content/sfs/manuals/15596018%20pps%20Tri

 zol%20Reagent%20061207.pdf 

- Measure RNA concentration in a spectrophotometer.  

- Use 2 µg total RNA for cDNA synthesis 

 

cDNA synthesis: 

Materials: 

- RNA 

- Oligo-(dT)15 primer (0.5 µg/µl; Microsynth) 

- DTT (supplied with M-MLV RTase)  

- 5x RT buffer (supplied with M-MLV RTase) 

- 10 mM dNTPs (Invitrogen, 10297-018) 

- RNAsin (Promega, N2111) 

- M-MLV RTase (Invitrogen, 28025-013) 

 

Procedure (one reaction): 

- For primer annealing mix 2 µg RNA and 8 µl oligo(dT)15  

- Fill up to 23µl final volume 

- Incubate for 10 min. at 70°C 

- In the meanwhile mix 4 µl 0.1M DTT, 8 µl 5xRT buffer, 2 µl 10 mM dNTPs, 1 µl RNAsin and 2 µl M-

 MLV RTase. 

- Place annealing reaction on ice (2 min.) 

- Add 4 µl 0.1M DTT, 8 µl 5xRT buffer, 2 µl 10 mM dNTPs, 1 µl RNAsin and 2 µl M- MLV RTase to the 

 annealing reaction. 

- Incubate at 37°C, 90 min. 

- Heat to 95°C for 10 min.  

-  store at -20°C until used for PCR. 

 
Plasmid DNA amplification and isolation: 

Materials: 

- LB-media (5 g NaCl (LB Miller = 10 g NaCl), 5 g yeast extract; 10 g bacto-tryptone, 5 ml of NaOH 1M, 

 add 1 liter with H2O (autoclave) 

- LB-agar (LB media + 12.5 g Agar [DIFCO, 281230]), autoclave. 

- For antibiotic selection add 100 µg/ml Ampicilline or 25µg/ml Kanamycin to the LB media or LB-agar 

- Chemically competent bacteria (usually E.coli XL-1 Blue strain) 

- Template plasmid DNA or ligation reaction 

- TE- buffer (10 mM Tris-HCl, pH 7,6; 1mM EDTA, pH 8.0) 
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1. Preparation of chemically competent cells (CaCl2 method) 

Procedure: 

- Take bacteria from -80°C stock by scratching the frozen tube content with a sterile tip and  

 plate on LB agar solid media overnight at 37°C. 

- Pick single colony and inoculate a 100 ml LB-Miller, grow overnight (shaking in 37
o
C, 300  

 rpm) 

- Inoculate 1 liter LB-Miller with the overnight culture, inoculation 1:100. 

- Grow in shaker (37
o
C, ca. 300 rpm) until OD600= 0.6. Then put the flask on ice. Wait 20 min until 

 culture is really cold. Pre-cool CaCl2 solutions on ice! 

- From now keep at 4
o
C (coldroom)  

- Transfer bacteria to the centrifuge bottles and spin in the pre-cooled centrifuge about  20 min. 

 3000 rpm at 4
o
C. 

- Discard the supernatant, resuspend the pellet in 500 ml ice-cold CaCl2 (
1
/2 of initial volume). Mix 

 strongly initially, then gently. 

- Leave the bacteria for few hours at 4
o
C, mix gently occasionally. Cool down solution of CaCl2/10-15% 

 glycerol on ice.  

- Spin 15 min at 4
o
C, 3000 rpm, discard the supernatant and resuspend very gently in 100 ml of pre-

 cooled CaCl2/10-15% glycerol. 

- Immediately aliquot the bacteria in 500 µl portions to Eppendorf  tubes and freeze in liquid N2 

 immediately. 

- Store tubes at -80
o
C. 

 

2. Transformation of competent bacteria 

Procedure 

- Thaw tube with bacterial suspension on ice. 

- Aliquot bacterial suspension to 100 µl portions in pre-cooled tubes. Add DNA (plasmid [100 ng] or 

 ligation [up to15 µl]). 

- Mix and incubate for 30 min. on ice  

- Heat shock for 45- 90s at 42°C. Place tube on ice. 

- Add 900 µl of SOC media and shake for (1 hour, 37°C) 

- Collect cells by centrifugation (1 min. 3000g) 

- Remove 800 µl supernatant, resuspend cells in the remaining 200 µl.  

- Plate suspension on LB agar plate with the respective antibiotic (for plasmid selection). When the fluid 

 is absorbed, incubate plate up side down overnight at 37°C. 

 

3. Plasmid amplification and purification: 

Material: 

- Transformed E. coli 

- LB media, LB agar, supplemented with antibiotics 

- Endofree plasmid maxi kit (Qiagen, 12362) or Genelute high performance endotoxin-free (Sigma, NA 

 0410) or Genelute Plasmid Miniprep kit (Sigma, PLN-350) 

- TE-buffer 



 Materials and Methods 

                                                                                                                                                                           
        

87 

- Isopropanol 

- 70% Ethanol 

Procedure: 

- Pick colonies form the transformed E.coli plates, streak backup on LB agar and inoculate LB media, 

 both supplemented with the selective antibiotic. 

- Growth conditions and plasmid isolation were performed according to the manufacturer’s instructions. 

- Plasmid DNA was eluted with 1xTE buffer 

- The concentration and purity of the plasmid was measured in a  spectrophotometer 

- (Optional: ethanol precipitation, according to the manufacturer’s instructions, to  increase plasmid 

 concentration and purity) 

- Adjust plasmid DNA to 0.5 or 1.0 µg/µl in 1x TE 

 

 

Agarose gel-electrophoresis 

Material: 

- Agarose, standard (Eurobio, 018054) 

- 1x TAE buffer (40 mM Tris-acetate pH 8.0, 1mM EDTA) 

- ethidium bromide 

- Loading buffer (0.4% bromphenol, 0.4% xylene cyanol FF, 50% glycerol) 

- Lambda marker, l HindIII/EcoRI (Labforce, 1695/1),  

- pBR322 DNA/AluI Marker (Fermentas, SM0121) 

-  GenElute Gel Extraction Kit (Sigma, NA1111) 

Procedure: 

- Prepare 1-2% agarose gels. 

- Melt agarose in TAE (40 mM Tris-acetate pH 8.0, 1mM EDTA)  

- Add 0.3 µg/ml ethidium bromide.  

- Pour liquid agarose on glass plates 

- Place the combs and wait until agarose has solidified. 

- Mix DNA samples (PCR reactions, restriction digests) with 0.1 volume loading buffer and load on the 

 gel together with a DNA marker 

- Separate DNA by electrophoresis (constant current 70 V) 

- Visualize DNA under UV-light. 

- For preparative electrophoresis excise DNA fragments of interest and purify with GenElute 

 Gel Extraction Kit according to the instructions 

- Run another gel for purified fragments to approximate the DNA amount, if used for ligation 

 

 

Restriction endonuclease digests 

Materials: 

- PCR product or plasmid DNA 1-5µl 

- Reaction buffers (2µl, NEB, type depends on restriction enzymes) 
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- NEB restriction enzymes (0.5µl)  

- (Optional add 1:100 BSA, supplied with NEB enzymes) 

- ddH2O, up to 20µl final volume. 

Procedure: 

- Mix all required components (see material) 

- Incubate 1h at 37°C, if required incubate additionally at 65°C afterwards  

- Analyse and isolate digest products by agarose gel electrophoresis.  

Ligation: 

Material: 

- Purified restriction endonuclease digest products (approx. equimolar concentrations, with compatible 

 ends, 0.5- 2µl) 

- 10x T4 Ligase buffer (1.5µl, NEB) 

- T4 DNA Ligase (0.5µl, NEB, 102378) 

- ddH2O, fill up to 15µl final volume 

Procedure: 

- Thaw T4 Ligase buffer on ice. 

- Mix all required components (see material) 

- Incubate for 5 min. on ice, then for 16 h at 16°C or for 1h at room temperature 

- Transform competent E. coli with ligation products. 

 

 

Polymerase Chain Reaction (PCR) 

Material: 

- Template DNA (plasmid DNA [10-100 ng/ml, 1 µl], cDNA [1µl]) 

- 10x PCR reaction buffer (5 µl) 

-  50 mM MgCl2 stock solution (1.5 µl) 

- Taq-DNA Polymerase (NEB, 102373) or Pwo-DNA Polymerase (Roche, 1164495500; 0.5 µl) 

- 10 mM dNTPs (form dNTP set PCR grade, Invitrogen, 10297-018 [2.5 mM of dATP, dCTP, dTTP, 

 dGTP; 1µl])  

- Forward primer (10µM, 1µl) 

- Reverse primer (10µM, 1µl) 

- ddH2O (fill up to final volume of 50 µl) 

- 0.5 ml PCR tubes (Molecular BioProducts, 3430) 

- T3 Thermocycler (Biometra, Göppingen) 

Procedure: 

- Thaw all frozen components on ice, except for DNA-Polymerase 

- Combine all components on ice, except for the DNA Polymerase in 0.5 ml PCR tubes, volumes are 

 given in material for one PCR reaction) 

- Example of a PCR protocol: 

 - Heated lid (105°C) 

 - 95°C for 5 min, add DNA-Polymerase after 4 min (hot start) 
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 a) Denaturing:  95°C, 45 s 

 b) Annealing: 62-65°C, 40 s 

 c) Elongation: 72°C, time dependent on size of the PCR product 

 d) Repeat step a)-c) 30 times 

 e) 72°C, 10 min. 

 f) 4°C 

- Prepare PCR samples for agarose gel electrophoresis. 

 
 

8.1.4 Protein Methods 

 
SDS-PAGE Electrophoresis 

Solutions 

- Ultra pure Accu Gel 29:1 (40%), National Diagnostic, EC852 

- Tris-HCl, pH8.8 (1.875 M) 

-            Tris-HCl, pH 6.8 (1.25M) 

- 10% SDS (Sodium Dodecyl Sulfate solution): 

- 10% Ammonium Persulfate solution 

- 10x Electrode Buffer (Tris-Glycine): 

Glycine (144.2 g), Tris (30.3 g), SDS (10 g). Dissolve in 800 ml H
2
O.  

  1x: Dilute 100 ml of 10xElectrode Buffer with 900 ml distilled water. 

 - Cell lysis buffer (20 mM Tris/HCl, pH 8.0, 138 mM NaCl, 2.7 mM KCl, 5% glycerol), store at -20°C, 

 prior usage finish lysis buffer by addition of (final conc.): 

 -  1% NP 40; Protease and phosphatase inhibitors (20 µM Leupeptin,18 µM Pepstatin, 20mmol/L NaF, 1 

mM PMSF, 20 mM Sodiumfluoride, 1 mM Sodium-ortho-vanadate) 

 - 5x Loading Buffer: 1.25 M Tris-HCl pH 6.8 (2.5 ml), SDS (1g), 2-Mercaptoethanol (2.5 ml) Glycerol     

 87% (5.8 ml), Bromophenol blue (5 mg), H2O distilled (35 ml) 

-          Staining solution: Coomassie Brillant Blue G250 (0,1%), 50%Methanol, 7%Acetic acid, 43% ddH2O   -

-          Destaining solution: Methanol (20%), Acetic acid (5%), Distilled water (75%) 

-          PBS 

-          Cell lifter (Corning, F21222F) 

Sample preparation: 

 For adherent cells: place cell culture dishes on ice 

- Aspirate medium, wash 2x with cold PBS 

- Add 100-200 µl cell lysis buffer and incubate on ice 

- Scrape cells from the dishes and transfer cell lysates to eppendorf tubes 

- Incubate 15 min. on ice 

- Spin (16000g, 10 min., 4°C) 

- Transfer supernatant to new eppendorf tubes, measure protein concentration with BioRad Protein 

 Assay (BioRad, 500-0006), store at -20°C or -80°C, or proceed by addition 1/5
th
 of 5x loading buffer.

  Heat to 95°C for 7 min. 

- Store at -20°C until usage for SDS-PAGE   
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Gel preparation: 

- Clean alumina and glass plates (Hoefer, SE202N-10 and SE202P-10), the spacers and the combs  

- Assemble 10 gel units in the multicasting cassette with a plastic plate in between the single units (do 

 not place the combs at this time) 

- Prepare the resolving gel mixture (see table next page) and fill the multicasting cassette 

-           Overlay each gel unit with 1ml isopropanol. Polymerization takes about 30 min. 

-           Discard the isopropanol, wash gel surface with water and remove residual water with whatman paper 

-            Prepare the stacking gel solution and overlay the resolving gel with the stacking gel solution. Insert             

 combs. 

- After polymerization disassemble the cassette and store each gel in a plastic bag with 1 ml 1xTris, pH   

 8.8 at 4°C until usage. 
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For ten 0.75 mm gels in multicasting cassette 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter settings for one 0.75 mm gel 

- Constant current: 20-25 mA 

- Set voltage:   250 V 

- Time:   approx. 60 min. 

 Resolving gel (75 ml) Stacking (30 ml) 

 7.5 % 10 % 12% 15 % 20 % 5 % 

Acrylamide Stock - ml 14.1 18.8 22.5 28.1 37.5 4.8 

Distilled water - ml 44.9 40.2 36.5 30.9 21.5 21.6 

TRIS-HCl pH 8.8 - ml 15 15 15 15 15 --- 

TRIS-HCl pH 6.8 - ml --- --- --- --- --- 3 

Degas solution, then add       

10%-SDS -µl 750 750 750 750 750 300 

TEMED -µl 37.5 37.5 37.5 37.5 37.5 30 

10% Amm.Persulfate - µl 250 250 250 250 250 102 

Mix carefully and cast gel       



 Materials and Methods  
 

                                                                                                                                                                           
        

92 

Electrophoretic Transfer / Semi-dry blotting 

Material and solution: 

- Transfer buffer (25 mM Tris, 192 mM Glycine, 20% methanol, pH 8.3) 

- Immobilon FL (Millipore, IPFL00010), Immobilon P PVDF (Millipore, IPVH00010) cutted to gel 

 size (9x6.5 cm) 

- For one gel 6x whatman paper (9x6.5 cm) 

- Semidry blotting device 

- Methanol 

Procedure: 

- Label and activate membrane in methanol for 1 min. 

- Equilibrate in Transfer buffer. 

- Mount SDS-PAGE/membrane sandwich. 

- Blot proteins to the membrane with constant current of approx. 10 mA per cm
2
 for 75 min 

 (0.75mm gel) or 120 min. (1.5 mm gel). 

- Disassemble sandwich, incubate in blocking buffer for 30 min.  

- Add 1
st
 antidbody  (see antibody table below for their dilution, blocking buffer, time).  

- Wash 3x 5 min. with TBS, 0.1%Tween  

- Add 2
nd

 antibody (HRP) for 1 hour 

- Wash 3x 5 min. with TBS, 0.1%Tween 

- Detection: either enhanced chemoluminiscence (ECL)  

 

8.1.5 Microscopy 

 
Preparation of mounting solution: 

Material: 

-  50 mM Tris-HCl, pH7.5-8.0 

- Mowiol (Plüss-Staufer, Oftringen, Hoechst 4-88/cmB339161) 

- Glycerol (Fluka, 49770) 

- n-Propylgallat (Sigma, P3130) 

Procedure: 

- Stir 5 g Mowiol in 20 ml Tris-HCl buffer (0.05M, pH7.5-8.0) on a magnet stirrer (30-40°C, 16h). 

- Add 10 ml 100% Glycerol and stir 16 h. 

- Spin 10 min. at 1500 rpm at room temperature. 

- Add 10 mg/ ml n-propylgallat as anti-fading agent. 

- Aliquot the Mowiol solution 

- Spin aliquots to remove air bubbles, store at -20°C.  

- Thaw the aliquot at least 30 min. before usage at 37°C 
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Preparation of 10% para-formaldehyde in PBS (10% PFA/PBS): 

Material: 

- Weigh 100 g PFA to 400 ml water. 

- Boil in a waterbath under the extractor hood 

- Shake from time to time. 

- Add cautiously drops of 5N NaOH to completely dissolve the PFA (PFA is not soluble at that pH 

 without NaOH). 

- After complete solution of the PFA add 100 ml 10x PBS. 

- Fill up to 1 liter with water. 

- Solution can be further diluted to 4% PFA/PBS. Store at 4°C 

 
Preparation of adherent cells: 

Material 

- PBS 

-  4% para-formaldehyde in PBS pH = 8.0 

- Mounting solution, Mowiol, see above 

- Hoechst 33342 (Molecular Probes, H-1399), cell permeable 

-  12- well, or 24- well plate 

- 18 mm or 12 mm diameter coverslips 

- Microscopy slides 

- ddH2O 

Procedure: 

- Grow cells on sterile coverslips in a 12 well or 24-well plate 

-  Transfect according to experiment 

- Perform your experiment of interest  

- Wash cells twice with PBS, aspirate PBS, add ice cold 4% PFA in PBS. 

- Incubate on ice for 30 min. 

- Wash with PBS.  

- Optional nuclear staining: add PBS with 1:1000 Hoechst 33342 (stock solution 1 mM in ddH2O), 

 incubate (15 min., 4°C, in the dark).  

 

Preparation of the microscopy slides: 

- Put one drop of mounting solution onto a microscopy slide  

- Take the coverslip with fine forceps and wash with H2O, quickly. 

- Soak residual liquid from the edge of the coverslip with a fine paper towel.  

- Place coverslip upside down onto the drop of mounting solution on the  microscopy slide.  

- Dry for min. 30 min. at room temperature in the dark. 

- Then store at 4°C in the dark. 
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8.1.6 Generating Stable Knockdown Cell lines 

 
Lentivirus production and infection of target cells 
 
8.1.6.1.1.1 Material 

 
- Cells: Target cells and carrier cells HEK293T 

- Helper Plasmids: HDM-pVSV/G; HDM-Hpgm2; HDM-Tat1b and pRC-CMV-RaII 

- Plasmids: GFP control plasmid; shRNA constructs 

- OPTIMEM 

- Fugene transfection reagent 

- Polybrene 3mg/mL stock 

- 0.45um filters and 5-10mL syringes with luer lock 

- Cell media DMEMc 

- Selective antibiotic, e.g. puromycin 

- PBS 

- Trypsin 

- New 6 well dishes 

- Parafilm 

- Box for transport 

- BL2 working bench and incubator 

- Lab material for BL2 

- Lab gloves for BL2 

- Lab coat for BL2 

 
Procedure 
 

- Seed carrier cells HEK293T at 600’000cells/well in 2mL in 6well dish 

- Transfect carrier cells HEK293T the day after (80% confluent) 

- mix helper plasmids and construct plasmid or control GFP plasmid  

o helper plasmids at 0.08- 0.16ug per well 

o construct plasmid at 1.6ug per well 

- incubate at 70°C for 10 min. 

- add OPTIMEM to give 100uL/well 

- add 8uL Fugene per well 

- incubate at RT for 15min. 

- add mix to HEK293T cells 

- transfer cells to BL2 incubator 
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- Seed target cells at about 100’000 cells/well (might vary with cell line) in 2mL in 6well dish 

- Collect media from carrier cells into syringe with filter to remove cell debris 

- Add polybrene to virus-loaded media at 3uL/mL  

- Infect target cells (30-50% confluent) by adding filtered media containing virus particles  

- Perform collection and infection twice a day for 2-3 days 

- Check for infection rate by detection of GFP signal in control cells 

- Discard carrier cells 

- Wash target cells with PBS and split them 

- Add selective antibiotic e.g. puromycin at according concentration tested earlier in this cell line 

- Split several times to remove virus particles, perform for about ten days 

- If desired a p21 ELISA can be performed to check lentivirus titer before transferring cells to BL1 

cell culture room again 

- Check for knockdown of target gene by Western blot (see Protein Methods) or Northern blot (see 

RNA isolation etc.) 

- Freeze stable knockdown cell lines in several tubes in liquid nitrogen as backup! Do not use cells 

for experiments anymore after 10-15 passages as secondary mutations due to selective pressure 

might arise. 

 

BL2: Transport cell culture plates always sealed with parafilm in closed box labelled BL2! Desinfect 

work place with bleach! Wear two pairs of gloves at all times! Discard waste according to BL2 safety 

rules! 

 

8.1.7 Proliferation Assays 

 
Material 

 
- Cell line 

- Medium 

- Trypsin 

- PBS 

- Casy Counter and Analyzer (cell counter) (Innovatis AG) 

- Casyton cell counter solution 

 

Procedure 

 

- Seed cells at 50’000-100’000 cells/2mL in 3cm petri dishes without selective antibiotics 

- Trypsinize cells with 100uL and resuspend in 900uL medium to obtain 1mL cell suspension 

- Measure 50uL cell suspension in 10mL casyton cell counter solution with cell counter using 

program for certain cell line specifics 
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- Do measurements in triplicates, repeat experiment several times 

- Check confluency and health of cell cultures with binocular microscope, take pictures daily 

- Measure cell number daily over 3-7 days 

 

 

8.1.8 Cell Size Assays 

 

- perform similar to proliferation assays 

- measure cell size, eventually normalize to nuclear volume 

- normalization to nuclear volume: 

o To a second batch, resuspend cells in casyton solution containing 0.5% triton X-100 to 

obtain nuclear volume for normalization if necessary 

- measure cell size/volume daily over 3 days 

 

8.2 Consumables 
 
Restriction enzymes were purchased from New England Biolabs. Chemicals were from Sigma-Aldrich if 
not stated differently.  

 
 



 Materials and Methods  
 

                                                                                                                                                                           
        

97 

Product Supplier Cat. No. 

2- Mercaptoethanol Sigma M 7522 

AccuGel 40% National Diagnostics EC-852 

Agar Technical DIFCO/BD 281230 

Agarose, standard Eurobio 018054 

Ammonium persulfate (APS) Bio-RAD 161-0700 

Ampicillin trihydrate Sigma 10045 

Chloroform Fluka 25690 

Dimethyl sulfoxide Sigma 154938 

dNTP set PCR grade Invitrogen 10297-018 

Dulbecco’s MEM medium Bioconcept 1-26F01 

ECL Western Blotting Detection Amersham RPN2106 

Endofree plasmid maxi kit Qiagen 12362 

GenElute Gel Extraction Kit Sigma NA1111 

Genelute high performance endotoxin-free Sigma NA 0410 

GenElute Plasmid Miniprep Sigma PLN-350 

Glucose D(+) Monohydrate Sigma 49159 

HEPES Sigma H3375 

HOECHST 33342 Juro supply H-1399 

Hyperfilm ECL Amersham RPN3103 

Immobilon Western substrate reagents Millipore WBKLS0500 

Immobilon-P PVDF membrane Millipore IPVH00010 

Jet PEI transfection reagent Polyplus Transfection 101-40 

Lambda marker, l HindIII/EcoRI Labforce 1695/1 

Leupeptin Alexis 260-009-M025 

L-Glutamine (200mM) Sigma G7513 

Luria Broth Base life technologies 127-95-027 

Magnesium chloride Fluka 63068 

M-MLV RTase Invitrogen 28025-013 

N,N,N,N'-Tetramethyl-ethylenediamine, TEMED Bio-Rad 161-0800 

Oligo(dT)15 primer Microsynth non commercial 

Penicillin-Streptomycin 100x Sigma P0781 

Pepstatin A Fluka 77170 

Potassium chloride Fluka 60128 

Pwo DNA Polymerase Roche 11644955001 

RNasin Promega N2111 

RPMI 1640 medium Gibco/Invitrogen 31870-025 
 

Sodium chloride Fluka 71376 

Sodium dodecyl sulfate Fluka 71729 

Sodium orthovanadate Sigma S6508 

Super RX film Fuji F57164052 

T4 DNA ligase NEB 102378 

Taq DNA Polymerase NEB 102373 

Taq DNA Polymerase recombinant Invitrogen 10342-020 
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8.3 Antibodies 
 
Epitop Species Origin/Supplier 8.3.1.1.1.1 Cat. no. 

HVps34 Rabbit, polyclonal Zymed/Invitrogen labs 38-2100 

Beclin-1 Rabbit, polyclonal Cell Signalling 3738 

PKB/Akt mouse Non commercial Gift from E.Hirsch, Italy 

Alpha-tubulin Mouse, monoclonal Sigma T9026 

 

8.4 Plasmids 
 
ShRNA: Mission shRNA from Sigma-Aldrich 

- mock: TRCN0000037798 or SHC001, pLKO.1-puro without targeting sequence 
- pLKa: TRCN0000037794, pLKO.1-puro with targetting sequence CGAGAGATCAGTTAAATACTC 
- pLKb: TRCN0000037797 (in A375), pLKO.1-puro with targeting sequence 

TGATGAATCATCTCCAATCTC or TRCN0000037795 (in HEK293), pLKO.1-puro with targeting 
sequence AGTGAGAATGGGCCAAATCTC 

 
Plasmids: 

- pGEM-eGFP-FYVEhrs, gift from Harald Stenmark 
- HDM-pCMV-VSV-G envelope vector: encodes envelope protein  
- HDM-Hpgm2: encodes codon optimized HIV gag-pol 
- HDM-Tat1b: encodes transactivator of transcription 

- pRC-CMV-RaII 
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9 Abbreviations 
 

 

3-MA 3-methyladenine 

AA amino acids 

AD Alzheimer's Disease 

Akt/PKB protein kinase B 

Arg arginine 

BCR homology domain breakpoint cluster region homology domain 

Ca calcium 

CaM calmodulin 

COP 1 coat protein complex 1 

CORVET class C core vacuole/endosome tethering 

CPY carboxypeptidase Y 

C-term carboxy-terminus 

Cvt cytoplasm-to-vacuole-transport 

DsRNA double-stranded RNA 

EEA essential amino acids 

EGF epidermal growth factor 

EGTA calcium chelator 

ER endoplasmatic reticulum 

ESCRT endosomal sorting complex required for transport 

FYVE domain PI(3)P binding domain 

GAP GTPase activating protein 

GDP guanosine diphosphate 

GEF guanine nucleotide exchange factor 

GFP green fluorescent protein 

Glu glutamine 

GPCR G-protein coupled receptor 

GTP guanosine triphosphate 

GTPase molecular switch either bound by GDP or GTP 

HEK293 human embryonic kidney cell line 

His histidine 

HOPS homotypic vacuole fusion and protein sorting complex 

IFN-gamma interferon gamma 

IRG immunity related GTPase 

KD kinase dead 

kDa kilo Dalden 

Leu leucine 

LiAc lithium acetate 

LPA lysophosphatidic acid 

Lys lysine 

MDC mono-dansyl cadaverine 
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MEF mouse embryonic fibroblasts 

mL milliliters 

mM millimolar 

mut mutated 

MVB multivesicular body 

nM nanomolar 

N-term amino terminus 

PDGF platelet-derived growth factor 

PH domain pleckstrin homology domain 

PI phosphoinositides 

PI(3,4,5)P3 " " with three phosphate groups added 

PI3K phosphoinositide-3 kinases 

PI(3)P PI with one phosphate group added 

PI-4,5P2 PI with two phosphate groups added 

PI-4P PI with one phosphate group added 

PKC protein kinase C 

PM plasma membrane 

PTEN phosphatase and tensin homolog 

PX domain phox domain 

RBD Ras binding domain 

RGP radial growth phase 

Rheb Ras homolog enriched in brain 

ROS reactive oxygen species 

RT room temperature 

S6K RPS-6 kinase 

SD synthetic yeast medium, selective 

Ser serine 

SH2 domain src homology domain 2 

SH3 domain src homology domain 3 

ShRNA short hairpin RNA 

SiRNA small interfering RNA 

Tg Thapsigargine 

TGN trans-Golgi network 

Thr threonine 

TNF-alpha tumor-necrosis factor alpha 

Tor target of rapamycin 

TORC1 " " complex 1 

TORC2 " " complex 2 

TSC1/2 tuberous sclerosis complex 1/2 

uL microliters 

uM micromolars 

UPR unfolded protein response 

VEGF vascular endothelial growth factor 
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VGP vertical growth phase 

Vps vacuolar protein sorting 

WD repeats beta-transducin repeats, usually WD 40 

Wm wortmannin 

WT wild type 

YPD yeast full medium 
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Abstract
Phosphoinositide 3-kinase (PI3K)/protein kinase B/Akt and

Ras/mitogen-activated protein kinase pathways are often

constitutively activated in melanoma and have thus been

considered as promising drug targets. Exposure of

melanoma cells to NVP-BAG956, NVP-BBD130, and

NVP-BEZ235, a series of novel, potent, and stable dual PI3K/

mammalian target of rapamycin (mTOR) inhibitors, resulted

in complete G1 growth arrest, reduction of cyclin D1, and

increased levels of p27KIP1, but negligible apoptosis. In

contrast, treatment of melanoma with the pan-class I PI3K

inhibitor ZSTK474 or the mTORC1 inhibitor rapamycin

resulted only in minor reduction of cell proliferation. In a

syngeneic B16 mouse melanoma tumor model, orally

administered NVP-BBD130 and NVP-BEZ235 efficiently

attenuated tumor growth at primary and lymph node

metastatic sites with no obvious toxicity. Metastatic

melanoma in inhibitor-treated mice displayed reduced

numbers of proliferating and significantly smaller tumor

cells. In addition, neovascularization was blocked and

tumoral necrosis increased when compared with

vehicle-treated mice. In conclusion, compounds targeting

PI3K and mTOR simultaneously were advantageous to

attenuate melanoma growth and they develop their potential

by targeting tumor growth directly, and indirectly via their

interference with angiogenesis. Based on the above results,

NVP-BEZ235, which has entered phase I/II clinical

trials in patients with advanced solid tumors, has a

potential in metastatic melanoma therapy.

(Mol Cancer Res 2009;7(4):601–13)

Introduction
Cancer cells evolve from a benign, noninvasive state to meta-

static tumors, which grow and proliferate aggressively and dis-

play diminished cell death out of their normal tissue context.

This process is driven by the accumulation of genetic and epige-

netic alterations (1), which leads to sustained inputs into multiple

signal transduction pathways. Activation of phosphoinositide

3-kinase (PI3K) is a prominent relay to tumor growth as it pro-

motes increase in cell mass and cell cycle entry, counteracts

apoptosis, modulates cytoskeletal rearrangements, and enhances

cell migration (2-4).

Excess growth factor expression, constitutively activated

protein tyrosine kinase receptors (e.g., epidermal growth factor

receptor, c-kit, platelet-derived growth factor receptor, Met),

oncogenic Ras, loss of phosphatase and tensin homologue de-

leted in chromosome 10 (PTEN), and mutated PI3K can lead

to an increase in the levels of the PI3K product PtdIns(3,4,5)

P3. The latter serves as a docking site for pleckstrin homology

domain-containing proteins such as protein kinase B (PKB/

Akt) and guanine nucleotide exchange factors feeding into

growth and metastasis (3, 5). A major output of PKB/Akt

activation is the phosphorylation of tuberin in the tuberous

sclerosis complex (TSC1/2), which releases the TSC1/

2→Rheb→mammalian target of rapamycin (mTOR) pathway

and leads to increased translation and transcription (6).

Metastatic melanoma is a tumor with an exceptionally bad

prognosis. Melanoma display already at early stages often mu-

tated B-Raf (V600E; 66%) or constitutively activated N-Ras

(mutation Q61K/L/R, 20%). An increase in tumor aggressive-

ness is observed in metastatic melanoma, which often correlates

with the loss of PTEN (up to 60%) or up-regulation of PKBγ/

Akt3 (43-67%). Mutations of PI3K itself, as observed in other

tumors for PI3Kα (PIK3CA; ref. 7), are rare in cutaneous mel-

anoma (8, 9); however, the PI3Kα protein was found to be up-

regulated (10). Occasional mutations found in STK11/LKB1

(11) could also contribute to the activation of mTOR indepen-

dent from PI3K in melanoma. Therefore, the Ras/mitogen-

activated protein kinase (MAPK) and PI3K/mTOR signaling

pathways were proposed as promising drug targets for the treat-

ment of advanced melanoma (12).

Clinical trials targeting the MAPK pathway (single ther-

apy with the B-Raf inhibitor sorafenib/Nexavar/BAY 43-

9006; ref. 13) did not yield significant success in melanoma

despite beneficial effects of sorafenib in the treatment of re-

nal cell carcinoma (14). Now sorafenib is in clinical trials

in combination with bevacizumab (Avastin), and other Raf

inhibitors also entered clinical trials (PLX4032, Plexxikon;

Raf265, Novartis). Trials with rapamycin derivatives target-

ing mTOR (CCI-779/temsirolimus, Wyeth) in melanoma had

to be concluded too due to inefficacy (15). New clinical
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trials targeting Raf and mTOR simultaneously have been

initiated recently.4

In preclinical models, the PI3K pathway was initially tar-

geted with LY294002, a PI3K inhibitor with low potency,

low specificity, and high toxicity (16). LY294002 and wort-

mannin inhibit the whole PI3K family and related proteins, in-

cluding mTOR, PI4K, DNA-PK (17), and Polo-like kinases

(18). Improvements in PI3K inhibitor potency and selectivity

were made with the pyridofuropyrimidine PI103 (19-21), and,

recently, the first orally administered pan-PI3K inhibitor

ZSTK474 was presented (22, 23).

Here, we report for the first time in melanoma the action of

PI3K/mTOR inhibitors with drug-like properties, including

NVP-BEZ235, which has entered phase I/II clinical studies

for patients with advanced solid malignancies. Our results re-

ported herein provide a basis for the evaluation and rational of

action of PI3K pathway targeting in solid tumors and document

a significant efficiency and insignificant adverse effects of the

compounds used.

Results
Dual PI3K/mTOR Inhibitors Block Proliferation of

Melanoma Cells

Melanoma cells often show constitutive activation of the

PI3K pathway due to mutations and attenuation of the phospha-

tase PTEN or changes in PKBγ expression. Here, a collection of

human melanoma cell lines generated from different tumor

stages and three mouse melanoma lines of the B16 family were

used to investigate the susceptibility of melanoma to PI3K path-

way inhibition. Currently, the effect of PI3K inhibition on cell

proliferation is controversial (12, 22, 24-27); therefore, we first

reevaluated the effect of the classic PI3K inhibitors wortmannin

and LY294002. When cells were exposed to a single dose of in-

hibitor for 3 days, wortmannin was ineffective due to its limited

stability (Fig. 1A and B). A set of newly identified, ATP-compet-

itive PI3K/mTOR inhibitors, NVP-BAG956, NVP-BBD130,

and NVP-BEZ235 (see Table 1; Supplementary Fig. S1; refs.

28, 29), showed a long-term effect on melanoma cell proli-

feration, superior to even much elevated concentrations of

LY294002 (Fig. 1A and B). NVP compounds prevented growth

(<20% of normal growth) in >85% of the tested melanoma lines,

independent of the status of PTEN and BRaf (Supplementary

Table S1) or the tumor stage the cells were derived from. The arrest

in proliferation correlated with a reduction in cellular and nuclear

size (data not shown). Interestingly, inhibitor-treated cells were

able to reenter proliferation at a reduced rate and to gain normal

cell volume when NVP-BAG956 and NVP-BEZ235 were re-

moved, whereas cells exposed to NVP-BBD130 were arrested

for up to 10 days and remained small (7 days in the absence of

inhibitor; see Supplementary Fig. S2). Although in prolonged sta-

sis, no significant cell death was observed.

To understand the mode of action of these novel compounds,

we performed time course– and concentration-dependent ex-

periments using malignant, aggressively growing cell lines, such

as A2058, which have constitutively activated PI3K/PKB/Akt

(Fig. 1C) and MAPK pathways (see Supplementary Fig. S3).

All used PI3K inhibitors decreased phosphorylation of PKB/

Akt, whereas the phosphorylation status of MAPK was not af-

fected. The effect of wortmannin was short lived; levels of phos-

phorylated PKB/Akt were back to normal 2 to 4 hours after

treatment. In the case of LY294002, the PKB/Akt phosphoryla-

tion was restored after 1 day. In contrast, a single addition of

NVP compounds caused very prominent and prolonged dephos-

phorylation of PKB/Akt, even in melanoma showing PI3K

inhibitor-resistant proliferation (e.g., C32; see Fig. 1A and C).

The potency of the three novel inhibitors to block phosphoryla-

tion of PKB/Akt in A2058 cells was in the nmol/L range (IC50

value for NVP-BBD130 was 11 ± 4.6 nmol/L, for NVP-BEZ235

18 ± 6.4 nmol/L, and for NVP-BAG956 67 ± 25 nmol/L;

Fig. 1D). In addition, inhibition of PKB/Akt phosphorylation

correlated with loss of A2058 cell proliferation for NVP-

BBD130 and NVP-BEZ235 (IC50 for NVP-BBD130 was 34 ±

2.6 nmol/L and for NVP-BEZ235was 26 ± 2.5 nmol/L), whereas

more of NVP-BAG956 was required to hinder proliferation

(IC50was 290 ± 20 nmol/L; see Fig. 1E). Altogether, when com-

pared with the established compounds, the novel inhibitors exert

prolonged action with superior stability in complex medium.

G1 Cell Cycle Arrest of Melanoma Cells Upon Treatment

with PI3K/mTOR Inhibitors

The effect of PI3K inhibitors on the cell cycle is shown here

in detail for A2058 melanoma cells (Fig. 2; more melanoma

lines in Supplementary Table S2): Melanoma treated with wort-

mannin and LY294002 showed no significant shifts in cell cy-

cle profiles compared with nontreated cells, whereas PC3M

cells, which are very sensitive to PI3K inhibitors (Supplemen-

tary Fig. S4A; refs. 30-32), displayed a prominent cell cycle

arrest in G1 with LY294002. NVP-BAG956, NVP-BBD130,

and NVP-BEZ235 resulted in a complete arrest of most tumor

cells in G1, which correlated with a lack of proliferation and

DNA replication (as measured by [3H]thymidine incorporation;

Fig. 2B). PI3K inhibitor–resistant proliferation was observed in

C32 melanomas, which consequently also showed no G1 arrest

(Fig. 1A; Supplementary Table S2). Moreover, PI3K inhibition

did not induce evident signs of apoptosis as monitored by the

absence of sub-G1 peaks (Fig. 2A and data not shown) and An-

nexin V–positive cells (Supplementary Fig. S4B; Supplemen-

tary Table S2). PI3K/mTOR inhibitors thus have cytostatic, but

no cytotoxic, effects on melanoma cells.

Cell cycle progression is regulated by the oscillating expres-

sion of cyclins and the inhibition of specific cyclin/cyclin-

dependent kinase (Cdk) complexes by Cdk inhibitors. Expres-

sion of cyclin D1 is down-regulated in A2058 cells treated with

NVP compounds and is somewhat reduced by treatment with

LY294002 (Fig. 2C). A minor decrease in cyclin D1 was ob-

served in control and wortmannin-treated cells, as they reached

confluence at later stages. In inhibitor-resistant C32 cells, PI3K/

mTOR inhibition caused compound-dependent elevations in

cyclin D1 levels (Fig. 2C). Similarly, p27Kip1 expression was

clearly induced by NVP-BAG956, NVP-BBD130, and NVP-

BEZ235 in A2058 cells but not in C32 cells.

To investigate stringency and rapidity of the cell cycle ar-

rest in G1 induced by PI3K pathway inhibition, A2058 cells

were synchronized with the microtubule disruptor nocodazole

in G2-M and released subsequently in the presence of vehicle4 http://www.clinicaltrials.gov
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or PI3K inhibitors: (a) the initial treatment with nocodazole

arrested cells in G2-M (from 30% to 60% of cells in G2-M;

Fig. 2D); (b) after nocodazole removal, control and wortman-

nin-treated cells showed a profile typical of proliferating cells

after 24 h, whereas cells exposed to LY294002 required

48 h to restart proliferation. In the presence of NVP-BAG956,

NVP-BBD130, or NVP-BEZ235, A2058 cells were only able

to exit G2-M and then remained in G1 (Fig. 2D).

Primary and Metastatic Tumors Require the PI3K Pathway

for Growth In vivo

To evaluate the efficacy of different PI3K/mTOR inhibitors

in vivo, we used a syngeneic B16BL6 mouse melanoma model,

in which cells, injected intradermally in both ears, rapidly prog-

ress to primary tumors and cervical lymph node metastasis.

Treatment with vehicle control, PI3K/mTOR inhibitors, and a

vascular endothelial growth factor receptor (VEGFR) protein

tyrosine kinase inhibitor (PTK787) were started 7 days follow-

ing tumor inoculation. A ∼60% reduction in the primary tumor

size was achieved with different doses and regimens of NVP-

BBD130, NVP-BEZ235 and PI103 (Fig. 3A), and PTK787

(data not shown). Moreover, mice treated with NVP-BBD130,

NVP-BEZ235, or PTK787 showed a significant reduction in

the size of the cervical lymph node metastasis (Fig. 3B;

PTK787: data not shown). For NVP-BBD130, tumor and me-

tastasis size reduction correlated with a stringent reduction in

the amount of phosphorylated PKB/Akt and p70S6K 2 hours

after the last treatment (Fig. 4A). A partial recovery to basal

level was seen after 16 hours. In addition, reduced expression

of cyclin D1 and increased levels of p27Kip1 were detected in

metastatic tissue 2 hours after dosing (Fig. 4B). Intriguingly,

treatment with PI103 at the concentration used here did not

significantly reduce the mass of lymph node metastasis

(Fig. 3B), which was in agreement with overshooting signals

for phosphorylated PKB/Akt and p70S6K in primary and meta-

static tumor tissue (Fig. 4A). As PI103 is cleared rapidly from

the tumor (half life <2 hours; see ref. 20), these elevated and

dose-dependent signals could represent a release of feedback

loops in the PI3K/mTOR signaling system.

A closer analysis of metastatic sections revealed that cell

size was decreased in tumor tissue from inhibitor-treated ani-

mals (Fig. 5A), but not in hepatocytes of the same mice. This

is encouraging, as liver cell size dynamically responds to star-

vation and the current PI3K/mTOR treatment regimen seems

not to fully mimic nutrient deprivation. Plasma levels of liver

marker enzymes and proteins were also not significantly affect-

ed by the treatment with PI3K/mTOR inhibitors (except alanine

aminotransferase; see Supplementary Table S3). Interestingly,

PI3K inhibitor–mediated reduction in cell size went along with

a decreased mitotic index (Fig. 5B). The few remaining mitotic

cells were usually located around preexisting, large blood ves-

sels. In addition to reduced cell proliferation, metastatic tissue

from mice treated with NVP-BEZ235 displayed significantly

increased necrosis levels compared with tumors from vehicle

control–treated mice (Fig. 5C).

To survive and grow, tumors with a diameter larger than

1 mm require blood vessels to be fully supplied with nutrients

and oxygen. Staining of metastatic sections for the endothelial

cell marker CD31 revealed that NVP-BBD130 and NVP-

BEZ235 completely abrogated neoangiogenesis in metastatic

tissue, whereas vehicle control–, PI103-, or PTK787-treated tu-

mors displayed a well-developed microvasculature (Fig. 6A;

quantification in Fig. 6B). Large and preexisting blood vessels

at the tumor border remained unaffected by all treatments (data

not shown). Altogether, the above results show that the novel

NVP compounds have a direct effect on tumor cell growth and

proliferation, and exert, in addition, antiangiogenic effects sup-

porting tumor necrosis.

PI3K/mTOR Inhibitors Are Well Tolerated

Tumor-bearing mice showed a disease-related drop in

body weight by 5% to 10% and had >2-fold enlarged

spleens when compared with healthy controls (Table 2).

PI3K inhibitor–treated animals showed a less dramatic in-

crease in spleen size and an overall tendency to regain body

weight, reaching significance for PTK787 and NVP-BEZ235

(data not shown). The collected data illustrate that the tumor

per se causes dramatic systemic changes, which were partial-

ly reversed by PI3K/mTOR inhibition. Interference with in-

sulin-mediated glucose uptake also seemed negligible, as

blood glucose levels did not significantly increase over con-

centrations determined in healthy and vehicle control–treated

animals (Table 2).

PI3K and mTOR have been reported to play important roles

in the immune system. Spleen and bone marrow of NVP-

BBD130– and PI103-treated mice were therefore analyzed

for adverse effects on immune cells. Tumor-bearing, vehicle

control–treated mice displayed a reduction in the number of

CD3+ T cells, B cells, and natural killer cells, compared with

healthy animals (Supplementary Table S4), and NVP-BBD130

treatment decreased lymphocyte counts in a statistically insig-

nificant manner. Interestingly, treatment with PI103 resulted in

an increase in the number of T cells, B cells, and natural killer

cells back to levels similar to healthy control animals. Granu-

locytes, macrophages, and erythroid cell numbers were normal

in the bone marrow of all tumor-bearing mice, and there was no

indication that the applied PI3K/mTOR inhibitors interfered

with hematopoiesis.

Cooperation of PI3K and mTOR in Melanoma Cell

Proliferation

To discriminate between the importance of PI3K and

mTOR, we ectopically expressed a constitutively active PKB/

Akt (myristoylated PKB, Myr-PKB; ref. 33) to partially bypass

the inhibitor-mediated block in PI3K signaling. To monitor

PKB/Akt action, we used the mTOR-independent nuclear to

cytoplasmic translocation of forkhead transcription factors

(FOXO), which feed negatively into cell cycle progression

and antiapoptotic events (34, 35). Nonphosphorylated FOXOs

are localized to the nucleus but are retained in the cytoplasm

when phosphorylated by PKB/Akt. In A2058 cells, PKB/Akt

is maintained activated in a PI3K-dependent manner even in

serum-free conditions, mainly due to the lack of the lipid phos-

phatase PTEN. As a consequence, ectopically expressed

FOXO1 is quantitatively localized in the cytoplasm. Treatment

of A2058 cells with NVP compounds caused a rapid inactiva-

tion of PKB/Akt and a subsequent translocation of FOXO1 to

the nucleus (Fig. 7A). Stable expression of Myr-PKB in A2058
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was sufficient to prevent nuclear translocation of exogenous

FOXO1 in the presence of PI3K inhibitors, but did not rescue

proliferation in the presence of, e.g., NVP-BEZ235 (Fig. 7B).

In serum-deprived HEK293 cells, Myr-PKB reconstituted

phosphorylation of FOXO and GSK3β and also fed into mTOR

signaling with phosphorylated p70S6K, S6, and 4E-BP1 as read-

outs (Supplementary Fig. S5). Whereas FOXO and GSK-3β

phosphorylation was to a large extent PI3K inhibitor resistant,

signals downstream of mTOR were completely abrogated by

NVP-BAG956, NVP-BBD130, NVP-BEZ235, and PI103, as

well as by the mTORC1 inhibitor rapamycin. This corroborates

mTOR inhibition by NVP compounds observed in TSC1 knock-

out mouse embryonic fibroblasts (Table 1; see ref. 28).

Recently, a selective pan-PI3K inhibitor without activity

against mTOR (ZSTK474) was shown to block tumor cell

growth with an overall 50% sensitivity rate (22, 23). To evalu-

ate the requirement of a dual PI3K and mTOR inhibition to

target melanoma, cells were comparatively exposed to NVP-

BEZ235, ZSTK474, and/or rapamycin. The obtained results

clearly illustrate that targeting either PI3K or mTOR in isola-

tion can attenuate growth and proliferation of particularly sen-

sitive cells (e.g., A375), whereas more resistant melanoma are

only affected by the simultaneous targeting of PI3K and mTOR

(Fig. 8A). Treatment of melanoma cells with a combina-

tion of ZSTK474 and rapamycin results in a more pronounced

proliferation arrest compared with single compounds. The

FIGURE 1. PI3K inhibitors affect proliferation and downstream signaling in melanoma cells. A. Antiproliferative effect of PI3K inhibitors. Melanoma cells
were exposed to the indicated inhibitors (LY294002 at 25 μmol/L; wortmannin at 500 nmol/L; NVP-BAG956, NVP-BBD130, and NVP-BEZ235 at 1 μmol/L) for
3 d before cell numbers were determined. Cell numbers are depicted after the subtraction of initially seeded cells in relation to nontreated controls (ratio of
treated over nontreated cultures). Columns, mean of triplicates; bars, SE. B. Time-dependent A2058 proliferation in the presence of PI3K inhibitors. A2058
cells were exposed to PI3K inhibitors at day 0 before cells were counted at the indicated time intervals. Points, mean of triplicates; bars, SE. C. Prolonged
changes in phosphorylation of PKB/Akt upon PI3K inhibition. Phosphorylated PKB as detected in total cell lysates of A2058 and C32 cells treated with PI3K
inhibitors for the indicated intervals are shown. An extended version of the figure is presented in Supplementary Fig. S3. D. Concentration-dependent inhi-
bition of PKB phosphorylation. A2058 cells were exposed for 3 h to increasing concentrations of NVP-BAG956, NVP-BBD130, and NVP-BEZ235. Total cell
lysates were subjected to immunoblotting for total and phosphorylated PKB or MAPK. Emerging signals were quantified using fluorescent secondary anti-
bodies, and ratios of phosphosphorylated over nonphosphorylated kinases are displayed. Points, mean (n > 3); bars, SE. E. Inhibitory activity of PI3K
inhibitors against melanoma cell proliferation. A2058 cells were treated at day 0 with increasing concentrations of NVP-BAG956, NVP-BBD130, and
NVP-BEZ235. Cell proliferation was evaluated 3 d later. Points, mean of triplicates; bars, SE.
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differential modulation of the phosphorylation status of PKB

and p70S6K by the various inhibitors in sensitive and more re-

sistant cell lines shows that the degree of the coupling of PI3K

to mTOR varies, and a retained activation of mTOR in the

presence of PI3K inhibitor (as, e.g., in 1205lu cells; Fig.

8B) requires an efficient PI3K/mTOR dual-mode inhibitor to

attenuate growth.

Discussion
The recognition that the PI3K pathway has gained as a pu-

tative target in cancer therapy (2-4) is reflected by a recent in-

crease in patent literature covering novel PI3K inhibitors (36,

37) and documents the need for compounds with improved sta-

bility, efficacy, and potency. The newly developed series of

ATP-competitive PI3K/mTOR inhibitors (28, 29), NVP-

BAG956, NVP-BBD130, and NVP-BEZ235, fit these criteria,

and NVP-BEZ235 has recently entered clinical trials. NVP-

BEZ235 (28) and NVP-BBD130 (Supplementary Fig. S6) have

advantageous pharmacologic profiles and show a high and sus-

tained exposure in tumor tissue in vivo. Neither their effects in

aggressive, metastatic tumors in syngeneic models nor the re-

quirement of a dual inhibition of PI3K and mTOR was studied

thus far.

Incubation of asynchronously growing melanoma cells with

NVP compounds resulted in a complete loss of PKB/Akt phos-

phorylation and induced growth arrest, but not apoptosis, which

is in agreement with earlier reports for PI3K pathway inhibitors

(12, 22, 26). The observed growth arrest was dose dependent

and correlated with the loss of phosphorylation of PKB/Akt.

Cells accumulated in the G1 cell cycle phase showing up-

regulation of the cell cycle inhibitor p27Kip1, reduction in cyclin

D1 levels, and a complete block of DNA synthesis. In all cell

lines tested here, the effect of NVP compounds on cell prolif-

eration was superior and prolonged when compared with the

action of LY294002 and wortmannin. A small fraction of the

cells tested responded only partially to PI3K/mTOR inhibition

and consequently did not show a G1 arrest or changes in

p27Kip1. Increased cellular cyclin D1 has been previously asso-

ciated with poor prognosis in many cancers and has also been

reported to correlate with B-Raf inhibitor resistance in mela-

noma (38). Further studies will be required to determine if

the inhibitor-induced increase in cyclin D1 levels depicted in

C32 cells confers resistance to PI3K/mTOR inhibition in a

general sense. Similarly, the low expression or mutation of

the lipid phosphatase PTEN, a constitutive activation of the

PI3K pathway, the presence of mutated Ras or Raf, or the

p53 status cannot be currently translated into a reliable pattern

to predict sensitivity of melanoma to PI3K/mTOR inhibition.

To assess the in vivo activity of NVP-BBD130 and NVP-

BEZ235, a B16 melanoma model was used: This syngeneic

mouse model allows the evaluation of pharmacologic effects

on the progress of an aggressive primary tumor and the precise

quantification of a secondary metastatic lymph node tumor.

Moreover, other than in xenograft models, mice have here an

intact immune system and the effects of drugs on immune cell

counts can be monitored. This is important as melanoma pa-

tients mount spontaneous T cell–dependent responses against

their tumor, which correlate with patient survival (39). One

might thus anticipate that optimal treatment should not interfere

with antitumoral immune responses.

NVP-BBD130 and NVP-BEZ235 could be administered

orally and have excellent pharmacologic properties, whereas

PI103 required i.p. application. Treatment of mice with differ-

ent doses and regimens of inhibitors resulted in a ∼60% reduc-

tion of the primary tumors independently of the inhibitor used.

Size of lymph node metastasis was also greatly reduced in mice

treated with NVP-BBD130 and NVP-BEZ235, whereas treat-

ment with PI103 (10 mg/kg/d) had insignificant effects on

the mass of metastasis. In a first report, Fan et al. (19) obtained

an antitumoral activity of PI103 in glioma xenografts with

doses as low as 5 mg/kg/d. In contrast, Raynaud et al. (20) used

the same glioma tumor model and achieved comparable results

only at 100 mg/kg/d and recently Chen et al. (21) showed that

PI103 at 10 mg/kg/d was not efficacious as a single agent in a

different glioblastoma model. In the melanoma model used

Table 1. In vitro Inhibitory Activities of NVP Compounds
and ZSTK474

A

Kinase type Enzyme NVP-BAG956 NVP-BBD130 NVP-BEZ235*

IC50 (μmol/L) IC50 (μmol/L) IC50 (μmol/L)

Receptor TK VEGFR1 2.56 ± 0.56 >10 >10

Flt3 >10 >10 >10

EGFR (HER1) >10 >10 >10
IGF1-R >10 >10 >10

EphB4 >10 >10 >10
Ret >10 >10 >10

Tie-2 (Tek) >10 >10 >10
c-Met >10 >10 >10

FGFR-K650E >10 >10 >10

Cytosolic TK Fak >10 >10 >10
Jak2 >10 >10 >10

c-Abl >10 >10 >10
c-Src >10 >10 >10

Cytosolic S/TK PKA >10 >10 >10

Akt (PKB) >10 >10 >10
PDK1† 0.24/0.26 >10 >10

B-Raf–V600E >10 >10 >10
CDK1 >10 >10 >10

B

NVP-
BAG956

NVP-
BBD130

NVP-
BEZ235*

ZSTK474‡ PI103§

IC50 (nmol/L) IC50 (nmol/L) IC50 (nmol/L) IC50

(nmol/L)

IC50

(nmol/L)

PI3Kα 56/56 72/71 4 ± 2 16 2/8

PI3Kβ 444/446 2,340/2,336 75 ± 45 44 3/88
PI3Kδ 34/35 201/201 7 ± 6 4.6 3/48

PI3Kγ 117/112 382/350 5 ± 4 49 15/150

mTOR n.d. n.d. [7.7]∥ 20.7 [6.5]∥ >100,000 20-83

NOTE: In vitro activities of BAG956, BBD130, BEZ235, and ZSTK474. In vitro

kinase assays were done with the indicated recombinant purified kinases in the
presence of increasing concentration of the inhibitors (53).

Abbreviation: n.d., not determined.
*See Maira et al. (28).
†See Stauffer et al. (29).
‡See Kong and Yamori (23).
§See Fan et al. (19), Knight et al. (54), and Raynaud et al. (20).
∥Values in square brackets correspond to IC50 values obtained in TSC1 null
mouse embryonic fibroblasts using phospho-S6 as output.
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here, a dose of 10 mg/kg/d of PI103 was sufficient to attenuate

primary tumor growth as observed for NVP-BEZ235, whereas

a significant reduction in lymph node metastasis could not be

detected. It is tempting to explain the lack of action on the

lymph node metastasis by a restricted access of PI103 to meta-

static tumor tissue. This is, however, challenged by the obser-

vation that increasing doses of PI103 caused a dose-dependent,

paradoxical increase in phosphorylated PKB/Akt and p70S6K in

both the primary tumor and the metastasis in cervical lymph

nodes. As Ser473 on PKB/Akt is mainly phosphorylated by

TORC2 (40) in the absence of DNA damage (41, 42), and

Thr389 phosphorylation on p70S6K is mediated by TORC1,

these phosphorylation patterns suggest that both mTOR com-

plexes are in an overactivated state 2 hours after the last

PI103 administration in a prolonged treatment scheme. As

PI103 was used here at low doses and has a short half life

(<2 hours; ref. 20), these results indicate that PI3K/mTOR

signaling overshoots after a transient inhibition. BBD130,

maintaining exposure to the tumor for a prolonged time

(16 h/nmol/g), shows a clear reduction of Ser473 phosphoryla-

tion on PKB/Akt and Thr389 on p70S6K until 16 hours after ad‐

ministration. The above result suggests that inhibitor half-life,

exposure, and dosage frequency might affect the success of

PI3K/mTOR modulation, and that phospho-PKB/Akt and

phospho-p70S6K need validation as biomarkers in conjunction

with given compounds.

A close examination of melanoma tissue from mice treated

with NVP-BBD130 and NVP-BEZ235 revealed that the mitotic

index of metastatic cells in the cervical lymph nodes were re-

duced to more than half of untreated controls. This went along

with a reduction in tumor cell mass, whereas cell size in other

organs like the liver remained unaffected. The liver adapts to

starvation by a reduction in cell size (43). As current PI3K/

mTOR inhibitor treatments did not affect normal liver morphol-

ogy, one may assume that nutrient uptake was functional. NVP-

BBD130 at high single dose (40 mg/kg) showed a significant

increase of the liver alanine aminotransferase in the plasma,

which correlates with the increased liver retention of BBD130

compared with BEZ235 (Supplementary Fig. S6; ref. 28). Split-

ting the daily dose of NVP-BBD130 (2 × 20 mg/kg) reduced the

FIGURE 2. PI3K pathway inhibition causes growth arrest in G1 in melanoma. A. Determination of cell cycle profile changes by PI3K inhibitor treatment.
A2058 melanoma cells were exposed to PI3K inhibitors for 3 d. Subsequently, the cell cycle profile was evaluated by fluorescence-activated cell sorting using
propidium iodide staining. For more cell lines, see Supplementary Table S2. *, P < 0.002. B. PI3K and DNA replication. [3H]thymidine incorporation into DNA
was assessed in A2058 treated as above. Columns, mean (n = 6); bars, SE. C. Attenuation of PI3K activity affected cyclin D1 and cell cycle inhibitor p27Kip1

levels. A2058 and C32 cells, cultured with or without PI3K inhibitors, were lysed at the indicated times and assessed for cyclin D1 and p27Kip1 expression
levels by immunoblotting. D. Evaluation of the role of PI3K in cell cycle transitions in melanoma cells. A2058 cells were synchronized in the G2-M phase by
nocodazole treatment (black curve). Subsequently, cells were released from the nocodazole block and simultaneously exposed to the indicated PI3K inhi-
bitors (colored curves). The cell cycle profile was then analyzed 1 and 2 d later as in A.
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release of alanine aminotransferase. Moreover, we could not

detect significant differences in blood glucose levels between

inhibitor-treated and vehicle control mice, showing that the in-

hibition of the PI3Ks is not impairing the glucose homeostasis.

Angiogenesis is required for nutrient supply and growth of

tumors beyond 1 mm (44) and has been shown to be sensitive

to mTOR inhibition by rapamycin and its derivatives (45, 46).

Supporting this notion, tumors excised from NVP-BBD130–

and NVP-BEZ235–treated mice displayed a significant reduc-

tion in neovascularization, whereas large, preexisting blood

vessels were not affected by targeting PI3K and mTOR. In-

triguingly, mice treated with PI103 or the VEGFR inhibitor

PTK787 showed no significant reduction in the amount of

new blood vessels compared with vehicle control mice.

Whereas NVP-BEZ235 and NVP-BBD130 are very potent

PI3K and mTOR inhibitors, their effect on the VEGF receptor

tyrosine kinase activity is negligible (IC50 for VEGFR1 >10

μmol/L). Despite this fact, they blocked the formation of new

blood vessels more efficiently than PTK787. The PI3K/mTOR

signaling pathway has been reported to control the expression

of HIF-1 via activation of p70S6K and HDM2/MDM2. HIF-1

is the major regulator of VEGF transcriptional activity (47).

Feedback loops from mTOR to PKB/Akt and PI3K activation

have been reported (48), and also hypoxia-induced angiogen-

esis might require mTORC1 and mTORC2 (49). Therefore,

NVP-BBD130 and NVP-BEZ235 interfere with VEGFR li-

gand production and VEGFR downstream signaling to block

blood vessel formation and exert at the same time cytostatic

effects on tumor cells. This dual action could explain the

higher efficiency of NVP-BBD130 and NVP-BEZ235 com-

pared with PTK787, an inhibitor more selectively targeting

endothelial cells through VEGFR inhibition. The effect of

FIGURE 3. Antitumoral and antiangiogenic effect of PI3K inhibitors in
the B16 mouse melanoma model. B16BL6 mouse melanoma cells were
injected intradermally into ears of C57BL6 mice. One week later, tumors
were established and treatment with vehicle and PI3K inhibitors (NVP-
BBD130 at 40 mg/kg daily and 20 mg/kg twice daily, orally; NVP-
BEZ235 at 40 mg/kg daily and 20 mg/kg twice daily, orally; PI103 at
10 mg/kg daily, i.p.) was started. Size of primary tumors was determined
when indicated, whereas the mass of cervical lymph node metastasis was
determined as the mice were sacrificed (*, P < 0.05 versus vehicle control
group). A. Primary tumor size is depicted in percentage of the tumor size
obtained in vehicle-treated (VC) animals 20 d after melanoma inoculation
(for calculations, see Materials and Methods). Points, mean (n > 6); bars,
SE. B. Formation of cervical lymph node metastasis. Mice were sacrificed
20 d after tumor inoculation and 2 wk of treatment with the indicated com-
pounds. Cervical lymph node metastatic tissue was excised and weighted.
Changes in metastatic mass are plotted in percentage of the mean end
point of vehicle-treated animals. Points, mean (n > 6); bars, SE.

FIGURE 4. A and B. PI3K downstream signaling and cell cycle mar-
kers in tumor tissue. Tumor samples were collected at the indicated times
after the last treatment with compound (posttreatment). Subsequently, total
lysates of primary and metastatic tumors were resolved on SDS-PAGE
and probed for phosphorylated PKB and p70S6K, or p27Kip1 and cyclin
D1. Actin stained with Coomassie blue is shown as a loading control.
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NVP-BBD130 and NVP-BEZ235 on neovascularization

seemed to be crucial, as we noticed that tumor cells located

in the vicinity of preexisting, large blood vessels still had

some capacity to enter mitosis and displayed a nearly normal

cell size (data not shown). It is therefore likely that the in-

creased amount of necrotic tumor tissue observed in NVP-

BEZ235–treated animals is caused by the very stringent tar-

geting of neovascularization.

Our results indicate that the novel series of PI3K/TOR inhi-

bitors attacks tumor progression by several molecular and phys-

iologic mechanisms. To explore if the inhibition of mTOR in

addition to PI3K is essential for blockage of tumor cell growth,

we reintroduced constitutive PKB/Akt signaling in inhibitor-

treated cells. When activated, PKB/Akt modulates directly

and indirectly a range of transcription factors, among them

the FOXOs. Here, NVP compounds abolished phosphorylation

of FOXO1 by PKB/Akt, thus abrogating its binding to 14.3.3

proteins, which resulted in a translocation to the nucleus. Ec-

topic expression of constitutively active PKB/Akt (myr-PKB)

yielded a PI3K inhibitor–resistant, cytosolic retention of

FOXO1, but was unable to bypass the cell cycle arrest imposed

by NVP compounds. This could be due to the fact that signals

downstream of mTOR (p70S6K, S6, and 4E-BP1 phosphoryla-

tion) remained inhibitor sensitive in the presence of constitu-

tively active PKB/Akt.

Melanoma cells displayed a <50% drop in the rate of prolif-

eration after high doses of rapamycin (mTOR inhibitor,

100 nmol/L) or <25% after ZSTK474 (pan-PI3K inhibitor,

1 μmol/L) treatment. NVP-BEZ235 is a pan-PI3K inhibitor

but also blocks mTOR, targeting the ATP-binding site of TORC1

and TORC2 (28). Only the treatment of melanoma cells with

dual inhibitors resulted in an efficient cytostatic, and in some rare

cases cytotoxic, effect. The combination of rapamycin and

ZSTK474 was more effective than either compound alone

(<60%), but less effective than BEZ235. Whereas ZSTK474 in-

hibits class I PI3Ks, but not mTOR, rapamycin targets exclusive-

ly TORC1. Therefore, mTORC1 and simultaneously mTORC2

inhibition seems to be an important feature of NVP-BBD130 and

NVP-BEZ235 action, which in combination with PI3K inhibi-

tion efficiently interferes with tumor growth in vivo.

In conclusion, inhibition of the PI3K/mTOR pathway via

the nmol/L dual PI3K/mTOR inhibitors NVP-BBD130 and

NVP-BEZ235 efficiently attenuates growth and proliferation

of melanoma primary tumors and metastasis. Moreover, these

FIGURE 5. A. Tumor and
hepatocyte cell size. Paraffin
sections of metastatic mela-
noma and of liver tissue were
stained with H&E, and cell
size was measured as cross-
section areas with ImageJ
software. Columns, mean
(n > 300); bars, SE. B. Mitotic
index in metastatic tissue. Mi-
totic nuclei in lymph node me-
tastasis were quantified in
H&E-stained paraffin sections.
Columns, mean (n > 200
cells); bars, SE. C. Necrosis
in cervical lymph node metas-
tasis. H&E-stained paraffin
sections were analyzed for
the presence of necrotic tis-
sue and the percentage of ne-
crotic cells was evaluated with
the help of ImageJ. Columns,
mean (n > 4); bars, SE. Scale
in mm.
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compounds efficiently target neovascularization, and NVP-

BEZ235 augmented tumor necrosis. In all, the above results en-

courage clinical development of this compound series and the

inclusion of patients with melanoma in ongoing phase I/II stud-

ies involving NVP-BEZ235.

Materials and Methods
Cell Culture

Melanoma cells were grown at 37°C in a 5% CO2 atmo-

sphere in DMEM (A2058, B16F1, B16F10, C32, HBL, Malme,

Malme3M, NA8, SKMel2, and SKMel23 cells) or RPMI

(A375, Hs294T, WM35, and 1205lu cells) supplemented with

10% heat-inactivated FCS, 1% L-glutamine, and 1% penicillin-

streptomycin (all from Sigma). B16BL6 melanoma (from Dr.

J. Fidler, Cancer Biology, The University of Texas M. D. Ander-

son Cancer Center, Houston, TX) were cultivated in MEM EBS

(AMIMED) supplemented with 5% heat-inactivated FCS, 1%

of each L-glutamine, penicillin-streptomycin, sodium pyruvate,

nonessential amino acids, and 2% vitamins (stock solutions

from AMIMED).

Proliferation and Cell Volume

One day after plating (7 × 103 cells/cm2), melanoma cells

were exposed to LY294002 (25 μmol/L); wortmannin (500

nmol/L); NVP-BAG956, NVP-BBD130, NVP-BEZ235, and

ZSTK474 (1 μmol/L); and rapamycin (100 nmol/L). Com-

pound concentrations were set 2 log units above the IC50

in vitro to ensure full PI3K inhibition, except for the μmol/L

inhibitor LY294002. Cells were trypsinized and counted, and

the volume was quantified using a Casy Counter and Analyser

(Innovatis AG). To determine the nuclear volume, cells

were resuspended in CASYton containing 0.5% Triton X-

100, followed by repetitive pipetting (8×), before volume

measurements.

Immunoblotting

Total cell lysates were prepared in NP40-based lysis buffer

(pH 8.0, 20 mmol/L Tris-HCl, 138 mmol/L NaCl, 2.7 mmol/L

KCl, 5% glycerol, 1 mmol/L CaCl2, 1 mmol/L MgCl2, 1%

NP40, 20 μmol/L leupeptin, 18 μmol/L pepstatin, 1 mmol/L

Na-O-vanadate, 20 mmol/L NaF, and 100 μmol/L phenyl-

methylsulfonyl fluoride). Proteins were separated on SDS-

PAGE and transferred to Immobilon FL membranes (Millipore).

Primary antibodies to PTEN, pSer473-PKB/Akt, pThr308-PKB/

Akt, pThr389-p70S6K, pSer235/236-S6, pThr32-FOXO1, pSer9-

GSK3β, 4E-BP1, and pThr37/46-4E-BP1 were from Cell Signal‐

ing Technology; primary antibodies to pMAPK andMAPKwere

from Sigma; the primary antibody to PKB was a kind gift of E.

Hirsch (Turin, Italy); and primary antibodies to cyclin D1 and

p27Kip1were from Santa Cruz Biotechnology. Secondary antibo-

dies (e.g., horseradish peroxidase–conjugated rabbit anti-mouse

IgG and goat anti-rabbit IgG; Sigma) were visualized using en-

hanced chemiluminescence (Millipore), and fluorescent second-

ary antibodies (Alexa Fluor 680 or IRDye 800) were detected

using the Odyssey IR reader (LICOR).

Cell Cycle and Apoptosis

Melanoma cells were plated (7 × 103/cm2), and PI3K inhibi-

tors (LY294002 at 25 μmol/L; wortmannin at 500 nmol/L; NVP-

BAG956, NVP-BBD130, and NVP-BEZ235 at 1 μmol/L)

were added 24 h later. After 3 d of exposure to inhibitors, cells

were trypsinized and prepared for cell cycle and apoptosis

analysis (50). For cell cycle evaluation, cells were fixed

and permeabilized in PBS supplemented with 4% parafor-

maldehyde/1% bovine serum albumin/0.1% saponin for

30 min at 4°C, and subsequently washed with 1% bovine

serum albumin/0.1% saponin in PBS. The pellet was resus-

pended in 0.1% Triton X-100/0.1% sodium citrate solution

(pH 7.4) containing 50 μg/mL propidium iodide and

10 μg/mL DNase-free RNase and incubated for 8 h at 4°C

FIGURE 6. A. Effect of inhibitor treatment on neovascularization. Par-
affin sections of metastatic tissue were stained with H&E (left), anti-CD31
anti‐body to visualize the tumor vasculature (red), or Hoechst 33342 to stain
nuclear DNA (blue). Nuclei are depicted in a picture merged with CD31
staining. B. Microvascular density was quantified in anti-CD31–stained
slides as shown in A, using Hoechst staining to select regions with viable
tissue (green circle in A). Necrotic tumor tissue was excluded from the
evaluation (red circle in A). The number of metastases evaluated is indi-
cated at the bottom of the graph (n; fields evaluated per tumor ≥4; scale
bar, 0.1 mm).
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before fluorescence-activated cell sorting data acquisition

(FACSCalibur, Becton Dickinson). Annexin V staining was

done following the manufacturer's protocol (Becton Dickin-

son). In brief, cells were resuspended in 200 μL Annexin

buffer [10 mmol/L HEPES (pH 7.4), 0.14 mol/L NaCl, 2.5

mmol/L CaCl2] containing 2 μL of Cy5-labeled Annexin V

(Becton Dickinson) and subsequently incubated 15 min at

room temperature in the dark. Before cytometry, 2.5 μg of

propidium iodide were added to the cells. Data were ana-

lyzed with FlowJo (Tree Star, Oregon Corporation).

DNA Synthesis and Thymidine Incorporation

A2058 cells were seeded in 96-well microtiter plates

(2,000 per well) and 24 h later PI3K inhibitors (LY294002

at 25 μmol/L; wortmannin at 500 nmol/L; NVP-BAG956,

NVP-BBD130, and NVP-BEZ235 at 1 μmol/L) were added

for the indicated times. During the last 24 h of exposure to

the inhibitors, 1 μCi of [3H]thymidine was added per well.

Subsequently, cells were harvested onto glass fiber filters us-

ing a cell harvester (FilterMate Harvester, Perkin-Elmer) and

incorporated radioactivity was measured using a Perkin-Elmer

MicroBeta TriLux.

Cell Cycle Synchronization

Melanoma cells were synchronized by incubation for

14 h with 1 μg/mL nocodazole in the medium described above.

Subsequently, the cells were trypsinized, washed with PBS, and

plated in the presence or absence of PI3K inhibitors (LY294002

at 25 μmol/L; wortmannin at 500 nmol/L; NVP-BAG956,

NVP-BBD130, and NVP-BEZ235 at 1 μmol/L). The cell cycle

profile was analyzed as described above.

In vivo Mouse Melanoma Model

B16BL6 mouse melanoma cells were grown until conflu-

ent, trypsinized, pelleted, and resuspended (50 × 106/mL) in

Hanks buffer supplemented with 10% heat-inactivated FCS.

Female C57BL/6 mice (Charles River) were anesthetized

Table 2. Effects of PI3K Inhibitors on Body, Spleen, and Liver Weights, and Glucose Levels in the B16 Mouse Melanoma Model

Body weight (% change) Spleen weight (mg) Liver weight (mg) Glucose* (mmol/L)

Healthy control (19.3 ± 0.1 g) 73 ± 3 896 ± 34 10-15

Vehicle control −4.5 ± 3.0 181 ± 29 869 ± 32 13.3 ± 0.7

BBD130 40 mg/kg/d −6.6 ± 3.1 155 ± 23 821 ± 30 17.8 ± 2.4
BBD130 2 × 20 mg/kg/d −3.7 ± 2.8 126 ± 10† 854 ± 34 12.6 ± 0.6

PI103 10 mg/kg/d 5.0 ± 2.8 219 ± 33 1,101 ± 25† 14.5 ± 1.3

NOTE: Effects of PI3K pathway inhibitors on body, spleen, and liver weights, and on glucose levels in the B16 melanoma mouse model. Mice were weighted weekly and

sacrificed 13 days after initiation of treatment with the respective inhibitors for autopsy. Whole blood glucose was measured in samples drawn from the vena cava. During
the experiment, the mice received water and food ad libitum. Data are presented as mean ± SE, n > 6.

*Healthy mice display normal blood glucose of 10 to 15 mmol/L, depending on their feeding status.
†
P < 0.05 versus vehicle control group.

FIGURE 7. Requirement of PI3K and mTOR downstream signaling in melanoma proliferation. A. PI3K/PKB–dependent FOXO1 translocation to the
nucleus. The localization of a GFP-FOXO1 (red) fusion protein was monitored in A2058 cells or A2058 cells stably expressing a myristoylated form of
PKB after vehicle or the indicated PI3K inhibitors were added for 3 h. B. Constitutively active PKB does not rescue growth in the presence of PI3K/mTOR
inhibitors. A2058 cells and A2058 cells stably expressing myristoylated PKB were ex‐posed to NVP-BEZ235 for 3 d before cell numbers were determined
(shown as percent of nontreated cells harboring a control plasmid). Columns, mean of triplicates; bars, SE.
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with 3% isofluorane in O2 (v/v) and placed on an operation

table maintained at 37°C. Mouse ears were fixed with a

double-sided tape over a steel cone and 1 μL of the cell suspen-

sion was injected intradermally using a microliter syringe with

a 30-G needle. Primary tumor size was recorded every 7 d in

mice anesthetized with isofluorane. One week after cell injec-

tion, oral treatment with vehicle control [10% NMP/PEG

300 (1-methyl-2-pyrrolidone/polyethylene glycol 300);

10:90, v/v], NVP-BBD130 (40 mg/kg daily and twice daily

20 mg/kg), NVP-BEZ235 (30 mg/kg daily and twice daily

20 mg/kg), PTK787 (100 mg/kg/d) and i.p. treatment with

PI103 (2.5, 5, and 10 mg/kg/d) was started. NVP-BBD130,

NVP-BEZ235, and PTK787 were dissolved by sonication in

NMP and then the corresponding volume of PEG 300 was

added. PI103 was instead dissolved in KZI (Cremophor EL/

ethanol absolute 65:35, v/v) and the remaining volume (1:3,

v/v) of 5% glucose (Braun Medical AG) was added. The inhi-

bitors were given for the indicated period, before animals were

sacrificed, and primary tumor, cervical lymph node metastases,

spleen, liver, femurs, and blood (from the vena cava) were col-

lected for further analysis.

The size of primary tumors at a given time point (=areat)

was determined by digital imaging as described in refs. (51,

52), and tumor progression was related to the tumor area at

day 7 (=area7days), and then expressed as percentage of the

overall mean tumor size in untreated [vehicle control (VC)] an-

imals (=mean_area_VC20days). The depicted values were there-

fore calculated as follows:

Primary tumor area ð%Þ ¼ ½100� areat=area7d�=mean area VC20d

A fraction of the primary tumors, metastases and liver samples

were snap frozen in liquid nitrogen, the rest was fixed in 4%

paraformaldehyde for paraffin embedding. Experiments were

terminated (here at day 20) for ethical reasons.

Immunohistochemistry

Primary tumors, metastases, and liver tissues were embedded

in paraffin using a Spin Tissue Processor (Microm International).

Paraffin blocks were cut to 6-μm sections using the Microtome

cool-cut HM355S (Microm International). For CD31 (antibody

from Bachem AG) staining, tissue slides were deparaffinized

using roticlean, and the antigen was unmasked by proteinase K

treatment. The staining with the primary antibody was done

overnight (antibody dilution 1:50). Subsequently, slides were in-

cubated with a fluorescently labeled secondary antibody and

Hoechst 33342 and mounted with crystal solution (Medite).

For H&E staining, deparaffinized slides were incubated with

hematoxylin solution followed by eosin and mounted with Cy-

toseal XYL (Medite).

Immune Cell Detection

Cell suspensions of spleen and bone marrow were gener-

ated and stained with different cell surface marker antibodies:

monoclonal antibodies against CD3 (clone KT3), CD4

(RM4-5), CD8 (53-6.7), B220 (RA3-6B2), CD11b (M1/70),

CD11c (HL3), GR1, and TERT were obtained from BD

Biosciences PharMingen or eBioscience. The F4/80 antibody

was from Serotec. Fluorescence was quantified on a FACS-

Calibur.

Myr-PKB Transfection and GFP-FOXO Translocation

Cells were plated at 14 × 103/cm2, and 24 h later were

transfected with 0.1 μg/cm2 pcDNA3-GFP-FOXO1 and/or

pcDNA3-Myr-PKB expression plasmids using JetPEI

(Brunschwig Chemie) following the manufacturer's protocol.

The following day, cells were exposed to PI3K inhibitors

(LY294002 at 25 μmol/L; wortmannin at 500 nmol/L;

NVP-BAG956, NVP-BBD130, NVP-BEZ235, and PI103 at

1 μmol/L) or rapamycin (100 nmol/L) for 3 h. HEK293 cells

were starved overnight in serum-free DMEM before treatment

with the inhibitors.

For immunofluorescence, cells plated on glass coverslips

(21 × 103/cm2) were fixed in PBS with 4% paraformaldehyde

before nuclei were stained with Hoechst 33342. Coverslips

were mounted on microscopy slides in Mowiol (Clariant

GMbH). Images were acquired with OpenLab software

(Improvision) on an Axiovert 200 M microscope (Zeiss)

with a Plan-Achromat 63×/1.4 and an Orca ER II camera

(Hamamatsu).

FIGURE 8. A. Antiproliferative effect of pan-PI3K, PI3K/mTOR, and
mTOR inhibitors on melanoma cells. Melanoma cells were exposed to
NVP-BEZ235 (1 μmol/L), ZSTK474 (1 μmol/L), and/or rapamycin (100
nmol/L). Proliferation was measured as above and is shown normalized to
proliferation of vehicle-treated control cells. Columns, mean of triplicates;
bars, SE. B. Changes in the phosphorylation of PKB and p70S6K upon
PI3K and/or mTOR inhibition. Melanoma cells were exposed to inhibitors
as indicated in A and total cell lysates were prepared 1 and 3 d later for
detection of phosphorylated (Ser473) PKB and p70S6K. Actin stained with
Coomassie blue is shown as loading control.
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Supplementary Experimental Procedures 

 

Wortmannin-competition assay 

Recombinant p110α/p85α protein complex (Millipore) was pre-incubated with the indicated 

concentrations of NVP-BBD130, NVP-BAG956 or NVP-BEZ235 at 37°C for 30 min., before 

the samples were transferred to ice and wortmannin (200 nM) was added for 15 min. Protein 

samples (0.13 µg / lane) were subjected to SDS-PAGE and blotted onto a PVDF membrane. 

Immunological detection of wortmannin covalently attached to p110α was achieved using 

polyclonal rabbit α-wortmannin antibodies (1). Loading controls for p110α and p85α were 

performed using monoclonal anti-p110α (kindly obtained from A. Klippel) and polyclonal anti-

p85a antibodies (1). 

 

 

 

Supplementary Figure Legends 

 

Figure S1.  

A: Chemical structures of NVP-BAG956, NVP-BBD130 and NVP-BEZ235. 

B: Wortmannin competition assay. 

Covalent binding of wortmannin to PI3Kα (p85α/p110α complex) was prevented by pre-

incubation of recombinant PI3Kα complex with the depicted PI3K inhibitors. The PI3K 

complex was incubated with increasing concentrations of NVP-BAG956, NVP-BBD130 or 

NVP-BEZ235, before wortmannin was added, and samples were subsequently subjected to 

SDS-PAGE and immunodetection of protein-bound wortmannin, p110α and p85α. 

 

Figure S2. A and B: A2058 cell were treated for 3 days with PI3K inhibitors. Cells were 

subsequently trypsinized, washed once with PBS and replated at the same concentration. 

Cell number and cell volume were measured for up to 7 days (for NVP-BBD130 treated cells) 

in the absence of PI3K inhibitors. Data are means of triplicates ± SEM. 
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Figure S3. Changes in the levels of phosphorylated PKB and MAPK in A2058 cells treated 

with PI3K inhibitors.  

Cells were treated with different PI3K inhibitors and total cell lysates were prepared at 

different time intervals. Levels of phosphorylated and total PKB (upper band seen in some 

panels is a non-specific interaction) and MAPK were detected by western blotting. Coomassie 

blue-stained actin served as loading control. 

 

Figure S4. Effect of PI3K inhibition on cell cycle profile and apoptosis. 

A: Determination of cell cycle profile of the prostate cancer cell line PC3M. The cells were 

exposed to one dose of PI3K inhibitors for three days. Cell cycle profile was evaluated by 

FACS. *p<0.002 

B: Evaluation of apoptosis in A2058 cells upon PI3K inhibition. A2058 melanoma cells were 

treated for 3 days with PI3K inhibitors. Annexin V positive cells were visualized by FACS. 

*p<0.002 

 

Figure S5. Effect of expression of Myr-PKB (constitutively active PKB/Akt) on serum-deprived 

and inhibitor-treated HEK293 cells. HEK293 cells expressing Myr-PKB were exposed for 2 

hours to the indicated PI3K inhibitors and rapamycin. Phosphoproteins in total cell lysates 

were detected by western blotting using the antibodies described in the main text (see 

Experimental Procedures). 

 

Figure S6. Pharmacokinetic/pharmacodynamic relationship for BBD130. Mice bearing a 

PC3M tumor were treated orally once with a dose of 50 mg/kg BBD130. The animals were 

then sacrificed after 0.5, 1, 6, 16 and 24 hours after treatment and tumor, liver and plasma 

were collected (n=4). The concentration of the inhibitor in these tissues was quantified using 

a reverse-phase high performance liquid chromatography/UV (for a detailed protocol see 

Maira et al. (2)).
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Table S1: PTEN, BRaf, NRas and p53 status in melanoma cells. 

 
 

Protein levels 
PTEN BRaf NRas p53 

Mutation 

A2058 
- 

mut 
V600E wt 

++ 
V274F 

A375 
+ 
wt 

V600E wt 
+ 
wt 

B16F1 + wt  (+) 

B16F10 + wt wt 
(+) 
wt 

C32 
- 

mut 
V600E wt 

+++ 
wt 

Hs294T -   ++ 

Malme 
++ 
wt 

V600E wt 
(+) 
wt 

Malme3M 
+ 
wt 

wt  + 

SKMel2 
+ 
wt 

wt Q61R 
+++ 

G245S 

SKMel23 
- 

mut 
wt wt + 

WM35 (+) V600E wt + 

1205lu - V600E wt + 

Melanocytes 
++++ 

wt 
wt wt 

(+) 
wt 

 

Status of signaling proteins in human melanocytes, and human and mouse melanoma cells 

used here are shown. PTEN protein expression levels and mutations in PTEN, BRaf, NRas 

and p53 are depicted. Total cell lysates were analyzed by immuno-blotting for PTEN and p53. 

Mutations in PTEN, BRaf, NRas and p53 were identified earlier (public data base of the 

Sanger Institute; for B16F1 and F10 see (3); for SKMel23 and Malme see (4, 5); for WM35 

and 1205lu see (6)). mut = mutated; wt = wild type. 
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Table S2: PI3K inhibitor action on melanoma cell proliferation and apoptosis. 
 
 

A) Cells arrested in G1, % of total cell number 
 

 Control LY294002 Wortmannin BAG956 BBD130 BEZ235 

A375 60±4.0 71±6.4 56±2.4 73±2.6* 75±2.5* 71±4.5 

B16BL6 66±1.5 74±0.8* 64±1.9 73±0.5* 75±0.8* 76±1.0* 

C32 45±4.4 45±1.1 40±2.2 45±1.3 44±1.3 39±2.7 

SKMel23 56±2.1 58±2.5 58±2.0 80±2.1* 77±3.1* 80±5.5* 

 
 

B) Annexin V positive cells, % of total cell number 
 

 Control LY294002 Wortmannin BAG956 BBD130 BEZ235 

A375 0.4±0.1 1.6±0.2 0.5±0.3 0.4±0.1 0.4±0.1 0.4±0.01 

B16BL6 1.3±0.3 7.1±1.3* 1.5±0.3 3.1±0.9 4.4±1.1* 6.6±0.04* 

C32 0.4±0.1 0.9±0.4 0.7±0.4 1.3±0.5 2.2±0.7 2.9±0.1* 

SKMel23 1.1±0.2 1.8±0.4 0.9±0.2 4.4±0.9* 4.5±0.6* 8.0±2.2* 

 

 

Melanoma cells were exposed to a single dose of the indicated PI3K inhibitor for 3 days. The 

cells were trypsinized, and stained with propidium iodide for cell cycle analysis (A) or with 

annexin V and propidium iodide for apoptosis measurement (B). The data were acquired on a 

FACS Calibur. The results are presented as mean ± SEM, n>3 (difference versus untreated 

control: *: p<0.05). 
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Table S3: Effects of PI3K inhibition on mouse liver enzymes and proteins. 
 

 

 
Healthy 
control 

Vehicle 
control 

BBD130 
40mg/kg 

BBD130 
2x20mg/kg 

PI103 
10mg/kg 

ASAT 
(U/l) 

56.7±8.2 328.4±83.4 625.5±154.7 313.7±64.9 329.7±148.8 

ALAT 
(U/l) 

22.0±2.89 35.6±8.6 198.2±58.1* 137.7±29.6* 62.0±18.2 

GGT 
(U/l) 

1.0±0 6.4±1.5 6.0±1.0 4.5±1.3 5.5±2.7 

LDH 
(U/l) 

229±11.1 2392±449.2 2137±287.9 1310±233.82 4819±3205.2 

CPK 
(U/l) 

99.7±27.4 328.2±189.6 367.7±163.7 395.7±137.4 121.7±21.4 

Cholesterol 
(mmol/l) 

1.72±0.23 2.03±0.24 3.22±0.45 3.85±1.0* 1.82±0.13 

HDL 
(mmol/l) 

1.60±0.26 1.44±0.14 1.68±0.28 1.55±0.31 1.09±0.11 

Albumin 
(g/l) 

35.57±0.75 32.90±2.1 36.35±3.3 33.10±1.5 37.23±1.97 

Total protein 
(g/l) 

51.20±0.32 45.68±3.2 49.55±5.3 49.13±2.7 48.87±3.96 

 
 
Mouse blood was taken from the vena cava, and serum was prepared. Diagnostic (liver) 

markers present in serum were analyzed according to the standard hospital serological 

protocols (kindly processed at the University Children’s Hospital Basel, UKBB). Data are 

presented as mean ± SEM, n>4 (*: p<0.05 versus vehicle control group). 
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Table S4: Effects of PI3K inhibition on the frequency of immune cells in the spleen and bone 

marrow. 

 
 

A) Immune cells in the spleen 
 

 
Healthy 
control 

Vehicle 
control 

BBD130 
40mg/kg 

BBD130 
2x20mg/kg 

PI103 
10mg/kg 

CD3 23.9±5.0 12.5±4.9 7.3±4.4 10.0±2.6 16.8±1.1 

CD4 16.5±3.8 7.5±3.7 3.9±2.5 5.7±1.7 10.7±0.5 

CD8 5.8±0.8 4.0±1.3 2.7±1.8 3.6±1.0 4.7±0.2 

B220 53.9±4.3 34.1±8.9 19.5±6.2 25.4±7.7 44.3±11.3 

NK 1.1 3.1±1.5 2.4±0.7 1.5±0.5 2.0±0.6 3.6±0.7 

F4/80 8.9±1.7 52.0±47.4 70.6±46.8 28.4±16.8 38.5±11.6 

CD11b 4.4±0.9 4.9±0.6 4.0±1.6 3.5±1.5 7.0±0.8* 

Gr1 1.3±0.7 1.7±0.5 1.5±0.8 1.0±0.7 2.5±0.3 

 
 
 

B) Immune cells in bone marrow 
 

 
Healthy 
control 

Vehicle 
control 

BBD130 
40mg/kg 

BBD130 
2x20mg/kg 

PI103 
10mg/kg 

B220 24.8±0.3 10.6±11.2 7.9±2.3 11.7±7.9 17.5±3.8 

Gr1 29.9±1.7 22.2±5.4 30.4±9.3 26.7±6.6 33.5±4.3* 

F4/80 44.6±5.4 65.0±9.9 56.3±5.1 53.6±1.8 53.6±3.5 

TER119 41.2±2.0 62.7±14.0 55.3±12.2 56.8±12.6 45.3±5.8 

 
 
Spleens and femurs of mice treated as indicated were collected at the end of the experiment 

(see Fig. 3), and cell suspensions were prepared. The cells were incubated with antibodies 

against different cell type-specific markers. Relative cell numbers were determined on a 

FACS Calibur. The data are expressed in million cells per spleen or bone marrow and are 

mean of triplicates ± SEM (*: p<0.05 versus vehicle control group). 
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a b s t r a c t

(E,Z)-3-(3′,5′-Dimethoxy-4′-hydroxy-benzylidene)-2-indolinone (indolinone) is an alkaloid that has been
identified as a pharmacologically active compound in extracts of the traditional anti-inflammatory herb
Isatis tinctoria. Indolinone has been shown to inhibit compound 48/80-induced mast cell degranulation
in vitro. Application of indolinone to bone marrow derived mast cells showed that it was uniformly
distributed in the cytoplasm and that cellular uptake was terminated within minutes. Pre-treatment
of IgE-sensitized mast cells with 100 nM indolinone rendered them insensitive against Fc�RI-receptor
dependent degranulation. However, upstream signalling induced by antigen such as activation of PI3-K
and MAPK remained unaffected. We conclude that indolinone blocks mast cell degranulation at the level
of granule exocitosis with an IC50 of 54 nm.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Isatis tinctoria (woad) is an ancient European dye and medicinal
plant. It has traditionally been used as a source of indigo for blue
dye and as anti-inflammatory medicine (Danz, 2000). In China, the
closely related Isatis indigotica is monographed in the Chinese Phar-
macopoeia where it is indicated as a treatment for inflammation.
Natural indigo, obtained by processing of various indigo plants,
is used in traditional Chinese medicine to treat inflamed skin,
intestines or mucosa (Stöger, 1999–2009). We confirmed the anti-
inflammatory and anti-allergic potential of lipophilic I. tinctoria leaf
extracts some years ago in a pharmacological profiling involving
some 20 clinically relevant targets (Danz, 2000; Hamburger, 2002),
and later in several in vivo models for inflammation and allergy,
and in a clinical pilot study for topical application (Heinemann et
al., 2004; Recio et al., 2006a,b).

Several pharmacologically active constituents of woad have
been identified, such as tryptanthrin, indirubin, �-linoleic acid, and
(E,Z)-3-(3′,5′-dimethoxy-4′-hydroxy-benzylidene)-2-indolinone

Abbreviations: BMMC, murine bone marrow derived mast cells; DNP, dini-
trophenyl; MAPK, mitogen-activated protein kinase; ERK, extracellular-regulated
kinase; PI3-K, phosphatidylinositol 3-kinase; PKB, protein kinase B; SNARE, soluble
N-ethylmaleimide-sensitive-factor attachment receptor.

∗ Corresponding author. Tel.: +41 61 2671425; fax: +41 61 2671474.
E-mail address: matthias.hamburger@unibas.ch (M. Hamburger).

(indolinone). Tryptanthrin is a potent inhibitor of COX-2 (Danz
et al., 2001) and 5-LOX (Oberthur et al., 2005), and of nitric
oxide (NO) production catalyzed by inducible NO synthase (iNOS)
(Ishihara et al., 2000). Indirubin is used in Chinese medicine
as an antileukemia drug and has been shown to inhibit cyclin-
dependent-kinase 2 (CDK2) (Hoessel et al., 1999). The lipid
constituent �-linolenic acid inhibited 5-LOX (Oberthur et al.,
2005) and seems to act as a competitor of arachidonic acid and
thus reduces cellular inflammatory responses (Simopoulos, 2002).
Indolinone inhibited compound 48/80-induced histamine release
from rat peritoneal mast cells but not the related compound
(E,Z)-3-(4′-isopropylbenzylidene)-2-indolinone (Ind7) (Ruster et
al., 2004).

Indolin-2-one derivatives have been tested in disease mod-
els for multiple sclerosis (Bouerat et al., 2005), cancer (Kaur and
Talele, 2008), HIV (Boechat et al., 2007), and infectious diseases
(Bouchikhi et al., 2008), and an indolin-2-one derivative, sunitinib,
was recently approved as tyrosine kinase inhibitor for treatment
of renal cell carcinoma and imatinib-resistant gastrointestinal stro-
mal tumours (Atkins et al., 2006). The indolin-2-one scaffold seems
to exhibit some general kinase-inhibitory activity. Substituted
indolin-2-ones occupy the ATP-binding site and act as ATP-mimetic
inhibitors (Sun et al., 1998). This suggested that the anti-allergic
effect of indolinone could be related to some kinase-inhibitory
properties.

Although many cells are involved in allergy and inflamma-
tion, mast cells play an important role as initial effectors due

0928-0987/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejps.2010.03.016
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to their tissular localisation. By release of pro-inflammatory
molecules, mast cells initialise processes that result in early
and late phase allergic reactions. They are implicated in many
diseases, such as allergy and asthma, gastrointestinal disor-
ders, rheumatic diseases and multiple sclerosis (Hofmann and
Abraham, 2009). Degranulation of mast cells requires binding
of IgE antibodies to the high affinity IgE receptor (Fc�RI) for
activation and crosslinking of these antibodies by subsequent
binding of an antigen (Rivera et al., 2008; Rivera and Olivera,
2008). The crosslinking induces intracellular signalling events
that lead to activation of the protein kinase Lyn that in turn
phosphorylates immunoreceptor tyrosine-based activation motifs
(ITAMs) and Syk kinases. Class IA PI3-K recognise phosphory-
lated ITAMs as docking sites, which leads to the production
of PtdIns(3,4,5)P3 that recruits PKB (also known as Akt), lead-
ing to its activation and initiates a signalling cascade involving
Bruton’s tyrosine kinase (Btk) and phospholipase C� and the
Raf-MEK-MAPK pathway. This eventually induces opening of
plasma membrane calcium channels leading to degranulation
(Burgoyne and Morgan, 2003). However, the Fc�RI-mediated mast
cell response is limited by subsequent de-phosphorylation of
PtdIns(3,4,5)P3 to PtdIns(3,4)P2 by SH2-containing inositol 5′-
phosphatase (SHIP).

Subsequent granule exocitosis occurs in a highly regu-
lated and conserved way depending on Ca2+ and is related to
synaptic vesicle exocytosis and most likely takes advantage
of the same protein components such as SNARE’s (solu-
ble N-ethylmaleimide-sensitive-factor attachment receptors)
(Burgoyne and Morgan, 2003). Anti-inflammatory, anti-
allergic or immunosuppressive drugs such as corticosteroids
or calcineurin-antagonists inhibit degranulation but addi-
tionally have many side-effects (Ludowyke and Lagunoff,
1985).

The aim of this study was to elucidate whether indolinone
interacts with the pathways that lead to mast cell activa-
tion and degranulation, and at what level this interaction
occurs.

2. Materials and methods

2.1. Chemicals and cell culture

Murine bone marrow derived mast cells (BMMCs) were
cultured in Iscove’s modified Dulbecco’s medium (IMDM;
Sigma–Aldrich, Buchs, Switzerland) supplemented with 10%
heat-inactivated fetal calf serum (FCS; Amimed, Basel, Switzer-
land), 100 U/ml penicillin/streptomycin, and 2 mM l-glutamine
(both from Invitrogen, Basel, Switzerland). Cells were grown
in humified atmosphere containing 5% CO2 and maintained
with 2 ng/ml recombinant murine interleukin-3 (IL3; Pepro-
Tech EC Ltd., London, UK). Chemicals used were: stem cell
factor (SCF; Biosource, Invitrogen, Basel, Switzerland), adeno-
sine (Ade; Sigma–Aldrich, Buchs, Switzerland), LY294002 (Alexis
Corporation, Lausen, Switzerland), and wortmannin (Wort;
Sigma–Aldrich). All solvents used were from Scharlau (Barcelona,
Spain).

(E,Z)-3-(3′,5′-Dimethoxy-4′-hydroxy-benzylidene)-2-
indolinone (indolinone) and (E,Z)-3-(4′-isopropylbenzylidene)-2-
indolinone (Ind7) were synthesised according to a general protocol
for indolinones (Sun et al., 1998). For indolinone, the ratio of slowly
interconverting E and Z isomers was determined as 81:19 by HPLC
(Ruster et al., 2004). Indolinone showed fluorescence when excited
at 488 nm or 405 nm, with an emission maximum at 499 nm. The
absorption maxima are at 256 and 380 nm.

2.2. Western blot

Immunoblot analysis was performed according to standard pro-
cedures. Equal amounts of cellular protein were separated on
SDS-PAGE and transferred to a nitrocellulose membrane. Mem-
branes were blocked and incubated overnight at 4 ◦C with specific
primary antibody diluted in blocking buffer (5% bovine serum
albumin in TBS-Tween): anti-phospho-PKB (Thr308) 1:1000; anti-
phospho-ERK1/2 (Thr202/Tyr204) 1:1000. Specific bands were
tagged with HRP conjugated secondary antibodies (Cell Signaling
Technology, Beverly, MA) and detected using enhanced chemilu-
minescence (ECL Plus System, GE Healthcare, Little Chalfont, UK).

2.3. Degranulation assays

Release of histamine-containing granules was quantified by
the determination of �-hexosaminidase in cell supernatants as
described (Laffargue et al., 2002). Alternatively, Annexin-V staining
of exposed membrane phosphatidylserine was carried out using
the Annexin-V assay kit (Roche Diagnostics, Rotkreuz, Switzerland)
following the manufacturer’s protocol. The cells were then left to
adhere to glass coverslips, fixed and assayed as described in Section
2.4.

2.4. Fluorescence microscopy

BMMC cells were suspended in PBS and left to adhere to glass
coverslips and fixed in 4% formaldehyde in PBS for a minimum
of 15 min at 4 ◦C. Nuclei were stained with DRAQ5 (Alexis Cor-
poration, Lausen, Switzerland) according to the manufacturer’s
protocol. Cells plated on coverslips were mounted on glass slides
with Fluorescent Mounting Medium (DakoCytomation, Glostrup,
Denmark) and visualised by confocal microscopy (Leica DM RXE
scanning confocal microscope) using Leica confocal software, ver-
sion 2.5 (Leica Microsystems, Heidelberg, Germany).

2.5. Kinase assay

Appropriate concentrations of PI3-K isoforms p110 �, �, � GST, �
tr, and � (fused to interSH2 domains, a kind gift from Novartis, Basel,
Switzerland) were mixed with 10 �g/ml l-�-phosphatidylinositol
(Sigma–Aldrich, Buchs, Switzerland) dissolved in 0.3% octyl-
glucoside kinase buffer (10 mM Tris–HCl, 3 mM MgCl2, 50 mM
NaCl, 0.8 mM CHAPS, 1 mM DTT). After 5 min pre-treatment with
indolinone or DMSO, 2 �M ATP (Roche, Basel, Switzerland) dis-
solved in kinase buffer were added to start the reaction. Reactions
were incubated for 30–90 min, depending on the kinase isoform.
Kinase Glo (Promega, Madison, WI) was added to each well to
start the luciferase reaction. After 15 min incubation at room tem-
perature, plates (white 96 well luciferase plates (Berthold, Bad
Wildbad, Germany)) were read out in a luminometer (Centro LB
960, Berthold) with an integration time of 0.5 s. Samples were run
in duplicate.

3. Results

3.1. Localisation of indolinone in BMMC

Due to the fluorescent properties of indolinone (A), we were
able to visualise high concentrations (≥50 �M) to directly deter-
mine its localisation in cells and monitor cellular uptake by flow
cytometry. Analysis of indolinone-stained cells (50 �M) by con-
focal microscopy (Fig. 1B) showed equal distribution throughout
the cytoplasm, but no staining of the nucleus, suggesting discrete



Author's personal copy

S. Kiefer et al. / European Journal of Pharmaceutical Sciences 40 (2010) 143–147 145

Fig. 1. Chemical structure of indolinone and its localisation in BMMCs. (A) Structure of (E,Z)-3-(3′ ,5′-dimethoxy-4′-hydroxy-benzylidene)-2-indolinone (indolinone). (B–D)
Due to the fluorescent properties of indolinone itself, it was possible to monitor its appearance and localisation in the cell. (B) BMMCs were fixed, stained with 50 �M
indolinone and DRAQ5 and mounted for fluorescence microscopy. The upper panel illustrates localisation of indolinone in the cell, the lower panel shows DRAQ5 staining of
the nucleus. (C + D) Flow cytometry analysis of BMMCs. (C) Administration of 50 �M indolinone during ongoing measurement. (D) Fluorescence of BMMC before and after
addition of 50 �M indolinone (Ind).

binding to residing proteins. Administration of indolinone dur-
ing flow cytometry measurement produced instantaneous increase
in cytoplasmatic fluorescence. After less than 3 min no further
increase was detected and fluorescence persisted for the duration
of the measurement (15 min) (Fig. 1C and 1D). Repeated washes
and prolonged incubation in indolinone-free media for up to 2 h
before measurement did apparently not reduce the intracellu-
lar concentration (not shown). Thus, indolinone was immediately
taken up into the cells and retained in the cytosol. Unfortu-
nately, concentrations smaller than 50 �M could not be detected
by immunofluorescence microscopy or FACS analysis.

3.2. Inhibition of degranulation in murine bone marrow derived

mast cells

Indolinone had been previously shown to inhibit compound
48/80-induced histamine release in rat peritoneal mast cells
(Ruster et al., 2004). We reconfirmed this effect in antigen-
stimulated degranulation of murine bone marrow derived mast
cells (BMMCs), to demonstrate that this effect was neither species-
dependent nor assay-specific. BMMCs were sensitized overnight
with IgE directed against dinitrophenol-modified human serum
albumin (DNP-HSA) (100 ng/ml), and indolinone at indicated con-
centrations was added 30 min prior to antigen-challenge where
applicable. Degranulation was simultaneously induced with the
experimental allergen DNP-albumin (10 ng/ml). Mast cell gran-
ule release was assessed by the activity of �-hexosaminidase,
a marker enzyme for histamine-containing granules. At concen-
trations ≥50 nM, indolinone efficiently reduced the amount of
released �-hexosaminidase to control levels (Fig. 2).

3.3. No inhibition of PI3-Ks and ERK1/2 by indolinone

The activity of all PI3-Ks class IA and IB isoforms (�, �, �, �) that
are responsible for the generation of PtdIns(3,4,5)P3, was tested
in an in vitro assay after addition of different concentrations of

indolinone. The � isoform was tested in two different ways, as the
complete GST tagged enzyme and as a truncated form with 144
amino acids less. Indolinone inhibited all PI3-K isoforms to some
extent (Fig. 3A). When incubated with 50 �M indolinone, the �
and the � isoform were inhibited to less than 50%, whereas the
other isoforms still showed activities over 60%. Since degranulation
in BMMC is predominantly induced by PI3-K�, we concluded that
indolinone-induced inhibition of degranulation is independent of
PI3-Ks.

This assumption was further supported by Western blot
analysis showing inhibition of PKB phosphorylation upon antigen-
challenge at concentrations higher than 1 �M indolinone (Fig. 3B).
In contrast, phosphorylation of ERK1/2 was only blocked at con-
centrations of 50 �M.

Fig. 2. Mast cell degranulation by IgE/antigen stimulation is blocked by indolinone.
Granule release was followed by hexosaminidase activity in BMMCs previously
incubated with saturating levels of IgE overnight, and subsequently chal-
lenged with 10 ng/ml DNP-HSA before hexosaminidase was assessed in the cell
supernatant. Indolinone was added to the cells 30 min before challenge where
indicated. Ctrl—4.17% ± 3.15%; 1 �M—4.90% ± 7.95%; 100 nM—6.08% ± 5.81%;
50 nM—7.97% ± 5.64%; 10 nM—14.51% ± 5.87%; 5 nM—24.12% ± 4.97%; no
indolinone—23.23% ± 5.77%.
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Fig. 3. Indolinone blocks degranulation at the level of granule release. (A) PI3-Ks
were co-incubated with ATP and indolinone at indicated concentrations or with
DMSO as a control. Kinase activity was determined as consumption of ATP, and
residual ATP was measured by luciferase reaction. Samples were measured as dupli-
cates in three independent experiments. The kinase activity of the control was
defined as 100%. (B) Western blot analysis of BMMC cells (0.5 × 106) previously
incubated with saturating levels of IgE. The cells were starved in 2% serum for
4 h, pre-treated with indolinone or DMSO for 30 min as indicated, and then chal-
lenged with 10 ng/ml DNP-HSA for 2 min. Untreated cells were used as control.
Shown are typical results from three independent experiments. (C) Mast cells were
sensitized with IgE overnight and challenged with 10 ng/ml DNP-HSA (b–f). The fol-
lowing substances were added to the cells 30 min before challenge: (a + b) DMSO;
(c) 100 nM indolinone; (d) 100 nM Ind7; (e) 1 �M indolinone; (f) 1 �M Ind7. Cells
were fixed with 4% p-formaldehyde and stained with Annexin-V-FITC and analysed
by immunofluorescence. Shown is a typical experiment. (D) Western blot analysis of
BMMC cells (0.5 × 106) previously incubated with saturating levels of IgE. The cells
were starved in 2% serum for 4 h, pre-treated with 50 �M indolinone, Ind7 or DMSO
for 30 min as indicated, and then challenged with 10 ng/ml DNP-HSA for 2 min. (E)
Chemical structure of Ind7 ((E,Z)-3-(4′-isopropylbenzylidene)-2-indolinone).

Granule exocitosis was efficiently blocked at concentrations
as low as 1 �M (Fig. 3C), as was already suggested by the �-
hexosaminidase-release assay (Fig. 2). However, the indolinone
derivative Ind7 (Fig. 3E) (Ruster et al., 2004) was completely
ineffective at any of the concentrations tested. This finding was
confirmed by Western blot analysis of IgE-sensitized BMMCs that
were challenged with antigen for 2 min in absence or presence of
50 �M indolinone or Ind7 (Fig. 3D).

4. Discussion

The only drugs in clinical use that directly inhibit mast
cell degranulation are disodium cromoglycate and its deriva-
tive nedocromil (Corin, 2000). Cromoglycate was developed from
khellin, a furanochromone from the anti-allergic plant Ammi vis-

naga. It is a mast cell stabilising agent that has been shown
to block ion-channels. However, cromoglycate likely has addi-
tional effects and its mode of action is still not very clear despite
decades of clinical use (Kay et al., 1987). Various other agents have
been used as experimental inhibitors of degranulation (Ludowyke
and Lagunoff, 1985) but were not suitable as drugs. The most
recent approaches include Syk kinase inhibitors (Masuda and
Schmitz, 2008; Matsubara et al., 2006) and anti-IgE antibodies.
One such anti-IgE antibody, omalizumab (Xolair), has recently
reached the market (Chang and Shiung, 2006; Gomez et al.,
2007).

Extracts of I. tinctoria have traditionally been used in the treat-
ment of anti-inflammatory complaints. Previous studies assigned
specific facets of the in vitro pharmacological spectrum of the
extract to specific compounds (Danz et al., 2001; Oberthur et al.,
2005) in this complex multi-component mixture. In the model of
compound 48/80-stimulated mast cell degranulation, indolinone
was significantly more potent than disodium cromoglycate (IC50 of
15 �M (0.0045 �g/ml) vs 1.5 mM). In an earlier study Isatis extract
had an IC50 of 2.3 �g/ml in this assay (Hamburger, 2002). Given that
indolinone is a minor constituent in the extract (typical concentra-
tions of 0.04%) (Mohn et al., 2007), it is likely that other components
of the extract contribute to its mast cell stabilising activity.

Indolinone fulfils Lipinski’s Rule of Five (Lipinski et al., 2001)
and, hence, possesses drug-like properties. The compound has a
calculated distribution coefficient (clogD) of 2.28 at pH 7, and a
polar surface area (PSA) of 67.8 Å2. These physico-chemical prop-
erties explain its rapid cellular uptake and distribution in the
cytoplasm and, hence, its persistence within the cell and prolonged
inhibitory activity.

In this study we have shown that indolinone blocks antigen-
induced mast cell degranulation with an IC50 of 54 nM that does
not involve inhibition of kinases directly downstream of Fc�RI. It
does, however, interrupt granule exocytosis by an yet unknown
mechanism, possibly by binding to proteins on the surface of gran-
ules such as SNARE that play a vital role in regulated exocytosis
in mast cells (Puri et al., 2003). Within a series of structurally
related benzylidene-2-indolinones (Ruster et al., 2004), inhibition
of mast cell degranulation was only observed with indolinone with
no apparent toxicity, as BMMCs and other primary cell lines such as
lymph node cells remained unaffected by treatment with ≥50 �M
indolinone for more than a week.

The apparent selectivity of the compound, its potency and
favourable physico-chemical properties render this molecule as
an interesting lead structure for development of new anti-allergic
agents.
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a b s t r a c t

Phosphoinositides (PIs) play fundamental roles as signalling molecules in numerous cellular processes.
Direct analysis of PIs is typically accomplished by metabolic labelling with 3H-inositol or inorganic 32P
followed by deacylation, ion-exchange chromatography and flow scintillation detection. This analysis is
laborious, time-consuming, and involves massive amounts of radioactivity. To overcome these limitations
we established a robust, non-radioactive LC–ESI–MS assay for the separation and analysis of deacylated
PIs that allows discrimination of all isomers without the need for radioactive labelling. We applied the
method to various cell types to study the PI levels upon specific stimulation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The inositol containing glycerophospholipids, collectively
known as phosphoinositides (PIs), play a fundamental role in
diverse cellular functions such as cell growth and differentiation,
motility, calcium mobilisation and oncogenesis [1,2]. The family
of the phosphoinositides consists of the non-phosphorylated pre-
cursor phosphatidylinositol (PtdIns) and seven derivatives with
different phosphorylation patterns on the myo-inositol ring, where
the 3-, 4- and 5-positions can be phosphorylated by specific kinases
(Fig. 1A).

PIs derived from PtdIns and its phosphorylation pro-
ducts phosphatidylinositol-4-phosphate (PtdIns4P) and phospha
tidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) form the so called
canonical pathway [3] and are believed to be kept at constant
levels at the plasma membrane. The other PIs are considered to
be low-abundant signalling molecules that transiently appear
upon stimulation. Stimulation with growth factors or insulin
leads to increased PtdIns(3,4,5)P3 levels, which in turn produces
specific cellular responses. The bisphosphorylated PIs containing
PtdIns(3,4)P2, PtdIns(4,5)P2, and PtdIns(3,5)P2 moieties play dis-
tinct roles in signal prolongation after PtdIns(3,4,5)P3 inducing
stimuli, regulation of the actin cytoskeleton and vesicle transport,
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Bern, Switzerland. Tel.: +41 31 344 40 48.
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respectively [4–8]. PIs containing phosphoinositide monophos-
phates were long thought to be mere intermediates in the pathway
but are now recognised to possess specific functions by themselves
in protein sorting, vesicular trafficking and in osmotic stress
response [9–12].

Analysis of PIs has been achieved in several ways. Most fre-
quently, metabolic radioisotope labelling with inorganic 32P or
3H-inositol, lipid extraction, hydrolysis followed by chromato-
graphic separation and radiographic analysis of phosphoinositides
has been used [13–15]. Metabolic labelling involves very high doses
of radioactivity (GBq), long labelling times and only detects the
turnover of PIs, whereas dormant pools of PIs remain unlabelled.
More recent approaches include fluorescent-labelled binding pro-
teins for specific PIs, and antibodies directed against PIs [16,17].
However, differentiation of all the mono- and bisphosphorylated
positional isomer PIs, has not been achieved yet.

Two fundamentally different approaches have been pursued in
PI analysis: (i) a comprehensive profiling of intact PIs [18–21] and
(ii) head group analysis after cleavage of the lipid moieties [22,23].
The first approach used in lipidomics leads to a highly complex
picture due to a plethora of closely related molecules that only
vary in their lipid moieties. This approach including quantification
has been successfully applied to cells producing phophoinositides
with limited complexity in their lipid residues, such as platelets
[24–26]. Even though the analysis of intact PIs would be the pre-
ferred approach, it is currently unsuitable for most cells due to
the overwhelming complexity of their PI patterns. Therefore, sep-
aration and detection of the head groups following deacylation
(Fig. 1B) is a more suitable approach if the focus lies on the detec-
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Fig. 1. (A) Structure of a typical PtdIns, sn-1-stearoyl-2-arachidonyl-phosphatidylinositol and the performed deacylation step, resulting in cleavage of the lipid moiety. (B)
Structure of phosphatidylinositol-3,4,5-trisphosphate (PtdInsP3); numbering of the myo-inositol ring is indicated.

tion of the change in phosphorylation pattern that exerts the major
influence on the subsequently elicited signalling. Given the low
abundance of certain PIs, even the analysis of deacylated lipids is
highly challenging.

As alternatives to radioisotope labelling, analysis by mass
spectrometry [27], suppressed conductivity detection [28] and
evaporative light scattering detection (ELSD) [29] have been used.
Unfortunately, none of these allowed a discrimination of all iso-
mers. An LC–ESI–MS method for separation of deacylated PtdInsP2

isomers has been recently published [14]. However, chromatogra-
phy suffered from poor peak shape and co-elution of PtdIns(3,5)P2

and PtdIns(3,4,5)P3.
Since the PtdIns moieties of PIs can be interconverted by specific

kinases and phosphatases, inhibition, stimulation, modification, or
deletion of one of these enzymes may have profound implications
on the biological response. Therefore, separation and simultane-
ous detection of all headgroups of PIs is of major importance for
a better understanding of their biological roles, and a robust and
sensitive method is of general interest to researchers involved in
cell signalling.

2. Experimental

2.1. LC–MS instrumentation

HPLC separation was carried out on a series 1100 system
equipped with degasser, binary high pressure mixing pump, and
column thermostat (Agilent Technologies). A liquid handler 215
(Gilson) was used as autosampler. The HPLC was coupled to an
Esquire 3000 ion trap mass spectrometer equipped with an elec-
trospray (ESI) interface (Bruker Daltonics). Data acquisition and
processing was performed using HyStar 3.0 software from Bruker
Daltonics.

2.2. LC–MS method

2.2.1. Ion-pair chromatography

N,N-dimethylhexylamine (DMHA; Acros, Thermo Fisher) was
used as ion-pair reagent. Mobile phase A consisted of water con-
taining 5 mM DMHA and 4 mM glacial acetic acid (Sigma–Aldrich)
and mobile phase B of acetonitrile or methanol with 5 mM DMHA
and 4 mM glacial acetic acid. All solvents were from Scharlau
(Scharlau, Barcelona, Spain).

2.2.2. Columns

Various columns were tested for suitability in phosphoinosi-
tide analysis, including Atlantis C18 (150 mm × 4.6 mm, 5 �m)
and T3 (150 mm × 3.5 mm, 3 �m; Waters, Baden, Switzerland),

Nucleosil C100 (250 mm × 4.6 mm, 5 �m; Macherey-Nagel, Düren,
Germany), liChrospher diol (125mm × 4.0 mm, 5 �m; Merck,
Darmstadt, Germany) and Aqua C18 (250 mm × 4.6 mm, 5 �m and
75 mm × 2.0 mm, 3 �m; Phenomenex, Torrance, CA).

2.2.3. Separation of phosphoinositides

2.2.3.1. Method 1. Separation of deacylated PIs with different num-
bers of phosphorylations; PtdIns, PtdInsP, PtdInsP2 and PtdInsP3,
was achieved by ion-pair chromatography on a Aqua C18 column
(3 �m, 125 Å, 75 mm × 2.0 mm). A gradient from mobile phase B
(acetonitrile) 0.1 to 50% in 25 min and a wash step (50% B to 100%
B in 3 min, 100% B for 12 min, 100% B to 0.1% B in 5 min, 0.1% B for
5 min) was applied.

2.2.3.2. Method 2. Separation of deacylated PIs with different
numbers of phosphorylation plus additional separation of phos-
phoinositides bisphosphate isomers PtdIns(4,5)P2, PtdIns(3,5)P2,
PtdIns(3,4)P2, was achieved by ion-pair chromatography on an
Aqua C18 column (125 Å, 250 mm × 4.6 mm, 5 �m). A gradient from
mobile phase B (acetonitrile) 15 to 35% in 40 min followed by a wash
sequence (35% B to 100% B in 2 min, 100% B for 15 min, 100% B to
15% B in 3 min, 15% B for 5 min) was applied.

2.2.3.3. Method 3. Separation of PtdIns(3)P, PtdIns(4)P and
PtdIns(5)P, additionally to separation of all other PIs, was per-
formed with methanol as mobile phase B and a gradient from 15 to
50% in 60 min, followed by a wash step (50% B to 100% B in 2 min,
100% B for 15 min, 100% B to 15% B in 3 min, 15% B for 5 min).

2.3. Mass spectrometry

Negative ion LC–MS spectra on the ion trap instrument were
recorded after optimization of settings, under ion charge control
conditions (ICC 20000) at a scan speed of 13,000 m/z/s, using a gauss
filter width of 0.2 m/z. Nitrogen was used as a drying gas at a flow
rate of 10 l/min and as a nebulizing gas at a pressure of 30 psi. The
nebulizer temperature was set to 300 ◦C. Spectra were recorded in
the range of m/z 200–600 in negative mode. Capillary voltage was at
4500 V, endplate offset at −500 V, capillary end voltage at −115.0 V,
skimmer voltage −40.0 V and trap drive at 53.4.

2.4. Flow scintillation analysis

Levels of radioactively labelled intracellular phosphatidylinosi-
tides were determined essentially as described [30]. Briefly, 4
million cells were incubated with 500 �Ci 32Pi for 60 min at 37 ◦C.
After removal of non-incorporated 32Pi, cells were extracted as
described below. The column effluent was splitted and exam-
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ined online with a FLO-ONE A500 �-detector (Packard–Perkin
Elmer).

2.5. Chemicals and cell culture

Murine bone marrow cells were cultured in Iscove’s Modified
Dulbecco’s medium (IMDM; Sigma–Aldrich) supplemented with
10% heat-inactivated fetal calf serum (FCS; Amimed, Basel, Switzer-
land), 100 U/ml penicillin/streptomycin and 2 mM l-glutamine
(both from Invitrogen, Basel, Switzerland). Cells were grown in
humified atmosphere containing 5% CO2 and maintained with
2 ng/ml recombinant murine interleukin-3 (IL3; PeproTech EC Ltd.,
London, UK).

Human embryonic kidney cells HEK 293 were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM; Sigma–Aldrich) sup-
plemented with 10% FCS, 100 U/ml penicillin/streptomycin and
2 mM l-glutamine. Cells were transfected with jetPEI cationic poly-
mer transfection reagent (Polyplus-Transfection, Illkirch, France)
according to the manufacturers’ instructions. Twenty-four hour
before transfection, cells were plated at 106 cells/25 cm2 flask, then
transfected with 2.6 �g GST-Vps34 and 0.4 �g Myc-S6K. Thirty hour
after transfection, cells were starved over night and experiments
were performed the following day.

Platelets were isolated from blood of healthy donors. Blood sam-
ples were mixed with acid citrate dextrose ACD (10.1 mM glucose,
30 �M citric acid, pH 6.5 in 0.9% NaCl, all from Sigma–Aldrich) and
centrifuged for 5 min at 1000 × g [31]. Platelet rich plasma was
collected and washed in PBS.

Chemicals used for experiments were: adenosine (Ade),
N-formyl-Met-Leu-Phe (fMLP), wortmannin (wort) (all from
Sigma–Aldrich).

Phosphoinositide standards used were: Phosphoinositides
sodium salt from bovine brain (Sigma–Aldrich), PtdIns(3,4)P2,
PtdIns(3,5)P2 and PtdIns(3,4,5)P2 as 1,2-dioctanoyl-sn-glycero-
3-phosphoinositolphosphates ammonium salt and PtdIns3P and
PtdIns5P as 1-heptadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-
sn-glycero-3-phosphoinositolphosphates ammonium salt from
Avanti Polar Lipids (Avanti Polar Lipids, Alabaster, AL).

2.6. Extraction, deacylation and sample preparation

Extraction of PIs was adapted from Ogiso et al. [27], who
described a modified acidic Bligh-Dyer extraction [32] with addi-
tion of NaCl to the aqueous phase to help reducing loss of PIs.
Briefly, ca. 106 cells were extracted with 2 ml methanol, 2 ml 1 M
HCl, 0.15 ml 2 M NaCl and 2 ml chloroform (solvents from Scharlau,
other reagents from Sigma–Aldrich). Methanol was supplemented
with PhosSTOP (Roche, Basel, Switzerland), 1 mM NaF, 3 mM BHT
and 0.5 mM phosphatidic acid (all from Sigma–Aldrich). The two
phases were mixed well and centrifuged shortly for separation.
The lower organic phase was removed, evaporated by nitrogen
stream and transferred to deacylation. Dried samples were incu-
bated with methylamine solution in water/methanol/n-butanol
(43:46:11) at 53 ◦C for 50 min, all solvent was evaporated under
vacuum, and then extracted with a mixture of n-butanol/petrol
ether 40–60◦/ethyl formiate (20:4:1) and water [33]. The water-
phase was dried in vacuum and the samples were dissolved in 40 �l
of solvent A for LC–MS analysis.

3. Results and discussion

3.1. Separation of phosphoinositides in order of increasing

phosphorylation

Separation of anionic or phosphorylated compounds is typi-
cally achieved by ion-exchange chromatography. However, typical

ion-pairing reagents are not volatile and, hence, not compatible
with LC–MS. We tested several volatile and MS-compatible ion-
pairing reagents, such as formic acid, ammonium formiate and
N,N-dimethyl-hexylamine (DMHA) and applied them on various
columns (Nucleosil C100, LiChrospher Diol and Phenomenex Aqua
C18). The only acceptable separation of a phosphoinositide refer-
ence mixture was achieved on a short (75 mm) Phenomenex Aqua
C18 column with the addition of DMHA. Subsequently, we tested
different gradient profiles, column temperatures, pH and concen-
trations of DMHA to optimize separation. Column temperature had
a slight impact, and the best separation was obtained at 15 ◦C. In
contrast, pH of the mobile phase was critical. Best results were
obtained around pH 7, while lower pH values lead to peak tailing
and split peaks and higher pH resulted in shorter retention times.
Increase of DMHA concentration from 5 to 10 mM and 20 mM did
not enhance the quality of the separation. A water-acetonitrile gra-
dient was applied and the final gradient program was 0.1–50% ACN
(containing 5 mM DMHA) in 25 min, leading to the separation of a
PI standard mixture shown in Fig. 2A. Peaks shown resulted from
0.1 �g of deacylated PtdIns(3,4,5)P3 standard mixed with 4 �g of
deacylated phosphoinositde extract (mixture of PtdIns, PtdIns4P

and PtdIns(4,5)P2).
Separation of a mixture of PIs standards was also achieved under

isocratic conditions (27% ACN and 73% water) but separation of
biological samples, however, could not be achieved under these
conditions, probably due to interference with the biological matrix.

To test the applicability of our method to biological samples,
we analysed mast cell extracts. Mast cells are known to produce
large amounts of PtdIns(3,4,5)P3 upon activation that can be pro-
voked in vitro by stimulation with adenosine [30]. Murine bone
marrow derived mast cells (BMMCs) were stimulated with 5 �M
adenosine for 30 s, the lipids were extracted, deacylated and anal-
ysed with method 1. Our method clearly succeeded in reproducing
the increased amounts of PtdIns(3,4,5)P3 upon stimulation of mast
cells with adenosine, whereas peaks of PtdIns and PtdInsP remained
constant (Fig. 2B and C).

3.2. Positional isomer separation of phosphatidylinositol

bisphosphates

To achieve separation of PtdInsP2 positional isomers vari-
ous columns were tested, including Nucleosil C100, Atlantis C18,
Atlantis T3 and Phenomenex Aqua C18. The separation was only
achieved on a Phenomenex Aqua column (column length 250 mm)
and a water–acetonitrile gradient (containing 5 mM DMHA as ion-
pair reagent) (method 2). A mixture of standards of all PtdInsP2

isomers was separated in the elution order of PtdIns(3,4)P2,
PtdIns(4,5)P2 and PtdIns(3,5)P2 (Fig. 3A and B). Peaks shown
resulted from 0.1 �g of deacylated PtdIns(3,5)P2 and PtdIns(3,4)P2

standard mixed with 4 �g of deacylated phosphoinositde extract
(mixture of PtdIns, PtdIns4P and PtdIns(4,5)P2). Several other sol-
vent mixtures and addition of modifiers were tested. A separation
with a different elution order (PtdIns(3,4)P2, PtdIns(3,5)P2 and
PtdIns(4,5)P2) was obtained with a water–methanol gradient (con-
taining 5 mM DMHA) (method 3) (Fig. 3C and D).

Vps34 transfected HEK 293 cells under hyperosmolar stress
were used as a model to test the analysis of PtdIns(3,5)P2 from
biological samples. The PI3-kinase Vps34 is known to stimulate
osmotic stress related production of PtdIns(3,5)P2 in yeast [22,28].
HEK Vps34 were incubated for 10 min in a medium supplemented
with 1 M NaCl solution to induce stimulation of Vps34, and gen-
eration of PtdIns3P leading to production of PtdIns(3,5)P2. As can
be seen in Fig. 4A and B, the transfection with Vps34 already
induced some production of PtdIns(3,5)P2, which was then further
increased upon NaCl hyperosmotic stimulation.
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Fig. 2. (A) Extracted ion chromatogram (EIC) of deacylated phosphoinositide stan-
dards (PtdIns, PtdInsP, PtdInsP2 and PtdInsP3) mixture. (B) EIC of cell samples from 4
mio BMMC and standards. Cells were stimulated with adenosine (Ade) 5 �M for 30 s
to induce production of PtdInsP3 . (C) Peaks of PtdInsP2 and PtdInsP3 from control
cells in relation to stimulated cells, levels of PtdInsP3 increased after stimulation
with adenosine. Column: Phenomenex Aqua C18 (75 mm × 2 mm, 3 �m). Solvent A:
H2O (+5 mM DMHA), solvent B: acetonitrile (+5 mM DMHA). Gradient: 0.1% B to 50%
B in 25 min.

Analysis of PtdIns(3,4)P2 in biological samples was tested with
human blood platelets. In comparison to many other cell mod-
els, platelets produce PtdIns(3,4)P2 in relatively large amounts
upon activation. PtdIns(3,4,5)P3 is degraded to PtdIns(3,4)P2 by
the 5-phosphatase SHIP1 [34]. PtdIns(3,4)P2 is responsible for the
persistence of the signal induced by PtdIns(3,4,5)P3 [8,35]. For
detection of PtdIns(3,4)P2, platelets were stimulated for 90 s with
fMLP. This resulted in elevated amounts of PtdIns(3,4)P2 which
were not present in control cells (Fig. 4C and D).

3.3. Positional isomer separation of phosphatidylinositol

monophosphates

Separation of the mono-phosphorylated isomers was only
achieved with methanol–water mixtures as mobile phase (Fig. 5A
and B), whereas the use of acetonitrile resulted in co-elution of
PtdIns3P and PtdIns5P.

The method was applied to Vps34 transfected HEK cells as
model. Vps34 is stimulated by amino acid addition through a yet
unknown mechanism [36]. Starvation and subsequent amino acid
supplementation stimulates Vps34 and induces the generation of
PtdIns3P [37,38]. Thus, HEK Vps34 cells were serum and amino
acid starved for 12 and 2 h, respectively. By addition of serum and
amino acids, cells were stimulated for 30 min prior to extraction
of lipids, deacylation and analysis. The stimulation with serum and
amino acids induced production of PtdIns3P, which, in contrast, was
inhibited by incubation with the PI3-kinase inhibitor wortmannin
15 min prior to and during stimulation with amino acids and serum
(Fig. 5C and D).

3.4. Comparison with radiolabelling method

For comparison with the standard detection method of scin-
tillation analysis, we applied radiolabelled samples to the newly
developed HPLC method combined with subsequent scintillation
analysis. This also gave a reconfirmation of the peaks measured
with MS. The large loop size of 1 ml within the flow scintilla-
tion analyser and a flow rate of only 0.5 ml/min resulted in very
broad and asymmetric peaks. Nevertheless, peaks of the major PIs
could be detected (Fig. 6A and B). A radioactive labelled cell sample
showed all major PI peaks (Fig. 6C) at the same retention times as
when detected with MS. So did a radioactive labelled standard of
PtdIns3P (Fig. 6C) that was clearly different to the retention time of
the cellular PtdIns4P peak.

3.5. Discussion

The separation of PIs differing in number of phosphorylations
was successfully achieved with method 1 and applied to analysis
of phosphoinositides in cell samples. For analysis of PtdIns(3,4,5)P3

this method offers a good alternative to the assay involving radi-
olabelling and anion-exchange HPLC. The short analysis time
facilitates handling of large sample numbers.

Separation of isomers was achieved on the same column type,
but of longer size and hence increased separation capacity (method
2). This assay offers new perspectives for research on phosphoinosi-
tide signalling. The low-abundant PtdInsP2 isomers can now be
separated and analysed without the need for radioactive labelling.

Replacing acetonitrile by methanol enabled the separation of
PtdIns3P, PtdIns4P and PtdIns5P (method 3). This isomer sepa-
ration has not been possible before. Also the PtdInsP2 isomers
could be separated with method 3, albeit in a different elution
order when compared to method 2. This hampered a complete
separation of the highly abundant PtdIns(4,5)P2 from the trace iso-
mer PtdIns(3,5)P2. Therefore, analysis of the biologically important
PtdIns(3,5)P2 should be performed with method 2.

Separation of PtdInsP2 isomers has been shown before on a
cyclodextrin column [14], but co-eluting peaks of PtdIns(3,4,5)P3

and PtdIns(3,5)P2 limited the usefulness of the method. Also, sep-
aration of PtdInsP isomers was neither shown nor discussed in
that publication. Compared to a cyclodextrin column the polar
endcapped RP-column used here exhibits a more predictable
chromatographic behaviour, offers more options for method refine-
ment, and is widely applicable. Furthermore, robustness of the
column and reproducibility and stability of separations are very
high.

The methods presented here were successfully applied to rele-
vant biological samples. The extraction procedure of PIs remains a
major concern. As extensively discussed by Ogiso et al. [27], recov-
ery rates of PIs are generally poor and decrease with increasing
phosphorylation. Due to the amphiphilic properties these lipids
are difficult to extract. The ionic headgroup adsorbs easily to glass
surfaces, whereas the lipid moiety adsorbs to plastic. However,

dx.doi.org/10.1016/j.jpba.2010.03.029


Please cite this article in press as: S. Kiefer, et al., Separation and detection of all phosphoinositide isomers by ESI-MS, J. Pharm. Biomed. Anal.
(2010), doi:10.1016/j.jpba.2010.03.029

ARTICLE IN PRESS
G Model

PBA-7648; No. of Pages 7

S. Kiefer et al. / Journal of Pharmaceutical and Biomedical Analysis xxx (2010) xxx–xxx 5

Fig. 3. (A and B) Separation of a standard mixture of PIs containing all PtdInsP2 regioisomers. (B) Elution of the isomers of PtdInsP2 in following order: PtdIns(3,4)P2 ,
PtdIns(4,5)P2 and PtdIns(3,5)P2 . Column: Phenomenex Aqua C18 (250 mm × 4.6 mm, 5 �m). A: H2O (+5 mM DMHA), B: acetonitrile (+5 mM DMHA). Gradient: 15% B to 35% B
in 40 min. (C and D) Separation of a standard mixture of PIs containing all PtdInsP2 regioisomers. (D) Separation of PtdInsP2 isomers in sequence of PtdIns(3,4)P2 , PtdIns(3,5)P2

and PtdIns(4,5)P2 . Column: Phenomenex Aqua C18 (250 mm × 4.6 mm, 5 �m). A: Methanol (+5 mM DMHA), B: acetonitrile (+5 mM DMHA). Gradient: 15% B to 50% B in 60 min.

measures can be taken to reduce loss of analytes, such as use of
silanized glassware to prevent adsorption at glass surfaces [26],
and lipid pre-treatment of plastic surfaces with lipids as adsorption
protectants. We used plastic tubes, added lipids as adsorption pro-
tectants, and phosphatase inhibitors to prevent hydrolysis. These
combined measures noticably increased extraction yields. How-
ever, further optimization is needed towards a robust and fully
validated quantitative analysis of PI headgroups. This could be

achieved by spiking with suitable internal standards at the begin-
ning of the extraction procedure which ideally should be a PI with
a stable-isotope labelled headgroup. However, such standards are
not commercially available. An issue is the efficiency of extrac-
tion of phospholipids with different degrees of phosphorylation.
There are clear indications that replacing the widely used extrac-
tion with chloroform/methanol by butanol increases the yield of
highly phosphorylated PtdIns isoforms ([26], Traynor-Kaplan and

Fig. 4. Analysis of phosphoinositide cell samples. (A and B) Extracted ion chromatograms (EIC) of HEK Vps34 cell samples showed increased amounts of PtdIns(3,5)P2 ,
that were further increased by stimulation with 1 M NaCl for 10 min. (C and D) EIC of lipids extracted from platelets, control sample and stimulated with fMLP for 1 min.
Stimulation induced generation of PtdIns(3,4)P2 that was not present in the control sample. Column: Phenomenex Aqua C18 (250 mm × 4.6 mm, 5 �m). A: H2O (+5 mM
DMHA), B: acetonitrile (+5 mM DMHA). Gradient: 15% B to 35% B in 40 min.
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Fig. 5. (A and B) Extracted ion chromatogram (EIC) and base peak chromatogram
(BPC) of mixed standards of phosphoinositide monophosphates separated accord-
ing to method 3. Separation of PtdIns3P, PtdIns4P and PtdIns5P was achieved. (C)
BPC and EIC of a HEK Vps34 cell sample. (D) EIC of HEK Vps34 cell samples that were
amino acid stimulated and incubated with wortmannin 15 min prior to and during
amino acid stimulation. The increase in PtdIns3P following amino acid starvation
and subsequent stimulation was blocked by addition of wortmannin. Column: Phe-
nomenex Aqua C18 (250 mm × 4.6 mm, 5 �m). A: H2O (+5 mM DMHA), B: methanol
(+5 mM DMHA). Gradient: 15% B to 50% B in 60 min.

Fig. 6. (A and B) Total ion chromatogram (TIC) and extracted ion chromatogram
(EIC) of a HEK Vps34 control cell sample separated according to method 3. (C)
Chromatogram of parallel online flow scintillation analysis of the same HEK
Vps34 cell sample and a standard of PtdIns3P. Column: Phenomenex Aqua C18
(250 mm × 4.6 mm, 5 �m). A: Methanol (+5 mM DMHA), B: acetonitrile (+5 mM
DMHA). Gradient: 15% B to 50% B in 60 min.

Küenzi, unpublished data). Thus, a semi-quantitative analysis that
compares peak intensities of highly variable (e.g. PtdIns(3,4,5)P3)
and basically unvaried (e.g. PtdIns(4,5)P2) headgroups is currently
the most suitable approach.

The direct parallel analysis with online flow scintillation and
mass spectrometry showed the comparability of the two meth-
ods. The LC–MS assay presented here offers a superior approach
for analysis of intracellular PI levels including differentiation of the
biologically relevant PtdInsP and PtdInsP2 isomers.

Further development of the method can be envisaged by a trans-
lation to UPLC, thereby taking advantage of shorter analyses and
equal or superior chromatographic resolution. There is a general
need for further improvement of sample workup in PI analysis,
as isolation and deacylation of the PtdIns is time-consuming and
difficult. Also, the issue of possible discriminatory extraction of cer-
tain PtdIns needs further investigation. Nevertheless, the LC–MS
methods presented here enable simultaneous analysis of all cur-
rently known deacylated PtdIns and thus are a useful tool for cell
signalling studies.
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