
ON CHEMICAL
AND SELF–HEALING

NETWORKING PROTOCOLS

Inauguraldissertation

zur Erlangung der Würde eines Doktors der Philosophie
vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Thomas Meyer

aus Muttenz BL, Schweiz

Basel, 2011

Originaldokument gespeichert auf dem Dokumentenserver der
Universität Basel: edoc.unibas.ch

Dieses Werk ist unter dem Vertrag “Creative Commons
Namensnennung–Keine kommerzielle Nutzung–Keine Bear-
beitung 2.5 Schweiz” lizenziert. Die vollständige Lizenz kann
unter creativecommons.org/licences/by-nc-nd/2.5/ch eingese-
hen werden.

attribution–noncommercial–noderivs 2.5 switzerland

You are free:

to Share— to copy, distribute and transmit the work

Under the following conditions:

Attribution—You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Noncommercial—You may not use this work for commercial purposes.

No Derivative Works—You may not alter, transform, or build upon this
work.

With the understanding that:

Waiver—Any of the above conditions can bewaived if you get permission from the copyright
holder.

Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

Other Rights— In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

• The author’smoral rights;

• Rights other persons may have either in the work itself or in how the work is used, such as
publicity or privacy rights.

Notice— For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to the web page
http://creativecommons.org/licenses/by-nc-nd/2.5/ch.

Disclaimer —The Commons Deed is not a license. It is simply a handy reference for un-
derstanding the Legal Code (the full license) – it is a human-readable expression of some
of its key terms. Think of it as the user-friendly interface to the Legal Code beneath. This
Deed itself has no legal value, and its contents do not appear in the actual license. Creative
Commons is not a law firm and does not provide legal services. Distributing of, displaying of,
or linking to this Commons Deed does not create an attorney-client relationship.

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Prof. Dr. Christian Tschudin
Prof. Dr.-Ing. Markus Fidler

PD Dr. Peter Dittrich

Basel, den 14. Dezember 2010

Prof. Dr. Martin Spiess (Dekan)

Meinen Eltern, in Dankbarkeit und Liebe

Only those who attempt the absurd
will achieve the impossible.
I think it’s in my basement. . .
let me go upstairs and check. 1

M. C. Escher
(1898–1972)

Abstract

In this thesis, we look at networking protocols through the eyes of achemist. By introducing an artificial chemistry for networking, we ob-
tain an intrinsically dynamic, reaction-based view to packet processing. Our
chemical virtual machine lets packets react with each other akin to chem-
ical molecules. Simple reaction rules at the microscopic level translate to
well-defined behavior on the macroscopic flow level. Because these two de-
scriptions are linked by laws from chemical kinetics, we are able to apply tools
from chemistry to predict the behavior of chemical networking protocols and
even proof dynamic convergence properties.

Based on this principle, we develop an engineering model to design and
analyze chemical protocols. We demonstrate the feasibility and usefulness
of our approach with several new solutions to application scenarios ranging
from a gossip-style aggregation protocol, over an enzymatic mac protocol,
to a chemical tcp-like congestion control algorithm, which ensures the
coexistence and fairness among chemical and classical packet flows in the
Internet.

The chemical reaction model has additional properties that are hard
to achieve on traditional code execution platforms: We show how protocol
software is able to continuously regenerate itself in order to exhibit intrinsically
self-healing properties; our approach is based on self-replicating code and
natural selection. We present a self-healing multipath routing protocol that
is resilient to the removal of large parts of its own code.

With this work, we try to contribute to the future Internet by discovering
the self-regulating capabilities of packet flows, which currently lie dormant.

Keywords: network protocol, artificial chemistry, emergent computation,
packet flow balance, self-healing code

Funding:This work is supported by the Swiss National Science Foundation
(snf) through grant 2000201–109563, project “Self-Healing Protocols”, which
is thankfully acknowledged.

abstract | ix

Acknowledgments

This thesis would not have been possible without the help and support
of many people. I owe them my sincere gratitude.
First, I would like to thankmy adviser Prof. Christian Tschudin, who had

the original idea of using the chemical metaphor for networking and who
made this work possible. I thank him for supervising this study with critical
insights and appreciate the brainstorming sessions where he always surprised
me with novel ideas.

Special thanks go to Lidia Yamamoto who co-supervised this project
and from whom I learned a lot about natural and artificial chemistry and
evolution. She was always generous in sharing her insights an discussing
scientific and other topics.

I am grateful to Prof. Markus Fidler and PD Peter Dittrich for being in
the thesis committee. Many thanks to the researchers in Jena for hosting us
during a very pleasant week. I also thankfully acknowledge the contributions
of Prof. Wolfgang Banzhaf to the energy model.

Philip Lüscher, Yvonne Mathis, andMassimo Monti also contributed to
this work with their bachelor and master theses; I appreciate the effort they
spent. I’m grateful also to the careful readings and the valuable comments
the following people have given to drafts of this manuscript: Ghazi Bouabene,
Igor Talzi, Manolis Sifalakis, Marcel Lüthi, and Pierre Imai.

I wish to thank all my colleagues at the department with whom I had a
great time in the past years. I also thank my friends and former colleagues at
Inalp – the best engineering team ever.

Finally, I wish to thank my parents, my brother and my sisters for their
great confidence in me and their love; and many thanks to my brothers in
law for their moral support.

acknowledgments | xi

Chapters

Abstract ix
Acknowledgments xi
Chapters xiii
Contents xv

i introduction, background & related work
1 Introduction 3
2 Networking Paradigms 13
3 Artificial Chemistries 21

ii chemical networking protocols (cnps)
4 Principles of Chemical Networking 43
5 An Artificial Chemistry for Networking 51
6 Introduction to cnp Analysis 73
7 Structural cnp Analysis 83
8 Dynamical cnp Analysis 103
9 Analysis of a Chemical Gossip Protocol 139
10 Design and Synthesis of cnps 153
11 cnp Simulation and Runtime Engine 185
12 cnps in the Internet Context 199

iii self-healing networking protocols
13 Self-Healing Software 249

chapters | xiii

14 Self-Healing Software by Dynamic Code Replication 259
15 Competition and Cooperation of Replicating Code 283
16 A Self-Healing Multipath Routing Protocol 297
17 Code Robustness Analysis 315
18 Structural Robustness by Energy Conservation 335

iv discussion
19 Discussion in Relation to Existing Work 363
20 Relevance and Future Directions 373
21 Conclusions 379

a Supplementary Material 385
b Fraglets Instruction Set 391

List of Figures 405
List of Tables 411
List of Algorithms 413
List of Symbols 415
List of Quotes 419
Bibliography 423
Index 457

xiv | chapters

Contents

Abstract ix

Acknowledgments xi

Chapters xiii

Contents xv

part i
introduction, background & related work

1 Introduction 3
Context and motivation [3] Contributions [4] Approach [6]
Structure of the thesis [8] Notational conventions [11]

2 Networking Paradigms 13
On the principles of current communication networks — an overview.

Packet-switchednetworks [14]Active networking [16] Stochas-
tic protocols [17] Towards chemical networking protocols [20]

3 Artificial Chemistries 21
An introduction to abstract models of chemistry as unconventional ways
of organizing computation.

Definition [22] History, purpose and variety [24] A formal
approach to artificial chemistries [27] Summary [38]

contents | xv

part ii
chemical networking protocols (cnps)

4 Principles of Chemical Networking 43
Introduction to our novel method to design, execute, and analyze network-
ing protocols, inspired by chemical reaction networks.

Chemistry as a metaphor for networking protocols [44] A
two-level engineering model [46] Structure of this part [49]

5 An Artificial Chemistry for Networking 51
On the development of an abstract model for distributed chemical com-
puting and on Fraglets, an algorithmic chemistry for chemical protocols.

An abstract chemical model of communication [52] Fraglets
— A programming language for cnps [58] Programming in
Fraglets [65] Application case: Disperser — A gossip-style
aggregation protocol [68] Summary [71]

6 Introduction to cnp Analysis 73
An overview of existing protocol analysis methods and an introduction to
the next three chapters on the analysis of chemical networking protocols.

Related work [74] Chemical protocol analysis overview [79]

7 Structural cnp Analysis 83
On the exploration of the potentially infinite sequence space of a Fraglets
program and its mapping to a finite abstract model.

Problem description [85] Exploring the sequence space of
protocol implementations in Fraglets [87] Assisted algorithm
to map fraglet strings to an abstract artificial chemistry [91]
Automatic algorithm to map fraglet strings to an abstract
artificial chemistry [95] Discussion [99] Summary [101]

8 Dynamical cnp Analysis 103
How to exploit analysis tools from chemistry to study the dynamics of
chemical networking protocols.

Microscopic stochastic model [104] Macroscopic determin-
istic approximation [115] Mesoscopic dynamical model [123]
Existence theorems for equilibria [132] Summary and discus-
sion [137]

xvi | contents

9 Analysis of a Chemical Gossip Protocol 139
Application of the chemical analysis tools to the study of a distributed data
aggregation protocol.

Abstract model and mathematical description [139] Formal
convergence proof [141] Signal-to-noise ratio [143] Discus-
sion [147] Summary [150]

10 Design and Synthesis of cnps 153
On the art of designing chemical reaction networks from which the desired
distributed algorithms shall emerge.

Chemical protocol design paradigms [154] Chemical con-
servation rules [157] Motifs — Common design patterns for
cnps [160] Application case: Disperser in a network with
unknown topology [178] Summary [183]

11 cnp Simulation and Runtime Engine 185
Amore detailed description of the Fraglets Virtual Machine, its embedding
into a network simulator, and on the limiting effects of real computing
infrastructure.

Virtual machine (vm) architecture [186] Integration of the
Fraglets vm to the omnet++ Simulator [190] Integration of
the Fraglets vm to a real network [192] Summary [198]

12 cnps in the Internet Context 199
On the challenges and promises to merge chemical networking protocols
with the Internet — on competing and cooperating packet streams.

Chemical models of realistic networking infrastructure [200]
Chemistry in the core: tcp over chemical networks [217]
Chemistry at the edge: c3a — A tcp-friendly chemical con-
gestion control protocol [228] Summary [242]

part iii
self-healing networking protocols

13 Self-Healing Software 249
From related work on self-healing computing systems to requirements for
intrinsically self-healing software.

contents | xvii

Motivation [250] Inspiration from nature and early computer
science [251] Related work [252] Structure of this part [257]

14 Self-Healing Software by Dynamic Code Replication 259
How self-replicating code – Quines – put into an environment with limited
resources, exhibits self-healing properties.

The chemical Quine [260] Robustness of the Quine [263] Dis-
tributed Quines [271] A generic building block for self-healing
software [274] Summary [282]

15 Competition and Cooperation of Replicating Code 283
Competing Quines struggle for existence, but they can be symbiotically
linked such that they cooperatively achieve a common task.

Competition of Quines in local and distributed contexts [284]
Cooperative linkage of Quines [287] Application case: Self-
healing distributed software updates [291] Summary [295]

16 A Self-Healing Multipath Routing Protocol 297
Design, implementation, and analysis of a chemical routing protocol based
on distributed self-replicating Quines.

Problem description [298] Protocol overview [299] Dissem-
ination of routing table entries [301] Expression of routing
table entries [303] Forwarding path reinforcement [304] Re-
sults [306] Related work and assessment [313]

17 Code Robustness Analysis 315
On the frequency of self-replicating sets in Fraglets, their robustness sub-
ject to memory mutations and execution errors, and on the link between
robustness and the instruction set.

Effects of symbolmutations [316]The search for (robust) repli-
cators [323] Indirect instruction encoding [330] Summary and
outlook [332]

18 Structural Robustness by Energy Conservation 335
Introduction of a modified reaction scheduler, which conserves virtual
energy to prevent mutated code from consuming all resources.

The role of energy in chemical reactions [336] A generic en-
ergy framework for artificial chemistries [340]A reaction algo-
rithm to prevent unbounded string elongation in Fraglets [345]

xviii | contents

Mutational robustness by cell-growth and multi-level selec-
tion [349] Discussion [356] Summary [359]

part iv
discussion

19 Discussion in Relation to Existing Work 363
The chemical networking paradigm related to other networking principles,
programming methods, and execution models.

Rule-based programming models [364] Mobile code [366]
Dynamics [367] Stochastic execution vs. deterministic state
changes [368] Robustness vs. resource requirements [370]
Summary [372]

20 Relevance and Future Directions 373
On a possible development from static towards dynamic, flow-based net-
working and how the chemical metaphor may act as a signpost.

Flow-based forwarding [374] Flow-based storage [375] Flow-
based processing [376]

21 Conclusions 379

a Supplementary Material 385
Limiting the vessel capacity to restrict the reaction rate [385]
Versioned Quine [388]

b Fraglets Instruction Set 391
Fraglet meta expressions [391] General format of immediate
and stack instructions [392] Fraglet instructions [393]

List of Figures 405

List of Tables 411

List of Algorithms 413

List of Symbols 415

contents | xix

List of Quotes 419

Bibliography 423

Index 457

xx | contents

IpartI
Introduction, Background

& Related Work

chapter11Introduction

context and motivation 1.1

The original aim of the Internet, namely providing a standardized way of reli-
ably exchanging information between spatially distributed and architecturally
different computers, has been fulfilled. We can assume that information sent
from one application to the other is delivered reliably and on time. Hence,
research interest shifted towards higher communication layers: the World
Wide Web endowed users with location-independent linkage of information,
theWeb 2.0 enabled interactions with automatic services and with other users,
Service Oriented Architectures (soa) allow for the interaction of machines
over well-defined interfaces.

Under the hood, the Internet is still based on the same principles and
protocols as in the beginning: The Internet Protocol (ip) provides a global
addressing scheme and structures information exchange into a sequence of
packets; the Transmission Control Protocol (tcp) ensures that packet streams
reliably cross the Internet and adapts the transmission rate to maximize
throughput and ensure fairness; routing protocols automatically adapt to
topological changes and support data packets in finding their way through
the network.

However, the seemingly perfect service offered by the network’s core is
threatened by recent and future developments, including the ever-growing
complexity and the potential decrease of reliability of future computing in-
frastructure.

The Complexity Problem: Due to the big success of the Internet, the overall
traffic currently grows at an annual growth rate of 30% to 40%. Mobile
data undergoes an even larger growth of up to 100% per year (Cisco,

1. introduction | 3

2010). With the advent of Internet-enabled mobile devices, more and
more computers are and will be attached to the network. This growth is a
challenge for the current, mostly manually administrated infrastructure.
Autonomic protocols exist for certain areas, for example routing and
address assignment, but infrastructure management is far from being
autonomic: A lot of human intervention is still needed to maintain the
overall service quality. The labor cost to maintain the it infrastructure
by far exceeds the overall cost for equipment.

The Reliability Problem: Another trend we observe is the complexity and
miniaturization of computing machinery. Nowadays, ubiquitous mobile
devices are full-fledged general-purpose computers requiring more and
more processing power and energy. Integrated circuits are reaching a
critical package density. When increasing the package density further,
or when reducing the operating voltage to save energy, logic gates will
occasionally fail to switch correctly. Thus, the computing service that
future hardware platforms can provide will likely be unreliable.

These trends and the accompanied problems in networking led to our research
objectives stated as

Organize information exchange and coordination tasks in packet
networks such that autonomous protocols can be designed easily.

and

Organize code execution such that communication software is still
able to provide a reliable service on unreliable hardware.

Amethod that addresses both objectives would be important for the future
development of complex computer networks and their ubiquitous accessing
devices. Especially the second objective is hard to address with traditional
software engineering methods: Code is executed sequentially and is not able
to validate its own correctness without relying on hardware mechanisms. This
led us to the study of natural systems and how they achieve robustness and
self-healing properties.

contributions1.2

In this work we are looking at networking protocols through the eyes of a
chemist. By transposing chemical concepts to computer networks we ob-
tain a reaction and flow-based view to packet processing. The consistent

4 | part i — introduction, background & related work

implementation of chemical laws leads to protocols with similar emergent
properties than found in chemical systems, such as for example robustness
to perturbations and self-organization. In particular, this thesis makes the
following original contributions:

• We introduce a novel “chemical” execution engine for networking
protocols that treats packets as molecules and lets them react with code
in virtual reaction vessels. The “molecules” span a distributed reaction
network that may reach over the entire computer network and that
performs a distributed computation.

• We put strong emphasis on the dynamical aspect of protocol execu-
tion and propose a chemical packet scheduler, which organizes packet
processing according to laws from chemical reaction kinetics.

• This allows us to adopt analysis tools from chemistry to predict the
dynamics of protocols by studying the distributed reaction network
and come up with elegant convergence proofs.

• We provide sound engineering methods to design and analyze chem-
ical networking protocols. In particular, we offer a couple of well-
understood reaction networkmotifs that can be combined in a bottom-
up approach to synthesize new protocols.

• In this chemical engineering framework, we also model basic net-
work components, such as simple queues and links, and implement
common networking motifs, such as source routing, traffic shaping,
neighbor discovery, anycast, gossiping, and link load balancing.

• We show how chemistry suggests novel solutions for established pro-
tocols by introducing an enzymatic shared medium access control
scheme, which allocates bandwidth more smoothly than existing mac
protocols.

• We demonstrate that chemical and classical protocols may coexist in
the Internet. Therefore, we propose a chemical congestion control
algorithm (c3a) that balances molecular packet flows and ensures
fairness to tcp streams competing for bandwidth-limited links.

• We make protocolsmore robust to packet loss and achieve a strong
embodiment to the network by exploiting rate-based information ex-
change, which results naturally from a reaction-centric view of com-
munication. We demonstrate this concept forDisperser, a gossip-style
aggregation protocol.

1. introduction | 5

*An english

translation of

the book is avail-

able (Eigen,

Winkler, Kimber,

& Kimber, 1993).

• We show how protocol software is able to continuously regenerate itself
in order to exhibit intrinsically self-healing properties; our approach
is based on self-replicating code and natural selection. We present a
self-healingmultipath routing protocol that is resilient to the removal
of large parts of its own code.

• We quantify the robustness of protocol software by analytically com-
puting its mean survival time and by carrying out empirical studies
based on simulations. Our results show that self-maintaining molecule
ensembles with as little as 20 replicas easily endure perturbations for
billions of years.

• In order to increase the robustness of software running on unreliable
hardware, we propose to integrate an energy conservation scheme to
the chemical execution model.

approach1.3

Chemical reaction networks are similar to computer networks as both or-
ganize flows of matter or packets, which adapt to environmental changes.
The main motivation for mimicking chemistry to structure communication
protocols is the robustness of bio-chemical systems to all kinds of pertur-
bations: Redundant pathways protect a metabolism from the knock-out of
a participating enzyme; chemical reaction networks form organizations in
which every part is at least produced by another part. In such a self-regulating
reaction system, there is no dedicated controlling instance. Thus, “control” isemergent

control an emergent phenomenon.

introductory example:1.3.1
the self-healing board game
The seemingly complex but actually simple phenomenon of emergent self-
organization is best introduced with the example of a board game. In their
book Das Spiel* (1975), Eigen and Winkler used simple board games to illus-
trate how in nature, emergent behavior arises from simple rules. We follow
Eigen by sketching the prototype of an intrinsically self-healing system as
simple game:

Consider a checkerboard with two types of tokens, white and black, as
depicted in Figure 1.1. In each round, apply a simple rule: Randomly select two
places and compare the color of the tokens found there. If they are identical,
do nothing. If the colors are different, create a copy of each token and let

6 | part i — introduction, background & related work

t0

...Move 1 Move n

n→∞
t1 tn

Figure 1.1 Mate-
and-spread game: A

checkerboard is initial-

ized with only two black

and 14 white tokens. Af-

ter some rounds, the

number of white and

black tokens mutually

approach each other.

0 50 100 150 200
Interation ti

0
2
4
6
8

10
12
14
16

N
u

m
b

e
r

o
f

to
k

e
n

s

black tokens

white tokens

Figure 1.2 Example time trace of the
mate-and-spread game: The game

strives to equilibrium where black and

white tokens are present with the same

quantity.

them drop at random places, replacing any previously present token color.
Then start the next round. We call this the “mate-and-spread game”.

If each color is present at least once in the start configuration, the distribu-
tion of the tokens willmost likely be uniform after a certain time: Independent
on the initial distribution, this game strives to equilibrium where black and equilibrium

white tokens are present with the same quantity as shown in Figure 1.2.
The microscopic process of a move in this game is random (random

selection and random replacement) and we cannot predict the outcome of
the next round. However, at the macroscopic level we observe the emergence
of an equilibrium.

Now imagine that the passive white and black tokens are instead two
active software components. Instead of a central player picking tokens and
replacing them if needed, tokens react with each other. Once they mate, they
replicate and, if necessary, displace other software components in turn. At
equilibrium, both parts will be present with an equal number of copies. If
something happens to one instance of either part, for example, if a fault occurs
such that it is not able to mate anymore, the erroneous copy will eventually be
displaced by the remaining healthy parts: the overall software is self-healing self-healing

without requiring a central controller.
Such an intrinsically software-only self-healing mechanism is hardly

possible in traditional software execution environments where instructions
are executed sequentially. But if we put software into a chemical setting,
where each code part is represented as a molecule that is able to react with

1. introduction | 7

other molecules in parallel, such self-organization of code suddenly becomes
possible.

a chemical approach1.3.2
to communication protocols

Self-healing is only one of the properties that result from such a chemical-like
reaction model. If chemical reaction networks are arranged correctly, they
strive to equilibrium where all forces are balanced, like in the board game,
where eventually, replication and deletion forces are equal.

We aim at designing networking protocols as distributed chemical reac-distributed

chemical reac-

tion networks
tion networks that present their solutions at equilibrium. Perturbations in the
network, such as packet loss or competing packet flows, will automatically
bring the system back to the fixed point of optimal operation. The challenge is
to express the problem chemically and to design a reaction network such that
at equilibrium, the system behaves correctly according to the requirement
specification. With the help of several examples we will demonstrate that this
is feasible for most continuously running distributed algorithms, such as for
example routing, load balancing, and consensus protocols.

Beyond the inherent robustness of chemical networking protocols, the
chemical approach offers a unified model for protocol execution and analysis.
That is, the dynamic behavior of a given protocol implementation can be
analyzed mathematically. At the same time, a designed abstract reaction
network can be transposed quickly to a concrete implementation in a chemical
programming language.

In this thesis, we study both the use of a chemical model as an engi-
neering framework to design, execute, and analyze robust communication
protocols and the use of self-organizing reaction networks to obtain self-
healing protocol code that is able to run on unreliable hardware.

structure of the thesis1.4

As depicted in Figure 1.3, this thesis is organized in four parts: Part i (Chap-
ters 1 to 3) gives background information in computer networks and artificial
chemistry. Part ii first introduces the fundamentals of our chemical network-
ing theory in Chapters 4 and 5. The remaining chapters of the second part
(Chapters 6 to 12) study the approach in more detail. In particular, we show
how to analyze and design chemical networking protocols and discuss issues
related to the integration of a chemical virtual machine into current hardware
and computer networks. In Part iii (Chapters 13 to 18), we indicate how the

8 | part i — introduction, background & related work

Part II — Chemical Networking Protocols (CNPs)

Part I — Introduction, Background & Related Work

4. Principles of Chemical Networking 5. An Artificial Chemistry for Networking

Part III — Self-Healing Protocols

Chapters 6 − 12

Chapters 1 − 3

Chapters 19 − 21

Chapters 13 − 18

Design, Analysis, and Integration

of Chemical Networking Protocols

Part IV — Discussion

Figure 1.3 Structure
of the thesis in four
parts

chemical execution model gives rise to self-healing protocol software that
tolerates deletion or mutation of parts of its own code base. Finally, part
Part iv (Chapters 19 to 21) concludes this thesis by discussing the relevance
and impact of our approach.

Audience (a)

This document is written with a broad audience in mind. We combine meth-
ods from two major research fields, namely formal and applied computer
networking and (artificial) chemistry; but the thesis also touches areas in
complex systems and evolutionary dynamics. We introduce all concepts thor-
oughly, having in mind that an expert in one area will need more background
material in the other fields. Some chapters, written for a dedicated audience,
contain skip marks in the introduction to guide the reader through the docu-
ment. The first and fourth part is recommended to all readers. The second
part mainly addresses researchers in computer networks whereas the third
part on self-healing protocols may attract researchers from artificial life.

Computer scientists with a theoretical background are referred to Chap- computer scien-

tiststers 6 to 8, where we provide structural and dynamical analysis methods to
prove properties of chemical protocols, and to Chapter 14 where we quantify
the robustness of self-healing code.

1. introduction | 9

Model / Example Section Page

Mate-and-spread game (self-healing board game) Section 1.3.1 6

Catalytic bimolecular reaction (equilibrium) Section 3.3.3(c) 34

Distributed equilibrium Section 5.1.1(c) 54

Non-deterministic finite state machine Section 5.3.1 66

Source routing Section 5.3.2 67

Disperser: Gossip-style aggregation protocol
Simulation: Section 5.4 68

Analysis: Chapter 9 139–151

Design Variants: Section 10.4 178–183

Packet forwarding Section 7.1 85

Distributed arithmetic computation Section 10.3.2 164–170

Enzymatic traffic shaping/limiter Section 10.3.3(c) 173

Neighborhood discovery Sections 10.3.4(a), 10.3.4(b) 175–176

Anycast Section 10.3.4(d) 177

Chemical queue Section 12.1.1 201

Chemical model of a bandwidth-limited link Section 12.1.2 203

Enzymatic Medium Access Control (mac) Section 12.1.3 206

C3A: Chemical congestion control algorithm Sections 12.3.2–12.3.4 230–237

C3A+: Congestion avoidance extension Sections 12.3.5, 12.3.6 237–242

Self-healing distributed software updates Section 15.3 291–294

Self-healing multipath routing protocol Chapter 16 297–314

Table 1.1 Examples and application cases: Three major application cases (bold) are used to demonstrate prop-

erties of chemical protocols or the chemical engineering framework, the others illustrate discussed concepts.

For computer network engineers, we provide engineering methods tocomputer net-

work engineers design chemical protocols in Chapter 10; Chapter 12 illustrates how chemical
and classical protocols cooperate in the Internet. There are a vast number of
protocol examples to illustrate the principles of chemical program design and
analysis: Table 1.1 lists all examples and application cases.

Computer system architectsmay bemore interested in the architecture ofcomputer sys-

tem architects the chemical virtual machine, which executes chemical protocols. Chapter 11
shows howa chemical execution engine can be integrated to existing computer
and networking infrastructure.

Finally, natural scientists interested in the self-organizational propertiesnatural

scientists of living systems may be attracted to see an application case for biological
and chemical principles in computer networking. They are referred to the
third part, where we study the behavior (Chapters 14 and 15) and robustness
(Chapter 17) of self-healing code and adopt an energy model from nature to
promote efficient and robust programs (Chapter 18).

10 | part i — introduction, background & related work

notational conventions 1.5

In this work, we used a few notational conventions listed below. An extensive
list of all mathematical symbols used throughout this thesis can be found in
the List of Symbols in the back matter on page 415.

Scalar variables are represented by lowercase Roman or Greek letters,
a . . . z, or α, . . . ,ω, vectors by lowercase Roman bold face letters, a, . . . , z,
whereas we use uppercase Roman bold face letters for matrices, A, . . . ,Z.
Sets are typeset in a calligraphic font,A, . . . ,Z , except for N (natural num-
bers), Z (integers), R (real numbers). Multisets over sets are written asM(A) , . . . ,M(Z), power sets (set of all subsets) as ℘(A) , . . . ,℘(Z). The
cardinality (number of elements) of a setA or a multisetM(A) is written as∣A∣ and ∣M(A)∣, respectively. Molecule types (species) are represented by
upright uppercase Roman letters, A, . . . , Z.

••

1. introduction | 11

chapter22Networking Paradigms

On the principles of current communication networks—anoverview.

Will the technologies of
communication and culture help us
to understand one another better, or
will they deceive us and keep us
apart? 2

Roger Waters

Electronic communication started with telegraph and telephone
networks. Such connection-oriented networks establish a physical con-

nection between the participants for the duration of a communication session.
Later, Paul Baran and Donald Davies developed packet-switching networks
in the 1960ies (Baran, 1964), which ultimately lead to the Internet, as we
know it today. In the meantime, other communication patterns such as active
networking appeared but never penetrated the world in the same way the
data-packet-centric Internet did.

In this chapter we review the landscape of networking paradigms. We
skip circuit-switched networks and immediately start by discussing the packet-
switched paradigm in Section 2.1. Then, motivated by the possibility of our
chemical model to exchange code on the fly, we give a short introduction to
the principles of active networking in Section 2.2. Finally, also related to our
approach, we discuss the benefit of stochastic protocols in Section 2.3.

2. networking paradigms | 13

packet-switched networks2.1

There is no doubt that the Internet is the most successful packet-switched
network. In packet-switched networks, there is no direct physical connec-
tion between two communicating endpoints. Information is split in chunks,
which are transferred as data packets over shared physical links. But often, a
virtual circuit hides the packet nature of the network from the user. Transportvirtual circuit

protocols such as the Transmission Control Protocol (tcp) (Postel, 1981) or
the Stream Control Transmission Protocol (sctp) (Ong & Yoakum, 2002;
Stewart, 2007) establish a virtual connection between Internet applications.
Such connection-oriented protocols also exist below the transport layer: x.25
(itu, 1996) was developed as core protocol for the public data networks of
the 1980ies (Compuserve, Euronet, etc.) and is still used for signaling in the
isdn d-channel. Frame Relay and atm also use the concepts of virtual paths
and virtual connections. Recently, virtual circuits below the network layer
became popular again with mpls (Rosen, Viswanathan, & Callon, 2001).
Multi Protocol Label Switches classify packets into streams and manage them
as such, for example by ensuring quality of service guarantees on the stream
level.

In this section, we review two aspects of packet-switched networks: In
Section 2.1.2, we compare the role of the network’s core to the role of end
systems. In Section 2.1.2, we then discuss packet-switched networks from
two different points of view, namely the microscopic view on the individual
packets and the macroscopic view on packet flows through the network.

network core and end system2.1.1

The core of a packet-switched network consists of several routers or switches.
They forward a data packet to its destination and dynamically allocate the
necessary bandwidth of a shared physical link by means of statistical multi-statistical

multiplexing plexing. Packets are sent asynchronously over the link in the order of their
arrival. Since the linkmay be busy at the time a new packet arrives, packets are
stored into fifo (first in / first out) queues. This so called store and forwardstore and

forward method afflicts the traversing packets with a delay, which is proportional to
the current fill level of the queue.

fifo ordering does not ensure fairness among different packet streams.
Other scheduling disciplines such as fair queuing divide the arriving packets
into individual packet streams, for example, one streamper source/destination
address pair, and assign each stream an individual queue. The queues are
then scheduled, for example, in a weighted round-robin fashion such that
each stream obtains the same bandwidth share.

14 | part i — introduction, background & related work

The Internet’s design philosophy is to put most of the protocol’s logic
into the end stations whereas the core of the network shall operate stateless end-to-end prin-

ciple(end-to-end principle). Because the network itself does not provide fairness
among the competing packet streams, transport protocols such as tcp have
to control their own packet transmission rate to avoid congestion.

microscopic state machines and macroscopic flows 2.1.2
There are two levels of granularity at which we can look at protocols and the
packets they exchange: a microscopic and a macroscopic level. At the mi- microscopic

levelcroscopic level, a protocol implementation cares about the individual packets:
the format of their header, the actions triggered by a received packet, timers
that have to be set, etc. Protocols are implemented as state-machines where
an asynchronous event such as an arriving packet or an elapsed timer triggers
an action and a state transition.

At themacroscopic level, we look at packet streams or flows. The content macroscopic

levelof an individual packet is not important anymore; we focus on the large-
scale dynamic behavior of a protocol. Often, a protocol is being developed
at the functional, microscopic level first, ignoring its dynamical behavior,
or analyzing it at a later time. An example of this approach is tcp: Only
after a series of “congestion collapses” in 1986, it was recognized that tcp
misbehavedon this dynamical level, because it didnot throttle its transmission
rate in order to ensure fairness to other packet streams competing for the
same limited bandwidth resources. Jacobson (1988) then proposed a very
successful congestion-control mechanism for tcp.

Several analysis tools operate on this macroscopic level: Queuing theory queuing theory

was developed in the early 20th century by Erlang (1917) (see also Bose, 2002,
and F. P. Kelly, 1979, for example) as a mathematical framework to determine
the capacity requirements of circuit-switched telephone networks. Queuing
theory models traffic (telephone calls, but also data packets) as stochastic
processes and allows for the analysis of statistical properties, such as the
expected waiting time or packet loss. A whole packet network is modeled as
a network of queues where the output of one queue is fed as input to the next
queue (Jackson, 1963; F. P. Kelly, 1976, 1979).

Instead of using a stochastic model, Chang (2000) as well as Le Boudec
and Thiran (2001) developed a deterministic model of a queuing network
based on min-plus algebra (Baccelli, Cohen, Olsder, & Quadrat, 1992). They
use their network calculus to estimate the worst-case performance of packet network calcu-

lusflows through components, such as links with limited capacity, traffic shapers,
etc. A deterministic treatment greatly simplifies the analysis of large queu-
ing networks. However, the worst-case assumption ignores that statistical

2. networking paradigms | 15

multiplexing can interleave packet streams and actually save bandwidth. Re-
cently, Fidler (2006) developed a probabilistic network calculus, which takes
statistical multiplexing into account (see also Jiang & Liu, 2008). It models
packet streams and network components as stochastic processes and uses
their moment-generating functions to derive performance characteristics of
the network.

active networking2.2

Active networking refers to a communication paradigm in which packets
carry instructions in addition to data; such active code is executed in the
routers along the packet’s path. This allows packets to dynamically modify
the operation of the underlying core network.

Tschudin (1993) proposed hismessenger paradigm, which “replaces themessenger

paradigm exchange of data values by the exchange of instructions”. The goal is to speed-
up protocol development anddeployment: Protocols of traditional data packet
networks have to be standardized. This is mandatory if two protocol imple-
mentations shall “understand” the syntax and semantics of the exchanged data
packets. The messenger paradigm avoids the cumbersome standardization
process by sending the code required to interpret information along with the
information.

Tennenhouse and Wetherall (1996) describe active networks from an
architectural level. They propose a distinction between two flavors: strong and
moderate active networks (see also Sterbenz, 2002). Strong active networksstrong active

networks is the flavor proposed by Tschudin (1993) where the user injects messengers
(also called capsules) that are executed by the network processors along thenetwork

processors packet’s journey through the network. This paradigm causes performance and
security concerns: Each capsule has to carry the code needed for interpreting
the embedded data. Since many or all data values of a certain stream are
treated in the same way, the same code is sent multiple times. The security
problem results from the fact that code is remotely executed on distrusted
hosts and that on the other hand the host should be protected frommalicious
user-supplied code. Sander and Tschudin (1998) proposed an encryption
method that allows the hosts to execute encrypted code directly without
needing a decoded form.

Moderate active networks avoid the problems of strong active networksmoderate ac-

tive networks by only allowing the network provider to update its forwarding hardware
with new code. This is a more controlled way of active networking, but does
not offer the new flexibility to the end-user.

16 | part i — introduction, background & related work

We advocate the paradigm of strong active networks and mobile code.
Today, where everyone seeks to virtualize hardware, it is interesting that
protocol execution is still static. Active networking would allow for separate
sandboxes in which users run their own forwarding code, for example. We
agree with Tennenhouse, Lampson, Gillett, and Klein (1996) that

[. . .] active networks present an opportunity to change the struc-
ture of the networking industry, from a “mainframe” mind-set,
in which hardware and software are bundled together, to “vir-
tualized” approach in which hardware and software innovation
are decoupled.

Our chemical networking paradigm extends the concept of active networking
by a special, stochastic packet scheduling scheme. On the next pages we
therefore address the purpose of randomness in communication protocols.

stochastic protocols 2.3

Stochastic protocols differ from traditional protocols in the probabilistic na-
ture of certain decision processes. Unlike stochastic modeling methods of
deterministic protocols, such as queuing theory, stochastic protocols deliber-
ately add some noise to their very actions in order to speed-up convergence
time or to make the protocol robust to environmental noise.

Many stochastic approaches to communication have been proposed,
from randomized consensus protocols, which are able to tolerate erroneous
participants (Bracha & Toueg, 1985; Aspnes, 2003), to probabilistic algorithms
that schedule access to a wireless medium in an energy-efficient way (Chlam-
tac, Petrioli, & Redi, 1997). We can only provide a limited overview of the field
here: In Section 2.3.1 we discuss gossip protocols, which stochastically select
their communication peers; many distributed problems have been solved
within this framework. Later, in Section 2.3.2, we focus on a specific applica-
tion case, namely packet routing, and review two different stochastic packet
forwarding approaches.

gossip protocols 2.3.1
Gossip protocols mimic the epidemic spreading of gossip in a social net-
work by periodically sending small pieces of information to one or multiple
randomly selected neighbors.

Gossip protocols work according to the following simple scheme: Each
node (1) periodically selects n peers from its set of neighbors, (2) sends its

2. networking paradigms | 17

state to the selected neighbors and receives the state form the neighbors in
turn. (3) Finally, an update function merges the local state with received
states. All existing gossip protocols use this principle and vary in how (1) they
select the node, (2) what the state represents, and (3) how the update func-
tion is implemented. Note that only the first step, namely the selection of
the peers is usually randomized; the update function aggregates the states
deterministically.

Gossip protocols have been proposed for different applications: The first
gossip approachwas an epidemic algorithm tomaintainmutual consistency in
a replicated database, proposed by Demers et al. (1987). Another application
of gossiping is information aggregation in large networks. Aggregation refersaggregation

to functions that provide the nodes access to global information as a summary
of local information kept in the individual nodes (Jelasity, Montresor, &
Babaoglu, 2005). This information can be related to the network itself, such
as network size, average load, average uptime, or it can be an aggregation
of environmental information such as the average, minimum, or maximum
of measured temperatures in a Wireless Sensor Network (wsn) (Kempe,
Dobra, & Gehrke, 2003), for example. In order to compute the distributed
average with the above simple scheme, each node (1) selects one random peer,
(2) sends its estimate s1 to the peer and receives the peer’s estimate s2, and
(3) computes a new estimate: s1 ← (s1 + s2)/2.

Jelasity, Montresor, and Babaoglu (2009) proposed a gossip protocol for
topology management. Their t-man protocol builds overlay networks withtopology man-

agement

protocol
regular topologies from scratch by randomly exchanging node descriptors to
which the nodes shall connect.

Gossip protocols are interesting because consensus is achieved based on
the random exchange of messages. The system asymptotically computes the
result and reaches equilibrium, where updates do not alter the state anymore.
The number of messages needed to reach consensus is relatively small com-
pared to a deterministic algorithm. That is, gossip protocols converge faster
and require less messages, especially if the network is large.

stochastic routing2.3.2

From the various sub domains of stochastic protocols, we pick routing as
an example, because we develop an own stochastic and chemical routing
protocol in Chapter 16. A routing protocol has to collect topological infor-
mation from the network and guides data packets towards their destination.
Therefore, each router disseminates information about its local connectivity
and collects and aggregates knowledge about the connectivity of its neighbors.
Stochastic routing protocols usually start by sending real data or special probe

18 | part i — introduction, background & related work

packets randomly through the network. If a packet reaches the destination,
an acknowledgment packet travels back to the sender and updates the states
of all routers along the packet’s path to reinforce the good path. The next data
packet then randomly selects the next hop based on the obtained statistical
model.

Routing Inspired by Ant Colony Optimization (a)

Themost famous stochastic routing protocol is AntNet (Di Caro & Dorigo, AntNet

1998) and the Ad-Hoc network version AntHocNet (Di Caro, Ducatelle, & AntHocNet

Gambardella, 2005). These protocols are inspired by the path optimization
observed in the foraging task of ant colonies: Ants walk around randomly,
searching for food. Once nutrition is found, the ants return to the nest and
deposit a pheromone trail. These chemicals influence the search behavior of
ants: if pheromones are absent, the ants search randomly, but if pheromones
are present, the ants follow the previous trail with a high probability. The ant
colony as a whole is able to optimize foraging as an emergent phenomenon.

AntNetmimics the behavior of real ants. Each network node periodically
sends “ant” packets through the network to the known destinations. These
packets collect information about their path through the network. On the
way back, the “ants” increment the virtual pheromone concentration in each
router. A statistical model evaluates the quality of a path based on these
pheromone concentrations and sends data packets via the optimal path.

Similar principles have been used in many ant colony inspired stochastic stochastic meta

heuristicsmeta heuristics used for scheduling (Martens et al., 2007), image processing
(Meshoul & Batouche, 2002), protein folding (Hu, Zhang, Xiao, & Li, 2008),
and electronic circuit design (Zhang, Chung, Lo, & Huang, 2009), to name
only a few.

Routing Inspired by Attractor Selection in Cells (b)

Another stochastic routing approach is aras (Leibnitz, Wakamiya, & Murata, ARAS

2006). The protocol is inspired by stochastic attractor selection in cells that stochastic attrac-

tor selectionswitch from one state to another depending on the availability of a nutri-
ent (Kashiwagi, Urabe, Kaneko, & Yomo, 2006). aras’ forwarding engine
maintains several paths to the same destination. When the link quality of the
primary path changes, another path is automatically selected. This switching
phenomenon is emerging from the underlying differential equations steering
the forwarding decision process. In order to let the system switch from one
path to the other, randomness was intentionally added to the differential

2. networking paradigms | 19

equations. Interestingly, this augmented intrinsic noise made the systemstability to envi-

ronmental noise more stable to the influence of environmental noise.

towards chemical networking protocols2.4

Chemical concepts appear in a surprisingly large number of existing protocol
descriptions: tcp’s congestion control algorithm is basedon the “conservation
of packets principle” trying to bring a connection to “equilibrium” (Jacobson,
1988); AntNets stochastically routes packets proportional to “pheromone con-
centrations” (Di Caro & Dorigo, 1998); gossip protocols adopt the dynamics
of epidemic spreading to disseminate information in a robust way.

Apparently, chemically inspired ideas are considered to be beneficial
for the dynamic behavior of protocols. Furthermore, we recently observe a
tendency towards stochastic protocols, because in large networks, determin-
istic service guarantees cannot be given anyway, and because inherent noise
makes the protocols robust to environmental noise.

The chemical paradigm we introduce in this work formalizes chemical
concepts for networking and provides a framework for the development of
many chemically inspired protocols. The chemical paradigm extends the
packet-based and active networks paradigm by an additional dimension:
stochastic but predictable dynamic behavior. Whereas traditional protocols
are packet- or data-oriented, active networks are code oriented. Chemical
networks will be reaction-oriented and thus emphasize data and code flows
and their dynamics. However, before we start to introduce our chemical
paradigm for networking, we discuss existing models of chemistry.

••

20 | part i — introduction, background & related work

chapter33Artificial Chemistries

An introduction to abstract models of chemistry as unconven-
tional ways of organizing computation.

Das Treffen zweier Persönlichkeiten
ist wie der Kontakt
zweier chemischer Substanzen:
Wenn es eine Reaktion gibt,
werden beide transformiert.

C.G. Jung

The meeting of two personalities
is like the contact
of two chemical substances:
if there is any reaction,
both are transformed. 3

C.G. Jung

Artificial chemistries are abstract models of chemistry, simplified
to simulate chemical reactions on a computer (Suzuki & Dittrich, 2009).

Artificial chemistries are used as tools for biologists to simulate real chemistry
and as unconventional paradigms to organize computation, among other
usages. In this chapter, we provide an introduction to artificial chemistry and
focus on the latter aspect: how the chemical reaction metaphor can be used in
computer science to structure computation. Instead of listing all existing work
related to artificial chemistries in this chapter, we only provide introductory
material here and refer to the details in later chapters.

This chapter is organized as follows: In Section 3.1, we provide a defi-
nition of artificial chemistry before Section 3.2 elaborates on its history and
the variety of chemical computing models existing today. In Section 3.3, we
present amore formal definition of an important subset of artificial chemistries.
We especially delve into the dynamical aspects of chemical computing and
discuss existing algorithms to simulate chemical reactions in silico. This
last section is important for our work, since our chemical packet-processing
model extensively exploits the dynamics of chemical reaction systems.

3. artificial chemistries | 21

definition3.1

In the broadest sense, an artificial chemistry is a “man-made system that
is similar to a chemical system” (Dittrich, Ziegler, & Banzhaf, 2001). In
the design of such a system we usually recognize chemical entities such as
molecules or reactions. There is not only one artificial chemistry: A scientist
or program designer will craft its own chemical system depending on the
problem to be solved; each problem usually requires another representation
of molecules and reactions and a new definition of how they interact.

Dittrich et al. (2001) provided a generic definition that helps classify
artificial chemistries: According to this definition an Artificial Chemistry isartificial

chemistry the tripleAC=(S ,R,A), where S is the set of molecular species,R is the set
of reaction rules specifying how the molecules interact, andA is the reaction
algorithm describing how and when the reaction rules are applied.

The set of species S ={s1, . . . , sn} contains all molecule types that mayset of species

appear in a certain chemistry. The species may either be defined explicitly
by enumeration, for example, S ={A,B,C} or implicitly by providing rules
how they are constructed. Artificial chemical models of biological reactions
often define the molecules explicitly (Hjelmfelt, Weinberger, & Ross, 1991;
Paŭn, 2000; Wolkenhauer, Ullah, Kolch, & Cho, 2004; Paladugu et al., 2006;
Deckard, Bergmann, & Sauro, 2009). On the other hand, an implicit defini-
tion attribute the molecules a structure in form of, for example, mathematicalmolecular

structure objects (Banâtre & Le Métayer, 1993; Dittrich, 2001), binary strings (Banzhaf,
1993a, 1993b; Dittrich & Banzhaf, 1998), symbol strings (Holland, 1992; De-
craene, 2006; Suzuki & Ono, 2002; Tschudin, 2003; Fernando & Rowe, 2007),
or even graphs (Benkö, Flamm, & Stadler, 2003).

The set of reaction rulesR={r1, . . . , rm} describes how the moleculesset of reac-

tion rules interact. A reaction rule r ∈ R is usually given by the chemical reaction
notation

sin,1 +⋯+ sin,n �→ sout,1 +⋯+ sout,m (3.1)

defining that the molecules on the left hand side are replaced by the molecules
on the right hand side of the arrow. The reaction can be defined explicitly
as in (3.1) or implicitly by providing rules how the structure of the reacting
molecules leads to their interaction. Examples for implicit reaction rules are
the interpretation of binary strings as code tapes acting on data strings as
described by Dittrich and Banzhaf (1998), or the application of λ-expressions
in AlChemy (Fontana, 1992).

The set of molecules together with the reaction rules describe the struc-reaction al-

gorithm tural part of the chemistry. The reaction algorithmA completes the definition
22 | part i — introduction, background & related work

1. Randomly select two tokens.

2. Try to apply reaction r1 , which is only effective if the color of the two tokens

is different.

3. If the reaction is effective place the new tokens to random fields and remove

the tokens previously occupying these fields.

4. Goto step 1.

Algorithm 3.1 Simple re-
action algorithm for the
mate-and-spread game:

see also Figure 1.1 on

page 7. This algorithm

schedules chemical reac-

tions by randomly pick-

ing two tokens and ap-

plying the reaction.

of the artificial chemistry by describing its dynamics, i.e. how andwhenwhich
reaction rules are applied. The algorithm operates on a reaction vessel, i.e. reaction vessel

an instance of an artificial chemistry (S ,R,A) hosting molecule instances.
Note that we distinguish between molecule species and molecule instances: A
species represents a molecular type whereas we use the termmolecule when
referring to an instance of a species.

The algorithmA implicitly defines the structure of the vessel (Dittrich,
2001): For example, if the algorithm picks two random reactant molecules,
the system simulates a well-stirred vessel. On the other hand, if the vessel shall
have a spatial structure, the algorithm has to restrict itself to select reactants
in a certain neighborhood.

mate-and-spread game example 3.1.1

In Chapter 1, we introduced a simple board game to demonstrate amechanism
with emergent self-healing properties. Now we are able to associate the game
with artificial chemistries:

The set of molecular species contains two explicitly defined species,
namely black and white tokens: S ={B,W}. The set of reaction rules com-
prises one reaction only: R = {r1}. It duplicates a pair of black and white
tokens: r1∶ B+W→ 2B+2W. Finally, the reaction algorithmA continuously
performs the steps listed in Algorithm 3.1.

Recall that the number of black and white tokens will strive to equilib-
rium where both tokens are present with an equal quantity. This equilibrium
is achieved without being programmed explicitly. It is an emergent prop-
erty of the small number of simple rules, described within the context of
an artificial chemistry. Although we used a checkerboard to illustrate this
example, the spatial distribution of the tokens does not matter for the current
algorithm. Thus, the vessel can be seen as well stirred where molecules are
floating around randomly. An implementation would probably store the
molecules in a multiset or just remember the multiplicity of the two species.

3. artificial chemistries | 23

history, purpose and variety3.2

In this section, we briefly sketch the history of artificial chemistries and their
achievements, and highlight the vast diversity of artificial chemical computing
models. For further information, the reader is referred to a couple of excellent
reviews (Dittrich et al., 2001; Suzuki & Dittrich, 2009).

emergence of regularity and organizations3.2.1

Abstract models of chemistry describing emergent natural phenomena can
be traced back to Turing’s patterns (Turing, 1952): In his late work on mathe-Turing patterns

matical biology, Turing studied reaction-diffusion systems in two and three
dimensions anddiscovered the emergence of regular patterns, which he linked
to morphogenetic phenomena in nature. In the following years, research on
emergent computing focused on even more abstract and digital models, such
as Cellular Automata (ca). We will refer to this branch of research later in
Chapter 13, in the third part of the thesis.

Laing (1977) was probably the first to make a clear analogy between
chemical reactions and computation: He constructed an artificial chemistry
where strands of strings (molecules) come in contact and interact, in analogystring chemistry

to a Turing machine operating on a tape. Laing showed that self-replication
by means of self-inspection is possible. Since then, researchers developed
many other string chemistries, in which active molecules (tapes) operate on
passive molecules (data) (e.g. Dittrich & Banzhaf, 1998; Ikegami, 1999).

One of the most influential artificial chemistries was Fontana’s algorith-
mic chemistry AlChemy (Fontana, 1992; Fontana & Buss, 1994). In AlChemy,AlChemy

molecules are λ-expressions. The algorithm randomly picks two expressions
from the vessel, applies the first to the second and performs β-reduction until
the resulting expression is in normal form. This result then replaces another
randomly selected expression in the vessel.

Today, as a generalization of Fontana’s AlChemy, an algorithmic chem-algorithmic

chemistry istry refers to an artificial chemistry where both, the species and the reaction
rules are defined implicitly, i.e. where they are constructed algorithmically
by a sub-molecular logic. Although there are a fixed number of rules defin-
ing how the species are structured and how they interact, the set of species
and reaction rules is often infinite. The outcome of a reaction depends on
the algorithmic logic and the sub-molecular structure of the participating
molecules.

An algorithmic chemistry is constructive in the sense that species canconstructive

be generated that were not present in the beginning. Fontana, Wagner, and
Buss (1994) distinguish between weakly and strongly constructive systems:

24 | part i — introduction, background & related work

In weakly constructive systems “new agents are constructed in an unspecific
(essentially stochastic) fashion”. Algorithmic chemistries are strongly con-
structive, because “the encounter of two agents implies a specific third one”
(Fontana et al., 1994).

Another interesting aspect of AlChemy that holds for many artificial no distinction

between code

and data
chemistries is that there is no distinction between code and data: In λ-calculus,
functions and numbers are both represented by λ-expressions. The same
molecule can either take the role of code (function) or data depending on the
order the two molecules are selected. Thus, code may operate on code, which
is the key requirement for self-replicating and self-modifying code and the
basis for our own self-healing software approach.

Fontana and Buss (1994) used AlChemy to demonstrate the spontaneous
emergence of organizations from a “soup” of random λ-expressions. Simi- emergence of

organizationslar self-replicating (or autocatalytic) structures were found in a lot of other
chemistries (Farmer, Kauffman, & Packard, 1986a; Ikegami & Hashimoto,
1996; Dittrich & Banzhaf, 1998; Speroni di Fenizio & Banzhaf, 2000; Kvas-
nička & Pospichal, 2001; Suzuki & Ono, 2002; Hutton, 2002; Yamamoto,
Schreckling, &Meyer, 2007). Dittrich and Speroni di Fenizio (2007) formally
defined chemical organizations in their Chemical Organization Theory and Chemical Orga-

nization Theoryrecognized them as macro-states in which a chemical system stays for a long
time. We will review the Chemical Organization Theory in more detail in
Chapter 8.

One of the most realistic artificial chemistries is ToyChem (Benkö et al., ToyChem

2003; Benkö, Flamm, & Stadler, 2005; Flamm et al., 2010). Molecules are
represented as labeled graphs with basic properties derived from quantum
mechanics. Chemical reactions are implemented as graph rewriting rules.
The deep roots in quantum mechanics allow the chemistry to incorporate an
energymodel such that themacroscopic behavior follows the rules of chemical energy model

thermodynamics and kinetics. Modeling details down to the physical level
however requires more processing power to simulate the reactions.

Algorithmic chemistries are good frameworks for studying the emer-
gence of organizations and, because of the remaining bonds to real chemistry,
to model and study complex chemical phenomena related to life and its ori-
gins (Farmer et al., 1986a; Fontana & Buss, 1994; Dittrich et al., 2001). This is
why artificial chemistry is a sub-branch of Artificial Life. Artificial Life

artificial chemical computing 3.2.2

Another purpose of artificial chemistries is to use reaction systems to organize
computation in an unconventional way. In the 1980ies, Banâtre developed

3. artificial chemistries | 25

Gamma, an abstract multiset rewriting calculus (Banâtre & LeMétayer, 1986).Gamma

In the γ-calculus, concurrent computation can be expressed quite naturally:
An algorithm such as the computation of prime numbers is implemented
as interaction among the entities, e.g. as simple arithmetic operations on
number “molecules”. “The result of a Gamma program is obtained when a
stable state is reached that is to say when no more reactions can take place.”
(Banâtre, Fradet, & Radenac, 2005)

Note that this operation principle is quite different from the chemistries
used to study organizations. In Gamma, the result is presented on the mi-
croscopic, symbolic level by the molecules remaining in the vessel after the
chemical program terminated. On the other hand, a chemistry that runs
continuously and settles in an organization presents its result at the macro-
scopic level, i.e. by the presence/absence or the concentration of the species
in steady-state.

In both representations, a chemical formulation of a problem automati-
cally leads to a logical parallelism, which can be physically executed on one orlogical par-

allelism multiple processors (Banâtre & Le Métayer, 1993). Berry and Boudol (1989)
developed Gamma further to the Chemical Abstract Machine (cham).

P-systems (Paŭn, 2000; Calude & Paŭn, 2001) is another computingP-systems

model inspired by cell membranes. Each reaction vessel or “cell” contains
a multiset of molecules and reactions operating on them. Additionally, P-
systems allow hierarchies of multiset compartments to be constructed recur-
sively andmolecules to travel through the membranes. The result is presented
microscopically in the outermostmembrane when no reactionmay take place
anymore.

Fraglets is an artificial chemistry (Tschudin, 2003) in which multisetFraglets

compartments are distributed over a network. The molecules actually rep-
resent packets traveling through the network and reacting with each other.
The packets (=molecules) are structured as strings of symbols where each
symbol represents an instruction that has to be executed in the target node.
In this thesis, we use Fraglets as execution layer for our chemical networking
protocols and show how both microscopic symbolic and macroscopic con-
centration information can be used together. We will introduce Fraglets in
detail in Chapter 5.

Artificial chemistries were considered for a variety of applications be-applications

yond the modeling of wet chemistry and the study of emergent organizations:
Ziegler and Banzhaf (2001) used an artificial chemistry to control the move-
ment of a robot. There are a few search and optimization algorithms based on
artificial chemistries (Banzhaf, 1990; Kanada, 1995; Weeks & Stepney, 2005;
Yamamoto, 2010; Yamamoto & Banzhaf, 2010). Tominaga and Setomoto
(2008) even used an artificial chemistry for composing music. Although

26 | part i — introduction, background & related work

artificial chemistries were quite successful in solving concrete problems, a
generic design and analysis method is still missing. There is no general recipe
how to structure the microscopic rules such that the desired functionality
emerges.

a formal approach to artificial chemistries 3.3

In this section, we re-iterate through the formal definition of an artificial
chemistry. This time, we introduce more concepts and terms. We extensively
discuss the dynamics of chemical reactions in well-stirred reaction vessels
and their in silico simulation. By restricting the model to the well-stirred case,
we will not cover all existing artificial chemistries. However, we now build
the foundation upon which we later define our artificial chemical networking
model.

We recall that according to Dittrich et al. (2001), an artificial chemistry is artificial chem-

istryformally defined as the tripleAC = (S ,R,A). S denotes the set of molecular
species,R the set of reaction rules, andA the algorithm that defines which
reaction is executed next and when. We split the detailed description into
three parts. Section 3.3.1 focuses on the structural aspects of the chemistry:
the reaction network spanned over the set of species. In Section 3.3.2, we show
how the reaction vessel and its contents are described. Finally, in the third
and largest subsection, Section 3.3.3, we elaborate on the dynamical aspects
of chemical reaction kinetics and discuss existing stochastic algorithms to
simulate chemical reactions on a traditional computer.

the structure of chemical reaction networks 3.3.1
Thestructural part of an artificial chemistry describes the potential appearance
of molecules and their interactions. A reaction rule describes how to replace
molecules in the reaction vessel. A reaction rule r ∈ R is formally given as a reaction rule

pair of multisets and an assigned reaction coefficient

r∶ Min,r
kr�→Mout,r ∀r ∈ R (3.2)

whereMin,r ∈ M(S) are the reactants (or left-hand side) andMout,r ∈M(S) the products (or right-hand side) of the reaction, and kr is the reac- reaction coeffi-

cienttion coefficient that determines the speed of the reaction; we will discuss the
reaction coefficient later when studying the dynamics of a reaction network.
The number of reactant molecules O(r) = ∣Min,r ∣ is called the order of the order of a reac-

tionreaction. As we mentioned before, reaction rule (3.2) can also be written in
the equivalent chemical notation (compare to (3.1))

3. artificial chemistries | 27

Figure 3.1 Reaction network graphs of the mate-and-
spread game: see also Figure 1.1 on page 7. The artifi-

cial chemistry is defined by the set of species S = {B, W}
and the set of reaction rulesR = {r1 ∶ B + W �→ 2B +
2W}. (a) depicts the arc-weighted bipartite directed

graph whereas (b) shows the simplified graphical nota-

tion where the reaction vertex is implicitly represented

by the joining arcs.

B W
r1

22

(a) Arc-weighted bipartite

directed graph

B Wr1

22

(b) Simplified graphi-

cal notation

r∶ ∑
s∈S

αs,r s
kr�→ ∑

s∈S
βs,r s ∀r ∈ R (3.3)

In this equation, the positive integers αs,r , βs,r ∈ N0 denote the number of
molecules consumed and produced by the reaction. The net production
of molecule s by reaction r is given by the stoichiometric coefficient γs,r =stoichiometric

coefficient βs,r − αs,r .
Next to the reactant and product multiset we also define the set of re-domain / image

r
dom r img r

actant and product species according to Benkö et al. (2008): The domain
of a reaction r is the set of those species that are in the reactant multiset:
dom r = {s ∈ S ∣ αs,r > 0}. Similarly, the image of a reaction r is the set of
those species that are in the product multiset: img r={s ∈ S ∣ βs,r > 0}.

The tuple (S ,R) constitutes the structural part of the artificial chemistry.
It can be represented by an arc-weighted bipartite directed graph with both,
molecular species and reactions as vertices and edges s → r with weight
αs,r if αs,r > 0 and edges r → s with weight βs,r if βs,r > 0 (Benkö et al.,
2008). Figure 3.1(a) shows the bipartite graph of the mate-and-spread game.
Instead of the bipartite graph, we usually draw a simplified graph, show in
Figure 3.1(b) for the same reaction, where the reaction vertex is implicitly
represented by the joining arcs.

reaction vessel: instantiation of a chemistry3.3.2

The structure of the reaction network is completely defined by the pair (S ,R),
which Benkö et al. (2008) call the chemical universe. The reaction algorithmchemical

universe A defines the dynamic behavior of this chemical universe. The reaction
algorithm operates on a reaction vessel and schedules reaction events, i.e. it
decides which reaction is executed next and when. Therefore, we also use
the term scheduling algorithm synonymously for reaction algorithm. In thisscheduling

algorithm subsection, we discuss the structural aspects of the reaction algorithm, i.e.
how it executes reactions in a reaction vessel. In the next subsection, we then
focus on the dynamical aspects of reaction scheduling.

28 | part i — introduction, background & related work

A reaction vessel v is an instance (or realization) of an artificial chemistry. reaction vessel

A vessel contains a multiset of molecules, denoted asMv ∈ M(S); each
molecule in the reaction vessel is an instance of one of the molecular species species

s ∈ S .
We denote the quantity of species s in the vessel multiset (i.e. its multi- quantity

plicity or copy number) as Ns(t). The composition of reaction vessel v is then composition

given by the vector of molecular quantities

Nv(t) = ⎛⎜⎜⎝
Ns1(t)⋮
Ns∣S∣(t)

⎞⎟⎟⎠ (3.4)

Chemists usually operate with the macroscopic concentration of species concentration

s ∈ S , which is defined as xs = Ns/Ω. The scaling parameter Ω represents
the size of the system. For molar concentrations, the system size is given
as Ω = NAV , where NA is Avogadro’s constant and V is the volume of the
reaction vessel. The molar concentration is written as [s] = Ns/NAV . In
an artificial chemical setting however, one may use a simplified notion of
concentration. For example, the simplest way is to set the system size to Ω=1
such that the concentration becomes equivalent to the quantity of a species.
Alternatively, we may define the concentration as the abundance, i.e. the
relative quantity of a species. In this case, the system size is equal to the total
number of molecules Ω=∑s∈S Ns .

Often, more than one reaction rule is ready to be executed at the same
time. The algorithm defines whether all possible reactions are applied in
parallel, or, if not, which reaction is applied first and when. As we will see later,
choosing the right algorithm is crucial for chemical networking protocols to
behave nicely. We say that a reaction is active, if enough reactant molecules active reaction

are present in the reaction vessel such that if the reaction is applied to the
vessel, it can consume the required molecules. Formally, a reaction r ∈ R is
active in vessel v iff

Mv ∩Min,r =Min,r (3.5)

If none of the reactions is active, the artificial chemistry halts, and we say that
the vessel is inert. inert

An alternative way of understanding the influence of reactions to a
reaction vessel is to write the vesselmultiset as a composition vector according
to (3.4). The net effect of a reaction r ∈ R can then be represented by a state-
change vector (Gillespie, 2002) of the same dimension

3. artificial chemistries | 29

γr = ⎛⎜⎜⎝
γs1 ,r⋮
γs∣S∣,r

⎞⎟⎟⎠ (3.6)

where γs i ,r , the stoichiometric coefficient, specifies the net change of the
quantity of species s i by reaction r. For a given initial vessel compositionNv ,0,
the resulting configuration after applying reaction r is simplyNv ,1=Nv ,0 + γr .
chemical reaction kinetics3.3.3
In a gas-phase chemical system that is kept well stirred and thermally equi-
librated, molecules move around following Brownian motion (McQuarrie,
1997, Chap. 27). Because one usually does not want to keep track of all posi-
tions andmoments of the individual molecules, the state of a chemical system
can be reduced to the current number of molecules of each species. This
is accompanied by a loss of information, resulting in a stochastic process
that can be described by the Chemical Master Equation (McQuarrie, 1967;Chemical Mas-

ter Equation Gillespie, 1992). We will discuss the Chemical Master Equation in more detail
in Chapter 8 where we show how to analyze the dynamics of chemical net-
working protocols. For now, we just note that the master equation describes
the time evolution of the probability that the chemical system occupies one
of the possible reaction vessel compositions.

The Law of Mass Action(a)

Even before having had a stochastic description that roots in statistical me-
chanics, researchers had observed macroscopic dynamical phenomena of
chemical reactions. For example, the more molecules are located within the
same volume, the more likely collisions and reactions become. This fun-
damental law of chemical kinetics was discovered in the 19th century and
is known as the law of mass action (Waage & Guldberg, 1864; see also thelaw of mass

action English translation by Abrash, 1986). It states that the reaction rate is propor-
tional to the concentration (quantity per volume) of each reactant. That is,
the chemical reaction

X + Y k�→ Z (3.7)

consuming one molecule of species X and Y and producing a molecule of
species Z reacts with an average rate of

r=k [X] [Y] (3.8)

30 | part i — introduction, background & related work

where k is the kinetic coefficient associated with the reaction, and [X], [Y] are
the molar concentrations of reactants X and Y, respectively. The coefficient k
can be expressed in terms of physical quantities like the temperature and the
activation energy, but for the moment, we assume it is constant. We discuss
the microphysical derivation of the reaction coefficient later in Chapter 18.

Such knowledge from textbook physical chemistry is a macroscopic
description of the average behavior of large quantities of molecules. However,
for an algorithmic chemistry we have to simulate the microscopic behavior of
the system at the level of individual molecular collisions in order to perform
the intended computations encoded within the molecules.

Exact Stochastic Reaction Algorithms (b)

A simulation algorithm for chemical reactions in a well-stirred vessel has to be
correct and efficient: First, the algorithm has to simulate chemical reactions
stochastically correct, i.e. it has to provide a single sample trajectory of the stochastically

correctrandom process, described by the chemical master equation. Second, the
algorithm shall be efficient in the sense that each iteration is guaranteed to efficient

execute a reaction. This requires a translation of the species-oriented chemical
master equation to a reaction-oriented stochastic algorithm that generates
and executes reaction events as a sequence of (r, t) tuples, recording which
reaction r happens when (t).

We could use a reaction algorithm similar to the one applied to our board
game (see Algorithm 3.1), namely an algorithm that randomly selects two
molecules and checks whether one of the reactions r ∈ R can be applied. This
process akin to random molecular collisions indeed leads to a macroscopic
behavior according to the law of mass action. However, this algorithm does
not scale well for many species and few reaction channels when only a few
collisions actually lead to reaction events.

Researchers proposed manyMonte Carlo algorithms to provide an effi- Monte Carlo al-

gorithmscient and exact stochastic simulation of chemical reactions (Gillespie, 1976,
1977, 2001; Gibson & Bruck, 2000; Le Novère & Shimizu, 2001; Haseltine
& Rawlings, 2002; Gillespie & Petzold, 2003; Rathinam, Petzold, Cao, &
Gillespie, 2003; Tian & Burrage, 2004; Cao & Petzold, 2005; Cau, Gillespie,
& Petzold, 2005, 2006; Chatterjee, Vlachos, & Katsoulakis, 2005; Samant &
Vlachos, 2005; Di Liu & Vanden-Eijnden, 2007). An overview is provided by
Gillespie (2007).

The two algorithms we considered for chemical program execution were
Gillespie’s Direct Method and the Next Reaction Method: In every iteration,
Gillespie’s Direct Method (Gillespie, 1977) draws two random numbers. The Gillespie’s Direct

Methodfirst one is used to determine which reaction shall be executed next whereas

3. artificial chemistries | 31

the second determines the next reaction time. The Next Reaction MethodNext Reac-

tion Method (Gibson & Bruck, 2000) calculates the next reaction time based on an expo-
nentially distributed random variable for every reaction separately and sorts
it into a priority queue from which the next reaction is determined.

Before we exemplarily discuss Gibson and Bruck’s algorithm in more
detail, we study how both algorithms compute the reaction interval such that
the macroscopic behavior follows the law of mass action.

Reaction Propensities. Both algorithms make use of the concept of the
reaction propensity. The propensity ar(N(t)) reflects the probability thatpropensity

reaction r ∈ R occurs within the next infinitesimal time interval [t, t + dt).
The propensity is the product of the probability that a collision leads to a
reaction times the frequency of a molecular collision:

ar(N(t)) = cr ⋅ hr(N(t)) (3.9)

Themicroscopic reaction coefficient cr is a stochastic rate constant dependingmicroscopic

reaction

coefficient
on physical properties of the reactant molecules. It denotes the probability
that a given combination of reactant molecules will collide in the next time
interval dt multiplied by the probability that the colliding molecules will
actually react (Gillespie, 1992, 2000). There is a direct mapping between the
stochastic rate constant cr and the macroscopic reaction rate constant kr (see
Wolkenhauer et al., 2004, Eq. (20)). We will delve more into the physical
meaning of this coefficient in Chapter 18.

The second factor in (3.9), hr(N(t)), denotes the number of distinctnumber of

distinct com-

binations
combinations of reactant molecules of reaction r (Wolkenhauer et al., 2004).
The more reactants there are in the vessel, the more collision partners are
available, i.e. the higher is hr . This relation is expressed by the binomial
coefficient

hr(N(t)) = ∏
s∈S
(Ns(t)
αs,r

) (3.10)

For example, for a reaction r∶ 2X + Y�→ . . . , the stoichiometric coefficients
are αX,r = 2 and αY,r = 1, and hence there are

32 | part i — introduction, background & related work

hr(N(t)) = ∏
s∈S
(Ns(t)
αs,r

) (3.11)

= (NX(t)
2
) ⋅ (NY(t)

1
)

= NX(t) (NX(t) − 1)
2

⋅ NY(t)
reactant combinations.

The propensity expresses the stochastic equivalence of the deterministic
reaction rate. Let us assume that the number ofmolecules is large (Ns(t) ≫ 1)
and that the chemistry only contains reactions where at most one instance of
each reactant is consumed (i.e. αs,r ∈ {0, 1}). In this case, the propensity can
be simplified to

ar(N(t)) = cr∏
{s∈S∣αs,r=1}

Ns(t) (3.12)

For example, for a reaction r∶ X + Y�→ . . . the propensity is
ar(N(t)) = crNX(t)NY(t) (3.13)

By using our simplified meaning of concentrations (xs ≡ Ns) we obtain
an equation similar to the reaction rate equation (3.8). That is, as a first
approximation, we can think of the propensity as the mean reaction rate. We
will examine the relation between microscopic and macroscopic description
in more detail in Chapter 8.

Gibson and Bruck’s Next ReactionMethod. TheNext Reaction Algorithm
by Gibson and Bruck (2000) computes the next reaction time of each reaction
rule based on its propensity. The next event of each reaction rule is kept in a
priority queue. In an endless loop, the algorithm picks the first event from the
queue, executes the reaction, and updates the reaction times of all dependent
reaction rules. Algorithm 3.2 shows the detailed algorithm.

On average, the reaction rates are proportional to the corresponding
propensity values and thus, to their reactant quantities. This means that the
algorithm realizes the law of mass action on the macroscopic level. Therefore,
we also refer to the Next Reaction Method algorithm as a particular instance law of mass ac-

tion schedulerof a law of mass action scheduler.

3. artificial chemistries | 33

Algorithm 3.2 Next
Reaction Method:

Schedules reactions

according to the

method proposed

by Gibson and Bruck

(2000).

1. Initialization:

a) t=0 s;

b) for each reaction rule rj ∈ R, calculate the propensity function aj accord-

ing to (3.10);
c) for each reaction rule rj ∈ R, draw the reaction interval from an expo-

nential distribution: τj ∼ Exp(1/aj);
d) store the putative reaction time values tj = t + τj in an indexed priority

queue Q (see Gibson and Bruck (2000)).

2. Let rμ be the reaction rule whose putative reaction time, tμ , stored in Q is least.

3. Advance the simulation time to the occurrence time of the reaction rule: t= tμ .

4. Execute reaction rule rμ , i.e. rewrite the vessel’s multiset according to the

state-change vector (see (3.6) on page 30).

5. Update the next reaction time of all those reaction rules rj that depend on

the executed reaction. That is, all those reaction rules have to be adjusted

that have reactants that were changed by reaction rule rμ . Formally, for each

reaction rule rj ∈ {r ∈ R ∣ dom r ∩ {s ∈ S ∣ γs,rμ ≠ 0} ≠ ∅},

a) calculate the propensity function, aj , according to (3.10);
b) if j ≠ μ, adjust the next reaction time without drawing a new random

variable: tj ← t + (aj,old/aj,new)(tj − t);
c) if j= μ, draw a new reaction interval from an exponential distribution,

τj ∼ Exp(1/aj), and set the next reaction time to tj ← t + τj ;
d) replace the old value tj in Q with the new value and re-sort Q.

6. Goto step 2.

Example(c)

Let us step through Gibson and Bruck’s Next Reaction Algorithm while it
drives a simple reaction network, depicted in Figure 3.2. It consists of a
forward reaction rule rf that converts X- into Y-molecules and a reverse
reaction rule rr doing the opposite. The two species C and D catalyze the
reactions: A catalyst is a molecule that belongs to the domain and to the
image of a reaction rule. For catalyzed reactions we often use the graphical
short notation as shown in the margin.

The explicit artificial chemistry for this example is formally given asAC=(S ,R,A) where the set of species is S ={C,D,X,Y} and the reactions
areR={rf , rr}, where

rf ∶ C +X�→ C + Y (3.14a)
rr ∶ D + Y�→ D +X (3.14b)

34 | part i — introduction, background & related work

X Y
rf

rr

C

D
Figure 3.2 Reaction network of a catalyzed reversible reaction: A reversible reac-

tion from species X to Y is represented by two non-reversible reactions, a forward

and a reverse reaction. Both are catalyzed by species C and D, respectively.

We set the reaction coefficients of both reaction rules to crf = crr =1. Let the
algorithmA be an instance of the Next Reaction Algorithm by Gibson and
Bruck (2000).

In the following, we will iterate through Algorithm 3.2 step by step.
To illustrate the dynamic behavior of the algorithm, we display a series of
snapshots of the vessel’s state in Figure 3.3.

1.a) We start the experiment at time t0 with ten instances of species X
andno instances of species Y; each catalyst is presentwith onemolecule:

N(t0) = ⎛⎜⎜⎜⎜⎝
NC(t0)
ND(t0)
NX(t0)
NY(t0)

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
1
1
10
0

⎞⎟⎟⎟⎟⎠ (3.15)

1.b) First, the algorithm computes the propensity of the two reaction
rules according to (3.9). In other words, the algorithm determines the
probability that reactions occur in the next infinitesimal time according
to

arf (t0) = crf NCNX = 10 (3.16a)
arr(t0) = crf NDNY = 0 (3.16b)

1.c) For each reaction rule, the algorithmdraws an exponential random
variable with the inverse of the corresponding propensity as mean. The
resulting value reflects the reaction interval: The interval of the forward
reaction rule is finite, τrf ∼ Exp(1/10) – 0.1 s on average – whereas the
second reaction rule never occurs, because there are no Y molecules
to react with: τrr ∼ Exp(1/0)=∞.

3. artificial chemistries | 35

t

YX

1/8 s

forward

t

Y

forward

t t

1/9 s

1/2 s

1 s

X

t0

X

1/10 s

fire

fire

fire

t t

Y

t1

t2

Figure 3.3 Next Reaction Algorithm driving a reversible reaction: Reactions are scheduled according to the

Next Reaction Algorithm by Gibson and Bruck (2000). The rectangle along the time axes illustrate the putative

reaction interval. The reaction rule with the earliest deadline is executed, and this causes all dependent reac-

tion rules to be rescheduled.

1.d) The algorithm then computes the putative reaction time for each
reaction rule: trf = t0 + τrf and trr =∞. The initialization procedure
is completed by adding the forward reaction rule before the reverse
reaction rule to the priority queue.

2.-4. The forward reaction rule rf , which is in front of the queue, is
executed next: First, the simulation time is advanced to t1= trf . Then,
the forward reaction is executed according to the state-change vector
(3.6) on page 30, meaning that an X-molecule is removed from the
multiset and a Y-molecule is added instead. After this first reaction
occurred, the composition vector reads

N(t1) = N(t0) +Nrf =
⎛⎜⎜⎜⎜⎝
1
1
10
0

⎞⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎝
0
0−1+1
⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
1
1
9
1

⎞⎟⎟⎟⎟⎠ (3.17)

5. After the reaction has been executed, the algorithm iterates over all
reaction rules that potentially consume one of the species modified:
In our example, reaction rule rf modified the quantity of both species
X and Y. That is, the combinatorial number of collision partners for

36 | part i — introduction, background & related work

YX

t t

1/6 s 1/4 s

YX

forward

t t

1/5 s 1/5 s

YX

1/5 s 1/5 s

fire

fire

fire t t

t3

t4

t5

forward

forward & reverse

fire

fire

Figure 3.3 cont.: When both species are present in equal quantity (NX =NY) the reaction intervals are equal, too.

Consequently, the reaction network reached equilibrium where both X- and Y-species are present with equal

quantity.

both reaction rules changed and the algorithm has to re-calculate their
propensities:

arf (t1) = crf NCNX = 9 (3.18a)
arr(t1) = crf NDNY = 1 (3.18b)

The algorithm again determines the reaction interval of both reaction
rules basedon their propensity values: τrf ∼ Exp(1/9) and τrr ∼ Exp(1).
A forward reaction is very likely to happen first, but due to the ran-
domness, there is a small chance that a reverse reaction is scheduled
even before. Whatever reaction rule has a shorter reaction interval,
it is moved in front of the priority queue and the reaction algorithm
restarts with step 2.

Figure 3.3 shows the time evolution of the reaction vessel and at the same time
the putatively scheduled reaction intervals for both reaction rules. In this
illustration, we ignored the stochasticity of the algorithm and scheduled the
reactions deterministically. In this case, the forward reaction is executed five
times until the vessel contains the same number of X- and Y-molecules. Then,

3. artificial chemistries | 37

Figure 3.4 Stochastic simulation of a re-
versible reaction: Quantity of species X

and Y in 20 independent simulation runs

and their average.

0 2 4 6 8 10
Time t [s]

0

20

40

60

80

100

N
u

m
b

e
r

o
f

m
o

le
c

u
le

s

X

Y

20 stochastic simulations

average

both reactions have the same propensity, hence the same reaction interval,
and are executed at the same time: the vessel’s composition does not change
anymore.

In reality, the algorithm determines the reaction intervals stochastically
by drawing random variables form an exponential distribution. This still leads
to equilibrium where both species contain the same number molecules on
average. Figure 3.4 shows time traces of the quantities of X- and Y-molecules
obtained by 20 simulation runs. Every run is different, but if the quantities
are averaged over all runs, a deterministic trajectory can be observed.

summary3.4

Artificial chemistries have been developed to study the behavior of chemical
reactions. In the first place, artificial chemistries are modeling approaches
to explain emergent phenomena in biochemistry, such as self-organization
(Fontana&Buss, 1994; Dittrich&Speroni di Fenizio, 2007), pattern-formation
(Turing, 1952), and the emergence of life (Fernando & Rowe, 2007).

In a second thrust, researchers started to use chemicalmodels to organize
computation (e.g. Laing, 1977; Banâtre & Le Métayer, 1986). Our chemical
approach to networking protocols that we will present in the second part
falls into this category: it uses the chemical reaction metaphor to structure
communication in a computer network. Our self-healing approach discussed
in the third part is then based on chemical self-organization.

In this chapter, we showed how an artificial chemistry is described as a
reactive system among components (molecules) and discussed the dynamical
aspects of chemical reactions. The law of mass actionwill play a central role in
our own approach. We demonstrated that a stochastic algorithm can be used
to schedule individual reaction events (Gillespie, 1977; Gibson & Bruck, 2000)
and that the resulting system still follows a deterministic trajectory on average.
We will come back to the relation between a stochastic and deterministic

38 | part i — introduction, background & related work

system description later in Chapter 8 when we discuss how the dynamics of a
chemical networking protocol can be analyzed.

••

3. artificial chemistries | 39

IIpartI I
Chemical

Networking Protocols
(CNPs)

chapter44Principles of Chemical Networking

Introduction to our novel method to design, execute, and analyze
networking protocols, inspired by chemical reaction networks.

The symbol and the metaphor
are as necessary
to science as to poetry. 4

The Habit of Truth
Jacob Bronowski

This chapter introduces a novel approach to organize the exchange
of information in packet networks, inspired by chemical reaction networks.

In order to convey the principles of chemical networking, we are exploiting
metaphors from chemistry. A “molecule” becomes a synonym for a data
packet whereas a “reaction” refers to the interaction of a packet with code.
Although the proposed model can be described algorithmically and math-
ematically without any reference to chemistry, the metaphor is helpful to
intuitively understand the basic concepts of our model.

More importantly, the chemicalmetaphorhas guidedus in adapting tools
and methods that are available for chemical reaction systems to man-made
communication systems. One prevalent challenge for network engineers is
that there is no satisfying theory that unifies the functional and the dynamical
aspects of protocol design, execution and analysis. This could change with
chemical networking protocols, because in chemistry, the interdependence
between the functional reaction mechanism at the microscopic level and
the reaction dynamics at the macroscopic level is well understood and can
be described mathematically. But in order to apply results from chemical

4. principles of chemical networking | 43

*This is a simpli-

fication, as phys-

ical chemistry

also requires

that the reac-

tants collide

with the same ki-

netic energy at

the same angle.

research to computernetworks, the relations between chemistry and computer
networks have to be much stronger than just metaphorical.

The goal of this chapter is to describe the big picture of our approach.
The following chapters will then discuss each aspect and consequence in
more detail: i.e. execution, analysis, and synthesis of chemical networking
protocols. In this chapter, we first elaborate more on the chemical metaphor
applied to networking protocols in Section 4.1. In Section 4.2, we propose an
engineering model at two hierarchical levels: At the lower, microscopic level
(Section 4.2.1) we provide an execution model for “chemical” networking
protocols. Virtual “molecules” representing packets as well as fragments of
code are floating around in a “reaction vessel”. These molecules collide and,
by reacting, they carry out computation and optionally send the result to a
distant reaction vessel. At the upper, macroscopic level (Section 4.2.2), we
abstract away from the concrete structure of code and data and focus on the
dynamic behavior of the emergent distributed reaction networks. Because
there is a correspondence between the microscopic execution engine and the
macroscopic model, we are able to design and analyze chemical networking
protocols based on the theory of chemical kinetics by treating information
flows as distributed reaction networks.

chemistry as a metaphor4.1
for networking protocols

A chemical reaction can be described at two levels of detail: microscopically
and macroscopically. At the microscopic level, two individual molecules
collide; their structure or shape is modified by physical forces leading to
one or more product molecules. If we know the physical laws we are able to
comprehend and even predict the outcome of a molecular collision, decide
whether or not the collision leads to a reaction and determine how the shape of
the resulting products look. Identical reactants will always result in identical
products.*

At the macroscopic level, a bimolecular reaction can be seen as a black
box with two input streams and one or more output streams. In this sense, a
stream is a flow of molecules of the same molecular type that can be charac-
terized by the rate at which instances of a molecular type are consumed or
produced by the chemical reaction. At this higher level, we are not interested
in the microscopic rearrangement of atoms anymore. Instead, we treat the
molecular types as abstract entities and try to understand the dynamics of
chemical reactions. For instance, we are interested in how many molecules
of a certain type are produced by a reaction per second. General statements

44 | part ii — chemical networking protocols (cnps)

such as the law of mass action are focal points at this level of description.
The law of mass action connects the change of reactant concentrations to the
resulting change of the reaction rate.

It is exactly the two different perspectives and scales of chemical reac-
tions that make them interesting as a metaphor for information processing
in packet switched computer networks. As we mentioned in Section 2.1.2,
networking protocols are also modeled at two different levels of abstraction:
At the microscopic level, packets are treated as individual objects, each in-
stance having its own structure and content. This content is important to
the end-user who wants to convey information over the network by encod-
ing it inside the packet. The core network infrastructure also makes use of
this content in order to decide how to treat the packet: For example, routers
determine the outgoing interface of a packet by inspecting its header fields.
Protocol software is commonly implemented as a collection of distributed
state machines (see for example Postel (1981) for the Transmission Control
Protocol (tcp) or Rekhter, Li, and Hares (2006) for the Boarder Gateway
Protocol (bgp)). The state machine encodes what to do when receiving a
packet or when triggered by another internal or external event.

When we take a step back to have a macroscopic view on data packets
we see them as packet streams. Queuing theory (Cassandras, 1993, Chap. 6)
and Network Calculus (Le Boudec & Thiran, 2001), as one of its analysis
frameworks, abstract away from the content of data packets and make sta-
tistical assumptions about the properties of whole packet streams. On this
abstraction level, network models focus on dynamic properties of the packet
streams.

Despite the analogy between chemistry and chemically inspired computer
networks, a fundamental difference remains: Whereas chemistry is amodel
of natural systems, a computer network is the system itself. Speaking about
chemical models, Gibson and Bruck (2000) start their paper with the follow-
ing statement:

The process of creating a mechanistic, predictive model of a
system can be broken into two steps: (a) creating a complete
description of the chemical, physical, and biological processes
involved; and (b) using mathematics to generate predictions.

In this sense, the goal of this thesis is to create a system and its corresponding
model, for which the above statements hold. If we manage to develop a sys-
tem for packet processing that is close enough to chemistry without dealing
with unnecessary details, we hope to be able to build networking protocols

4. principles of chemical networking | 45

D
es

ig
n

Sp
ec

ifi
ca

tio
n

Specification

Abstract
Reaction Network
Model of the chemical

program in an explicit

artificial chemistry

Mathematical Model
ODE

Approximation

Mathematical Tools

Metabolic

Control Analysis

Signal Theory

M
ic

ro
sc

op
ic

 L
ev

el
(S

ys
te

m
)

M
ac

ro
sc

op
ic

 L
ev

el
(A

bs
tr

ac
tio

n)
Behavioral Model Analysis

S
tr

uc
tu

ra
l R

eq
ui

re
m

en
ts

D
yn

am
ic

al
 R

eq
ui

re
m

en
ts

Simulator
of the algorithmic

chemistry and the network

Virtual Machine
Real-time execution of the

algorithmic chemistry

Chemical Software
programmed in an

algorithmic chemistry:

The structure of

molecules/packets

describe the reactions.

Traces
Qualitative and

quantitative

traces and logs

of the simulation

or real-time

execution.

Fi
nd

 R
ea

liz
at

io
n

Fi
nd

 M
ap

pi
ng

Run

Run

Measure

Measure

Verify

Re
fin

e

Verify

Dynamic Design

Realization
(AChem)

Auto. Gen. ApplyLinear Noise

Approximation

Stochastic

Master Equation

Re
fin

e

Structural Design

Re
fin

e

1

2 3

4 7

5 6

Figure 4.1 Engineering model for chemical networking protocols: Two hierarchical levels: At the microscopic

level, chemical protocol software is executed by a chemical virtual machine. The software is “written” in an al-

gorithmic chemistry where the structure of the molecules/code strands implicitly defines the chemical reactions

being executed. The macroscopic layer is for the design and analysis of dynamical protocol aspects. There, we

look at chemical reactions from a high-level point of view. Design and analysis methods make use of the direct

correspondence between the two layers.

with chemical methods, adopt mathematical tools from chemical kinetics
for protocol engineering and bridge the current gap between microscopic
execution and macroscopic flow analysis. That is, our goal is to use an artifi-
cial chemistry to organize computation and communication in a computer
network.

a two-level engineering model4.2

Ourproposed chemical networking paradigm already reflects themicroscopic
andmacroscopic levels of chemistry in the engineeringmodel. Figure 4.1 illus-
trates the process of designing and analyzing chemical networking protocols,
which we will briefly introduce in this section.

46 | part ii — chemical networking protocols (cnps)

1. Protocols are first and foremost designed at themacroscopic level where
we envision the designer to combine reaction network patterns whose
dynamic behavior are well known. By synthesizing such motifs in a
bottom-up manner, the designer is able to anticipate the behavior of
the assembled abstract reaction network that may span across several abstract reac-

tion networknodes of the computer network.

2. One of the biggest advantages of the chemical engineering model com-
pared to traditional protocol design is that from the abstract reaction
network we can automatically generate a mathematical model of the mathematical

modelprotocol’s behavior, for example in the form of the stochastic master
equation, or as an approximation based on ordinary differential equa-
tions.

3. This description can then be analyzed for properties such as conver- mathematical

toolsgence and stability by using mathematical tools and methods from
chemistry.

4. Only in a second step, the protocol designer focuses on the algorithmic
aspects of the protocol and tries to find a microscopic realization of find realization

the protocol in an algorithmic chemistry, in which the structure of the
molecules implicitly span the aimed distributed reaction network.

5. We provide an execution model for this chemical software by organiz- chemical soft-

wareing computation and packet transmission as chemical reactions; we
describe how virtual molecules are structured and how their reaction
is simulated and executed on traditional computing infrastructure.

6. Simulation results can then be used to refine the algorithmic design on simulation

the microscopic level.

7. The dynamic behavior of a protocol emerges from microscopic molec-
ular interactions. Chemical reaction laws describe the rate of micro-
scopic reactions, thereby bridging the microscopic to the macroscopic
level. In other words, we can automaticallymap a given chemical pro- find mapping

gram back to the abstract chemical reaction network and verify whether
the software implements the designed behavior.

In the following, we will provide a quick walk through the main building
blocks of our engineering model. Each of the remaining chapters of this part
then focuses on one particular aspect.

4. principles of chemical networking | 47

Figure 4.2 Execution model: A chemical vir-

tual machine executes programs written in

an algorithmic chemistry. Molecules are in-

jected/absorbed by applications and may travel

over traditional networking infrastructure to re-

mote vessels.

Chemical

Virtual Machine

Chemical

Virtual Machine

Networking Infrastructure

Application

Layer

Application

Layer

Vessel Vessel

microscopic level — protocol execution4.2.1

The execution model at the microscopic level (see lower part of Figure 4.1)
comprises of an algorithmic chemistry that specifies the structure of the
individual molecules (=packets) and how these molecules react. Our goal is
to efficiently process data packets on traditional computing and networking
infrastructure. Therefore the chemical virtual machine has to be integrated
into today’s computer architecture as depicted in Figure 4.2 and described
below:

The chemical virtual machine is a computer program, running on a stan-chemical vir-

tual machine dard cpu, that simulates chemical reactions at the microscopic level. In the
future, we also envision a hardware implementation of the virtual machine.
Each virtual machine maintains one ormore reaction vessels, each containing
a multiset of molecules. Each molecule is represented by a string of symbols.
These symbols indicate what kind of computation the virtual machine shall
carry out when two molecules (strings) “collide”. Molecules (symbol strings)
either represent data packets or active code that is executed when reacting
with a packet. We extended an existing algorithmic chemistry – Fraglets
(Tschudin, 2003) – designed for efficient packet processing. Unlike in tradi-
tional computing models where code is executed as fast as the cpu permits,
in our chemical execution model, a reaction between two molecules is de-
layed for a well-defined time. As discussed in the previous chapter, an exact
stochastic reaction algorithm schedules the reactions. Hence, the reaction
rate follows the law of mass action, which is very helpful for the design andlaw of mass ac-

tion scheduling analysis of the protocols’ dynamics.
In order to bring the communication aspect of protocols into our chem-

ical system, molecules can be exchanged among distant vessels. Our current
architecture relies on existing networking infrastructure. That is, virtual ma-networking

infrastructure chines are interconnected by a traditional packet network, e.g. over a bare

48 | part ii — chemical networking protocols (cnps)

Ethernet medium or via an overlay network using the Internet Protocol (ip).
A reaction may result in one or more molecules being sent over a commu-
nication medium to a connected neighbor node. Hence, information that is
stored inside a molecule can be passed from one network node to the next.

A chemical protocol offers its service to an application layer program. application

layerThe application software may run in another chemical reaction vessel or may
be programmed with traditional means. The application may at any time
inject molecules into the protocol’s reaction vessel. These molecules react
with the molecules of the chemical network protocol in turn and eventually
traverse from the source to the destination node where they are delivered to
the remote application.

In this setting, a chemical protocol replaces parts of the network, the
transport and optionally the application layer of a network stack.

macroscopic level — abstraction 4.2.2
When designing chemical networking protocols, we propose to first design
the abstract reaction network and analyze its dynamics before trying to find
the corresponding symbol strings that generate the required behavior mi-
croscopically. Often, we are looking for equilibrium solutions: That is, if we equilibrium so-

lutionsmanage to find a chemical algorithm for a networking problem in which the
solution is represented by a stable equilibrium of the global reaction network,
then this solution is resilient to environmental perturbations.

In Chapter 10 we will provide generic rules that can be used to build
complex protocol behavior from simple, well-understood design patterns
(reaction motifs). We will show, that with some experience, it is quite easy to
develop distributed chemical reaction networks for a given problem statement,
and that it is a straight forward task to find the correspondingmolecule strings
for the executable algorithmic chemistry.

It is also possible to obtain themacroscopicmodel from a given chemical
program in order to analyze its dynamic behavior. In Chapter 10 we will show
that this model conversion can be automated. At the macroscopic level, we
do not care about the structure of molecules; the symbol strings that form
the molecules are not important. We therefore map all strings with a similar
structure (e.g. packets with different payload) to the same abstract species and
model and analyze dynamical properties on this abstract reaction network.

structure of this part 4.3

Our microscopic execution model is an in silico implementation of chemical
reactions applied to data packets in a computer network. We adopt certain

4. principles of chemical networking | 49

principles from chemistry, which we believe are beneficial for network proto-
col execution, design and analysis. While these principles come quite natural
from the chemical metaphor they require a radical rethinking of network
protocol design from the viewpoint of a computer scientist.

In the following chapters, we will delve into the details of those aspects:
Chapter 5 describes the execution model, an artificial chemistry for network-
ing. After this, we dedicate four chapters (Chapters 6 to 9) to the analysis of
chemical networking protocols. After an introduction in Chapter 6, Chap-
ter 7 studies structural aspects of chemical program analysis. Then, Chapter 8
demonstrates how analytical methods from “wet” chemistry can be adopted,
leading to powerful instruments to analyze the dynamics of chemical net-
working protocols. Finally, in Chapter 9, we apply these methods to analyze
a chemical gossip-style aggregation protocol. Chapter 10 then presents first
chemical design patterns that allow for a bottom-up synthesis of chemical
networking protocols. In Chapter 11, we discuss constraints of realistic com-
puting infrastructure and the tools we used to simulate distributed reaction
networks. Finally, Chapter 12 concludes this part with a study of how chemical
networking protocols can be integrated into the current Internet.

••

50 | part ii — chemical networking protocols (cnps)

chapter55An Artificial Chemistry
for Networking

On the development of an abstract model for distributed chemical
computing and on Fraglets, an algorithmic chemistry for chemical
protocols.

The outstanding feature of behavior
is that it is often quite easy to
recognize but extremely difficult or
impossible to describe with
precision. 5

An Essay of Mind
Anatol Rapoport

In this chapter we describe how chemical computation is organized in adistributed setting. As depicted in Figure 5.1, this involves both abstraction
levels: the macroscopic and the microscopic level. At the macroscopic level,
we extend the formal definition of artificial chemistry given in Chapter 3 for
the networking context. The new description models spatially distributed
reaction vessels, which exchange molecules over network links by executing
reaction rules that generate remote products. At the microscopic level, we
define the structure of the molecules, i.e. the syntax and semantics of the
chemical programming language.

This chapter is structured into five sections. Section 5.1 defines an ar-
tificial chemistry for networking on the macroscopic level. This abstract
definition is helpful during the design phase of chemical networking pro-
tocols and important for analyzing the dynamic properties of the resulting
distributed system. In Section 5.2, we introduce Fraglets, a chemical program-
ming language and algorithmic chemistry where the reactions are implicitly

5. an artificial chemistry for networking | 51

D
es

ig
n

Sp
ec

ifi
ca

tio
n

Specification

Abstract
Reaction Network
Model of the chemical

program in an explicit

artificial chemistry

Mathematical Model
ODE

Approximation

Mathematical Tools

Metabolic

Control Analysis

Signal Theory

M
ic

ro
sc

op
ic

 L
ev

el
(S

ys
te

m
)

M
ac

ro
sc

op
ic

 L
ev

el
(A

bs
tr

ac
tio

n)
Behavioral Model Analysis

S
tr

uc
tu

ra
l R

eq
ui

re
m

en
ts

D
yn

am
ic

al
 R

eq
ui

re
m

en
ts

Simulator
of the algorithmic

chemistry and the network

Virtual Machine
Real-time execution of the

algorithmic chemistry

Chemical Software
programmed in an

algorithmic chemistry:

The structure of

molecules/packets

describe the reactions.

Traces
Qualitative and

quantitative

traces and logs

of the simulation

or real-time

execution.

Fi
nd

 R
ea

liz
at

io
n

Fi
nd

 M
ap

pi
ng

Run

Run

Measure

Measure

Verify

Re
fin

e

Verify

Dynamic Design

Realization
(AChem)

Auto. Gen. ApplyLinear Noise

Approximation

Stochastic

Master Equation

Re
fin

e

Structural Design

Re
fin

e

Figure 5.1 Artificial chemistries in the engineering model: The concept of an artificial chemistry is extended

for networking. This requires adaptations on the macroscopic as well as on the microscopic level.

specified by the structure of the molecules. All examples and application
cases in this thesis are written in Fraglets. In Section 5.3, we show how simple
tasks can be solved in Fraglets. Section 5.4 contains the master example of
this chapter. We implement and discuss Diserser, a gossip-style aggregation
protocol that calculates the average of distributed values. This example will
also escort us through the remaining chapters of this part. Finally, Section 5.5
summarizes this chapter.

an abstract chemical model5.1
of communication

In this section, we develop an abstractmodel for “chemical” communication in
a computer network. The goal is to first provide an implementation-agnostic
model by defining molecules as abstract species and reactions as generic
interaction rules among those molecules. In this sense, we are talking about

52 | part ii — chemical networking protocols (cnps)

a “molecule” and mean “packet”, but we don’t define its internal structure or
purpose; we use the term “reaction” to specify howmolecules interact without
defining the underlying reason for a particular reaction.

Our model is based on the formal definition of artificial chemistries by
Dittrich et al. (2001) as introduced in Section 3.1 and formalized in Section 3.3.
In the networking context, we have to address several issues that are not
prevalent in an isolated, well-stirred vessel: A computer network consists
of multiple interconnected nodes. In the language of chemistry, we say that
there are spatially distributed reaction vessels. Thus, we first have to represent
data transmission in a chemical way. Second, we have to come up with a
distributed reaction algorithm, which specifies how andwhenmolecules react
and are sent from one vessel to another.

We start with a formal definition of our distributed artificial chemistry
before we give a simple protocol example within this abstract model.

definition of a distributed artificial chemistry 5.1.1

A distributed artificial chemistry is an artificial chemistry extended by a
network graph. It is defined as quadrupleDAC=(G,S ,R,A), where G is the
computer network graph, S is the set of all molecular species in the network,R is the set of all reaction rules, andA is the global view on the distributed
reaction algorithm. These four components deserve some more discussion.

Network of Distributed Nodes/Vessels (a)

We define the computer network as a directed graph G = (V ,E), where V = computer net-

work{v1, . . . , v∣V∣} is the set of all nodes in the network. The edges E ={e1, . . . , e∣E∣}
are unidirectional network links and connect neighbor nodes. Node vj is a network link

neighbor of node v i iff there exists an edge (v i , vj) ∈ E . In this case, we define
adj(i, j)=1, otherwise, if node v i is not connected to node vj , adj(i, j)=0. The
adjacency matrix is the square ∣V∣× ∣V∣-matrix A=[a i j] where a i j = adj(i, j). adjacency ma-

trixWe further define the neighborhood of a network node v i as the set of its
neighbor vessels: neighborhood

Ni = {vj ∈ V ∣ adj(i, j) = 1} (5.1)

The communication network that interconnects the nodes describes a high-
level structure, conceptually one topological layer above the reaction network
inside a node.

5. an artificial chemistry for networking | 53

The Structure of Distributed Chemical Reaction Networks(b)

Inside each network node v i ∈ V , an algorithm Ai updates a local multisetnetwork node

of molecules according to a set of local reaction rules. That is, each node v i
defines a local artificial chemistry as the triple (Si ∪S(j)i ,Ri ,Ai). The set Silocal artificial

chemistry defines the species of all molecules that can possibly be found in the local
multiset. The set S(j)i =⋃ j∈Ni S j contains all local species of v i ’s neighbors.
Each node also defines its own set of reaction rulesRi where a reaction rule
r i ∈ Ri is specified by a pair ofmultisets (reactants, products) and an assigned
reaction coefficient

r i ∶ Min,r i
k i�→Mout,r i ∀r i ∈ Ri (5.2)

A node only has access to its localmultiset. Consequently, we require that
all reactants are local species:Min,r i ∈ M(Si). On the other hand, a reaction
may produce molecules in neighbor reactors:Mout,r i ∈ M(Si ∪ S(j)i). This
is the way we model transmission in an abstract chemical way: by allowing atransmission

reaction to create products in a neighbor vessel. Thus, in addition to a strictly
local reaction network, each node also defines extended reaction rules that
send molecules to other nodes in its neighborhood.

We require that all nodes run the same algorithm,A, in order to allow the
protocols to reach consensus. As mentioned before, the algorithm operates
on the local multisetMv i ∈ M(Si). The multiset is either updated by a local
reaction, driven by the local reaction algorithm, or by receiving a molecule
from a neighbor node as a consequence of a reaction rule executed there.

Example(c)

In Chapter 3, we studied a simple reversible reaction (see Figure 3.2 on
page 35). Let us now install such a reversible reaction among two nodes
with the distributed artificial chemistry DAC = {G,S ,R,A} with network
graph G = {V ,E} as depicted in Figure 5.2(a) where V = {v1, v2} and E ={(v1, v2), (v2, v1)}. Each node v i defines two molecular species, Ci and Xi .
Thus, the overall set of species is S = {C1, X1, C2, X2}. Either node defines
a single reaction rule that sends one instance of the local X-molecule to its
neighbor, catalyzed by the local species C. The overall distributed reaction

54 | part ii — chemical networking protocols (cnps)

v1 v2

(a) Network graph

v1 v2

r1

r2

X1 C1 C2 X2

(b) Distributed reaction network graph

Figure 5.2 Reaction network
of a simple distributed artificial
chemistry: The distributed reac-

tion network is spanned over a

network topology by a set of local

molecular species and a set of local

and/or local-to-neighbor reactions.

network is described by the setR={r1, r2}, shown in 5.2(b) and as chemical
reaction equation below.

r1∶ C1 +X1 �→ C1 +X2 (5.3a)
r2∶ C2 +X2�→ C2 +X1 (5.3b)

The local algorithm in node v1 sends an X-molecule to neighbor v2 by execut-
ing reaction r1. Similarly, node v2 sends the X-molecule back by executing
reaction r2. In order to complete our definition of a distributed artificial
chemistry we have to specify how the local algorithm decides when to execute
which reaction such that distributed reversible reaction exhibits the same
dynamic behavior as depicted in Figure 3.4 on page 38.

a distributed exact stochastic 5.1.2
reaction algorithm

In traditional queuing networks, packets are sent whenever the link is idle.
Here, we aim for a controlled scheduling of reactions based on results from
chemical kinetics. The algorithm shall induce an emergent dynamic behavior
that is as close to the dynamics of real chemical reactions as possible, but
simple enough to enable an efficient implementation on a traditional von
Neumannmachine.

In Section 3.3.3, we studied such an algorithm in detail – the Next Re-
action Algorithm by Gibson and Bruck (2000). However, in our distributed
artificial chemistry, there is no centralized algorithm that globally decides no centralized

algorithmwhich reaction in which network node is executed next and when. Instead,
each node has to run its own algorithm. The distributed algorithmsmust work
together such that the behavior of the global reaction network is coherent.

5. an artificial chemistry for networking | 55

Algorithm 5.1 Real-
time Next Reaction
Method: Schedules

and triggers reaction

execution within a

network node vi ∈
V . The algorithm has

a notion of physical

time, tnow, which is

continuously updated

outside of the algo-

rithm, e.g. by the

hardware.

1. Initialization:

a) the current physical time is tnow;

b) for each reaction rule rj ∈ Ri , calculate the propensity function aj
according to (5.4);

c) for each reaction rule rj ∈ Ri , draw the reaction interval from an expo-

nential distribution: τj ∼ Exp(1/aj);
d) store the putative reaction time values tj = t + τj in an indexed priority

queue Qi (see Gibson and Bruck (2000)).

2. Let rμ be the reaction rule whose putative reaction time, tμ , stored in Qi is least.

3. Wait as long as tnow < tμ .

4. Execute reaction rule rμ , i.e. rewrite the vessel’s multiset according to the

reaction vector.

5. Update the next reaction time of all those reaction rules rj that depend on the

executed reaction. That is, all those reaction rules have to be adjusted that

have reactants that were changed by reaction rμ . Formally, for each reaction

rule rj ∈ {r ∈ Ri ∣ dom r ∩ {s ∈ Si ∣ γs,rμ ≠ 0} ≠ ∅},

a) calculate the propensity function, aj , according to (5.4);
b) if j ≠ μ, adjust the next reaction time without drawing a new random

variable: tj ← tnow + (aj,old/aj,new)(tj − tnow);
c) if j= μ, draw a new reaction interval from an exponential distribution,

τj ∼ Exp(1/aj), and set the next reaction time to tj ← tnow + τj ;
d) replace the old value tj in Qi with the new value and re-sort Q.

6. Goto step 2.

Our Extended Real-time Next Reaction Method(a)

We adapted the exact stochastic Next Reaction Method by Gibson and Bruck
(2000) (see Algorithm 3.2) for the distributed context by the changes high-
lighted in Algorithm 5.1:

First, since our purpose is not to simulate real chemical reactions as fast
as possible, but to use the algorithm to drive execution online, we schedule
the reactions in real-time. This is, we assume that there is a physical clockreal-time

scheduling that is continuously incremented by the hardware. Step 3 of the algorithm
synchronizes the simulation time to the physical time by sleeping until the
physical time reaches the next reaction time.

The second modification is to use a simpler method to calculate thesimplified

propensity

function
propensities. The occurrence probability of reaction r is now given as

ar(N(t)) = kr∏
{s∈S}

Ns(t)αs,r (5.4)

56 | part ii — chemical networking protocols (cnps)

We directly use the macroscopic reaction coefficient kr and to ignore the
factorial denominator in (3.10), whichoriginally stems form the combinatorial
choice of molecule instances.

Third, we have to define the influence of a received molecule to the packet recep-

tionscheduled reactions. Unlike Gillespie’s algorithm, the Next Reaction Method
tracks the occurrence time of each reaction separately. Thus, the reception
handler just calls step 5 of the algorithm upon receiving a new packet. This
automatically and correctly adjust the occurrence time of those reactions that
depend on the arrived species.

Discussion (b)

In the networking context each virtual reaction vessel interacts with the
environment. Thus, each device has to map the calculated virtual time to the
physical time in a coherent way to present consistent reaction times. This
is the reason for introducing step 3 to the original algorithm. This delay is
used to synchronize the virtual time dictated by the law of mass action to the time synchro-

nizationphysical time in which communication with neighbor nodes take place. The
simplest way of doing this is to assume a one-to-one mapping (the virtual one-to-one

mappingtime is the physical time), and to just sleep for the time remaining until the
next reaction occurs. Other proportional mappings are possible, too, as long
as all nodes of the network agree. For example, one virtual second could be
mapped to one physical millisecond, speeding up the reactions by a factor of
1000.

However, virtual time steps can become arbitrarily small as the reactant
concentrations grow. Our simple time mapping algorithm obviously requires
that there is an upper bound in the number of molecules in the reactor, above upper bound

which the cpu is unable to keep the pace of the simulated chemistry. For
now, we assume that the cpu is fast enough to drive the reactions in time. In
Chapter 11, we will provide a method to limit the number of molecules in a
dynamic way.

Another difference to the original algorithm is to use a simplified propen-
sity function. In fact, we loose microphysical plausibility for reactions among
multiple instances of the same reactants. However, we gain a more direct
mapping from the microscopic world of reaction probabilities and stochastic
reaction coefficients to the macroscopic and deterministic description of law
of mass action dynamics. Since we are not simulating real chemistry, we have
the freedom to design both, the system and its model, such that we can afford
this small deviation from natural behavior.

The abstract execution model described so far may be implemented in
a traditional programming language for an explicitly defined set of abstract

5. an artificial chemistry for networking | 57

molecules and reactions. But instead, in the next section, we present an
execution model based on an algorithmic chemistry, where molecular species
and reactions are implicitly defined by the structure of symbol strings. This
allows the system to define the reactions at run-time.

fraglets —5.2
a programming language for cnps

Fraglets (Tschudin, 2003) is an execution model for communication pro-
tocols inspired by chemical reactions and designed for fast packet header
processing. In this section, we present Fraglets from different angles: First, in
Section 5.2.1 we follow the path of Tschudin (2003) and introduce Fraglets as
a string rewriting system. Section 5.2.2 then defines Fraglets as an artificial
chemistry in the sense of Dittrich et al. (2001) and makes the connection to
the previous section by pointing out that in Fraglets, the reaction rules are
defined implicitly by the structure of the symbol strings currently present
in the vessel multiset. Section 5.2.3 highlights how the characteristics of
the Fraglets reaction algorithm influence the convenience of the protocol
design process. Finally, Section 5.2.4 considers Fraglets an assembler-like
programming language and discusses its instruction set.

string rewriting in a multiset context5.2.1

In computer networking, themost frequently executed action on a data packet
is the rewriting of header fields. For example, on each leg of a packet’s route
through a sequence of Ethernets, the packet must obtain a new destination
field to reach the next hop. A fraglet is a small fragment of code or data,fraglet

represented by a string of symbols, e.g. [exch a b c d]. Fraglets interact
among each other akin to molecules. This interaction is driven by the header
symbols of the packets.

Fraglets is a combination of multiset rewriting system (Banâtre & Le
Métayer, 1986) and tag system (Post, 1943; Minsky, 1967), a string rewriting
system in which the leftmost symbol identifies the rule to apply. For example,
the rule

[exch σ1 σ2 σ3 σ4 . . . σn]⇒ [σ1 σ3 σ2 σ4 . . . σn] (5.5)

when applied to [exch a b c d] will result in [a c b d]— that is, two sym-
bols are swapped. The exch symbol acted as a prefix command for the rest of

58 | part ii — chemical networking protocols (cnps)

Tag Production Rule

nul [nul Φ]⇒∅ (fraglet is removed)

exch [exch σ α β Φ]⇒ [σ β α Φ]

dup [dup σ χ α Φ]⇒ [σ α α Φ]

fork [fork σ τ Φ]⇒ [σ Φ] + [τ Φ]

split [split Φ∗ ∗ Ψ]⇒ [Φ∗] + [Ψ]

send vi[send vj Φ]⇒ vj[Φ] (send to neighbor vj)

α, β, σ, τ, χ ∈ Σ (symbols), Φ, Ψ ∈ Σ∗, (symbol string of arbi-

trary length), Ω∗ ∈ {Σ/*}∗ (symbol string of arbitrary length

not containing an asterisk symbol), vi , vj ∈ V (network node

identifiers).

Our dup-rule differs from the original specification in

Tschudin (2003) in order to avoid possible infinite loops when

executing the fraglet [dup dup dup].

Table 5.1 Subset of elementary Fraglets trans-
formation rules: They are applied to single fra-

glets matching the first symbol

Tag Production Rule

match [match σ Φ] + [σ Ψ]⇒ [Φ Ψ]

matchp [matchp σ Φ] + [σ Ψ]⇒ [matchp σ Φ] + [Φ Ψ]

σ ∈ Σ (symbol), Φ, Ψ ∈ Σ∗, (symbol string of arbitrary length)

Table 5.2 Subset of Fraglets synchro-
nization rules: They are applied to a

pair of fraglets matching their headers

the word whereas the leftmost symbol “a” serves as a continuation pointer
for further processing the result. string rewriting

systemFormally, a string rewriting system is a pair (Σ,P), where Σ is a finite
alphabet of symbols and P is a set of production rules. A production rule, alphabet

p ∈ P , p∶Σ∗ × Σ∗, is a string substitution pattern that operates on words production rule

w ∈Σ∗. Unlike Post’s original tag system (1943), which operates on one initial
word and asks about the system’s expansion, we place ourselves in a multiset
context where the production rules are applied to all words in amultiset. Each
network node (reaction vessel) implements a multiset of fraglets. The node’s
scheduling algorithm continuously examines the fraglets in the multiset and
selects the fraglets to be processed.

There are two types of rewriting rules (P = PT∪PS): (i) Transformation transformation

rulerules (PT) rewrite a single fraglet into one ormore fraglets, potentially sending
them to neighbor nodes; (ii) synchronization rules (PS) combine two fraglets synchronization

ruleby concatenating them together. Analogous to chemistry, transformations
implement unimolecular reactions whereas synchronizations can be treated
a molecular collisions. A subset of the elementary transformation rules is
shown in Table 5.1 whereas Table 5.2 lists some synchronization rules.

Note the difference between a production rule and the resulting trans-
formation of a concrete fraglet instance. The fraglet instance [fork a b c]

is transformed to the fraglets [a c] and [b c] by the fork production rule.
We use the double arrow (⇒) to denote a prototypical production rule and

5. an artificial chemistry for networking | 59

the single arrow (→) for its application to a fraglet instance. Because the first
symbol of the fraglet uniquely identifies the production rule being applied, we
usually don’t mention the rule explicitly. Hence, the following two notations
are used synonymously:

[fork a b c]
[fork α β Φ]⇒[α Φ]+[β Φ]����������������→[a c] + [b c] (5.6a)

[fork a b c] �→ [a c] + [b c] (5.6b)

Synchronization rules pick the molecules based on tag matching. Thetag matching

second symbol, σ , of the fraglet [match σ . . .]must be identical to the first
symbol of the fraglet to synchronize with, [σ . . .]. By restricting ourselves
to exact tag matching instead of using more complex schemes such as pat-
tern matching, we are able to limit the computational complexity to find
corresponding synchronization partners.

fraglets as distributed artificial chemistry5.2.2
Apart from seeing Fraglets as a string rewriting system, we can make the link
to our distributed artificial chemistry: Fraglets is a realization of a distributed
artificial chemistryDAC=(G,S ,R,A)whereG is the graph of network nodes
running the Fraglets rewriting system. The set of speciesS is defined implicitly
as the set of all possible words w of arbitrary length over the symbol alphabet:S ={w ∣ w ∈ Σ∗}. Note that every distinct string is a separate species even if
two fraglets start with the same symbol. For example, fraglet [match X Y] is
a different species than fraglet [match X Z], because the first one produces
[Y . . .] whereas the latter generates a fraglet [Z . . .].

The set of reaction rules,R, is also defined implicitly by the finite set of
production rules of Fraglets, P , together with the current set of fraglets in
the vessel multiset. Because both, the molecules as well as the reactions are
defined implicitly, the chemistry is able to construct new molecules and isalgorithmic

chemistry therefore an algorithmic chemistry (see Section 3.2)
Our extended Next Reaction Method is used as a reaction algorithmA.

Thus, the dynamics of rewriting steps (reactions) is a random process, on
average governed by the law of mass action.

dynamic behavior of fraglets programs5.2.3
In this work we put strong emphasis on the dynamic behavior of networking
protocols. An engineer always designs the global dynamics of the distributed

60 | part ii — chemical networking protocols (cnps)

reaction network first. Afterwards, in a second step, he/she translates this
macroscopic description to the microscopic level by finding the correspond-
ing fraglets, which generate the desired reaction network. We will elaborate
on this in Chapter 10. In addition to the dynamic behavior, network proto-
cols also have to perform functional tasks on the microscopic layer, such as
inspecting and modifying header fields.

Wewould like to disentangle the functional from the dynamical behavior
of protocols, meaning that an engineer has to be able to change the functional
operation of the fraglets on the microscopic, symbolic level without affecting
the previously designed macroscopic dynamic behavior. This is a challenging
requirement since the two layers are intertwined as follows:

Protocol behavior emerges from the execution of Fraglets in a bottom-up
manner: The global distributed reaction network results from the structure of
the constituting fraglets. By scheduling reactions according to the law of mass
action, the structure of the reaction network is directly linked to its dynamic
behavior. The change of a single fraglet may therefore lead to a completely
different dynamic behavior.

Thus there is a conflict between top-down engineering requirements
and the bottom-up stiffness caused by the imperative effect of microscopic
changes to the macroscopic behavior. Our experiments with the original
Fraglets instruction set and dynamic behavior revealed that is was very hard
to find a Fraglets program that brings about the requested dynamics and
performs a certain function on the microscopic, symbolic level.

With the goal to decouple the dynamics of the reaction network from
the underlying implementation as much as possible, we decided that trans-
formation rules such as exch, dup, split, and send are applied immediately.
This shall give the designer the freedom to change the microscopic function
without affecting the macroscopic dynamics.

Immediate Execution of Transformations (a)

Fraglet strings starting with transformation symbols are not scheduled by
the law of mass action scheduler but are rather treated as transient molecules
that undergo immediate transformation until the first symbol of a fraglet
is a synchronization instruction (such as match) or a non-instruction tag
(e.g. x). Figure 5.3 shows an example where a reaction among the fraglets
[match X . . .] and [X b] is scheduled according to the law of mass action,
producing a transient fraglet starting with symbol fork. This transient fraglet
and all its successors are immediately transformed to their “normal forms”,
meaning that they are iteratively transformed until no transformation rules

5. an artificial chemistry for networking | 61

Reaction Vessel

Transformation "Thread"

[fork nop exch Y a b]‡

[matchp X fork nop exch Y a]

[X b]

A

X

Y1 Y2

[nop Y a b]‡ [exch Y a b]‡

[Y a b] [Y b a]

(a) Fraglets rewriting steps

A

X

Y1

Y2

(b) Reaction network

‡: transient fraglets, reduced immediately

Figure 5.3 Transformations are executed immediately: (a) Two fraglets are joined by a synchronization rule;

the resulting fraglet is eventually reduced by transformation rules to several fraglets in normal form. (b) On

the macroscopic level, we can ignore all transformations to obtain the reduced reaction network, which is dy-

namically equivalent to the Fraglets rewriting system in (a).

can be applied anymore. Formally, a fraglet w ∈ Σ∗ is transient iff ∃p ∈ PTtransient fraglet

such that w
p→ v; otherwise the fraglet is in its normal form.normal form

The normalized products [Y a b] and [Y b a] are returned to the reac-
tion vessel multiset where the law of mass action scheduler re-calculates the
next reaction time of all dependent reactions.

Fontana (1992) used a similar approach (see also Fontana & Buss, 1994):
In AlChemy, molecules are represented by λ-expressions that, when colliding,AlChemy

are applied to each other and undergo as many β-reduction steps as necessary
to reach another λ-expression in normal form.

Note however, that with the immediate application of transformation
rules, we are facing another problem: We have to avoid endless transformation
loops; that is, we have to make sure that a sequence of transformations always
terminates in either an empty fraglet or a synchronization symbol at the
fraglets’ heads. This requirement has a direct impact on the design of the
Fraglets instruction set as discussed below.

the fraglets instruction set5.2.4
A fraglet can be seen as a passive object on which active rewriting rules –
rooted in the Fraglets system – operate. An alternative point of view attributes
the symbols an active role by regarding the header symbol as assembler-like
instruction. Hence, a fraglet is a fragment of code (a list of transformationinstruction

instructions), executed in its own “thread”, independently from the otherthread

fraglets in the reactor. As soon as the first symbol becomes a synchronization

62 | part ii — chemical networking protocols (cnps)

symbol (such as match) the thread asks for synchronization with another
thread, which starts with the requested tag.

In this sub-section, we review the original design decision of the Fraglets
instruction set, i.e. the set of rewriting rules, and introduce extensions that instruction set

were necessary for this thesis: more powerful instructions were added and
a new variant of instructions, stack instructions, operate on the tail of the
fraglet. As we will see later, stack instructions are very helpful to decouple the
dynamic design of protocols from their concrete symbolic implementation.
Appendix B lists all Fraglets instructions.

History and Development (a)

The original Fraglets instruction set was designed for the typical tasks of
efficient packet header processing (Tschudin, 2003). In order to be able to
process packets at wire-speed the effort to determine the rewriting rule to
apply must be bound; we cannot afford a complex pattern-matching scheme.
This is the reason why only the first few header symbols are considered and
why synchronization between two fraglets is based on exact tag matching.

The initial instruction set defined by Tschudin (2003) mainly contains
instructions for packet header processing, i.e. moving symbols around in
the header, splitting (split) and joining (match, matchp) packets; the send
instruction is used to send fraglets to distant nodes.

Later, Yamamoto et al. (2007) added integer symbol types, accompanied arithmetic, con-

ditional, and in-

spection instruc-

tions

by arithmetic instructions that operate on them (sum, diff, mult, div), condi-
tional operations to branch the execution (eq, lt) and inspection-instructions
that return contextual information, such as the length of a fraglet (length) or
the identifier of the network node (node).

In the present work, we recognized the potential of using the dynamics
of chemical reaction networks to perform networking tasks. This has con-
sequences to the design of the instruction set. For example, the decision to
execute transformation instructions immediately requires that there must be
no transformation loops. Therefore we reviewed all existing instructions and
modified and extended some of them to obey some general rules:

Transformations Reduce the Fraglet Length (b)

We redesigned the instruction set such that every transformation reduces the
fraglet by at least one symbol. That is, a transient fraglet of length l will be
in its normal form after at most l transformation steps. Consequently, we
modified instructions that produce new symbols such that they now require

5. an artificial chemistry for networking | 63

Figure 5.4 Stack instructions operate on the fraglet tail: A fraglet can

be treated as virtually separated into code tape (head) and data stack (tail).

Stack instructions, executed from the top operate on the tail of the fraglet.

code (tape)

synchronization symbol

data stack

[spush 5 ssum y 12]‡

[ssum y 12 5]‡

[smult spush 5 ssum y 3 4]‡

[y 17]

‡: transient fraglets, reduced imme-

diately

a dummy operand that is just deleted. For instance the dup instruction that
duplicates a symbol (α) additionally deletes the third symbol (χ):

[dup σ χ α Φ]⇒ [σ α α Φ] (5.7)

Stack Instructions(c)

Above, we came to the conclusion that if it shall be possible to construct a pre-
designed reaction network by the structure of fraglets and if the fraglets shall
also do useful computation on the microscopic, symbolic level, we must have
the possibility to execute several transformations in one reaction step. Thus,
the transformations must have enough expressive power to perform complex
operations, nota benewithout the possibility of looping. This is hardly possible
with the original instruction set, because both, the instructions as well as their
operands were located in the header of the fraglet. We decided to introduce
stack instructions where the head of the fraglet is treated as the code “tape”
whereas the tail is treated as data stack.

Figure 5.4 shows such a Fraglet starting with a chain of multiple stack
instructions; the fraglet computes the arithmetic expression y= f (x, z)=xz+5.
The values for x=3 and z=4, located in the fraglet’s tail, are multiplied by the
smult instruction: The operands are popped from the stack and the result, 12,
is pushed back in turn. Since the operands and the result do not clutter up
the head of the fraglet, the next stack transformation instruction may directly
follow the first one and consequently, the stack instructions do not need a
continuation symbol (such as σ in Table 5.1). Table 5.3 shows an excerpt of
the provided stack transformation rules. They are closely inspired by the
instruction set of the Push programming language (Spector, Perry, Klein, &Push program-

ming language Keijzer, 2004). Appendix B provides a list of all Fraglets instructions.

64 | part ii — chemical networking protocols (cnps)

*The proof for

the Turing com-

pleteness of Fra-

glets has not

been published

yet.

Tag Production Rule

sexch [sexch Φ β α]⇒ [Φ α β]

sdup [sdup χ Φ α]⇒ [Φ α α]

ssum [ssum Φ β α]⇒ [Φ (α+β)]
smult [smult Φ β α]⇒ [Φ (α∗β)]
seq [seq Φ β α]⇒ [Φ (α = β ? 1 : 0)]
sif [sif σ τ Φ α]⇒ [(α ≠ 0 ? σ : τ) Φ]

α, β, σ, τ ∈ Σ (symbols), Φ ∈ Σ∗, (symbol string of arbi-

trary length).

Table 5.3 Subset of Fraglets stack transformation
rules: Operands are popped from the tail, results

are pushed to the tail by stack instructions

Summary (d)

The continuous evolution of the Fraglets instruction set has been driven by
practical needs so far. Each time we struggled with the current instructions
while developing a protocol implementation we added missing instructions
that simplified the solution. The original basic instruction set is believed to
be Turing complete* but lacks the expressiveness needed to perform complex
symbolic operations in protocols with ease.

We introduced stack instructions in order to chain several transforma-
tions without the need to synchronize the fraglet with another one. Further-
more, we identified a simple rule for the design of new instructions in order
to avoid endless transformation loop: each transformation must reduce the
length of the fraglet.

In the future, we have to consolidate the instruction set. Several instruc-
tions could be replaced by more general ones doing the same. At the moment,
Fraglets runs in a simulator that handles instructions as abstract symbols. We
could envision a hardware implementation of the Fraglets virtual machine.
In this case we have to develop an instruction set architecture and define
a binary encoding scheme for Fraglets. In Chapter 18, we will delve more
into such an encoding scheme when studying the mutational robustness of
Fraglets programs.

programming in fraglets 5.3

In this section, we give a few examples how Fraglets may be used to realize
traditional networking tasks, such as implementing finite state machines, or
transmit packets to a distant node by an active networking approach to source
routing. These examples do not make use of the dynamical properties of the
law of mass action scheduling but only show the algorithmic aspect of parallel
and rule-based computing in Fraglets. In the next section, we will present an
example that fully exploits the dynamics of chemical reaction kinetics.

5. an artificial chemistry for networking | 65

Figure 5.5 Non-deterministic finite state machine:

The FSM randomly decides to which of the two nodes

it sends a message.

S0

S1

S2

S3 req / send
1

req / send2

stop / ok

req / send1

req / send
2

req: transmission request from the application;

sendj : send message to neighbor node vj ;

ok: termination request from the application

finite state machine5.3.1

Finite state machines (fsm) are integral parts of today’s networking protocols.
Often, the logic of protocols is realized as a fsm that is triggered by events
(see for example the specification of tcp (Postel, 1981) or bgp (Rekhter et al.,
2006)). Events materialize as incoming packets, service requests from the
application, or internally generated events, such as elapsed timers.

Let us implement a state machine for a simple protocol that distributes
messages from the application equally to one of two nodes. Figure 5.5 shows
a non-deterministic fsm that complies with this specification.

In Fraglets, we may represent the current state by the presence of one
instance of molecular species [S0], [S1], [S2], or [S3]. Likewise, each event
is represented by an individual molecular species, [req] and [stop], respec-
tively. For each transition, we install an active species that atomically reacts
with two molecules, a state and an event molecule, generates the molecule
for the destination state, and performs the action, i.e. sends the consumed re-
quest molecule to the corresponding node. Generating the Fraglets program
according to this recipe is straightforward:

[mmatchp 2 S0 req split S1 * send v1 req]

[mmatchp 2 S0 req split S2 * send v2 req]

[mmatchp 2 S0 stop S3]

[mmatchp 2 S1 req split S0 * send v2 req]

[mmatchp 2 S2 req split S0 * send v1 req]

[S0] (initial state)

The nondeterministic transition from state S0 to either S1 or S2 is achieved
by having two mmatchp-molecules that compete for the same state/event pair.
The reaction algorithm randomly decides which of those molecules it picks.

66 | part ii — chemical networking protocols (cnps)

v1

v2

v3

v4

[data]

[send v2 send v3 send v4 deliver data]

[send v3 send v4 deliver data]

[send v4 deliver data]

[deliver data] Figure 5.6 Source Routing in Fraglets:

A concatenation of send instructions

guides the fraglet through the network.

According to the law of mass action, the reaction probability distribution
follows the distribution of their multiplicities.

source routing 5.3.2
with an active networking approach

Source routing allows the sender of a packet to determine the packet’s path
through the network. In Fraglets, the tail of a fraglet starting with the send
symbol will be sent to the specified neighbor node. Since the tail may also
contain instructions, those instructions will be executed in the neighbor
node, enabling a lightweight dissemination method for code. Such an active active network-

ingnetworking approach does not require any code to be pre-installed in the
intermediate nodes.

The following fraglet sends data to a destination node by concatenating
send instructions.

[send v2 send v3 send v4 deliver data]

Figure 5.6 shows a simple network topology and the fraglet’s transformation
on its way through the network. When reaching the destination node the
remaining fraglet delivers its data tail to the application using the deliver
instruction.

5. an artificial chemistry for networking | 67

application case: disperser —5.4
a gossip-style aggregation protocol

In this section, we present Disperser, a chemical networking protocol that
calculates the average of distributed values. Unlike the previous Fraglets
examples, this protocol implementation highlights one of the key benefits of
our chemical system: the ability to outsource the computation of the average
value to the dynamics of the distributed reaction system, which is enabled by
the law of mass action scheduling.

the gossip-style push-sum protocol5.4.1

Recently, gossip-based or epidemic protocols gained attention because of
their potential to disseminate information in a robust way. For example, the
Push-Sum protocol (Kempe et al., 2003) averages out locally stored values byPush-Sum

means of a simple local algorithm: Node v i stores sum and weight as tuple(s i ,w i) starting with (y i(0), 1)where y i(0) is the node’s initial value. In each
round, i.e. after a fixed time interval, each node v i sends the tuple (12 s i , 12w i)
to a randomly chosen neighbor and, at the same time, to itself. During the
next interval, each node v i collects the tuples {(s i , j ,w i , j)} received from its
neighbors vj and sums them up, s i = ∑ j s i , j and w i = ∑ j w i , j . Hence, theasymptotically

approaches

the average
fraction y i = s i/w i asymptotically approaches the average of the distributed
initial values.

a chemical disperser protocol5.4.2

For a chemical implementation of the averaging protocol, we make use of
the distributed reversible reaction introduced previously (see Figure 5.2 on
page 55). This equilibrium reaction balances the numberofmolecules between
two nodes. Our goal is to expand this mechanism to multiple nodes in order
to reach a global equilibriumwhere each node contains the same (the average)
number of molecules.

Figure 5.7 shows the chemical Disperser protocol in a simple but non-
trivial network topology of 4 nodes. Generally, each node v i ∈ V defines the
molecular species Si ={Ci , j , Xi}. The quantity of Xi-molecules represents
the computed average, y i(t)=NXi (t), which is initially set to the local value
y i(0). For each link (i, j) ∈ E to v i ’s neighbors there is a single instance of
molecule Ci , j that reacts with the local Xi-molecule and, by doing so, sends

68 | part ii — chemical networking protocols (cnps)

v1

v3

v2

v4

r1,2

r2,1

r2,3

r2,4

r3,2

r3,4

r4,2

r4,3X1 C1,2 C2,1 X2

C2,3

C2,4

C3,2

C4,2

X3

C3,4

C4,3

X4

Figure 5.7 Reaction network of Disperser:
Computes the average of Xi-molecules by

letting the catalysts, Ci,j , send them to the

corresponding neighbors. The result of

the computation is an effect of the law of

mass action scheduling.

it to the corresponding neighbor node v j . The set of reactions, R, is thus
formed by the chemical reaction equations

R ={r i , j ∣ (i, j) ∈ E} (5.8a)

r i , j ∶ Ci , j +Xi �→ Ci , j +X j (5.8b)

One can intuitively grasp that the global reaction network strives to
equilibrium. The more neighbors a node has, the greater is the outflow of X,
since there are more C-molecules to react with. On the other hand, a node
with higher degree also receives X-molecules from more neighbors.

It is easy to come up with a Fraglets implementation that is equivalent to Fraglets imple-

mentationthe abstract reaction network described above. The catalytic behavior of Ci , j
is represented by the persistent fraglet v i[matchp X send vj X], which reacts
with an X-molecule [X] and produces a transient fraglet

v i[matchp X send vj X] + v i[X]�→ v i[matchp X send vj X] + v i[send vj X]

which sends itself to the neighbor:

v i[send vj X]�→ vj[X]

simulation result and protocol comparison 5.4.3
In order to illustrate the principle of the Disperser protocol and to compare it
to the existing Push-Sum protocol, we carried out omnet++ (Varga, 2009)

5. an artificial chemistry for networking | 69

Figure 5.8

OMNeT++ simula-
tion of Push-Sum
and Disperser: The

value of each node

asymptotically

converges to the

average of 250 for

both protocols.

0

250

500

750

1000

V
a

lu
e
y
i

Node v1 Node v2

0 1 2 3 4 5
Time [s]

0

250

500

750

1000
V

a
lu

e
y
i

Node v3

0 1 2 3 4 5
Time [s]

Node v4

Chemical Disperser protocol

Gossip-style

Push-Sum protocol

Node v1 Node v2

Node v3 Node v4

simulations in various network topologies. In the following, we discuss
Disperser’s behavior in two exemplary networks.

We first simulate the protocol in the four node topology presented earlier
in Figure 5.7. For Push-Sum, we used an update interval of 250ms. Both
protocols start with an initial value of y1(0)=1000 in node v1 while all other
nodes are initialized with value y i(0) =0. Figure 5.8 shows how the value
of each node asymptotically converges to the average of ŷ i = 250 for both
protocols.

Figure 5.9 shows the convergence behavior in a larger network of one
hundred nodes, which are arranged in a toroidal topology. At time t =0 s,
104molecules are injected into node at coordinate (4,4). The figure shows
a series of snapshots of the deviation of the molecular quantity from the
expected average of 100molecules; red indicates a value that is too low, green
a value that is too high, whereas white is displayed when the node has reached
the expected average.

Both protocols Push-Sum as well as Disperser rely on a kind of massmass con-

servation conservation. In Push-Sum, half of a node’s sum is sent whereas the remainder
is kept, but the overall sum remains constant. ForDisperser, the conservation
principle is obvious: The total number of X-molecules is conserved by all
reactions. The two protocols differ in how they asymptotically approach the
equilibrium: While Push-Sum’s code is executed isochronously, moving half
of the value to a neighbor, Disperser transfers only one molecule per reaction,
this rate being controlled by the inter-reaction time interval, which is inversely
proportional to the concentration.

The convergence time of both protocols can be lowered: In Push-Sum thisconvergence

time is achieved by choosing a shorter update interval, whereas in Disperser, we
may speed up the reactions by increasing the number of C-molecules. While

70 | part ii — chemical networking protocols (cnps)

0

x̂ = 100

≥ 2x̂
104 molecules

t=0 s t=1 s

t=2.5 s

t=2 s

t=5 s

t=7.5 s

Figure 5.9 OMNeT++ sim-
ulation of Disperser: Series

of snapshots showing the

deviation from the average

in a toroidal topology of 100

nodes.

Push-Sum calculates the exact value of the average,Disperser only provides an
approximation. On the other hand, the Push-Sum protocol shows a tendency
to overshoot in nodes with high degree, even if the transmission links do not
delay packets. This is not the case for Disperser, as visualized in the subplot
for node v2 in Figure 5.8.

Note that neither of the two protocols is robust to packet loss. However, robustness to

packet losswhile a lost packet in Push-Sum results in the loss of half of a node’s value,
a packet loss in Disperser only decreases the value by one. This higher ro-
bustness of Disperser is enabled by conveying less information per packet
resulting in a higher message complexity of the chemical protocol.

Last but not least, it is easier and elegant to prove the convergence of the elegant conver-

gence proofDisperser protocol. We will show the details of this proof in Chapter 9 after
reviewing the necessary mathematical foundations.

summary 5.5

In this chapter, we introduced the execution model for our chemical network
architecture. This execution model is based on the Fraglets language, an
efficient packet rewriting system. We extended the original Fraglets system
in two respects: First, a reaction scheduler derived from the Next Reaction
Method by Gibson and Bruck (2000) mimics the law of mass action behavior
of molecular reactions. Second we extended the instruction set with stack
instructions and harmonized the instruction set in order to make it easier to
design chemical networking protocols.

The virtual machine executing Fraglets reactions can be regarded as
the system while the related abstract description of the distributed artificial
chemistry is the model of that system. This abstract model is based on the

5. an artificial chemistry for networking | 71

concept of artificial chemistry formalized by Dittrich et al. (2001), and here
extended by a network of reaction vessels in order to build distributed reaction
networks.

With the example of the Disperser protocol, we saw a prototypical show-
case for a chemical networking protocol that resorts to a representation-free
information encoding: Traditional protocols store their local state symboli-
cally in variables, such as integers or flags, ultimately encoded as bit patterns.
Such symbolic information is then piggybacked to packets in order to send
information to distant nodes. Chemical networking protocols often encode
protocol states in the quantity of molecules in the multiset.

Due to the law of mass action scheduling, the packet rate reflects the
concentration of its originating chemicals. Thus, the packet rate itself, not
the symbolic information inside the packet, is used to communicate state
information among nodes. This rate-based encoding scheme akin to the
nervous system (Dayan & Abbott, 2001) results in a higher resilience to the
loss of packets. The law of mass action plays an important role: It mediates
between the local and global world by proportionally mapping molecule
concentrations to packet rates and vice-versa.

••

72 | part ii — chemical networking protocols (cnps)

chapter

66Introduction to CNP Analysis

An overview of existing protocol analysis methods and an intro-
duction to the next three chapters on the analysis of chemical net-
working protocols.

The epistemological value
of probability theory
is based on the fact
that chance phenomena,
considered collectively
and on a grand scale,
create non-random regularity. 6

Limit Distributions for Sums of
Independent Random Variables
Andrey N. Kolmogorov

One prevalent problem in the research field of communication net-
works is the lack of a satisfying and easy-to-use modeling discipline.

Existing protocol analysis and verificationmethods are often too complex and
only applicable to very simple protocols or very restricted network topologies.
Hence, researchers often tend to first build protocols and then measure them
rather than first model, verify and then build their implementation (Jonsson,
Kreiker, & Kwiatkowska, 2010).

In this and the following three chapters, we demonstrate how to apply
existing analysis methods – originally used to study chemical reaction net-
works – to chemical networking protocols. Figure 6.1 shows the scope of these
chapters and their positioning in our chemical engineering model. In general,
in order to carry out formal verification, a researcher has to establish a cor-
respondence between the system itself and its abstract mathematical model,

6. introduction to cnp analysis | 73

D
es

ig
n

Sp
ec

ifi
ca

tio
n

Specification

Abstract
Reaction Network
Model of the chemical

program in an explicit

artificial chemistry

Mathematical Model
ODE

Approximation

Mathematical Tools

Metabolic

Control Analysis

Signal Theory

M
ic

ro
sc

op
ic

 L
ev

el
(S

ys
te

m
)

M
ac

ro
sc

op
ic

 L
ev

el
(A

bs
tr

ac
tio

n)
Behavioral Model Analysis

S
tr

uc
tu

ra
l R

eq
ui

re
m

en
ts

D
yn

am
ic

al
 R

eq
ui

re
m

en
ts

Simulator
of the algorithmic

chemistry and the network

Virtual Machine
Real-time execution of the

algorithmic chemistry

Chemical Software
programmed in an

algorithmic chemistry:

The structure of

molecules/packets

describe the reactions.

Traces
Qualitative and

quantitative

traces and logs

of the simulation

or real-time

execution.

Fi
nd

 R
ea

liz
at

io
n

Fi
nd

 M
ap

pi
ng

Run

Run

Measure

Measure

Verify

Re
fin

e

Verify

Dynamic Design

Realization
(AChem)

Auto. Gen. ApplyLinear Noise

Approximation

Stochastic

Master Equation

Re
fin

e

Structural Design

Re
fin

e

Figure 6.1 Analytical methods in the engineering model: Chapters 6 to 9 discuss the direct correspondence

between the behavior of chemical software, its abstract model, and the mathematical model of the abstract

reaction network on which rigorous mathematical analysis can be carried out.

which is the basis for formal proofs. Usually, this is an intricate task, but
for chemical networking protocols (cnps), there is a direct relation between
the execution model (the chemical software: bottom left), an intermediate
abstract description (the abstract reaction network: top left), and its formal
mathematical model (top center) for which analytical tools exist. But before
delving into these details, this chapter first reviews existing protocol verifica-
tion methods in Section 6.1 and gives an overview of the proposed analysis
and verification procedures for cnps in Section 6.2.

related work6.1

Thegoal of protocol analysis methods is to support the researcher in designing
networking protocols that comply with the requirement specification. Analy-
sis is embedded into the design process as feedback mechanism: analytical

74 | part ii — chemical networking protocols (cnps)

results are used iteratively, for example to detect and fix possible errors or to
optimize the protocol’s performance, robustness, or other measures.

There are a vast number of existing methods for protocol analysis at
different levels of precision and generality. The spectrum ranges from exper-
imental gathering of statistical data over simulation to formal verification.
Formal verification itself can be approached from two opposing extremes:
state-based and proof-based approaches (Amjad, 2004). Model checking ex-
haustively examines all possible states of the system together with all possible
stimuli from the environment and checks that only the desired properties
hold. Proof-based approaches describe the system in logic clauses and use
logical inference to show that the system exhibits the required properties.

empirical analysis 6.1.1

Themost frequently used method in practice is empirical data gathering of
a concrete protocol implementation in a given network topology. Traces of
packet sequences reveal possible qualitative bugs whereas statistical data is
collected to analyze the protocol’s performance in a given network environ-
ment. Online data evaluation becomes difficult when multiple locations in
the network have to be inspected simultaneously in order to understand the
behavior of a distributed algorithm.

Network simulators simplify empirical analysis by simulating a whole Network simula-

torsnetwork on a single machine or a cluster. This not only mitigates the cost for
an equivalent test bed, but also enables the engineer to collect synchronized
traces from virtually distributed, but now physically concentrated nodes.
Many network simulators are available today; next to many commercial tools
used in industry, open source simulators like ns2 (Fall & Vardhan, 2010), its
successor ns3 (Henderson, Roy, Floyd, & Riley, 2006), or omnet++ (Varga
& Hornig, 2008; Varga, 2009) are predominantly used in research.

Yet, network simulators are only able to analyze a specific protocol im-
plementation in a limited set of simulated network environments. They do
not analyze protocols for arbitrary network topologies formally or prove that
the requirement specification is satisfied.

model checking 6.1.2

Model checking is based on an abstract specification of the system, which
is used to formally verify a concrete implementation. During the design
phase, the engineer has to come up with an abstract model of his/her protocol
implementation. The design specification itself has also to be expressed
formally, for example, by expressions in Linear Temporal Logic (ltl) (Pnueli,

6. introduction to cnp analysis | 75

1977). This specification contains a set of properties the protocol must satisfy.
Model checking then exhaustively expands all possible states of the system and
checks whether the properties are satisfied in a fully-automatic way, resulting
either in success, meaning that the model of the implementation complies
with the formal specification, or in a counter-example, given as an execution
trace for which the specification is violated (Clarke, 2008).

Early protocol verification started with tools to verify Petri Nets in thetools

1970ies, Finite State Machines (fsm) approaches that systematically explore
the reachable global state-space of a protocol (Bochmann, 1976), and first
languages to express models, such as pan (Protocol ANalyzer) (Holzmann,
1981). Probably the most famous model checking software for networking
protocols is spin (Simple Promela INterpreter), a successor of pan. spin is a
genericmodel checker for asynchronous processes that focuses on proving the
correctness of process interactions (Holzmann, 1997). Design specifications
arewritten in the promela language (PROcessMEta LAnguage) (Holzmann,
1991) and correctness claims are accepted in ltl. Model checking has been
successfully applied to qualitative problems, such as checking the Dynamic
Host Configuration Protocol (dhcp) (Islam, Sqalli, & Kahn, 2006), the
Lightweight Underlay Network Ad hoc Routing protocol (lunar) (Wibling,
Parrow, & Pears, 2004), and security protocols (Maggi & Sisto, 2002), among
others.

Traditional model checking aims at proving the absolute correctness ofproblems

systems or protocols. In practice, such rigid claims are hard or even impossi-
ble to guarantee for the following reasons: First, although checking the model
towards the specification is fully automatic, building the abstract model and
the formal specification are manual processes. A model that successfully
passes the check is no guarantee that the actual implementation complies
with the informal requirement specification. Second, because the checker
exhaustively expands all possible states, modeling large networks suffers from
state explosion: the number of states grows exponentially with the number of
network nodes. This may be no problem for security protocols that usually
operate among a limited number of nodes, but distributed algorithms aim-
ing to reach a consensus among a vast number of nodes cannot be treated
with traditional state expansion. Some solutions to this problem have been
proposed, such as partial order reduction (Peled, 1993), model abstraction
(Hsieh & Levitan, 1998), and compositional reasoning (Berezin, Campos, &
Clarke, 1998). The third challenge formodel checking are stochastic protocols,
such as gossip protocols. They use stochastic decision processes to dissemi-
nate information to random neighbors. Such stochastic processes cannot be
modeled by deterministic fsms.

76 | part ii — chemical networking protocols (cnps)

Probabilistic model checking addresses the stochastic nature of recent probabilistic

model checkingprotocols and at the same time captures the randomness of the environment,
for instance the irregularity of user interactions. Probabilistic model checking
first constructs a probabilistic model of the system that exhaustively explores
the states space, i.e. enumerates all possible and probable states, followed by a
quantitative analysis of the stochastic state trajectories. Several models have
been proposed based on discrete or continuous time Markov chains, Markov
decision processes, and Probabilistic Timed Automata (pta) (Kwiatkowska,
Norman, Segala, & Sproston, 2002). The system’s specification is usually
formalized in Probabilistic Temporal Logic pctl or Linear Temporal Logic
(ltl) (Pnueli, 1977). prism (Hinton, Kwiatkowska, Norman, & Parker, 2006)
is a well-established tool to automatically verify probabilistic systems. Proba-
bilistic model checking has been successfully applied to networking protocol
analysis, such as the ieee 802.3 (csma/cd) protocol (Duflot et al., 2010), but
also to chemical reaction networks (Barbuti, Cataudella, Maggiolo-Schettini,
Milazzo, & Troina, 2005; Heath, Kwiatkowska, Norman, Parker, & Tym-
chyshyn, 2008; Ballarini, Mardare, & Mura, 2009).

process calculus 6.1.3

Process calculi are algebraic descriptions of concurrent processes and their
(asynchronous) interactions. Existing process calculi are, among others,
Communicating Sequential Processes (csp), originally proposed by Hoare
(1978), Milner’s Calculus of Communicating Systems (ccs) (1980), and its
successors, π-calculus, which allows processes to change their configuration
over time, and ambient calculus (Cardelli & Gordon, 1998), which enables
the description of mobile agents.

Formal reasoning in process calculi is performed by algebraic rules and
bi-simulation: The distributed algorithms as well as their desired properties
are modeled within the algebraic framework. The two formalisms are then
manipulated by algebraic reasoning until they are minimal in the number
of states. Then it can be shown that they are behavioral equivalent, which
proves the asserted properties.

theorem proving 6.1.4

Yet another formal approach to analyze networking protocols is logical infer-
ence. The (distributed) system is described by a set of definitions in math-
ematical logic. The properties of the system are then derived as theorems
that follow from these definitions (Amjad, 2004). Unlike in model checking,

6. introduction to cnp analysis | 77

where all reachable states are exhaustively checked, theorem proving uses
logical reasoning.

The main problems of proving theorems for practical protocols are the
following two requirements that are hard to fulfill at the same time: The logic
formulation needs to be expressive such that a given protocol implementation
can easily be translated. On the other hand, the more expressive the logic,
the harder it is to prove the theorems in that logic (Halpern & Vardi, 1991).
Therefore, human understanding of the system is usually needed to assist the
proof. Manual investigation is also needed if a certain assertion cannot be
proved: this is because theorem provers, unlike model checkers, are not able
to generate a counter-example.

Many theorem-proving tools are available today, such as Isabelle/hol
(L. C. Paulsson, 1988; Nipkow, Paulson, & Wenzel, 2002), pvs (Owre, Ra-
jan, Rushby, Shankar, & Srivas, 1996), and Coq (Bertot & Castéran, 2004).
Theorem-proving successfully proved security protocols (L. C. Paulsson, 1998;
Bella, 2007), for example Transport Layer Security (tls) (L. C. Paulsson,
1998), and routing protocols such a the Routing Information Protocol (rip)
(Bhargavan, Gunter, & Obradovic, 2000). Hasan and Tahar (2009) applied
theorem proving to probabilistic systems by formalizing and verifying ran-
dom variables in higher-order logic, a method originally proposed by Hurd
(2002).

rigorous mathematical analysis6.1.5

A completely different way of approaching the analysis of networking protocol
is to rely solely on “pen and paper” to proof certain dynamic properties of the
protocol. This only works if the dynamic behavior of a networking protocol is
well understood and can be described numerically (for example using calculus
or probability theory). Then, however, there is a chance to come up with
simple proofs that are expressive and conclusive. In the past, this method has
often been applied to nature inspired protocols, where the native process is
already well understood and mathematically captured. For example, Eugster,
Guerraoui, Kermarrec, and Massoulié (2004) used the dynamics of epidemic
spreading to model gossip-style protocols. But also for traditional protocols,
such as the window size behavior in the Transmission Control Protocols
(tcp), Budhiraja, Hernández-Campos, Kulkarni, and Smith (2004) found a
mathematical description.

As indicated in Kolmogorov’s quote preceding this chapter, probabilistic
systems tend to behave deterministically in the limit. This often allows for
continuous approximations of their behavior. In other words, if the system’scontinuous

approximations dynamics can be described mathematically it is often possible to approximate

78 | part ii — chemical networking protocols (cnps)

its behavior to arrive at a simpler, more tractable description, which can
be solved for large or even for arbitrary network topologies. For example,
Bakhshi, Cloth, Fokkink, and Haverkort (2009) approximated the behavior
of large-scale gossip networks by a mean-field theoretic formulation.

The main problem of this method is the lack of numerical mathematical problems

models for most established networking protocols. For example, it does
not make sense to model a single database query via quantitative analysis.
Rigorous mathematical models (e.g. queuing theory or network calculi) are
only appropriate for the quantitative analysis of the large time scale behavior,
especially for continuously running processes whose dynamic behavior is
crucial for the correct operation of the protocol or the entire network.

chemical protocol analysis overview 6.2

Chemical networking protocols (cnps) outsource computation to the dy-
namic behavior of chemical reaction networks. Becausemathematical models
for chemical reaction networks already exist, cnps are good candidates for
a rigorous mathematical analysis. Ultimately, we would like to prove that a
cnp is effective, efficient, and robust. That is, we want to prove that a certain
cnp converges to the desired solution within reasonable time, and that this
solution is stable even if components of the system or the network environ-
ment are perturbed. In the following three chapters, we propose an analysis
method and procedure for cnps. We show that such proofs are feasible even
for arbitrary network topologies, and that those proofs are easy to understand
and often render automatic theorem provers unnecessary.

Figure 6.2 shows an overview of the proposed analysis procedure, which
leads from a distributed Fraglets program (bottom left) via the construction
of an abstract artificial chemistry (top left) to a rigorousmathematical analysis
of its behavior (top right).

Before we are able carry out a dynamical analysis, we have to identify structural analy-

sisthe components of the protocol and their interactions. As mentioned in
Section 5.2.2, Fraglets is an implicit and constructive artificial chemistry,
meaning that a reaction among molecules may form new types of molecules.
The reaction rules are also defined implicitly by the structure of the molecules;
hence, new molecules may induce new reaction channels, yielding another
set of new molecule types, and so on.

Thus, the first step of our analysis procedure, described in Chapter 7,
exhaustively expands the reaction network by systematically and iteratively ex-
ecuting all possible rewriting rules among the installed “program” molecules
and all imaginable inputmolecules until we have unfolded the complete chem-

6. introduction to cnp analysis | 79

Fraglets
Molecules: symbol strings

Reactions: production rules

Algorithm: exact stochastic

reaction algorithm

- Transformations: immediately

- Synchronization: law of mass

action

A
na

ly
si

s
M

ic
ro

sc
op

ic
Ex

ec
ut

io
n

M
od

el
M

ac
ro

sc
op

ic
A

na
ly

is
 M

od
el

Structural, Qualitative
Properties

Abstract Distributed
Artificial Chemistry
Molecules: abstract species

Reactions: abstract reactions

Algorithm: exact stochastic

reaction algorithm

Dynamical, Quantitative
Properties (Chap. 8)

Analysis

M
ic

ro
sc

op
ic

(S
e

c
t.

 8
.1

) Chemical Master Equation (CME)
- exact description of stoch. behavior

- one equation per state

- not tractable for realistic systems

Chemical Langevin Equation (CLE)
Linear Noise Approximation (LNA)
Two Moment Approximation (2MA)
- separate noise from det. trajectory

- valid around steady state

- add-on to macroscopic analysis

- good compromise

M
es

os
co

pi
c

(S
e

c
t.

 8
.3

)

M
ac

ro
sc

op
ic

(S
e

c
t.

 8
.2

)

Ordinary Differential Equations (ODE)
- average behavior approximation

- neglects stochasticity

- simple to use, often exact enough

Metabolic Control Analysis (MCA)
Signaling Theory

mapping,

abstraction

(Chap. 7)

Figure 6.2 Chemical protocol analysis overview: We map the Fraglets program to an abstract artificial chem-

istry on which dynamical analysis is carried out at different levels of detail.

ical universe that is relevant for the protocol. This expansion has to be done
carefully, because a separate treatment of every distinct fraglet string often
leads to infinite reaction networks. Therefore, we propose a mapping from
Fraglets to an abstract artificial chemistry that maps multiple (potentially in-
finitely many) similar fraglet strings into the same abstract molecular species.
The resulting abstract reaction network shall be equivalent to the Fraglets
system with respect to its dynamic behavior.

Once all molecule types and reactions comprising the protocol are iden-dynamical

analysis tified and the abstract reaction network is constructed, we are in a position to
analyze its behavior based on a mathematical description of its dynamics; this
is captured by Chapter 8. Fortunately, we can profit from many mathematical
descriptions that have been developed for real chemical reaction networks in
the last two centuries.

As illustrated on the right side of Figure 6.2 there are three different
levels at which the dynamic behavior of chemical reaction networks can be
analyzed: the (1) microscopic, the (2) macroscopic, and the (3) mesoscopic
level.

1. At themicroscopic level (Section 8.1), the stochastic nature of the reac-
tion system is fully and correctly described by the so called Chemical

80 | part ii — chemical networking protocols (cnps)

Master Equation (cme). However, an analytical or numerical treatment
of the cme is usually too complicated, even for simple systems.

2. At themacroscopic level, the stochastic behavior is approximated by
deterministic Ordinary Differential Equations (odes), which describe
the expected trajectory, averaged over several trials. Section 8.2 reviews
how to derive this approximation from the microscopic cme and
demonstrates how odes can be used to prove the convergence of
cnps. Analysis methods such as Metabolic Control Analysis (mca)
and signal theory use this approximation to study the transient behavior
of reaction networks.

3. With the deterministic model, we certainly lose information about
the stochastic nature of the system. Mesoscopic dynamical analysis
methods (Section 8.3) try to estimate the inherent “noise” that is added
by the system around the steady state. We quickly discuss the easy-
to-obtain Chemical Langevin Equation (cle) and the more precise
Two Moment Approximation (2ma), but finally use the Linear Noise
Approximation (lna) to quantify the stochastic fluctuations in cnps.

In Section 8.4 we also mention two generic theorems that are helpful to prove
the convergence of cnps: the Deficiency ZeroTheorem and the Chemical
OrganizationTheory. This catalog ofmethods coversmany aspects of protocol
analysis, ranging from detailed exact analysis of simple problems to good
estimations that can be applied very quickly to complex protocols in order to
estimate their behavior.

For illustration purposes, the description of all analytical methods is
complemented with their application to a simplified version of the Disperser
protocol. Chapter 9 then provides a complete convergence proof forDisperser
for arbitrary network topologies and estimates the accuracy of its calculated
result.

••

6. introduction to cnp analysis | 81

chapter77Structural CNP Analysis

On the exploration of the potentially infinite sequence space of a
Fraglets program and its mapping to a finite abstract model.

An abstraction is one thing
that represents several real things
equally well. 7

Edgser W. Dijkstra

As a prerequisite for the dynamical analysis, the structural analysis
of a cnp identifies all components (molecules) and their interactions

(reactions) that are taking part in a certain implementation. This is done
by exploring the chemical universe that is spanned by a protocol. In this
chapter, we demonstrate how such a structural analysis is carried out for
Fraglets implementations. This chapter is addressed to an audience with a
background or interest in formal analysis. Readers that are more interested
in the dynamical analysis are referred to the next chapter.

As indicated by Figure 7.1, we propose to build an abstract model of a
protocol implementation by mapping sets of fraglet strings onto species of an
explicit artificial chemistry, before analyzing the protocol’s dynamic behavior.
Such a mapping is required for the following reasons:

Reduction: Subsuming a set of distinct fraglets with similar properties under
a single abstract species helps reducing the number of components of the
system. Often, we are able to reduce an infinite set of Fraglet strings to a
finite set of abstract species.

7. structural cnp analysis | 83

D
es

ig
n

Sp
ec

ifi
ca

tio
n

Specification

Abstract
Reaction Network
Model of the chemical

program in an explicit

artificial chemistry

Mathematical Model
ODE

Approximation

Mathematical Tools

Metabolic

Control Analysis

Signal Theory

M
ic

ro
sc

op
ic

 L
ev

el
(S

ys
te

m
)

M
ac

ro
sc

op
ic

 L
ev

el
(A

bs
tr

ac
tio

n)
Behavioral Model Analysis

S
tr

uc
tu

ra
l R

eq
ui

re
m

en
ts

D
yn

am
ic

al
 R

eq
ui

re
m

en
ts

Simulator
of the algorithmic

chemistry and the network

Virtual Machine
Real-time execution of the

algorithmic chemistry

Chemical Software
programmed in an

algorithmic chemistry:

The structure of

molecules/packets

describe the reactions.

Traces
Qualitative and

quantitative

traces and logs

of the simulation

or real-time

execution.

Fi
nd

 R
ea

liz
at

io
n

Fi
nd

 M
ap

pi
ng

Run

Run

Measure

Measure

Verify

Re
fin

e

Verify

Dynamic Design

Realization
(AChem)

Auto. Gen. ApplyLinear Noise

Approximation

Stochastic

Master Equation

Re
fin

e

Structural Design

Re
fin

e

Figure 7.1 Structural analysis in the engineering model: This chapter discusses the mapping of fraglet strings

to an abstract model, which can later be analyzed dynamically.

Abstraction: With this mapping we abstract away from Fraglets. Thus, the
subsequent dynamical analysis is made available not only for Fraglets, but
for any chemical programming language and execution model that can
be mapped to the explicit artificial chemistry.

Exploration: In order to come up with such a mapping, we have to consider
all possibly appearing molecules, which forces us to perform an exhaus-
tive exploration of the reaction network. This procedure is similar to the
systematic state-space exploration of traditional formal program verifica-
tion techniques. It allows us to gain insights into some qualitative features
of the protocol, for example, whether the sequence space is bounded or
infinite, or how amodification of a fraglet string affects the global reaction
network.

This chapter is organized as follows: Section 7.1 explains why it is not trivial to
find the right mapping function. Next, in Section 7.2 we demonstrate how to

84 | part ii — chemical networking protocols (cnps)

v1 v2 v3

v1 v2 v3

mapping

[matchp v3 send v2 v3]

[v3 hello]

[matchp v3 send v3 v3] [matchp v3 deliver]

P1,3 P2,3 P3,3

C3,3C2,3C1,3

Abstraction:

Fraglets:

[v3 world]

[v3 hello]

[v3 world]

[v3 hello]

[v3 world]

Figure 7.2 Mapping fraglet sets to abstract species: Simple forwarding: The name of the destination node is

prepended to the payload to form a data packet. Corresponding persistent matchp-fraglets forward data pack-

ets to the next hop. All packets with the same header tag can be mapped to the same abstract species.

explore the sequence space of a protocol implementation in Fraglets and relate
this operation to the closure term appearing in different research fields. We
then propose two different algorithms to map Fraglets cnp implementations
to an explicit artificial chemistry: The first algorithm, presented in Section 7.3,
is basedon Fraglets expression rewriting andneeds human assistance, whereas
Section 7.4 introduces another algorithm that operates fully automatic. Finally,
Section 7.5 discusses the presented structural analysis methods.

problem description 7.1

Every distinct fraglet string can be considered as a separate molecular species.
However, this valid distinction often leads to an explosion of the sequence sequence space

explosionspace. Consider, for example, a simple forwarding protocol as depicted in
Figure 7.2 (bottom). Data packets carrying payload (“hello”, “world”) are
prepended with the name of the destination node, v3. Each node contains a
persistent matchp-fraglet that forwards those packets to the next hop. If we
treat all data strings as distinct species, we would have to deal with infinitely
many molecular species, and hence with an infinite reaction network.

In this example, we would rather map all [v3 . . .]-fraglets in node v i to
the same species Pi ,3 and only distinguish between data packets in different
nodes to different destinations, independent on their payload (see Figure 7.2,

7. structural cnp analysis | 85

v1 v2 v3

v1 v2 v3

wrong mapping

[matchp X send v2 X]

[X v1]

[matchp X sdup _ ssend X] [matchp X send v2 X]

[X v1] [X v3] [X v3]

X1 X2 X3

C3C2C1

Abstraction:

Fraglets:

Figure 7.3 Wrong mapping: In Fraglets, the two distinct v2[X . . .]-fraglets in node v2 are involved in separate

reactions. The abstract reaction network does not reflect this distinction.

top). This simple mapping is valid, because Fraglets only performs a perfect
match of the header symbol when carrying out a bimolecular reaction.

However, the simple strategy of mapping sets of fraglet strings with the
same header tag to the same abstract species not always leads to an abstract
reaction network that is dynamically equivalent to its implementation in
Fraglets. As a counter example, consider the Fraglets program depicted in
Figure 7.3 — amodifiedDisperser protocol. Indeed, the two distinct v2[X . . .]-
fraglets in node v2 react with the same catalyst, as they start with the same
header symbol. But the two reactions yield different products, because the
ssend-instruction treats the second symbol as next hop address. Therefore,
the two fraglets v2[X v1] and v2[X v3] must not be mapped to the same
abstract species X2. The wrong abstract reaction network shown in Figure 7.3
(top) mixes molecules of two distinct reaction sub-networks whereas the
Fraglets implementation maintains a separate population of [X v1]- and [X
v3]-molecules.

Hence, the problem is to devise an algorithm that determines the gran-
ularity of the mapping, somewhere between a one-to-one and a identical-
header-tags-to-one mapping. Formally, we are given the set of seed fragletsWseed ⊆ Σ∗. This seed set contains those strings that are pre-installed in the
vessels as “program” and all fraglet strings we must expect from the user or
the environment as input. The algorithm now has to solve the following two
sub-problems:

86 | part ii — chemical networking protocols (cnps)

1. Find the set of fraglets relevant to the systemWrel ⊆ Σ∗, i.e. all strings
that may eventually appear during the operation of the protocol. As
we will see in 7.2, this set may be very large or even infinite.

2. Find a mapping from fraglet strings to abstract species, F∶Wrel →S , such that the generated abstract chemical universe, (S ,R), is be-
haviorally equivalent (Milner, 1980) to the Fraglets implementation,(Wrel,P), when driven with an exact stochastic reaction algorithmA: (S ,R) ∼A (Wrel,P). We will propose two algorithms for this
problem in Sections 7.3 and 7.4.

exploring the sequence space 7.2
of protocol implementations in fraglets

In order to find the set of relevant fragletsWrel from the seed setWseed, we
have to “expand” the Fraglets implementation of the protocol by executing
every possible reaction path. We therefore construct the structural reachabil-
ity graph of the seed set by carrying out all production rules P possible for
any initial and its consecutive fraglet string sets. We callWrel the closure ofWseed.

The term “closure” appears in many fields of natural science with the closure

similar meaning of reaching a bounded set by applying the closure operation.
We use the term closure in the sense of Dittrich and Speroni di Fenizio (2007),
who introduced it formally for chemical reaction systems in their Chemical
Organization Theory. It is loosely related to the closure term in general
topology (Benkö et al., 2008), the transitive closure on binary relations in
set theory (Huet, 1980) or the ε-closure in automata and compiler theory
(Aho, Lam, Sethi, & Ullman, 2006). In the context of Fraglets, we define a set
of stringsW as closed if all strings that can be generated by rewriting rules
applied to strings in this set are already inW . The closure of a setW is the
minimal set that is closed and containsW .

In order to find the closure of a set W of fraglet strings we roughly
follow Benkö et al. (2008) by first defining a rewriting expansion function rewriting expan-

sion functionre∶ ℘(Σ∗) → ℘(Σ∗), which gives the union of the set of fraglets,W ⊆ Σ∗,
with the set of fraglet strings that can be reached from that set within one
rewriting step. Formally,

re(W) = W ∪ ⋃
p∈PW

img p (7.1) W

re(W)

7. structural cnp analysis | 87

Algorithm 7.1 Closure of a set of fraglets: Execute

all rewriting rules possible among the fraglet strings

in the seed set as long as new strings are generated.

Input:Wseed (set of seed fraglets)

Output:Wrel = Cre(Wseed) {closure ofWseed}

Wrel ← ∅
Y ←Wseed

while Y ≠ ∅ do
Wrel ←Wrel ∪ Y
Y ← ∅
for allXi ∈ ℘(Wrel) {iterate over subsets} do

if Xi forms the left-hand side of a production

rule then
Xi ⇒Xo {execute the production rule}

Y ← Y ∪Xo

end if
end for

end while
return Wrel

where

PW = {p ∈ P ∣ dom p ⊆ W} (7.2)

is the set of all production rules that can be applied to fraglet strings inW ⊆ Σ∗.
The abstract closure operatorC f (W) generates the smallest subset closedabstract clo-

sure operator under the set-valued set function f ∶ ℘(W) → ℘(W) that contains W as
a subset. The abstract closure operator has the properties of being exten-
sive (C f (W) ⊇ W), idempotent (C f (C f (W)) = C f (W)), and monotone
(W1 ⊆ W2 implies C f (W1) ⊆ C f (W2)). The abstract closure operator under
rewriting expansion gives the set of fraglet strings,Wrel, that is potentially
reachable from the seed setWseed:

W

Cre (W)
Wrel = Cre(Wseed) = limn→∞

ren(Wseed) (7.3)

That is, the closure operator, or the corresponding Algorithm 7.1, explores the
sequence space of a protocol implementation in Fraglets.

finite and infinite closures7.2.1

The closure of a set of fragletsWseed ⊆ Σ∗ is finite if it contains a finite number
of fraglet strings. One would probably expect that the closure of a finite seed is
finite, too. However, this does not hold in general. Because of the properties
of the closure operator, the closure under rewriting expansion is finite iffinite closure

the seed set,Wseed, is finite and if there is an integer n such that ren(W)=
ren+1(W); otherwise, if the algorithm does not terminate, the closure is

88 | part ii — chemical networking protocols (cnps)

infinite. Three different situations in Fraglets protocol implementations may infinite closure

result in an infinite closure: (1) arithmetic explosion, (2) structural explosion,
and (3) infinite seeds.

1. Arithmetic Explosion: Arithmetic operations may produce fraglets
starting with the same header tag but continuously different values in
the tail. For example, consider the initial set

Wseed1 = {[matchp X ssum X 1], [X 0]} (7.4)

The induced reaction increments the tail symbol of the second fra-
glet, producing [X 1] in a first reaction step, [X 2] in the subsequent
reaction step, an so on. Thus, the closure of this set is infinite:

Cre(Wseed1) = {[matchp X ssum X 1]} ∪ {[X i] ∣ i ∈ N0} (7.5)

In this example we allowed arbitrary natural numbers. A realistic
implementation of the Fraglets virtual machine will however limit the
range of integer values, for example, to the integers representable by 32
bits. This leads to a huge, but still finite closure.

2. Structural Explosion: Structural explosion leads to an infinite vari-
ety of strings that goes beyond altering a single symbol like for the
arithmetic explosion. Consider the initial set

Wseed2 = {[matchp X X X], [X]} (7.6)

The first reaction step adds another X-symbol to the second fraglet,
converting [X] to [X X]. The next reaction step takes [X X] to produce
[X X X] and so on, yielding longer and longer fraglets. The infinite
closure of this set can be summarized as

Cre(Wseed2) = {[matchp X X X]} ∪ {[X Xi] ∣ i ∈ N0} (7.7)

Structural explosion is more serious than arithmetic explosion, since
the computer running the Fraglets virtual machine has to provide
memory for the infinitely growing fraglet. Unlike in wet chemistry, fra-
glet reactions do not conserve mass (i.e. symbols). Mass conservation mass conserva-

tionwould partly solve the problem of structural explosion as we will see in

7. structural cnp analysis | 89

Chapter 18. However, mass conservation would require that all fraglet
instructions are mass conserving, which would make its applicability
for manually engineered programs and networking protocols more
cumbersome.

3. Infinite Seed: An obvious but frequent case in which the closure of
a cnp is infinite is when the seed is already infinite. This is the case
for our packet forwarding example (see Figure 7.2), where we have to
consider a potentially infinite number of distinct but similar fraglet
strings representing data packets with arbitrary payload.

An infinite closure does not imply the lack of a stable dynamical fixed point.
The two examples used to demonstrate arithmetic and structural explosion
exhibit an infinite closure, but the number of molecules in the system does
not grow unbounded. Both systems maintain a set of only two fraglet in-
stances. Thus, an infinite closure indicates a sequence space explosion and
not necessarily an unstable system with respect to the system’s dynamics.
However, all available mathematical tools to analyze the dynamic behavior of
reaction networks require a finite sequence space, because they describe the
time evolution of each distinct component separately.

Related to the halting problem, there is no general method to decideundecidable

whether the closure of a given set of fraglet strings is finite or infinite. The
only way of generating the closure is to execute the Fraglets rewriting rules on
fraglet strings (of potentially infinite length). In practice we define a threshold
ofN iterations afterwhichAlgorithm 7.1 stops and declares the closure infinite.
This method may lead to false negatives. However, our experience showed
that this rarely happens if N is approximately ten times the size of the initial
set.

Infinite closures suffering arithmetic or structural explosion are usually
the result of design errors. Because of the halting problem, the Fraglets
virtual machine is not able to detect infinite closures in an early stage. Thus,
when designing cnps, the off-line closure check is an important verification
method to make sure that the virtual machine does not suffer from memory
shortage caused by structural explosion. Later, in Part iii (Chapter 18), we
will introduce another, energy based reaction algorithm that is able to cope
with such sequence space explosions.

For most practical cases, an infinite closure arises because the seed is
already infinite. In the next section, we propose a method to map poten-
tially infinite sets of fraglet strings with similar properties to a single abstract
molecule. Our hope is to obtain a finite closure in the equivalent abstract
artificial chemistry.

90 | part ii — chemical networking protocols (cnps)

assisted algorithm to map fraglet strings 7.3
to an abstract artificial chemistry

In Chapter 5, we introduced the execution model by first coming up with an
abstract artificial chemistry before we showed a possible realization in Fraglets.
Here we go in the opposite direction by demonstrating how to construct an
abstract model for a given protocol implementation in Fraglets. We present a
method to obtain a function F∶Wrel → S that maps the potentially infinite
closure of a set of fraglet strings,Wrel, to a finite set of abstract molecular
species, S . By subsuming an infinite set under a single element we often
escape the impossibility of analyzing infinite sequence spaces dynamically.

Our first mapping algorithm requires assistance from the protocol de-
signer and is carried out as follows:

1. The designer has to describe similar fraglets with fraglet expressions.
Fraglet expressions are patterns akin to regular expressions that de-
scribe a set of symbol strings. The designer’s goal is that all fraglet
strings that match the same expression can be mapped to the same
abstract species.

2. The closure algorithm, Algorithm 7.1, is fed with these expressions
instead of concrete strings. Thereby it

a) finds the closure of the set of fraglets matching the expressions,
and

b) verifies that all fraglet stringsmatching the same expression follow
the same reaction path. If this is the case,

3. all fraglet strings that match an expression are mapped to the same
species in the explicit artificial chemistry, which is dynamically equiva-
lent to the protocol implementation in Fraglets.

fraglet expressions 7.3.1
A fraglet expression is a string E∗ over the alphabet E =Σ∪Σext where Σ is the fraglet expres-

sionFraglets symbol alphabet and Σext contains the following extension symbols:

Symbol Wildcard: The symbol wildcard, ♢, matches any single symbol from symbol wildcard

the Fraglets alphabet Σ.

Symbol Restriction: The above wildcardmay optionally be subscriptedwith
a symbol exclusion set. The symbol wildcard ♢X matches any single
symbol from the alphabet Σ/X where X ⊂ Σ.

7. structural cnp analysis | 91

Kleene Star: Either of the above wildcards may be superscripted by the
Kleene star in order to indicate that the wildcard matches from zero to
an infinite number of symbols. Thus ♢∗ matches any number of any
symbol from the whole Fraglets symbol alphabet whereas the expression♢∗X matches any number of symbols from the alphabet Σ/X .

The following fraglet expressions on the left hand side match the indicatedexpression

matching concrete symbol strings on the right hand side, indicated by the binary relation≃:
[match X ♢∗] ≃ [match X A B C]

[match X ♢∗] ≃ [match X]

[match X ssend ♢ X] ≃ [match X ssend v2 X]

[match X ssend ♢ X] ≃ [match X ssend v3 X]

[split ♢∗{∗} * ♢∗] ≃ [split a b c * d e f]

[split ♢∗{∗} * ♢∗] ≃ [split * g h i]

The definition of fraglet expressions intentionally differs from regular
expressions. Regular expressions over the alphabet Σ are usually defined
inductively as R(Σ) = R(Σ) + R(Σ) ∣ R(Σ) ⋅ R(Σ) ∣ R(Σ)∗ ∣ Σ ∣ ε, al-
lowing arbitrary combinations of sub-expressions. For example, the regular
expression (ab)∗ is built by combining the concatenation of symbols with
the Kleene-star. Such combinations of rules are currently not allowed for
fraglet expressions in order to make the following algorithms simpler.

expression rewriting7.3.2
The production rules of Fraglets, P , are not only able to rewrite fraglet strings,
but are also capable of rewriting fraglet expressions. For example, the produc-
tion rule

[exch σ α β Φ]⇒ [σ β α Φ] (7.8)

can be applied to the expression [exch ♢ a ♢ b c ♢∗] resulting in the fol-
lowing transformation

[exch ♢ a ♢ b c ♢∗]�→ [♢ ♢ a b c ♢∗] (7.9)

By rewriting an expression, the production rule also confirms that the
expression is well formed and meets the rule’s constraints. Otherwise, theexpression

verification production rule throws an exception, which happens in the following situa-
tions:

92 | part ii — chemical networking protocols (cnps)

Single Symbol Matches Kleene-Star: If the production rule expects a sym-
bol, indicated by a lower-case Greek letter, such as α, β, . . . , but the cor-
responding symbol in the left-hand side expression is decorated with
the Kleene-star, the production rule throws an exception, because the
Kleene-star also includes the case that the represented substring is empty.
For example, the following fraglet expression will be rejected:

[exch ♢∗]
The correct expression for describing all valid fraglets transformable by
the exch transformation is

[exch ♢ ♢ ♢ ♢∗]
Active Symbol Matches Kleene-Star: A few production rules require that a
certain symbol in the left-hand side expression must not be a wildcard.
These structurally active symbols have a crucial impact on the structure structurally ac-

tive symbolsof the reaction network. For example the second symbol of the send
production rule determines the next hop node to which the right-hand
side fraglet is sent. A symbol wildcard at that position would lead to an
ambiguous reaction network and therefore an exception is thrown for the
following fraglet expression:

[send ♢ ♢∗]
Symbol Scan Matches Unrestricted Wildcard: If the production rule scans
a left-hand side string for the next occurrence of a certain symbol α and
if, instead of α, it finds a wildcard symbol (e.g. ♢ or ♢∗), which does not
exclude α from the alphabet, then the production rule throws an exception,
because the wildcard symbol may represent the searched symbol α. For
example, the following fraglet expression will be rejected, because the
string wildcard before the asterisk must not contain asterisks:

[split ♢∗ * ♢∗]
The correct expression for describing all valid fraglets transformable by
the split transformation is

[split ♢∗{∗} * ♢∗]
Expression Starts with Wildcard: If an expression starts with a wildcard
symbol, the virtual machine cannot determine which production rule to
apply and also throws an exception.

7. structural cnp analysis | 93

informal equivalence proof7.3.3

This method requires the protocol designer to come up with a hypothesis ofmapping

hypothesis which fraglet strings can be summarized to an expression. Then, algorithm
Algorithm 7.1 determines the closure of this set of seed expressions. This is
straightforward; no modifications of Algorithm 7.1 are required. The closure
algorithm iteratively enlarges the candidate expression set by executing all
possible production rules on this seed set. We just require that all production
rules are able to rewrite fraglet expressions as shown before and that the
algorithm aborts when one of the production rules throws an exception.

If the algorithm is able to find a closure without throwing an exception,
this is the proof that none of the expressions contain wildcards that lead
to an ambiguous reaction network. That is, all fraglets strings that match a
given expression will be processed by the same production steps and hence
have an equivalent dynamic behavior. A certain fraglet expression then
describes which (potentially infinite) set of fraglets can bemapped to the same
abstract species. Otherwise, if the closure algorithm throws an exception,
the hypothesis is invalid, meaning that more than one reaction network is
possible, different fraglets matching the same rule may take different paths
through the reaction network, and hence the dynamic behavior is not the
same for all fraglets summarized by one of the expressions. In this case,
the engineer has to come up with another hypothesis and run the closure
algorithm again.

expression mapping example7.3.4

Consider the data packet forwarding example oncemore. Figure 7.4 illustrates
our hypothesis, which states that all injected fraglets matching the expression
v1[v3 ♢∗] can be mapped to the same abstract species P1,3. Indeed, when
generating the closure, the fraglets’ fate never depends on symbols represented
by the wildcard ♢∗. The closure algorithm terminates correctly, and hence
the hypothesis is correct.

On the other hand, the closure algorithm immediately throws an excep-
tion if the expression v1[♢∗] is in the seed set. This hypothesis tries to map
data packets to any destination to the same abstract species, where in our
example, only packets to v3 are forwarded.

94 | part ii — chemical networking protocols (cnps)

v1 v2 v3

v1 v2 v3

mapping

[matchp v3 send v2 v3]

[v3]

[matchp v3 send v3 v3] [matchp v3 deliver]

P1,3 P2,3 P3,3

C3,3C2,3C1,3

Abstraction:

Fraglets:

[v3] [v3]♢∗ ♢∗ ♢∗
Figure 7.4 Mapping fraglet expressions to abstract species: All fraglets that match the expression [v3 ♢∗] in

the same node vi are mapped to the same abstract species Pi,3 .

automatic algorithm to map fraglet strings 7.4
to an abstract artificial chemistry

Usually, a cnp designer has a good intuition about which parts of the fra-
glet strings can be represented by wildcards. For cases where hypotheses
repeatedly fail or when the analysis is not carried out by the original protocol
designer, we provide an algorithm to automatically generate valid fraglet ex-
pressions for a given protocol implementation in Fraglets. Those expressions
are guaranteed to be patterns describing fraglet sets that can be subsumed
under the same abstract species.

The proposed method needs samples of input fraglets together with the
“program” fraglet set. It generates the closure of those concrete fraglets and
tracks the fate of individual symbols by building a symbol relation graph.
Based on a graph-coloring algorithm, we are able to identify those symbols
in the sample fraglet strings that are not structurally important. Those free
symbols can then be replaced by symbol wildcards.

symbol relation graph 7.4.1

The symbol relation graph connects those symbols across the fraglet strings of symbol relation

grapha closure set that are related through a rewriting step. In Fraglets, a rewriting
step is implicitly defined by a production rule (see Tables 5.1 and 5.2, and
Appendix B), for example

7. structural cnp analysis | 95

* In fact, the iso-

lated symbols

match and the

two distinct M-

symbols are

subgraphs, too.

Figure 7.5 Symbol relation graph: The

production rule relates symbols before

and after the rewriting step. This sym-

bol relation has a correspondence in the

spanned reaction network. A symbol

relation graph connects (edges) related

symbols (nodes) and is orthogonal to the

fraglet strings.

Production Rule: Application:

relations

correspondence

correspondence

Symbol Relation Graph

[exch σ α β Φ]⇒ [σ β α Φ] (7.10)

Such a production rule describes the rewriting step with a substitution ex-substitution

expression pression. The first fraglet on the left-hand side starts with the instruction
symbol, which triggers the rule, and continues with single symbols wildcards
(σ , α, β=Σ) and a Kleene-star wildcard (Φ=Σ∗). Those Greek letters indicate
which symbols on the left-hand side of the production rule correspond to
which symbols on the right-hand side as depicted in Figure 7.5 (left). By using
this description we are able to derive a corresponding relation between the
symbols of the concrete fraglets that are rewritten by the production rule
(Figure 7.5, right).

The undirected labeled symbol graph is constructed while generating
the closure of the seed set. For each production rule applied, symbols in the
reactant and product fraglets are linked. Thereby, each edge is labeled with
the corresponding wildcard symbol from the extension alphabet Σext (see
Section 7.3), for example ♢, or ♢∗. If an edge is unlabeled in one of our figures,
we assume the default labeling ♢∗, meaning that there is neither a restriction
for the alphabet nor for the length of the substring.

Figure 7.6 shows the symbol relation graph for a reaction network of a
bimolecular match-synchronization followed by three subsequent transfor-
mations steps. Note that the graph consists of 10 disconnected subgraphs,*
of which two arbitrary subgraphs are colored. A symbol may have many
neighbors. For example, the symbols 1 and 2 are joined to symbol 3 by the
ssum transformation whereas the fork instruction distributes the symbol Z to
two distinct product fraglet types. The symbol relation graph captures how
changes of a symbol’s value propagate in the reaction network.

We have to distinguish two qualitatively different types of symbol modi-
fications: When altering a symbol, such as 2, all connected symbols in the
symbol relation graph will also change, but the shape of the reaction network

96 | part ii — chemical networking protocols (cnps)

Figure 7.6 Symbol relation graph exam-
ple: Several disconnected subgraphs con-

nect the related symbols in a reaction net-

work. Two arbitrary subgraphs are colored

in this three-step transformation example.

does not. However, for example, by changing the symbol fork to nop we
change the very structure of the reaction network.

Let us go back to our original plan: We would like to find out what fraglet
strings can be subsumed under the same abstract species. In other words, we
would like to know what symbols can be changed in a certain fraglet string
without changing the dynamics, i.e. the structure of the reaction network.
Thus, as a next step, we have to find out which are those dangerous symbols
that modify the reaction network and which are the free symbols we are
allowed to change.

finding structurally active symbols 7.4.2
in the symbol relation graph

The next step in finding those fraglets that can be subsumed under the same
abstract species is to find those symbols that change the structure of the
reaction network when altered. We call them structurally active symbols. structurally ac-

tive symbolsEach production rule knows its own structurally active symbols. For
example, all instruction- or identifier-symbols in the header of the reactants
are always structurally active. By changing the instruction symbol, we would
also change the applied production rule, which will most certainly change the
structure of the reaction network. In fact, for most transformation rules, the
instruction symbol is the only structurally active symbol. In the definition of
rewriting rules, we underline structurally active symbols, for example underline

[exch σ α β Φ]⇒ [σ β α Φ] (7.11)

Usually, symbols that are just moved around in the fraglet string without
its value being modified are not considered active. Even arithmetic transfor-
mations, such as ssum, that alter symbols only mark the instruction symbol

7. structural cnp analysis | 97

as structurally active. This is perhaps surprising since such a production
rule computes an arithmetic function of two symbols, which could therefore
be seen as active. But changing an operand does not change the structure
of the product fraglet, so operand- and result-symbols of the ssum and all
other arithmetic production rules are not considered structurally active. In
contrast, the outcome of reaction rules such as match structurally depends
on the matching tag, too:

[match σ Φ] + [σ Ψ]⇒ [Φ Ψ] (7.12)

As a rule of thumb: those symbols that cannot be connected between
the left-hand side and the right-hand side of a production rule in the symbol
relation graph (see Figure 7.5, left) are usually structurally active. The compre-
hensive list of instructions, given in Appendix B, also indicates structurally
active symbols for each Fraglets instruction.

algorithm to subsume sets of fraglets7.4.3
under a single abstract species
We assume that the closure,Wrel, for the set of concrete seed Fraglets,Wseed,
has been generated. The following algorithm maps each fraglet string inWrel
to an abstract molecular species. By building the symbol relation graph, the
algorithm is able to exploit information from fraglet expressions embedded
in the production rules. Hence, the algorithm is able to come up with a valid
mapping hypothesis that tries to subsume an infinite set of fraglet string to a
single abstract species.

1. Generate the symbol relation graph of the closure as shown in Figure 7.6
for the reaction network.

2. For each rewriting step, color the structurally active symbols in the
symbol relation graph. Figure 7.7 depicts this operation for the same
example (red).

3. Color those symbols that are used to capture the result of the reaction
network (Figure 7.7, green). These symbols are not inspected by the
reaction network itself, but rather by an external observer that expects
to read the result from symbols at certain positions within certain
fraglets. In our example, we expect results in fraglets starting with the
symbol X.

4. Create additional edges for all result fraglets and label them according
to the expected structure. In our example, we expect the result fraglet

98 | part ii — chemical networking protocols (cnps)

matching the fraglet expression [X ♢∗ ♢], the last symbol containing
the result value.

5. For each connected subgraph of the symbol relation graph that contains
at least one colored symbol, color all connected nodes as depicted in
Figure 7.8. The resulting coloring marks all structurally dependent
symbols, meaning that any uncolored symbol can be changed arbitrarily
without changing the structure of the reaction network.

6. For each connected subgraph of the symbol relation graph that re-
mained uncolored, build the intersection of the edge labels. The in- edge label inter-

sectiontersection of two wildcards computes the maximal restriction. It is
formally defined as ♢nX ∩ ♢mY = ♢n∧mX∩Y (7.13)

where n,m are Boolean variables indicating the presence of a Kleene-
star. This intersection makes sure that a symbol restriction that appears
at a later rewriting step is propagated back to the precursor strings.

7. For each (non-transient) fraglet f in normal form, generate the corre-
sponding fraglet expression e as follows:

a) Initialize the fraglet expression to the empty string e= ε.
b) Iterate over all symbols of the fraglet f =[σ1, . . . , σl]. For each
symbol σi do:
i. If σi is colored (structurally active symbol), append the sym-
bol to the fraglet expression;

ii. otherwise (free symbol), append the symbol wildcard of the
connected subgraph to the fraglet expression e.

The resulting fraglet expression e is a valid pattern for all those fraglet
strings that follow the same reaction path.

8. Map every distinct fraglet expression to a separate abstract molecule
as shown in Figure 7.9.

discussion 7.5

The assisted algorithm sometimes generates false positives, meaning that it false positives

wrongly refuses to accept a certain fraglet expression as a valid mapping
hypothesis, even though all matching strings follow the same reaction path

7. structural cnp analysis | 99

Figure 7.7 Coloring of structurally ac-
tive symbols: From the Fraglets produc-

tion rules we obtain the symbols that

lead to a structural change of the reac-

tion network when altered. We color

them in the Fraglet strings that undergo

such a rewriting step. We additionally

color those symbols that constitute the

result of the operation (inspected by an

external observer).

Figure 7.8 Expansion of the col-
oring along the subgraphs: If

one node of a symbol relation

subgraph is colored we color the

whole connected subgraph to

globally obtain all structurally

active symbols in the reaction

network.

3 Y Z

3 Y Z

Y Z 2 3

Y Z

Z Y Z

2

2f1

f3 f4

f2

e1
e2

e3 e4

and can be regarded as dynamically equivalent. For example, consider the
following fraglet expression

[exch ♢∗ ♢ ♢ ♢]
which is refused because the exch production rule requires a single symbol
at the second position. However, the above expression is equivalent to the
following expression, which is accepted.

[exch ♢ ♢ ♢ ♢∗]
100 | part ii — chemical networking protocols (cnps)

Fraglets:

Abstract Artificial Chemistry:

mapping

match M spush ♢ ssum fork X ♢ ♢∗ M ♢
X ♢∗ ♢ Y ♢∗ ♢

MA MP

YX

Figure 7.9 Mapping fraglet expressions to abstract
species: All fraglet strings that match a fraglet expres-

sions can be mapped to the same abstract species.

The resulting abstract chemical universe is dynami-

cally equivalent to the corresponding reaction system

in Fraglets.

We accept this behavior for the sake of a simple and efficient closure-
generating algorithm. Instead of using fraglet expressions we could use stan- using regular

expressions in-

stead
dard regular expressions. However, as a consequence, each production rule
would have to find the equivalence between the subexpressions specified
in the left-hand side of the production rule and the subexpression in the
reactant fraglet. Meyer and Stockmeyer (1972) showed that the problem of
determining whether two regular expressions describe the same set of strings
requires exponential space (and hence exponential time).

We see a potential to analyze the structure of Fraglets rewriting networks
further using process calculi. For example, with the help of ccs, or its proba-
bilistic variant wsccs (Tofts, 1994; McCraig, 2007), we could perhaps prove
that certain string sequences are reachable while other, harmful sequences are
not. Cardelli (2008) already made the connection between chemical reaction
systems and process calculi by expressing reactions in π-calculus.

summary 7.6

In this chapter, we suggested to analyze the chemical universe spanned by a
protocol implementation structurally before studying the induced reaction
network dynamically. The chemical universe is obtained by computing the
closure of a seed set. The closure-generating algorithm can be applied to both,
concrete fraglet strings as well as to fraglet expressions.

Infinite closures hinder a detailed dynamic analysis due to the sequence
space explosion. For chemical networking protocols, where packets carry an
arbitrary payload, infinite seed sets are the main reason for infinite closures.
We proposed two methods of mapping infinite string sets to finite sets of
species in an equivalent explicit artificial chemistry: For the first, assisted

7. structural cnp analysis | 101

method, the protocol developer has to come up with hypothetical fraglet
expressions describing the pattern of the strings to be combined. The closure
algorithm is then able to verify the validity of this hypothesis. The second
method automatically provides valid fraglet expressions for a given set of seed
fraglet strings.

Such an abstraction should be possible for any algorithmic chemistry,
not only for Fraglets. Thus the dynamic analysis method discussed in the
next chapter can be applied to all chemical programming languages, because
these methods operate on the abstract model.

••

102 | part ii — chemical networking protocols (cnps)

chapter

88Dynamical CNP Analysis

How to exploit analysis tools from chemistry to study the dynam-
ics of chemical networking protocols.

One has then to develop a dynamics
for such a string like structure. 8

Bombay Lectures
Paul Dirac

The previous chapter revealed how an implicit artificial chemistry
(Fraglets in our case) can be mapped to a dynamically equivalent abstract

chemical reaction network in an explicit artificial chemistry. In this chapter,
we model the behavior of this abstract model. As indicated by Figure 8.1, we
review and assess existing mathematical models that describe the dynamic
behavior of chemical reaction networks at different levels of accuracy and effi-
ciency. We demonstrate how these models can be used to prove quantitative
properties of cnps.

In Section 8.1, we start by studying a rigorous mathematical description
of the stochastic reaction algorithm leading to the Chemical Master Equation
(cme). Because the microscopic stochastic description is often too complex
to analyze, we show in Section 8.2 how to derive a macroscopic, determin-
istic approximation. This approximation, however, lacks a description of
the stochastic noise that may be relevant for the quality of networking pro-
tocols. Therefore, in Section 8.3, we review mesoscopic descriptions where
the deterministic approximation is augmented by a noise term that captures
the inherent stochastic fluctuations of the random process. We illustrate all

8. dynamical cnp analysis | 103

D
es

ig
n

Sp
ec

ifi
ca

tio
n

Specification

Abstract
Reaction Network
Model of the chemical

program in an explicit

artificial chemistry

Mathematical Model
ODE

Approximation

Mathematical Tools

Metabolic

Control Analysis

Signal Theory

M
ic

ro
sc

op
ic

 L
ev

el
(S

ys
te

m
)

M
ac

ro
sc

op
ic

 L
ev

el
(A

bs
tr

ac
tio

n)
Behavioral Model Analysis

S
tr

uc
tu

ra
l R

eq
ui

re
m

en
ts

D
yn

am
ic

al
 R

eq
ui

re
m

en
ts

Simulator
of the algorithmic

chemistry and the network

Virtual Machine
Real-time execution of the

algorithmic chemistry

Chemical Software
programmed in an

algorithmic chemistry:

The structure of

molecules/packets

describe the reactions.

Traces
Qualitative and

quantitative

traces and logs

of the simulation

or real-time

execution.

Fi
nd

 R
ea

liz
at

io
n

Fi
nd

 M
ap

pi
ng

Run

Run

Measure

Measure

Verify

Re
fin

e

Verify

Dynamic Design

Realization
(AChem)

Auto. Gen. ApplyLinear Noise

Approximation

Stochastic

Master Equation

Re
fin

e

Structural Design

Re
fin

e

Figure 8.1 Dynamical analysis in the engineering model: This chapter discusses mathematical models describ-

ing the dynamics of abstract reaction networks on which rigorous mathematical analysis can be carried out.

mathematical descriptions and analysis methods by applying them to a simple
toy example — the Disperser protocol between two nodes. Readers familiar
with the analysis methods of chemical reaction kinetics may skip this chapter
and go directly to Chapter 9 where we prove the convergence of Disperser for
arbitrary topologies.

microscopic stochastic model8.1

Themicroscopic stochastic model provides a detailed description of the be-
havior of chemical reactions at the molecular level. Gillespie (1977) showed
that his scheduling algorithm for artificial chemistries simulates real chemical
reactions stochastically correct. Reactions are modeled by a Markov process,
which leads to the Chemical Master Equation (cme). We briefly show this
argument in Section 8.1.1. An analysis based on this exact stochastic descrip-
tion is only feasible for very simple protocols. However, because it serves as

104 | part ii — chemical networking protocols (cnps)

the foundation for useful approximations, it is worth sketching it here. In
Section 8.1.2 we show a simplified analysis approach for cnps with a finite
number of total molecule instances (states). Sections 8.1.3 and 8.1.4 review
phase-type distributions, which are used to determine the time a system
needs to reach a given state. Finally, Section 8.1.5 concludes this section by
referring to related work on stochastic analysis methods for chemical reaction
networks.

markov processes 8.1.1
and the chemical master equation

Our distributed artificial chemistry, driven by an exact stochastic reaction
algorithm, such as the ones described by Gillespie (1977) or Gibson and Bruck Markov jump

process(2000), can be modeled as a continuous time discrete spaceMarkov jump
process on the state space X , a subset of the non-negative ∣S∣-dimensional state space

integer latticeN∣S∣0 . The state of the system is given by the current composition, system state

i.e. by the current number ofmolecules of each species. The stochastic process
is a vector of random variables

N(t) = (Ns1(t) . . . Ns∣S∣(t))T (8.1)

where each random variable Ns(t) refers to the number of molecules of conditional

state probabil-

ity
species s ∈ S at time t. The state probability

P(n, t) = P [N(t) = n ∣ N(t0) = n0] (8.2)

denotes the conditional probability that at time t, the process is in state n ∈ X
when started at state n0 at t0.

A chemical reaction rule r ∈ R is reflected as a state transition n r↦ n+γr stoichiometric

vectorwhere the stoichiometric vector or state-change vector (Gillespie, 2002)

γr = (γs1 ,r . . . γs∣S∣,r)T (8.3)

corresponds to the number of molecules added and removed by the reaction
rule r (see the definition for γs,r in Section 5.1.1 and the stoichiometric vector
(3.6) on page 30). Note that in the context of cnps, a reaction can represent
both, a recomposition of the local multiset or a transmission of molecules to
a neighbor vessel. Hence, we are always considering the global state, which global state

comprises of the compositions of all reaction vessels in the network.
The state-space describes the structure of the Markov process. Addi-

tionally, we also have to define the dynamics of the process, which is given
in terms of transition rates between states. In general, the transition rate for

8. dynamical cnp analysis | 105

moving from state ni to state n j denotes the mean rate of a process with expo-
nentially distributed event intervals, yielding a time-homogeneous process.
Here we are considering exact stochastic reaction algorithms, such as those
by Gillespie (1977) or Gibson and Bruck (2000), which have this property.
Each reaction channel defines a field of state transitions from state n to state
n + γr , whose transition rates are given by the propensity function of the
reaction rule, ar , evaluated at the origin state n. As stated in (5.4) on page 56,
the propensity function ar(n) defines the probability for a reaction r to occur
in the next infinitesimal time interval [t, t + dt) and is given as

ar(n) = kr∏
{s∈S}

nαs,r
s (8.4)

The Chemical Master Equation (cme) (McQuarrie, 1967) summarizesChemical Mas-

ter Equation and fully describes the stochastic dynamics of the state transitions. It can be
derived directly from the propensity function (Gillespie, 1992) and is given as

∂P(n, t)
∂t

= ∑
r∈R
(

inflow78889888:
ar(n − γr)P(n − γr, t)−

outflow788888888888888888888888888888988888888888888888888888888888:
ar(n)P(n, t)) (8.5)

The Chemical Master Equation states that the change of the probability of
being in state n at time t is equal to the probability of arriving atn by executing
reaction r, subtracted by the probability of leaving n by executing r (Sunkara,
2009).

finite state markov processes8.1.2
If the state-space of a continuous timeMarkov process is finite it is possible to
simplify the ChemicalMaster Equation and solve it for a given state-space size.
For this purpose, we first index all m states {n1, . . . ,nm} using an arbitrary
scheme and write the probability distribution as row vector

p(t) = (p1(t) p2(t) . . . pm(t)) (8.6)

where p i denotes the state probability of state ni

p i(t) = P(ni , t) = P [N(t) = ni ∣ N(t0) = n0] . (8.7)

The Chemical Master Equation then simplifies to

∂p(t)
∂t

= p(t)Q (8.8)

106 | part ii — chemical networking protocols (cnps)

Them×m transition rate matrixQ = [q i j], also called infinitesimal generator transition rate

matrixmatrix, contains the mean transition rates from state i to state j in its off-
diagonal elements:

q i , j = ∑
{r∈R∣ni+γr=n j}

ar(ni) (8.9)

That is, the q i , j-th off-diagonal element (i≠ j) is obtained by summing up the
propensity functions (evaluated at state ni) of those reactions leading from
state ni to state n j . Q is a stochastic matrix, meaning that its row sums are stochastic ma-

trixzero. Thus, the diagonal entries are given by q i ,i =−∑ j≠i q i , j . They denote the
rate at which the probability of being in state ni decreases, or, said differently,
1/q i ,i denotes the expected time of resting in state ni . Afterwards the system
moves to state n j with probability p i , j =−q i , j/q i ,i .

By integrating (8.8) we obtain the solution for the state probability evo-
lution, p(t):

p(t) = p(0) ⋅ eQt (8.10)

A property we are often interested in is the stationary probability distribution, stationary prob-

ability distribu-

tion
i.e. the state probability distribution of the system at equilibrium: p̂=p(t →∞). The stationary probability distribution p̂ is obtained by setting the left-
hand side of (8.8) to zero: it satisfies

p̂Q = 0 under the constraint ∑
i
p̂ i = 1, p̂ i ≥ 0 (8.11)

This is known as the total balance condition, meaning that the probability flux total balance

conditioninto a state is equal to the probability flux out of that state.

Example: Convergence of the Disperser Protocol Between Two Nodes (a)

Some cnps can be described by such a finite state Markov process. For
example, theDisperser protocolmaintains a constant population ofmolecules;
hence its state-space is finite. In the following, we will calculate the stationary
probability distribution of theDisperser protocol between two network nodes.

The abstract reaction network is spanned by the set of speciesS ={C1, X1,
C2, X2} and the reaction rules as depicted in Figure 8.2. The state-space can be
reduced from four dimensions to one because the number of C-molecules is
constant (given as c1 and c2, respectively) and the total numberofX-molecules,
xT, is conserved. Wemodel the reaction system as a finiteMarkov birth-death
process over the state space X ={n0, . . . ,nxT}, where state ni represents the
composition of i X1-molecules and xT − i instances of type X2. Figure 8.3

8. dynamical cnp analysis | 107

Figure 8.2 Reaction network of Disperser between two
nodes: A finite number of X-molecules are sent forth and

back between the two nodes.

v1 v2

X1 C1,2

r1,2

X2C2,1

r2,1

Figure 8.3

Markov chain
of Disperser:
in a network

of 2 nodes for

a total num-

ber of xT X-

molecules, c1

and c2 catalyst

molecule in ei-

ther node, re-

spectively.

c1xT c1 (i − 1) c1i

c21 c2 (xT − i)
i−1ii+1

ar1(ni+1)

ar2(ni)
c2 (xT − (i − 1))

xT−1xT

c11

c2xT

01

ar1(ni)= =
ar2(ni−1)= =

The state number i corresponds to the number of X1-molecules, NX1(t). The edges are labeled

by the transition rates, i.e. by the propensity function of the two reactions evaluated at the

current state.

depicts the transition graph of the corresponding birth-death process. Be-
cause each reaction event only adds or removes one molecule instance at a
time, the elements of the (xT + 1)× (xT + 1) transition rate matrixQ are zero
except for

q i ,i−1 = ar1(ni) = c1 i (8.12a)
q i ,i+1 = ar2(ni) = c2 (xT − i) (8.12b)
q i ,i = −(c1 i + c2 (xT − i)) (8.12c)

In order to obtain the stationary distribution, we calculate the left null-
space of the transition rate matrixQ. This problem has already been solved
for the isomerization reaction: a reversible reaction that converts a molecule
into another form by rearranging its atoms:

X1
c1�⇀↽�
c2
X2 (8.13)

For this analogous reaction network, Gillespie (2002) showed that the station-binomial dis-

tribution ary distribution p̂ is a binomial distribution (see also van Kampen, 2007):

p̂ i = (xTi)q i (1 − q)xT−i where q = c2
c1 + c2 (8.14)

108 | part ii — chemical networking protocols (cnps)

The stochastic model for c1 = c2 is equal to that of the Ehrenfest model ergodic

(Ehrenfest & Ehrenfest, 1907; see also Takács, 1979; F. P. Kelly, 1979, Sect. 1.4),
which is famous for showing ergodic behavior: That is, independent on the
probability distribution from which the system starts, it eventually reaches
the equilibrium distribution, in which those states are most likely where the
particles (molecules) are equally distributed.

For a concrete case with a total number of xT=5 molecules, and one con-

5 4 3 2 1 0

p̂i

0.3

0.2

X1-molecules
i

trol molecule in each node (c1= c2=1), the stationary probability distribution
yields

p̂ = 1
32 (1 5 10 10 5 1) (8.15)

showing indeed that for c1= c2, the most likely configuration is given when
the X-molecules are equally distributed between the two nodes.

For this simple reversible reaction system, there is even a closed-form
expression for the mean

E [NX1] = xT c2
c1 + c2 E [NX2] = xT c1

c1 + c2 (8.16)

stating that on average, the X1- and X2-molecules are distributed inversely
proportional to the local number ofC-molecules. The variance is proportional
to the total number of molecules xT:

Var [NX1] = Var [NX2] = xT c1c2(c1 + c2)2 (8.17)

An interesting quantity derivable frommean and variance is the accuracy
of the calculated result, i.e. the signal-to-noise ratio (snr) of the calculated signal-to-noise

ratioaverage, presented as steady-state quantity of the X-molecules:

SNR(NX1) = E [NX1]√
Var [NX1] =

√
xT

c1
c2

(8.18a)

SNR(NX2) = E [NX2]√
Var [NX2] =

√
xT

c2
c1

(8.18b)

That is, the accuracy of the result increases for larger numbers of X-molecules
in the system, or, said differently, the resulting average is noisier for small
values.

8. dynamical cnp analysis | 109

Figure 8.4 Classification of states:

The transition graph depicts tran-

sitions among states in a finite

Markov process.

absorbing

stochastically

closed subspaces

recurrent

transient

classification of states8.1.3

AMarkov process is often visualized by a transition graph, where the verticestransition graph

represent the states and the directed and weighted edges connect those states
for which a non-zero transition rate exists. Figure 8.4 depicts such a transition
graph. In the following, we quickly review the usual classification of states,
which is needed for the further analysis:

A state is reachable when there is a path to this state from any otherreachable

state. The Markov process is irreducible if every state is reachable from everyirreducible

other state in a finite number of steps. If the process is not irreducible then it
contains at least one stochastically closed subspace, in which the process stays,stochastically

closed subspace once it reaches any state belonging to this subspace. Note that this notion
of closure is also related to the closure term from Section 7.2, here applied
to the transition graph. Such a closed subspace may consist of one or more
absorbing states, which are states in which the process stays with probabilityabsorbing

one. Additionally, the process may cycle around in different states of the
closed subspace with probability one.

A state is transient if there is a non-zero probability that the system nevertransient

returns to that state, for example, when there is a reachable absorbing state.
A state that is not transient is called recurrent.

calculating the first-passage time to absorption8.1.4

Absorbing states are often undesired deadlocks and, in chemical reaction
networks, result from the non-reversible extinction of a molecular species. If
a reaction network yields such absorbing states we would like to know the
probability of reaching them and the transition time to such a state.

The reachability question is easy to answer: Whenever an absorbing
state is reachable from the initial state, the probability of eventually ending
in absorption is one; in other words, a deadlock situation is guaranteed.

110 | part ii — chemical networking protocols (cnps)

An interesting class of chemical reaction systems, quasi-steady state systems, quasi-steady

stateremain near a local attractor for a very long time until they finally end in a
stochastically closed subspace. For such systems, we are interested in knowing
how long they survive in transient states. This first-passage time to absorption
can be calculated using phase-type distributions according to Neuts (1981): phase-type dis-

tributionWe first identify all absorbing states by finding the largest stochastically
closed proper subset of the state space, X0 ⊂ X . Since we are currently not
interested in where the system ends, we may summarize all states in X0 into
a single absorbing state Z. All other states, XT =X/X0, are transient states.
We define a new random variable, representing the first-passage time to Z:

TX0 = inf {t ≥ 0∶N(t) ∈ X0} (8.19)

This random variable is phase-type distributed: TX0 ∼ PH(Q,pini). The time
to absorption depends on where the system starts. Thus, pini denotes the
initial probability distribution over the state space. The transition rate matrix
Q is re-sorted such that the absorbing state Z is at the bottom:

Q = (QT Q0
0 0) (8.20)

QT is the nonsingular transition matrix among the transient states and Q0 =−QT ⋅ 1 is the vector of transition rates to the absorbing state Z. (1 is a column
vector of all ones.)

Neuts (1981) proved that the cumulative distribution function of the first cumulative dis-

tribution func-

tion
passage time TX0 is given by

F(t) = P [TX0 ≤ t] = 1 − pinieQT t (8.21)

the probability density function is probability den-

sity function

f (t) = pinieQT tQ0 (8.22)

and the first moment, i.e. themean time to absorption is mean time to

absorption

E [TX0] = −piniQ−1T 1 (8.23)

Neuts’ methodworks for any finite continuous timeMarkov jump process, not
only for birth-death chains. Note however, that the computational complexity
rapidly increases with the number of states, since we have to compute the
inverse of a ∣XT∣-dimensional sparse matrix.

For finite birth-death processes with two absorbing states at the opposite
ends of the Markov chain, Glaz (1979) provided an explicit formula for the

8. dynamical cnp analysis | 111

mean of the first absorption time. The transition rates among the neighbor
states of the space X ={0, 1, . . . ,N} are given as birth rate λ i and death rate
μ i with λ0=λN =μ0=μN =0. The mean time to absorption when starting in
state k with probability one is given by Glaz as

E [T{0,N}] = ∑N−1
s=1 u−(s)u+(s)

utot
(8.24)

where

u−(s) = min(k ,s)∑
i=1

⎛⎜⎝
i−1∏
j=1

μ j ⋅ s−1∏
j=i

λ j
⎞⎟⎠ (8.25a)

u+(s) = N−s−max(k−s,0)∑
i=1

⎛⎜⎝
N−i∏
j=s+1

μ j ⋅ N−1∏
j=N−i+1

λ j
⎞⎟⎠ (8.25b)

utot = N∑
i=1

⎛⎜⎝
N−i∏
j=1

μ j ⋅ N−1∏
j=N−i+1

λ j
⎞⎟⎠ (8.25c)

Even though the above equation is not a closed-form expression, it reduces the
complexity of the calculation tremendously compared to the matrix inversion
method.

Example: Convergence Time of the Disperser Protocol Between Two Nodes(a)

Neuts’ phase-type distribution can also be used to calculate the first-passage
time to non-absorbing states. In this example we demonstrate how to compute
the convergence time of Disperser between two nodes.

We assume that xT X-molecules are initially placed in node 1 while
node 2 starts without X-molecules, and that both nodes contain the same
amount of catalysts. We previously learned that for c1 = c2 the most likely
state is nxT/2 where the X-molecules are equally distributed between the two
nodes. We are interested in the first passage time from the initial state to the
most likely state.

Note that we do not care what happens after the most likely state is
reached. Thus, we simply define this state as absorbing by removing all
arrows leaving it (see the original Markov chain in Figure 8.3). We then
calculate the mean first passage time to this artificially introduced absorbing
state according to (8.23).

112 | part ii — chemical networking protocols (cnps)

100 101 102 103

Total number of molecules xT [molecules] (log)

0.5

1.0

1.5

2.0
M

e
a

n
c

o
n

v.
ti

m
e

E
[T

n x
T
/2
][

s]

c 1
=c 2
= 1 molecule

Figure 8.5 Convergence time of
Disperser (1): First passage time to

the most likely state, nxT/2
, for c1 =

c2. The first passage time is plot-

ted with respect to the total number

of molecules xT, which are initially

placed in node 1.

100 101 102 103

Number of catalysts c [molecules] (log)

10−3

10−2

10−1

100

101

M
e

a
n

c
o

n
v.

ti
m

e
E
[T

n x
T
/2
][

s]
(l

o
g

)

x
T =100 molecules

Figure 8.6 Convergence time of
Disperser (2): First passage time to

the most likely state, nxT/2
, for c1 =

c2. The first passage time is plotted

with respect to the number of cata-

lysts in either node c = c1 = c2. The

total amount of xT = 100 molecules

are initially placed in node 1.

Figure 8.5 shows how fast Disperser converges to equilibrium for one
catalyst molecule in each node, plotted with respect to the total number of
X-molecules, xT. The convergence time logarithmically increases with the
total number ofmolecules. Although the protocol has to sendmoremolecules
to the neighbor node for increasing xT, the dependency is not linear. This is
due to the law of mass action scheduling, which causes the non-equilibrium
migration rate to grow with the number of reactants.

For a fixed total number of xT = 100molecules, Figure 8.6 plots the
convergence time with respect to the number of catalyst molecules. In the
region of only a few catalysts, the convergence time can be drastically lowered
by just adding a few more C-molecules to all nodes. As we will see later, this
comes along with an increased message complexity.

8. dynamical cnp analysis | 113

discussion8.1.5

A detailed analysis based on the Chemical Master Equation (cme) is only
feasible for simple cnps, because the cme contains a separate equation for
each state ni . That is, the state-space and thus the dynamic description of
the system grows exponentially with the number of species (Ferm, Lötstedt,
& Hellander, 2008). This is why it is hard to solve the cme analytically or
numerically for most practical systems.

In closed reaction systems the total number of molecules is finite, andclosed reac-

tion systems the system can be described by a finite state Markov process: A finite number
of linear differential equations describe the transient behavior and a finite
number of linear equations (8.11) yield the stationary probability distribution.

If the total number of molecules is not bounded by a conservation re-
lation the state-space is infinite. This is the case for open reaction systemsopen reac-

tion systems for which there is an inflow of molecule instances. Even if an equilibrium
distribution exists there is no theoretical limit in the number of molecules.
cnps are open reaction systems as soon as user-generated molecules are
injected, which is a common scenario. In this respect, the Disperser protocol,
being closed after initialization, is a counter-example.

For first-order (linear) reaction networks, the following generic solu-
tions have been obtained by Gadgil, Lee, and Othmer (2005) and Jahnke and
Huisinga (2007): The steady-state probability distribution of a linear closed
reaction system is a multinomial distribution. If the linear reaction system
has additional inflow and outflow reactions, the steady-state probability dis-
tribution is a Poisson distribution. The latter even holds for open bimolecular
reaction systems (Gelenbe, 2008). Gadgil et al. (2005) provided closed-form
expressions for the first twomoments (mean and variance) of open and closed
linear reaction systems.

The research field on Markov jump processes is still very active. Several
results have been published recently and will be published in the future that
may also be applied to the analysis of cnps. For example, the transition path
theory (Metzner, Schütte, & Vanden-Eijnden, 2009) provides a method to
calculate the statistical properties of a transition between two selected subsets
of the state-space.

However, for the majority of practical cnps, a detailed microscopic
dynamic analysis is too complex. This is why in the next section, we re-
view how the inherently stochastic reaction process can be approximated by
deterministic differential equations.

114 | part ii — chemical networking protocols (cnps)

macroscopic deterministic approximation 8.2

One method to reduce the complexity of the stochastic system is to examine
the mean time evolution of the system, i.e. the average dynamic behavior of
the same system for different trials. In Section 8.2.1, we derive the determinis-
tic Reaction Rate Equation (rre), a set of Ordinary Differential Equations
(odes) describing the trajectories of molecular concentrations. Then, we
are focusing on two analysis methods for chemical reaction networks that
are basing on this macroscopic description: Section 8.2.2 first demonstrates
how to prove the existence of equilibria using linear stability analysis. This
is especially useful to prove the convergence of cnps. In Section 8.2.3, we
then use results fromMetabolic Control Analysis (mca) and control theory
to analyze the transient behavior of chemical reaction networks.

derivation of the reaction rate equation 8.2.1
Instead of keeping track of the full state distribution, here we are only inter- quantity of

speciesested in the time evolution of the quantity of species

xs(t)=E [Ns(t)] (8.26)

for every molecule s ∈ S . The following equation captures the change of those
expected quantities. It can be derived from the Chemical Master Equation
(8.5) (Gillespie, 2000; van Kampen, 2007; Ullah &Wolkenhauer, 2009a).

∂xs(t)
∂t

= ∑
r∈R

γs,r ⋅E [ar(N(t))] ∀i ∈ S (8.27)

If the propensity function ar(N(t)) is a linear function, which is the case
if reaction rule r is unimolecular, such as A → B + C, then E [ar(N)] =
ar(E [N]) = ar(x) and the above equation can be expressed in terms of the
macroscopic, continuous variable x(t):

∂xs(t)
∂t

= ∑
r∈R

γs,rar(x(t)) ∀i ∈ S (8.28)

or, in vector notation

ẋ = S ⋅ a(x) (8.29)

where S=[γs,r] is the ∣S∣ × ∣R∣ stoichiometric matrix and a(x(t)) is the ∣R∣-
dimensional propensity vector evaluated with the macroscopic, continuous
variable.

8. dynamical cnp analysis | 115

However, if r is a multi-molecular reaction rule, and hence ar(N(t)) is
a nonlinear function, then the above assumption is only an approximation,
since higher-order moments enter as well (van Kampen, 2007):

E [ar(N)] = ar(E [N]) + 12E [(N −E [N])2] a′′r (E [N]) (8.30)

That is, (8.28) only approximates the average behavior by ignoring the higher
order moments; this approximation is adequate if the fluctuations are small.
Later, in Section 8.3.2 on Linear Noise Approximation, we will show how to
estimate these fluctuations.

If we are only interested in an approximated average behavior of our
virtual chemical reaction system, and if we ignore the fact that for multi-
molecular reactions the average behavior can be influenced by stochastic
variation, we may substitute xs(t) = E [Ns(t)] yielding the deterministicreaction rate

equation macroscopic reaction rate equation

∂x(t)
∂t

= S ⋅ a(x(t)) , (8.31)

a set of Ordinary Differential Equations (ode), in vector notation

ẋ = S ⋅ a (8.32)

Note the difference between ns , Ns(t), and xs(t): ns is a realization of
the discrete random variable Ns(t), which exists for each molecular species
s ∈ S . This random variable is stochastically changed according to the state
transitions (propensity functions). Finally, xs(t) is the continuous variable
that approximates the expected number of species s at time t. Thus xs(t) is
a macroscopic variable that ignores the stochasticity of the random process.
At the macroscopic level, the propensity vector a can be seen as the reaction
rate vector; it denotes how frequently reactions occur on average.

linear stability analysis8.2.2
Linear stability analysis determines whether an arbitrary reaction network
has a stable fixed point based on the deterministic description of the system.
In order to cope with non-linear (i.e. multi-molecular) reaction systems it
linearizes the equations around the fixed points (Strogatz, 1994; Otto & Day,
2007).

From the ode system (8.32), which approximates the dynamic behavior
of a chemical reaction network, the fixed points can be obtained by settingfixed point

116 | part ii — chemical networking protocols (cnps)

the time derivatives of the quantity variables to zero, ẋ = 0, and by solving
the resulting equation system Sa(x̂) = 0 with respect to the macroscopic
steady-state quantity vector x̂.

Not all fixed points are stable: A stable fixed point is a state to which
the system returns after a small perturbation. Let’s assume that x̂ is a fixed perturbation

point and x̃(t)=x(t) − x̂ is a small perturbation relative to it. The ode for
the perturbation variable, x̃, is identical to (8.32):

∂x
∂t
= ∂ (x̂ + x̃)

∂t
=
=079:
∂x̂
∂t
+ ∂x̃
∂t
= Sa(x̂ + x̃) (8.33)

In order to efficiently treat multi-molecular reactions, the reaction rate func-
tion is linearized around the fixed point. That is, a(x) is Taylor expanded
around x= x̂:

∂x̃
∂t
= S⎛⎜⎝a(x̂) + ∂a(x)

∂x

UUUUUUUUUUUUx=̂x⋅ x̃ +⋯
⎞⎟⎠ (8.34)

where ∂a(x)
∂x is the ∣R∣ × ∣S∣matrix

∂a(x)
∂x

= ⎛⎜⎜⎜⎜⎝
∂ a1(x)
∂x1

. . . ∂ a1(x)
∂x
∣S∣⋮ ⋱ ⋮

∂ a∣R∣(x)
∂x1

. . . ∂ a∣R∣(x)
∂x
∣S∣

⎞⎟⎟⎟⎟⎠ (8.35)

The matrix

J(x) = S ∂a(x)
∂x

(8.36)

is called the Jacobian matrix. It contains all information about whether and Jacobian matrix

how fast the system returns to the fixed point once perturbed along each
molecular quantity. We drop the second and higher order derivatives in
(8.34), and by recognizing that Sa(x̂)=0, we obtain the linear approximation
for the perturbation variable, a linear differential equation system.

˙̃x = J(x)∣
x=̂x
⋅ x̃ (8.37)

The fixed point is stable if the perturbations decay over time. For a linear
system, this holds if the real part of all eigenvalues of the matrix J(x)∣x=̂x are
negative. If the real part of the leading eigenvalue is zero, then the stability

8. dynamical cnp analysis | 117

analysis is inconclusive and higher order terms have to be considered. If the
eigenvalues have complex parts, the system spirals around the fixed point,
but eventually reaches it.

Linear stability analysis is a powerful tool to prove the convergence ofconvergence

proof cnps, which often present their result at equilibrium. Thus, by showing that
the system has the desired fixed point and that this fixed point is stable, we
can prove that the protocol behaves correctly. In the following example, we
prove Disperser’s stability in a trivial network of two nodes. The full proof for
arbitrary topologies follows later in Chapter 9.

Example: Linear Stability Analysis(a)
Applied to theDisperser Protocol Between Two Nodes

The Disperser protocol consists of unimolecular reactions only. Thus, a lin-
earization is actually not required. Anyway, we apply it here for pedagogi-
cal reason to the Disperser protocol between two nodes (see Figure 8.2 on
page 108).

We already mentioned before that the number of catalysts remains
constant and hence we don’t model the change of the C-molecules and set
c1 =xC1 =const and c2 =xC2 =const. The ode system that approximates the
two-node Disperser protocol is given as ẋ=Sa(x)

ẋ788889888:(ẋX1

ẋX2
) =

S788888888888888888988888888888888888:(−1 +1+1 −1) ⋅
a(x)788888888888988888888888:(c1xX1

c2xX2
) (8.38)

The fixed point satisfies the expression c1 x̂X1 = c2 x̂X2 . We also showed before
that the total number of X-molecules, xT, is conserved. Hence, we substitute
xX2 =xT − xX1 yielding the fixed point

x̂X1 = c2
c1 + c2 xT x̂X2 = c1

c1 + c2 xT (8.39)

Next, we linearize the system by calculating the Jacobian matrix

J(x) =
S788888888888888888988888888888888888:(−1 +1+1 −1)

∂a(x)
∂x7888888888888888988888888888888:(c1 0

0 c2
) = (−c1 c2

c1 −c2) (8.40)

118 | part ii — chemical networking protocols (cnps)

The fixed point is stable if the eigenvalues of J(x)∣x=̂x are negative. The eigen-
values are calculated from det(J(x)∣x=̂x − λI)=0, which results in the charac-
teristic equation (−c1 − λ) (−c2 − λ)− c1c2=0, yielding the eigenvalues λ1=0,
and λ2 =−(c1 + c2). In this example, one of the eigenvalues is zero, meaning
that a perturbation in the number of X-molecules is persistent. Actually, this
is the goal of the Disperser protocol: to continuously react on changes and
re-calculate the average number of molecules. In this respect, the fixed point
of the Disperser protocol between two nodes is indifferent.

metabolic control analysis 8.2.3

Unlike perturbation analysis, which studies equilibria, Metabolic Control
Analysis (mca) offers a framework to analyze the transient response of reac- transient re-

sponsetion networks to various external and internal perturbation channels. With
this method, we are able to calculate the sensitivity of a reaction network to
sudden changes of molecule concentrations, changes of the reaction coeffi-
cient, and fluctuations of a packet stream.

Metabolic ControlAnalysis (mca)was proposed in the 1970ies byKacser
andBurns (1973) andHeinrich, Rapoport, andRapoport (1977) as a framework
to analyze metabolic pathways and genetic networks. The theory aims to link
perturbation around the steady state in individual network components to
steady-state changes in the systematic behavior of the network (Rao, Sauro, &
Arkin, 2004). mca has further matured since its first description (Heinrich
& Schuster, 1996; Fell, 1997). A good step-by-step introduction is given by
Reder (1988) whereas Hofmeyr (2001) provides a distilled reference. From
the huge number of publications and approaches we focus on a description
by Ingalls (2004), where the dynamic behavior of chemical reaction networks
is analyzed in the frequency domain.

The analysis procedure follows the following steps: First, the system
has to be described as a linear time-invariant (lti) state-space model. For
this purpose, we have to linearize the system around its fixed points. Next,
we define what parameters we want to perturb, for example the quantity of
species or reaction coefficients. Those parameters are the input signals of
the model whereas the quantity of species form the state-space. Then, by
applying standard methods from control theory, we are able to calculate the
frequency response of the system, that is, the effect of a perturbation of one of
the parameters to one of the observed outputs. In the following, we elaborate
more on this procedure and apply it to the two-node Disperser example.

8. dynamical cnp analysis | 119

Figure 8.7 Linearized per-
turbation state-space
model: A traditional Lin-

ear Time-Invariant System

analysis approach is en-

abled by linearizing the

feedback and the pertur-

bation effect around the

fixed point.

x̃

A

+ CB

D

+ ỹ1

s
ũ

external

perturbation

fluctuation of quantities

around steady-state

quantity or reaction

rate fluctuations

(depending on) C, D

linearize state change (Jacobian)

linearize

perturbation

output

matrix

feedforward matrix

State-Description of the Linearized Reaction System(a)

As introduced before, a chemical reaction system can be described by a set of
deterministic odes

ẋ(t) = Sa(x(t) ,u(t)) (8.41)
where x(t) denotes the vector of approximated number of molecules, S is
the stoichiometric matrix, and a(x(t) ,u(t)) is the vector of reaction rate
functions. We assume that the reactions obey the law ofmass action; therefore,
the reaction rate depends on the number of reactant molecules, indicated
by x. mca additionally models the fact that the reaction coefficient may be
disturbed by a vector of external perturbations, u(t).external per-

turbations For a perturbation analysis we are only interested in the fluctuations
around the reaction system’s steady state x̂. Thus, like for the linear stability
analysis before, we introduce the following perturbation variables, which
denote the offset from the fixed point:

x̃(t) = x(t) − x̂ (8.42a)
ũ(t) = u(t) − û (8.42b)

The linearized state-space model of the perturbation, also depicted in
Figure 8.7, takes the form

˙̃x(t) = Ax̃(t) + Bũ(t) (8.43a)
ỹ(t) = Cx̃(t) +Dũ(t) (8.43b)

The state matrix A defines how a change of the quantities (state) affects theirstate matrix

future change. This matrix is equal to the Jacobian matrix evaluated at the
fixed point

120 | part ii — chemical networking protocols (cnps)

A = J(x)UUUUUUUUUUUU x=x̂u=û

= S ∂a
∂x

UUUUUUUUUUUU x=x̂u=û

(8.44)

The inputmatrixB indicates how external perturbations affect the fluctuations input matrix

of the state, also evaluated at the fixed point

B = S ∂a
∂u

UUUUUUUUUUUU x=x̂u=û

(8.45)

The output matrix C and the feedthrough matrix D define what output mea- output and

feedthrough ma-

trix
sures we are interested in. We have to chose them appropriately depending
on the response we want to analyze. There are two typical cases for which
we give C and D: (1) Often, we want to study the fluctuation of molecular
quantities with respect to perturbations of the input parameters. In this case
we use

C = I∣S∣ D = 0 (8.46)
yielding ỹ(t)= x̃(t). (2) For the other frequent case, wherewewant to examine
the fluctuation of the reaction rates with respect to perturbations of the input
parameters, we use

C = ∂a
∂x

UUUUUUUUUUUU x=x̂u=û

D = ∂a
∂u

UUUUUUUUUUUU x=x̂u=û

(8.47)

Frequency and Step Response (b)

An lti system, such as the linearized perturbation description, can be ana-
lyzed not only in time domain, but also in frequency domain. The Laplace Laplace trans-

formtransform converts a function in the time domain, f (t), to its corresponding
image function in the frequency domain, F(s):

F(s) = L{ f (t)} = ∫ ∞0 e−st f (t) dt (8.48)

The frequency response H(s) of an lti system is given by its transfer frequency re-

sponsefunction. It describes the frequency-dependent gain of the outputwith respect
to the input. The frequency response of the linearized perturbation system
around the steady state, i.e. the transient behavior of system’s deviation from
the fixed point Ỹ(s)with respect to a perturbation on the input Ũ(s), is given
as

8. dynamical cnp analysis | 121

Figure 8.8 Linearized perturbation
state-space model of Disperser: Our

aim is to analyze the cross-effect of a

perturbation of the molecule’s quan-

tity.

X1 X2C1

r1

r2

C2

B

C = I

D = 0

+

perturbation

linearized

 perturbation

probe

no feedthrough

fluctuations

ũ = ⎛⎜⎜⎜⎜⎝
xX1(t)
xC1(t)
xX2(t)
xC2(t)

⎞⎟⎟⎟⎟⎠

ỹ

H(s) = Ỹ(s)
Ũ(s) = C (sI∣S∣ −A)−1 B +D (8.49)

This matrix-valued function will return the gain of each output (column) with
respect to eachperturbation channel (row). The corresponding step response isstep response

obtainedby dividingH by s and transforming the resulting function back from
frequency to time domain using the inverse Laplace transform by calculating
the contour integral (s=σ + iω):

Y(t) = L−1 {H(s)
s
} = 1

2πi ∫
σ+iω

σ−iω

H(s)
s

est ds (8.50)

Example: Perturbation Analysis(c)
Applied to theDisperser Protocol Between Two Nodes

As an example, we perform a sensitivity analysis of the Disperser protocol in
a simple network topology of two nodes using the presented mca method.

As shown in Figure 8.8, our lti system is represented by a chemical
reaction network, for which we have already given the odes in (8.38) and
calculated the fixed point in (8.39). We define the perturbation (input) vector
as

u(t) = (xX1(t) c1(t) xX2(t) c2(t))T (8.51)

That is, we would like to determine the sensitivity of the system to a small
concentration perturbation ũ(t), around the fixed point û=0. The linearized

122 | part ii — chemical networking protocols (cnps)

system matrix, A, is given by the Jacobian in (8.40), and the linearized input
matrix, B, is

B = S ∂a
∂p

UUUUUUUUUUUU x=x̂u=û

= (−1 +1+1 −1)(c1 x̂1 0 0
0 0 c2 x̂2

)
= (−c1 −x̂X1 +c2 +x̂X2+c1 +x̂X1 −c2 −x̂X2

) (8.52)

According to (8.49), the frequency response matrix is

H(s) = (sI∣S∣ −A)−1 B = 1
s + c1 + c2 (−c1 −x̂X1 +c2 +x̂X2+c1 +x̂X1 −c2 −x̂X2

) (8.53)

We obtain the impulse response in the time domain by applying the inverse
Laplace transform to the frequency response matrix:

y(t) = L−1 {H} = ⎛⎝ ∂ x̃1
∂u
∂ x̃2
∂u

⎞⎠
= (−c1 −x̂X1 +c2 +x̂X2+c1 +x̂X1 −c2 −x̂X2

) e−(c1+c2)t (8.54)

Figure 8.9 shows the impulse response of x̃1, the offset of the number of
X1-molecules from the fixed point, when perturbed by a unit impulse along
the four defined perturbation channels. This figure illustrates that the system
returns to equilibrium when the perturbations are gone. Because the number
of control molecules is small, perturbations of xC1 or xC2 have a large effect
on the concentrations of the X-molecules.

The Disperser protocol can be made more robust to changes of control
molecules by increasing their quantity equally in all nodes. This example
shows that mca gives useful insights about the sensitivity of cnps to external
and internal changes.

mesoscopic dynamical model — 8.3
re-augmenting the intrinsic noise

This section reviews existing methods to characterize the stochastic fluctua-
tions in chemical reaction networks. In Section 8.1 we introduced the exact

8. dynamical cnp analysis | 123

0 2 4 6 8 10
time [s]

−1.0

−0.5

0.0

0.5

1.0

x̃
X

1
[m

o
le

c
u

le
s]

perturbation of xX1

perturbation of xX2

0 2 4 6 8 10
time [s]

−500

−250

0

250

500

perturbation of xC1

perturbation of xC2

Figure 8.9 Perturbation impulse response: The quantities of species X1, X2 as well as C1, and C2 are perturbed

with a unit impulse; both graphs show the response of x̃1 , the offset of the number of X1-molecules from its

steady-state quantity. The total number of X-molecules is xT = 1000, i.e. the fixed point is at xX1 = xX2 =
500 molecules.

mathematical description of cnps, scheduled by a stochastic reaction algo-
rithm. In the previous section, we then introduced the deterministic ode
approximation to describe the average trajectories of cnps. An alternative
view is to regard the average trajectory as the systemic part of the “signal” thatsystemic

trajectory is “polluted” by noise. The term “noise” is actually not really appropriate in
this context (Ullah &Wolkenhauer, 2009b): The fluctuations are not neces-
sarily unwanted data without meaning and are not imposed by an external
source but stem from the inherent randomness of molecular collisions on the
microscopic level.

Recently, researchers came up with several approaches to separate the
mathematical description of a stochastic process into a systemic part, and
noise. The ode approximation, which is easy to obtain, can be used as
systemic trajectory whereas the noise is characterized and re-augmented toaugmented

noise this deterministic signal.

In this section, we discuss three of those mesoscopic mathematical
descriptions for chemical reaction networks. Section 8.3.1 quickly mentions
the Chemical Langevin Equation (cle), which, despite its pervasiveness in
natural science, points out to be too complex to apply to cnps. Instead, we
propose to use the Linear Noise Approximation (lna), which we review in
Section 8.3.2. Finally, Section 8.3.3 mentions the TwoMoment Approximation
(2ma), an enhancement of the lna.

124 | part ii — chemical networking protocols (cnps)

the chemical langevin equation 8.3.1
In natural science, instead of using the cumbersome stochastic Chemical
Master Equation (cme), a stochastic process is often described by a system of
Langevin equations— a set of stochastic differential equations that separates Langevin equa-

tionthe change of any state in a systemic and a noisy part.

ẋ i =
systemic789:
f i(x) +

noise78888888888888888888888888888888888888898888888888888888888888888888888888888:
m∑
j=1

g i , j(x) η j(t) (8.55)

f i and g i are deterministic functions whereas the η js are random functions
in time with zero mean. The system is much easier to analyze if all g is are
constants; in this case the system is subject to additive noise. Otherwise, if additive noise

the amplitude of the noise depends on the actual state of the system, the noise
is said to bemultiplicative and a mathematical treatment is more intricate. multiplicative

noiseLike the deterministic ode approximation, the Langevin equation oper-
ates on continuous variables and is therefore an approximate model for the
discrete valued cme. Gillespie (2000) provided a derivation of the Langevin Chemical

Langevin

Equation
equation for the stochastic chemical jump type Markov process by translating
the cme (8.5) to a Chemical Langevin Equation (cle)

ẋs =
systemic788888888888888888888888988888888888888888888888:∑

r∈R
γrar(x)+

noise78888888888888888888888888888888888888889888888888888888888888888888888888888888:∑
r∈R

γr
√
ar(x)Γr ∀s ∈ S (8.56)

This equation system describes the change of the approximated continuous
quantity xs of species s ∈ S in terms of the stoichiometric vector γr and
the reaction rates ar(x). The term Γr ∼ N(0, 1) is temporally uncorrelated
Gaussian white noise, which is also statistically uncorrelated for each reac-
tion. Hence, the cle is a stochastic differential equation with multiplicative
Gaussian white noise.

To arrive at this solution, Gillespie (2000) assumed that the quantities are
large. In fact, the cle is precise only if the following two conditions hold: First,
within a small time interval [t, t + dt) the state change has to be small such that
the propensity function does not change much: ar(x(t)) ≈ ar(x(x + dt)).
Second, within the same time interval each reaction must be executed more
than once. Whereas the first condition defines a lower limit on dt, the second
defines an upper limit. Both conditions usually hold if the number of involved
molecules is large.

An additional approximation was done by characterizing the noise as
white noise. In reality, the noise exhibits small and often negligible non-

8. dynamical cnp analysis | 125

Gaussian parts (Zwanzig, 2001). The noise is of the simpler additive type only
for a limited subset of very simple unimolecular reactions operating on a finite
state-space (Hanggi & Shuler, 1981), as for example the Disperser protocol
(see the example in Section 8.1). The Langevin equation can therefore only
be taken as a first approximation of the expected noise a cnp exhibits.

Application to Chemical Networking Protocol Analysis(a)

Although writing down the cle for chemical reaction networks is straight-
forward, solving the system of stochastic differential equations is not. Thus
cles are of limited use for the analysis of cnps.

The cle for the Disperser protocol between two nodes (see Figure 8.2)
for c1=xC1 and c2=xC1 is

ẋX1 = −c1xX1 + c2xX2 −√c1xX1 ⋅ Γ1 +√c2xX2 ⋅ Γ2 (8.57a)
ẋX2 = +c1xX1 − c2xX2 +√c1xX1 ⋅ Γ1 −√c2xX2 ⋅ Γ2 (8.57b)

The usual method to study a system of cles is to use numerical methods to
find sample trajectories for the state variables. This however does not provide
us with more insights compared to executing the cnp in a stochastic simula-
tion. In theory, it is possible to solve stochastic differential equations using
Itô calculus (Øksendal, 2003), but this is only feasible for very simple sys-
tems. Furthermore, there is no straightforward way to quantify the variance
(noise) of a certain variable. This is because the cles are interdependent.
For example, for our two node Disperser example, we know from (8.17) that
the variance of the quantities is Var [NX1]=Var [NX2]=xT c1 c2

(c1+c2) , which we
cannot directly deduce from the two equations above. Fortunately, there are
other methods to describe the noise of chemical reaction systems; we will
review two of them below.

linear noise approximation8.3.2

Like the Chemical Langevin Equation (cle), the LinearNoise Approximation
(lna) separates the description of the chemical reaction behavior into two
distinct parts: the systemic trajectory is given by the macroscopic reaction
rate equation (8.32) whereas the intrinsic noise is modeled as a Fokker-Planck
equation, which is analytically tractable. Hence, the lna provides a first
order approximation of the system’s dynamics described by the Chemical
Master Equation (8.5). For linear reaction networks (first order reactions)
it even gives exact solutions (Bruggeman, Blüthgen, & Westerhoff, 2009).

126 | part ii — chemical networking protocols (cnps)

lna has been introduced by van Kampen (1976) (see also van Kampen, 2007,
Chap. 10) and was further studied by Elf and Ehrenberg (2003), Elf (2004),
Tomioka, Kimura, Kobayashi, and Aihara (2004). lna has been successfully
applied to the study of enzymatic reaction networks (Hayot & Jayaprakash,
2004) and gene regulatory networks (grn) (J. Paulsson, 2004; Scott, Ingalls,
& Kærn, 2006).

Derivation from the Chemical Master Equation (a)

lna is based on simplifications of the Chemical Master Equation (cme) and
makes use of the observation that in real chemical reaction vessels, stochastic
fluctuations become smaller for large system volumes. The macroscopic con- concentration

centration of molecules s ∈ S is expressed as the average number of molecules
per volume Ω:

xs(t) = E [Ns(t)]
Ω

(8.58)

Next, similar than for the cle, the random variable that describes the
quantity of a molecule s, Ns(t), is separated into a continuous, deterministic
concentration variable xs(t), which captures the systemic change, and a new
random variable η(t) that describes the microscopic fluctuations. Because
we expect the fluctuations to be of order

√
Ω the ansatz

Ns = Ωxs +√Ωηs (8.59)

is used; the conditional probability terms in the cme are expressed with
respect to the new variables.

Then, all terms of the cme are Taylor-expanded near the macroscopic
concentration x(t) using the Ω-expansion method (van Kampen, 1976, 2007)
(see also Elf & Ehrenberg, 2003, sup. mat.). Ω-expansion expands the virtual
volume of the reaction vessel Ω in powers of 1/Ω. For example, themesoscopic
reaction rate of reaction r, i.e. the number of molecules processed per volume
is then given by

ar(x + 1√
Ω
η) = ar(x) + 1√

Ω
∑
s∈S
(∂ar(x)

∂xs
ηs) +O(1Ω) (8.60)

The higher order termsO(1/Ω) are dropped. Collecting terms of order√Ω
yields the macroscopic rate equation (8.28)

8. dynamical cnp analysis | 127

*The diffusion

matrix is also

called dissi-

pation ma-

trix, from the

fluctuation-

dissipation the-

orem in statis-

tical thermody-

namics (Kaizer,

1987).

∂xs(t)
∂t

= ∑
r∈R

γs,rar(x(t)) ∀i ∈ S (8.61)

describing the systemic trajectory of the reaction system according to the law
of mass action, whereas collecting terms of order Ω gives a Fokker-Planck
equation for the noise components only — the Linear Noise ApproximationLinear Noise

Approximation (lna) (Elf & Ehrenberg, 2003; Wallace, 2010):

∂P(η, t)
∂t

=
drift7889888:

− ∑
i , j∈S

⎛⎝Ji , j(x) ∂ηkP(η, t)∂η i

⎞⎠
+ 1
2 ∑i , j∈S ⎛⎝Di , j(x) ∂2P(η, t)∂η i∂ηk

⎞⎠d88e88f
diffusion

(8.62)

This Fokker-Planck equation is a continuous approximation of the probabilityFokker-Planck

equation distribution of the noise expressed in a drift and a diffusion term. The drift
term characterizes the force of the process to return to its mean. It is nodrift

surprise that this force is given in terms of the Jacobian matrix J, whichJacobian matrix

expresses the speed of the system to return to the fixed point when perturbed –
for each molecule concentration separately and linearized around the fixed
point. The diffusion term is given in terms of the diffusion matrix*.diffusion matrix

D(x) = Sdiag(a(x))ST (8.63)

The diffusion matrix characterizes the “smearing” force, i.e. the tendency of
the system to deviate from the mean.

It is well known that the stationary solution of any Fokker-Planck equa-
tion is a multivariate Gaussian distribution. Thus, the stationary solution for
(8.62) is

P(η, t) = exp(− ηTΞ(x)η
2)√(2π)∣S∣ ⋅ detΞ(x) (8.64)

with zero mean and a covariance matrix Ξ(x) = E [ηηT] to find. That is, all
molecular fluctuations (and all linear combinations thereof) are approximated
by Gaussian distributions.

128 | part ii — chemical networking protocols (cnps)

In (8.59) we introduced the ansatz Ns = Ωxs + √Ωηs . Hence, the
unknown covariancematrix of the noise η is identical to the covariancematrix
of the random variables N of molecular quantities (the volume Ω cancels
out). The covariance matrix contains the variances (diagonal elements) and
covariances of the molecular quantities with respect to each other, e.g. the
variance of the molecular quantity Xi is

Var(N i) = [Ξ(x)]i ,i (8.65)

Recipe to Calculate the Covariance Matrix (b)

Elf and Ehrenberg (2003) provided the following simple recipe of how to find covariance ma-

trixthe covariance matrix Ξ̂, which describes the noise around the fixed point.

1. Provide the macroscopic reaction rate equation for the reaction system
under study (according to Section 8.2):

ẋ = Sa(x) ; (8.66)

2. Find the fixed point x̂ by solving Sa(x̂)=0 (see Section 8.2.1);
3. Calculate the Jacobian matrix, evaluated at the fixed point: Ĵ=J(x)∣x=̂x Jacobian matrix

(see Section 8.2.2);

4. Calculate the diffusion matrix, also evaluated at the fixed point: D̂ = diffusion matrix

D(x̂), according to (8.63);
5. Find the steady-state covariance matrix Ξ̂ by solving the following Lyapunov ma-

trix equationLyapunov matrix equation

ĴΞ̂ + Ξ̂ĴT+ D̂ = 0, (8.67)

meaning that at equilibrium, the relaxation towards the fixed point
must be equal to the diffusion due to the randomness of the intrinsic
noise.

Note that the lna prescribes a multivariate Gaussian distribution for the
probability density function of the molecular quantities at steady state. That
is, it provides an exact description of the noise for unimolecular reaction
networks, and an accurate approximation for higher-order reaction networks
at equilibrium.

8. dynamical cnp analysis | 129

Example: Linear Noise Approximation(c)
Applied to theDisperser Protocol Between Two Nodes

The Disperser protocol consists of unimolecular reactions only. Thus, the
lna should provide exact values for the variance of the molecular quantities.
Figure 8.2 on page 108 shows the reaction network under consideration for
which we apply the lna recipe step by step:

1. The odes of the two-node Disperser protocol have already been pro-
vided in (8.38). The lna only works if the ODEs are linearly indepen-
dent. Since the two reactions are dependent, we make use of the fact
that the X-molecules are conserved. We substitute xX2 =xT − xX1 and
obtain the single ode

ẋ79:
ẋX1 =

S7888888888898888888888:(−1 1)
a(x)7888888888888888888888888888888888888888988888888888888888888888888888888888888:(c1xX1

c2 (xT − xX1)) (8.68)

2. The fixed point is obtained by solving Sa(x̂)=0 (see (8.39) on page 118):
x̂X1 = c2

c1 + c2 xT (8.69)

3. The Jacobian matrix for (8.68), evaluated at the fixed point is

Ĵ = J(x)∣x=̂x = S ∂a
∂x ∣x=̂x = −(c1 + c2) (8.70)

4. The diffusion matrix, evaluated at the fixed point is

D̂ = Sdiag(a(x̂))ST
= (−1 1)⎛⎝ c1 c2

c1+c2 xT 0
0 c1 c2

c1+c2 xT
⎞⎠(−11)

= 2 c1c2
c1 + c2 xT

(8.71)

5. Finally, we obtain the covariance matrix, Ξ̂= ξ̂1,1, by solving the Lya-
punov equation

0 = ĴΞ̂ + Ξ̂ĴT+ D̂= (−(c1 + c2)) ξ̂1,1 + ξ̂1,1 (−(c1 + c2)) + 2 c1c2
c1 + c2 xT (8.72)

130 | part ii — chemical networking protocols (cnps)

0 1 2 3 4 5 6 7 8 9 10
i (number of X1-molecules)

0.0

0.1

0.2

0.3
p
i

i (number of X1-molecules)

⋅ Exact bionmial distr. derived from the CME

× LNA appoximated Gaussian distr.

Figure 8.10 Effective/Approximated probability distribution
of Disperser: The LNA approximates the binomial distribution

with a Gaussian distribution. This approximation is more accu-

rate for large number of molecules and when the reaction coef-

ficients c1 and c2 are similar. Here: c1 =2, c2 = 1, xT = 10

Hence, the variance of the number of species X1 at equilibrium is

Var(N̂X1) = ξ̂1,1 = c1c2(c1 + c2)2 xT (8.73)

In this example, which consists of first order reactions only, the lna is able
to produce the same expression for the variance as the exact calculation from
the cme (compare (8.73) on page 131 to (8.17) on page 109). However, we
have to keep in mind that the lna approximates the probability distribution
as a continuous Gaussian distribution, which differs from the actual binomial
distribution. Figure 8.10 shows a comparison of the two distributions for
c1 = 2, c2 = 1, and a very small total number of molecules of xT = 10. The
approximation becomes better for larger quantities, or when c1 ≈ c2.

two moment approximation 8.3.3

The Coupled Mean-Variance Approximation (Gómez-Uribe & Verghese,
2007) or Two Moment Approximation (2ma) (Ullah &Wolkenhauer, 2009a,
2009b) is an extension of the Linear Noise Approximation (lna). Like the
other mesoscopic descriptions, the 2ma separates the intrinsic noise from
the systemic trajectories of the system. Additionally, the 2ma models the
fact that the noise actually influences the systemic trajectory. Because we are noise influences

systemic trajec-

tory
not applying this method to cnps, we just briefly sketch the ideas behind the
2ma and leave the reader to the referred articles for further information.

Unlike the lna, which focuses on determining the covariances of the
molecular quantities around the steady state, the 2ma describes the evolution
of the mean x(t) and the covariance matrix Ξ(t) = [ξ i , j(t)] over time by
separate differential equations. They can be derived from the ChemicalMaster
Equation (cme) when third and higher order moments are ignored. (see
Ullah and Wolkenhauer (2009b, Appx. A1) for further details and proofs).
The ode for the effective molecular concentration is

8. dynamical cnp analysis | 131

∂x(t)
∂t

=
deterministic flux7888988:

Sa(x) +
stochastic flux7889888:

1
2
S ∑
i , j∈S

⎛⎝∂2a(x)∂x i∂x j
ξ i , j(x)⎞⎠ (8.74)

whereas the ode for the covariance matrix is

∂Ξ(x)
∂t

= J(x)Ξ(x)+Ξ(x) JT(t)+D(x)+ 1
2 ∑i , j∈S ⎛⎝∂

2D(x)
∂x i∂x j

ξ i , j(x)⎞⎠ (8.75)
From those ∣S∣ (∣S∣ + 3)/2 odes, the effective trajectories of molecular con-
centrations as well as the corresponding covariances can be calculated, for
example by numerical integration.

Recall from Section 8.2.1 how the deterministic reaction rate equation
(8.32) can be derived from the stochastic cme (8.5). There, we assumed that
the expected value of the propensity function is equal to the propensity func-
tion taken at the mean quantity vector, E [a(N)] = a(E [N])=a(x), which
is only correct for first order reactions. After introducing the mesoscopic
models, we recognize that for second- and higher-order reactions, we have
to consider the second- or higher-order moments of the stochastic process,
because the propensity function combines dependent random variables of
molecular quantities in a non-linear fashion. The 2ma considers the second
moment (covariances) but ignores third and higher order moments of the
probability distributions. Hence, the 2ma provides an exact solution for first-
and second-order reactions and an accurate approximation for third- and
higher-order reactions.

existence theorems for equilibria8.4

In this section, we give a short introduction to two existing theorems that
infer from the structure of a chemical reaction network on the existence
of fixed points. Such generic theorems provide us with information about
the dynamic behavior of a cnp without forcing us to give a microscopic or
macroscopic description of the dynamic behavior and consequently, without
solving odes or the cme. The two theorems we review in this section are
the Deficiency ZeroTheorem in Section 8.4.1 and the Chemical Organization
Theory in Section 8.4.2.

132 | part ii — chemical networking protocols (cnps)

D

A

B

C

E

F

complex

(a) Reaction network graph

D

A

A+B

C

E

F

(b) Graph of complexes

Figure 8.11 Reaction network
among species complexes: The Defi-

ciency Zero Theorem defines (a) a re-

action network as (b) a graph of com-

plexes. A complex is a reactant or

product multiset of species that ap-

pears in the reaction network.

deficiency zero theorem 8.4.1

The Deficiency ZeroTheorem (Feinberg, 1972; Horn & Jackson, 1972; Horn,
1973a, 1973b, 1973c) provides a general result about the stability of a certain
class of chemical reaction networks. The theorem is particularly interesting
because it allows for deciding whether or not a reaction network is stable,
solely based on its structure. A dynamical analysis is not required as long as
the reaction rates obey the law of mass action. The Deficiency Zero Theorem
states that a weakly reversible reaction network with a deficiency value of
zero has exactly one fixed point, which is asymptotically stable.

In the following, we briefly introduce the terms “weakly reversible”
and “deficiency” and illustrate the theorem on a simple example, depicted
in Figure 8.11(a). Feinberg and Horn introduced a new reaction network
graph, the directed graph of complexes. Complexes are those multiset of complex

species that appear on the left- and the right-hand side of a reaction. In our
example network, the molecules A and B appear together on the left- and
right-hand side of the reactions A+B→ C and D→ A+B, respectively. Thus,
the multiset {A,B} is a complex as well as {A}, which appears alone in the
reactant/product multiset of other reactions. The graph of complexes for our
simple example is shown in Figure 8.11(b).

A chemical reaction network is weakly reversible if for every reaction weakly re-

versible reac-

tion network
leading from complex C i to complex C j , there is also a chain of reactions lead-
ing from C j back to C i . Our example reaction network is weakly reversible,
because there is no complex that is produced but not consumed. We also
have to define the term linkage class, which denotes a connected subgraph in linkage class

the graph of complexes. Our example consists of two linkage classes.
The deficiency δ of a chemical reaction network is a positive integer, deficiency

defined as

δ = ∣C∣ − l − rank(S) (8.76)

where ∣C∣ is the number of components, l is the number of linkage classes, and rank of the stoi-

chiometric ma-

trix
rank(S) is the rank of the stoichiometric matrix. Our example has a deficiency
of

8. dynamical cnp analysis | 133

δFigure 8.11 =
∣C∣79:
6 − l79:

2 −
rank(S)79:
4 = 0 (8.77)

The Deficiency ZeroTheorem states that because our example reaction net-
work is weakly reversible and its deficiency is zero, the reaction network has
a single fixed point, which is asymptotically stable.

Note that the theorem only provides stability proofs for a certain class of
chemical reaction networks. If the network is neither weakly reversible nor is
its deficiency zero, we are not able to draw any conclusions about its stability.
Thus, the applicability of the theorem to the analysis of cnps depends on the
concrete case.

A good introduction to the dynamics of chemical reaction networks
in general and a proof of the Deficiency Zero Theorem can be found in
Feinberg’s lecture notes (1979). There is an extension of the theorem to
stochastic processes (Anderson, Craciun, & Kurtz, 2010), which is used by
Mairesse and Nguyen (2009) to show that a reaction network of deficiency
zero, when translated to a stochastic Petri Net model, results in a stationary
probability distribution (equilibrium) which is in product form (F. P. Kelly,
1979).

chemical organization theory8.4.2

The Chemical OrganizationTheory (cot) also provides general statements
about the existence of fixed points. But it goes much further than the Defi-
ciency Zero Theorem: The Chemical Organization Theory was developed
by Dittrich and Speroni di Fenizio (2007) as a continuation of the work by
Fontana and Buss (1994) on constructive reaction systems. In such systems,
new types of species and reactions are dynamically added or removed. The
original aim of the Chemical OrganizationTheory was to capture the dynamic
behavior of constructive reaction systems by relating fixed points to the chang-
ing structure of the reaction network. We will cover such volatile reaction
network structures in more detail in Part iii; in this section, we highlight
that the cot – by only analyzing the structure of the reaction network – is
able to predict the existence of dynamic fixed points.

One of the main results of the cot is that every dynamical fixed point is
an instance of an organization. Organizations are subsets of the chemical uni-
verse, i.e. subsets of ℘(S). An organization is a closed and self-maintainingorganization

set of molecules. Dittrich proved that all dynamic fixed points of the reaction
network must be instances of such organizations. He further showed that
the organizations form a lattice hierarchy. Due to stochastic fluctuations, the

134 | part ii — chemical networking protocols (cnps)

All sets of species: ℘(S)
Semi

 Self-Maintaining

 SetsSemi Organizations

Organizations

Fixed Points

Self-Maintaining

Sets

Closed Sets

Figure 8.12 Venn diagram
of the Chemical Organization
Theory: Every fixed point is an

instance of an organization.

system may completely lose some molecular species, which corresponds to a
down-movement in the lattice of organizations whereas the appearance of
new, before unknown species, may result in an up-movement.

To find the organizations and other important power sets over the set
of molecular species (see Figure 8.12) the reaction network is analyzed struc-
turally first, without considering its dynamics. The structure of the reaction
network can be mapped to a set of semi-organizations. Semi-organizations semi-

organizationare those sets of molecules that are closed and semi self-maintaining. We
already introduced the concept of closure in Section 7.2 to determine the
sequence space of Fraglets programs. Generally, a set of molecular species is
closed if no new species can be generated by reactions among any multiset of closed

this set. Formally, a set X ⊆ S is closed iff

img r ⊆ X ∀{r ∈ R ∣ dom r ⊆ X} (8.78)

A set X ⊆ S is semi self-maintaining if every molecule that is consumed semi self-

maintainingwithin this set is also produced within this set. A molecule s ∈ X is consumed
within the set X iff ∃{r ∈ R ∣ dom r ⊆ X ∧ αs,r ≥ 0}; it is produced within
the set X iff ∃{r ∈ R ∣ dom r ⊆ X ∧ βs,r ≥ 0}.

All sets X that are both closed and semi self-maintaining are called
semi-organizations. Being a semi-organization is a necessary requirement
for being an organization, which is in turn required to host a fixed point.

8. dynamical cnp analysis | 135

A set of species is an organization if the set is closed and self-maintaining.
A set ofmoleculeX ⊆ S is self-maintaining if there exists a reaction rate vectorself-

maintaining a(N(t)) such that the following conditions apply:
ar(N(t)) > 0 ∀{r ∈ R ∣ domX ⊆ S} (8.79a)
ar(N(t)) = 0 ∀{r ∈ R ∣ domX ⊈ S} (8.79b)

ẋ i = [Sa(N(t))]i ≥ 0 ∀s i ∈ {X} (8.79c)

Note that none of the conditions require that the reactions obey the law
of mass action; the reaction rate vector a(N(t)) can be any function, not
necessarily dependent on the number of reactant species. This is why not all
organizations contain stable fixed points. An organization is a more general
precondition for a sustainable dynamical system independent on its concrete
dynamical realization.

We will make use of the cot in Part iii where it is particularly helpful
to analyze mutations of Fraglets strings, leading to novel species that were
not present in the system before.

discussion8.4.3

Both the Deficiency Zero Theorem as well as the Chemical Organization
Theory make predictions on the presence of dynamic fixed points by merely
analyzing the structure of the reaction network. They use a different approach
and yield different results: The Deficiency Zero Theorem only provides a
result for a certain class of reaction networks, those whose dynamic behavior
follow the law of mass action and whose deficiency value is zero. If this is the
case, the theorem asserts that a non-trivial stable fixed point exists; otherwise,
the theorem does not provide any result. The Chemical Organization Theory,
on the other hand, is able to analyze any reaction network but only gives us
hints where the dynamic fixed points are located; they must be instances of
organizations.

Both theorems have their application areas in the analysis of cnps: If
we are not interested in the location of the steady state, the Deficiency Zero
Theorem may be used to quickly prove the convergence of a protocol. The
Chemical Organization Theory is useful for finding the location of steady-
states by transforming the sets of molecules forming a semi-organization into
constraints and feeding them to a symbolic equation solver.

136 | part ii — chemical networking protocols (cnps)

summary and discussion 8.5

Most of the dynamical analysis carried out in this thesis makes use of deter-
ministic approximations, because protocol proofs are getting easier and more
understandable while still being valid for most reaction systems, especially
for large number of molecules (Gillespie, 2000, 2002). However, for certain
networks, such an approximation may hide certain quantitative effects that
only appear in the detailed stochastic model (Ullah &Wolkenhauer, 2009b):

First, the amount of stochastic fluctuations depends on the molecu- value-

dependent

signal-quality
lar quantities as demonstrated for the Disperser protocol by calculating the
signal-to-noise ratio in the previous section. Second, in the stochastic model,
molecules may go extinct when their quantity drops from one to zero whereas extinction

the deterministic approximation tracks the molecular quantities in contin-
uous variables that can become arbitrarily small. Third, in some situations,
the actual mean can be larger than the deterministic prediction, leading to
an enhanced sensitivity of the network (Pedraza & van Oudenaarden, 2005),
known as stochastic focusing (Paulsson, Berg, & Ehrenberg, 2000). Finally, stochastic focus-

ingif the reaction network has more than one stable steady state (bi-stability),
either steady state may be reached regardless of the initial concentration; this stochastic

switchingis known as stochastic switching.

Generally, the deterministic approximation only predicts the system
correctly if the macroscopic rate equations have a globally stable solution,
independent on the initial condition. In this case the stochastic trajectory
converges to the deterministic path (Mansour, Van Den Broeck, Nicolis, &
Turner, 1981).

Chemical networking protocols differ from traditional protocols in that
they exploit the dynamic behavior of code interactions as an additional design
dimension. Traditional protocol analysis methods, such as model checking,
process calculi, or theorem proving, which have their strengths in proving the
qualitative correctness of protocols, are not able to capture the quantitative
aspect of cnps. Recent developments, such as probabilistic model checking,
come much closer to our requirements.

On the other hand, classical quantitative protocol analysis could poten-
tially benefit from the mathematical tools developped for chemistry: So far,
using probabilisticmodel checking, it has not been possible to precisely reason
about statistical quantities beyond expectation values. For example, measures
such as the variance have not made accessible (Hasan & Tahar, 2009). For
cnps, this is now possible by using the recently established method of meso-

8. dynamical cnp analysis | 137

scopic dynamical analysis for chemical reaction networks using lna, or 2ma,
for example.

••

138 | part ii — chemical networking protocols (cnps)

chapter99Analysis of a Chemical
Gossip Protocol

Application of the chemical analysis tools to the study of a dis-
tributed data aggregation protocol.

Someone who gossips to you
will gossip about you. 9

English proverb

The Disperser protocol, introduced as an application case in Sec-
tion 5.4, is a chemical gossip aggregation protocol. It calculates an average

value in a distributed way. Unlike in traditional gossip protocols, the calcu-
lation is not achieved by exchanging symbolic values, but by relying on the
dynamic behavior of the spanned distributed reaction network such that at
equilibrium, the result is presented to each node in the number of molecules.

In this chapter, we first model the dynamic behavior of the generalized
Disperser protocol by deterministic odes (Section 9.1). Within this model,
we prove that the system asymptotically converges to a stable fixed point
by using linear stability analysis (Section 9.2). In Section 9.3 we apply the
Linear Noise Approximation (lna) to calculate the signal-to-noise ratio of
the presented result before we discuss our findings in Section 9.4.

abstract model and mathematical description 9.1

Formally, the distributed reaction network of Disperser in a network G =(V ,E) can be represented as an abstract explicit artificial chemistry (S ,R,A).
The set of species is given explicitly by the set

9. analysis of a chemical gossip protocol | 139

*The number of

Ci,j-molecules

remains con-

stant, which

is why the re-

action order

is m instead of

(m + 1).

Figure 9.1 Reaction net-
work and graph Laplacian
of Disperser: The protocol

computes the average of Xi-

molecules by letting the cat-

alysts, Ci,j , send them to the

corresponding neighbors.

The Laplacian of the network

graph describes the topology

of the network of nodes.

v1 v2

v3

v4

X1 X2

r1,2

r2,1

X3

X4

C3,2

C4,3

r2,3

r2,4

r3,2

r3,4

r4,2

r4,3

L(G) = ⎛⎜⎜⎜⎜⎝
1 −1 0 0−1 3 −1 −1

0 −1 2 −1

0 −1 −1 2

⎞⎟⎟⎟⎟⎠

m

m

m

m

m

m
m

m

m

m

m

m
m

m
mm

k

k

k

k

k

k

k kC1,2 C2,1

C2,3

C2,4

C4,2

C3,4

S ={Xi ∣ i ∈ V} ∪ {Ci , j ∣ (i, j) ∈ E} (9.1)

It consists of an X-species per node and a molecule of type C per node and
link. In node v i , the Xi-molecules are relocated to one of the neighbor nodes
v j by reacting with the corresponding catalyst Ci , j .

In this section, we generalize the Disperser protocol first presented in
Section 5.4: instead of sending only one single molecule, we use higher orderhigher order

reactions reactions that send multiple molecules at once. The m molecules that are
removed from the originating node are combined in a single “packet” to the
destination node, where the m molecules are re-injected. This reduces the
message complexity of the protocol. We also introduce a reaction coefficient,
k, which has to be identical for all reactions. The corresponding distributed
reaction network is explicitly described by the following mth-order reactions,
depicted for a concrete network topology of four nodes in Figure 9.1:*

R ={r i , j ∣ (i, j) ∈ E} (9.2a)

r i , j ∶ Ci , j +mXi
k��→ Ci , j +mX j (9.2b)

The algorithm of our abstract artificial chemistry,A, is an implementation of
an exact stochastic reaction algorithm.

We restrict the problem to the case where the graph G is fully connected
and symmetric, meaning that network links are bidirectional. We still consider
ideal linkswithout delay, packet loss or bandwidth limitations. We also require

140 | part ii — chemical networking protocols (cnps)

that each catalyst species Ci , j is present with the same number of instances:
xCi , j = c for all links (i, j) ∈ E .

formal convergence proof 9.2

We use the dynamic approximation, presented in Section 8.2, to prove that
the Disperser protocol converges. We have to find the fixed point of the
distributed reaction network and show that it is stable.

determining the fixed point 9.2.1

We first write down the differential equations that describe the time evolution
of the number of Xi-molecules:

ẋXi =
inflow7888988:∑

j∈V
adj(j, i) kxC j,i x

m
X j
−

outflow7888988:∑
j∈V
adj(i, j) kxCi , jx

m
Xi

∀i ∈ V (9.3)

Then, in order to find the global fixed point, we set ẋXi =0. Because there
are c instances of each catalyst, we substitute xCi , j = c ⋅ adj(i, j), and because
the adjacency function, adj(⋅), only returns values 0 and 1, we use adj(i, j)2=
adj(i, j). Hence, from (9.3) we obtain the following equation, which captures
the balance of inflow and outflow at equilibrium in each node. flow balance

inflow7888988:
kc∑

j∈V
adj(j, i) x̂mX j

=
outflow78889888:

kcx̂mXi ∑
j∈V
adj(i, j)

d88888888888888888888888e88888888888888888888888f
degout(i)

∀i ∈ V (9.4)

Solving (9.4) with respect to x̂Xi yields

x̂Xi = m

klllm∑ j∈V adj(j, i) x̂mX j

degout(i) ∀i ∈ V (9.5)

where degout(i)=∑ j∈V adj(i, j) is the out-degree of node v i , i.e. the number out-degree

of links leaving v i . This equation states that the number of X-molecules in
node v i at equilibrium, x̂Xi , is equal to the power mean with exponent m of power mean

the number of X-molecules in v i ’s neighbors.

9. analysis of a chemical gossip protocol | 141

By assuming that at equilibrium the X-molecules are evenly distributed
among all nodes, we use the ansatz

x̂X = x̂Xi ∀i ∈ V (9.6)

in (9.5) and obtain

x̂Xi = m

kllm degin(i)
degout(i) x̂mX ∀i ∈ V (9.7)

We are allowed to replace degin by degout, because we required that the net-
work graph is symmetric. Our ansatz x̂Xi = x̂X immediately follows from (9.7),
which proves that the ansatz was correct.

Finally, by using the assumption that the network graph is fully con-
nected, and by observing that the total number of X-molecules, xT, is con-
served by all reactions, formally described by

∑
i∈V

xXi(t) = xT, (9.8)

we show, with the help of (9.6), that

∑
i∈V

x̂Xi = ∣V∣ x̂X = xT (9.9)

and therefore

x̂X = x̂Xi = xT∣V∣ ∀i ∈ V (9.10)

Consequently, at chemical equilibrium theX-molecules are equally distributed
over the network. ◻
proving fixed point stability9.2.2

We now have to show that this fixed point is stable. For this purpose, we use
a linear stability analysis to linearize the system around the fixed point andlinearize

show that it returns to the fixed point after a small perturbation. We linearize
the system by calculating the ∣V∣ × ∣V∣ Jacobian matrix of (9.3):Jacobian matrix

J(x) = [j i , j(x)] = ⎡⎢⎢⎢⎢⎣ ∂ẋXi

∂xXk

⎤⎥⎥⎥⎥⎦ = −kcm2L(G)⎛⎜⎜⎝
xm−1X1⋮
xm−1X∣V∣

⎞⎟⎟⎠ (9.11)

142 | part ii — chemical networking protocols (cnps)

Interestingly, the Jacobian is proportional to the negative Laplacian of the Laplacian

network graph. The Laplacian matrix is defined as L=Δout −A, where Δout= out-degree ma-

trixdiag(degout(i)) is the out-degree matrix of the graph and [A]i , j = adj(i, j)
is the adjacency matrix of the graph. We evaluate the Jacobian at the fixed adjacency ma-

trixpoint.

Ĵ = J(x)∣
x=x̂
= −kcm2 x̂m−1X L(G) (9.12)

It is well known (Saerens, Fouss, Yen, & Dupont, 2004) that all eigenvalues
of the Laplacian of any symmetric graph are positive and hence, because the
factor kcm2 x̂m−1X > 0, the eigenvalues of J are all negative and the fixed point
is stable. ◻

signal-to-noise ratio 9.3

Disperser presents its result – the average number of X-molecules – to every
node in the network. Obviously, this result “signal” is afflicted with the
inherent noise resulting from the stochastic scheduling algorithm. In this
section, we use the Linear Noise Approximation (lna) to demonstrate that
the Signal-to-Noise Ratio (snr) of Disperser actually drops for increasing
networks, but that the worst-case snr is only marginally smaller than for the
simplest two-node topology.

conjecture of a closed-form variance expression 9.3.1
for the disperser protocol

In order to calculate the snr, we need to obtain the mean and the variance
of the number of X-molecules in each node. The mean is equal to the steady-
state quantity at the fixed point; the variance is obtained by calculating the
covariance matrix using the lna. So far we did not manage to obtain a closed-
form expression for the covariance matrix Ξ for generic network topologies.
Instead we studied the covariance matrices of some simple networks (up to 5
nodes) and were able to extract some patterns, which lead us to a conjecture
for a closed-form expression for arbitrary topologies.

We already calculated the variance of the two-node Disperser protocol
in (8.73). For c1= c2, the variance resulted in xT/4. The covariance matrix for

9. analysis of a chemical gossip protocol | 143

mth-order reactions in a chain and a star network topology with three and
four nodes is

Ξchain3 = Ξstar3 = xT
9

⎛⎜⎜⎝
2 −1 −1−1 2 −1−1 −1 2

⎞⎟⎟⎠ (9.13a)

Ξchain4 = Ξstar4 = xT
16

⎛⎜⎜⎜⎜⎝
3 −1 −1 −1−1 3 −1 −1−1 −1 3 −1−1 −1 −1 3

⎞⎟⎟⎟⎟⎠ (9.13b)

We also calculated the covariance matrix of the four node topology depicted
in Figure 9.1:

ΞFigure 9.1 = xT
16

⎛⎜⎜⎜⎜⎝
3 −1 −1 −1−1 3 −1 −1−1 −1 3 −1−1 −1 −1 3

⎞⎟⎟⎟⎟⎠ (9.14)

The covariance matrix seems to be identical for networks with the same num-
ber of nodes, i.e. independent on how the nodes are connected. We conjecture
that the covariance matrix for theDisperser protocol for an arbitrary network
topology is

Ξ = x̂X∣V∣ (∣V∣ I∣V∣ −U∣V∣) (9.15)

where U∣V∣ is the ∣V∣ × ∣V∣-dimensional unit matrix in which each element is
one. Hence, the variances are

Var [NXi] = [Ξ]i ,i = x̂X (1 − 1∣V∣) ∀v i ∈ V (9.16)

and the covariances

Cov [NXi ,NX j] = [Ξ]i , j = − x̂X∣V∣ ∀{v i , v j ∈ V ∣ i ≠ j} (9.17)

144 | part ii — chemical networking protocols (cnps)

0 200 400 600 800 20 40 60 80

0

1

2

3

4

5

6

Average: x̂X
Number of network nodes: ∣V∣

S
ig

n
a

l-
to

-n
o

is
e

ra
ti

o
(S

N
R

)
o

f
x

X

Figure 9.2 Signal-to-noise ratio of Disperser:
According to the Linear Noise Approximation,

the signal becomes more accurate for larger

result values and noisier for larger networks.

where x̂X = xT/ ∣V∣ is the mean, i.e. the average number of X-molecules
without intrinsic noise. The snr is then given as

SNR(NXi) = E [NXi]√
Var [NXi] =

kllm x̂X
1 − 1

∣V∣

∀v i ∈ V (9.18)

We verified our conjecture for about 30 different random graphs by calculating
their covariance matrix; the conjecture was satisfied by all of them. For the
first-order reaction network case (m = 1), the steady-state distribution of
Disperser is amultinomial distribution (Gadgil et al., 2005; Jahnke&Huisinga,
2007), for which the variances and covariances are known and agree with our
conjecture.

Interestingly, the mean, the (co-)variances, and hence the snrs are
independent on the reaction order m, the number of catalysts c, and the
reaction rate coefficient k. As indicated by (9.18) and depicted in Figure 9.2,
the presented result (i.e. the calculated average) becomes more accurate
for larger values of the mean. On the other hand, the result becomes more
noisy for larger networks. For ∣V∣ → ∞ the snr is√x̂X, whereas the snr is
maximal (

√
2x̂X) for a two-node topology.

9. analysis of a chemical gossip protocol | 145

Figure 9.3 Noise of Disperser with lit-
tle molecules: Marginal and joint sta-

tionary probability distributions of the

number of X-molecules between node

v1 (horizontal axis) and node v2 (verti-

cal axis) in the network topology de-

picted in Figure 9.1. The total number

of molecules is xT = 40 molecules, re-

sulting in a steady-state quantity of x̂X =
10 molecules; the standard deviation is

σ̂i ≈ 2.74 molecules, the coefficient of

variation ς̂i ≈ 0.274.

0 1
2
x̂X x̂X

3
2
x̂X 2x̂X

X-molecules in node v1: NX1

0

1
2
x̂X

x̂X

3
2
x̂X

2x̂X

X
-m

o
le

c
u

le
s

in
n

o
d

e
v

2
:
N

X
2

0.1

P
ro

b
a

b
il

it
y

LNA

0.1
Probability

0.000 0.020
Joint Probability

correspondence between analytical9.3.2
and simulation results
To complement this analysis, we carried out simulation runs in Fraglets
for different parameters and compared the empirically obtained stationary
probability distributions to the Gaussian distributions predicted by the lna.

Figure 9.3 shows the stationary joint probability distribution of the quan-
tity of X-molecules in node v1 and v2 together with their corresponding
marginal probability distributions for the network topology depicted in Fig-
ure 9.1. We started with a total number of xT =40molecules, which results
in a steady-state quantity of x̂X =E [xXi] = 10molecules in each node. Ac-
cording to the lna, the standard deviation is σ̂i = √Var [NXi], which is
approximately 2.74molecules in this scenario. The coefficient of variation, i.e.
the standard deviation normalized with respect to the mean, is quite high
at ς̂ i = σ̂i/x̂X ≈ 0.274. The bell-shaped curves denote the calculated normal
distributions with the mentioned first two moments; they accurately predict
the noise of Disperser as expected.

For the second scenario, we multiplied the total number of molecules by
a factor of 10, resulting in a steady-state concentration of x̂X=100molecules,
a standard deviation of σ̂i ≈ 8.66molecules, and a drastically decreased coef-
ficient of variation of ς̂ i ≈ 0.0866, which is clearly visible in Figure 9.4.

146 | part ii — chemical networking protocols (cnps)

0 1
2
x̂X x̂X

3
2
x̂X 2x̂X

X-molecules in node v1: NX1

0

1
2
x̂X

x̂X

3
2
x̂X

2x̂X

X
-m

o
le

c
u

le
s

in
n

o
d

e
v

2
:
N

X
2

P
ro

b
a

b
il

it
y

LNA

Probability

0.000 0.002
Joint Probability

Figure 9.4 Noise of Disperser with
more molecules: Marginal and joint sta-

tionary probability distributions of the

number of X-molecules between node

v1 (horizontal axis) and node v2 (verti-

cal axis) in the network topology de-

picted in Figure 9.1. The total number

of molecules is xT = 400 molecules, re-

sulting in a steady-state quantity of x̂X =
100 molecules; the standard deviation is

σ̂i ≈ 8.66 molecules, the coefficient of

variation ς̂i ≈ 0.0866.

For the third scenario, we implemented Disperser with bimolecular re-
actions (m = 2). That is, each reaction changes the vessel’s composition in
discrete steps of two molecules. Consequently, the state space only consists
of even molecular quantities when we start with an even total number of
molecules (xT=40molecules). Interestingly, as indicated by Figure 9.5, the
first two moments (mean and variance) of the stationary probability distri-
butions for bimolecular reactions are identical to those for unimolecular
reactions (compare to Figure 9.3). The void left by the unoccupied states is
compensated by the neighboring states, which exhibit an m-fold probability.
This supports our analytical result, suggesting that the first two moments are
independent of the reaction order m.

discussion 9.4

We proved that the Disperser protocol asymptotically converges to a stable
fixed point where each node contains the average number of X-molecules in
the network. The position and stability of the fixed point is not affected by
the choice of the reaction order, m, the number of catalysts, c, or the reaction
coefficient, k, as long as those parameters are identical among all network

9. analysis of a chemical gossip protocol | 147

Figure 9.5 Noise of Disperser driven
by bimolecular reactions: Marginal

and joint stationary probability distri-

butions of the number of X-molecules

between node v1 (horizontal axis) and

node v2 (vertical axis) at steady-state in

the network topology depicted in Fig-

ure 9.1. Bimolecular reactions exchange

molecules between the nodes (m = 2).

The total number of molecules is xT =
40 molecules, resulting in a steady-state

quantity of x̂X = 10 molecules; the stan-

dard deviation is σ̂i ≈ 2.74 molecules,

the coefficient of variation ς̂i ≈ 0.274.

0 1
2
x̂X x̂X

3
2
x̂X 2x̂X

X-molecules in node v1: NX1

0

1
2
x̂X

x̂X

3
2
x̂X

2x̂X

X
-m

o
le

c
u

le
s

in
n

o
d

e
v

2
:
N

X
2

0.1

0.2

P
ro

b
a

b
il

it
y

LNA

0.1 0.2
Probability

0.000 0.020 0.040 0.060 0.080
Joint Probability

nodes. This a priori agreement on the parameters is required for the protocol
to reach consensus.

There are probably a lot of other methods to prove Disperser’s conver-
gence. Cremean andMurray (2003), for example, came up with a very general
approach that also applies for the Disperser protocol with linear reactions
(m=1): A global system, composed of local components, each described by
odes and locally stable, is still globally stable if the components are linearlylinearly cou-

pled systems

are stable
coupled. It is possible to map chemical reaction networks such as the one of
Disperser to the description of Cremean and Murray (2003). However, like
the Deficiency ZeroTheorem, Cremean and Murray’s method is only able to
prove the existence of a stable fixpoint without providing its location.

Several parameters influence the efficiency and effectiveness of Dis-
perser. Unlike traditional protocols that convey information symbolically,
chemical protocols exploit distributed stochastic processes and use randomly
fluctuating molecule concentrations and packet rates to communicate. As a
consequence, the quality of Disperser’s result “signals” as well as the message
complexity of the protocol depends on the value range of the expected result:
For example, if Disperser is used to calculate the average temperature in a
sensor network, it is important to decide how the values are encoded, i.e. how
a molecular quantity has to be interpreted: degrees celsius, centi-degrees, de-

148 | part ii — chemical networking protocols (cnps)

m

x̂T

k, c

higher message complexity

faster

convergence

improved signal quality

lower message complexity

decreased signal quality

Figure 9.6 Performance effects of
Disperser’s parameters: From a given

set of parameters, indicated with the

black dot, the quality, message com-

plexity, and convergence time of Dis-

perser can be influenced by changing

the following parameters: number of

network nodes ∣V∣, average number

of X-molecules x̂T, number of catalysts

c = xCi , reaction coefficients k, and the

reaction order m.

grees Kelvin, Fahrenheit, or any other encoding. Figure 9.6 relates parameter
changes to their qualitative effect on the protocol’s performance.

Themessage complexity, i.e. the packet rate, is proportional to the average message com-

plexitynumber of molecules; because of the law of mass action scheduling, higher
molecule concentrations increase the packet rate. While an increase of the
number of C-molecules improves the convergence time, it has a negative
effect on the message complexity. On the other hand, the message complexity
can be reduced by introducing higher-order reactions that collect multiple
molecules in a single packet: m is inversely proportional to the message
complexity. However, this recipe has to be handled with care, since the lna
only provides an approximation of the noise. Obviously, the reaction order has
to be much smaller than the minimum average expected: m ≪ x̂X, because
the mth-order reaction is not able to transmit less than m molecules at a
time. As a consequence, no reaction would occur anymore. Also note that
multi-molecular reactions are much faster, which usually requires to adapt
the reaction coefficients k accordingly.

Our analysis clearly indicates that the inherent noise, with which the noise grows

weakly with the

network size
result is presented, weakly grows with the network size. It is surprising that the
snr can be calculated from local information only and that it is independent
on the degree of the nodes. That is, the topological arrangement of the same
number of network nodes has no influence on the noise, as indicated by

9. analysis of a chemical gossip protocol | 149

the identical covariances. Furthermore, the number of C-molecules and the
reaction coefficient k has no influence on the snr.

summary9.5

A detailed analysis of the behavior of Disperser was quite simple by resorting
to existing mathematical descriptions of chemical reaction dynamics and
well-established tools from chemistry to analyze reaction networks. In the
previous four chapters, we reviewed some of these methods and showed how
they can be applied to cnps.

We propose to analyze cnps in the classical way of systems theory: by
first identifying all components and their interactions before analyzing the
resulting state-space. Translated to cnps, this means that we first analyze
the protocol structurally by mapping a concrete Fraglets program onto its
dynamically equivalent abstract macroscopic model. We introduced two
algorithms that are capable of converting the rewriting rules of the implicit
artificial chemistry Fraglets into a set of explicit species and reaction rules.
Thereby, these algorithms explore the sequence space of the Fraglets pro-
gram by finding its closure and automatically summarize equivalent molecule
strings. Note that the sequence space is not equivalent to the state-space: The
sequence space defines the dimensionality of the state space and spans its
possible realizations.

Once having a description of the protocol in an explicit artificial chem-
istry, we are able to analyze its dynamics and come up with quantitative
proofs. Because we use an exact stochastic reaction algorithm, which brings
the behavior of program execution dynamically close to the reaction dy-
namics of real chemical reactions, we can apply mathematical descriptions
and tools that were originally developed for “wet” chemistry. We reviewed
three mathematical description for the dynamic behavior of chemical reac-
tions: the exactmicroscopic stochastic description using the ChemicalMaster
Equation (cme), a macroscopic deterministic approximation using Ordinary
Differential Equations (odes), and several mesoscopic descriptions, which
augment the intrinsic noise to the deterministic trajectories (e.g. the Chemi-
cal Langevin Equation (cle), the Linear Noise Approximation (lna), and
the Two Moment Approximation (2ma)).

In this work we put emphasis on the rigorous mathematical analysis
of cnps. We believe that handcrafted proofs are easier to understand than
automated proofs.This approach is usually not taken into account because

150 | part ii — chemical networking protocols (cnps)

manual proofs are too complicated. However, in the chemical model, this is
no longer the case.

••

9. analysis of a chemical gossip protocol | 151

chapter1010Design and Synthesis of CNPs

On the art of designing chemical reaction networks from which
the desired distributed algorithms shall emerge.

Complexity must be grown
from simple systems
that already work. 10

Out of Control
Kevin Kelly

The design of distributed algorithms is hard to automate. The
commonproblemoffinding a software implementation for a given problem

is accentuated in a distributed context: In a network, the collective system
behavior results from the actions of the participating nodes, which have to be
programmed individually. The design of distributed algorithms is inherently
bottom-up and is thus more intuitive art than rock-solid science. Therefore, it
is virtually impossible to come up with general recipes that guide a developer
from the problem statement to the final solution. But what we can and will
provide is a set of simple rules and design patterns for common networking
motifs, from which complex distributed algorithms can be grown.

Figure 10.1 shows the focus of this chapter in our chemical protocol engi-
neering landscape. This chapter is mainly addressed to engineers. It provides
guidelines how to develop chemical protocols. The main design principle
is to determine the dynamic behavior of protocols first by constructing the
distributed reaction network. Later in the design process, we have to find an
implementation of this abstract reaction network that also satisfies structural,
microscopic requirements. One common treatment on the microscopic level

10. design and synthesis of cnps | 153

D
es

ig
n

Sp
ec

ifi
ca

tio
n

Specification

Abstract
Reaction Network
Model of the chemical

program in an explicit

artificial chemistry

Mathematical Model
ODE

Approximation

Mathematical Tools

Metabolic

Control Analysis

Signal Theory

M
ic

ro
sc

op
ic

 L
ev

el
(S

ys
te

m
)

M
ac

ro
sc

op
ic

 L
ev

el
(A

bs
tr

ac
tio

n)
Behavioral Model Analysis

S
tr

uc
tu

ra
l R

eq
ui

re
m

en
ts

D
yn

am
ic

al
 R

eq
ui

re
m

en
ts

Simulator
of the algorithmic

chemistry and the network

Virtual Machine
Real-time execution of the

algorithmic chemistry

Chemical Software
programmed in an

algorithmic chemistry:

The structure of

molecules/packets

describe the reactions.

Traces
Qualitative and

quantitative

traces and logs

of the simulation

or real-time

execution.

Fi
nd

 R
ea

liz
at

io
n

Fi
nd

 M
ap

pi
ng

Run

Run

Measure

Measure

Verify

Re
fin

e

Verify

Dynamic Design

Realization
(AChem)

Auto. Gen. ApplyLinear Noise

Approximation

Stochastic

Master Equation

Re
fin

e

Structural Design

Re
fin

e

Figure 10.1 Design methods in the engineering model: This chapter discusses how to synthesize well-known

reaction motifs to protocols.

is to decorate molecules by payload, which has to be carried between two
distant applications.

This chapter is structured as follows: We first expose the chemical pro-
tocol design paradigm in Section 10.1 before providing practical tools for
protocol designers in Sections 10.2 and 10.3. Essentially, these are rules and
patterns of well-understood chemical reaction motifs that proofed useful to
synthesize chemical protocols. Finally, in Section 10.4, we demonstrate an
application for our design methods by extending the Disperser protocol by
an automatic neighborhood discovery mechanism. The chapter concludes
with a summary in Section 10.5.

chemical protocol design paradigms10.1

After we developed our first chemical protocols, we recognized that already a
small numberofmolecules and reactions exhibit the desireddynamic behavior

154 | part ii — chemical networking protocols (cnps)

whereas in the traditional programming style a complex program structure
of event handlers, timers, and so forth is needed. We also observed that the
dynamics of the drafted chemical reaction network was mainly responsible
for the protocol’s function.

Based on these observations, we derived the most important design
principle for cnps: dynamics precedes structure. We encourage the designer dynamics pre-

cedes structureto first determine and analyze the dynamic behavior of a reaction network
before focusing on its implementation in an algorithmic chemistry. This
paradigm shift of emphasizing the dynamics may be similar to the transition paradigm shift

from functional to object-oriented design, when suddenly everything became
an object. In cnps, all problems are reduced to dynamic packet flows. The
flow-based design process tries to balance packet flows by exploiting the law flow-based de-

signof mass action behavior of chemical reactions.
The advantage of the chemical approach is that we can outsource parts outsource pro-

tocol logic to

the reaction net-

work dynamics

of the protocol logic to the reaction network dynamics. For example, there is
no need to check each lost packet individually; if packets are lost, the stream
of acknowledgments will be smaller than the data packet stream, the concen-
tration of acknowledgments drop, and consequently, the dynamic behavior
of reactions consuming the acks changes. There is no need to program
this functionality symbolically; it is sufficient to arrange the molecules and
reactions correctly such that the requested behavior emerges.

The chemical design process itself is not trivial. A paradigm shift in
software development is always accompanied with new tools and methods
to plan and implement code. In this thesis, we give first ideas how such a
design process may look like. We think that the following aspects have to
be studied in detail in order to come up with a proper design for a chemical
networking protocol solving a given problem: (1) mapping the problem to an
artificial chemistry, (2) choosing between symbolic and representation-free
information, and (3) designing dynamic and functional behavior.

mapping the problem to an artificial chemistry 10.1.1

Thefirst step in developing a chemically inspireddistributed algorithm is to get
an idea how to map the problem to the chemical model. This requires a good
understanding of the problem and the properties of the abstract chemical
reaction model such as the law of mass action); experience with previous
designs is also helpful.

Often, the solution to a problem manifests at a dynamic equilibrium of solution in equi-

libriumthe chemical reaction system. Thus, the designer has to fit the problem to a
dynamic description for which an equilibrium exists. Unfortunately, there

10. design and synthesis of cnps | 155

are no simple recipes for this process. However, a good staring point is to
think about how information shall be represented by the algorithm.

choosing between symbolic10.1.2
and representation-free information

A networking protocol conveys information between spatially or virtually
separated nodes (computers, or processors). A piece of data shall either be
transmitted from one node to another (e.g. client-server model), shared
among multiple nodes (e.g. distributed hash-tables), or the network partic-
ipants shall come to a consensus (e.g. gossiping, distributed aggregation).
In traditional networking, a piece of information is encoded and processed
symbolically: That is, information is encoded as a sequence of binary num-symbolic in-

formation bers stored at a certain memory location, and information is conveyed by
transmitting binary data in a packet, i.e. via the structure of the packet.

Distributed chemical reaction networks allow and even suggest encoding
information representation-free. Instead of encoding a state symbolically, it isrepresentation-

free infor-

mation
represented by the quantity of a molecular species, and instead of sending
binary data, information is conveyed by the rate of distributed reactions.
Quantity and rate signals are connected by the law ofmass action: By changing
the state, i.e. by changing the molecular concentration, the rate of a reaction
consuming these molecules will be modulated accordingly.

Matsumaru, Lenser, Hinze, and Dittrich (2007) demonstrated another
method of representing information in chemical reaction systems. They
encoded a state by the chemical organization in which its current attractororganizational

information is located and demonstrated the usefulness of this approach by solving the
maximal independent set problemwith a distributed chemistry. Although this
approach is promising for binary decision problems, we are more interested
in dynamic and “analog” solutions here.

The designer first has to decide whether data shall be encoded symboli-
cally, i.e. inside the structure of the molecule, and/or representation-free, i.e.
as molecular quantities and reaction rates. As a rule of thumb that often leads
to good designs (in our opinion), end-to-end user-information should be
encoded symbolically and attached to molecules as payload whereas protocol
control loops should be embedded into the distributed chemical reaction net-
works. Note that Disperser, where the aggregated sensor values are encoded
as molecular quantities, is a counter-example to this rule.

156 | part ii — chemical networking protocols (cnps)

designing dynamic before functional behavior 10.1.3

Unlike in traditional protocol design, where the dynamic behavior is often
studied after the functional solution is found, we encourage the designer
to design and analyze the dynamic behavior first, because there is a direct
and easy graspable relation between the reaction network topology and its
dynamic behavior. We promote the reaction network graph as an instrument reaction net-

work graphto visualize the behavior of distributed reaction networks on a high level. The
goal of such a visual representation is to bring the design up to the level of
intuitive reasoning. At the same time, we provide simple rules that help verify rules

the intuition, and simple patterns ormotifs that can be combined in order to motifs

assemble complex protocols.
Once the abstract reaction network is found that solves the problem dy-

namically, we move one conceptual layer down to the chemical programming
language. For Fraglets, this means that we have to find the concrete strings
that induce the designed reaction network. In this design phase, the molecule
strings are additionally decorated by symbolically encoded user-information
if necessary.

In the following two sections, we present conservation rules in chemical
reaction networks (Section 10.2) and propose simplemotifs or design patterns
for commonly occurring sub-problems in protocol design (Section 10.3). This
toolbox shall support the designer in synthesizing complex reaction networks
from the well-understood simple motifs, as indicated in K. Kelly’s quote
preceding this chapter.

chemical conservation rules 10.2

The design rules discussed in this section are directly related to information
obtainable from the reaction graph. They serve the protocol designer to decide
in an early design stage how the behavior of a reaction network changes if
the reaction network topology is altered. The designer shall be able to predict
what happens if he/she draws a new arrow between two molecules in the
reaction graph or deletes an existing one.

kirchhoff’s conservation laws 10.2.1

Kirchhoff ’s laws are conservation rules that apply to electronic circuits. De-
rived from Maxwell’s equations they describe how energy is conserved in
electronic circuits. These laws can also be applied to chemical reaction net-
works (Perelson & Oster, 1974; Fishtik, Callaghan, & Datta, 2004a, 2004b,
2005; Fehribach, 2009).

10. design and synthesis of cnps | 157

Figure 10.2 Kirchhoff’s current law: (a) The total

current flowing into a node is equal to the total

current flowing out of that node. (b) At equilib-

rium the total production rate of a molecule is

equal to the total consumption rate.

_
+

i1
i2

i4
i3

i1 + i2 = i3 + i4
(a) Electrical circuit

r1

r2

r4

r̂1 + r̂2 = r̂3 + r̂4

r3
X

(b) Reaction network

Kirchhoff’s Current Law(a)

Kirchhoff ’s current law (or point rule) uses the fact that energy is conserved,
and hence the sum of current flowing into a node of an electrical circuit is
equal to the sum of current flowing out of that node (see Figure 10.2(a)). A
similar conservation law exists for arbitrary chemical reaction networks at
equilibrium: the total production rate of each species is equal to its total
consumption rate. This simple rule can be proven with the help of the deter-
ministic ode equation. Consider, for example, the species X in Figure 10.2(b).
Its quantity changes over time according to the ode

ẋX = −r1 − r2 + r3 + r4 (10.1)
When reaching equilibrium the quantity does not change (ẋX=0), and hence

influx7888898888:
r̂1 + r̂2 =

efflux788888988888:
r̂3 + r̂4 (10.2)

Nodes in electronic circuits cannot store electrons, but chemical species
may temporarily buffer molecule instances. A chemical species acts more like
a capacitor than an ideal wire. But like the capacitor, which exhibits equal
current in- and efflux if the circuit reaches equilibrium, the in- and efflux of a
molecular species is equal at equilibrium, too. Therefore, Kirchhoff ’s currentonly valid at

equilibrium law is only valid for reaction networks at equilibrium.

Kirchhoff’s Voltage Law(b)

The second law by Kirchhoff – the voltage law (or loop rule) – states that the
directed sum of the potential differences (voltages) around a closed circuit
must be zero (see Figure 10.3).

Unfortunately, there is no corresponding law for chemical reaction net-
works that is directly extractable from the reaction network graph. This is

158 | part ii — chemical networking protocols (cnps)

_+

v1

v2

v4

v3

v1 + v2 + v3 + v4 = 0

Figure 10.3 Kirchhoff’s voltage law: The directed sum of the potential dif-

ferences (voltages) around a closed circuit must be zero. There is no direct

equivalence for reaction network graphs.

X4

X2

xX1 + xX2 + xX3 + xX4 + xX5 = const.

X1 X2

X3

X4

X5
X6

xX2 + xX4 + xX6 = const.

2

2

3

3

loop 1

loop 2

r1

r2

r3
r4

r5

X7

X8

(a) Reaction Network

loop 2loop 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 r2 r3 r4 r5

X1 −1 0 0 0 1

X2 1 −1 0 0 0

X3 0 3 −1 0 0

X4 0 0 1 −2 0

X5 0 0 0 1 −2

X6 −3 0 1 0 0

X7 0 −1 0 0 0

X8 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r1 r2 r3 r4 r5

X2

X3

X4

X5

X6

X7

X8

X1

(b) Stoichiometric Matrix

Figure 10.4 Molecule conservation
loops: (a) If the number of molecules

consumed are equal to the number

of molecules produced along a loop

of a reaction network, and if every

species along this loop is only pro-

duced by one reaction and consumed

by one reaction, then, the number of

molecules along the species on that

loop is constant. (b) The first crite-

rion is met if the stoichiometric coeffi-

cients of all reactions participating a

loop sum up to zero.

because a (multi-molecular) reaction links more than two species and be-
cause reactions are generally not reversible in our artificial setting. Perelson
and Oster (1974) presented a method how the reaction network graph can be
converted into a linear reaction route graph to which the voltage law can be
applied. Fishtik et al. (2004a, 2004b, 2005) recently studied the properties of
reaction route graphs in detail, followed by Fehribach (2009), who calls them
Kirchhoff graphs.

We do not review these methods in detail, because the necessary transla-
tion of the reaction network graph to a Kirchhoff graph complicates the design
process. Recall that we aim at methods that help the designer of cnps to
iteratively design reaction networks with feedback from simple and intuitively
graspable rules on the visual level.

molecule conservation loops 10.2.2

A reaction network graph may contain several loops over a certain set of
species. Inmolecule conservation loops, the summedquantity of the traversed
species is constant. Figure 10.4(a) shows a reaction networkwith twomolecule
conservation loops.

10. design and synthesis of cnps | 159

Generally, the total number of molecules in a loop is constant if the
following conditions are met:

1. The total number of molecules consumed by reactions along the loop
must be equal to the total number of molecules produced. This is equiv-
alent to the requirement that the sum of all stoichiometric coefficients
belonging to the reactions and the species of the loop are zero (see
Figure 10.4(b)).

2. Every species along the loop must only be altered (consumed or pro-
duced) by reactions in this or another conservation loop.

The loop conservation law not only holds at equilibrium but also in the tran-
sient phase. The simplest conservation loop is spanned by a catalytic reaction
such as X + . . . �→ X + . . . : The first requirement is met because the same
reaction that consumes the catalyst X re-creates it afterwards. The second
requirement is only met if no other reactions consume or produce the catalyst
unless they belong to another conservation loop.

Another example is the Disperser protocol (see Section 5.4). In a two-
node network topology, there is only one reaction loop in which themolecules
are sent between the two nodes. By attaching further nodes, the loop is
extended by an additional reversible reaction, each consuming a molecule
and producing it in another node.

In the next section, we will illustrate several reaction motifs and prove
them by coming back to the conservation rules introduced in this section.
With their help, we hope to build complex chemical networking protocols.

motifs — common design patterns for cnps10.3

Design patterns provide simple and elegant recipes for common problems.
Theywere introduced for object-oriented programming by Beck andCunning-
ham (1987) and gained popularity with the book Design Patterns: Elements of
Reusable Object-Oriented Design (Gamma, Helm, Johnson, &Vlissides, 1995).
In this section, we suggest a similar pattern-guided approach to design cnps.
We present a non-exhaustive list of chemical design patterns – which we call
motifs – and study their behavior and application cases.motifs

In the object-oriented paradigm, design patterns show the relationships
among classes and the interaction between objects. Our chemical motifs are
small reaction networks performing a certain function on the macroscopic,
dynamic level. The idea to study simple reaction networks is not new: Deckard
et al. (2009) enumerated all reaction networks consisting of up to ten species

160 | part ii — chemical networking protocols (cnps)

and seven bimolecular reactions and classified the resulting 47 million motifs.
Paladugu et al. (2006) found motifs for bi-stable switches using evolutionary
algorithms. Deckard and Sauro (2004) evolved arithmetic operation motifs
using unimolecular and bimolecular reactions whereas Buisman, ten Eikelder,
Hilbers, and Liekens (2008) came up with arithmetic operation motifs based
on basic enzymatic reactions.

We do not aim at exhaustively enumerating all reaction networks possi-
ble. Our selection of motifs shall be helpful for designing chemical protocol
software. That is, the motifs have to perform a useful function, their dynamic
behavior must be well understood, and they have to be combined easily to
larger reaction networks. This latter aspect is important, as the dynamics
of reaction networks may be nonlinear, which invalidates the superposition
principle.

We classified the motifs into the following groups: Section 10.3.1 first
provides programming language dependent motifs by showing how basic
reactions are implemented in Fraglets. Section 10.3.2 introduces reaction
networks that are able to compute arithmetic functions. Section 10.3.3 then
illustrates how representation-free state information is conveyed across the
network. Finally, Section 10.3.4 provides neighborhood discovery motifs.

fraglets language motifs 10.3.1

In the following, we present idiomatic motifs for Fraglets. Like in object- idiomatic motifs

oriented design, where a certain set of patterns is dedicated for c++-specific
design issues (Coplien, 1991), some chemical reaction motifs describe Fra-
glets’ handling of reactions. In particular, we demonstrate how bimolecular,
unimolecular, and multi-molecular reactions are realized in Fraglets. By first
demonstrating how basic reactions can be implemented in Fraglets, we can
discuss the remaining motifs independent on the chemical programming
language.

Bimolecular Reactions in Fraglets (a)

As discussed in Section 5.2, a bimolecular reaction in Fraglets, such as X +
Y�→ . . . , is induced by a synchronization rule triggered by a pair of fraglets,
one starting with [match σ Φ] (we call it the active molecule) and the other active molecule

with the corresponding header symbol [σ Ψ] (the passive molecule). The passive

moleculeinduced bimolecular reaction

10. design and synthesis of cnps | 161

[

cons.7888888888888988888888888:
match σ

prod.79:
Φ]d88e88f

active molecule

+ [cons.79:
σ

prod.79:
Ψ]d8888888888888888888888888888888888e888888888888888888888888888888888f

passive molecule

k=1��→ [Φ Ψ] (10.3)

is implemented by two different regions in the participating fraglet strings:
the consumption (matching) part and the production part. Whereas the
consumption part in the header of the two fraglets identifies the reactionconsumption/

produc-

tion parts
partners, the production part defines what transformations are applied to the
concatenated transient molecule. Here, we mainly focus on the consumption
part, that is, the left hand side of a reaction, as the right hand side may contain
arbitrary split or fork instructions to produce multiple products.

The consumption part of each reactant may optionally be prepended by
the weight-instruction, which changes the reaction coefficient of the induced
reaction. The effective reaction coefficient is the product of the weights of all
reactants, for example

[weight w1 match σ Φ] + [weight w2 σ Ψ] k=w1 ⋅w2����→ [Φ Ψ] (10.4)

where w1 and w2 are floating point numbers.

Multi-Molecular Reactions in Fraglets(b)

Multi-molecular reactions, such as 2X + Y + Z �→ . . . , are induced by an
active fraglet starting with a symbol of the mmatch-family:

[mmatch n σ1 . . . σn Φ] (10.5)
Such an active fraglet reacts with n passive fraglets, each starting with the
corresponding header symbol σi (1 ≤ i ≤ n) and concatenates their tails.
Consider, for example, the following tri-molecular reaction:

[mmatch 2 σ1 σ2 Φ] + [σ1 Ψ1] + [σ2 Ψ2]�→ [Φ Ψ1 Ψ2] (10.6)

Its reaction rate is governed by the law of mass action, meaning that the rate
is proportional to the product of the number of reactants. If the same tag
σi appears more than once in the active fraglet, say m times, m instances of
species starting with this tag are joined. Consequently, the reaction rate is
proportional to the number of [σi . . .]-molecules, raised to them-th power.
Like for bimolecular reactions, the mmatch-instruction may be prepended by
the weight-instruction in order to modify the reaction coefficient.

162 | part ii — chemical networking protocols (cnps)

Unimolecular Reactions in Fraglets (c)

An unimolecular reaction, such as X �→ . . . , is a special case of a multi- special case of a

multi-molecular

reaction
molecular reaction, in which the active mmatch-fraglet reacts with zero passive
fraglets. Indeed, the following unimolecular reaction leads to the expected
result:

[mmatch 0 Φ]�→ [Φ] (10.7)

Note the difference to the nop-instruction. The mmatch-symbol triggers a
synchronization rule, which is scheduled according to the law of mass action,
whereas all transformations (such as nop) are executed immediately.

Assisted Reactions in Fraglets (d)

As shown above, a multi-molecular reaction of order m is implemented in
Fraglets by one active fraglet and m − 1 passive fraglets (including the special
bimolecular and unimolecular cases). In fact, the active fraglet determines
the tags of the passive fraglets it reacts with. Thus, the active fraglet takes a
special role by fully determining the consumption part of the reaction.

This asymmetry in the Fraglets language is one of the reasons why not all
reaction networks can be implemented: We say that Fraglets is not chemically Fraglets is not

chemically com-

plete
complete. For example, two active Fraglets will never react, nor will two
passive fraglets. A yet simpler example causing problems is the reversible
reaction X ←→ Y. The molecules X and Y cannot be mapped directly into
Fraglet strings. Our first guess would be to map the abstract species X to the
fraglet [mmatch 0 Y], inducing the forward reaction, but the result would be
Y=[Y], which is a passive fraglet that cannot react autonomically. Replacing
the symbol Y by another first-order reaction mmatch 0 would lead to infinite
regression. This is a consequence of the general Fraglets paradigm according
to which every instruction must reduce the length of a fraglet string in order
to avoid infinite transformation loops (see Section 5.2.4 on page 62).

A work-around for this situation is to introduce new species – active
catalyst fraglets A andB – and let themain participants X andYbe represented
by passive fraglets. The above reversible reaction can be implemented in
Fraglets as depicted in Figure 10.5(a); note that we already used this concept
in the Disperser protocol. The number of persistent catalysts does not change,
as the catalysts regenerate themselves after being consumed. Fraglets provides
the matchp synchronization rule for this purpose.

Figure 10.5(b) shows the chemical reaction network that is dynamically
equivalent to Figure 10.5(a). In Figure 10.5(b), we replaced the catalysts by
reaction coefficients. This is allowed because according to the law of mass

10. design and synthesis of cnps | 163

Figure 10.5 Reversible reaction in Fra-
glets: (a) An assisted unimolecular re-

action is implemented by a bimolecular

Fraglets reaction where an active cata-

lyst defines reactant and product tag.

(b) This schematic illustration shows

the corresponding chemical reaction

network that is dynamically equivalent

to the Fraglets program in (a).

[matchp X Y]

[matchp Y X]

[X] [Y]X Y

A

B

(a) Reversible reaction in Fraglets

X Y

kA =NA

kB =NB

(b) Reactions

action, the reaction rate is proportional to both the reaction coefficient and
the number of reactants.

This method of using a catalyst to define a reaction in Fraglets is what
we call assisted reaction. In fact, the active catalyst fraglet completely definesassisted

reaction the reaction: The catalyst fraglet is not mapped to an abstractmolecule like
[X] is mapped to X; instead the catalyst is mapped to and represents thefraglet repre-

sents reaction,

not molecule
abstract reaction X�→ Y. Every multi-molecular reaction of order m can be
implemented as an assisted reaction, where an active catalyst represents the
reaction itself and processes m passive fraglets. Thus, the assisted method
increments the reaction order by one and, at the same time, allows an (integer)
reaction coefficient to be specified via the initial number of catalysts.

We often resort to this method when implementing reaction networks
in Fraglets, because it is much simpler to find catalysts that rewrite passive
fraglets than finding active fraglets that represent individual molecules. But
this method fails in an active networking context: once installed, a persistent
catalyst can never be removed again. Thus, we have to find other methods
to dynamically deploy chemical code in the network. We will come back to
active code deployment in the third part of this thesis.

For the generic rules and motifs discussed in the following sections,
we do not consider a concrete Fraglets implementation and assume that
any abstract reaction network can be mapped to Fraglets. The example in
Section 10.4 then demonstrates how the assisted reaction method is used to
map a given chemical reaction network down to the corresponding Fraglets
implementation.

arithmetic motifs10.3.2

Chemical networking protocols often use implicit information such as the
multiplicity of molecules and the rate of reactions to store protocol states
and convey them across the network. The Disperser protocol is an example

164 | part ii — chemical networking protocols (cnps)

X
r1

r̂1 = x̂X

(a) Quantity to rate

Y
r1

x̂Y = r̂1r2∅
(b) Rate to quantity

Figure 10.6 Motif to map a molecular quantity to
a rate and vice-versa: (a) The rate of the unimolecu-

lar reaction r1 is equal to the number of reactants X,

xX. (b) The influx and efflux rates are balanced. If the

only efflux of a species X is a unimolecular reaction,

the steady-state concentration equals its influx rate

r1 .

that is completely based on representation-free encoding, where even user-
information is encoded in a non-symbolic way. This requires methods to
combine and process “molecular concentrations”.

In the following, we show how a molecular quantities can be converted
to a reaction rate and vice-versa and present several methods to compute
arithmetic functions of such signals. After a settling time – at equilibrium –
the reaction network presents the result as number of molecules of a result
species. We show the correctness of the motifs by using a deterministic
steady-state analysis when needed (see Section 8.2) or by referring to one of
the conservation rules discussed in Section 10.2.

Conversion Between Molecular Quantity and Rate (a)

The two very simple motifs shown in Figure 10.6 convert the quantity of a
species into a reaction rate and vice-versa by exploiting the law of mass action.
As depicted in Figure 10.6(a), a single unimolecular reaction is sufficient
to convert the quantity of species X to a reaction rate r1. Note that other
reactions (dashed arrows) may change the quantity of X, but this is out of
our focus here. The measurement reaction r1 intentionally does not alter the
quantity of its reactant species X by regenerating the consumed molecules.
On average, according to the law of mass action, the rate r̂1 is equal to the
number of X-molecules:

r̂1 = x̂X (10.8)

A reaction rate can be converted back to an quantity value as depicted
in Figure 10.6(b). If a molecule (such as Y) is product and reactant of two
different reactions at the same time, Kirchhoff ’s current law states that their
reaction rates must have the same value at equilibrium (r̂1= r̂2). Furthermore,
according to the law of mass action, the efflux rate r2 is equal to the number
of reactants (r̂2= x̂Y). Hence, the number of Y-molecules is equal to the influx
rate.

x̂X = r̂1 (10.9)

10. design and synthesis of cnps | 165

Figure 10.7 Quantity-mirroring motif: X molecules are copied to Y. Because at

equilibrium the inflow rate must be equal to the outflow rate, the quantity of Y

follows the quantity of X.

X Y
r1

r2

x̂Y = x̂X

∅

Figure 10.8 Linear combination motif: The reaction network computes

the sum of all Xi-molecule quantities, weighted by the coefficients ki ,

and presents the result in the number of Y-molecules.

X1

Y

Xn

x̂Y = 1

k0

n∑
i=1

kix̂Xi

k1

kn

k0 ∅

In Figure 10.6(b), reaction r2 is a decay reaction that destroysY-molecules
in order to keep the balance. This reaction may be redirected to other species
in order to process the quantity signal further. Note however, that when
additional reactions are added to or from Y, its quantity is not equal to the
rate r1 anymore. If additional reactions have to be attached to Y they need to
preserve its quantity as shown in Figure 10.6(a).

Quantity-Mirroring Motif(b)

The two previous motifs can be combined in order to “copy” or mirror the
quantity of one species to the quantity of another species as depicted in
Figure 10.7. Reaction r1 sends copies of X to species Y where reaction r2
decays the instances according to the law of mass action. The quantity of Y
follows the quantity of X:

x̂Y = x̂X (10.10)

Linear Combination Motif(c)

By extending the previous motif, we obtain a reaction network that calculates
the weighted sum of molecular quantities as depicted in Figure 10.8. The total
influx rate of Y is∑n

i=1 k ixXi , the efflux rate is k0xY. At equilibrium the influx
rate is equal to the efflux rate and hence, the steady-state quantity of Y is

x̂Y = 1
k0

n∑
i=1

k i x̂Xi (10.11)

166 | part ii — chemical networking protocols (cnps)

X1

Y

Xn x̂Y = n∏
i=1

x̂Xi

∅
Figure 10.9 Product motif: The reaction network computes the product

of the quantities of n different species, Xi . The result is presented in the

number of Y-molecules.

∅X Y
n

n
x̂Y = x̂nX

Figure 10.10 Exponentiation motif (1): The reaction network computes

the n-th power of the number of X-molecules and presents the result in

the number of Y-molecules.

X Y
r1 r2n

n

x̂Y = m
√
x̂nX

m

m−1

∅
Figure 10.11 Exponentiation motif (2): The reaction network computes

the n/m-th power of the number of X-molecules and presents the result

in the number of Y-molecules.

Product Motif (d)

Calculating the product of two quantities is straightforward, as the law of
mass action always yields reaction rates that are equal to the product of the
number of reactant molecules. Thus, in order to multiply the quantity of n
different species, we have to install a multi-molecular reaction of order n
among them as depicted in Figure 10.9. The steady-state quantity of the result
species Y is

x̂Y = n∏
i=1

x̂Xi (10.12)

Exponentiation Motif (e)

Raising a variable to the n-th power is a special case of calculating the product
of n variables, i.e. n times the same variable. This observation suggests how to
design a reaction network to raise the quantity of a species to the n-th power raise to the n-th

power(n ∈ N). The resulting reaction network is depicted in Figure 10.10.
By letting the decay reaction of Y be a multi-molecular reaction, too, we

extend this motif such that it raises the quantity of X to a fraction of integers
n/m as depicted in Figure 10.11. Note that the decay reaction has to regenerate
m − 1 instances of the m consumed Y-molecules in order to only consume
one instance per reaction event. The reaction network computes the function

x̂Y = m
√
x̂nY (10.13)

For example, to calculate the square root of xX we let the first reaction be square root

unimolecular (n = 1) and we chose the decay reaction to be bimolecular
10. design and synthesis of cnps | 167

Figure 10.12 Division motif (1): The reaction network computes the quo-

tient of the quantity of species X1 divided by X2 and presents the result

in the number of Y-molecules.

X1 Y

x̂Y = x̂X1

1 + x̂X2

X2 ∅∅

Figure 10.13 Division motif (2): The reaction network computes the quo-

tient of the total number of Y- and Y∗-molecules divided by the quantity

of X and presents the result in the number of Y-molecules.

X

Y x̂Y = cY

1 + x̂X

Y∗ cY = xY + xY∗ = const.

(m=2). A combination of the exponentiationmotif (Section 10.3.2(e)) and thepolynomial

functions linear combination motif (Section 10.3.2(c)) allows for calculating polynomial
functions.

Division Motif(f)

It is more difficult to design a motif that divides the quantity of one species by
the quantity of another species. For this purpose, we have to find a reaction
network that lowers the number of result molecules when the number of
another molecule increases. That is, we have to drain molecules from the
result (quotient) species in proportion to the quantity of the divisor species.
Figure 10.12 shows a reaction network that has this property. By applying
Kirchhoff ’s current law to the quotient species Y we find out that at equilib-
rium, the influx x̂X1 is equal to the efflux x̂Y + x̂X2 x̂Y, and hence

x̂Y = x̂X1

1 + x̂X2

(10.14)

An alternative implementation is depicted in Figure 10.13. It consists of
a molecule conservation loop Y–Y∗ in which the total number of molecules
is constant: cY = xY + xY∗ = const. The dividend is represented by the total
number of molecules in this loop, cY. The application of Kirchhoff ’s current
law yields a steady-state quantity of

x̂Y = cY
1 + x̂X = xY + xY∗

1 + x̂X (10.15)

168 | part ii — chemical networking protocols (cnps)

Difference Motif (g)

Like for the division operation, it is not straightforward how to construct
a reaction network that computes the difference between two molecular
quantities. We study this motif in more detail and reveal how one can find
similar arithmetic motifs: Our plan is to start with the target equation, to
which we apply arithmetic operations until the equation can be converted to
a valid reaction network:

At equilibrium, the network shall compute the difference between the
molecular quantities of two species X1 and X2, and present the result in the
number of Y-molecules:

x̂Y = x̂X1 − x̂X2 (10.16)

We previously recognized that Kirchhoff ’s current law yields an equation
containing sums. So let us rewrite this equation to

influx79:
x̂X1 =

efflux78888888888889888888888888:
x̂Y + x̂X2 (10.17)

and regard the left-hand side as influx of species Y and the right-hand side as
its efflux. The problem with this equation is that according to the law of mass
action, the effluxmust always be proportional to the number of reactants. This
is violated by the term x̂X2 . By multiplying (10.17) by x̂Y we obtain equation

influx7888988:
x̂X1 x̂Yd888e88f

r1

=
efflux788888888888888888888888888888988888888888888888888888888888:

x̂2Ydef
r2

+ x̂X2 x̂Yd888e888f
r3

(10.18)

which can easily be converted to the corresponding reaction network depicted
in Figure 10.14. The first reaction is responsible for the influx of Y: It adds one
molecule at rate r1=xX1xY and, at the same time, maintains the population of
input molecules. The second and third reactions together form the efflux of
Y: The second reaction removes one Y-molecule at rate r2=x2Y whereas the
third reaction removes one instance at rate r3=xX2xY.

Such a reverse-engineering process often leads to the reaction network
that calculates the desired arithmetic function.

Constant Quantity Motif (h)

Themotif depicted in Figure 10.15 forces the concentration of the target species
Y to a certain steady-state value, regardless of its initial quantity:

10. design and synthesis of cnps | 169

Figure 10.14 Difference motif: The reaction network subtracts the num-

ber of X2-molecules from the number of X1-molecules and presents the

result in the number of Y-molecules. If xX2 > xX1 , the presented quantity

is xY =0 (a quantity can never be negative).

X1 Y

x̂Y = x̂X1 − x̂X2

X2

2

2
r1 r2

r3∅∅

Figure 10.15 Constant quantity motif: This reaction network forces the number

of Y-molecules to be k1/k2, independent on its initial quantity.

X Y
k1

k2

x̂Y = k1

k2

x̂Y = k1
k2

(10.19)

We need a helper species X to force Y to this value. Neither of the two reactions
alter the quantity of the helper molecule. Interestingly, the quantity of the
helper molecule does not influence the result. According to Kirchhoff ’s
current law, the influx must be equal to the efflux of the target molecule Y at
equilibrium; that is, k1 x̂X =k2 x̂X x̂Y. The number of X-molecules cancels out,
yielding the result in (10.19).

In reality, the quantity cannot take an arbitrary floating-point value
as suggested by (10.19), as molecule Y is present with a integer multiplicity.
However, the average number of Y-molecules over time may very well be a
fraction of an integer. For example, if k1 =1 and k2 =2 a Y-molecule is only
present half of the time. Another reaction may use Y as input and receives
molecules with the correct rate of 0.5molecules/s. Anyway, we have to keep
in mind that such low concentrations are afflicted with heavy noise.

transmission motifs10.3.3

All motifs discussed so far operate in a single vessel. In this subsection, we
introduce motifs that can be used to convey information from one vessel to a
distant vessel in a network, establishing a communication between the two
nodes.

Remote Quantity-Mirroring Motif(a)

The quantity-mirroring motif discussed before (see Section 10.3.2(b)) is com-
monly used to copy the state (molecular quantity) of one node to another
node as depicted in Figure 10.16. Node v1 sends molecules to node v2 with a

170 | part ii — chemical networking protocols (cnps)

v2v1

X1 Y2
r1

r2

x̂Y2 = x̂X1

∅
Figure 10.16 Remote quantity-mirroring motif: X1-molecules in node

v1 are copied to node v2 with a rate equal to the number of X-molecules.

Because at equilibrium, the inflow rate must be equal to the outflow rate,

and if we assume that no packets are lost, the number of Y-molecules fol-

lows the number of X-molecules.

rate equal to the quantity of the local species X1: r1 =xX1 . If we assume that
no packets are lost, the molecules arrive at the target node with the same
rate. There, this rate is converted back to an quantity signal. At equilibrium,
the number of Y2-molecules is equal to the number of X1-molecules in the
originating node:

x̂Y2 = x̂X1 (10.20)

If the link between the two nodes is afflicted with packet loss, the number packet loss

of Y2-molecules in the target node is lowered in proportion to the packet loss
probability. Thus, a chemical rate signal behaves more like an analog than a
digital signal: it gets perturbed in face of noise (packet loss).

All motifs discussed so far may be extended to the distributed case. The
chemical execution model only requires that all reactants of a given reaction
reside in the same node. Thus, the protocol designer is free to choose whether
a computation is carried out locally or whether it is distributed among several distributed com-

putationnetwork nodes.

Echo and Packet Loss Motifs (b)

The echo motif can be used to determine whether a certain network node is
reachable as depicted in Figure 10.17(a). It is based on the remote quantity-
mirroring motif (Section 10.3.3(a)), but redirects the decay reaction of E2
back to the originating node. At equilibrium, the quantity of X1 is copied to
E2, which is copied back to Y1. If the destination node is not reachable, there
will be no Y1-molecules.

Figure 10.17(b) shows an equivalent implementation in Fragletswhere the implementation

in Fragletsremotemolecule is not scheduled according to the law ofmass action. Instead,
the fraglet sent to the remote node is a transient molecule, starting with the
transformation instruction send, which immediately sends its tail back to
the originating node. We usually prefer this alternative, active networking
approach where the echoing code in node v2 is sent with the echo request.

The samemotif can be used to compute the round-trip packet loss proba- round-trip

packet loss

probability
bility to a certain node. We previously recognized that the distributed quantity-

10. design and synthesis of cnps | 171

Figure 10.17 Echo motif: (a)
Two remote mirroring motifs

in series. Molecules sent to

a distant node are mirrored

back to the originating node.

(b) An equivalent implemen-

tation in Fraglets where the

remote species is not sched-

uled according to the law of

mass action, but echoes it-

self back immediately; this is

realized by executing a send

transformation instruction in

the remote node.

v2v1

X1
r1

x̂Y2 = x̂X1

Y1

∅
E2

r2

r3

(a) Via Echo-Molecule

v2v1

X1

T2

r1

x̂Y2 = x̂X1

Y1

∅ [send Y]v1r2

(b) Via Fraglets Transformation

Figure 10.18 Packet loss motif: The path from source to

destination loses packets with a rate p1 ; the reverse path ex-

hibits a packet loss probability of p2. Some of the transmit-

ted molecules are lost, such that the number of Y1-molecules

is lower than the number of X1-molecules in proportion to

the round-trip packet loss probability.

v2v1

X1

E2

r1

r2

x̂Y2 = (1 − p1) (1 − p2) x̂X1

Y1

∅
p1

1−p1

∅∅ p2

1−p2

r′1

r′2
r3

mirroring motif (Section 10.3.3(a)) copies the quantity signal with an error
that is proportional to the packet loss probability. Figure 10.18 shows how
this can be exploited. We assume that packets from the source node v1 to
the destination node v2 are lost with probability p1, whereas packets on the
reverse path are lost with probability p2. The packet rate arriving at the des-
tination node is r′2 =(1 − p) xX1 . According to Kirchhoff ’s current law, the
influx of species E2 is equal to its efflux (r2=r′1), from which a fraction is lost,
such that the packet rate arriving back in the source node is r′2=(1 − p2) r2.
Using Kirchhoff ’s current law again for species Y1 yields

x̂Y1 = (1 − p1) (1 − p2) x̂X1 (10.21)

This quantity signal actually reflects the packet yield probability. It can be
used, for example, to down-regulate the transmission rate. Or, if required,
the subtraction motif (Section 10.3.2(g)) can be used to compute the packet
loss probability.

172 | part ii — chemical networking protocols (cnps)

S ES

E

k1 k2
routrin

(a) Reaction network

xS

rmax

rout

KM

rmax

2

(b) Saturation curve

Figure 10.19 Rate
limitation motif:

The total number

of enzymes (E and

ES together) limit

the rate at which

the substrate S is

sent.

Rate Limitation Motif (c)

In chemistry, there is a well-known reaction motif that exhibits a maximum
reaction rate: the enzymatic reaction discovered by Michaelis and Menten
(1913) (see also the English translation byTeich, 1992) and formalized byBriggs
and Haldane (1925). Here, we use a simplified model, the so-called Van Slyke-
Cullen (vc) scheme (van Slyke & Cullen, 1914) depicted in Figure 10.19(a).
Unlike in the Michaelis-Menten model, reaction r1 is irreversible in the vc
model.

This chemical reaction motif limits the output flow rate rout. This maxi-
mum rate is determined by the number of enzymemolecules present; they are
either in a free form (E) or bound in a enzyme-substrate complex (ES). The
output rate grows with the quantity of the substance S while more and more
enzymes are bound (see Figure 10.19(b)). The rate is maximal if all enzymes
are bound to a substrate molecule.

According to Kirchhoff ’s current rule, the influx equals to the efflux of
the enzyme-substrate complex ES: r1=r2 or k1xSxE=k2xES. We also note that
the loop E–ES is a molecule conservation loop, and hence the total number of
enzymes is constant: xE + xES = e0 = const.. By combining the two equations Michaelis-

Menten equa-

tion
we obtain theMichaelis-Menten equation, which in the distributed context
gives the transmission rate with respect to the substrate quantity:

rout = rmax xS
KM + xS (10.22)

Figure 10.19(b) depicts the resulting hyperbolic saturation curve of the output
rate with respect to the quantity of the substrate. The coefficient KM=k2/k1
specifies the number of S-molecules at which half of the maximal rate rmax=
k2e0 is reached. Also note that for a low substrate quantity (xS → 0) the
enzymatic reaction behaves like a unimolecular reaction with rate rmax/KM
whereas for a high substrate quantity (xS →∞) the transmission rate asymp-
totically converges to the maximum rate rmax.

10. design and synthesis of cnps | 173

Figure 10.20 Rate-
limiting motif
with excessive
drop: By adding a

third reaction, the

total substrate out-

flow is equivalent

to a first-order reac-

tion; excessive sub-

strate molecules

are dropped.

S

ES

E

k1 k2
rout

k3

rin

rdrop

(a) Reaction Network

S routrin

rdrop

k= rmax

KM
pout

pdrop

(b) Short Notation

Thenumber of substrate molecules is usually not held at a constant value,
but rather generated by a precursor reaction rin, as indicated in Figure 10.19(a).
At equilibrium, the output rate rout will be equal to the input rate rin as long
as this rate does not exceed the saturation rate rmax. Let us denote the loadload factor

factor as

ρ = rin
rmax

(10.23)

The steady-state substrate concentration grows hyperbolically with the load
factor and reaches infinity for ρ → 1:

x̂S = KM
ρ
1 − ρ (10.24)

The enzymatic rate-limiting motif can be used whenever the packet rate
shall be throttled to a certain rate, for example, to limit the transmission rate
over a link with well-known bandwidth characteristics.

Rate Limitation Motif With Excessive Drop(d)

If the substrate is produced with a rate rin that is higher than the saturation
rate rmax, i.e. if the load factor is greater than one (ρ > 1), the number of
substrates continuously increases. This can be avoided by the motif depicted
in Figure 10.20(a), which extends the enzymatic reaction by an additional
decay reaction r3. At equilibrium, the substrate quantity settles at

x̂S=KMρ (10.25)

With the decay reaction, the number of substrate molecules grows linearly
instead of hyperbolically with respect to the load factor.

The total efflux rate (rout and rdrop together) corresponds to the rate

174 | part ii — chemical networking protocols (cnps)

rout + rdrop = rmax
KM

xS (10.26)

which is a linear function with respect to the number of substrate molecules.
Hence, we can regard the two substrate-consuming reactions together as
a single unimolecular reaction with coefficient k = rmax/KM as depicted in
Figure 10.20(b). One part of the molecules drained from S is sent while the
remaining part is dropped. According to the saturation curve of the enzymatic
reaction, the transmission probability is

pout = 1
1 + ρ (10.27)

whereas the drop probability is

pdrop = ρ
1 + ρ (10.28)

Like the previous motif (Section 10.3.3(c)), this extended motif may be
used to limit the transmission rate over a link with well-known bandwidth
characteristics. If substrate molecules arrive at a higher rate than this band-
width, this motif should be preferred over the previous one. We will discuss
the similarity between the enzymatic reaction and a fifo-ordered packet
queue later in Chapter 12.

network neighborhood discovery motifs 10.3.4

The transmission motifs seen so far manage packet communication between
two nodes. In this subsection, we discuss motifs that inspect the network
neighborhood, for example, in order to determine the number of neighbor
nodes.

Motif to Determine the Number of Neighbor Nodes (a)

If all network nodes broadcast a packet stream with a well-known packet
rate, each node receives a cumulative packet stream with a rate proportional
to the number of neighbors. This simple fact is exploited to determine the
number of neighbor nodes as depicted in Figure 10.21. We modified the
quantity-mirroring motif (Section 10.3.2(b)) by using broadcast instead of broadcast

unicast transmission primitives, and the result is summed up as in the linear
combination motif (Section 10.3.2(c)). The resulting steady-state concentra-
tion of Yi is

10. design and synthesis of cnps | 175

Figure 10.21 Neighbor quantification motif:

This reaction network computes the number of

neighbor nodes by summing up in species Yi of

each node vi the rate of packets received from

this node’s neighbors.

v2 v3v1

transient molecule, triggers broadcast

X2X1 X3

r1,b r2,b r3,b

r1,d r2,d r3,d

Y1 Y2 Y3

T2 T3T1

Ti

∅ ∅ ∅

x̂Yi = ∑
j∈Ni

x̂X j ∀i ∈ V (10.29)

Given that all nodes have an identical number of X-molecules, x̂X, the con-
centration of Y in node v i is equal to the number of v i ’s neighbors (Ni) times
the number of X-molecules.

x̂Yi = Ni x̂X ∀i ∈ V (10.30)

Note that this motif can only be used if all nodes run the same preinstalled
program that implements the two reactions.

Motif to Determine the Number of Neighbor Nodes(b)
(Alternative Fraglets Implementation)

The alternative implementation depicted in Figure 10.22 does not require
the neighbor nodes to run preinstalled software. It makes use of Fraglets’
active networking capability through which code can be sent along with the
transmitted packet. The alternative motif is based on the echomotif discussed
before (Section 10.3.3(b)), but instead of broadcasting the Y-molecules to all
neighbor nodes, each node broadcasts an echo fraglet ([send v2 Y]), whichecho fraglet

immediately sends back a Y-molecule to the source node. There, the Y-
molecules are decayed in order to obtain a steady-state quantity that reflects
the inflow of Y-molecules. This inflow is k times the original broadcast rate,
where k is the number of neighbor nodes. Thus, a node actually probes how
many Fraglets vessels are in its neighborhood.

Motif to Determine the Number of Connected Neighbor Nodes(c)

The above motif can even be pushed further by broadcasting a packet twice
in sequence before sending the reply back to the originator node, as shown in

176 | part ii — chemical networking protocols (cnps)

v2 v3v1

X2

Y2

r2,b

r2,d

T2,b

T1,u2 T3,u2

transient molecule, triggers broadcastTi

transient molecule, triggers unicast to originTj,ui

∅

[send Y]v2 [send Y]v2

[broadcast send Y]v2

Figure 10.22 Neighbor quantification motif
(2): This alternative implementation works de-

spite there is no preinstalled program in the

neighbor nodes. An echo fraglet is sent to all

neighbors; the sum of the rate of all returning

fraglets is proportional to the number of neigh-

bor nodes.

vi

∅

[broadcast broadcast send Y]vi

[send Y]vi

[broadcast send Y]vi

first broadcast

unicast to origin

second broadcast

Xi

Yi

ri,b

ri,d

Figure 10.23 Connected
neighbor quantification
motif: The originator

node vi broadcasts a fra-

glet, which broadcast a

unicast message back to

the originator. The quan-

tity of Y is proportional to

the number of connected

neighbors of node vi .

Figure 10.23. The originator node v i sends a broadcast message to all neigh-
bors. This message contains a fraglet that broadcasts itself to the neighbor’s
neighbors. There, yet another fraglet unfolds that tries to send an indicator
molecule Y back to the originating node. This last message only returns to
the originating node if the packet traversed two directly connected neigh-
bors, and thus, the number of Y-molecules reflects the number of connected
neighbor nodes:

x̂Yi = x̂Xi ∣{(j, k)}∣ ∀i ∈ V , v j , vk ∈ Ni , (j, k) ∈ E (10.31)

If there are no Y-molecules, all neighbors are independent. independent

Anycast Motif (d)

Fraglets provides an anycast-instruction, which sends the fraglet’s tail to a
randomly chosen neighbor node. However, the anycast-instruction only

10. design and synthesis of cnps | 177

Figure 10.24 Anycast motif: The originator

node vi broadcasts a fraglet, which appends

the local node identifier to the fraglet and uni-

casts itself back to the original node. There the

fraglet competes with similar fraglets return-

ing from other neighbors for reacting with data

packets X and drag them to the corresponding

neighbor.

v2v1 v3

[snode _
send Y]v2

[broadcast send Y]v2

[snode _
send Y]v2

T2

Y2,1

r2,b

r2,1
X2

Y2,3

r2,3

∅ ∅T2,b

T1,u2 T3,u2

packets to send

works if the underlying transmission channel provides information about
the identities of the neighbor nodes. The following motif spans a reaction
network that simulates anycast transmission using broadcast and unicast
transmission primitives only.

Figure 10.24 illustrates the spanned reaction network: Each node v i
maintains a population of trigger molecules Ti that determines the pace
of sending broadcast messages. Once arrived in a neighbor node v j , the
broadcasted fraglet inspects the identifier of the local node by executing
the snode-instruction and sends itself back to the originating node v i . The
returned fraglet has the format Yi , j = [Y v j]. With the help of an assisted
reaction, such a Yi , j-molecule reacts with a data packet Xi and sends it to the
neighbor node v j from which the broadcasted fraglet returned.

Note that the reaction network from T via the neighbors to the cor-
responding Y-molecules and their decay, is an application of the remote
quantity-mirroring motif (Section 10.3.3(a)). That is, the concentrations of
all Yi , j (j ∈ Ni) are equal, and hence the probability of a data packet being
sent to either node is equal. As a further consequence, the rate at which the
broadcast is sent, which is controlled by the quantity of T-molecules, also
determines how fast data packets X are sent.

application case: disperser10.4
in a network with unknown topology

In this section, we demonstrate an extension of the Disperser protocol to
illustrate how the various motifs introduced in this chapter can be combined.
We introduced theDisperser protocol in Section 5.4 and analyzed its behavior
in Chapter 9; for reference, see Figure 10.25.

178 | part ii — chemical networking protocols (cnps)

v1 v2 v3

X1 X2C2,1C1,2

r2,1

r1,2

X3C2,3 C3,2

r2,3

r3,2

Figure 10.25 Original reac-
tion network of Disperser: This

protocol design is problematic,

because the control molecules

Ci,j must be pre-installed manu-

ally; there must be one control

molecule per link (i, j) ∈ E .

The original design of the protocol is quite static: A control molecule
Ci , j must be manually installed for each network link (i, j) ∈ E . That is, there
must be an external process – either human or automatic, but out of the scope
of the chemical execution model – that knows the node’s neighborhood and
creates or removes the control molecules as the network topology changes.

In this section, we aim at improving Disperser’s design such that the
protocol autonomically discovers its network neighborhood and installs the
required control molecules. We propose two different design variants in
Sections 10.4.1 and 10.4.2 and compare their behavior.

first design variant 10.4.1

We follow our design paradigm by first finding the chemical reaction network
that solves the problem dynamically and, in a second step, to look for an
implementation of the resulting reaction network in Fraglets.

First Step: Reaction Network Design (a)

Thefirst design variant relies on the remotemirroringmotif (Section 10.3.3(a))
as depicted in Figure 10.26. Each node v i broadcasts control molecules to its
neighbors. There these C j,i-molecules drag X j-molecules to the originator
of the broadcast. This implements the actual exchange of data-molecules
as indicated by the red, curved arrows. In order to maintain a constant
population of control-molecules, a first-order reaction decays them. The
reactions highlighted with the blue background are an instantiation of the
remote mirroring motif, according to which the number of control molecules
C j,i is equal to the number of trigger molecules in the originating node, Ti . If
all nodes start with the same number of triggers, the draining force for each
link is equal, and Disperser computes the average number of X-molecules as
required.

10. design and synthesis of cnps | 179

Figure 10.26 Reaction
network of the ex-
tended Disperser: Each

node broadcasts control

molecules to its neigh-

bors. There, the enzyme

is used as a catalyst to

send X-molecules back to

the originating node. An

additional decay reaction

makes sure the control

molecules are kept a

constant number.

v1 v2 v3

X1 X2C2,1C1,2

r2,1

r1,2

X3C2,3 C3,2

r2,3

r3,2

r1,b r2,b r3,b

∅ ∅ ∅ ∅
r1,2,d r2,1,d r2,3,d r3,2,d

T1 T2 T3

Second Step: Fraglets Implementation(b)

Thenext step is to come upwith an implementation of this distributed reaction
network in Fraglets. Ideally, we would map each species to a fraglet string.
But, because each Fraglets reaction requires an active and a passive string,
we have to resort to assisted reactions (see Section 10.3.1(d)), where reactions
rather than molecules are represented by fraglet strings. In particular, the
following conflict arises: Control species Ci , j is consumed by the first-order
decay reaction r i , j,d, suggesting that the control species is represented by an
active [mmatch 0]-fraglet (see also Section 10.3.1(c)). But at the same time,
the same control species must react with Xi-molecules; a dual matching tag
would be required, which is unfortunately not possible in Fraglets yet. Thus,
we are forced to fall back to assisted reactions as shown below.

Each node v i ∈ V is initialized with the following set of fraglets:
Ti ∶ v i[mmatchp 0 broadcast C v i]t0 (10.32a)

r i , j,d∶ v i[matchp C nul] (10.32b)
r i , j ∶ v i[mmatchp 2 C X mfork 3 spush X send nop nop C] (10.32c)
Xi ∶ v i[X]x i ,0 (10.32d)

The strings representing the efflux reactions of X, (10.32b) and (10.32c), are
only present once, whereas the quantity of Xi , x i ,0, represents the node’s initial
value. The number of trigger molecules Ti , t0, must be identical in each node.
The latter quantity signal is mirrored to the quantity of the neighbor’s control
molecules C j,i .

As a remainder from Section 9.3 we note that the snr increases for a
high molecular quantity. We expect and show later that for lower values of t0
the calculated result becomes more noisy.

180 | part ii — chemical networking protocols (cnps)

v1 v2 v3

X1 X2C2,1C1,2

r2,1

r1,2

X3C2,3 C3,2

r2,3

r3,2r1,b r2,b r3,b

[snode _ send spush X match X send]v2

[send spush X match X send]v1v2�→ Figure 10.27 Alternative reaction
network of the extended Disperser:
Each node broadcast echo fraglets

with a rate equal to the current num-

ber of X-molecules. The returned

echo is a control molecule that sends

X-molecules to the corresponding

neighbor and gets consumed. Accord-

ing to the constant quantity motif (Sec-

tion 10.3.2(h)), the average number of

control molecules is kept constant at

one.

second design variant 10.4.2

The Disperser protocol only works if the number of control molecules is
equal for each link in the network. The first design variant therefore copied
a well-known quantity via broadcasts to ensure this equality. The second
design variant presented here makes use of the constant concentration motif
(Section 10.3.2(h)) instead. The resulting distributed reaction network is
depicted in Figure 10.27.

First Step: Reaction Network Design (a)

Unlike in the previous variant, each network node now installs its own con-
trol molecules wherefore we modified the neighbor quantification motif Sec-
tion 10.3.4(b) such that the echoed molecules received from different neigh-
bors are treated as separate species – the controlmolecules Ci , j . Consequently,
the reaction network yields a constant number of one control molecule per
link, which is a consequence of the fact that the control molecule is pro-
duced by a unimolecular reaction from another molecule Xi (highlighted in
blue) and consumed in a bimolecular reaction with the same other molecule
(highlighted in red), as we discussed in Section 10.3.2(h).

Second Step: Fraglets Implementation (b)

The following initial set of Fraglets is installed in each node v i :

r i ,b∶ v i[matchps X broadcast (10.33a)
snode _ send v i spush X match X send]

Xi ∶ v i[X]x i ,0 (10.33b)

10. design and synthesis of cnps | 181

The reaction network unfolds from these two fraglets. They react with each
other and finally result in the production of the control molecules through the
following steps: First, the reaction product broadcasts itself to all neighbors:

v i[matchps X broadcast

snode _ send v i spush X match X send] + v i[X]�→ v i[broadcast (10.34a)
snode _ send v i spush X match X send] + . . .�→ v j∈Ni[snode _ send v i spush X match X send] (10.34b)

Every neighbor v j ∈ Ni executes the received string, which appends the local
node identifier to its tail and sends itself back to the originating node:

v j∈Ni[snode _ send v i spush X match X send]�→ v j∈Ni[send v i spush X match X send v j] (10.34c)�→ v i[spush X match X send v j] ∀v j ∈ Ni (10.34d)

The third step consists of restructuring the returned molecule such that it
becomes the control molecule:

v i[spush X match X send v j]�→ v i[match X send v j X] ∀v j ∈ Ni (10.34e)

It reacts with a passive [X]-fraglet and sends it to the neighbor over which
the control fraglet was echoed.

simulation results10.4.3
Both design variants replace the persistent control molecules in the original
design by a flow of dynamically generated control molecules. Each of the ad-
ditional reactions potentially increases the noise, especially for low molecular
concentrations. To illustrate this problem, we empirically measured the snr
of the computed result at equilibrium for the original Disperser design and
the two variants. For this purpose, we ran an omnet++ simulation for the
three-node topology depicted in Figures 10.25, 10.26, and 10.27, for a steady
state result of x̂X=100molecules.

Figure 10.28 shows that the snr is about 12.2 for the original design
variant. For a steady-state result of 100molecules this means a standard

182 | part ii — chemical networking protocols (cnps)

1 10 100 1000
Number of trigger molecules NTi [molecules] (log)

0

2

4

6

8

10

12

14
S

N
R

original design

second design variant

first d
esign varia

nt

Figure 10.28 Signal-to-noise ratio
of different Disperser design variants:

Empirically obtained results from a Fra-

glets simulation of the three-node net-

work topology depicted in Figures 10.25,

10.26, and 10.27, for a steady-state result

of x̂X = 100 molecules. The original

version is most accurate. The first de-

sign variant mirrors trigger molecules to

neighbor nodes; its accuracy increases

for a larger number of trigger molecules.

The second design variant uses the con-

stant quantity motif. Its accuracy is inde-

pendent on an additional parameter.

deviation of 8.1molecules. The figure also shows that the snr for the first
design variant using the remotemirroringmotif increases for a higher number
of trigger molecules. Note that the noise of the trigger molecule (and hence of
the copied control molecules) is actually added on top of the original variant’s
noise where the number of control molecules is held constant. Finally, the
second design variant, which is based on the constant quantity motif, exhibits
a slightly lower accuracy than the original design.

We favor the second design variant, because it automatically adapts to
network topology changes, and, compared to the first variant, it does not
require all nodes to run preinstalled software.

summary 10.5

In the previous section, we enhanced the design of our chemical gossiping
protocol Disperser such that it discovers its neighbor nodes and installs the
corresponding control molecules autonomously. The design process high-
lighted that the motifs presented earlier in this chapter are welcome building
blocks that can be combined and inserted into an existing chemical reaction
network. In a second step, we translated the abstract reaction network to an
implementation in Fraglets. We demonstrated that even though Fraglets is
not chemically complete there exist work-arounds that allow us to implement
any reasonable reaction network.

The motifs presented in this chapter heavily exploit the dynamics of
chemical reaction networks. The result is not presented symbolically in a
single molecule instance but manifests as a steady-state quantity or reaction
rate. We demonstrated the well known result that chemical reaction networks
are able to process such analog signals, for example by calculating arithmetic

10. design and synthesis of cnps | 183

functions, and we applied this result to cnps. Such computation can now be
organized in a distributed environment. Beyondmere arithmetic calculations,
our reaction networks use concentrations signals to control the protocol’s dy-
namics. In Chapter 12, we will introduce a chemical networking protocol that
automatically adapts to the available bandwidth and even provides fairness
among different packet streams akin tcp’s congestion control mechanism.

It became apparent that for a given problem, multiple design variants
exist in the solution space. It is therefore impossible to provide a general
recipe that generates the “right” result. We rather provided general solutions
for very basic problems and leave it to the engineer to combine them in an
innovative way in order to solve a more complex task.

••

184 | part ii — chemical networking protocols (cnps)

chapter1111CNP Simulation and Runtime Engine

A more detailed description of the Fraglets Virtual Machine, its
embedding into a network simulator, and on the limiting effects
of real computing infrastructure.

Time is not bought ready-made
at the watchmaker’s. 11

The Habit of Truth
Jacob Bronowski

Our chemical execution model introduced in Chapter 5 left sev-
eral implementation details unspecified. In this chapter, we discuss the

architecture of the current Fraglets Virtual Machine implementation and its
integration into the omnet++ network simulator in more detail. We also
address physical constraints; in particular, we examine the consequences of
limited memory and limited computing power for chemical software. Thus,
this chapter is mainly addressed to computer system architects, to whom it
provides a guideline for implementing a chemical virtual machine. In the next
chapter, we will then focus on restrictions in the networking infrastructure,
i.e. limited bandwidth and packet loss. Figure 11.1 shows where these topics
are located in our chemical engineering landscape.

This chapter is structured as follows: Section 11.1 describes architectural
details of the Fraglets Virtual Machine. In Section 11.2, we show how the
virtual machine is integrated into the omnet++ simulator. Section 11.3 then
discusses additional memory constraints and time-synchronization problems
if the virtual machine is embedded into a real network and operates on-line.

11. cnp simulation and runtime engine | 185

D
es

ig
n

Sp
ec

ifi
ca

tio
n

Specification

Abstract
Reaction Network
Model of the chemical

program in an explicit

artificial chemistry

Mathematical Model
ODE

Approximation

Mathematical Tools

Metabolic

Control Analysis

Signal Theory

M
ic

ro
sc

op
ic

 L
ev

el
(S

ys
te

m
)

M
ac

ro
sc

op
ic

 L
ev

el
(A

bs
tr

ac
tio

n)
Behavioral Model Analysis

S
tr

uc
tu

ra
l R

eq
ui

re
m

en
ts

D
yn

am
ic

al
 R

eq
ui

re
m

en
ts

Simulator
of the algorithmic

chemistry and the network

Virtual Machine
Real-time execution of the

algorithmic chemistry

Chemical Software
programmed in an

algorithmic chemistry:

The structure of

molecules/packets

describe the reactions.

Traces
Qualitative and

quantitative

traces and logs

of the simulation

or real-time

execution.

Fi
nd

 R
ea

liz
at

io
n

Fi
nd

 M
ap

pi
ng

Run

Run

Measure

Measure

Verify

Re
fin

e

Verify

Dynamic Design

Realization
(AChem)

Auto. Gen. ApplyLinear Noise

Approximation

Stochastic

Master Equation

Re
fin

e

Structural Design

Re
fin

e

Figure 11.1 Implementation issues in the engineering model: This chapter focuses on the implementation of

the Fraglets Virtual Machine and its integration into the OMNeT++ network simulator.

virtual machine (vm) architecture11.1

The Fraglets Virtual Machine (vm) is the core of our Fraglets execution envi-
ronment. It is implemented as a c++ library that is linkable to any program
running on a traditional computer with a posix-compliant operating system
interface (Eissfeldt, 1997). Currently, the vm is embedded into two programs:
a standalone executable, which parses a Fraglets program file and executes it
in turn, and a plug-in library for the omnet++ network simulator.

In this work, we use Fraglets to implement network services. As shown
in Figure 11.2, this positions the virtual machine between an application layer
program and the existing network infrastructure; the vm offers network
services in the form of chemical protocols to the application.

186 | part ii — chemical networking protocols (cnps)

Network Node

Fraglets
Virtual Machine (VM)

Application

Existing
Network Infrastructure

fraglets

packets (e.g. IP)

Figure 11.2 Conceptual Fraglets network
node: Each network node consist of an appli-

cation and an existing network infrastructure

such as a simulated IP network. In between,

the Fraglets Virtual Machine implements the

network protocols.

internal structure of the fraglets vm 11.1.1

The internal structure of the vm-implementation is depicted in Figure 11.3
and described below:

Multiset Observer: Themultiset observer is notified by the multiset when-
ever a fraglet is extracted or injected into the “soup”. The observer main-
tains a hash-table for all currently active reaction channels. In Fraglets, hash-table

there is one reaction channel per tag symbol (X, Y, Z, etc.). The observer
computes the propensity of each reaction channel according to (5.4) on
page 56, determines the reaction’s next occurrence time and (re-)inserts a
reaction event into the priority queue.

Reaction Priority Queue: This queue contains one event for each reaction
channel, ordered with respect to the planned occurrence time. A reaction
event is relocatedwithin the queuewhenever reactantmolecules are added
or removed to or from the multiset, according to the updated propensity
function.

Reaction Arbiter: The arbiter places the earliest reaction event to an external
event scheduler. The scheduler notifies the arbiter as soon as the next event scheduler

reaction shall be executed, which causes the arbiter to trigger the Fraglets
processor.

Fraglets Processor: TheFraglets processor implements the Fraglets language.
It selects and extracts reactants from themultiset and executes the reaction executes the re-

actionaccording to the Fraglets production rules (see Appendix B). The product
strings are either placed back into the multiset, or, if some product strings

11. cnp simulation and runtime engine | 187

Fraglets Virtual Machine (VM)

[...]

Fraglets Multiset

("Soup")
Reaction

Arbiter

Fraglets

Processor

Multiset Observer

R
e

a
c

ti
o

n

P
ri

o
ri

ty
 Q

u
e

u
e

de
li

ve
r [...]

[...]

[...]

Reaction

Scheduler

Injector

to/from application

to/from network infrastructure

se
nd

reactants

products

Event

System

ASAP

Event Sched.

OMNet++

Event Sched.

Real-time

Event Sched.

Logs /

Traces

Native

Logging

OMNet++

Logging

Figure 11.3 Fraglets Virtual Machine (VM): The observer continuously tracks changes in the multiset and up-

dates the reaction priority queue. The reaction arbiter is integrated into the simulation environment’s event

scheduler and triggers the Fraglets Processor for the next reaction. The processor applies rewriting rules by se-

lecting and extracting reactants from the multiset, by executing the fraglets reaction and subsequent transfor-

mation steps, and by injecting the products back to the soup, or sending them to the application or over the

network.

start with the deliver- or the send-instruction, these strings are sent to
the application or to the network infrastructure, respectively.

Injector: The injector module is responsible for adding newmolecules to the
multiset. It is called likewise for locally produced and received molecules.

design objectives of the fraglets vm11.1.2
The current vm was designed with flexibility and not performance in mind.
It is more an engineering instrument than a productive system. Nevertheless,
we integrated an efficient memory management system, which uses smart
pointers and a copy-on-write strategy to avoid unnecessary copy operations.
On the other hand, the software is very modular, which is useful during
development and debugging, but which decreases the overall performance of
the vm. In the following, we discuss two modular interfaces in more detail:
the logging infrastructure and the event system. They are responsible for
the seamless integration of the Fraglets vm into other programs such as the
omnet++ simulator.

188 | part ii — chemical networking protocols (cnps)

*The Matplotlib

python library

is freely avail-

able form the

“Matplotlib Web

Page” (2010).

†The Graphviz

software is avail-

able from the

“Graphviz Web

Page” (2010).

Logging Subsystem (a)

As shown on the right of Figure 11.3, each component of the vm (the multiset,
the Fraglets processor, the reaction arbiter, etc.) provides a logging interface
to which observers may be attached. Loggers dynamically register with these
components and obtain state updates in turn. Each program, into which
the vm is embedded, will usually provide its own loggers. Our stand-alone
executable, for example, writes state information to a file in csv (comma-
separated value) format whereas the omnet++ plug-in forwards them to
the logging infrastructure of the simulator. The following description lists
some of the loggers available in the current implementation:

State Logger: The state logger writes – on the occurrence of an event – a
snapshot of the multiset to a file. Typically, this happens at the end of a
simulation run to extract the computed result of a chemical program.

Multiset Inspection: This logger continuously tracks multiset information
and writes it into a csv file. Such information includes the quantity of
species, the length distribution of fraglet strings, statistics about a numeric
value at a certain symbol position in a fraglet string, etc. Many graphs
in this thesis were drawn with Matplotlib (Hunter, 2007)* based on such
inspection files.

Reaction Traces: The trace logger prints a textual representation of each
executed reaction like the trace shown by (10.34b)–(10.34e) on page 182,
for example.

Reaction Network Graphs: The grapher module tracks all executed reac-
tions and internally builds a reaction network graph, which is printed
in the dot file format. Graphviz (Ellson, Gansner, Koutsofios, North, &
Woodhull, 2002)† parses this file and draws the reaction graph.

Timers: The timer module is used to inject one or more fraglets at a certain
simulation time.

As all loggers use the same interfaces, it is easy for programmers to write their
own loggers and integrate them into the vm.

Event Subsystem (b)

The event subsystem is responsible for scheduling reaction events and execut-
ing reactions on time. As depicted in Figure 11.3, the Reaction Arbiter places
an event to an external scheduler via the vm’s abstract event system interface.
Thus, the vm delegates the exact timing of its reactions.

11. cnp simulation and runtime engine | 189

There are different implementations of the event scheduler, one for each
program into which the vm is embedded: Our stand-alone Fraglets inter-
preter provides an asap-scheduler, which does not defer the reaction but calls
the reaction arbiter immediately. As a consequence, reactions are executed
back-to-back and the simulated time diverges from the physical time, which
in a simulation is not a problem.

There is another scheduler for the omnet++ integration. It converts our
reaction events into omnet++ events and schedules them using OMNeT’s
native event scheduler. This automatically synchronizes Fraglets’ notion of
time to OMNeT’s simulation time.

A third scheduler would have to be provided if Fraglets is used in a
productive system where the vm’s are distributed and driven by separate
cpus. We will address such timing issues later in Section 11.3.2, where we
discuss computing power limitations.

integration of the fraglets vm11.2
to the omnet++ simulator

During the development and design phase of chemical protocols, controlled
protocol simulations are preferred over extensive empirical experiments in
network test beds or productive networks. Such simulations, carried out in
the omnet++ framework, complement our analytical studies and provide a
convenient rapid prototyping method to incrementally refine the protocols
when needed (see Figure 11.1).

omnet++ (Györgi, 1993; Varga, 2001; Varga & Hornig, 2008) is an ex-
tensible, modular, component-based c++ simulation library and framework,
primarily for building network simulators. It features a set of ready-made
simulation models including inet, an Internet protocol suite containing im-
plementations of ip, tcp, udp, ppp, Ethernet, etc., and amobility framework
for the simulation of wireless and mobile networks.

In omnet++, a network is designed by combining components, i.e.components

abstract wrappers of functionality. There are two types of components: simple
components are c++ plug-ins providing the actual functionality whereas
compound components are used to group other components together to a
manageable entity of its own, e.g. network nodes. Both types communicate
by exchanging message objects through so called gates, which are linked by
connectors. Each time a simple module sends a packet over one of its gates,
the framework routes the packet along the connectors and calls the event
handler of the destination module. The omnet++ framework provides a

190 | part ii — chemical networking protocols (cnps)

OMNeT++ Virtual Network Node

G
at

e

G
at

e
Fraglets

Virtual Machine (VM)

Source Sink
G

at
e

G
at

e

Dispatcher

compound

module

simple

modules

Figure 11.4 Embedding
of Fraglets into OM-
NeT++: Each virtual net-

work node instantiates a

Fraglets virtual machine.

User-data is generated by

a source module whereas

the sink module accepts

data destined for this

node. The Dispatcher

sends fraglet strings to

one or multiple neigh-

bors based on the iden-

tifier following the send-

instruction.

central event scheduler for all virtual network nodes and hence assures a
consistent simulation time.

Our integration is based on previous work by Lüscher (2009): A virtual
network node running Fraglets is represented by a compound module, de-
picted in Figure 11.4. A node has a unique name, serving as its address. It
contains a number of simple modules, implementing the actual functionality.
Each node contains an own instance of the Fraglets vm. That is, our Fraglets Fraglets VM

plug-in, written in c++, provides an omnet++-wrapper for the Fraglets
vm.

A source and a sink module is connected to the vm. They simulate appli- source, sink

cation requests and are configured to terminate a stream of Fraglet molecules
sent from one node to another node. In Chapter 12, we occasionally replace
them by tcp sockets.

Whenever the Fraglets vm executes a send-instruction, it passes the
fraglet to the Dispatcher component, which locates the neighbor node to Dispatcher

which the Fraglet is addressed, and dispatches the fraglet as an omnet++
message to one of the node’s gates. The Dispatcher can be configured to either
send the packet directly over the attached connector or to insert it into a fifo
queue. The use of fifo queues is discussed in detail in the next chapter.

As mentioned before, synchronization of the Fraglets reaction time to synchronization

the omnet++ simulation time is straightforward: Our plug-in implements
a wrapper to the omnet++ event system; reactions are actually scheduled
by the network simulator and use the same notion of time as other simulated
elements such as queues, protocol timers, etc.

11. cnp simulation and runtime engine | 191

integration of the fraglets vm11.3
to a real network

In this section, we study the effects of using Fraglets in a productive system,
i.e. in a real distributed network environment. If the Fraglets vm goes on-line,
physical constraints limit several aspects of the ideal chemical model and
thus deserve some more attention. We address two particular limitations,
namely limited memory in Section 11.3.1 and limited computing power in Sec-
tion 11.3.2: Finite memory resources limit the maximum number of molecules
in a vessel and limited computing power implies a maximum reaction rate.
We show several strategies of how to cope with such constraints during the
design phase and at run-time.

memory limitations11.3.1

Each computer comes with limited memory and consequently, the repre-
sentable state-space is finite. For an artificial chemistry such as Fraglets this
implies that only a finite number of molecules can be stored in the multiset.
We first discuss two different ways of storing a multiset in memory and dis-
cuss their strengths and weaknesses, before we present strategies to cope with
limited memory.

Storage Models for the Multiset(a)

There are at least two methods how a multiset of molecules can be stored in
memory: (1)The simplestmethod is to store eachmolecule instance separately
in its own memory region. This requires the vm to allocate memory in
proportion to the total number of symbols in the multiset, i.e. the number of
molecule instances times their lengths. (2) A second method is to store each
molecule species in a separate memory region together with a counter that
remembers the number of its instances.

The second method is more memory efficient because it only requiresmemory

efficiency memory in proportion to the number of species times their lengths plus
some memory for the instance counters. However, this comes along with an
increased computational overhead for the insert operation, where the multisetcomputational

overhead has to find the corresponding species before incrementing its multiplicity.
Another drawback of the second method is the high vulnerability to

spontaneous memory alterations. We study this phenomenon in detail in
Part iii. Here, we just note that a flipped bit changes a single instance in
the first method but changes all instances of a species in the second method.

192 | part ii — chemical networking protocols (cnps)

Thus, in terms of robustness, it is beneficial to exploit the memory by storing
different instances of the same species in separate memory regions.

Our current vm implementation resorts to the second method and
stores the fraglets in a hash-table. Each fraglet provides an efficient hashing
function, which allows the multiset to quickly locate the species. However in
the following, we anticipate results from Part iii and assume that instances
are stored separately. We discuss the consequence of limited memory and
develop strategies cope with this constraint.

Strategies to Cope with a Limited Vessel Capacity (b)

Imagine a vm with limitedmemory, such that notmore than a certain number
of symbols can be stored. We implicitly assume that each symbol is encoded
by a fixed length binary code; a possible encoding scheme is discussed later
in Chapter 18. We also ignore memory fragmentation and assume that all
memory can be exploited to store fraglets. The question we would like to
answer here is: What happens if new molecules are produced or injected
while the memory is full? We currently envision two possible strategies:

Tail-Drop: An obvious method is to throw away new products if the vessel
is saturated. This mimics the tail-drop behavior of limited fifo queues.

Random Dilution: Another strategy is to let a new molecule instance dis-
place one or more randomly selected molecules in the vessel. Conse-
quently, each species is subject to a dilution flux, imposed by the overall
productivity of the reaction system.

Both methods have their strengths and weaknesses. The tail-drop method tail-drop

does not overwrite existingmolecules and thus, does not threaten the integrity
of chemical software. However, there are cases where tail-drop behavior
leads to a stalled system: Imagine a situation in which the vessel is full but stalled system

the reaction system is inert, for example, waiting for input. A molecule
received from the application layer or from a distant vessel may reactivate the
local reaction system. However, the tail-drop behavior does not allow these
molecules to enter the vessel – the system remains inert forever.

By applying a random dilution flux, the system does not run into this random dilu-

tion fluxproblem, because it removes molecules to make room for new ones. Note
however, that any type of molecule is subject to dilution. Although the proto-
col may tolerate the loss of molecules containing user-information in form
of payload, the dilution flux will also remove molecules comprising the es-
sential code of the chemical software. If catalysts (for example persistent
matchp-fraglets) are removed, the functionality of the software is disrupted.

11. cnp simulation and runtime engine | 193

One method to protect software is to artificially protect persistent fraglets
against the dilution flux. This is fine if static software is installed permanently,
but does not work if code is dynamic and mobile. Another method is to
antagonize the dilution flux by providing multiple redundant code replicas.
However, all replicas will eventually be diluted. The only method to protect
dynamic code from the dilution flux is to come up with software that continu-
ously rewrites itself and regulates its own redundancy. We will propose such
an approach in Part iii.

Mathematical Description of the Dilution Flux Dynamics(c)

The concept of a random dilution flux appears in a lot of artificial chemistries
(Fontana, 1992; Banzhaf, 1993a, 1993b; Dittrich & Banzhaf, 1997; Speroni
di Fenizio & Banzhaf, 2000; Kvasnička & Pospichal, 2001; Suzuki & Ono,
2002). It has its analogy in the chemical flow reactor: In a flow reactor offlow reactor

finite volume, continuous input of substrate builds up a pressure that causes
molecules (usually products) to be squeezed out. In an artificial chemistry, a
flow reactor is efficiently simulated by defining a constant vessel capacity in
terms of the maximum number of molecules or symbols and by randomly
destroying excessive molecules whenever new molecules are produced or
injected.

In the following, we provide a deterministic mathematical description
for two different limits: A first, simpler variant assumes that all molecules
require the same memory, in which case it is sufficient to restrict the total
number of molecules. In reality, molecules are of different length and have
different memory requirements. We treat this scenario separately.

A deterministic mathematical description of a vessel with a limited
capacity ofN molecule instances is given by the following differential equation
system:

ẋ =
reaction rate equation788888888988888888:

S ⋅ a(x) −
dilution flux7888888888988888888:
x
N
f (x) (11.1)

The first part of (11.1) is the reaction rate equation (see (8.31) on page 116),
capturing the change of the number of instances of each species without
memory constraints. The second part of (11.1) describes the dilution flux
applied to each species s ∈ S in proportion to its current concentration xs/N .
The function f (x) denotes the overall dilution flux, i.e. the rate at which the
Injector (see Figure 11.3) deletes arbitrary molecules to make room for new
ones. This dilution flux is only applied if the vessel is saturated and amounts
to the net production rate of the system:

194 | part ii — chemical networking protocols (cnps)

f (x) = ⎧⎪⎪⎨⎪⎪⎩0 for∑s∈S xs < N ;∑s∈S Ss ⋅ a(x) for∑s∈S xs = N . (11.2)

If the molecules are of different length, we cannot simply restrict the
number of molecules. Instead, we have to limit the vessel capacity to C
symbols. Let l=(∣s1∣ ⋯ ∣s∣S∣∣) be the row vector of species lengths. The ode
system can now be expressed as

ẋ =
reaction rate equation788888888988888888:

S ⋅ a(x) −
dilution flux788888888988888888:
xl
C
f (x) (11.3)

where

f (x) = ⎧⎪⎪⎨⎪⎪⎩0 for∑s∈S xs ls < C;∑s∈S Ss ⋅ a(x) for∑s∈S xs ls = C. (11.4)

We will make use of these odes later in Part iii to calculate equilibrium
properties of self-healing software.

limited computing power 11.3.2
If we are going to embed the Fraglets vm into a real network, there is no global
scheduler anymore. Each vm is driven by a separate cpu. Since chemical
protocols also convey information via the packet rate, it is important that both
the sender and the receiver have the same notion of time. This is achieved
by coupling the chemical time (=simulation time) to the physical time. This
means that a computer must send packets at the rate dictated by the law of
mass action, although a small clock drift in the network is tolerable.

Chemical protocols only operate dynamically correct if all reactions are
executed at the (physical) time for which they are scheduled. Consider the
Disperser protocol as an example: If the cpu of a certain node is not able to
send data-molecules in proportion to their local quantity anymore, but still
receives molecules from its network neighbors, the molecules will accumulate
in the overloaded node and distort the result.

Thus, if the Fraglets vm is driven by a real cpu with limited computing
power, the vm is only capable to drive reactions up to a maximum reaction
rate. This maximum rate first depends on the number of reactants: Accord-
ing to the law of mass action, the more reactants there are, the higher is the
reaction rate. Second, the Fraglets transformations have to be executed im-
mediately and as fast as possible. That is, the more transformations a reaction

11. cnp simulation and runtime engine | 195

‡The VM im-

plementation

is not multi-

threaded. Thus

only one proces-

sor core is used.

product contains in its header, the longer this reaction occupies the cpu and
the lower is the reaction rate the cpu is able to ensure.

Worst and Best Case Scenarios(a)

We computed themaximum reaction rate demanded by the law ofmass actionmaximum

reaction rate and compared it to the maximum reaction rate a cpu is able to deliver for
two different scenarios: a best-case and a worst-case scenario (see details
in Section A.1). The cpu reaches a maximal reaction rate if the reaction
vessel only contains unimolecular reactions processing shortmolecules: Short
molecules require only a few transformations to be executed per reaction and
for unimolecular reactions, the rate only grows linearly with the number of
molecules. Because the Disperser protocol matches these criteria, we refer
to it as the best-case scenario. For the worst-case scenario we assume that
there are bimolecular reactions, and that each reaction product only contains
transformations. That is, the processing time is proportional to the length of
the reaction products.

It turns out, that by limiting the vessel capacity in terms of the numberlimiting the

vessel capacity of symbols, we can effectively restrict the reaction rate such that it does not
exceed the speed of the cpu. For the Disperser protocol, the vessel capacity
has to be limited to

C < 1
2Tkmax

(11.5)

whereas for the bimolecular worst-case scenario, the vessel capacity has to be
restricted to

C < (2
Tkmax

)−3/2 +√ 2
Tkmax

(11.6)

In these equations,C denotes the symbol capacity of the reaction vessel, which
is limited by the available memory and, based on our calculations, should be
further restricted to let the cpu copewith the law ofmass action requirements.
T denotes the cpu time required to execute one Fraglets production rule –
either a reaction or a transformation – and kmax is the reaction coefficient of
the fastest reaction.

Figure 11.5 plots these equations with respect to the term Tkmax. The
maximum tolerable capacity drops if the cpu either needs more time to
transform a fraglet, or if the reaction coefficients in the chemical model
require faster reactions. On a computer with an Intel Core Duo 1.8GHz
processor, our Fraglets vm is able to perform about 105 reactions/s‡, meaning
that the vm is able to correctly drive Disperser for up to 105 X-molecules.

196 | part ii — chemical networking protocols (cnps)

CPU copes

with the

reaction rate

Reaction rate

according to the

law of mass action

cannot be granted

Disperser
bi-molecular,generic

In
te

l
C

o
re

 D
u

o
 1

.8
 G

H
z

 (
1

 c
o

re
)

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

Tkmax

10−1

100

101

102

103

104

105

106

107

108

109
V

e
ss

e
l

c
a

p
a

c
it

y
C
[sy

m
b

o
ls
]

Figure 11.5 Realistic reaction vessel
capacity limits: The maximal vessel

capacity tolerable, C, is lower for slow

CPUs and for faster reaction coefficients.

In reality, the vessel must be dimen-

sioned somewhere in between the best-

case (Disperser) and the worst-case (bi-

molecular, generic) scenario.

Strategies to Cope with Limited Computing Power (b)

There are at least three possible strategies to cope with the limited power a
computing infrastructure offers: optimization of the reaction coefficients
during the design phase of a chemical protocol, adaptive dilution at run-time,
and optimization of the reaction algorithm.

Reaction coefficient optimization: One possibility to ensure a dynamically
correct execution is to avoid the problem by choosing reaction coefficients
such that the reaction rate required by the law ofmass action never exceeds
the physically obtainable rate. The lower the reaction coefficients are,
the more can the vessel capacity be increased on the cpu, which in
fact also lowers the noise (see Section 9.3). On the other hand, lower
reaction coefficients lead to a slower protocol convergence time. Hence,
the protocol designer has to find a good balance between fast convergence
and a high signal-to-noise ratio, subject to the constraints of limited
memory and computing power.

Adaptive dilution: Another possibility is to adjust the vessel capacity dynam-
ically: The reaction algorithm could randomly destroy molecules in the
vessel as soon as the cpu does not cope with the chemical reaction model,
i.e. as soon as reaction channels are scheduled before the current physical
time. The system would then use the same random dilution strategy for
limited computing power as for limited memory.

Optimization of the reaction algorithm: A third possibility is to increase
the maximum reaction rate of a cpu by using a more efficient reaction
algorithm that supports, for example, τ-leaping (Gillespie, 2001; Rathi-
nam et al., 2003; Tian & Burrage, 2004; Chatterjee et al., 2005; Cao &

11. cnp simulation and runtime engine | 197

Petzold, 2005): Instead of treating each molecule separately, a reaction
updates multiple instances of the same reactant and product species. The
system advances in pre-selected time steps τ during which more than one
reaction event may occur. For this to be still stochastically exact, the time
leap τ has to be chosen small enough such that none of the propensity
functions change significantly during this time. With this method, a fre-
quent reaction only occurs occasionally and rewrites several molecule
instances instead. This method can also be used to reduce the message
complexity of chemical protocols. If a leaping reaction generates several
instances of a send-fraglet, the fraglet is only sent once together with a
multiplicity counter. However, this obviously comes at the price of a lower
robustness to packet loss.
In addition to τ-leaping, which reduces the computational overhead for
fast reactions, the reaction algorithm could provide a reaction cache to
reduce the cpu time of a single reaction. Some frequent reactions could
store the tuple of reactant and transformed product species in a cache. The
next time such a cached reaction occurs, the reaction algorithm injects
the cached products instead of computing them again.

summary11.4

In this chapter, we completed the description of our execution model. We
provided implementation details of the Fraglets Virtual Machine (vm) and
demonstrated that its modular design allows the vm library to be integrated
into otherprograms and simulators. Weuse the omnet++ network simulator
framework to carry out all examples in this thesis.

In the second part of this chapter, we studied the influence of constraints
of a realistic computing infrastructure. Limited memory and processing
power requires us to restrict the number of molecules (or symbols) in the
reaction vessel. In the next chapter we further study the effect of a realistic
networking infrastructure where the bandwidth of links is limited and packets
may be lost.

••

198 | part ii — chemical networking protocols (cnps)

chapter1212CNPs in the Internet Context

On the challenges and promises to merge chemical networking
protocols with the Internet—on competing and cooperating packet
streams.

Of course, there isn’t any
“God of the Internet.”
The Internet works
because a lot of people cooperate
to do things together. 12

Jon Postel

So far, we modeled the network as a set of reaction vessels inter-
connected by ideal links. In this chapter, we study the behavior of chemical

networking protocols (cnps) in more realistic network scenarios where the
bandwidth of links is limited and where molecules sent to another vessel are
delivered deferred. In the previous chapter, we discussed physical limitations
of the executing machinery. In this chapter, we focus on the limits of the
networking infrastructure.

Our second aim is to determine in what extent the chemical model is
compatible with the Internet and its protocols. In particular, we are interested
whether a stream ofmolecules cooperates with tcp streams. tcp’s congestion
control algorithms are the keymethods for ensuring fair bandwidth allocation
and are responsible for the big success of the Internet. In this respect, we
study whether tcp is able to operate over a chemical transport medium and
whether chemical molecule streams are fair to competing tcp packet streams.

We structure this chapter into two parts: realistic network modeling
and Internet compatibility. Section 12.1 demonstrates how realistic network
infrastructure is modeled within the chemical framework and proposes a

12. cnps in the internet context | 199

medium access control scheme that reflects the behavior of enzymatic reac-
tions. The goal of this section is to provide a realistic model for a link with
limited bandwidth over which chemical protocols such as Disperser are still
able to reach consensus.

The second part of this chapter examines whether chemical and tra-
ditional protocols may coexist in the Internet. Section 12.2 discusses the
chemistry in the core scenario, where we envision that some of the Internet’schemistry

in the core forwarding engines may be replaced by chemical reaction vessels. We study
whether tcp streams are still capable to operate over such a chemical sub-
strate. Simulations show that tcp only performs well if we abandon most of
the randomness in the chemical execution engine.

Section 12.3 discusses the contrary chemistry at the edge scenario, wherechemistry

at the edge reaction vessels communicate over the Internet and where molecule streams
compete with tcp streams. We implement c3a, a chemical congestion
control algorithm and demonstrate that its design and analysis is simple and
straightforward. Simulation results indicate that under the regime of this
algorithm, chemical streams nicely cooperate with tcp streams.

This chapter closes the second part of this thesis. Section 12.4 therefore
not only summarizes this chapter, but the whole part on chemical networking
protocols.

chemical models12.1
of realistic networking infrastructure

In our chemical model, molecular species are similar to traditional packet
queues as they buffer packets for a certain time. But the two packet buffering
methods differ in their dynamic behavior. In this section, we have a look at
components of a realistic networking infrastructure such as queues or links
with limited bandwidth and delay. We present and analyze chemical reaction
networks that model the behavior of such building blocks. Their chemical
interpretation allows us to analyze the networking infrastructure with the
chemical analysis methods discussed in Chapters 6 to 8.

In Section 12.1.1, we start with the simplest chemical building block: the
chemical species. We study the buffering capability of a molecular species and
compare it to a traditional fifo queue. Section 12.1.2 then introduces a first
chemical model of a link with limited bandwidth and delay. In Section 12.1.3,
we develop a novel link allocation scheme based on enzymatic reactions: It
combines themodels of a link, a preceding queue, and a scheduling policy that
sends enqueued packets over the link. Finally, in Section 12.1.4, we analyze
how the now familiar Disperser protocol runs over realistic links.

200 | part ii — chemical networking protocols (cnps)

λ μ

queue server

(a) Traditional Queue

λ

species

S
k

μ=kxS

(b) Chemical Queue

Figure 12.1 Traditional vs. chem-
ical queue: Customers (packets or

molecules) enter both queues at rate

λ, modeled as a Poisson process. In

the traditional queue (a), the server

regularly drains the queue with rate μ

whereas in the chemical queue (b), the

rate depends on the fill level (number of

S-molecules).

a chemical model of packet queues 12.1.1
In order to study the dynamics of a protocol in the Internet, one usually
models the core network as a network of interconnected queues (e.g. see
Bose (2002)). Queues are necessary to buffer irregularly arriving data packet
before they are being transmitted over a medium with limited bandwidth.
Queues are ubiquitous in the Internet and the design of Internet protocols
have been largely influenced by their fifo ordering and tail-drop behavior. In
the following, we demonstrate that already a simple chemical species buffers
molecules like a queue buffers packets, andwe discuss the differences between
the chemical buffer and the traditional fifo queue.

The Chemical Species as a Packet Buffer (a)

Each molecular species can be regarded as a simple packet buffer: Reactions
producing instances of that species enter “customers” (=molecules) to the
buffer. These customers stay in the buffer until another egress reaction con-
sumes them and converts them to another species, i.e. enters them into
another buffer. Figure 12.1(b) depicts such a chemical buffer in comparison
to a traditional M/M/1/K queue, shown in Figure 12.1(a). This four-letter clas-
sification of queues is attributed to Kendall (1953). Here, we are comparing
the chemical buffer to a queue with limited buffering capacity K, operated
by one (1) server; the arrival and service processes are (M)arkov, i.e. Poisson
processes for which the event intervals are exponentially distributed.

The two buffers treat the packets differently in terms of scheduling policy,
tail-drop behavior, and the latency imposed to traversing packets.

Scheduling Policy (b)

Traditional queues apply a fifo (first in / first out) policy to packet streams. FIFO

That is, the packet order is maintained from input to output, unless for the
special case of priority queues. On the contrary, the chemical buffer regularly
reorders packets: Molecules entering the chemical buffer are not enqueued

12. cnps in the internet context | 201

but put into an unorderedmultiset. The egress reaction then randomly selects
a molecule instance from this multiset to remove. That is, information about
the packets’ arriving order is lost.

Note that reordering onlymatters if the queued customers/molecules can
be distinguished. This is the case, for example, if symbolic user-information
is attached to packets. cnps that represent user-information by molecule
quantities and reaction/packet rates are not sensitive to packet reordering.
One example for the latter case is Disperser.

Drop Behavior(c)

Memory is limited, and hence the capacity of a realistic queue is limited, too.
If a new packet arrives while the queue is full, traditional fifo queues discard
the new packet, which is known as tail-drop behavior.tail-drop

As we discussed in the previous chapter, the related chemical concept is
the flow reactor where produced or injected molecules lead to the random
dilution of other molecules in the vessel. The drop behavior of a chemical
buffer in a flow reactor differs from a traditional M/M/1/K queue in two as-
pects: First, a chemical buffer in a flow reactor exhibits random-drop behavior,random-drop

behavior meaning that not the latest but an arbitrary molecule instance is dropped.
Second, the vessel’s memory is shared among all species: A new moleculeshared memory

of one species may result in an instance of another species being destroyed.
Hence, there is a certain amount of dynamic crosstalk between chemical
buffers in the same vessel.

Both, the traditional fifo queue as well as the chemical buffer does notno fairness

ensure fairness to different packet streams: In saturation, packets belonging
to different streams are destroyed in proportion to their arrival rate. Thus,
law of mass action scheduling together with random packet reordering does
not guarantee a fair allocation of resources.

Latency(d)

The latency of data packets through a traditional fifo queue depends on
the current fill-level. In contrast, the expected delay of a chemical buffer is
constant, which is a direct consequence of the scheduling policy.

A packet in a fifo queue has to wait until all previously arrived pack-
ets are served. The expected waiting time of a packet in an M/M/1 queue
(including the service time) is

dM/M/1 = 1
μ − λ (12.1)

202 | part ii — chemical networking protocols (cnps)

The waiting time is zero if the queue is empty and strives to infinity if the
arrival rate λ approaches the constant service rate μ.

In contrast, the service rate of the chemical reaction system depicted
in Figure 12.1(b) is proportional to the fill level of the chemical buffer in
accordance to the law of mass action: μ=kxS. The probability that a certain
molecule leaves the buffer with the next egress reaction event is inversely
proportional to the number of S-molecules: pserv = 1/xS. On average, a
molecule has to wait xS times until it is picked up by the reaction. If we assume
that the reaction system is at equilibrium, the arrival and the service rates are
equal according to Kirchhoff ’s current law (λ=μ, see Section 10.2.1(a)) and
the steady-state fill level is xS=λ/k. Hence, the expected waiting time – the
latency – of a chemical buffer is constant.

dS = xS
μ
= 1
k

(12.2)

A higher coefficient of the egress reaction results in a shorter waiting time.
If we assume that all forwarding engines are implemented as chemical

first-order reactions, then, the average end-to-end latency of packets across constant end-to-

end latencythe network remains constant even if the network load increases.

a chemical model of network links 12.1.2
with limited bandwidth

After having discussed the properties of a chemical buffer, we now look for a
model of a linkwith limited bandwidth. The characteristics of a traditional uni-
directional network link connecting two nodes are usually given by the tuple(b, d) where b is the bandwidth and d is the delay of the link. As depicted in
Figure 12.2(a), such a realistic link can be modeled in the chemical framework
by a reaction vessel of limited capacity containing a single buffer species L.
Packets sent over this link stay in the imaginary chemical buffer until the
egress reaction delivers them to the other end. By changing the reaction
coefficient k of this egress reaction, we parameterize the delay afflicted to the
molecules on transit.

We limit the capacity of the virtual link vessel to N molecules in order
to model the finite bandwidth of the link: If the link receives a new packet
from the source node while there are already N packets “on the wire” (i.e. in
the virtual link vessel), an arbitrary L-molecule is dropped. The rate of this
imposed dilution flux depends on the packet injection rate.

Hence, themodel has two parameters that need to be specified: the egress
reaction coefficient k and the reaction vessel capacity N . In the following we

12. cnps in the internet context | 203

v1 v2
link (v1, v2)

rin
L

k

rout

vessel of capacity N

∅rdil

(a) Reaction network

rin

b=kN
rout

b=kN
rdil

(b) Saturation graph

Figure 12.2 Chemical link model: A link can be modeled as a reaction vessel of limited capacity N, containing a

single buffer species L.

show how these parameters can be derived from the link characteristics to be
modeled, i.e. from the bandwidth b and the delay d.

Mathematical Analysis of the Chemical Link Model(a)

Mathematically, the chemical link model is described by the following differ-
ential equation:

ẋL = rin −
rout79:
kxL − dilution79:

rdil (12.3)

The dilution flux is only applied if the vessel is saturated, in which case it
destroys molecules such that the number of L-molecules never exceeds the
vessel capacity N :

rdil(xL) = ⎧⎪⎪⎨⎪⎪⎩0 for xL ≤ N ;
rin − kN for xL = N . (12.4)

At equilibrium, the link hosts x̂L =min(r̂in/k,N)molecules. According to
the law of mass action, the packet rate at the output of the link yields the
expected saturation curve as depicted in Figure 12.2(b):

r̂out=kx̂L=kmin(rin, kN) (12.5)

Note that the term b= kN appearing in the min(⋅) function represents the
bandwidth of the link. A second equation is found by remembering that abandwidth

first-order reaction imposes a delay of d = 1/k to the molecules in transit.delay

Thus, the egress reaction coefficient has to be dimensioned as the reciprocal

204 | part ii — chemical networking protocols (cnps)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
R

a
te
[m

o
le

c
u

le
s/s
]

rin

rout,trad

rout,chem

d
e

la
y
d

Figure 12.3 Step response of a real link
and its chemical model: The output

rate of a link follows exactly the input

rate after a delay d. The chemical model

uses a buffer molecule to simulate the

delay, which exhibits a low-pass filter-

ing character to the transmission rate.

of the delay, and it is no surprise that the vessel capacity has to be set to the bandwidth de-

lay productbandwidth delay product, i.e. the maximum number of packets on the link:

k = 1
d

(12.6a)

N = bd (12.6b)

While a steady-state analysis of the chemical link model correctly pre-
dicts the behavior of a real link, the model’s transient behavior deviates from
reality. The reason for this deviation is the low-pass behavior of a chemical low-pass filter

reaction: Figure 12.3 shows the step response of the output rate rout when the
input rate is suddenly changed. Since the output rate is proportional to the
current number of buffered molecules it only slowly adapts to the input rate.

Hence, a limited artificial flow reactor containing a chemical buffer
species can only be used to model a realistic network link if we are only
interested in the steady-state behavior of the distributed reaction system.

No Fairness Guarantees for Competing Packet Streams (b)

The chemical link model correctly predicts that bandwidth is not fairly al-
located to competing packet streams. Multiple packet streams through the
same link can be modeled by an individual buffer species Li for each stream
i (1 ≤ i ≤ n), as shown in Figure 12.4. Their dynamic behavior is captured by
the odes in (11.1) on page 194, now applied to the link model:

ẋLi = rin,i −
rout,i79:
kxLi −

rdil,i78888888888889888888888888:
xLi

N
f (x) (12.7)

where the total dilution flux f (x) is non-zero if the vessel capacity is reached.
Note that each buffer species is diluted in proportion to its quantity. Let us
denote the total transmission rate as rin=∑n

i=1 rin,i and the current link load
(=vessel fill level) as xL=∑n

i=1 xLi . The total dilution flux is given as

12. cnps in the internet context | 205

Figure 12.4 Chemical link model for competing packet
streams: Each packet stream i is modeled with its own buffer

molecule Li . The dilution rate is proportional to the correspond-

ing quantities.

v1 v2
link (v1, v2)

vessel of capacity N

rin,1
L1

k

rout,1

∅rdil,1

k

rdil,n

rout,nrin,n

Ln

f (x) = ⎧⎪⎪⎨⎪⎪⎩0 for xL ≤ N ;
rin − kN for xL = N . (12.8)

where again, b = kN represents the bandwidth of the link. At equilibrium,
this results in an output rate for each packet stream of

rout,i = ⎧⎪⎪⎨⎪⎪⎩rin,i for rin ≤ b;
rin,i
rin b for rin ≥ b. (12.9)

As expected, the saturated link is shared pro-rata with the offered total load,
meaning that the link does not provide fairness among the different packet
streams.

a novel enzymatic link allocation scheme12.1.3
Modeling a link in isolation does not make a lot of sense. Usually, we also
want to model how the limited bandwidth of a link is allocated, that is, we
study the link in combination with a preceding queue and its server. In the
following, we compare the traditional and the chemical way of allocating
a link and propose a chemical link allocation scheme based on enzymatic
reactions.

Consumer and Producer Allocation Modes(a)

The traditional queue-server-link triple (see Figure 12.5(a)) is one way of
modeling and implementing such a resource allocation problem: Arriving
packets are buffered in the queue. As soon as the link is idle, the server sends
the next packet. The queue is operated in consumer mode, meaning that theconsumer mode

server is the active part that drains the passive queue based on the remaining
bandwidth available on the link. If the queue is never empty, this consumer

206 | part ii — chemical networking protocols (cnps)

queue server link

consumedrop

∅
(a) Traditional Consumer Mode

buffer link

produce

∅
reaction

drop

S L

(b) Chemical Producer Mode

Figure 12.5 Consumer vs. producer link allocation modes: In the traditional model (a), the queue is consumed

by the active server, which “knows” when the link is idle. In the chemical model (b), the buffer is self-triggered,

i.e. it actively sends molecules over the link according to the law of mass action.

mode of operation leads to a back-to-back transmission of data packets and
a full exploitation of the link’s bandwidth.

A first approach of modeling link allocation chemically is to put a chem-
ical buffer (see Section 12.1.1) and a saturated vessel (see Section 12.1.2) in
sequence. In this model, depicted in Figure 12.5(b), there is no explicit server
that allocates the link. The chemical buffer operates in a self-triggered pro- producer mode

ducer mode: its egress reaction is the active entity that sends data packets over
the link. The transmission rate of this simple chemical model grows with
increasing number of buffered molecules, eventually reaching the bandwidth
of the link. But the chemical buffer does not reduce its transmission rate
at that point. This leads to packet loss within the link. The chemical model
discussed so far lacks a feedback mechanism that enables the reaction to
control its production rate.

We thus need an alternative chemical link model, which allows the
link allocation reaction to “inspect” the link’s current load and to throttle its
transmission rate accordingly.

Enzymatic Link Allocation (b)

We already discussed that in chemistry, enzymatic reactions exhibit rate- enzymatic reac-

tionslimiting properties, andwe proposed a correspondingmotif in Section 10.3.3(c).
Figure 12.6(a) depicts a novel link model that is based on such an enzymatic
reaction. Here, the limited bandwidth is not modeled by capping the ca-
pacity of the virtual link vessel, but by providing a limited number (e0) of
enzyme “tokens” per link. Those enzymes are either free (E) or bound in the
enzyme-substrate complex (ES). The rate at which molecules are sent, rin, is
proportional to the number of packets waiting in the source node and the
number of free enzymes. The link throughput is given as throughput

r̂in = r̂out = b x̂S
KM + x̂S (12.10)

12. cnps in the internet context | 207

v1 v2
link (v1, v2)

rin
ES

k2

rout

E

S
k1

rarr

(a) Reaction Network

x̂S

b

r̂in = r̂out

KM

b

2

kuni = b

KM

(b) Saturation curve

Figure 12.6 Enzymatic link model: The link’s bandwidth limitation is modeled by an enzymatic reaction.

Recall from the rate limitation motif in Section 10.3.3(c) on page 173 that
the coefficient KM =k2/k1 specifies the number of substrate S1-molecules at
which half of the bandwidth b=k2e0 is reached.

Unlike the traditional queue-server-linkmodel, the enzymatic linkmodel
does not transmit packets as fast as possible (i.e. back-to-back)with rate b. The
rate rin rather continuously increases with the number of buffered substrate
molecules as depicted in Figure 12.6(b). For a few bufferedmolecules (x̂S → 0)
the transmission rate linearly increases with the number of S-molecules, a
behavior comparable to a unimolecular reaction with coefficient kuni=b/KM.
If manymolecules are buffered (x̂S →∞) the transmission rate asymptotically
converges to the bandwidth of the link b.

The enzymatic link model is parameterized by the reaction coefficients
k1 and k2, and the total number of enzymes in the link e0. These parameters
have to be chosen such that the model exhibits a maximum transmission rate
b and a certain delay d. In addition, the steepness of the saturation curve can
be specified by kuni. The three parameters can be derived according to the
following equations:

k2 = 1d (12.11a)

e0 = bd (12.11b)

k1 = kuni
bd

(12.11c)

Compared to the previous chemical link model, packets are not lost
within the link. Instead they are kept in the substrate buffer S until the link is
idle. This is a huge advantage, because in the source vessel, they alternatively
can be processed by other reactions. For example, if there is an additional link
to the same destination, the enzymatic reaction of the second link can attach

208 | part ii — chemical networking protocols (cnps)

to the same substrate. The law of mass action then automatically balances
the load over the two links, resulting in a very simple link load-balancing load-balancing

implementation.

Comparison of the Enzymatic Link Model (c)
to a Traditional M/M/1 Queue

The structure of the enzymatic reaction network suggests a comparison to
an M/M/c-queue, a queue processed by c servers: The substrate species S
can be compared to a queue where users (molecules) arrive a rate rarr. The
queue is processed by c servers (i.e. e0 enzymes) that become occupied while
processing a user (the enzyme is bound to the substrate forming the complex
ES). Finally, users depart from each server with a constant average rate, which
in the enzymatic reaction is represented by the dissociation of the enzyme
with rate k2.

Despite this similarity, the dynamics of the two systems is quite different:
First, the chemical reaction network reorders molecules whereas the queue
maintains the packet order. Second, once a bound enzyme delivers a prod-
uct and becomes free, it does not react immediately with the next substrate
molecule, but rather waits for a certain time, which is determined by the law
of mass action. A server in a queuing system, on the other hand, immedi-
ately processes the next customer. In the following, we analyze the dynamic
behavior of the enzymatic reaction and compare it phenomenologically to a
traditional queuing model.

At equilibrium, the input and output rates of the enzymatic link will be
equal to the arrival rate (rout = rin = rarr) as long as the arrival rate does not
exceed the bandwidth b. Let us define the load factor as load factor

ρ = rarr
b

(12.12)

denoting the fraction of the bandwidth in use. As expected, the steady-state
substrate concentration grows hyperbolically with the load factor and reaches
infinity for ρ → 1:

x̂S = KM
ρ
1 − ρ (12.13)

Interestingly, such a behavior is phenomenologically similar to that of
a simpleM/M/1-queue – a traditional packet queue of unlimited buffering comparison

to the M/M/1-

queue
capacity, operated by one server. Table 12.1 shows some reference values of
the M/M/1-queue and the enzymatic link model in comparison. The most
striking similarity is that the total number of users in an M/M/1-queue is

12. cnps in the internet context | 209

M/M/1-Queue Property (average) Enzymatic Link Property (average)

User arrival rate rarr Substrate arrival rate rarr

Packet reordering no Molecule reordering yes

Server action immediately Enzyme binding delayed (LOMA)

Number of servers 1 Number of enzymes e0

Service rate b Max. transmission rate b

Users in queue
ρ

2

1−ρ
Unbound subst. molecules x̂S KM

ρ

1−ρ

Users in server/link ρ Bound enzymes (x̂ES)
rarr
k2

Total Users in System
ρ

1−ρ
Substrate molecules (x̂S + x̂ES) KM

ρ

1−ρ
+ rarr

k2
Waiting Time in Queue

ρ

b−rarr
Waiting Time in S KM

1
b−rarr

Total Waiting Time 1
b−rarr

Total Waiting Time KM
1

b−rarr
+ 1

k2

rarr : arrival rate; b: service rate / link bandwidth; ρ= rarr/b: load factor

Table 12.1 Comparison of the enzymatic link model to an M/M/1-queue: Despite the fact that the M/M/1

queue only has one server whereas the enzymatic reaction contains e0 enzymes, the average measures are re-

markably similar.

equal to the number of molecules in the substrate buffer S for KM =1 and that
the waiting time of a packet in the queue is equal to the waiting time of a
molecule in the substrate buffer.

Towards an Enzymatic Medium Access Control Protocol(d)

So far, we only used enzymatic reactions as amodel for realistic links. However,
some chemical protocols require such a smooth saturation behavior, as we
will see in the next subsection for the case of Disperser. Only then they reach
a consensus based on distributed quantities and rate gradients. Thus, we
envision a Medium Access Control (mac) regime that exhibits the dynamic
behavior of enzymatic reactions on the macroscopic scale. Currently, there is
no implementation of such an access control protocol yet, but in the following,
we provide some requirements for such a hypothetical algorithm.

In each vessel attached to the medium, the enzymatic mac protocol
would have to inspect the number of substrate molecules and find a way
to schedule their transmission in proportion to the substrate quantities by
respecting the bandwidth limitation and the delay of the medium. If mul-
tiple vessels have access to the same medium, the dynamic behavior of the
enzymatic mac protocol has to obey the following model depicted in Fig-
ure 12.7: The enzyme “tokens” are shared among all vessels accessing the link.
The vessels actually compete for the enzymes according to the law of mass
action, meaning that bandwidth is assigned to the vessels in proportion to
their buffered substrates.

210 | part ii — chemical networking protocols (cnps)

v1
link (v1, v2) v2

rin,1
ES1

k2

rout,1

E

S1

k1

S2ES2

rin,2rout,2

k1k2

Figure 12.7 Enzymatic shared medium link model: The enzyme

is virtually shared among all nodes connected via this link.

Let us assume that there are n nodes accessing the link, each of them is
buffering molecules for transmission in substrate species Si (1 ≤ i ≤ n). Let
us denote the total number of substrate molecule instances as xS =∑n

i=1 xSi
and the total throughput as rin = ∑n

i=1 rin,i . The transmission rate of each
individual node at equilibrium is

r̂in,i = r̂out,i = b xSi
KM + xS (12.14)

Each node obtains the same share of

r̂in,i
r̂in
= x̂Si
x̂S

(12.15)

Note that even though the saturation curve is smooth, the enzymatic link
model does not ensure intrinsic stream-level fairness.

Whether or not an enzymatic mac protocol implementation is possible,
has to be verified in the future. One problem that could arise is, that the more
substrate is present in the nodes, the higher will probably be the coordination
overhead to perform the distributed scheduling.

application case: 12.1.4
disperser over a link with limited bandwidth

What happens if we run Disperser over a network with limited bandwidth b
and delay d? In the last part of this section we analytically study Disperser’s
behavior in a network in which all nodes are connected by links with the same
characteristics. We examine two different scenarios: In the first scenario, we
use traditional fifo queues to allocate the link bandwidth. In the second
scenario, we make use of the enzymatic link model to allocate the bandwidth.

12. cnps in the internet context | 211

v1 v2 v3

X1 X2C1,2 C2,1 C3,2 X3C2,3

Figure 12.8 Disperser over a traditionally allocated link: Control molecules C put packets to the correspond-

ing transmission queues. Each queue is scheduled by its server as soon as the link is idle.

Traditional Packet Queue Allocation. Disperser relies on the conservation
of molecules principle, which means that packets must not be dropped. One
way to achieve this is to put traditional fifo queues in front of each link.
After a control molecule Ci , j reacted with a data molecule Xi , it puts the
product molecule to be sent to neighbor node v j to the corresponding packet
queue as depicted in Figure 12.8. Note that the red solid arrows are chemical
reactions, scheduled according to the law of mass action, whereas the black
dashed arrows are executed as fast as possible. That is, as soon as the link is
idle, the “server” dequeues the next packet and sends it over the link.

This method does not always lead to an equilibrium in which the pre-
sented number of X-molecules is the expected average: As soon as the concen-
tration in one node is higher than the bandwidth, the queues are filled faster
than they can be drained. If the average value is higher than the bandwidth,
the nodes send each other molecules at the maximum rate b, meaning that
the influx is equal to the efflux in each node. Thus, the presented result is
bounded.

x̂X = x̂Xi =min(b, xT∣V∣) ∀i ∈ V (12.16)

The remaining molecules got stuck in the queues. Thus, saturated traditional
links, even when allocated by a queue, do not allow the distributed chemical
reactions to exploit their dynamic behavior to reach a consensus.

Enzymatic Link Allocation. Instead of using traditional queues, we now
make use of our enzymatic link model and prove that Disperser converges
to an acceptable solution, which however slightly deviates from the correct
average value. As shown in Figure 12.9, the data molecules Xi in each node v i
are now drained to a neighbor node by the control molecule (enzyme) Ci , j in
the corresponding link (i, j) ∈ E . The resulting control-data complex CXi , j

212 | part ii — chemical networking protocols (cnps)

v1 v2 v3

rin,1,2
CX1,2

k2

rout,1,2

X1

k1

k2

C2,1

k1

CX2,1

rout,2,1 rin,2,1

X2

C1,2

k2k1

k2 k1

rout,3,2 rin,3,2
CX3,2

C3,2

X3

C2,3

CX2,3
rin,2,3 rout,2,3

Figure 12.9

Disperser over
enzymatic links:

Control molecules

C virtually reside

inside the link. The

enzymatic reaction

network in the link

makes sure the

transmission rate

does not exceed the

link’s bandwidth.

delivers the data molecule after the link delay d=1/k2 and becomes free for
other data molecules to shuttle.

In the following, we prove that this variant of Disperser still converges
to a fixed point for an arbitrary network topology if all nodes are connected
and if for each link (i, j) ∈ E there is also a link in the opposite direction(j, i) ∈ E . In order to simplify the notation, let us use the following variable variable substi-

tutionssubstitutions:

x i ∶= xXi number of data molecules in node v i (12.17)
y i , j ∶= xCXi , j number of data molecules bound in link (i, j) (12.18)
c i , j ∶= xCi , j number of free control molecules in link (i, j) (12.19)

The ode system of the network comprises of equations for the data species
in free (Xi) and bound form (CXi , j):

ẋ i =
from link (j, i)7888888888888888888988888888888888888:∑
j∈Ni

k2 y j,i −
to link (i , j)7888888888888888888888888988888888888888888888888:∑
j∈Ni

k1c i , jx i ∀i ∈ V (12.20a)

ẏ i , j = k1c i , jx id88888888e88888888f
from node v i

− k2 y i , jd88e88f
to node v j

∀(i, j) ∈ E (12.20b)

12. cnps in the internet context | 213

subject to the conservation relations

e0 = free79:
c i , j + bound79:

y i , j ∀(i, j) ∈ E (12.20c)
xT = ∑

i∈V
x id8e8f

in nodes

+ ∑
(i , j)∈E

y i , j

d8888888888888888e8888888888888888f
in links

(12.20d)

which represent the two types of conservation loops in this reaction network:
the number of enzymes in each link – free or bound – are kept constant at the
value e0 whereas the total number of data molecules – in nodes and links – is
also conserved at xT.

Setting the time derivative in (12.20b) to zero and using the enzyme
conservation relation (12.20c) yields a steady-state expression for the bound
datamolecules within a link, which resembles theMichaelis-Menten equation
(see (12.10) on page 207):

ŷ i , j = e0 x̂ i
KM + x̂ i ∀(i, j) ∈ E (12.21)

From (12.20a) we obtain a preliminary steady-state expression for the number
of data-molecules in each node:

x̂ i = KM
∑ j∈Ni ŷ j,i∑ j∈Ni ĉ i , jdef

e0− ŷ i , j

∀i ∈ V (12.22)

By substituting ĉ i , j = e0 − ŷ i , j from (12.20c) as indicated, plugging in (12.21)
for ŷ i , j , and bringing all x̂ i-terms to the left hand side we obtain

e0
x̂ i

KM + x̂ id888888888888888888888e88888888888888888888f
ŷ i , j

= ∑ j∈Ni ŷ j,i
deg(i) ∀i ∈ V (12.23)

At first sight, we recognize that all links leaving a particular node v i contain
the same number of data molecules. Second, the number of bound data
molecules in link (i, j) is equal to the average number of data molecules in all
links entering node v i . This only holds if all links contain the same amount
of data molecules:

ŷ ∶= ŷ i , j = ∑i∈V ŷ i , j∣V∣ ∀ (i, j) ∈ E (12.24)

214 | part ii — chemical networking protocols (cnps)

Since according to (12.21) the equilibrium number of bound data molecules
ŷ i , j = f (x̂ i) is a monotonic function, the inverse function x̂ i = f −1(ŷ i , j) is
monotonic, too. Consequently, since all links contain the same number of
bound data molecules, the equilibrium number of molecules is the same in
all nodes, too:

x̂ ∶= x̂ i = ∑i∈V x̂ i∣V∣ ∀v i ∈ V (12.25)

Hence, the system converges to a fixed point where all nodes present the same
number of data molecules. We find the resulting quantity by plugging in the
previous two equilibrium equations (12.24) and (12.25) into the conservation
relation for the data molecules (12.20d):

xT = ∣V∣ x̂ + ∣E∣ ŷ (12.26)
Instead of the number of edges ∣E∣ we use the average node degree in the average node

degreenetwork δ=∣V∣ / ∣E∣ and obtain
xok = x̂ + δ ŷ (12.27)

The left-hand side value xok=xT/ ∣V∣ is the value we would like the network
to calculate – the average number of data molecules in the network. Note
that at equilibrium, this expected result is split into one part presented as
data molecules in the nodes (x̂) and another part that is stored within the
connecting links (δ ŷ). Expanding ŷ according to (12.21) yields

xok = x̂ + δe0 x̂
KM + x̂ (12.28)

The term δe0=δbd is the average total outgoing bandwidth delay product of
a node, i.e. the maximal number of molecules that can be buffered within the
outgoing links of an average node. Finally, the coefficient KM =b denotes the
bandwidth of the links (if we assume kuni=1). As a next step, in order to elim-
inate one parameter, we normalize the equation with respect to the expected
result xok: the normalized obtained result is χ̂= x̂/xok, the normalized link
bandwidth β=b/xok. This leads to the following quadratic equation

χ̂2 − χ̂ (1 − β (1 + δd)) − β = 0 (12.29)
yielding

χ̂1,2 = 12
⎡⎢⎢⎢⎢⎣1 − β (1 + δd) ±

√[1 − β (1 + δd)]2 + 4β⎤⎥⎥⎥⎥⎦ (12.30)

12. cnps in the internet context | 215

*Note that we

required a con-

nected net-

work with bidi-

rectional links.

With these con-

straints, the

average out-

degree is one

iff the network

contains only

one node.

†Typical Internet

link delays are

below 100 ms.

Figure 12.10 Accuracy of Disperser in a
network with enzymatic links (1): Plot

of the presented result normalized with

respect to the expected correct average

value plotted with respect to the sum of

an average node’s outgoing link delays.

The result is accurate if the system is op-

erated below the link bandwidth (x̂ ≪ b).

Otherwise, the result is reduced for in-

creasing link delays.

0 5 10 15 20
Average sum of adjacent link delays δd [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
.

o
b

ta
in

e
d

re
su

lt
χ̂
=x̂
/x

o
k

β = 0.001/s
β = 0.01/s

β = 0.1/sβ = 1/s
β = 10/s

Theobtained value approximates the correct average result (χ → 1) for δd → 0,
i.e. if the links either have no delay or if the network consists of a single node.*

Figure 12.10 shows the accuracy of the result (i.e. the presented result
normalized with respect to the expected result) plotted with respect to the
average total outgoing delay of a node. The value on the x-axis increases for a
larger delay and for a higher network connectivity. The five curves represent
different normalized bandwidth values β. The bandwidth is normalized with
respect to the expected result; remember thatDisperser over traditional queues
failed for β > 1. Similarly, when running over enzymatic links, Disperser is
most accurate when the network is operated below the bandwidth, i.e. when
the bandwidth is smaller than the expected result, but the protocol also works
well if the link delay is small. The reason is that for smaller delays, less data
packets are bound to enzymes within a link.

Figure 12.11 again shows the accuracy of the result, but now plotted with
respect to the normalized bandwidth while the four curves represent different
values of the average total outgoing delay. As we calculated before, the result
is accurate if the link has no delays. For pathologically large delays around or
above 1 s† the obtained result is much lower than the expected result when
Disperser operates at or above the link bandwidth.

summary12.1.5

In this section, we compared the scheduling algorithm of the chemical re-
action model to the traditional packet processing policy in the Internet and
identified two main differences: (1) Chemical reactions are scheduled accord-
ing to the law of mass action whereas packet queues are drained as fast as
possible. (2) Molecules are frequently reordered whereas a queuing network

216 | part ii — chemical networking protocols (cnps)

0 1 2 3 4 5

Norm. bandwidth β=b/xok [1/s]

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

.
o

b
ta

in
e

d
re

su
lt
χ̂
=x̂
/x

o
k

δd = 0 s
δd = 0.1 s

δd = 1 s

δd = 10 s

Figure 12.11 Accuracy of Disperser in a
network with enzymatic links (2): Plot

of the presented result normalized with

respect to the expected correct average

value plotted with respect to the band-

width normalized with respect to the ex-

pected correct average value. The re-

sult is accurate if the delay is small. Oth-

erwise, the result is reduced if the band-

width is around or above the expected

result.

maintains the packet order. As we will see in the next chapter, especially the
random reaction order causes problem together with tcp.

After comparing the two approaches, we obtained a chemical model of a
realistic linkbasedon an enzymatic reaction. Unlike traditional link allocation
methods, the enzymatic reaction smoothly increases the transmission rate in
proportion to the fill level of the chemical buffer. We analytically proofed that
Disperser requires such a link allocation scheme in order to work correctly in
a realistic network.

chemistry in the core: 12.2
tcp over chemical networks

In this section, we study whether it is possible to exchange parts of the Inter-
net’s forwarding functionality by chemical protocols. We look at a hypotheti-
cal scenario where the network’s core is replaced by reaction vessels running
chemical packet forwarding processes while applications at the network’s
edge are still implemented in the classical style. In particular, we study the
behavior of tcp streams forwarded by chemical reactions.

Our initial omnet++ simulations in Section 12.2.1 reveal that standard
tcp does not perform well over chemical reactions due to frequent packet
reordering, which is caused by the stochastic chemical reaction-scheduling
algorithm. In Section 12.2.2, we therefore propose a modification to the
scheduling algorithm in order to approximate the behavior of traditional
queues. Based on further simulations, we then compare in Section 12.2.3
tcp’s behavior over queue-allocated links versus enzymatic links and discover
no significant differences.

12. cnps in the internet context | 217

Figure 12.12 TCP loopback through a re-
action vessel: The link layer below TCP/IP

is replaced by a chemical reaction ves-

sel. Packets from the network layer are

looped back by a unimolecular reaction

after being relayed in a chemical species:

species Sd buffers data packets whereas

Sa buffers acknowledgments.

TCP

Client

(source)

TCP

Server

(sink)

Reaction Vessel

IP Layer
ack

segments

k = 104/s
Sd Sa

data

segments

network node

initial experiment: the behavior of a tcp stream12.2.1
through a chemical reaction vessel

We start with a simple omnet++ simulation experiment to illustrate the
problems of a tcp stream traversing a chemical reaction vessel. As depicted
in Figure 12.12, we replaced the link layer of a network node with a chemical
reaction vessel. A packet arriving from the network layer is converted into a
fraglet. In our simple scenario, a unimolecular reaction sends the fraglet back
to the network layer. This reaction is scheduled by the law of mass action
scheduler (see Section 5.1.2), which is indicated by the red arrows pointing
upwards in Figure 12.12.

Representation of ip-Packets in Fraglets(a)

Let us discuss in more detail, how ip packets are converted into fraglet strings
and how reactions operate on them. An ip packet from source node a.b.c.d
to destination node w.x.y.z containing a binary tcp segment s is converted
to fraglet

[IP_w_x_y_z srcAddr IP_a_b_c_d data s] (12.31)

The fraglet starts with a passive tag that represents the packet’s destination ip
address, followed by the source address and a single symbol containing the
tcp segment.

Such a fraglet version of a tcp/ip packet reacts with any active fraglet
thatmatches for the corresponding ip address tag. A packet is sent back to the
network layer by invoking the deliver-instruction. In fact, the unimolecular

218 | part ii — chemical networking protocols (cnps)

reaction that we installed in the vessel for this scenario is implemented by
1000 copies of the fraglet

[matchp IP_127_0_0_1 deliver IP_127_0_0_1] (12.32)

This persistent active fraglet reacts with a passive ip-fraglet destined to the
node’s loopback address and delivers it back to the network layer after regen-
erating the consumed destination address.

Simulation Setup (b)

The tcp client sends a block of data to the tcp server; tcp segments are
tunneled through the local reaction vessel: At time t=0.1 s, the client initiates a
connection to the server; this triggers tcp’s three-way handshake (syn/syn-
ack/ack). At time t=1 s, the client tries to send a block of 10MB data to the
server. After completion, the client and the server close the connection.

We use the tcp-Reno implementation of omnet++ with the following
parameters: TheMaximum Segment Size (mss) is set to 1000B, delayed acks
are disabled, Nagle’s algorithm (1984) is enabled, selective ack (sack) sup-
port is disabled (Mathis, Mahdavi, Floyd, & Romanow, 1996), the advertised
window is set to the maximum value of 64 kB.

Simulation Results and Discussion (c)

The omnet++ simulation reaches a throughput of 1.67MB/s, or expressed as
a packet rate, r̂tp=1670pkt/s. This is a very low throughput when considering
that there is no bandwidth limitation and no packet loss. The reason for such
a bad performance is twofold: The most important problem is that packets
buffered in the chemical reaction vessel are reordered as the chemical buffer reordering

does not provide fifo ordering. tcp on the other hand is very sensitive
to packet reordering. The second problem is that the reaction interval is
exponentially distributed, which introduces a huge jitter to the packet stream. jitter

To better understand the consequences of chemical packet forwarding
we discuss the measurements captured in omnet++ of a typical simulation
run depicted in Figure 12.13. The figure on the top shows the number of
buffered data and acknowledgment molecules in the reaction vessel: xS=xSd + buffered

moleculesxSa . Remember that packets are forwarded by a unimolecular reaction with
reaction coefficient k=1000/s. According to Kirchhoff ’s current law the influx
of a chemical species at equilibrium is equal to its efflux:

r̂tp = kx̂Sd r̂tp = kx̂Sa (12.33)

12. cnps in the internet context | 219

Figure 12.13 TCP loopback through
a reaction vessel — measurements:

10 MB of data is sent from client to

server between time t = 1 s and t = 7 s.

Molecules: Numberof IP fraglets

buffered in the reaction vessel (both

data and acknowledgment packets

together). The steady-state quantity

is between three and four molecules.

RTT: Roundtrip time in millisec-

onds measuredby the TCP

sender. Large fluctuations are

observed; the average is at 2 ms.

CWND: Congestion window of the

sender in kilobytes. The congestion

window is never able to grow above

a few packets due to frequent packet

reordering in the reaction vessel.

Duplicate ACKs: Cumulative number of

duplicate acknowledgments arriving

at the client; duplicate ACKs are a

consequence of reordered packets; a

sequence of three or more consecutive

duplicate ACKs is interpreted as packet

loss.

0 1 2 3 4 5 6 7 8
Time [s]

0
1000
2000
3000
4000
5000
6000
7000

d
u

p
li

c
a

te
A

C
K

s

0

5

10

15

20

C
W

N
D
[k

B
]

0
1
2
3
4
5
6
7

R
T

T
[m

s]

0

2

4

6

8

10

12

M
o

le
c

u
le

s

yielding a steady-state quantity of x̂Sd = x̂Sa = r̂tp/k for both the data and the
acknowledgment packets. The total number of molecules thus is

x̂S = x̂Sd + x̂Sa = 2 r̂tpk = 21670pkt/s1000/s = 3.34 pkt (12.34)

which is about the mean observed in Figure 12.13.
The second subfigure form the top shows the round-trip time (rtt)round-trip time

measured by the tcp client. On average, the rtt seems to be around 2ms.
This delay is in fact the delay imposed by the chemical reaction vessel. As
discussed in Section 12.1.1, a chemical buffer afflicts each packet with a delay
of d =1/k. Since both data packets as well as acknowledgments are passed
through a chemical buffer, the overall rtt is expected to be

RTT=2 1
k
= 2
1000 /s = 2ms (12.35)

220 | part ii — chemical networking protocols (cnps)

The third curve from the top in Figure 12.13 shows the size of the con- congestion win-

dowgestion window (cwnd) of the tcp client. This window is part of the slow
start mechanism of tcp (Jacobson, 1988; Stevens, 1997; Allman, Paxson, &
Stevens, 1999; Allman, Paxson, & Blanton, 2009) and controls how many un-
acknowledged packets are allowed to be “on the wire”. The window is initially
set to one segment and is incremented each time an ack is received, such
that the window is opened exponentially. In our simulation, the congestion
window is not able to grow, because packets are reordered frequently in the
reaction vessel. This causes repeated duplicate acks.

The subfigure at the bottom of Figure 12.13 shows the cumulative number
of duplicate acks observed by the client. If segments arrive out of sequence
the server generates an immediate acknowledgment potentially leading to the
observation of duplicate acks at the client side. Note that in our simulation the duplicate ACKs

10000 segments transmitted resulted in the huge amount of 6000 duplicate
acks. If three or more duplicate acks are observed in a row, the sender
assumes that a segment has been lost, closes the congestion window and
retransmits the lost packet.

The maximum throughput reachable in theory is limited by the maxi-
mum window size of 64 kB. This is the maximal bandwidth delay product
that can be exploited by a standard tcp implementation without the window
scale option (Jacobson, Braden, & Borman, 1992), which we do not consider
here. For a delay of 2ms the maximum throughput is

TPmax = WNDmax

RTT
= 64kB
2ms

= 31.25 MB
s

(12.36)

The achieved throughput of 1.67MB/s is only 5% of the maximal theoretical
throughput.

adding determinism 12.2.2
to the chemical transport layer

The simulation of a tcp stream through a chemical reaction vessel revealed
tcps brittleness to segment reordering. Although there is a tcp variant that
copes with reordered segments (Bohacek, Hespanha, Lee, Lim, & Obraczka,
2003) most hosts in the Internet still use tcp Reno. In order to use chemical
processes in the Internet’s forwarding core we have to avoid that packets are
brought out of sequence. We therefore modify the reaction algorithm with
respect to two aspects, aiming at making chemistry more deterministic: The
first modification adds fifo-order to chemical species whereas the second
removes the randomness of reaction intervals. We thereby depart further

12. cnps in the internet context | 221

Figure 12.14 Chemcial reaction network with FIFO-order: The

reactor hosts a FIFO queue for each species in the vessel. Pro-

duced molecule instances are enqueued to the corresponding

product species. Reactions that consume molecules remove

the oldest molecule of the corresponding reactant species.

A

B

Ca

r1

r2

r3a

∅

r3b r4b

r4a

Cb

from chemical plausibility and converge towards more traditional packet
processing paradigms.

AModification to the Reaction Algorithm(a)
to Achieve fifo-Order and Tail-Drop Behavior

We change the data structure of the chemical reaction vessel such that instead
of adding new molecule instances to a common multiset, the vessel now
maintains a fifo queue for each molecular species. A reaction dequeues the
oldest molecules from the corresponding reactant species and enqueues the
produced molecules to the product species. Figure 12.14 shows a toy reaction
network where each species “contains” the queue for its instances.

The difference to a traditional queuing network is in how the queues are
scheduled. While traditional queues are drained as fast as possible, chemical
queues are still operated by a law of mass action scheduler. That is, the more
elements a queue contains, the faster those elements are removed. If the
reaction is multi-molecular, the reaction rate also depends on the fill-level
of the other reactant queues. For example, in the toy example depicted in
Figure 12.14, reaction r3a (with an assumed coefficient of k3 = 1 /(pkt s)) is
executed at rate a(xA, xB)=1 /(pkt s) ⋅ 3 pkt ⋅ 2 pkt=6pkt/s while r2 occurs
three times a second.

There are two drawbacks of a fifo queuing discipline. First, the la-drawbacks

tency of molecules through chemical species changes. In Section 12.1.1(d), we
demonstrated that each molecule instance that passes a species, which is con-
sumed by a unimolecular egress reaction with coefficient k, is afflicted with
a constant average delay of d̂=1/k. This still holds if the species is operated
in fifo-mode, but the delay is not exponentially distributed anymore but
a sum of exponentials: The system maintains more information now, each
molecule instance is guaranteed to wait until the previously enteredmolecules
have been consumed, and each reaction step occurs with an exponentially
distributed time interval.

222 | part ii — chemical networking protocols (cnps)

The second drawback is that we cannot group arbitrary species together
anymore as postulated in Chapter 7. Consider Figure 12.14 oncemore. Species
Ca and Cb are produced by reactions r3a and r3b, respectively, which consume
molecules from the same species. The two C-species also produce the same
products via reactions r4a and r4b. If the molecule order does not matter
Ca and Cb can be summarized into one species, together having the same
dynamics as a when separated. This does not hold anymore for the fifo
reaction discipline as two parallel queues show a different behavior in terms
of molecule instance reordering than a single queue.

Thus, when chemical programs are executed by a Fraglets interpreter, it is
important to define how the Fraglets VirtualMachine implements themolecule Fraglets VM im-

plementation of

queues
queues: In Fraglets, there is one queue instance for each unique tag, i.e. all
fraglets starting with the same tag are put into the same queue. For example,
the fraglets [x a b c] and [x d e f] end up in the same queue even though
they differ in their tails. In addition, there is one queue instance for each
matching signature: The active fraglets [match x nop] and [match x spush

2] are considered the same species, because they have the same signature(x). They are therefore put into the same queue. The active fraglet inducing
a multi-molecular reaction [mmatch 2 x y nop] however has the matching
signature (x, y) and is therefore put into a separate queue.

In accordance to the common practice in the Internet, we would also like
to implement tail-drop behavior. tcp relies on tail-drop unless the selective tail-drop behav-

iorack (sack) mechanism is used (Mathis et al., 1996). We implement the
tail-drop behavior in Fraglets as follows: If the capacity of a reaction vessel is
reached, the reactor does not overwrite a random fraglet anymore. It rather
drops the newly created or injected molecule.

Deterministic Reaction Intervals (b)

Our initial experiment also revealed (and we already knew it from previous
examples, e.g. in Section 9.3) that chemical reactions add noise to the rate
signal of packet streams. The stochastic reaction interval originally has been
introduced to artificial chemical reaction algorithms because molecules un-
dergo Brownian motion and collide randomly in real chemistry. Gillespie
(1977) actually appraises that his algorithm is more accurate than a previous
one by Bunker, Garrett, Kleindienst, and Long (1974), which calculates the
next reaction interval deterministically.

With the aim of making the scheduling of reactions more deterministic,
we now follow Bunker et al. (1974). That is, we determine the next reaction
interval for each reaction r j ∈ R by using the reciprocal of its propensity value

12. cnps in the internet context | 223

Figure 12.15 TCP loopback through a
deterministic vessel — measurements:

10 MB of data is sent from client to server

between time t = 1 s and t = 1.338 s.

Molecules: Numberof IP fraglets

bufferedin the reaction vessel

(both data and acknowledgment

packets together). The steady-

state quantity is 53 molecules.

RTT: Round trip time in milliseconds

measured by the TCP sender. No

fluctuations are observed anymore;

the average is at2 ms as before.

CWND: Congestion window of

the senderin kilobytes. The

congestion window grows ex-

ponentially in faststartphase.

Duplicate ACKs: Cumulative num-

berof duplicate acknowledgments

arriving at the client; duplicate ACKs are

a consequence of reordered packets; no

duplicate ACKs are observed anymore.

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Time [s]

0

1

2

3

d
u

p
li

c
a

te
A

C
K

s

0
10
20
30
40
50
60
70

C
W

N
D
[k

B
]

0
1
2
3
4
5
6
7

R
T

T
[m

s]

0
10
20
30
40
50
60
70

M
o

le
c

u
le

s

τ j ∼ 1/a j and not τ j ∼ Exp(1/a j) anymore (compare to our original reaction
algorithm, Algorithm 3.2 on page 34).

Initial Simulation With the Modified Reaction Algorithm(c)

We now repeat the initial experiment with the same parameters but use fifo-
queues for each species in the reaction vessel and a strictly deterministic
reaction scheduler. Compare the new measurements in Figure 12.15 with
those for the original algorithm in Figure 12.13.

tcp now achieves a throughput of 29.6MB/s, which is 95% of the theo-
retical maximum throughput for a delay of 2ms. The full theoretical through-
put cannot be achieved due to of the ramp-up behavior of the congestion
window (slow start). Overall, our algorithmic modifications of preserving the
packet order in chemical reactions and avoiding jitter by deterministically
scheduling the reactions led to an improvement of the throughput by a factor
of 19. Thesemodifications are mandatory if we want to use chemical protocols
in the Internet core.

224 | part ii — chemical networking protocols (cnps)

b = 1 MB/s
d = 10 ms

c = 32 pkt

vsrc vdest

TCP

Client

(source)

IP

Layer

TCP

Server

(sink)

IP

Layer

queue

link

tail drop∅
Figure 12.16 TCP over a FIFO queue allocated link — scenario: A TCP stream is sent over a bandwidth limited

link, which is allocated by a traditional FIFO queue with capacity c = 32 pkt. The queue is serviced as soon as

the link is idle. The link has a bandwidth of b = 1 MB/s and a delay of d = 10 ms. The ACK segments are sent

back to the client out-of-band (no bandwidth limitation, no delay).

comparing tcp over queue-allocated links 12.2.3
to tcp over enzymatic links

We are now ready to directly compare the two link allocation disciplines,
traditional queue-based and chemical enzymatic allocation, by using tcp
throughput as a benchmark criterion. These simulation results may give more
confidence whether in the future, parts of the Internet core could be replaced
by artificial chemical reaction vessels that run, for example, chemical routing
and forwarding protocols.

Simulation Scenarios (a)

We performed omnet++ simulations in a simple network topology with
two nodes as depicted in Figure 12.16. The tcp client creates a connection
to the distant server and sends a block of data. The data stream passes a link
with a bandwidth of b=1MB/s and a delay of d=10ms. The link bandwidth
is allocated by a traditional fifo queue with a capacity of c = 32 pkt. The
reverse traffic, which only consists of the acknowledgments in this scenario,
is sent back to the client out-of-band. That is, no delay and no bandwidth
constraints apply for the acks.

This scenario is compared to the chemical counterpart shown in Fig-
ure 12.17. Instead of using a queue, the data packets accumulate in the vessel
as substrate S of the enzymatic link. We use (12.11a)–(12.11c) on page 208
to determine the three parameters k1, k2, and e0, such that the enzymatic

12. cnps in the internet context | 225

b = 1 MB/s
d = 10 ms

link

TCP

Client

(source)

IP

Layer

TCP

Server

(sink)

IP

Layer

Vessel

cS = 32 pkt

S ES

k2k1

E

tail drop∅

vsrc vdest

Figure 12.17 TCP over an “enzymatic link” — scenario: A TCP stream is sent via a chemical reaction vessel over

a link, which is modeled as enzymatic reaction. The reaction algorithm operates in FIFO mode with the new

deterministic reaction scheduler. Packets are tail-dropped if there are more than cS = 32 pkt. To obtain a link

bandwidth of b = 1 MB/s and a delay of d = 10 ms we chose the following parameters: the reaction coefficients

are set to k1 = 100/(pkt s) and k2 = 100/s, and we initially place e0 = 10 enzymes into the hypothetical link vessel.

The ACK segments are sent back to the client out-of-band (not via a chemical reaction vessel, no bandwidth

limitation, no delay).

reaction models the given bandwidth limitation and delay, and in order to
obtain a reaction rate of kuni=104/s if the link is not saturated:

k2 = 1d = 100 1s (12.37a)

e0 = bd = 10 pkt (12.37b)

k1 = kuni
bd
= 100 1

pkt s
(12.37c)

Simulation Results(b)

Figures 12.18 and 12.19 show the measurements of a typical simulation of the
traditional and the chemical scenario, respectively. tcp performs slightly
better over traditional queues than over enzymatic links: The overall through-
put is 0.93MB/s for the traditional scenario and 0.89MB/s for the chemical
model.

Both figures show the typical saw-tooth pattern of tcp: Since the slots
of the queue (and of the substrate molecule) are limited, a packet is eventu-
ally dropped if the queue is full. As a consequence, the congestion window
(cwnd) is divided by two and starts to linearly increase again.

In the traditional scenario, if the queue is empty the round trip time
(rtt) is minimal and equal to the link delay (10ms). For the enzymatic
link scenario, the minimal rtt is 11ms. The additional delay of 1ms is the
reciprocal of the reaction coefficient kuni=104/s. The difference in the rtt

226 | part ii — chemical networking protocols (cnps)

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time [s]

0.0

0.5

1.0

1.5

2.0

T
x

ra
te
[k

B
/s]

0
10
20
30
40
50
60
70

C
W

N
D
[k

B
]

0

10

20

30

40

50

R
T

T
[m

s]

0
5

10
15
20
25
30
35

Q
F

il
l

L
e

v
e

l
[p

k
t]

Figure 12.18 TCP over a FIFO queue
allocated link — measurements: 10 MB

of data is sent from client to server

between time t = 1 s and t = 11.73 s.

Q Fill Level: The currentnumber

of packets in the queue. A packet

that arrives while the queue is full

(contains 32 packets) is dropped.

RTT: Round trip time in milliseconds,

measured by the TCP sender. The

RTT is 10 ms if the queue is empty and

linearly increases with the fill level.

CWND: Congestion window of the

sender in kilobytes. The congestion

window grows exponentially in

the faststart phase and linearly in

the congestion avoidance phase.

Tx Rate: The transmission rate of

the data stream, measured before

the queue. TCP correctly controls its

transmission rate down to the available

path bandwidth.

explains why the enzymatic link has some performance drawbacks compared
to the traditional queue allocated link.

discussion 12.2.4

Form these experiments we conclude that tcp does not perform well over
a stochastically scheduled chemical forwarding engine. We were forced to
bend the chemical metaphor towards traditional packet processing in order
to increase the throughput to an acceptable value. The difference between
fifo-queue operation and chemical reaction scheduling with the modified,
deterministic algorithm is marginal. The longer rtt of the chemical for-
warding engine could even be removed by letting the saturation curve of the
enzymatic reaction become very steep. For kuni →∞, i.e. for KM → 0, the
saturation curve approaches the curve of the traditional queue. That is, pack-
ets are then drained from the queue with the maximum rate (link bandwidth)
as soon as there is a single substrate molecule. Our modified deterministic

12. cnps in the internet context | 227

Figure 12.19 TCP over an “enzymatic
link” — measurements: 10 MB of

data is sentfrom clientto server

between time t = 1 s and t = 12.27 s.

Molecules: Numberofsubstrate

molecules S, free enzymes E,

andboundenzyme-substrate

complexes ES. If the link is in sat-

uration, allenzymes are bound.

RTT: Roundtrip time in millisec-

onds measured by the TCP sender.

The RTT can be calculatedac-

cording to Table 12.1 on page 210.

CWND: Congestion window of the

sender in kilobytes. The congestion

window grows exponentially in

the faststart phase and linearly in

the congestion avoidance phase.

Tx Rate: The transmission rate of the

data stream, measured before the

queue. TCP also correctly controls its

transmission rate down to the available

path bandwidth when operated over an

“enzymatic link”.

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time [s]

0.0

0.5

1.0

1.5

2.0

T
x

ra
te
[k

B
/s]

0
10
20
30
40
50
60
70

C
W

N
D
[k

B
]

0

10

20

30

40

50

R
T

T
[m

s]

0
5

10
15
20
25
30
35

M
o

le
c

u
le

s
[p

k
t]

xS substrates

xES complexesxE free enzymes

scheduling algorithm was very successful and must be considered for using
chemical networking protocols in the Internet core.

chemistry at the edge:12.3
c3a — a tcp-friendly chemical
congestion control protocol

Instead of replacing parts of the network’s core with chemical protocols, a
more likely scenario is that some network services at the edge are implemented
using the chemicalmodel. We envision Internet nodes that autonomically find
each other and build an overlay network. Their communicating molecules
would be encapsulated into ip packets and sent over the Internet core.

One problem that arises when sending traffic streams over the Internet
is congestion. In the previous section, we already reviewed the approach of
tcp Reno to control its transmission rate in order to avoid congestion. In this
section, we develop c3a, a Chemical Congestion Control Algorithm aimed

228 | part ii — chemical networking protocols (cnps)

at controlling its own transmission rate such that tcp-fairness is achieved. It
does not perform symbolic computation on packet loss probabilities or round
trip times, but rather builds a reaction network in which the control loop
emerges, i.e. by relying on the dynamic behavior of the spanned chemical
reaction network.

We first discuss existing congestion control approaches in Section 12.3.1
before we present our chemical algorithm (c3a) in Section 12.3.2. In Sec-
tion 12.3.3, we analyze its fairness theoretically, and we verify these results
empirically with omnet++ simulations in Section 12.3.4. We study the ef-
ficiency and fairness of our algorithm while it competes for congested link
resources against another chemical streams or against tcp streams. In Sec-
tion 12.3.5, we propose c3a+, an improvement to our congestion control
algorithm, which avoids congestion by observing variations of the round trip
time; Section 12.3.6 finally discusses the performance measurements of the
new algorithm.

related work 12.3.1

The Internet is an inherently unfair communication medium. Its core only
provides state-less best-effort packet delivery whereas all protocol logic is
located at the edge, i.e. provided by the application. This end-to-end philoso-
phy makes it mandatory for transport protocols to cooperate with each other
when transmitting packet streams. tcp, the transmission control protocol of
the Internet, contains a congestion control algorithm, which ensures global
fairness by performing local control. The basic idea of congestion control is
to throttle the transmission rate such that each virtual connection obtains the
same bandwidth share.

F. P. Kelly (1997) provided a thorough mathematical analysis of flow rate
max-min fairness, which is achieved when: (1) the minimum data rate that a max-min fair-

nessdata flow achieves is maximized, (2) the second lowest level data rate that a
data flow achieves is maximized. Kelly formulated fairness as an optimization
problem and showed that there are two different approaches to solve it: primal
and dual algorithms (Kelly, Maulloo, & Tan, 1998; F. P. Kelly, 2003).

End-to-end primal algorithms either make use of explicit congestion sig-
nals such as the Explicit Congestion Notification (ecn) flag (Ramakrishnan,
Floyd, & Black, 2001) provided by the network, or they use implicit conges-
tion indications such as the detection of lost packets. tcp Reno uses the
latter approach, initially proposed by Jacobson (1988): The sender maintains
a transmission window, which determines the amount of unacknowledged
transmitted data in the network. This window is linearly increased in order to
probe for the available bandwidth of the path. If a packet is lost the window

12. cnps in the internet context | 229

is divided by two and the transmission rate is therefore reduced drastically.additive in-

crease / mul-

tiplicative

decrease

Chiu and Jain (1989) proved that such an additive increase / multiplicative
decreasemechanism is required to reach stability and fairness among streams
operating under the same regime; Sastry and Lam (2005) studied the effect
of other increase / decrease functions.

Dual algorithms, on the other hand, make use of changes in the prop-
agation delay to control the transmission rate. The basic idea behind this
algorithm is the observation that queuing delays increase before the links are
congested. A dual algorithm, such as the one used in tcp Vegas (Brakmo
& Peterson, 1995), measures the minimum round trip time (rtt) and con-
tinuously observes the rtt during transmission. The algorithm reduces
the transmission rate as soon as the delay increases. tcp Vegas has been
studied extensively by several modeling approaches (Samios & Vernon, 2003),
analysis (Low, Peterson, &Wang, 2002), and empirical validation (Athuraliya
& Low, 2001).

The end-to-end paradigm of the Internet also requires non tcp-streams
to control their transmission rate in order to behave “tcp-friendly”. Ap-
plications level protocols may, for example, use the Datagram Congestion
Control Protocol (dccp) (Kohler, Handley, & Floyd, 2006), whichmakes use
of criteria for tcp-friendly Rate Control (tfrc) defined by Handley, Floyd,
Padhye, and Widmer (2003), Floyd, Handley, Padhye, and Widmer (2008).
This requires the application to measure the round trip time and to use it
together with the packet loss frequency to compute the transmission rate.

c3a — a chemical congestion control algorithm12.3.2

The aim of our Chemical Congestion Control Algorithm (c3a) is to regulate
the transmission rate of molecules over the Internet. We do not re-implement
all features of tcp. For example, since the chemical world is random by
nature, we are not interested in reliable transmission and hence do not care
about retransmitting lost or reordered packets. The only goal is that a stream
of molecules sent over the Internet is reasonably fair to tcp streams when
competing for the same bandwidth resources.

Inspired by the additive increase and multiplicative decrease behavior
of tcp Reno (Jacobson, 1988; Chiu & Jain, 1989), we came up with a reaction
network that regulates the sender’s transmission rate based on lost packet
signals. Figure 12.20 shows the reaction network of our algorithm. The source
node sends data packets D over the Internet to the destination node, which
acknowledges each received molecule by an ack packet. The source node
controls the transmission rate rtx based on this feedback. Let us study the
components of the reaction network in more detail:

230 | part ii — chemical networking protocols (cnps)

vsrc

Internet

vdest

D̄

k1

rtx

Wrinc

L

∅ ∅
k2

k3
rack

∅

rl

rl

rack

data packet

(tagged with seq. nr.)

"window" lost

regenerate lost packets

from seq. nr. in ACKs

Figure 12.20 Reaction network
of C3A: Window molecules W

are continuously increased. The

transmission rate rtx is propor-

tional to this quantity. Data pack-

ets and acknowledgments are

tagged with a sequence number

such that the lost packets, repre-

sented by molecules L, can be re-

generated from the stream of ac-

knowledgments. An L-molecule

catalyzes the decay of window

molecules (r2) until it is eventu-

ally decayed itself (r3).

The application layer (not shown in the figure) places one data packet
to the reaction vessel as molecule D. After it has been sent, the application
immediately places the next data packet from its transmit queue. In chem-
ical terms, the data species D is buffered: it contains a constant amount of
molecules: xD=1 pkt. Additionally, the application tags each data packet with
a continuously increasing sequence number.

tcp Reno controls the packet transmission rate via the size of the

D̄
k1

rtx

W

congestion window of the sender together with the receive window advertised
by the receiver. In our chemical algorithm, we do not limit the amount of
unacknowledged bytes in the network, but directly regulate the transmission
rate by the multiplicity of “window”-molecules W. According to the law of
mass action, the transmission rate is proportional to the number of window
molecules: rtx=k1xWxD. Note that the window molecules are not consumed
by the transmit reaction, meaning that data packets are sent at a constant rate
if the number of W-molecules does not change.

A zero-order reaction continuously increases the number of window Wrinc

molecules W at rate rinc. Consequently, the transmission rate increases lin-
early over time; this is the process responsible for the additive increase.

The source node inspects the sequence number of the received acknowl-

L

rack

∅
rl rack

edgment packets and generates an L-molecule for each missing sequence
number. That is, the number of L-molecules reflects the number of lost pack-
ets.

The last reaction motif decreases the transmission rate based on the
packet loss feedback: A fast reaction (r2) removes window molecules W in

W

L

∅ ∅
k2

k3proportion to the number of packets lost. At the same time, lost packets decay
from L via reaction r3. That is, each lost packet drains window molecules
for a certain duration until it is decayed itself. This leads to an exponential

12. cnps in the internet context | 231

decrease of the transmission rate. After some time, when the L molecules are
gone, the transmission rate linearly increases again.

We implemented this algorithm in Fraglets, studied its behavior analyti-
cally and performed network simulations in omnet++.

formal analysis of c3a12.3.3

We first analyze the dynamic behavior of c3a using deterministic odes in
order to find out whether our algorithm is tcp-friendly. According to Floyd
and Fall (1999) (see also Floyd et al., 2008), the transmission rate of a tcp-fair
protocol should be proportional to 1/√pl where pl denotes the packet loss
rate.

Let us therefore have a look at the reaction rates of the algorithm: Packets
are sent at rate rtx = k1xWxD. During their round-trip journey through the
Internet they are being lost with probability pl. Thus, the source node receives
acknowledgments at rate rack=(1−pl)rtx. By inspecting the sequence number
in the ack packets the source node is able to regenerate a stream of lost
packets with rate rl= plrtx.

Having the important rates defined, we are able to write down the differ-
ential equation system of this transmission control loop:

ẋW = rinc − k2xWxL (12.38a)
ẋL = plk1xWxDd888888888888888888e888888888888888888f

rl

−k3xL (12.38b)

At equilibrium (ẋW= ẋL=0) the transmission rate settles at
r̂tx =kllm k1k3xDrinc

k2pl
(12.39)

Indeed, we note that the equilibrium transmission rate is proportional to the
reciprocal of the square root of the loss probability.

The chemical reaction network contains four parameters to be specified:parameterization

the injection rate of window molecules, rinc, and the three reaction coeffi-
cients k1, k2, and k3. We studied themodel using the signal theoretic methods
reviewed in Section 8.2.3 (Monti, 2010), and verified candidate parameter sets
in omnet++ simulations. The objective of this optimization was fast con-

232 | part ii — chemical networking protocols (cnps)

vergence without suffering too heavy oscillations. The following streamlined
parameter set performed well:

rinc = 103 pkts (12.40a)

k1 = 1 1
pkt s

(12.40b)

k2 = 104 1
pkt s

(12.40c)

k3 = 105 1s (12.40d)

yielding an equilibrium transmission rate of

r̂tx = 100 pkt/s√pl
(12.41)

fairness and tcp-friendliness of c3a in simulations 12.3.4

In the following, we present and discuss some of the performed network sim-
ulation results of c3a and show how it performs when sharing a bandwidth
limited link with another chemical molecule stream or with a tcp packet
stream.

Simulated Network Topology (a)

All simulations discussed in this sectionwere performed in omnet++, which
simulates the network topology depicted in Figure 12.21. Depending on the
scenario, up to three source nodes send data packets to the corresponding
destination nodes at the other end of the network. All data streams have to
traverse the shared link between router vA and router vB. This link has a
bandwidth of b=1MB/s and a delay of d=10ms. A traditional fifo queue
in front of this link buffers up to c = 32 pkt; all other links are ideal. The
acknowledgments are sent back to the source nodes out of band, meaning
that they are neither lost nor afflicted with a delay.

The edge nodes 1 and 2 contain Fraglets reaction vessels, which are
scheduled by our modified deterministic reaction algorithm that maintains
the packet order. Source nodes vsrc,1 and vsrc,2 contain an implementation of
c3a. Node vsrc,3 and vdest,3 run a tcp Reno client and server, respectively.

12. cnps in the internet context | 233

b = 1 MB/s
d = 10 ms

c = 32 pkt

queue
congested

link

tail drop∅TCP TCP

C3A(+) C3A(+)
Router Router

Figure 12.21 Network topology for congestion control simulations: Three source nodes send packet streams

to the corresponding destination nodes over the same link with limited bandwidth b = 1 MB/s and delay d =
10 ms between router vA and router vB. Router vA contains a queue with capacity c = 32 pkt. The acknowledg-

ment packets are sent back out-of-band.

Figure 12.22 Packet-loss dependent
transmission rate in C3A: The analytical

curve is a plot of (12.39), which predicts

that the transmission rate drops with re-

spect to the packet loss probability with

a square root relation. Complementary

OMNeT++ measurements demonstrate

that our Fraglets implementation of C3A

exhibits the designed dynamic behavior.

0 1 2 3 4 5
Packet loss probability pl [%]

0

500

1000

1500

2000

2500

3000

3500
T

ra
n

sm
is

si
o

n
ra

te
r t

x
[p

k
t/s
] measured

analytical

Verification of the Analytical Transmission Rate Prediction(b)

Before we demonstrate how our congestion control algorithm performs in
detail, with Figure 12.22, we highlight that our Fraglets implementation of c3a
exhibits the analytically predicted transmission rate. For this simulation, only
edge nodes vsrc,1 and vdest,1 were active. We parameterized the network with
the packet loss ratio between router vA and vB rather than with the bandwidth.
Starting with a packet loss of pl=0.1% we continuously increased it in steps
of 0.1% up to a value of pl = 5%. In each simulation run, we waited until
the reaction network reached equilibrium before we measured and averaged
the transmission rate over 10 s. As depicted in Figure 12.22, the obtained
measurements accurately follow the square root dependency predicted by
(12.39).

234 | part ii — chemical networking protocols (cnps)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time [s]

0

10

20

30

40

50

C
u

m
.

L
o

ss
[p

k
t]

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

R
T

T
[m

s]

0
5

10
15
20
25
30
35

Q
F

il
l

L
e

v
e

l
[p

k
t]

0
200
400
600
800

1000
1200
1400

P
a

c
k

e
t

R
a

te
[p

k
t/s
]

rtx [pkt/s] rack [pkt/s]
bandwidth

link delay

capacity

Figure 12.23 Single molecule
stream under congestion control:
C3A sends data from source node

vsrc,1 to destination node vdest,1 .

Packet Rate: Rate atwhichdata

molecules are sent(rtx) andac-

knowledgments are received (rack)

in node vsrc,1 . Obviously, the ac-

knowledgment rate cannot exceed

the link bandwidthb = 1 MB/s.

Q Fill Level: Number of packets buffered

in the FIFO queue in routervA. If

the transmission rate rtx is larger

than the bandwidth, the queue is

filled and starts to tail-drop packets.

RTT: Roundtrip time in millisec-

onds measuredby the source.

The RTT linearly increases

withthe filllevelofthe queue.

Cum. Loss: Cumulative number of lost

packets. Packets arriving at the queue

when it is full are lost. Because of the

non-zero RTT, the algorithm’s response

to a packet loss is deferred, which results

in a sequence of 12 packets being lost at

a time.

Signature of a Single Molecule Stream under Congestion Control (c)

Figure 12.23 shows the time evolution of some important measures for a single
data stream between source node vsrc,1 and destination node vdest,1. The other
edge nodes in the network depicted in Figure 12.21 are deactivated. The link
bandwidth between router vA and router vB is set to b=1MB/s and it delay
to d=10ms.

The top subfigure illustrates how the transmission rate rtx linearly in-
creases as a consequence of the continuous injection of window molecules.
The rate of received acknowledgments rack cannot rise above the bandwidth.
However, this cap of the acknowledgment rate does not mean that the re-
maining packets are lost: First, the queue in router vA is filled as indicated in
the second subfigure. As a side effect, the round trip time (rtt) is increased
as shown in the third subfigure. As soon as the queue is full, packets are
tail-dropped. The sender continues to increase the transmission rate until it
receives an ack packet with a sequence number jump. Then, as indicated in

12. cnps in the internet context | 235

Figure 12.24 Efficiency/Fairness of two
C3A-controlled streams: Two source

nodes, both controlled by C3A, send

data over the congested link. The first

source node, vsrc,1 , is active between

time t = 1 s and t = 21 s while the

second source node, vsrc,2 sends data

molecules between time t = 11 s and

t = 31 s. For ten seconds the two

data streams compete for bandwidth re-

sources. The bottom subfigure shows

the efficiency and fairness of this band-

width allocation, calculated by using

Jain’s fairness index (Jain, Chiu, & Hawe,

1984). The efficiency curve has been

smoothed using a Hann window of size

2 s.

0 5 10 15 20 25 30
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
E

ffi
c

ie
n

c
y

/F
a

ir
n

e
ss

0
200
400
600
800

1000
1200

T
x

R
a

te
1
[p

k
t/s
]

0
200
400
600
800

1000
1200

T
x

R
a

te
2
[p

k
t/s
]

bandwidth b

efficiency

b/2

bandwidth b

b/2
fairness

competition

the top subfigure, it immediately drains about half of the window molecules
and thus lowers the transmission rate drastically.

The behavior of the chemical congestion control reaction network shows
a similar additive increase / multiplicative decrease signature as tcp Reno
in congestion avoidance mode. Unfortunately, c3a loses about 12 molecules
each time it runs the link into congestion. This is due to the delay in the
control loop. This behavior cannot be avoided by just using different reaction
coefficients. We will later introduce an improved version with an improved
yield.

Competition among Two c3a-Controlled Molecule Streams(d)

For the next simulation, we let two sources send data over the same bandwidth
limited link and compute efficiency and fairness measures. We define the
efficiency of an allocation for n streams, each with a transmission rate of rtx,iefficiency

(1 ≤ i ≤ n), as the total utilization of the bandwidth:
e(rtx) = ∑n

i=1 rtx,i
b

(12.42)

The fairness is computed according to Jain, Chiu, andHawe (1984), measuringfairness

the “equality” of allocation:

236 | part ii — chemical networking protocols (cnps)

f (rtx) = (∑n
i=1 rtx,i)2∑n
i=1 r2tx,i

(12.43)

If all streams are sent with the same rate, then the fairness index is one, i.e.
the allocation is 100% fair. As the disparity increases, fairness decreases and
approaches zero if a few streams get the full bandwidth.

In the network topology depicted in Figure 12.21, we activated source
vsrc,1 at time t=1 s for the duration of 20 s, and ten seconds later, at time t=11 s,
we activated source vsrc,2 for the same duration. That is, for ten seconds the
two packet streams compete for the limited link bandwidth between router
vA and vB.

Figure 12.24 shows the transmission rates of the two streams and, in
the subfigure at the bottom, the efficiency and fairness of the bandwidth
allocation. The first stream correctly decreases its average transmission rate
such that the fairness is close to the optimum. Note that a single stream is not
able to fully exploit the path bandwidth alone due to the saw-tooth pattern of
the transmission rate. A second stream however, is able to fill the remaining
bandwidth such that in a competitive situation the maximum efficiency is
reached.

Competition among Chemical and tcp Streams (e)

As a next step, we would like to make sure that a molecule stream, controlled
by c3a, is fair to a competing tcp packet stream. We therefore perform the
same simulation as before, but this time, we enable tcp client vsrc,3 instead
of vsrc,2 and let it compete with the molecule stream from source vsrc,1 (see
the network topology in Figure 12.21 on page 234).

Figure 12.25 shows the transmission rates of the two streams together
with the efficiency and fairness of the bandwidth allocation. The fairness is
good despite some fluctuations and the two streams together fully exploit the
link bandwidth.

c3a+ — a congestion avoidance extension for c3a 12.3.5

The congestion control algorithm presented so far uses packet loss signals
as indications for a congested path. It is actually the ack that is received
after a packet is lost that causes the algorithm to reduce its transmission
rate. Even worse, the non-zero round trip time together with this indirect
signaling mode adds a delay into the congestion control loop. Consequently,
the reaction network lowers the transmission rate only after a dozen of packets

12. cnps in the internet context | 237

Figure 12.25 Efficiency/Fairness of
a C3A-controlled stream in competi-
tion with a TCP stream: Source node

vsrc,1 , controlled by C3A, and TCP client

vsrc,3 send data over the congested

link. The first node is active between

time t = 1 s and t = 21 s while the

TCP client sends 10 MB of data start-

ing from t = 11 s. For ten seconds the

two data streams compete for band-

width resources. The bottom sub-

figure shows the efficiency and fair-

ness of this bandwidth allocation, cal-

culated by using Jain’s fairness index

(Jain et al., 1984). The efficiency curve

has been smoothed using a Hann win-

dow of size 2 s.

0 5 10 15 20 25 30
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
E

ffi
c

ie
n

c
y

/F
a

ir
n

e
ss

0

500

1000

T
x

R
a

te
T

C
P
[p

k
t/s
] 0

500

1000

T
x

R
a

te
C

3
A
[p

k
t/s
]

bandwidth b

efficiency

b/2

bandwidth b

b/2
fairness

competition

competition

competition

Figure 12.26 Reaction network
of C3A+: ACK molecules are now

stored in species A whereas a copy

of each transmitted packet is stored

in T. The fast reaction r6 eliminates

pairs of A- and T-molecules such

that T reflects the difference be-

tween rtx and rack. The window W

is decreased in proportion to this

value similar as for a lost packet, but

with a smaller rate.

nsrc

Internet

ndest

k7

R

∅

D̄
k1

vtx

Wvinc

L

∅ ∅
k2

k3

vack

vloss

vloss

vack

AT

∅
k4 k5k6

∅

∅

∅
k8

k9

have already been lost. Here, we present c3a+, an extension to our chemical
congestion control algorithm that senses the round trip time variation of a
packet stream and avoids congestion by throttling its transmission rate early.

tcp Vegas performs congestion avoidance by measuring the rtt varia-
tion above the minimum rtt and by regulating down its transmission rate
early, as soon as the rtt rises. In a chemical setting, we cannot and do
not want to measure the minimum rtt explicitly. Instead of collecting and
computing path statistics, we would like to use rates and molecular quantities
to determine and react to sudden changes in the rtt.

238 | part ii — chemical networking protocols (cnps)

Consider again the packet rate curves in Figure 12.23 on page 235. When
the path bandwidth is fully exploited we observe a sudden cap of the rate of
received acknowledgments while the transmission rate continues to increase.
This difference between transmission rate and acknowledgment rate either
indicates a dramatic loss of packets or a sudden increase of the rtt due to a
queue that is being filled. In both cases wewould like to lower the transmission
rate.

Figure 12.26 depicts the extended reaction network that takes the varia-
tion of the rtt into account; added reactions are highlighted. In the following
paragraphs, we demonstrate how we designed this extension step by step with
the help of the motifs introduced in Section 10.3.

We first convert the transmission rate rtx into a molecular quantity by
using the motif discussed in Section 10.3.2(a): Each data packet sent to the
destination is at the same time copied (without payload) to an instance of

rtx

rack

A

T
k4

k5∅

∅
species T where it is decayed by a unimolecular reaction with coefficient k4.
The steady-state number of T-molecules is x̂T = r̂tx/k4. We install a similar
reaction for the received acknowledgments. The number of A-molecules is
x̂A= r̂ack/k5 at equilibrium.

In a next step, we install a motif that continuously computes the dif-
ference between the two rates: The bimolecular reaction r6 removes T- and
A-molecules pair wise. We chose a high reaction coefficient k6 such that

k6

AT

∅
two instances of the two species immediately annihilate each other, such that
either T or A reflects the difference of the two rates, depending on which rate
is higher.

Finally, we use the resulting number of T-molecules (x̂T ∝ ∣r̂tx − r̂ack∣)
k7

R

∅
W

T

∅
k8

k9to lower the transmission rate: Reaction r7 creates R-molecules as long as the
transmission rate is higher than the rate of received acknowledgments. These
molecules destroy window molecules and therefore reduce the transmission
rate. This decay of window molecules has to be done moderately: When
the algorithm starts sending data packets there are no acknowledgments yet
which obviously results in a higher transmission rate than acknowledgment
rate. Thus the effect of the decay reaction has to be smaller than the rate
of injected window molecules. The algorithm should probe for the rtt by
slowly increasing the transmission rate and should retract when observing a
sudden difference in the rates.

12. cnps in the internet context | 239

simulations of c3a+12.3.6
We performed the same omnet++ simulations again for the extended al-
gorithm with the following reaction coefficients for the newly introduced
reactions:

k4 = k5 = 10 1s (12.44a)

k6 = 103 1
pkt s

(12.44b)

k7 = 100 1s (12.44c)

k8 = 50 1
pkt s

(12.44d)

k9 = 2 × 103 1s (12.44e)

Signature of a Single Molecule Stream under Congestion Control(a)

Figure 12.27 shows the time evolution of some importantmeasures for a single
data stream between source node vsrc,1 and destination node vdest,1 while the
other sources are deactivated.

The extended version of our congestion control algorithm increases the
transmission rate slower compared to the original version. As mentioned be-
fore, the minimum rtt causes an initial difference between transmission and
acknowledgment rate at the source node, which partly inhibits the increase
of window molecules.

In the next phase, starting from t =4 s, the algorithm is in congestioncongestion

avoidance

mode
avoidance mode: The transmission rate reached the link bandwidth and the
fill level of the queue grows. This is accompanied by an increase of the rtt,
which causes the algorithm to slow down the increase of its transmission rate.

However, unlike tcp Vegas, the algorithm does not know the minimal
rtt as a reference. Thus, the transmission rate never stops to increase; the
queue eventually gets filled and tail-drops a packet. This is when the algo-
rithm switches to congestion control mode, meaning that the reactions alreadycongestion

control mode present in the original version divide the number of window molecules by
approximately two. Consequently, the transmission rate is reduced drastically
and the system starts to oscillate. It seems that congestion avoidance and
congestion control phases alternate in turn.

In our simulations of c3a+, the packet loss rate was 5 to 10 times lowerlower packet

loss rate than in comparable simulations of c3a, which is a consequence of the atten-

240 | part ii — chemical networking protocols (cnps)

5.0 10.0 15.0 20.0 25.0
Time [s]

0

10

20

30

40

50

C
u

m
.

L
o

ss
[p

k
t]

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

R
T

T
[m

s]

0
5

10
15
20
25
30
35

Q
F

il
l

L
e

v
e

l
[p

k
t]

0

200

400

600

800

1000

1200
P

a
c

k
e

t
R

a
te
[p

k
t/s
]

rtx [pkt/s] rack [pkt/s]
bw

link delay

capacity

Figure 12.27 Single C3A+-controlled
molecule stream: The extended

chemical congestion control algo-

rithm sends data from source node

vsrc,1 to destination node vdest,1 .

Packet Rate: Rate atwhichdata

molecules are sent (rtx) and acknowl-

edgments are received (rack) in node

vsrc,1 . The convergence time is longer in

the extended algorithm, but the saw-

tooth like fluctuations are dampened.

Q Fill Level: Number of packets buffered

in the FIFO queue in router vA. If the

transmission rate rtx is largerthan

the bandwidth the queue is filled

and then starts to tail-drop packets.

RTT: Round trip time in milliseconds

measured by the source. The RTT

linearly increases with the fill level of

the queue. The extended algorithm

slowly exploits the queue’s capacity.

Cum. Loss: Cumulative number of lost

packets. Packets arriving at the queue

when it is full are lost. The extended

algorithm has lower packet loss.

uated increase of the transmission rate. However, this comes along with a
longer convergence time.

Competing Streams (b)

We again simulated two streams competing for link bandwidth resources in
two scenarios: Amolecule stream, controlled by c3a+, is once in competition
with a similar, chemically controlledmolecule stream, and in the next scenario,
it is in competition with a tcp Reno packet stream (compare to the results
for the original algorithm discussed in Section 12.3.4(d) and Section 12.3.4(e),
respectively).

Figure 12.28 shows transmission rates, allocation efficiency and fairness
of two competing chemically controlled streams whereas Figure 12.29 depicts
the same results for a competing tcp packet stream. The transmission rate
fluctuations are much smaller than before. Unlike for c3a, one single stream
controlled by c3a+ is able to exploit the full link bandwidth. The steady-state
fairness is slightly worse for the extended algorithm, meaning that the streams

12. cnps in the internet context | 241

Figure 12.28 Efficiency/Fairness of two
C3A+-controlled streams: Two source

nodes, both controlled by the extended

chemical congestion control algorithm,

send data over the congested link. The

first source node vsrc,1 is active between

time t = 1 s and t = 21 s while the second

source node vsrc,2 sends data molecules

between time t= 11 s and t=31 s. For ten

seconds the two data streams compete

for bandwidth resources. The bottom

subfigure shows the efficiency and fair-

ness of this bandwidth allocation, calcu-

lated by using Jain’s fairness index (Jain

et al., 1984). The efficiency curve has

been smoothed using a Hann window

of size 2 s.

0 5 10 15 20 25 30
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
E

ffi
c

ie
n

c
y

/F
a

ir
n

e
ss

0
200
400
600
800

1000
1200

T
x

R
a

te
v

sr
c

,2
[p

k
t/s
] 0

200
400
600
800

1000
1200

T
x

R
a

te
v

sr
c

,1
[p

k
t/s
]

bandwidth b

efficiency

b/2

bandwidth b

b/2
fairness

competition

show larger fluctuations around the fairness equilibrium. The extended algo-
rithm also needs longer to converge. Table 12.2 shows the properties of the
two algorithm versions in comparison.

summary12.4

In this chapter we assessed the operation principle of chemical networking
protocols in a real network environment. First, we came up with chemical
models for realistic network components such as queues and bandwidth
limited links. Such chemical models of traditional components enable us to
use our engineering framework to analyze and proof chemical protocols that
are operating in a realistic network. We illustrated this by proofingDisperser’s
convergence in a network with bandwidth-limited links.

The second goal of this chapter was to bridge the gap between the chem-
ical and traditional networking by investigating whether chemistry should
be used in the core or at the edge of the Internet. We see a potential for both
scenarios:

242 | part ii — chemical networking protocols (cnps)

0 5 10 15 20 25 30
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

c
ie

n
c

y
/F

a
ir

n
e

ss

0

500

1000

T
x

R
a

te
T

C
P
[p

k
t/s
] 0

500

1000
T

x
R

a
te

C
3
A
+ [p

k
t/s
]

bandwidth b

efficiency

b/2

bandwidth b

b/2
fairness

competition

competition

competition

Figure 12.29 Efficiency/Fairness of
a C3A+-controlled stream in compe-
tition with a TCP stream: The source

node vsrc,1 , controlled by C3A+, and

the TCP client vsrc,3 send data over the

congested link. The first node is ac-

tive between time t = 1 s and t = 21 s

while the TCP client sends 10 MB of

data starting from t = 11 s. For ten sec-

onds the two data streams compete

for bandwidth resources. The bottom

subfigure shows the efficiency and fair-

ness of this bandwidth allocation, cal-

culated by using Jain’s fairness index

(Jain et al., 1984). The efficiency curve

has been smoothed using a Hann win-

dow of size 2 s.

Property C3A C3A+

Use packet loss signal strong feedback strong feedback

Use RTT variation signal no weak feedback

Convergence time faster slower

Rate fluctuation strong weak

Fairness fluctuations weak moderate

Single stream efficiency 85 % 100 %

Multiple stream efficiency 100 % 100 %

Table 12.2 Comparison of the two
chemical congestion algorithm ver-
sions: The original version (C3A) con-

trols the transmission rate based on

singular feedback from packet loss

signals whereas the extended version

(C3A+) additionally uses the round

trip time variation to regulate the

transmission rate.

chemistry in the core 12.4.1

We discovered that a stochastic packet-scheduling algorithm in forwarding
engines is poisonous for tcp streams that are tunneled over such a chemical
substrate. We were able to mitigate this problem by a modified schedul-
ing algorithm, which behaves more deterministically and does not reorder
packets.

Chemical reactions are also helpful to absorb bursts of uncooperative absorb bursts

packet streams: Most chemical reactions are low-pass filters. Thus, a chemical
forwarding engine will temporarily store a burst of packets locally and only
increase its forwarding rate slowly and steadily as depicted in Figure 12.2
on page 204. That is, a packet stream is automatically smoothed early when

12. cnps in the internet context | 243

entering the network, which allows other streams to adapt. This makes the
whole system less chaotic.

Our enzymatic mac protocol exhibits a similar behavior. It does not
exploit all available bandwidth for low traffic, but continuously increases the
load factor for additional pressure imposed by traversing packet flows. The
continuous saturation curve enables end-to-end rate control algorithms to
react more smoothly to congestion.

chemistry at the edge12.4.2

We demonstrated the ease of designing a chemical congestion control algo-
rithm, c3a, which exploits the available bandwidth but is fair to molecule
streams competing for the same bandwidth and even to tcp streams. Our
simulations indicate that chemical and traditional networking protocols are
able to cooperate and coexist in the same network. Thus, it is possible to
gradually replace existing protocols by chemical protocols, if their advantages
are required.

Congestion is the consequence of the best-effort statistical multiplexing
service offered by the Internet’s core. The Internet is only fair to its users if
the users cooperate by using congestion-control algorithms. Such an envi-
ronment requires protocols to have a macroscopic view to data flows rather
than treating each packet individually. Designers of classical protocols spend
a lot of time to reconstruct the dynamic flow behavior from the discrete and
isochronous runtime behavior that their execution machinery offers.

Unlike other congestion control algorithms, our chemical variant does
not compute statistics about the network environment explicitly in order to
adapt its transmission rate. It is rather embodied to the environment by its
distributed reaction network and senses the network condition implicitly by
reacting to slight variations in the packet rates. This behavior is enabled by the
law of mass action scheduling, which also makes it easy to design equilibrium
solutions.

closing remarks12.4.3

The strength of chemical protocols is to have an engineering framework for
organizing packet flows from macroscopic design to microscopic execution
and back to macroscopic flow analysis. The strength of this engineering
method became apparent while designing and analyzing a complex chemical
networking protocol such as c3a. With the help of our reaction motifs, it
was quite easy to come up with an acceptable solution, and its mathematical

244 | part ii — chemical networking protocols (cnps)

model based on deterministic odes to determine the equilibrium solution
was applied quickly and easily.

In the previous chapters, we used Disperser as a showcase of a typical
chemical protocol. Disperser is a pure chemical protocol in the sense that it pure

uses rate-based encoding to convey user-information. In the Internet context,
we rather promote hybrid protocols, where user information is transferred hybrid

symbolically in the payload of data packets, but where the protocol’s state
is represented by the number of molecules and where “control” emerges by
the interaction of the rate-encoded state information along the distributed
reaction network with the computer network environment.

This chapter closes the second part of this thesis. In the next part we
push the chemical metaphor even further by trying to structure chemical
execution such that reaction networks emerge that maintain their stability
even in presence of execution errors or code mutations, a behavior that is
barely possible under the traditional code execution regime.

••

12. cnps in the internet context | 245

IIIpart

I I I
Self-Healing

Networking Protocols

chapter1313Self-Healing Software

From related work on self-healing computing systems to require-
ments for intrinsically self-healing software.

The art of healing
comes from nature,
not from the physician.
Therefore the physician
must start from nature,
with an open mind. 13

Paracelsus

In the previous part, we showed how chemical networking protocolsseek an equilibrium in which they provide the solution to a distributed
consensus problem. When perturbed by changes in the network environment,
they eventually return to the fixed point. In this part, we apply the same
principle to disturbances of the execution platform that runs the protocol
software. This results in code that is able to run on unreliable hardware –
self-healing software.

This chapter introduces the third part of this thesis, which focuses on self-
organizational aspects of chemical code. It may be interesting for researchers
in the area of artificial life to see a concrete application case of life-like prop-
erties in computer networking. On the other hand, computer scientists find a
description of an innovative method to obtain intrinsic code-level robustness.
After motivating our venue in Section 13.1, we show in Section 13.2 how re-
search on natural and artificial self-replicating systems inspired our approach.
In Section 13.3, we relate our method to existing work before we provide an
overview of this part in Section 13.4.

13. self-healing software | 249

motivation13.1

Today’s computer programs are human-engineered artifacts. A program
builds an abstract model of the real world and implements reactions to this
modeled world (Simon, 1996). It is no surprise that programs often fail in
real-world environments, because engineers either wrote erroneous code or
simply because they could not foresee all situations the program encounters.
For example, the program may be exposed to malicious attacks or may run
in an unreliable execution environment.

The long-term goal of our research is to come up with networking soft-
ware that adapts itself to unpredictable situations and optimizes itself in aself-adaption

/ self-

optimization
new environment. These ultimate goals are currently out of reach. In this
thesis, we restrict ourselves to the self-healing aspect of networking software,
meaning that originally correct software shall be able to detect and repair
itself when faults occur. We believe that such robustness is a key requirement
for future self-adaptation and optimization properties.

We especially target faults on the code level that may result from an
unreliable execution environment or from spontaneous alterations ofmemory
bits, caused by cosmic radiation, for example. Such errors already affect
computer systems today: Sun Microsystems acknowledged that cosmic rays
interfered with cache memories and caused crashes in server systems at major
customer sites, including America Online and eBay (Baumann, 2002; Reis,
Chang, Vachharajani, Rangan, & August, 2005). This problem will become
even more prominent in the future, because the influence of electrical noise
and cosmic radiation increases with the higher package density of future chips.
Systems will likely become more susceptible to spurious execution errors.
This will not only lower the reliability of symbolic computation, it will also lead
to disruptions of the program flow and to unrecoverable program exceptions.
The promise, to reduce the production cost and energy consumption by
probabilistic chips (Chakrapani, Korkmaz, Akgul, & Palem, 2007), leads to aprobabilistic

chips further accentuation of the problem.
The typical answer of computer scientists to cope with unreliable systems

is to manually build up redundancy in order to mask such errors (Johnson,redundancy

1996; Pradhan, 1996; Wilfredo, 2000). In a redundant ensemble, multiple
identical or similar systems are performing the same task. A central observercentral observer

compares the states and/or the output of the redundant systems and votes
for the most common result. When the observer detects a participant that
deviates from the ensemble majority, the erroneous component is restarted or
the system is reset to the last checkpoint. This architecture around a central
observer has the inevitable flaw that the central decision maker may also
be error prone. We would require an observer of the observer, and so on,

250 | part iii — self-healing networking protocols

which ultimately leads to infinite regression. Hence, we rather need a solution
where the central observer that steers the redundancy is redundant too and
is blended into the system.

Rather than asking for redundant hardware, we are aiming at software
that it able to run on unreliable hardware and that organizes its own health
intrinsically. Most imperative programming paradigms and languages that
are available today hardly allow for monitoring the program’s health and for
recovering from a perturbation away from the expected behavior. Moreover,
in order to avoid having a central observer, we require that the program
monitors and repairs itself . Repairing implies that the program is able to
modify its own code, for which a sound theoretical framework is still missing
(Anckaert, Madou, & de Bosschere, 2007).

inspiration from nature 13.2
and early computer science

Natural systems are able to dynamically construct redundancy by assembling
and reproducing their components. Often, components exist in several copies
(flocks, but also blood or nerve cells), exploiting parallelism and minimizing
the impact of the loss of a single item. For singular components (e.g. bones)
and in order to fight the problem of aging, redundancy is achieved over time
through procreation, yielding a new and possibly modified copy. In computer
science however, software is considered to be static and without wear.

This view is recent: Back in the 1940s, von Neumann (1966) developed
a theory of self-reproducing automata. He described a universal constructor, universal con-

structora machine able to produce a copy of any other machine whose soft- and
hardware blueprint is provided as input. Being universal, the constructor is
also able to generate a copy of itself.

Considerable research on self-replication was carried out on the frame-
work of Cellular Automata (ca), in which remarkable results were achieved, CellularAu-

tomataalso in terms of robustness and self-repair (Tempesti, Mange, & Stauffer,
1998). However, these results are hard to transfer from cas to the world
of today’s computer software. In the 1960s, with the desire to understand
the fundamental information-processing principles and algorithms involved
in self-replication, researchers started to focus on self-replicating code, i.e. self-replicating

codehow textual computer programs are able to replicate independent from their
physical realization.

The existence of self-replicating programs is a consequence of Kleene’s Kleene’s second

recursion theo-

rem
second recursion theorem (1938), which states that for any program P there
exists a program P′, which generates its own encoding and passes it to P along

13. self-healing software | 251

with the original input. The simplest form of a self-replicating program is a
Quine, named after the philosopher and logician Willard van Orman Quine,Quine

and made popular by Hofstadter (1979): A Quine is a program that prints
its own code. Quines exist for any programming language that is Turing
complete, and it is a common challenge for students to come up with a Quine
in their language of choice. The Quine Page provides a comprehensive list of
such programs for various programming languages (Thompson, 2010).

In this third part of the thesis, we put Quines in the parallel execution
environment of an artificial chemistry, permitting an ensemble of Quine
copies to achieve surprising robustness with respect to code and packet loss
and even execution errors. Our contribution consists in the demonstration
of an operational system based on Quines that runs highly reliable network
services with provable dynamic properties. Ourmethod is to use the chemical
execution model introduced in Part ii, in which we place carefully crafted
self-replicating programs – Quines. Useful computation is then piggybacked
to the Quine structures in order to implement network services.

related work13.3

In this section, we reference the relevant corner stones for our work where
we could draw important insights, namely self-healing systems and software,
self-reproduction, fault tolerance, artificial chemistries and their dynamics,
the dynamics of competing populations and finally cooperation patterns.

self-healing computer systems13.3.1
Research on self-healing computer systems is a sub-branch of autonomic
systems, which seeks for human-made artifacts that nevertheless adapt them-
selves autonomously and without human intervention to different environ-
ments. A big driver of this line of research was ibm’s Autonomic Computingautonomic

computing

manifesto
Manifesto (ibm, 2001; see also Kephart & Chess, 2003), in which an auto-
nomic computer system is defined as a system which

• knows itself and comprise components that also posses a system iden-
tity,

• knows its environment and the context surrounding its activity, and
acts accordingly,

• configures and reconfigures itself,self-

configuration

• optimizes itself,self-

optimization

252 | part iii — self-healing networking protocols

• performs something akin to healing, self-healing

• protects itself, and self-protection

• anticipates but hides its complexity.

These life-like so called “self-*” properties were challenges formany researches,
but were anticipated as necessary requirements to master the complexity of
future computer systems.

Self-healing is one of these requirements and asks a system “to be able
to recover from routine and extraordinary events that might cause some of
its parts to malfunction” (ibm, 2001) whereas Ghosh, Sharman, Rao, and
Upadhyaya (2007) defined self-healing as

[. . .] property that enables a system to perceive that it is not
operating correctly and, without human intervention, make the
necessary adjustments to restore itself to normalcy.

Keromytis (2007) stated that a self-healing architecture is

[. . .] composed of two high-level elements: the software service
whose integrity and availability we are interested in improving,
and the elements of the system that perform the monitoring,
diagnosis and healing.

These definitions require the system to be aware of what health is and to
intentionally react to perturbations. Such a view subversively suggests an
implementation around a central “mind”.

Instead, we better like the idea that the system does not “know” its state
explicitly, but that its state space is structured by large basins of attraction such
that a perturbation always leads the system back to the fixed point of optimal
operation. This is along the line of Shaw (2002) who propagated homeostasis homeostasis

for computing systems. The term homeostasis was introduced by Cannon
(1929) and refers to “a mechanism through which the system acts to maintain
a stable internal environment despite external variations” (Shaw, 2002). In
their survey on self-healing systems, Ghosh et al. (2007) also distinguished
between the two approaches of maintenance of health and active detection of
failures and recovery.

Gangadhar (2005) proposed a self-healing framework within the context
of Boolean networks: Similar to Dittrich, who identified chemical organiza-
tion as high-level states of a chemical reaction systems (Dittrich & Speroni
di Fenizio, 2007), Gangadhar (2005) identified the basins of attraction in

13. self-healing software | 253

Boolean networks as Meta Dynamic States (mds). A healer component ismeta dy-

namic states notified if the system leaves the healthy basin of attraction and plans the
necessary microstate changes in order to bring the system back to the healthy
fixed point.

Another high-level method to maintain the health of systems is an Arti-artificial im-

mune system ficial Immune System (ais) (Timmis, Knight, De Castro, & Hart, 2004). ais
are able to distinguished between own and foreign states and objects based on
the characteristics of the natural innate or adaptive immune system. Recently,
Schreckling and Marktscheffel (2010) applied an ais approach to Quines in
Fraglets to protect chemical programs from various external attacks.

It is surprising how many of the published self-healing approaches still
require a central decision maker. As a representative of the truly distributed
approaches we mention the self-assembly of components in Amorphous
Computing (Clement & Nagpal, 2003; Nagpal, Kondacs, & Chang, 2003).

self-healing software13.3.2

The goal of self-healing software is to provide reliability techniques to protect
program code against transient faults without the overhead of hardware tech-
niques (Reis, Chang, & August, 2007). The promise of software-only methods
is the ability to control and adapt the level of reliability required for a given
application.

There are a number of proposed software redundancy techniques: Shir-software re-

dundancy vani, Saxena, andMcCluskey (2000) implemented an error correcting code to
protect memory in software. Oh, Shirvani, and McCluskey (2002) proposed
an error detection mechanism based on instructions that were duplicated
during compile-time. These instruction replicas are executed by different
registers and operate on different memory regions. Inserted checkpoints
continuously validate the state of the computation. A similar technique to
instrument the compiler was proposed by Reis et al. (2005).

Wong andHorowitz (2006) studied the soft error resilience of probabilis-probabilistic

inference tic inference algorithms. Programs based on probabilistic reasoning produce
non-exact results but are still useful for many applications, for example in
computer vision (Felzenszwalb & Huttenlocher, 2004), speech recognition
(Huang et al., 1993), or robotics (Thrun, Fox, Burgard, & Dellaert, 2000).
Wong and Horowitz (2006) showed that simple software modifications and
checkpointing can reduce the number of program crashes drastically.

Basedon our reviewof existing approaches, we postulate that self-healing
software has to meet the following two requirements: First, software com-
ponents have to be redundant: Only the duplication of information allows
the program to re-activate damaged code. Second, this redundancy has to

254 | part iii — self-healing networking protocols

be managed dynamically: The software has to detect itself whether a Single
Event Upset (seu) occurred and has to access the redundant information in
order to repair the damage. Thus, we define self-healing software as program organize own

redundancycode that is able to organize its own redundancy.
We propose to use the “analog” signals of molecular concentrations as analog comput-

ingfeedback signals for the system’s health. Analog signals are more resilient than
digital codes. Stepney (2010) analyzed classical computation systems from a
dynamical systems perspective. She argues that the attractor of a computer
program is its halting state where the result is presented to the output. A
small perturbation in the program’s transition path usually leads to a different
attractor, i.e. a different result of the computation. Dynamical systems on the
other hand exhibit smoother and larger basins of attraction. Already earlier,
similar observations led to the development of analog computation models
(Rubel, 1993; Mills, 2008) or reaction-diffusion computers (Adamatzky, De
Lacy Costello, & Asai, 2005), which exhibit better robustness than traditional
computing paradigms.

self-reproduction 13.3.3

In this thesis, we demonstrate how self-healing code naturally emerges in an
artificial chemical setting by continuously replicating code, and by dynami-
cally controlling this rewriting process.

Since the work of von Neumann (1966), many variants of universal universal con-

structorsconstructors for self-reproduction have been proposed and elaborated. For an
overview, see Freitas Jr. And Merkle (2004) or Sipper (1998). Langton (1984)
argued that natural systems are lacking a universal constructor and relaxed the
requirement that self-replicating structures must be equippedwith a universal
constructor. Instead, self-replication may arise from dynamic loops instead dynamic loops

of static tapes; the information necessary to replicate the structure may be
distributed in this loop andmay not be present in explicit and distinct entities
of a passive, un-interpreted blueprint and its active version of interpreted
instructions. This observation lead to a new surge of research on such self-
replicating structures (Perrier, Sipper, & Zahnd, 1996; Sipper, 1998).

Some related work also focus on the structure of self-replicating sets
of molecules: Bagley et al. (1989), Farmer, Kauffman, and Packard (1986b),
Kauffman (1993), and later Mossel and Steel (2005) examined the properties
of random autocatalytic sets, Fontana and Buss (1994) as well as Speroni di random auto-

catalytic setsFenizio and Banzhaf (2000) studied the formation of organizations in a ran-
dom reaction vessel of λ-expressions and combinator algebra, respectively.
Most of them focus on the structure of self-replicating sets. Here we addi-
tionally aim at performing microscopic computation (Dittrich, 2005), i.e.

13. self-healing software | 255

computation that is carried out on the individual instances of molecules. This
is a central requirement for being able to symbolically convey payload in
packet networks.

There is little work on self-replicating programs in traditional languages:
McKay and Essam (2001) investigated self-replicating programs in a func-
tional programming language whereas Larkin and Stocks (2004) studied
self-replicating λ-expressions. Self-replicating and self-modifying code also
barely appears in today’s software: Self-modifying code (smc)was traditionallyself-modifying

code used as an optimization method (for example to implement state-dependent
loops in assembly languages), for genetic programming (Koza, 1992), as cam-
ouflage for computer viruses, or as copy protection mechanism. Cai, Shao,
and Vaynberg (2007) provide a framework to analyze self-modifying code in
Hoare logic.

chemical computing13.3.4

In Chapter 3, we already introduced Artificial Chemistry as a branch of
Artificial Life (ALife). Here, we complement this literature review by researchArtificial Life

related to self-replication:
Artificial chemical computing models (Banâtre, Fradet, & Radenac,

2006; Calude & Paŭn, 2001; Dittrich, 2005; Holland, 1992; Paŭn, 2000) ex-
press computations as chemical reactions that consume and produce objects
(data or code). In the sameway as ALife seeks to understand life by building ar-
tificial systems with simplified life-like properties, Artificial Chemistry builds
simplified abstract chemical models that nevertheless exhibit properties that
may lead to emergent phenomena, such as the spontaneous organization of
molecules into self-maintaining structures (Dittrich & Speroni di Fenizio,
2007; Fontana & Buss, 1994). The applications of artificial chemistries go be-
yond ALife, reaching biology, information processing (in the form of natural
and artificial chemical computing models) and evolutionary algorithms for
optimization, among other domains. Chemical models have also been used
to express replication, reproduction and variation mechanisms (Dittrich &
Banzhaf, 1998; Dittrich et al., 2001; Hutton, 2002; Teuscher, 2007; Yamamoto
et al., 2007).

population dynamics13.3.5

The dynamics of natural chemical reactions is governed by the law of mass
action (Abrash, 1986), which states that the reaction rate is proportional to the
reactant concentration. In our work, we implement hard limits to an artificial
chemical vessel’s capacity. Environments with limited resources that host

256 | part iii — self-healing networking protocols

replicating entities lead to natural selection. This has been shown in research natural selec-

tionon population dynamics, for example by Szathmáry (1991), Stadler, Fontana,
and Miller (1993), Fernando and Rowe (2007). In our case, the population
consists of software components: Healthy software survives whereas errors
are displaced. This naturally leads to software homeostasis – the intrinsic software home-

ostasisself-regulation of code in order to maintain a stable, healthy state.
Natural selection inevitably leads to a competitive environment where

software instances fight for resources and where this struggle may lead to the
extinction of healthy but inefficient or rarely used code. There are, however,
well-known methods that show the emergence of cooperation (K. Wagner, cooperation

2000) in a competitive environment, such as the theory of hypercycles (Eigen Hypercycle

& Schuster, 1979). Furthermore, in computer network research, mechanisms
to control redundancy on the level of data-packets are well known. Transmis-
sion control protocols such as tcp (Postel, 1981) are not only able to recover
from packet losses, but also to adapt the transmission rate to the limited band-
width of the network (Jacobson, 1988), providing fairness for the competitive
environment of the underlying ip network. Within our setting, we are able to
transpose these methods, currently only used for data stream control, down
to the code execution level, ensuring fairness among the software parts that
fight for limited (memory) resources.

structure of this part 13.4

We structure this part on self-healing protocols as follows: In this chapter, we
reviewed related work and briefly introduced our concept of dynamic code
replication (Quines), which yields self-healing code in limited memory. In
Chapter 14, we show how our ideas are realizable in Fraglets and study the
behavior of manually designedQuines for self-healing code in detail. Then, in
Chapter 15, we discuss the phenomenon that multiple Quines residing in the
same vessel compete against each other and proposemethods to cooperatively
link the Quines. As an application case, Chapter 16 demonstrates a multi-path
routing protocol that makes use of continuous code replication in order to
exhibit self-healing properties. In Chapter 17, we then take a closer look to
the effects of code mutations in chemical software. Finally, in Chapter 18, we
provide a first approach to cope with spontaneous alterations of memory by
proposing a selection mechanism on the level of redundant reaction vessels.

••

13. self-healing software | 257

chapter1414Self-Healing Software
by Dynamic Code Replication

How self-replicating code – Quines – put into an environment
with limited resources, exhibits self-healing properties.

Was war also das Leben?
Es war Wärme,
das Wärmeprodukt
formerhaltender Bestandlosigkeit,
ein Fieber der Materie,
von welchem der Prozess
unaufhörlicher Zersetzung
und Wiederherstellung
unhaltbar verwickelt,
unhaltbar kunstreich aufgebauter
Eiweissmolekel begleitet war. 14

Der Zauberberg
Thomas Mann

What was life?
It was warmth,
the warmth generated
by a form-preserving instability,
a fever of matter,
which accompanied the process
of ceaseless decay
and repair
of protein molecules
that were too impossibly
ingenious in structure.

TheMagic Mountain
Thomas Mann

In this chapter we first demonstrate how to write Quines in Fraglets,i.e. how sets of fraglet strings can preserve their own structure by contin-
uously rewriting themselves (Section 14.1). Then, by limiting the memory
resources of the reaction vessel and decaying excessive molecules, we impose
an instability to the system, turning these Quines into software elements that
steer their own redundancy and by this way become intrinsically self-healing.
We also quantify the Quines’ robustness by calculating their average survival
time using phase-type distributions (Section 14.2) and show how to increase

14. self-healing software by dynamic code replication | 259

Figure 14.1 Chemical Quine in
Fraglets: A set of molecules (here:

fraglet strings) regenerates itself.

The blueprint molecule B reacts

with its active variant A. The con-

secutive rewriting steps regener-

ate the two molecules.

[fork nop match B fork nop match B]

[nop B fork nop match B]

A

B [B fork nop match B]

[match B fork nop match B]

(a) Rewriting loop in Fraglets

A

B

(b) Reactions

the robustness by distributing the Quines over the network (Section 14.3).
Section 14.4 then introduces a modified Quine that, beyond replicating, per-
forms some useful computation. This data-processing Quine can be used as
a generic building block for self-healing programs, as we will demonstrate in
the next chapter.

the chemical quine14.1

In ordinary sequential programming languages, a Quine is a single pieceQuine

of code outputting its own source code. In the parallel world of an arti-
ficial chemistry like Fraglets, a Quine becomes a set of molecules that is
able to regenerate itself. An example that illustrates this concept is the com-
bination of a blueprint molecule B = [B fork nop match B] and its activeblueprint

molecule variant A=[match B fork nop match B] (Yamamoto et al., 2007). The two
molecules react with each other and, according to the Fraglets rewriting rules,
regenerate themselves as shown in Figure 14.1. The schematic illustration
in Figure 14.1(b) shows the corresponding chemical reaction network that
is dynamically equivalent to the Fraglets rewriting loop in Figure 14.1(a).
Note that only bimolecular reactions are scheduled according to the law of
mass actions; unimolecular rewriting rules such as fork are immediately
executed, as discussed in detail in Section 5.2.3. Hence, these intermediate
steps (molecules) are omitted in the schematic notation.

replicating quine and limited resources14.1.1

By repeating the fork instruction three times, the above Quine can be con-
verted into a replicating Quine as shown in Figure 14.2. The replicating Quinereplicating

Quine generates two copies of itself in each roundwhile consuming the original copy.
Because the reactions are scheduled according to the law of mass action, the
overall production rate increases with the growing number ofQuine instances.
Consequently, the population of Quines grows hyperbolically (Szathmáry,
1991), meaning that it theoretically reaches an infinite quantity in finite time.

260 | part iii — self-healing networking protocols

[fork fork fork nop match B fork nop match B]

[nop B fork fork fork nop match B]

[fork nop match B fork nop match B]

A

B

2

[B fork fork fork nop match B]

[match B fork fork fork nop match B]

(a) Rewriting loop in Fraglets

A

B

2

2

(b) Reactions

Figure 14.2 Replicating
Quine: The replicating

Quine increases its pop-

ulation size by generat-

ing two replicas while

the original copy is con-

sumed.

As a limit to this unbounded growth, we introduce a non-selective di- non-selective di-

lution fluxlution flux to the reaction vessel, which destroys arbitrary molecules as long
as the total number of molecules exceeds a pre-defined vessel capacity. This
leads to a selective pressure: Only molecules that are part of a self-replicating
set have a chance to persist – all other molecules will eventually be displaced.

dynamic behavior and deterministic fixed points 14.1.2
The dynamic behavior of the replicating Quine in a vessel of limited capacity
is described by the Catalytic Network Equation (Stadler et al., 1993), a deter- Catalytic Net-

work Equationministic approximation expressed by Ordinary Differential Equations (odes)
where xA is the number of A-molecules and where xB denotes the number of
blueprints B

ẋA =
growth79:
xAxB −

death788888888888988888888888:
xA
N

f (x) (14.1a)

ẋB = xAxBdef
growth

− xB
N

f (x)d8888888888e8888888888f
death

(14.1b)

subject to the conservation relation xA+xB=N , where N is the vessel capacity.
The twomolecules react according to the law ofmass action with rate r=xAxB;
each reaction event leads to an additional pair of molecules. The dilution flux
applied to the vessel is equal to the net production rate f (x)=2xAxB, thus
satisfying the conservation relation. The dilution flux is non-selective, i.e.
each species is diluted with a rate proportional to its relative concentration
(see also Section 11.3.1(c)).

Molecular quantities in a limited vessel are often expressed in (relative)
concentrations. The concentration of molecule s ∈ S , χs , denotes the fre- concentration

14. self-healing software by dynamic code replication | 261

Figure 14.3 Replicating Quine sub-
ject to deletion attacks: Fraglets simu-

lation of the replicating Quine in a ves-

sel of capacity N = 1000 molecules. At

time t = 0.1 s we removed 80 % of the

active molecules A, whereas the same

amount of B molecules is removed at

time t = 0.2 s. Shortly after the attack,

the remaining Quine instances refill the

vessel.

0.00 0.05 0.10 0.15 0.20 0.25
time [s]

0.00

0.25

0.50

0.75

1.00

c
o

n
ce

n
tr

a
ti

o
n

removed 80 % As removed 80 % Bs

χB

χA

quency or abundance of s in the vessel multiset, hence χs =xs/N . Expressed
in concentrations, the above equations become

χ̇A = NχA χB − χAΦ(χ) (14.2a)
χ̇B = NχA χB − χBΦ(χ) (14.2b)

where Φ(χ)=2NχA χB.
The system exhibits three dynamic fixed points, one at χ̂A = χ̂B = 1/2fixed points

and two pathological cases at χ̂A = 1, χ̂B = 0, and χ̂A = 0, χ̂B = 1. The first
fixed point is locally stable according to a standard perturbation analysis (see
Section 8.2.2) and is characterized by both molecules – the blueprint and its
active variant – being present with the same quantity.

Figure 14.3 demonstrates the robustness of the replicating Quine to per-
turbations: In a Fraglets vessel of capacity N =1000molecules, both molecule
types are present with 500 instances each. At time t =0.1 s we forcefully re-
moved 80% of the active molecules A from the vessel. The remaining Quines
continue to produce replicas, which quickly repopulate the vessel. Once
the vessel reaches saturation again, there are more blueprints than active
molecules, which cause the dilution flux to remove the first more frequently
than the latter until equilibrium is reached. At time t =0.2 s we performed
the same attack to the blueprints B, from which the system recovers likewise.

The stability property essentially means that the system returns to equi-
librium condition: Even if we perturb the system by removing some instances
of either species, the opponent forces of hyperbolic growth and non-selective
dilution flux let the system autonomically find back to this fixed point. In
other words, the system intrinsically maintains its own redundancy without
an external controller!

262 | part iii — self-healing networking protocols

robustness of the quine 14.2

In this section we quantify the robustness of the replicating Quine in the
presence of faults: execution errors and random alteration of memory. But
even when no faults occur, the lifetime of the Quine is finite due to stochastic
fluctuations.

baseline robustness 14.2.1

The two pathological fixed points from the analysis above deserve some more
attention. The deterministic ode model predicts that they are not locally
stable, which may lead to the conclusion that these states are not reachable
or not persistent. However, in our stochastic execution environment, these
fixed points will eventually be reached and represent states where one of the
species is completely absent such that the system becomes deadlocked and
finds itself in a so called absorbing state (see Section 8.1.3). As a consequence, absorbing state

the lifetime of a chemical Quine is limited, even in the absence of faults.

Quantification of the Robustness Using Phase-Type Distributions (a)

In order to quantify the baseline robustness of the replicating Quine, we now
calculate the mean first-passage time to either absorbing state.

As we have seen in Section 8.1, a chemical reaction network governed by
the law of mass action is stochastically modeled by a continuous time discrete
space Markov jump process, whose dynamic behavior is described by the
Chemical Master Equation (cme) (Gillespie, 1992). Our simple replicating
Quine only consist of two species and the total number of molecules is fixed
to N . Like for the example in Section 8.1.2, this allows us to model the
system as a finite birth-death Markov chain where the state NA(t) ∈ [0,N] is finite birth-

death Markov

chain
a random variable denoting the number of A-molecules, whereas the number
of blueprints B is given by NB(t)=N − NA(t).

Figure 14.4 depicts the corresponding birth-death Markov chain, in
which we labeled the states according to the number of A-molecules present.
In saturation, a reaction yields two additionalmolecules and brings the system
to a hypothetical state withN+2molecules (red area in the figure’s upper right
corner), such that the dilution flux has to remove two arbitrary molecules.
The effective transitions move the system along the saturation line; their rate
is calculated as product of the reaction rate times the sum of all dilution path
probabilities to one of the neighbor states. In this context, the birth rate λ i
represents the average rate of gaining an A-molecule and losing a B-molecule

14. self-healing software by dynamic code replication | 263

Figure 14.4 Markov chain
of the replicating Quine: The

replicating Quine in a satu-

rated vessel is modeled as a

birth-death Markov chain. The

states are labeled according

to the number of A-molecules

present. Reactions from a sat-

urated state leads to a hypo-

thetical state (dashed circles).

The dilution flux (dashed ar-

rows) brings the system back

to a valid state along the satu-

ration line. The effective transi-

tion rates (black arrows) are cal-

culated as product of the reac-

tion rate times the sum of all di-

lution paths to the target state.

...

...

absorbing state

n
u

m
b

e
r

o
f

B
-m

o
le

c
u

le
s

number of A-molecules

saturation

unsaturated
vessel, no

dilution
flux

dilution probability

hypo. reaction rate

eff. reaction rate

saturation

a
b

so
rb

in
g

st
a

te

μ1

μi−1

λi−2

λi−1

λi

λi+1

λN−1

μi

μi+1

μi+2

0

i−1

i+1

i

N

i

N+1

i+1

N+2

N−i
N+1

N−i+1

N+2

N−i
N+1

i

N+1

i (N−i)

in state i whereas the death rate μ i describes a movement in the opposite
direction:

λ i =
reaction rate78888888888889888888888888:
i(N − i)

dilution prob.788888888888888888888888888888888888889888888888888888888888888888888888888:
N − i + 1
N + 2 N − i

N + 1 (14.3a)

μ i = i(N − i)d888888888888e888888888888f
reaction rate

i + 1
N + 2 i

N + 1d88888888888888888888888888e8888888888888888888888888f
dilution prob.

(14.3b)

We are interested in the survival time of the replicating Quine, i.e. the time
until the Markov process hits one of the two absorption states ({0,N}).

In Section 8.1.4 we showed that the first passage time to absorption is de-
scribed by a phase-type distribution according to Neuts (1981). We developedphase-type

distribution a tool that, given the reaction network and the vessel capacity N , automati-
cally builds the corresponding Markov chain and its transition matrix. We
then used Scilab (Campbell, Chancelier, & Nikoukhah, 2006) to calculate
the mean time to absorption based on the generated transition matrix. This

264 | part iii — self-healing networking protocols

0 10 20 30 40 50 60 70 80
Vessel capacity N [molecules]

10−5

100

105

1010

1015

1020

1025

1030

M
e

a
n

su
rv

.
ti

m
e
E
[T
{0,N }
] [

y
](

lo
g

)

analytical (Neuts, 1981)

empirical (Fraglets)

age of the universe

Figure 14.5 Baseline robustness of the
replicating Quine: Based on calculation

methods by Glaz (1979) and Neuts (1981),

the mean survival time exponentially in-

creases with the vessel capacity N and

reaches the current age of the universe

for about N=37 molecules. These predic-

tions match empirical measurements, i.e.

the survival times of Fraglets simulations,

averaged over 1000 runs.

method is feasible for vessel capacities N ≤ 30. For larger vessels, the transi-
tion matrices become very large and Scilab produces erratic values due to the
limited precision of the floating-point representation. Therefore, for vessel
capacities N > 30 we used Glaz’ method (1979) (see Section 8.1.4).

Figure 14.5 shows themean time to absorption for the replicating Quine mean time to

absorptionin vessels with different capacities. The figure illustrates that the mean time to
absorption exponentially increases with the vessel capacity N . In fact, already
for N =37molecules the mean survival time exceeds the current age of the
universe. For small Ns we complemented these analytical calculations with
1000 simulation runs in Fraglets; the empirically measured average survival
time accurately matches the predicted survival time.

Identification of Absorption States (b)
by Using the Chemical OrganizationTheory

For large reaction networks, it becomes unfeasible to analyze the correspond-
ing Markov chain, and thus a detailed dynamic analysis is not possible any-
more. As discussed in Section 8.4.2, theChemical OrganizationTheory (cot)
(Dittrich & Speroni di Fenizio, 2007) analyzes a reaction network structurally
rather than analyzing the system’s dynamics; it not even requires the reactions
to follow the law of mass action. Instead of operating on multisets, the cot
identifies those sets of species – organizations – that “are likely to be observed organizations

in a large reaction vessel on the long run” (Dittrich & Speroni di Fenizio,
2007). Such organizations are either desired quasi steady-states, unwanted
absorption states, or stochastically closed subspaces. In the following, we
demonstrate how to use the cot to at least identify organizations of large reac-
tion systems, for which a detailed stochastic analysis would be too expensive
or even impossible.

14. self-healing software by dynamic code replication | 265

Figure 14.6

Organizations of
the replicating Quine:

The system may lose

one of the species

due to the stochastic

dilution flux (down-

movement). The system

is dead forspecies

sets in the red area

(absorption).

{}
{A} {B}

{A, B}
down-movement

organization (quasi steady-state)

organization (absorbing state)

organization (when starting

with an empty vessel)absorption

The cot models the dilution flux by explicit first-order decay reactions.
Such a reactive flow system (Dittrich & Speroni di Fenizio, 2007) for thereactive

flow system replicating Quine is modeled by the following reactions:

A + B�→ 2A + 2B (14.4a)
A�→ ∅ (14.4b)
B�→ ∅ (14.4c)

For this reaction system, the cot predicts two organizations: the set where
both species are present hosting the quasi steady-state ({A,B}) and the patho-
logical empty set {} as consequence of the dilution reactions.

Note however that the cot does not predict the two absorption states
we previously identified in our stochastic dynamical analysis: we know that
two absorption states exist where either A- or B-molecules are absent. The
reason for this discrepancy roots in the way wemodeled the dilution flux: In a
reaction vessel with limited capacity, dilution is always linked to an excessive
production of molecules; the dilution rate is actually proportional to the net
production rate of any molecule in the vessel. For the special case where no
reaction occurs anymore, i.e. when the system becomes inert, the dilution
rate drops to zero and the reactions (14.4b) and (14.4c) become void. This
changes the type of the reaction system from a consistent reaction system to a
non-consistent system, for which additional organizations may appear. Thus,
in addition to finding the organization for the above reaction system, we have
to determine the organizations of the reaction network without a dilution flux.
Then, the union of both organization sets yields the organizations relevant
for our execution model (P. Dittrich, personal communication, July 8, 2010).

The resulting lattice of organizations for the replicatingQuine is depicted
in Figure 14.6. Organization {A,B} contains all species and represents the
healthy quasi steady-state, in which the system stays for a long time.

266 | part iii — self-healing networking protocols

[fork fork fork nop match B fork nop match B]

[nop B fork fork fork nop match B]

[fork nop match B fork nop match B]

A

B

E

pe 2
pe

pe

pe[ERROR]

[B fork fork fork nop match B]

[match B fork fork fork nop match B]

Figure 14.7 Replicating Quine
subject to execution errors: Each

rewriting step may be subject to an

execution error (dashed lines) with

probability pe. We assume that the

error product E is not able to react

with the other molecules.

Adown-movement in the lattice of organizations to one of the absorption
organizations {A} or {B}may happen because the reaction vessel loses one
of the species due to the random dilution flux. But from there, the system is
never able to reach the pathological organization {}. This organization is only
reachable if the vessel already starts empty. From a lower-level organization
such as {A} or {B} the system is not able to intrinsically move up to a higher
organization. Thus, all states within the two single-species organizations are
stochastically closed and hence absorption states.

The cot provides us a qualitative picture of the possible fate of a com-
plex reaction system. In this chapter, we will complement the robustness
calculations of all reaction networks with the corresponding lattice of organi-
zations.

robustness to execution errors 14.2.2

We expect the robustness of a Quine to decrease in the presence of execution
errors, which we model as follows: With probability pe, each Fraglets instruc-
tion fails to produce the right result; instead, a neutral fraglet is generated neutral fraglet

that is unable to replicate or to react with another molecule.
Figure 14.7 shows the rewriting steps of the replicating Quine that is

subject to execution errors. The dashed arrows indicate that instead of the

14. self-healing software by dynamic code replication | 267

Figure 14.8

Organizations of
the replicating Quine
(execution errors): The

system may lose one

of the species due to

the stochastic dilution

flux. The system is dead

for species sets in the

red area. Organizations

have a black border;

they form a lattice as

shown in (b). Note

that{A, B} is not an

organization because

errors eventually appear.

stochastically

closed

subspace E {}
{A} {B}{E}
{A, E} {A, B} {B, E}

{A, B, E} basins of

attraction

(a) Molecule set transitions

{}
{A} {B}{E}
{A, E} {B, E}

{A, B, E}

(b) Lattice of organizations

intended rewriting result, a error product E is generated. The corresponding
reaction network is

A + B pe(2−pe)����→ E (14.5a)

A + B (1−pe)2 pe�����→ 2E (14.5b)

A + B (1−pe)3 p2e�����→ 2E + 2B (14.5c)

A + B (1−pe)3 pe(2−pe)��������→ A + E + 2B (14.5d)

A + B (1−pe)5����→ 2A + 2B (14.5e)

Before calculating the survival time, we analyze the reaction network
structurally. Figure 14.8(a) provides the set transition diagram, a simplified
illustration of the underlying Markov process where we mapped all states
containing the same species to the same meta-state (M(S) → ℘(S)). Anmeta-state

even simpler view is provided by the lattice of organizations in Figure 14.8(b),
which depicts the possible (quasi) steady-states of the system.

In order to determine the absorption state we recall that the system
is alive if the vital reaction among A and B molecules is still possible, and
hence those molecules must be present. Note that the set {A,B} itself is
not an organization. These states belong to the attractor or generator of thegenerator of the

organization organization {A,B, E} , because errors will eventually be produced while
the two molecules react. Thus the organization {A,B, E} and its generator
sets host the healthy quasi steady-state of the system. Figure 14.8(a) helps us

268 | part iii — self-healing networking protocols

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

Execution error probability pe [failed instr./total instr.] (log)

10−8

10−6

10−4

10−2

100

102

104

106
M

e
a

n
su

rv
iv

a
lt

im
e
E
[T
E][

y
](

lo
g

)
N=30

N=20

N=10

no duplication

Figure 14.9 Robustness of the replicat-
ing Quine (execution errors): Mean sur-

vival time in years, in a vessel of capacity

N, plotted with respect to the execution

errors probability pe. The fluctuations

for N = 30 molecules are due to floating

point precision limits in Scilab. The diag-

onal line illustrates the survival time of a

single non-replicating and thus not self-

healing Quine instance, representing a

traditional piece of software, which real-

istically fails at the first occurrence of an

execution error.

in identifying the stochastically closed subspace E , from which no transition stochastically

closed subspaceleads back to the healthy organization. Absorption states are instances of any
organization in this subspace.

Now that we identified the subspace E , in which the system became inert,
we calculate the mean first-passage time to this subspace from the healthy mean first-

passage timequasi steady-state. Glaz’ method does not work, because the system cannot be
modeled by a simple birth-death chain anymore, but Neuts’ generic method
based on phase-type distribution can still be applied. The survival time,
i.e. the first-passage time to an absorption state, can be calculated from the
transition matrix of the corresponding two-dimensional Markov state array.

Figure 14.9 shows the mean survival time of a replicating Quine in
vessels of different capacities plotted with respect to different execution error
probabilities. The robustness of the Quine barely decreases for realistic error
probabilities and only sharply drops for probabilities above 1%. The diagonal
line in Figure 14.9 illustrates the survival rate of a single Quine instance that
just rewrites itself but does not replicate, and thus, is not able to heal itself. This
situation is comparable to traditional sequential software, which realistically
fails at the first occurrence of an execution error. Although the self-healing
Quine eventually dies even in the absence of execution errors, it lives much
longer than un-instrumented code in the presence of execution errors, even
in small reaction vessels.

robustness to memory alterations 14.2.3

The second type of error we discuss in this section are spontaneous alterations
of memory bits with rate δ in /(bit s). Such Single Event Upsets (seus) can Single Event Up-

set (SEU)be caused, for example, by cosmic radiation (Normand, 1996). The rate at
which a fraglet is hit depends on its length l in symbols and the bit-width of

14. self-healing software by dynamic code replication | 269

Figure 14.10 Organizations of the
replicating Quine (memory alter-
ations): The system may lose one

of the species due to the stochastic

dilution flux. The system is dead

for species sets in the stochastically

closed subspace, indicated by the

red background in (a). Organiza-

tions have a black border; they form

a lattice as shown in (b).

stochastically

closed

subspace E

basins of

attraction

{}
{A} {B}{E}
{A, E} {A, B} {B, E}

{A, B, E}

(a) Molecule set transitions

{}
{E}

{A, B, E}

(b) Lattice of organizations

the symbol encoding scheme, b; thus a fraglet is hit lbδ times per second. We
model the spontaneous mutations that turn a fraglet into a neutral molecule
E with the reaction network

A + B 1�→ 2A + 2B (14.6a)

A 8bδ��→ E (14.6b)

B 7bδ��→ E (14.6c)

As for execution errors, the lattice of organizations for memory alter-
ations depicted in Figure 14.10 indicates that the quasi steady-state includes
mutation products. The stochastic dilution flux may bring the system to
absorption, i.e. to the species set {A,E} or {B, E}. Note that the memory
alteration “reactions” (14.6b) and (14.6c) are still active in those states. They
eventually but very slowly turn all A- and B-molecules to error products
E, which is the reason why the species set {E} is the only non-pathological
absorption organization.

Figure 14.11 shows themean survival time of our replicating Quine, nowmean sur-

vival time plotted with respect to different symbol mutation rates (we assumed that each
fraglets symbol is encoded by eight bits). To appraise these curves, we recall
that, according to Normand (1996), the Single Event Upset (seu) rate caused
in microelectronic devices by radiation is around 5 × 10−16 /(bit s). In this
region, the Quine is almost unaffected by mutations.

270 | part iii — self-healing networking protocols

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100 102

Mutation rate δ [1/(bit s)] (log)

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

106
M

e
a

n
su

rv
iv

a
lt

im
e
E
[T
E][

y
](

lo
g

)

ty
p

ic
a

l
S

R
A

M
/D

R
A

M
S

E
U

ra
te

N=10

N=20

N=30

Figure 14.11 Robustness of the replicat-
ing Quine (memory alterations): Mean

survival time in years, in a vessel of ca-

pacity N, plotted with respect to the bit

mutation rate δ. A Fraglet symbol is

encoded by 8 bits. The fluctuations

forN = 30 molecules are due to float-

ing point precision limits in Scilab. The

Single Event Upset (SEU) rate caused in

microelectronic devices by radiation is

around 5 × 10−15 /(bit s). In this region,

the Quine is almost unaffected by muta-

tions.

distributed quines 14.3

In this section, we study whether the survival time of a Quine is higher in a
distributed context. Intuitively, we expect that the system is able to survive
for a longer time when backup molecules exist in neighbor vessels: When one
vessel hits an absorption state, a neighbor vessel could be still alive and would
be able to heal the inert node by sending it the seed to restart the Quine’s loop.
However, we found out that the strategy of spreading seeds is important for
this scheme to work.

We analyzed the robustness of two different types of distributed Quines.
Common to both types is that each node v i contains a reaction between the
Quine’s activemolecule Ai and the corresponding blueprint Bi . The difference type 1

is that in the first case we produce the seed replicas locally and send them to
a random neighbor node (anycast), as is shown in Figure 14.12. In Fraglets,
this is realized by encoding the two species as

Ai = [match B anycast fork fork fork nop match B] (14.7a)
Bi = [B anycast fork fork fork nop match B] (14.7b)

Once arrived, the seeds unfold and generate two instances of either species.
The second distributed Quine type is depicted in Figure 14.13 and the Fraglets type 2

code is shown below.

Ai = [match B fork nop anycast fork nop match B] (14.8a)
Bi = [B fork nop anycast fork nop match B] (14.8b)

Their product only sends one seed to a random neighbor node whereas the
other seed is used to regenerate the Quine locally.

14. self-healing software by dynamic code replication | 271

Figure 14.12 Distributed Quine
type 1: The product of a reaction

among A and B is sent to an arbi-

trary neighbor node where two

replicas of those molecules are pro-

duced. We consider memory bit

mutations at rate δ and packet loss

during transmission with probabil-

ity pl .

v1 v2

∅2 2

2 2

pl

1−pl

9bδ 8bδ
A1 E1 B1 B2E2A2

1−pl

pl

8bδ9bδ

anycast

anycast

Figure 14.13 Distributed Quine
type 2: The product of a reaction

among A and B is sent to an arbi-

trary neighbor node and is deliv-

ered locally. In total, one addi-

tional instance of both molecules

is produced. We consider memory

bit mutations at rate δ and packet

loss during transmission with prob-

ability pl .

v1 v2

∅
pl

1−pl

9bδ 8bδ
A1 E1 B1 B2E2A2

1−pl

pl

8bδ9bδ

anycast

anycast

Figure 14.14 Robustness of distributed
Quines (memory alterations): Mean

survival time in years, in two vessels

with a total capacity of N= 14 molecules

in comparison to a single replicating

Quine with the same total capacity of

N= 14 molecules, plotted with respect to

the bit mutation rate δ. A Fraglet sym-

bol is encoded by 8 bits. An absorption

state is reached when both vessels either

lack Ai or Bi molecules.

10−8 10−6 10−4 10−2 100 102

Mutation rate δ [1/(bit s)] (log)

10−12

10−10

10−8

10−6

10−4

10−2

100

102

M
e

a
n

su
rv

iv
a

lt
im

e
E
[T
E][

y
](

lo
g

)

dist. Quine type 2

repl. Quine

dist. Quine type 1

Figure 14.14 shows the mean survival time against different mutation
rates of the two distributed Quine types in a two-node network topology, as
well as the curve of a one-node replicating Quine for comparison purpose.
The total capacity of the reaction vessel(s) is the same for all three cases,
namely N =14molecules: That is, for the one-node Quine, the single vessel
provides thewhole capacity, whereas for the two distributed cases, the capacity
is evenly distributed between the two participating nodes.

272 | part iii — self-healing networking protocols

−5−4−3−2−10

−6 −5 −4 −3 −2 −1

−8

−7

−6

−5

−4

−3

−2

dist. Quine type 2

dist. Quine type 1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−6

10−5

10−4
10−3

10−2

10−1 1 10−1 10−2 10−3 10−4 10−5

Packet loss pl [rx mol./tx mol.] (log)

Mutation rate δ [1/(bit s)] (log)

M
e

a
n

su
rv

iv
a

l
ti

m
e
E
[T E]

[y](lo
g

)

Figure 14.15 Robustness
of distributed Quines
(packet loss): Mean sur-

vival time in years, in two

vessels with a total capac-

ity ofN = 10 molecules,

plotted with respect to the

bit mutation rate δ and

the inter-vessel packet

loss probability pl . A Fra-

glet symbol is encoded

by 8 bits. The absorption

state is an instance of the

species set E where both

vessels lack Ai or Bi .

We observe that the single Quine always outperforms the distributed
Quine of type 1, which sends both seed copies to the neighbor. The distributed
Quine of type 2 however is the most robust variant for moderate bit alteration
rates. This stems from the fact that the second type has to digest only two
received molecules at once, whereas the first type receives four instances at a
time. Themore excessivemolecules the dilution flux has to remove, the higher
is the fluctuation around the quasi steady-state and, consequently, the more
likely one of the absorption states is reached. Thus, the good recipe for robust
distributed Quines is to replicate locally in order to maintain the population
and to send only one copy to a neighbor node for the case a neighbor deviates
from the fixed point or even reached a local absorption state.

Figure 14.15 shows the robustness surface of the two distributed Quine
types for different symbol alteration rates and packet loss probabilities. Packet
loss only has a marginal effect on the robustness, especially for the second
type, which replicates locally. The second type only needs the received Quine
seeds to bootstrap the local Quine when accidentally hitting a local absorption
state.

Our calculations show that a carefully designed distributed Quine ex-
hibits a better robustness than an isolated Quine even when comparing them
with the same total vessel capacity. In a typical networking scenario, the total
memory resource available grows with the number of nodes in the network.
In this case, where additional memory comes for free, the distributed Quine
is always by far more robust than a network of isolated Quines. Its persistence
even makes it hard to replace the Quine intentionally with a new version of
itself, as we will see in the application case of the next chapter.

14. self-healing software by dynamic code replication | 273

[nop match v3 split match B fork fork fork nop B * send v2 v3]

[split match B fork fork fork nop B * send v2 v3 <data>] [send v2 v3 <data>]

[fork fork fork nop B match v3 split match B fork fork fork nop B * send v2 v3]

[fork nop B match v3 split match B fork fork fork nop B * send v2 v3]

A

D

B

R

2seed

rin rout

[B match v3 split match B fork fork fork nop B * send v2 v3]

[match B fork fork fork nop B]

[match v3 split match B fork fork fork nop B * send v2 v3]

[v3 <data>]

(a) Rewriting loop in Fraglets

Figure 14.16 Data-processing Quine: The active molecule A processes a data molecule D resulting in a reward

R. The blueprint B contains all information necessary to generate two copies of A and B when reacting with R.

a generic building block14.4
for self-healing software

The Quine studied so far just spends cpu cycles replicating itself. In this
section, we demonstrate how our self-healing Quines can be enriched to
perform an actual and useful computation. The resulting data-processingdata-processing

Quine Quine can be used as a software building block for various tasks, serving as
a design pattern to engraft the self-healing property to an arbitrary piece ofdesign pattern

code.

the data-processing quine14.4.1

A small modification to the replicating Quine’s structure leads to a data-
processing Quine, as is depicted in Figure 14.16. With the new structure, the
set of A- and B-molecules does not directly replicate anymore. Instead, the
active molecule A reacts with a data molecule (or “data packet”) D, computes
some product and also generates an additional rewardmolecule R. The reward
molecule reacts with and consumes a blueprint molecule B, which contains
the necessary information to re-create the active molecule and its blueprint.
As usual with replicating Quines, the reaction between R and B results in two
instances of A and B.

274 | part iii — self-healing networking protocols

D

A R

2

2

B

(b) Reaction network

D
rin rout

Q

D

(c) Short notation

Figure 14.16 cont.: We make use of two

equivalent short-notations for the data-

processing Quines.

a generic template to quinify code 14.4.2
Every Fraglets rule can be converted to a data-processing Quine, which is
intrinsically robust to the discussed faults. In the following, we introduce a
simple recipe to “quinify” code. quinification

The data-processing Quine depicted in Figure 14.16 is the self-healing
implementation of a packet-forwarding reaction that we introduced earlier
in Figure 7.4 on page 95:

v1

f7888988:
[matchp v3 send v2 v3]+ v1[v3 Ω]�→ v1[matchp v3 send v2 v3] + v2[v3 Ω]

(14.9)

The matchp-fraglet residing in node v1 consumes local data packets destined
to node v3 and sends them to the next hop v2. In fact, any persistent Fraglets
rule f like the one in (14.9) can be converted to a data-processing Quine by
using the template

[Ψspawn Ψconsume(f) Ψreplicate Ψproduce(f)] (14.10a)

where generally the symbol strings Ψspawn and Ψreplicate are defined as

Ψspawn := fork nop B (14.10b)
Ψreplicate := split match B fork fork Ψspawn * (14.10c)

To generate the Quine replacement for fraglet f =[matchp v3 send v2 v3],
we define the consumption and production part of of the data-processing
Quine as

Ψconsume(f) := match v3 (14.10d)
Ψproduce(f) := send v2 v3 (14.10e)

14. self-healing software by dynamic code replication | 275

which results in the seed

[fork nop match v3 split match B

fork fork fork nop B * send v2 v3] (14.11)

that bootstraps the data-processing Quine (compare to Figure 14.16). Com-
plex software, consisting of many matchp-rules, can be quinified by following
this recipe. There are, however, some circumstances in which those Quines
compete against each other for the limited memory rather than cooperate to
accomplish a common task. We will dedicate the next chapter to the study of
this competitive behavior.

intrinsic packet loss14.4.3
Unlike the original Quine, the data-processing Quine only replicates upon
processing a data packet. The replication rate is given by the production ratereplication rate

of R, which is approximately equal to the packet injection rate rin. Thus, in
order to exhibit self-healing properties, the data-processing Quine has to be
continuously fed with input molecules.

Ideally, the rate at which the Quine produces results, rout, is equal to the
data molecule injection rate rin. In this case the system does not intrinsically
lose packets. However, we have to expect some of the packets D being diluted.
In fact, the more buffered packets are present in the vessel, the higher is the
probability for intrinsic packet loss due to the non-selective dilution flux.
In the following, we determine the packet loss probability pl, given as the
fraction of injected packets that does not arrive at the output:

pl = 1 − rout
rin

(14.12)

In order to quantify this packet loss, we present a closed-form expression
for the deterministic fixed point of the data-processing Quine. Therefore, wedeterministic

fixed point write down the corresponding ode system in terms of relative concentrations

χ̇D = rin
N
− NχA χD − χDΦ(χ) (14.13a)

χ̇A = −NχA χD + 2NχB χR − χAΦ(χ) (14.13b)
χ̇R = NχA χD − NχB χR − χRΦ(χ) (14.13c)
χ̇B = NχB χR − χBΦ(χ) (14.13d)

276 | part iii — self-healing networking protocols

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Norm. data injection rate ρ = 8rin/N2 [1/s]
0.0

0.1

0.2

0.3

0.4

0.5

R
e

la
ti

v
e

c
o

n
c.

;L
o

ss
p

ro
b

.

χ̂D
(data)

χ̂A (active)

χ̂B (blueprint)

p̂ l
(d

at
a

lo
ss

)

r i
n

,c
ri

t
=N2

/8

χ̂R (reward)

p̂l,crit

Figure 14.17 Deterministic fixed point
of the data processing Quine: The con-

centrations are plotted with respect to

ρ, the data injection rate normalized to

the vessel capacity. For increasing data

injection rates, attended by a growing

steady-state concentration of the data

molecule χ̂D, the packet loss probability

p̂l increases due to the dilution flux.

with the total dilution flux being

Φ(χ)= rin
N
− NχA χD + 2NχB χR (14.13e)

subject to the constraint that all concentrations denote proper molecule fre-
quencies, χD, χA, χR, χB ∈ [0, 1], and that the total number of molecules is
conserved, χD+ χA+ χR+ χB=1. This ode system depends on two parameters,
the vessel capacity N and the packet injection rate rin. In order to eliminate
one parameter, we normalize the packet injection rate: For the normalized normalized in-

jection rateinjection rate ρ(N)=8rin/N2 the above equation system yields the following
parametric fixed point:

χ̂D(ρ) = 12 (1 −√1 − ρ) (14.14a)

χ̂A(ρ) = 14 (3 − χ̂D −√1 + 2ρ + 2 χ̂D + χ̂2D) (14.14b)

χ̂B(ρ) = 12 (1 − χ̂D) (14.14c)

χ̂R(ρ) = 12 (1 − 2 χ̂A − χ̂D) (14.14d)

Figure 14.17 shows the steady-state concentrations of all species with
respect to the normalized packet injection rate ρ. If packets are injected at a
slow pace, they are immediately processed by the Quine’s active molecules
while the vessel’s capacity is equally shared among the active molecules A and
their blueprints B. Consequently, the vast majority of injected packets are
converted to products. For an increasing injection rate, data molecules start
to accumulate, building-up a non-zero steady-state concentration χ̂D. Since

14. self-healing software by dynamic code replication | 277

the vessel’s capacity is shared among all molecules, this partly squeezes out
active molecules and blueprints. On the other hand, the replicating Quine
also displaces packets. In order to calculate the probability of packet loss weprobability of

packet loss recall that the output rate follows the law of mass action (loma): rout=xAxD.
Hence, the steady-state data loss probability p̂l, shown as dashed line in
Figure 14.17, is given as

p̂l(ρ) = 1 − rout
rin
= 1 −

loma7898:
x̂A x̂D
rin

= 1 − 8 χ̂A χ̂D
ρ

(14.15)

The steady-state packet loss rises for increasing data injection rates and reaches
p̂ l ,crit ≈ 0.56 for ρ=1, i.e. for a critical packet injection rate of rin,crit = N2/8.
bifurcation at the critical data injection rate14.4.4

If the data-processing Quine has to digest data molecules that are injected
faster than with the critical rate of rin,crit = N2/8, there is no stable fixed
point anymore where all species are present. For higher rates, the active
molecules and blueprints are completely squeezed out by the packet stream.
As a result, the Quine is not able to replicate anymore and the system ends in
the pathological fixed point χ̂D=1, χ̂A= χ̂R= χ̂B=0.

We expect (and will show in the next section) that the robustness of the
data-processing Quine drops for an increasing injection rate. This essentially
implies that the data-processing Quine must be fed with a low-rate packet
stream (rin ≪ N2/8) or, said differently, the vessel capacity must be dimen-
sioned such that the critical rate never occurs, on which we will focus later in
Section 14.4.6. Since the critical rate is proportional to N2, the system scales
well, and it is feasible to find a reasonable capacity for arbitrary packet rates.

baseline robustness14.4.5

The deterministic fixed point calculated above coincides with the quasi steady-
state of the stochastic model. As we showed for the replicating Quine, the
stochastic process of the data-processing Quine also contains a stochastically
closed subspace, in which the system eventually ends due to the stochastic
dilution flux. In the following, we compare the baseline robustness of the
data-processing Quine to that of the replicating Quine.

Figure 14.18(a) depicts the set transition diagram, i.e. the simplified illus-
tration of the underlying Markov process. An even simpler view is provided
by the Chemical OrganizationTheory (cot), which attributes the system two

278 | part iii — self-healing networking protocols

stochastically closed subspace E

basins of

attraction

{R, B}

{A} {D}

{D, B}

{R}

{A, B} {D, A} {D, R} {A, R}

{D, R, B} {D, A, B} {A, R, B} {D, A, R}
{D, A, R, B}

{B}
{}

(a) Molecule set transitions

{D}

{D, A, R, B}

(b) Lattice of org.

Figure 14.18 Organizations of the data-processing Quine: The system may lose one of the species due to the

stochastic dilution flux. The system is inert for species sets in the stochastically closed subspace, indicated by

the red background in (a). Organizations have a black border; they form a lattice as shown in (b). Note that {}
is not an organization as long as data molecules are continuously injected.

organizations, shown in Figure 14.18(b): one is the quasi steady-state where
all species are present ({D,A,R, B}) whereas the other is the single absorp-
tion steady-state in which the whole vessel only contains data packets ({D}).
Note that the empty set is no organization as long as packets are continuously
injected.

The states in the red area of Figure 14.18(a) span a stochastically closed stochastically

closed subsetsubset E ⊂ ℘(S), from which the quasi steady-state is unreachable (see Sec-
tion 8.1.3). Instead, the system eventually ends in the absorption organization{D}. In E the system became inert, meaning that the Quine is not able to
replicate anymore and the remaining molecules are eventually displaced by
the continuously arriving packets.

Once more, we use Neuts’ method (1981) to calculate the baseline ro- baseline robust-

nessbustness, i.e. the survival time, of the data-processing Quine. More explicitly,
we calculate the mean first-passage time to the stochastically closed set E
when starting in the quasi steady-state.

Figure 14.19 depicts the mean survival time of the data-processing Quine
for different vessel capacities N with respect to the normalized data injec-
tion rate ρ. The lifetime of the Quine without injected packets and without
execution errors or memory alterations is infinite, but its expected lifetime
continuously decreases with an increasing packet injection rate. As suspected

14. self-healing software by dynamic code replication | 279

Figure 14.19 Robustness of the data-
processing Quine: Mean survival time

in years, in a vessel of capacity N, plot-

ted with respect to the normalized data

injection rate ρ = 8rin/N2. The blue

dots indicate the corresponding mean

survival time of the idle-looping repli-

cating Quine for comparison. The life-

time drastically drops around and above

the critical injection rate (red area). The

blue area denotes the packet injection

rate for which the lifetime of the data-

processing Quine is longer than the life-

time of the replicating Quine in a vessel

with the same capacity.

repl. Quine

10−3 10−2 10−1 100 101 102 103

Norm. data injection rate ρ = 8rin/N2 [molecules/s] (log)

10−10

10−8

10−6

10−4

10−2

100

102

104

M
e

a
n

su
rv

iv
a

lt
im

e
E
[T
E][

y
](

lo
g

)

N=10

r i
n

,c
ri

t
=N2
/8

N=20

before based on the deterministic ode description, the critical injection rate
rin=N2/8, above which there is no deterministic fixed point, sharply limits
the survival time for any vessel capacity. That is, for a practical usage the
system has to artificially limit the injection rate or the vessel capacity has to
be dimensioned for the fastest injection rate possible.

resource requirements14.4.6

Compared to a persistent reaction rule, a quinified operation needs more
memory and processor time. In terms of cpu time, each data processing
Quine not only processes the data molecule, but performs seven additional
reaction or transformation steps.

A single instance of a data-processing Quine also needs more memory
than the comparable persistent rule of length l : The active molecule as well as
the blueprint coexists in the reaction vessel, leading to a memory requirement
of 2l+19 symbols. However, becausewe need redundancy in case of a fault, not
a single Quine instance, but a population of Quine replicas must be present.
The total memory needed depends on the level of robustness the application
requires. In a short thought experiment, we demonstrate how to dimension
the vessel capacity for the worst-case scenario. That is, we show how to choose
the vessel capacity for the maximal expected packet injection rate, such that
the packet loss is small and the lifetime of the data-processing Quine is long
enough.

Consider a packet-forwarding engine in which a data-processing Quine’s
job is to send incoming packets to a dedicated next hop, such as for example
the Quine in Figure 14.16. We aim at dimensioning the vessel capacity N for
the case where packets arrive at wire-speed from a Gigabit Ethernet link.

280 | part iii — self-healing networking protocols

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

Execution error probability pe [failed instr./total instr.] (log)

10−8

10−6

10−4

10−2

100

102

104

106
M

e
a

n
su

rv
iv

a
lt

im
e
E
[T
E][

y
](

lo
g

)
N=30

N=20

N=10

no duplication Figure 14.20 Robustness of the data-
processing Quine: Mean survival time

for different normalized data injection

rates ρ=8rin/N2, plotted with respect to

the vessel capacity N in comparison to

the mean survival time of the replicating

Quine.

A Gigabit Ethernet is able to transfer 81 275 packets/s if all of them have
the maximal size of 1500bytes (not considering jumbo frames). The vessel
capacity for which this is the critical rate is N = √8rin,crit = √8 ⋅ 81275 ≈
800molecules. We definitely need more capacity because, according to Fig-
ure 14.19, the survival time of the Quine for the critical rate is only a few
seconds (10−7 years).

Let us consider a ten-fold capacity of N =8000molecules, resulting in
a normalized injection rate of ρ ≈ 0.01 at wire-speed. We cannot calculate
the baseline robustness of such large vessels with reasonable effort anymore
as the state space roughly contains 38000 states. Instead, we approximate the
survival time: Figure 14.20 depicts the survival time of the data-processing
Quine for different packet injection rates. Already for small Ns we observe
that the survival time increases exponentially with the vessel capacity. A
rough linear regression on the lin-log plot (dashed lines) indicates that the
survival time for the normalized injection rate ρ=0.01 reaches the current age survival time

of the universe already for N ≈ 40molecules. For the same injection rate the
packet loss probability is about 0.5% according to the parametric fixed-point
calculation in the previous section. This loss probability is tolerable for most
applications.

Such a worst-case calculation is helpful to optimize the system with
respect to maximum lifetime, minimum packet loss, and minimum capacity
needed. Usually we can carry out this optimization only on the packet loss
vs. capacity axis and ignore the system’s lifetime, because the expected life-
time increases in order of exp(N) and reaches a sufficiently high value soon,
whereas the packet loss only decreases in the order of N2.

14. self-healing software by dynamic code replication | 281

summary14.5

Unlike traditional self-healing engineering approaches, where a central ob-
server monitors and repairs the system, we propose a method based on an
algorithmic chemistry that is intrinsically robust to code perturbations. Our
method is based on a subset of the necessary ingredients for evolution: self-
replication and a limited lifetime for the individuals due to limited resources.
These ingredients yield self-healing code – code that autonomically organizes
its own redundancy.

For an implicit artificial chemistry like Fraglets, the challenge is to find
molecular structures that lead to self-replicating loops — Quines. We will
dedicate Chapter 17 on the search for such structures. As we demonstrated,
once we have found a set of self-replicating molecules, we are able to em-
bed symbolic computation to the loop, letting the Quine perform useful
computation such as symbolic packet processing in networking protocols.

So far, we assumed that all execution errors andmemory bit alterations fi-
nally lead to neutral and harmless Fraglet strings. In reality, the error products
interact with the program. We will delve more into this topic in Chapter 18.

The introduction of the random dilution flux makes some of the design
patterns introduced in Chapter 10 impossible: In a vessel with limited capacity,
some molecules of a population always fall victim to the dilution flux. A non-
zero concentration is not sustainable when the population is not refreshed by
an external or intrinsic process. In such an open system, conservation rules
are void and protocols basing on them, such as Disperser, are not functional
anymore. New rules and patterns to design networking protocols are required.

One such pattern is the data-processingQuine, which allows an arbitrary
symbolic operation to be rendered self-healing. A protocol designer may use
this motif as a generic building block to construct larger chemical programs.
Unfortunately, this turns out to be non-trivial, since uncoupled Quines fight
against each other for existence. In the next chapter, we will delve into this
phenomenon and demonstrate how Quines can be forced to cooperate with
each other.

••

282 | part iii — self-healing networking protocols

chapter1515Competition and Cooperation
of Replicating Code

Competing Quines struggle for existence, but they can be symbiot-
ically linked such that they cooperatively achieve a common task.

We will now discuss
in a little more detail
the Struggle for Existence. 15

The Origin of Species
Charles Darwin

By applying an excessive dilution flux, we created a competitive environ-
ment in which software components have to rewrite themselves contin-

uously. A single Quine does so and this enables it to survive. But protocol
software rarely consists of a single Quine. In this chapter, we study whether
multiple Quines are able to coexist in the same vessel under the selective
pressure imposed by the dilution flux. As expected, they naturally compete
for the limited resource, leading to the extinction of all but one. Only a well-
designed symbiotic strategy yields to the survival of all Quines that belong to
a cooperative set.

Section 15.1 demonstrates that only one out of many uncoupled Quines
survives in a single, well-stirred vessel, but also shows that this trivial outcome
does not hold for the distributed case. Then, in Section 15.2, two topics come
together: We show how to couple Quines such that they cooperate, and, at the
same time, we demonstrate that the previously introduced data-processing
Quine serves as a generic building-block to construct larger programs. Finally,

15. competition and cooperation of replicating code | 283

Figure 15.1 Coexistence time and sur-
vival probability of competing Quines:

The two replicating Quines do not coex-

ist for a long time; the one with a higher

initial concentration most likely prevails.

Top: Mean coexistence time in a vessel

of capacity N = 20 molecules, plotted

with respect to the relative initial concen-

tration of the second Quine. Bottom:

Survival probability of either Quine in

the same vessel.

0.0

0.1

0.2

0.3

0.4

0.5

M
e

a
n

c
o

e
x

.
ti

m
e

o
f

b
o

th
Q

u
in

e
s
[s]

0.0 0.2 0.4 0.6 0.8 1.0

Initial concentration of Quine 2 [molecules/capacity]

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

a
lp

ro
b

.
o

f
a

si
n

g
le

Q
u

in
e

Quine 1

Quine 2

Quine 2

Quine 1

in Section 15.3, we present a first self-healing protocol made of Quines that
allows for a controlled distributed update of self-healing software.

competition of quines15.1
in local and distributed contexts

As we have shown in the previous chapter, the aggressive growth of the Quine
is instrumental for letting it self-heal. However, in a vessel with limited
resources this leads to a very competitive environment where two different
Quine types cannot coexist. In a distributed setting, however, Quines may
find their topological niche in which they are able to survive.

competition in a well-stirred vessel —15.1.1
the winner takes all

When placing multiple replicating Quine species into a common reaction ves-
sel, only one will survive while the others will be literally squeezed out. This is
due to the finding that independently and hyperbolically growing populations
with finite resources lead to the survival of the common (Szathmáry, 1991):survival of

the common The first Quine that reaches a sufficiently high concentration will dominate
the others and lead to their extinction even if their replication rate is higher.

Figure 15.1 illustrates the struggle between two replicating Quines in
the same vessel for different initial concentrations but for a constant total
vessel capacity of N =20molecules. We observe that the robustness of the
Quines heavily depend on their initial concentration – the (initial) allocation
of memory slots for Quine 2 grows linearly from left to right – and that the
non-selective dilution flux does not guarantee fairness among the Quines per

284 | part iii — self-healing networking protocols

t=0 s t=0.2 s

t=0.6 s

t=0.4 s

t=0.8 s

Quine 2

dominates

Quine 1

dominates

coexistence

(a) Toroidal topology (horizontal and vertical wrap-around)

Figure 15.2 The emergence
of islands of dominance: Se-

ries of snapshots over time in

a toroidal topology of 100 ves-

sels. Each vessel has a ca-

pacity of 100 molecules. In

each vessel, two competing

distributed Quines of type 2

start with an equal concen-

tration. In some simulation

trials, we observed the emer-

gence of horizontal or verti-

cal stripes.

t=0 s t=0.2 s

t=0.6 s

t=0.4 s

t=0.8 s

Quine 2

dominates

Quine 1

dominates

coexistence

(b) Grid topology (neither horizontal nor vertical wrap-around)

Figure 15.2 cont.: In a grid

topology (no horizontal or

vertical wrap-around) differ-

ent patterns emerge. We reg-

ularly observed isolated is-

land of either Quine in one of

the four corners of the grid.

se, as one of the Quines is squeezed out by the other within a fraction of a
second.

competition in the network — separated islands 15.1.2
In a distributed setting, the outcome is different: We studied the distributed
Quine type 2 (see Figure 14.13 on page 272) in different network topologies and
found out that the network fosters phase islands, in which different Quines coexistence in

spatially distant

locations
may coexist in spatially distant locations.

Figure 15.2 shows the results of a typical Fraglets simulation run in a
network of 100 vessels arranged in a two-dimensional grid. Each vessel has a
capacity of N =100molecules and is initially populated with an equal quantity
of the two Quines. The two figures show a series of spatial snapshots of the
network over time. Each pixel represents the vessel at the corresponding
coordinates: red and green colors indicate that either Quine 1 or Quine 2
dominates whereas a coexistence of both Quines is represented by white
pixels.

For the first example, we used a toroidal network topology, meaning that
vessels at the border of the grid are connected to the vessels at the opposite
border. Figure 15.2(a) depicts a pattern that we frequently observed in this

15. competition and cooperation of replicating code | 285

Figure 15.3 Competing data-processing Quines:

There are two situations in which data-processing

Quines compete against each other: (a) If sev-

eral Quines process the same packet, a random

one survives. (b) The concentration of Quines

processing different packets is proportional to

the corresponding packet injection rate; a Quine

may die out if its relative packet injection rate is

too small.

D
rin

rout,1

rout,2

Q1

Q2

(a) Same data stream

D1
rin,1 rout,1

rout,2rin,2
D2

Q1

Q2

(b) Different streams

topology: stationary horizontal or vertical stripes of either Quine type. Astripes of iden-

tical Quines vessel inside such a stripe is completely surrounded by vessels hosting the
same Quine type. At the border of the stripe, the two Quines coexist in the
same vessel, because the inflow of either type from opposite directions is
approximately equal.

If we slightly reconfigure the network topology by disabling the wrap-
around connections at the border we observe additional patterns, such as
the one depicted in Figure 15.2(b): One Quine retracts and is able resist thenetwork cor-

ners of iden-

tical Quines
dominance of the other Quine in one of the corners of the network.

Note that in these experiments, we initialized all nodes with the same
amount of either Quine, and therefore we gave both Quines the same chance
to prevail. Once the network only hosts one Quine, the probability that the
network is invaded by another similar Quine is very low. In biology, this is
called the fixation probability, which denotes the probability that a populationfixation

probability of wild-type instances is replaced by a single instance of a mutant (Wright,
1931; Moran, 1958; Nowak, 2006). Hence, once installed, it is very hard to
get rid of the Quine or to replace it with a newer version. In Section 15.3,
we demonstrate how two versions cooperate in order to allow a distributed
software update.

It is already well known that bi-stable systems become stable in a spa-
tial environment (Kapral & Oppo, 1986; Károlyi, Péntek, Scheuring, Tel, &
Toroczkai, 2000) or are able to form more complex organizations (Dittrich
& Banzhaf, 1997). Additionally, there are results from evolutionary graphevolutionary

graph theory theory (Lieberman, Hauert, & Nowak, 2005) indicating that the topology of
the network graph has a strong influence on the selective pressure. A more
detailed analysis of the spatial behavior of Quines is left for future work.

286 | part iii — self-healing networking protocols

competing data-processing quines 15.1.3

We return to the analysis of competition in a well-stirred vessel. The struggle
for existence between different data-processing Quines is behaviorally similar
to the replicating Quines although they need data packets to replicate.

For moderate packet injection rates we distinguish two different scenar-
ios depending on whether or not two Quines process the same packet (see
Figure 15.3): (a) When consuming the same molecular species (for example processing

the same data

stream
by matching the same header tag in Fraglets), the two Quines actually fight
for the same “food” molecule D, which is required for the Quines to replicate.
Due to the law of mass action the Quine that exhibits a larger multiplicity will
react more often with the food, yielding even more offspring. Consequently,
the qualitative outcome is the same as for the simple replicating Quine: sur-
vival of the common. (b) Even if the two Quines are “digesting” distinct food processing

different data

streams
molecules, D1 and D2, respectively, they still live in the same habitat and
fight for the same memory resource. The Quines only coexist if their food
molecules are injected with a rate in the same order of magnitude, which
causes their replication rate to be similar. In fact, the steady-state concentra-
tion of the Quines is proportional to the corresponding food injection rates.
Otherwise, if the injection rates diverge too much, the concentration of the
slower Quine will very likely drop to zero and the Quine becomes extinct.

This competing behavior is problematic, because we would like to com-
pose multiple self-healing Quines, each working on some part of a problem
to solve. As we will show in the next section, this is in fact possible if the
Quines cooperate.

cooperative linkage of quines 15.2

In this section, we introduce four design patterns to couple data-processing
Quines. Cooperating Quines must mutually control their replication rate in Quines must

mutually control

their replication

rate

order to achieve fairness with respect to their expected survival time. Ideally,
we want the survival time to be independent of the packet-injection rate.
In the following, we analyze various coupling methods for data-processing
Quines.

string of quines 15.2.1

Frequently, a computation requires multiple data-processing operations in sequential oper-

ationssequence. Figure 15.4 shows such a scenario for n operations, each using our
data-processing Quine structure. In such a reaction network topology, the
common packet stream generates a symbiotic relationship among the Quines:

15. competition and cooperation of replicating code | 287

Figure 15.4 String of Quines: Mul-

tiple data-processing Quines are in-

directly linked by sequentially pro-

cessing the same data stream.

D1 D2 D3
rin,1 rout,1= rin,2 rout,2= rin,3≈ rin,1 ≈ rin,1

rout,3≈ rin,1

Q1 Q2

Dn
rout,3≈ rin,1

rin,n≈ rin,1

Q3 Qn

Figure 15.5 Hypercycle Quine: Multiple data-processing Quines

are symbiotically linked by mutually letting them generate their

reward to replicate in a cyclic fashion.

2

2

D1

A1

B1

R1

D2

A2

B2

R2

2
2

D3

A3

B3

R3

2

2

D4

A4

B4

R4

2
2

rin,1

rin,2

rin,3

rin,4

rout,1

rout,2

rout,3

rout,4

ThesecondQuine is only able to replicate if the firstQuine generated a product
molecule and replicated in turn. The third Quine only replicates after the
second replicated before. Thus, if the packet injection rate is much lower than
the critical margin of N2/8, the growth rate of all Quines is approximately
equal to the data injection rate.

hypercycle15.2.2

If Quines do not process the same data stream sequentially, we need another
method of symbiotically coupling the Quines. Eigen and Schuster (1979)
proposed a cyclic linkage of reactions as an explanation of self-organization ofcyclic linkage

prebiotic systems in which rna strands and enzymes cooperate. We translate
this idea to the world of Quines in Fraglets: As shown in Figure 15.5, a cycle
of Quines consists of several data-processing Quines, which do not generate
their own replication reward Ri . Instead, each Quine cyclically generates the
reward for another Quine.

The advantage of such a cyclic dependence is that none of the Quines is
able to replicate much faster than the others, which leads to their sustained
coexistence in the reaction vessel. The disadvantage comes from the fact that
an active molecule Ai is consumed when a data packet is processed and is
not immediately available for the next data packet. Thus, on the long run,
Quine i cannot process a data stream faster than twice the data processing
rate of the predecessor Quine. That is, the hypercyclic Quines impose strong

288 | part iii — self-healing networking protocols

D1

A1 B1

Rg
1

Rr
12

2
A2

D2

B2

Rr
2

Rg
2

2

2

As Rs

Bs

Ds

rin,1

rin,2 rout,2

rout,1

rin,srout,s

distribute uniformly
Figure 15.6 Separation of regener-
ation and replication: The two data-

processing Quines only regenerate them-

selves; a replication feed is provided by a

separate supporting Quine on the right.

restrictions on the range of data streams they are able to process as the most
active element is doomed to starve.

data-rate independent replication feed 15.2.3

Themain disadvantage of the hypercylic Quine, starvation of the most active
molecules, arises from the fact that these molecules are produced by one spe-
cific other Quine in the cycle. This dependency can be broken by separating
regeneration from replication: When processing a data packet, the Quine
shall immediately regenerate the consumed active molecule. This maintains
a constant number of active molecules, provided that there is no dilution flux
and no mutation or execution error. To cope with the relatively rare error
events we have to provide a separate stream of replication rewards for the
fraglet; these replication rewards increase the number of active molecules
and blueprints. Because we want all coupled Quines to survive, we have to
guarantee that they all receive their replication rewards with the same rate,
i.e. they are fairly fed.

Figure 15.6 shows such a replication feed pattern. Two Quines process in- replication feed

patterndependent data streams and regenerate themselves individually by producing
a local regeneration reward molecule Rgi for each data molecule processed.
A separate support Quine generates replication rewards Rri and distributes
them uniformly to the involved Quines. The support Quine is self-replicating,
paced by an externally provided stream of trigger molecules. Ideally, its “feed-
ing rate” would be adjusted to the expected error rate. If the error rate cannot
be estimated, the data processing Quines could be reprogrammed in order to
automatically produce this trigger, although the latter method will probably
result in a feeding rate that is higher than needed.

15. competition and cooperation of replicating code | 289

Figure 15.7 Additional replication feed from a separate vessel: The addi-

tional support Quine is not affected by the packet stream. It recovers the

data-processing Quine by continuously expelling the seed consisting of a

blueprint and its active molecule to the outer vessel.

sub-vessel

D1
rin,1 rout,1

Ds

rin,s

rout,s

Q1

Qs

trigger

seed

compartmentation —15.2.4
data-rate independent baseline robustness

Another way to switch-off competition between two individuals is to put
them in different habitats. If two Quines are located in different vessels, each
with separate memory resources, their growth do not affect each other. This is
a simple yet very effective method to separate Quines operating on different
packet streams.

Compartmentation is also helpful to increase the survival time of data-
processing Quines in general. In Section 14.4.5, we realized that the baseline
robustness decreases for increasing packet rates because packets eventually
displace all other molecules. We suggested to increase the vessel capacity,
which shifted the critical packet injection rate towards higher values.

Instead of adding more resources in order to increase the baseline ro-
bustness of the data-processing Quine, we may use the pattern depicted in
Figure 15.7. A supporting Quine, similar to the one seen previously, now lives
in a separate reaction vessel. The supporting Quine is fed by an external trig-trigger

ger, which initiates the replication of the supporting Quine and additionally
generates a seed that is required to bootstrap the data-processing Quine. Theseed

latter Quine lives in a harsh environment subject to an uncontrollable packet
stream, which may cause the death of the Quine. However, the isolated sup-
porting Quine is not affected by the packet stream and eventually replenishes
the A1- and B1-molecules of the data-processing Quine.

If we study the data-processing Quine in the outer vessel of Figure 15.7
with the tools from Chemical OrganizationTheory (cot) we recognize that
all species, except the reward R1, are injected from externally. The reward
molecule itself is produced in a reaction among A1- and D1-molecules. It is
no surprise that the outer reaction vessel has one single organization – the

290 | part iii — self-healing networking protocols

* If the network-

ing software

comprises of

several coop-

erative Quines,

each of them

has its own

version num-

ber and can be

updated sepa-

rately.

steady state in which all molecules are present: {D1, A1, R1, B1}. That is, the
outer vessel does not exhibit an absorption state anymore since it is able to
recover from the loss of every and all species. Consequently, the survival time
of the overall system is equal to the survival time of the supporting Quine
in the inner vessel. Since the supporting Quine is not affected by the packet
stream, its survival time only depends on the trigger molecule injection rate
rin,s and the vessel capacity of the inner vessel Ns. We already quantified the
time to absorption of such a single data-processing Quine in Section 14.4.5.

application case: 15.3
self-healing distributed software updates

The distributed Quine, introduced in Section 14.3, can be used to deploy
software in a network: If we put one instance in a single vessel it quickly
spreads over the whole network. But we also mentioned before that a dis-
tributed Quine is very robust to the invasion of a competitor. Once installed,
distributed software built with this pattern is hardly exchangeable. A network
operator – or in the future, the system itself – often has to install software
updates. We need a method to replace all or certain building blocks of self-
healing software. In this section, we provide amethod to construct distributed,
updatable software, which is still inherently self-healing.

Thereby we revisit three ideas mentioned so far and combine them to
obtain a robust software deployment pattern: First, we assume that all network-
ing software consists of data-processing Quines and is therefore intrinsically
robust to certain code-level perturbations. Second, we use distributed Quines
of type 2, introduced in Section 14.3, which increases the overall robustness
of the software by distributing replicas over the network. Third, all Quines
are tagged with a version number; Quines with a higher number shall replace
Quines with a lower number.* If we manage to unify these three elements
in a single Quine structure, the resulting distributed software autonomically
updates itself: The distributed replication mechanism propagates old and new
software versions while locally interacting old and new Quines destroy the
first and proliferate the latter.

In Section 15.3.1, we present our self-healing Quine variant that performs
some useful function, autonomically disseminates itself over the network,
and updates itself with a coexisting newer version. Then, in Section 15.3.2
we demonstrate the feasibility of this approach with the help of Fraglets
simulation results.

15. competition and cooperation of replicating code | 291

Figure 15.8 Versioned Quine: Multiple ver-

sions of the same Quine compete for the same

data molecule D. Unlike in Figure 15.3(a) (parallel

Quines), their rewards Rvi and blueprints Bvj inter-

act. Rewards eliminate old blueprints but repli-

cate its own or newer blueprints.

Av1

Bv1

D

Rv1

rin

rout,v1

Av2 Rv2

Bv2

rout,v2

∅Version 1

Version 2

a
n

y
c

a
st

eliminate

old version

propagate

new version

a
n

y
c

a
st

a
n

y
c

a
st

a versioned quine15.3.1

Figure 15.8 depicts the reaction network of the versioned Quine. We assume
that multiple versions i of the Quine may coexist in the same vessel for a short
time. They process the same data molecule D but, because of their different
blueprints Bvi , their active variants Avi produce different results.

At first glance this pattern looks like the competing parallel Quines
discussed in Section 15.1 (see Figure 15.3(a) on page 286). We mentioned
that parallel Quines competing for the same “food” molecule inevitably lead
to the extinction of all but one. This is in fact what we are aiming at, but
we want to control which of the Quines is able to survive, namely the most
recent one. Unlike the parallel Quines studied before, the molecules of the
versionedQuine interact. More precisely, the reward Rvi only replicates newer
blueprints Bv j and their active variants Av j (j ≥ i). Otherwise, if a reward
molecule reacts with an older blueprint, the two molecules annihilate each
other. This mechanism provides newer software a selective advantage over
the older version.

fraglets simulation results15.3.2

We implemented the versioned Quine in Fraglets and performed extensive
simulations to study its behavior. A detailed description of the Fraglets imple-
mentation is provided in Section A.2.

One particular topologywe studied inmore detail is the toroidal network
of 100 nodes: a regular, fully connected network where each node has four
neighbors and a capacity of N =100 fraglets. Starting with empty nodes we

292 | part iii — self-healing networking protocols

α=−1

α=0

α=+1

t=0 s t=0.1 s

t=0.3 s

t=0.2 s

t=0.4 s

inject one v1-seed

more v2

more v1

Figure 15.9 Initial spreading of
the versioned Quine: Series of

snapshots over time in a toroidal

topology of 100 nodes for a Fra-

glets simulation of the versioned

Quine. The Quine quickly popu-

lates all vessels in the network if

no software is installed yet.

injected a single Quine of version 1 into one of the nodes. As depicted in
Figure 15.9 the Quine quickly distributes itself over the network. Each image
in the figure shows the mixture of Quine versions in the two-dimensional
network topology. That is, each pixel represents the node at the corresponding
coordinates. We chose a color scheme based on the normalized number of
blueprints α, defined as

α = NBv2 − NBv1

NBv1 + NBv2

(−1 ≤ α ≤ 1) (15.1)

If a node only contains version 1 Quines, the value α is −1, indicated by a
green pixel in Figure 15.9, if it is completely filled with version 2 Quines, α is+1 (red), and if the two Quines are present with equal concentration, α has
the value 0 (white).

Once all vessels were populated by Quine version 1 we flushed an arbi-
trary vessel with version 2 instances by injecting N seeds with the new code.
Figure 15.10 shows how the new Quine populates the network: In a first phase
(t < 1 s), the new Quine spreads to the neighborhood of the source node.
While annihilating version 1 blueprints, the new Quine is diminished by ver-
sion 1 Quines that surge in from the neighbor nodes. In a second phase (t <
7 s), the new Quine spreads over the whole network but still has a very small
concentration compared to the old version. Suddenly, around t ≈ 7 s, a region
distant from the original source node exhibits a substantial concentration
of the new Quine. From this location the new Quine quickly takes over the
network and eventually prevails.

Finally, as a crosscheck, we flushed the same source vessel with version 1
instances once the network only hosted version 2 Quines. As shown in
Figure 15.11, older Quines are not able to displace more recent software.

15. competition and cooperation of replicating code | 293

Figure 15.10 Infection with ver-
sion 2 Quines and their perva-
sion: Series of snapshots over

time in a toroidal topology of

100 nodes for a Fraglets simula-

tion of the versioned Quine. A

newer version is spread but at-

tacked at the same time by the in-

flow of older versions from neigh-

bor vessels. However, eventually

the version 2 Quine prevails.

t=0 s t=1 s

t=3 s

t=2 s

t=4 s

t=5 s t=6 s t=7 s

t=8 s t=9 s

flush with v2-seeds

α=−1

α=0

α=+1

more v2

more v1

The Update Resistance of Large Networks(a)

The versioned Quine behaves like a distributed chemical switch (Ramakrish-
nan & Bhalla, 2008). If a newer version of the same Quine is present with
a certain threshold concentration, the whole network flips to the new soft-
ware. Our experiments revealed that this threshold depends on the size of the
network. The more old-versioned Quines put pressure against the injected
update, the less likely it is that the software update is successful. We showed
before that the update succeeds in a network of 100 nodes when completely
replacing the older versions by new version instances in a single node. How-
ever, already in a network of 400 nodes, the same strategy surprisingly leads
to the extinction of the new software. The new Quines diffuse too fast over
the network and are not able to build-up the critical concentration that is
needed for triggering the transition.

One solution that worked for all (tested) network sizes was to contin-
uously inject the new Quine for a certain period of time with a rate that is
approximately equal to the vessel size (see Figure 15.12). By continuously seed-
ing the new Quine, we help it getting over the critical threshold and forming
a spatially growing topological island of new versions. At the center of the
island, all neighbors are populated with new Quines: the island maintains
itself. At the border, the inflow of old Quine versions is limited due to the
neighborhood to nodes in which the new Quine dominates. Consequently,
the island expands and eventually covers the whole network.

294 | part iii — self-healing networking protocols

t=0 s t=0.2 s

t=0.6 s

t=0.4 s

t=0.8 s

flush with v1-seeds

α=−1

α=0

α=+1

more v2

more v1

Figure 15.11 Infection with ver-
sion 1 Quines has no chance: Se-

ries of snapshots over time in a

toroidal topology of 100 nodes

for a Fraglets simulation of the

versioned Quine. Even if a ves-

sel is completely filled with an

old version, the old Quine has no

chance to prevail.

t=0 s t=2 s

t=6 s

t=4 s

t=8 s

t=10 s t=12 s t=14 s α=−1

α=0

α=+1

more v2

more v1

v2-seed injection at rate 100 molecules/s

Figure 15.12 Continuous in-
jection of version 2 Quines for
a certain time: Series of snap-

shots over time in a toroidal

topology of 400 nodes with a ca-

pacity of 100 molecules for a Fra-

glets simulation of the versioned

Quine. A newer version is in-

jected in an arbitrary vessel at

rate 100 molecules/s. An island

of newer version Quines builds-

up and eventually populates the

whole network.

summary 15.4

In the previous chapter, we demonstrated the high robustness of Quines to
faults on the execution level, which is the consequence of natural selection.
However in this chapter, we highlighted that code may become too robust:
once it populates thememory, it can barely be replaced. Furthermore, different
software elements often struggle for the samememory resources and compete
against each other rather than collaborate. A similar behavior was observed
and became famous in Core War (Dewdney, 1984), where hostile programs
engage in a battle of memory bits.

Thus, it seems that the adoption of natural mechanisms comes along
with natural forces, which we have to tame. We proposed several methods
how selfish code can be turned into symbiotic software that still exhibits the
desired high level of robustness.

••

15. competition and cooperation of replicating code | 295

chapter

1616A Self-Healing
Multipath Routing Protocol

Design, implementation, and analysis of a chemical routing pro-
tocol based on distributed self-replicating Quines.

Ceux qui passent toujours
par les mêmes chemins,
voyent ordinairement toujours
les mêmes objets;
il est rare qu’à force
de suivre différentes routes,
on ne découvre
de nouveaux sujets
dignes de nos attentions
les plus sérieuses. 16

Expériences de physique
Pierre Polinière

Those who always
take the same paths,
usually see
the same objects;
it is rare that upon
following different routes,
one won’t discover
new topics
worthy of our
most serious attention.

Expériences de physique
Pierre Polinière

This chapter demonstrates how self-replicatingQuines can be used
as building blocks to synthesize a more complex networking protocol – a

self-healing multipath routing protocol. Our approach relies on the concen-
tration of routing table entries to stochastically decide which path a packet
should take through the network. A reinforcement mechanism rewards suc-
cessful forwarding rules that compete against each other for delivering data
packets over alternative paths. This application case demonstrates the design
principles of chemical networking protocols once more. In order to make the

16. a self-healing multipath routing protocol | 297

Figure 16.1 Network topology for multipath routing pro-
tocol simulations: The networkG = {V ,E} consists of 10

nodes V = {v1 , . . . , v10} and two services: Service za is an-

nounced by nodes v1 and v7 , whereas service zb is only hosted

by node v5. Our simulations send a data stream from node v10

to service za. The optimal path is (v10, v2, v1). If link (v2, v10) is

dropped the best alternative path to the destination service is

(v10, v4, v9, v7).

v1 v2

v3

v4 v5

v6

v7 v8

v9

v10

za zb

zadestination

source

protocol robust to execution and mutation errors, we combine the design mo-
tifs presented in the second part (Chapter 10) with the cooperative strategies
for Quines in this part (Chapter 15).

This chapter is structured as follows: Section 16.1 first describes the
problem of packet routing. In Section 16.2, we provide a short overview of our
chemical and self-healing multipath routing approach. Sections 16.3 to 16.5
then explore the protocol in more detail. In Section 16.6, we simulate the
protocol in omnet++ and discuss the results. Finally, in Section 16.7 we
assess our protocol and relate it to existing stochastic routing approaches.

problem description16.1

The purpose of a routing protocol is to setup forwarding state in network
nodes such that data packets can be forwarded to their destination. At the
same time, the protocol should maximize throughput and minimize packet
loss. Here we additionally require the routing software to be able to tolerate
disruptions in its own code base, meaning that the protocol continues to
operate and heals itself from any molecule deletion attack as soon as possible.
Once more, we assume that spontaneous memory alterations or execution
errors lead to neutral fraglets that do not interact with the protocol software.

We assess the protocol with the help of omnet++ simulations of the
network topology depicted in Figure 16.1, which consists of 10 nodes that are
connected by bidirectional links. Selected nodes offer services, i.e. possibleservices

destinations for data packets. Each service, as well as each node, has a globally
unique identifier, i.e. a string representing the address of the node or service.addressing

Service addresses may differ from the addresses of the hosting nodes. This
allows a given service to be replicated and offered at different locations. In
this case, data packets destined to the service can be sent to any node that
announces the service. For example, service za is offered by nodes v1 and
v7. This scheme implements a data centric network model (Krishnamachari,

298 | part iii — self-healing networking protocols

vi vj

nucleus nucleus

Riboquine

Fwd. Quine

pkt

1. horizontal

information

transfer

2. expression

routing table entries

3. forwarding

"metabolism"

ACK

pktdata packet

"cell"

ACK

Figure 16.2 Cell metaphor
for the multipath routing
protocol: Each node (=cell)

contains two vessels: the

main vessel in which the for-

warding logic sends packets

to the next hop and the “nu-

cleus”, which host the rout-

ing table entries (RTE). The

RTEs are exchanged among

the nuclei in a diffusion-like

process. The “Riboquine”

“expresses” RTEs, i.e. it uses

them as a blueprint for creat-

ing active forwarding rules

(Quines).

Estrin, & Wicker, 2002) where packets for a given destination service are
forwarded to any (preferentially to the closest) node that hosts the service. In
this context, a routing protocol is responsible for announcing the availability
of services in nodes and to disseminate this information over the network.

Formally, we extend the network graph G = {V ,E} (see Section 5.1.1)
by a set of services Z = {za, zb} and a set of associations between services
and nodes (bindings) B={(za, v1) , (za, v7) , (zb, v5)}. We define a function bindings

bnd∶ B → {0, 1}, which yields 1 if the service is bound to the node, or 0
otherwise. For example, bnd(za, v7)=1.

protocol overview 16.2

As depicted in Figure 16.2, the design of our protocol is inspired by the struc-
ture of an eukaryotic cell (Martin & Russell, 2003) featuring a nucleus. That
is, each network node has two nested reaction vessels: The outer vessel serves
as forwarding engine that sends incoming data packets to one of the neighbor
nodes. A second vessel – the nucleus – contains the “genome”, which in our nucleus

case accumulates information about the topology of the network in form of
Routing Table Entries (rtes). Linking both vessels, there is the “Riboquine”, Riboquine

inspired by ribosomes in cells. The Riboquine is responsible for “expressing”
the nucleus’ routing table entries as active forwarding rules and expelling
them to the main vessel.

The first task of our proactive routing protocol is to gather information gather informa-

tion about the

network topol-

ogy

about the network topology: Each node has to obtain knowledge about which
service can be reached over which neighbor node(s) as for traditional distance
vector routing protocols. Unlike in traditional routing protocols, we do not

16. a self-healing multipath routing protocol | 299

aim at immediately find the best path to a service; instead, the transmission
paths are later reinforced by the forwarding engine.

Path reinforcement is based on a competition and reward mechanismpath rein-

forcement for forwarding rules. Active fraglets represent forwarding rules, i.e. tuples
(destination service, next hop). A forwarding rule reacts with a passive data
packet destined to a given service and sends it to the next hop. The stochas-
tic reaction algorithm makes sure that one of the competing rules for the
same destination is picked at random but in proportion to their multiplicity.
When a packet finally reaches the destination service, an acknowledgment
(ack) is sent back along the reverse path. This ack packet reacts with all
corresponding rules that were responsible for forwarding the data packet in
the first place and triggers their replication. Thus, whenever a forwarding
rule contributed to the successful delivery of a packet, it is replicated, i.e. its
multiplicity increases, and hence the probability of being chosen for a next
forwarding task rises.

This reward mechanism results in the most efficient path being rein-
forced; less efficient paths quickly vanish due to the dilution flux. This means
that if there is a preferential path to a certain destination the corresponding
forwarding rules may completely displace rules for a suboptimal alternative
path. This would be a problem if the forwarding rules would be the only
place where we keep topological information about the network’s structure.
However, this information is also kept inside the nucleus by routing table
entries, which are effectively shielded from the fierce competition of the path
optimization process. The role of the nucleus is therefore to cultivate a varietycultivate a

variety of alter-

native paths
of alternative paths and to continuously inject the entries to the forwarding
engine. Even if rules for suboptimal paths are squeezed out when another
path suddenly becomes attractive, the nucleus maintains the blueprints of
the rules and is able to re-instantiate them later. This is an application of the
compartmentation strategy of cooperation, as introduced in Section 15.2.4.

The remaining chapter is structured as follows: In Section 16.3, we first
show how routing information is disseminated among the nuclei to build
up a multiset of routing table entries in each node. Then, in Section 16.4,
we discuss the Riboquine before we analyze the self-optimizing forwarding
engine in Section 16.5. In Section 16.6, we present and discuss our simulation
results. Finally, in Section 16.7, we assess our chemical self-healing routing
protocol and relate it to existing stochastic routing protocol approaches.

300 | part iii — self-healing networking protocols

za

v9 v7 v8 v9

nucleusnucleus nucleus nucleus

R7 R8C7,8C7,9 C8,7 C8,9

T7 T8

Q7 Q8

broadcast broadcast

inject at

rate rd

inject at

rate rd

inject at

rate rr

Figure 16.3 Reaction network to disseminate routing table entries: Each service injects routing table entries

R with rate rr to the nucleus of the hosting node. Periodically injected (rate rt) trigger molecules T invoke the

Quine Q, which broadcasts a fetch-molecule C to its neighbors. There, it reacts with a random routing table

entry and fetches a copy of it.

dissemination of routing table entries 16.3

In the chemical model, it is natural to represent a routing table as a multi- routing table

set of molecules. Each routing table entry (=molecule instance) contains a
tuple (zm , path(zm)), where path(zm) is a list of nodes along a path to the routing path

destination service. In order to keep a high variety of alternative paths to the
same destination, the dissemination protocol periodically obtains copies of
routing table entries from all neighbors and at the same time distributes its
own software.

Figure 16.3 shows the resulting distributed reaction network for a part
of our topology. The dissemination protocol is formally described by the
following reactions for each node v i ∈ V (a verbose description follows
below):

Injection of service announcements:

∅ rr�→ Ri , j ∀{z j ∈ Z ∣ bnd(z j , v i) = 1} (16.1a)

Injection of distribution triggers:

∅ rt�→ Ti (16.1b)

16. a self-healing multipath routing protocol | 301

Broadcast of a fetch-entry molecule:

Ti +QAi �→ QRi +∑
v j∈Ni

C j,i (16.1c)

Distributed replication of the Quine:

QRi +QBi �→ QAi +QBi +∑
v j∈Ni

(QA j +QB j) (16.1d)

Fetching a random remote routing table entry:

Ci , j + Ti �→ Ti + T j (16.1e)

Let us discuss the five reactions in more detail: (16.1a) Each service peri-
odically injects routing table entries into its host’s nucleus. For example, in the
topology depicted in Figure 16.1, service za injects such service announcementservice an-

nouncement fraglets with rate rr into the nuclei of nodes v1 and v7; in particular, these are
the fraglets v1[RTE za] and v7[RTE za], respectively.

The dissemination protocol works similar to the first design variant of
Disperser in a network with unknown topology (see Section 10.4.1) where
we collected information about the neighborhood by using broadcast echo
requests. Here, we aim at receiving routing table entries from all neighbors at
a given rate, and we use a distributed Quine in order to make the protocol
self-healing: The data-processing Quine Qi consists of three molecules: the
active molecule QAi , the replication reward QRi , and the blueprint QBi (see
also Section 14.4).

(16.1b) A trigger fraglet Ti injected at rate rt invokes the replication of
the Quine. (16.1d) We use the strategy presented in Section 14.3 to distribute
a Quine in the network: Rather than creating two copies locally, one of them
is broadcasted to the neighbors. Like this, a new node containing no software
is automatically bootstrapped by its neighbors. (16.1c) At the same time, thebootstrap

Quine broadcasts an active fraglet to its neighbors v j ∈ Ni . (16.1e) There, this
active fraglet reacts with a random routing table entry and sends a copy back
to the originating node v i after it appended the neighbor’s node identifier v j .
The following reaction trace illustrates a simplified version of this last reaction
(16.1e) and the symbolic operation that is applied to the routing table entry:

302 | part iii — self-healing networking protocols

v j[matchs RTE snode _ send v i RTE] + v j[RTE za]�→ v j[RTE za] + v j[snode _ send v i RTE za]

v j[snode _ send v i RTE za]�→ v j[send v i RTE za v j]�→ v i[RTE za v j]

Reaction (16.1e) additionally checks for routing loops. That is, node v i drops avoid routing

loopsthe routing table entry (zm , path(zm)) if v i is already part of path(zm).
The last line illustrates that node v i has collected an RTE-entry, which

states that service za is reachable via node v j . Multiple RTE-entries will accu-
mulate in the nucleus and will be subject to a dilution flux: This eventually dilution flux

removes entries for services that no longer exist.
Note that the routing table entries are passive molecules, i.e. they cannot

perform actions themselves. The next task for our protocol is to generate
active forwarding rules based on these passive entries.

expression of routing table entries 16.4

We again use a Quine to “express” the collected passive routing table entries
and to expel their active version to the outer vessel where they constitute
the forwarding algorithm. We call this Quine the Riboquine in analogy to Riboquine

the ribosomes in eukaryotic cells that translate genetic information (mrna)
into proteins (Lafontaine & Tollervey, 2001). The Riboquine is triggered
periodically with rate re. The Riboquine also distributes itself to the neighbor
nodes.

Unlike in biological cells where ribosomes are located in the rough
endoplasmic reticulum within the cytoplasm, our Riboquine is located in
the nucleus. This location is important because it protects the molecules
involved in the dissemination and expression of routing table entries from
the competition for resources in the outer vessel, as we will see later. Note
that in steady-state, and if there are no data packets to be forwarded in the
outer vessel, the concentration of forwarding rules is proportional to the
concentration of the corresponding routing table entries in the nucleus.

The Riboquine generates two different kinds of forwarding rules: one
for the case where the target service is locally present and another rule if the
packet has to be forwarded to a neighbor node. Technically, the first case local delivery

is recognized by the fact that the corresponding RTE-fraglet is of length two,
for example [RTE za] for a local service za, for which the Riboquine installs

16. a self-healing multipath routing protocol | 303

a local delivery rule [match sa deliver]. For the other case, if the routingforwarding

table entry is longer than two symbols (e.g. [RTE za v1 v2]), the Riboquine
produces a forwarding rule of the type [match za send v2 za]. The exact
structure and operation of the forwarding rules will be discussed in the next
section.

forwarding path reinforcement16.5

As we have shown in Section 7.1, a natural way to implement a forwarding
engine in Fraglets is to use active molecules ([match za send ...]) as for-
warding rules: A data packet of the form [za ...] will react with such a rule,
leading to its transmission to the corresponding next hop. The forwarding
state in node v10 could for example look as follows:

v10[match za send v2 za]60
v10[match za send v4 za]20
v10[match zb send v4 zb]40

In this example, there are two competing rules for a data packet destined to
service za. According to the law of mass action, the reaction probability is
proportional to the concentration of the reaction rules. In our example, 75%
of the packets to za will be sent to neighbor v2 while 25% travel via v4.

A forwarding rule is consumed when it is used to send a data packet.
The rate of replenishment by the Riboquine is much smaller than the rate at
which data packets arrive. Therefore, we need a mechanism that regulates
the concentration of forwarding rules by selectively replicating those that are
performing well.

reinforcement of the optimal path16.5.1
by self-replicating forwarding rules
Instead of producing simple forwarding rules, the Riboquine actually ex-
presses forwarding Quines, i.e. packet processing Quines that replicate andforwarding

Quine are able to maintain a certain concentration. But unlike the traditional data-
processing Quine (see Section 14.4), which generates its replication reward
immediately, the replication reward is generated by the acknowledgment
packet that is received upon the successful delivery of a data packet.

That is, as sketched in Figure 16.4, we install a stream of feedback fraglets
that reward those rules which participated in the successful delivery of datareward

packets. Because the reward has to replicate all forwarding Quines along the

304 | part iii — self-healing networking protocols

v10 v2 v1

za

data

injected

at source

ACKACK

data data

ACK

data

delivered

to service

((D10) ,R10) (((D10) ,R10) ,R2)

((R10) ,R2)(R10)
2

2

D10

A10

B10

R10

2

2

2

2

R2 R1

B1B2

A2

D2 D1

A1

Figure 16.4 Reaction network of a single forwarding path: A chain of Quines sends a data packet over the

path (v10, v2, v1) to the destination service za. On the forward path, each Quine attaches its own reward Ri to

the data packet. The Quine in the destination node replicates itself and sends back the accumulated ACKs us-

ing source routing. On the reverse path, each reward Ri replicates the Quine responsible for the successful de-

livery of the data packet.

path, we construct the reverse route by appending the identifier of each node
along the packet’s journey to the data packet.

At the end of the forwarding chain, a delivery Quine creates an acknowl-
edgment packet and embeds the collected rewards for all forwarding Quines
along the packet’s path. This ack-fraglet traverses the path in reverse order
and, by successively delivering the rewards, it triggers the replication of all
those Quines that were responsible in the successful delivery of the packet.
Consequently, these Quines increase their relative concentration with respect
to other forwarding Quines in the same node, resulting in a higher probability
that a packet to the same destination will take the same path again.

formal convergence proof 16.5.2

This scheme leads to a perfect packet balance among two paths in a situation
depicted in Figure 16.5. If the source node’s reaction vessel is saturated, its
molecules either belong toQuine 1 or 2, as othermolecules have been squeezed
out. Let us denote the relative concentrations of the two Quines by xsrc,1 and
xsrc,2, respectively, satisfying xsrc,1 + xsrc,2 =1. Since replication is triggered
by received acknowledgments, these concentrations are

xsrc,1 = r′1
r′1 + r′2 (16.2a)

xsrc,2 = r′2
r′1 + r′2 (16.2b)

16. a self-healing multipath routing protocol | 305

Figure 16.5 Competition
among two forward-
ing Quines: The Quines

replicate with a rate that

is equal to the rate of

received ACKs. Conse-

quently, the “fitness”

of a path is reflected by

the concentration of

the Quines. Because to

the law of mass action

scheduling, the transmis-

sion rate adapts to the

available bandwidth.

nsrc ndest

Path p1 (bw:∞)

Path p2 (bw: b = 40 pkt/s)
Qsrc,2

Qsrc,1
Qdest

Ddest

v1

v2

v Dsrc

v′1

v′2

where r′i is the rate of acknowledgments received over path p i .
Let us assume that the bandwidth of p1 is infinite whereas p2 drops

packets exceeding b. We examine the overload situation where the total
rate r > 2b. Consequently, the rate of acknowledgments is r′1 = r1 and r′2 =
min(r2, b). Due to the law of mass action, the fraction of packets sent over
p1 is proportional to the concentration of Quine 1:

r1 = xsrc,1 ⋅ r = r1
r1 +min(r2, b) ⋅ r (16.3)

Hence,

r1 = r − b (16.4a)
r2 = r − r1 = b (16.4b)

Quine 2 reduced its concentration so as to only forward packets up to the
bandwidth limitation of path p2, as was to be proved. ◻
results16.6

This section illustrates how our protocol responds to topological changes in
the network and how it responds to link delay and packet loss as well as to
code deletion attacks. We will always use the network topology depicted in
Figure 16.1, for which we perform omnet++ simulations. We study the
impact of simulated perturbations on a data stream from a source in node
v10 to the destination service za . The vessel capacity of all nuclei is set to
500molecules, whereas the outer vessels, which host the forwarding Quines,
have a capacity of 1000molecules.

306 | part iii — self-healing networking protocols

300 400 500 600 700 800
Time [s]

0.00

0.05

0.10

0.15

0.20
C

o
n

c
e

n
tr

a
ti

o
n

v10 added neighbor v2 removed

via v2

via v4

via v2

via v4

numerical ODE integration

OMNeT++ simulation

Figure 16.6 Slow diffusion of routing
table entries: Concentration (relative

number) of routing table entries in the

nucleus of source node v10 for service za

(see topology in Figure 16.1). The vessel

capacity of the nucleus is 500 molecules

and routing table entries are exchanged

once a second. The fluctuating curves

were obtained from an omnet++ simu-

lation whereas the dashed curves from

numerically integrating the ODEs of the

reaction network. At time t = 300 s, the

source node is added to the network. At

time t=500 s, its neighbor v2 is removed.

First, in Section 16.6.1, we examine the speed of the diffusion process
of routing table entries. In Section 16.6.2, we then demonstrate that after a
link outage, the data stream is automatically deviated over an alternative link.
In Section 16.6.3, we show that packets are preferably sent over links without
packet loss with little impact on the data stream itself. Section 16.6.4 reveals
a rather counter-intuitive phenomenon: delayed paths seem to have a small
benefit compared to ideal ones. Finally, in Section 16.6.5 we highlight the
robustness of the protocol software against code and data deletion attacks.

diffusion of routing table entries 16.6.1

We simulated the dissemination of routing table entries in omnet++ and
complemented our measurements with expectations obtained by numerically
integrating the odes derived from the reactions (16.1a)–(16.1e). Figure 16.6
shows the concentration of routing table entries in the source node v10 for
service za. The source node joins the network at time t=300 s, its neighbor v2
leaves it at time t=500 s. After v10 joined, the number of routing table entries
for service za starts to rise as a consequence of the broadcasted fetch-fraglets.
Because of the limited vessel capacity and the resulting dilution flux, the entry
distribution reaches a steady state in which there are more entries received
from neighbor v2 than from v4. After neighbor v2 disconnected at time t=
500 s, the multiplicity of routing table entries slowly adapts to favor the link
via the remaining neighbor v4.

As shown, the routing table only slowly adapts to topological changes.
For instance, it takes about 300 s to forget about link (v10, v2) after node v2 has

16. a self-healing multipath routing protocol | 307

Figure 16.7 Forwarding performance
with link outage: OMNeT++ simula-

tion of the multipath routing proto-

col. Data packets for destination ser-

vice za are injected to source node v10

at rate 100 pkt/s (see topology in Fig-

ure 16.1). At time t= 100 s, data transmis-

sion starts, and the packets are mainly

sent over the shortest path via neigh-

bor v2. The link to node v2 is dropped

at time t = 150 s for 50 s. All mea-

surements were collected in node v10:

Fwd. Rule Conc.: Relative number of for-

warding rules to either neighbor v2 or

v4. Tx Rate: Rate of data packets trans-

mitted to either neighbor. Pkt. Loss: Per-

centage of packets lost between source

node v10 and destination service za.

Av. Delay: Average packet delay from

source to destination.

50 100 150 200 250 300 350
Time [s]

0
2
4
6
8

10
12
14

A
v.

D
e

la
y
[m

s]

0

20

40

60

80

100

P
k

t.
L

o
ss
[%
]

0

20

40

60

80

100

T
x

R
a

te
[p

k
t/s
]

0.0

0.2

0.4

0.6

0.8

1.0

F
w

d
.

R
u

le
C

o
n

c.

start pkt. inj. link (v2, v10) dropped

via v2

via v4

via v2

via v4

min.

been switched off. But remember that we are only interested in the diversity of
alternative paths. We expect the reinforcement algorithm in the forwarding
engine to react faster to topological changes, and demonstrate this in the
remainder of this section.

adaption to topological changes16.6.2

The most typical topological change in a network is the temporary outage
of a link or node. Here we simulate an outage of link (v2, v10). Apart from
this disruption, all links are ideal: they neither lose packets nor deliver them
deferred. The results are summarized in Figure 16.7:

Before t =100 s, as depicted in the top subfigure, the concentration of
forwarding rules reflects the concentration of the corresponding routing table
entries in the nucleus, which currently favors the shorter path over neighbor
v2. At time t=100 s, we start injecting data packets with a rate of 100pkt/s.
Consequently, as shown in the subfigure just below, most of the traffic is sent

308 | part iii — self-healing networking protocols

via v2 and the forwarding rule is able to replicate faster than the competing
rule, which sends packets via v4.

At time t=150 s, the link (v2, v10) is disconnected. In the source node
there is still a stock of rules sending packets via v2, but they don’t receive
acknowledgments anymore and are not able to replicate; the packet loss
tentatively rises to 80% (see the third subfigure in Figure 16.7). The dilution
of these rules is to the credit of rules that send packets via v4. They are able
to gain concentration and are more likely to be chosen for packet forwarding
in turn. Hence, the data stream is redirected over the alternative link.

Later, at time t=200 s, we reconnect link (v2, v10). The forwardingQuine
over v2 only has a small advantage over its competitor. This is because the
transmission paths over both neighbors exhibit a similar packet loss rate and
end-to-end delay. In other words, the system only shows a small attraction
towards the optimal path.

As noted before, chemical reactions afflict packets with a delay, which is
inversely proportional to the number of forwarding rules. In the bottom of
Figure 16.7 this is clearly visible. The higher the overall number of forwarding
rules the shorter is the delay. The minimal end-to-end delay in our setup
is 6ms: In the optimal case, a vessel’s capacity of 1000 molecules is shared
between blueprints and forwarding rules for the same destination. That is,
the maximum number of rules is 500, yielding a delay of 2ms per vessel. The
shortest path from source node v10 to destination service za traverses three
vessels: v10, v2, and v1. Thus, the average overall end-to-end delay cannot be
shorter than 6ms.

packet loss: strong attraction of the optimal path 16.6.3

Next, we examine the situation where the link (v4, v10) exhibits a packet loss
probability of 10% while the remaining network is still ideal. In this case, the
optimal path exhibits a stronger attraction. Figure 16.8 shows the detailed
results (also compare to Figure 16.7):

After we start to inject data packet at time t = 100 s, the forwarding
rules over the ideal link receive all acks and therefore “win the competition”,
meaning that rules over v4 become extinct. In other words: there is no
alternative forwarding rule when the primary link goes down at t = 150 s.
In the next 20 s, packets are only forwarded by the few forwarding Quines
re-generated by the Riboquine. The remaining data packets are accumulated
in the vessel unless the acks received from v4 replicate the alternative Quine
in sufficient quantity. After this obstacle is overcome, the alternative rule
quickly becomes stronger, because there is no competition anymore. The long
response time of the alternative rule can be reduced by increasing the rate

16. a self-healing multipath routing protocol | 309

Figure 16.8 Forwarding performance
with link outage and packet loss: OM-

NeT++ simulation of the multipath

routing protocol. Data packets for

destination service za are injected to

source node v10 at rate 100 pkt/s (see

topology in Figure 16.1). The packet

loss probability of link (v4, v10) is 10 %.

At time t = 100 s, data transmis-

sion starts, and the packets are mainly

sent over the shortest path via neigh-

bor v2. The link to node v2 is dropped

at time t = 150 s for 50 s. All mea-

surements were collected in node v10:

Fwd. Rule Conc.: Relative number of for-

warding rules to either neighbor v2 or

v4. Additionally, the concentration of

data packets waiting for transmission is

plotted with a dashed curve. Tx Rate:
Rate of data packets transmitted to ei-

ther neighbor. Pkt. Loss: Percentage

of packets lost between source node

v10 and destination service za. Av. De-
lay: Average packet delay from source

to destination.

50 100 150 200 250 300 350
Time [s]

0
2
4
6
8

10
12
14

A
v.

D
e

la
y
[m

s]

0

20

40

60

80

100

P
k

t.
L

o
ss
[%
]

0

20

40

60

80

100

T
x

R
a

te
[p

k
t/s
]

0.0

0.2

0.4

0.6

0.8

1.0

F
w

d
.

R
u

le
C

o
n

c.

start pkt. inj. link (v2, v10) dropped

via v2

via v4

via v2

via v4

min.

1.6 s

stalled packets

re, at which the Riboquine expresses routing table entries. Once more, this
highlights the importance of the separate nucleus, which maintains diversity
in alternative paths despite the violent dynamics of the outer vessel. Finally, at
time t=200 s, when we reconnected link (v2, v10), the loss-less path quickly
outperforms the alternative path over v4 as expected. A direct comparison
of Figure 16.8 to Figure 16.7 shows that the attraction of the optimal path is
much stronger if the two paths exhibit a different packet loss rate.

delay: weak attraction of the optimal path16.6.4

Finally, we examine the behavior of the protocol when links deliver packets
deferred. We again start with an ideal network, but link (v4, v10) afflicts
traversing packets with a delay of 1 s. A simulation trace of this scenario is
shown in Figure 16.9.

After the optimal link is dropped at time t =150 s, all rules over the al-
ternative but delayed path are quickly consumed. It lasts one second until

310 | part iii — self-healing networking protocols

*Remember that

data packets in

a reaction ves-

sel are also sub-

ject to dilution,

since they have

to wait a short

time before be-

ing picked up

by a forwarding

rule.

50 100 150 200 250 300 350
Time [s]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

A
v.

D
e

la
y
[s]

0

20

40

60

80

100

P
k

t.
L

o
ss
[%
]

0
20
40
60
80

100
120
140

T
x

R
a

te
[p

k
t/s
]

0.0

0.2

0.4

0.6

0.8

1.0
F

w
d

.
R

u
le

C
o

n
c.

start pkt. inj. link (v2, v10) dropped

via v2

via v4

via v2

via v4

stalled packets
Figure 16.9 Forwarding performance
with link outage and delay: OMNeT++

simulation of the multipath routing pro-

tocol. Data packets for destination ser-

vice za are injected into source node v10

at rate 100 pkt/s (see topology in Fig-

ure 16.1). The delay of link (v4, v10) is

1 s. At time t = 100 s, data transmis-

sion starts, and the packets are mainly

sent over the shortest path via neigh-

bor v2. The link to node v2 is dropped

at time t = 150 s for 50 s. All mea-

surements were collected in node v10:

Fwd. Rule Conc.: Relative number of for-

warding rules to either neighbor v2 or

v4. Additionally, the concentration of

data packets waiting for transmission is

plotted with a dashed curve. Tx Rate:
Rate of data packets transmitted to ei-

ther neighbor. Pkt. Loss: Percentage

of packets lost between source node

v10 and destination service za. Av. De-
lay: Average packet delay from source

to destination.

the replication rewards return. Consequently, the injected data packets ac-
cumulate as shown in the top subfigure. After the optimal link (v2, v10) is
reconnected at time t=200 s, surprisingly, re-adaption is much slower com-
pared to the scenario without delays (compare to Figure 16.7). A delayed path
seems to have a competitive advantage compared to an ideal one:

Even if the round-trip time is longer over a delayed path, the rate at
which the acks return is the same. After the initial round-trip time, the
forwarding Quine replicates with the same rate as its competitor. Even if the
latter had a head start in gaining weight, the force to displace other molecules
is the same for both Quines. Additionally, the buffering capacity of a link
rises with its delay: more packets are “on the wire” at the same time, and these
packets are not subject to the dilution flux of any reaction vessel.* If a data
stream is able to “store” packets in the non-diluted environment of a delayed
link, it has a small competitive advantage. This explains why the reaction
network does not react to delays as intuitively suggested.

16. a self-healing multipath routing protocol | 311

The reason that the path over the ideal link finally wins the competition is
due to the fact that in our topology, the optimal path traverses less nodes: The
system is more sensitive to the number of hops than to the actual round-trip
time.

self-healing aspects16.6.5

The design of our routing and forwarding protocol makes rigorous use of
Quines. In order to let them cooperate, we applied the following strategies:

In the nucleus, we foster a protected environment in which every nodeprotected en-

vironment is able to control its net production rate; there is no uncontrolled inflow
of molecules. The reference clocks, generated by the injection rates of the
trigger molecules (rr and re), control the rate at which routing table entries
are imported from neighbors and therefore the growth rate of the molecules
in the nucleus; the Riboquine expels its products to the main vessel. Thus
the dynamic behavior of the nucleus is predictable and independent of the
forwarding traffic, and since all the code in the nucleus is made of Quines,
which are replicated with the same rate, the whole dissemination and expres-
sion process is robust to the loss of any of its molecules. The nucleus may
even lose all molecules at once, in which case the neighbor nodes eventually
regenerate the protocol software by the distributed replication process.

The Quines in the forwarding engine are not able to reproduce them-
selves immediately, because the required reward is deferred by the acknowl-
edgment mechanism. The forwarding Quine may therefore become extinct,
for example if data or ack packets are lost. However, this extinction of code
is desired, because it leads to the reinforcement mechanism. As a backup
strategy, the Riboquine periodically repopulates the forwarding engine.

Figure 16.10 shows a simulation trace where molecules suffer purge at-purge attacks

tacks. At time t=150 s, we removed all molecules from both reaction vessels
in the observed source node v10 while a data packet stream is flowing through
the vessel. Immediately after the attack, the nucleus is bootstrapped by the
neighbors, it quickly learns the network topology from the neighbors and gen-
erates new forwarding rules. Even though the concentration drop is clearly
visible in Figure 16.10, its effect to the forwarding rate and packet loss is barely
noticeable whereas the delay temporally increases. During a longer lasting at-
tack, data packets may accumulate due to the reduced number of forwarding
rules and the end-to-end delay will increase even more. However, as soon as
the attack is over, the accumulated data packets will temporarily increase the
reaction rate of the forwarding Quine due to the law of mass action, which
will compensate for the reduced transmission rate during the attack.

312 | part iii — self-healing networking protocols

50 100 150 200 250 300 350
Time [s]

0

50

100

150

200

250

300

A
v.

D
e

la
y
[m

s]

0

2

4

6

8

10

P
k

t.
L

o
ss
[%
]

0
20
40
60
80

100
120
140

T
x

R
a

te
[p

k
t/s
]

0.0

0.2

0.4

0.6

0.8

1.0
F

w
d

.
R

u
le

C
o

n
c.

attack in node:

via v2

via v4

via v2

v10 v2 v4

via v4

Figure 16.10 Forwarding performance
while the program code is deleted:

OMNeT++ simulation of the multipath

routing protocol. Data packets for desti-

nation service za are injected to source

node v10 at rate 100 pkt/s (see topology

in Figure 16.1). At time t = 100 s, data

transmission starts. At time t = 150 s, all

molecules in node v10 are forcefully de-

stroyed. The same attack is carried out

to neighbor v2 at time t = 200 s and to

neighbor v4 at time t = 250 s. All mea-

surements were collected in node v10:

Fwd. Rule Conc.: Relative number of for-

warding rules to either neighbor v2 or

v4. Tx Rate: Rate of data packets trans-

mitted to either neighbor. Pkt. Loss: Per-

centage of packets lost between source

node v10 and destination service za.

Av. Delay: Average packet delay from

source to destination.

related work and assessment 16.7

We compare our protocol to two other biologically inspired routing proto-
cols, AntNet (Di Caro & Dorigo, 1998) and aras (Leibnitz et al., 2006), and
critically assess our protocol in this context.

In AntNet (Di Caro & Dorigo, 1998) and AntHocNet (Di Caro et al., AntNet

2005), each node periodically sends forward ants to known destinations. The
path of the forward ant is stochastically determined by the established routing
table. The forward ant records the number of hops and the latency during
its journey. When reaching the destination, they generate a backward ant
that travels back to the source node and deposits pheromones in the nodes
according to the quality of the path.

Leibnitz et al. (2006) assumed that the location of the destination service ARAS

can be approximated using geographical information and therefore did not
need to disseminate location information. aras’ forwarding engine also
probabilistically selects one out of multiple possible next hops. When a

16. a self-healing multipath routing protocol | 313

packet reaches its destination, the quality of the path is evaluated and this
information is sent back along the path to update the routing tables.

In both AntNet and our protocol, the concentration of chemicals is used
to indicate the quality of a path. AntNet uses a reactive approach wherereactive

discovery ants are sent out only in response to a data packet. Our protocol,
on the other hand, uses a proactive approach: There is no feedback from theproactive

forwarding engine to the routing table. The nucleus broadcasts unspecific
fetch requests to its neighbors to learn about the existence of services in
advance. We are aware that this approach does not scale well with the size
of the network. aras avoids this step by using geographical information to
approximately find next hops towards the destination service.

All the three algorithms use feedback information from the destination
service to update their forwarding logic, which then stochastically selects astochastic

path selection path. While the update frequency inAntNet is determined by the independent
rate at which discovery ants are sent, the adaption speed of aras and our
algorithm depends on the rate of the forwarded traffic. The main difference
between our and the other algorithms is that we do not explicitly calculateno explicit

calculations the quality of a certain path. We never store a metric, delay or quality value
symbolically in one of the molecules. Instead, as suggested by our chemical
design philosophy, the concentration of molecules together with the law of
mass action scheduling algorithm leads to the emergent phenomenon of
optimal path reinforcement. This mechanism is more robust when facingrobustness

destruction attacks: a deleted entry does not distort the probability of choosing
a certain path.

The presented protocol is not superior to comparable multipath routing
protocols but is able to heal itself from the loss of any or all code parts in aself-healing

network node. One observed problem is that links with shorter delays are
not preferred. In addition, there is a small portion of data packets that might
be lost by dilution. However, the presented protocol correctly switches to
alternative paths to avoid dropped links or nodes and tries to optimize itself
for high throughput.

••

314 | part iii — self-healing networking protocols

chapter1717Code Robustness Analysis

On the frequency of self-replicating sets in Fraglets, their robust-
ness subject to memory mutations and execution errors, and on
the link between robustness and the instruction set.

Things do not turn out
the way you think they will. 17

Prey
Michael Crichton

So far, we assumed that all execution errors and bit mutations lead to
neutral fraglets being unable to react with other parts of the chemical

program. That is, we only considered mutations on the molecular level and
studied their dynamics. In this chapter, we take a look at mutations on the
structural, symbolic level. We show that most of the mutations are indeed
harmless, but that one out of ten random symbol alterations lead to an infinite
closure, i.e. to an ever-growing set of fraglet strings. We then methodologi-
cally search for a Quine that is robust to mutations and execution errors and
realize that such ultimate robust replicators most probably do not exist in
Fraglets.

This chapter contains a detailed description of the problem of structural
robustness. We cannot provide a good solution for this problem yet. But the
problem itself deserves a thorough understanding. In Section 17.1 we study
the effect of mutations to a chemical program comprised of data processing
Quines and develop a scheme to classify the mutants. In Section 17.2, we
report on our search for Quines that are intrinsically robust to execution
errors. We did not find the ultimate Quine though, but evaluated the robust-
ness of thousands of Quines. This allows us to draw conclusions about the

17. code robustness analysis | 315

vulnerability of the Fraglets instruction set to mutations and execution errors
and the tendency of fraglet strings to suffer from uncontrollable elongation.
Section 17.3 then proposes a redundant instruction-encoding scheme to miti-
gate the problem. In the next chapter, we resort to confining the uncontrolled
elongation rather than preventing it.

effects of symbol mutations17.1

Fraglets is an algorithmic chemistry (see Section 3.1), meaning that the sym-
bolic structure of the molecules is responsible for the outcome of a molecular
reaction. Hence, Fraglets is constructive, i.e. capable of continuously pro-
ducing new molecular species. This is in contrast to many simulations of
real chemistry, where the molecular species and their reactions are known
beforehand, and where a deterministic approach based on odes (Ordinary
Differential Equations) is often sufficient. Hence, by altering a single symbol
in one of the molecules participating in the reaction network we actually
modify the reaction network itself: When mutated molecules react with other
molecules, their immediate and future products are likely to be different.

mutated program17.1.1
In this section, we study the effect of symbol mutations to three versions of a
typical Fraglets program that symbolically computes the arithmetic expression
y = x3+2x+1: (1)The first program version uses seven persistent matchp-rules,persistent

matchp-rules each computing a partial result:

[matchp X dup T1 nop]

[matchp T1 exch T2 3]

[matchp T2 pow T3]

[matchp T3 exch T4]

[matchp T4 mult T5 2]

[matchp T5 sum T6]

[matchp T6 sum Y 1]

Figure 17.1 depicts the reaction network of the seven operations while pro-
cessing the input molecule [X 5] and producing the result [Y 136]. (2) The
second version of the program instantiates 100 copies of the same matchp-
rules and thus makes the rules redundant. (3) The third version uses Quines:redundant

We use the “quinification” template introduced in Section 14.4.2 in order to
turn each of the seven operations into a Quine. The resulting string of Quines

316 | part iii — self-healing networking protocols

[X 5]

[T1 5 5]

[T2 5 3 5]

[T3 125 5]

[T4 5 125]

[T5 10 125]

[T6 135]

[matchp X dup T1 nop]

[matchp T1 exch T2 3]

[matchp T2 pow T3]

[matchp T3 exch T4]

[matchp T4 mult T5 2]

[matchp T5 sum T6]

[matchp T6 sum Y 1]

[Y 136]

(x)
(x, x)
(x, 3, x)
(x3, x)
(x, x3)
(2x, x3)
(x3 + 2x)
(x3 + 2x + 1)

Computed Expression"Program" "Data"

Figure 17.1 Wild-type of the program
for a symbol mutation analysis: The

program consists of seven consecutive

persistent matchp-rules, each producing

the reactant for the next. The program’s

wild-type (un-mutated form) computes

the arithmetic expression y = x3 + 2x + 1.

cooperates and is collectively self-healing as discussed in Section 15.2.1. The self-healing

capacity of the reaction vessel is limited to 1400molecules in order to have 100
instances of active and blueprint molecules for each of the seven operations
on average.

mutation procedure 17.1.2

The wild-type (i.e. the original un-mutated form) of the program computes wild-type

the correct arithmetic expression by design. We simulated the three program
versions from above in the Fraglets interpreter for each possible one-symbol
mutation. In other words, we took the original programs, mutated a given
symbol, initialized the reaction vesselwith themutant and 104 inputmolecules,
and waited until the program produced the result molecules.

Each symbol locus (position) in the program was mutated ∣Σ∣ − 1 times,
where Σ is the considered symbol alphabet. It consists of ∣Σ∣=99 symbols: a
selection of 33 Fraglets instructions (match, fork, nop, etc.), 33 passive tags
such as X, Y, T1, T2, and 33 integers numbers ranging from -16 to 16.

The first and second version of the program contains l1,2=32 loci in total,
which results in an overall number of

nmut,1,2 = l1,2 (∣Σ∣ − 1) = 3136 (17.1)

17. code robustness analysis | 317

Figure 17.2

Mutant classifi-
cation scheme:

A structural anal-

ysis of the re-

action network

sorts out infinite

closures. Simula-

tion runs reveal

if a result is pro-

duced and if it is

correct.

all mutants

infinite closure

closure?

became

inert?

structural analysis

infinite finite

simulation

results?

[Y...]

no

inert

yes

no results

no

valid

results?

yes

< 5 % > 95 %< 50 % > 50 %

mutants in the one symbol neighborhood of the wild-type. The operations
of the third, quinified version contain two copies of each symbol, one in
the active match-rule and another in the Quine’s blueprint. Together with
additional symbols needed for replication the total number of loci is l3 =
2l1,2 + 7 ⋅ 19=197 resulting in

nmut,1,2 = l3 (∣Σ∣ − 1) = 19306 (17.2)

mutants.

classification of the mutants17.1.3
We classified eachmutant by analyzing it structurally and based on the quality
of results produced in a simulation run. Figure 17.2 illustrates the classifi-
cation scheme we applied: We first analyzed the reaction network of each
mutant structurally in order to find out whether the closure is finite or infinite
(see Section 7.2). If the closure of a reaction network is infinite it inevitably
produces longer and longer strings because the symbol alphabet is finite. We
therefore sorted out networks with infinite closure as they either become inertinfinite closure

or eventually exhaust all cpu and memory resources.
We simulated the remaining mutants until the 104 input molecules were

processed. If the reaction vessel lost all reactive molecules before the inputs
were consumed we classified the mutant as non-reactive or inert. For thoseinert

318 | part iii — self-healing networking protocols

1 2 3 4 5 6 7
Sequential Operations

0

20

40

60

80

100
F

re
q

u
e

n
c

y
[%
]

7 Sequential Operations

No Result

84.0 %

Inert

Infinite

Closure

Valid

Results

>95%
Valid

Results

<5%

8.6 %

5.7 % 1.0 %

0.7 %

Valid Result >x %: Percentage of result molecules carrying the correct value.

No Result: The mutated reaction network does not produce any result molecules.

Inert: The mutated reaction network is not reactive anymore.

Infinite Closure: The closure of the mutated reaction network is infinite.

Figure 17.3 Effect of one-
symbol mutations — per-
sistent rules: The program

consists of 1–7 consecu-

tive persistent matchp-rules,

each producing the reactant

for the next. The alphabet

consists of a subset of 33 of

the Fraglets instructions, 33

passive tags, and 33 integer

values from -16 to +16.

mutants that stayed reactive, we examined whether any result molecules of
the form [Y . . .] was generated and sorted out mutants producing no results. no results

Finally, we counted how many of the result molecules contained the expected
value and further classified the mutants into four quality groups: (1) those
where the results was correct for more than 95% of the input values, (2) those
where the result was correct for the majority of the cases, (3) those where the
results was incorrect for the majority of the inputs, and finally (4) those that
only delivered 5% of the result molecules with the expected value.

results 17.1.4

The pie graph in Figure 17.3 illustrates the mutational robustness of the first
version of the program, which is based on single matchp-rules. About 84% of
the mutants in the one symbol neighborhood of the wild-type are not able to
produce a [Y . . .]-fraglet anymore.

Another 5.7% of the mutants were inert and only 0.7% of the mutants
maintained their functionality and delivered the correct result. Finally, one
percent of the mutations resulted in an infinite reaction network potentially
producing longer and longer strings.

The bar graph in Figure 17.3 shows the distribution of the mutant’s classi-
fication if the program contains less than seven sequential operations. This
provides an idea how the robustness depends on the size of a program. Ac-
cording to the observed trend, the percentage of programs delivering no
results – either because they are inert (blue) or because the result fraglet is not

17. code robustness analysis | 319

Figure 17.4 Effect of one-
symbol mutations — redun-
dant persistent rules: The pro-

gram consists of 100 copies of 1–

7 consecutive persistent matchp-

rules, each producing the reac-

tant for the next. The alphabet

consists of a subset of 33 of the

Fraglets instructions, 33 passive

tags, and 33 integer values from

-16 to +16.

1 2 3 4 5 6 7
Sequential Operations

0

20

40

60

80

100

F
re

q
u

e
n

c
y
[%
]

7 Sequential Operations

Valid Results >95 %

93.3 %

Valid

Results

>50%

Infinite

Closure

5.7% 1.0 %

Valid Result >x %: Percentage of result molecules carrying the correct value.

Infinite Closure: The closure of the mutated reaction network is infinite.

produced (gray) – remains more or less constant with increasing program
size.

The robustness of the program increases dramatically by having redun-
dant copies of each rule: Figure 17.4 shows the statistics of the second version
of our program where each rule is present with 100 copies, of which only one
is mutated. Even if a mutated rule is not able to produce any or the right result
anymore the other 99 copies are still healthy. However, this does not change
the percentage of infinite closures, as a single mutant producing longer strings
is sufficient to infect the program. Note that even though redundancy is able
to mask the error, the system is not aware of it and does not heal itself. When
multiple mutations occur in sequence, the system continuously degrades.

The third version of the program based on Quines is able to recover from
mutants producing the wrong result. A single erroneous rule will very likely
be displaced by the majority of correct Quine replicas. Figure 17.5 illustrates
the mutational robustness for the quinified program version: Due to the
redundancy, the Quines exhibit the same behavior of masking singular errors
by the majority of healthy replicas. Perhaps surprisingly, compared to the
second version, the percentage of infinite closures increases from 1% to 11.7%.

The Quine: A Balancing Act Between Loss and Gain(a)

The reason for this common explosion of diversity is the fact that the Quine is
a self-replicating circle, which produces exactly the same species that reacted
in the first place. A deviation from this loop caused by a symbolic perturba-
tion often leads to a self-replicating spiral in which the copy products are notself-replicating

spiral identical replicas anymore. Instead, the spiral produces similar molecules

320 | part iii — self-healing networking protocols

1 2 3 4 5 6 7
Sequential Operations

0

20

40

60

80

100
F

re
q

u
e

n
c

y
[%
]

7 Sequential Operations

Valid Results >95 %

85.2 %

Valid

Results

>50%

Infinite

Closure

11.7 %

3.1 %

Valid Result >x %: Percentage of result molecules carrying the correct value.

Infinite Closure: The closure of the mutated reaction network is infinite.

Figure 17.5 Effect of one-
symbol mutations — redun-
dant Quines: The program con-

sists of n = 1 to n = 7 consec-

utive data processing Quines,

each producing the reactant for

the next. The capacity of the re-

action vessel is limited to 200n

molecules. The alphabet con-

sists of a subset of 33 of the Fra-

glets instructions, 33 passive

tags, and 33 integer values from

-16 to +16.

XfnmXmXfnmX

fnmXfnmX

A B

(a) Wild-type

XfnmXmXmnmX

mX

fnmX

X∅

BA∗

B1A1

(b) Reduction Spiral

Figure 17.6 Structural damage of
Quines: The mutation of the same lo-

cus ofthe originalreplicating Quine

(a) may lead to a spiral towards shorter

fraglets withthe same prefix (b).
m ≡ match f ≡ fork n ≡ nop

XfnmXmXXnmX

XXnmXfnmX

XXnmXXXnmXfnmX

...

BA∗

B1

B2

(c) Elongation Spiral

mXnnmX

mXfnmX XfnmX

fnmXfnmX

B

A∗

A

(d) Fallback to wild-type

Figure 17.6 cont.: The muta-

tion of the same locus may also lead

to a spiral towards longer fraglets

with the same prefix (c), or in rare

cases, to the identical fraglets (d).
m ≡ match f ≡ fork n ≡ nop

that are shorter or longer than the original reactants; similar in the sense of
having the same prefix such that they still react with the same strings.

A typical example is depicted in Figure 17.6. For illustration purpose,
we chose the non-replicating Quine that just rewrites itself as the wild-type.
We mutated the third symbol of the active fraglet: once from fork to match,
once from fork to X, and finally from fork to nop: As shown in Figure 17.6(b),

17. code robustness analysis | 321

*Note that a fra-

glet starting

with a match-

instruction re-

quires an iden-

tifierat the

second posi-

tion, which is

not case for

the product of

A∗ and B. In

this case Fra-

glets just ig-

nores all non-

identifier sym-

bols such that

[mnmXfnmx] ≡
[mXfnmX].

a mutation from fork to match leads to a reduction spiral, meaning that thereduction spiral

products of a reaction among the mutated molecule A∗ and the blueprint B
only produces a shorter version A1 of the active molecule.* If there are more
instances of the two longer species A∗ and B they will also react with the new
species and again produce shorter versions. Finally, the two short molecules
annihilate each other. Note that the reduction happens on the symbolic as
well as on the dynamic level: molecules are continuously drained from the
long to the short versions where they decay.

When mutating the third locus of the active fraglet from fork to X,
the loop flips to the other side, producing longer and longer strings. This
elongation spiral is depicted in Figure 17.6(c). The closure of this reactionelongation

spiral network is infinite but not self-maintaining, meaning that the system does
not survive for a long time because no active molecules are produced.

Figure 17.6(d) finally shows a case where themutation eventually leads to
the original wild-type. The mutated active fraglet A∗ reacts with the blueprintfallback to

wild-type and just instantiates an active copy of the blueprint, which has not been
mutated. Unfortunately, such harmless mutations are rare.

This example shows that a healthy Quine balances between growth
and death in two respects: First, it is a dynamic fixed point that maintains
its population by regenerating the molecule instances that were consumed.
Second, theQuine can be seen as a structural fixed point that only produces thestructural

fixed point species it stems from – not more and not less. In the Chemical Organization
Theory, the structural fixed point is called a semi organization, i.e. a set
that is closed (does not generate new species) and semi self-maintaining
(re-generates all consumed species). Dittrich and Speroni di Fenizio (2007)
proved that a structural fixed point is a requirement for a dynamic fixed point.

Note that the structural and dynamic fixed points of the Quine are not
stable: The simple Quine does not recover when we remove or add molecule
instances, and it structurally decomposes into a spiral when subject to symbol
mutations. In Section 14.1, we demonstrated that the dynamic fixed point
can be stabilized by letting the Quine replicate. The growing number of
replicas together with a random dilution flux applied to the vessel leads to
a self-regulating population. Ultimately, we would also like to find a stable
structural fixed point, where a small mutational perturbation automatically
leads the reaction system back to the core replicator set. In the following
section, we describe our fruitless search for such a structurally stable Quine.

322 | part iii — self-healing networking protocols

the search for (robust) replicators 17.2

The Quines presented and analyzed so far were manually designed. In the
previous section, we recognized that this self-replicator is not robust to all
mutations. In this section, we methodologically search for other replicators
in the vast sequence space of Fraglets and determine their robustness to
execution errors. We start by elaborating our search method in Section 17.2.1.
Then, in Section 17.2.2, we show how likely we find a Quine in a random
Fraglets multiset. In Section 17.2.3, we classify the found Quines and measure
their robustness to execution errors. Finally, in Section 17.2.4, we highlight
the link between structural robustness and the Fraglets instruction set.

search method 17.2.1

Our aim is to find and assess self-replicating sets of molecules exhibiting a
structural and dynamic fixed point. That is, the candidates must fulfill the
following two criteria: First, the reaction network spanned by the molecules
must be an organization, i.e. closed and self-maintaining according toDittrich
and Speroni di Fenizio (2007). Second, the reaction network must exhibit a
non-trivial dynamic fixed point when scheduled according to the law of mass
action. The first criterion makes sure that the reaction network is structurally
stable. The second criterion requires the first to hold but is stronger, since
there are organizations that do not exhibit a non-trivial dynamic fixed point.

The potential search space is infinite: it contains all possible multisets
over all fraglet strings. This means that we cannot exhaustively test all possible
multisets. We therefore limit our search subspace to single fraglet strings of a
certain length and perform exhaustive and random search over this subspace.
The restriction to single strings is feasible because every multiset of fraglet
strings can be produced by a single seed fraglet, i.e. by using split- and fork- seed

instructions. For example, as depicted in Figure 17.6(a), our simple Quine
can be bootstrapped by the seed [fork nop match X fork nop match X].

For each candidate seed we performed a structural and dynamical analy-
sis as depicted in Figure 17.7 in order to find out whether the seed is a Quine or
not. We first computed the biggest semi-organization by finding the closure
of the seed and removed those species from the closure set that are not semi
self-maintaining. If this yields a non-trivial semi-organization we then in-
jected ten instances of the seed string into an empty vessel and simulated 104
reaction steps. If the system did not become inert and if the vessel capacity of
1000 molecules was not reached the candidate string is very likely the seed
for a Quine.

17. code robustness analysis | 323

seed string

infinite closure

closure?

became

inert?

structural analysis

infinite finite

simulation

capacity

exh.?

noyes

yes no

Quine

semi

self-maint.

set?

non-emptyempty

semi org. structural fixed point

dynamical fixed pointunstable

elongation spiral reduction spiral exact loop

Figure 17.7 Quine detection method: A structural analysis of the reaction network that is spanned by the

seed determines if the reaction network contains a structural fixed point; infinite closures and non-semi-self-

maintaining sets are sorted out. The subsequent simulation run identifies a dynamic fixed point – a Quine.

the frequency of quines17.2.2
Before we study the robustness of Quines we illustrate how frequent Quines
are in the vast search space. We performed an exhaustive search for Quinesexhaustive

search over all fraglet seeds of length l =10 over the reduced alphabet
Σ={X, Y, match, fork, nop, exch, pop, rot, split, *} (17.3)

The size of the search space is n= l ∣Σ∣=1010 seeds. The exhaustive search over
this space revealed that the majority of the seeds is not self-maintaining. Only
a fraction of 3.63 × 10−6 seeds bootstrap Quines. In contrast, 2088 out of a
million seeds lead to infinite closures. Thus, it is more likely that a random
fraglet generates a reduction or elongation spiral than a self-maintaining
Quine.

Such an exhaustive search is only feasible for very short strings because
the search duration grows exponentially with the length. We also explored the
search space randomly for different seed lengths. A random search is not ablerandom search

to find all Quines for a given seed length, but we can gain statistical insights

324 | part iii — self-healing networking protocols

0 20 40 60 80 100
Seed length l

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

F
re

q
.

o
f

In
f.

C
lo

s.
[p

p
m
]

0

1

2

3

4

5

6

7

8

9

F
re

q
.

o
f

Q
u

in
e

s
[p

p
m
]

5 seed species

2 seed species

1 seed species

exh.

search

Figure 17.8 Frequency of Quine appear-
ance with respect to the seed length:

Fraction of Quines (top) and infinite

closures (bottom) in parts per million

(ppm). For each length in the range

from 1 to 100, 107 random seeds were

tested. We additionally tested the seeds

when randomly split into 2 or 5 parts.

The small box shows a magnification

of the lower lengths where we comple-

ment the results of the random search

with reference values from the exhaus-

tive search to show that the random

search yields representative results.

such as how the frequency of Quines changes with respect to the length of the
seed. We generated 107 random seeds for each length in the range l =[1, 100]
and additionally split them into 1, 2, or 5 fraglets.

Figure 17.8 shows the frequency of Quines and infinite closures with
respect to the initial number of symbols. For seed lengths up to 10, we comple-
mented the random search results with the exact results from the exhaustive
search. The frequency of Quines does not increase above a few per million if
we either increase the length or the number of seed splitters. On the other
hand, the frequency of infinite closures grows for more complex seeds. This is
a strong indication that the Fraglets instruction set has a tendency to elongate. tendency to

elongateWe will discuss this in more detail later.

classification of quines and assessment 17.2.3
of their robustness to execution errors

As planned originally, we now search for Quines that are intrinsically robust
to execution errors. That is, their structural fixed point shall be robust if
the underlying virtual machine sporadically executes wrong instructions.
We performed a random search over the seed space of length l = 15, now
with an alphabet extended to 14 symbols (see Appendix B for details on the
instructions):

17. code robustness analysis | 325

Figure 17.9 Most frequent Quine
functions: Most (92.8 %) Quines

span a reaction network of type 1

(a) followed(1.4 %) by the re-

action networkoftype 2 (b).
m ≡ match f ≡ fork o ≡ spop

mXfXm XXfXm

(a) Function 1 (92.8 %)

mXYf YfmomYfXXmomYfX

mYfX

(b) Function 2 (1.4 %)

Σ={X, Y, Z, match, nop, exch, spop, spush, rev, cross,
fork, splitat, divide, shuffle} (17.4)

Unlike before, where wemutated the fraglets, we now simulate executionexecution errors

errors: That is, in each simulation run we assume that the virtual machine
sometimes misinterprets a certain instruction symbol sori as another symbol
serr, which is executed in turn. Hence, for each Quine we performed ∣Σ∣2
simulations for all possible symbol pairs (sori, serr) and again analyzed all
systems structurally and dynamically. We declare a Quine robust to a certain
execution error (sori, serr) if the resulting reaction network is still a Quine.
Note that we do not require that the reaction network subject to execution
errors is identical to the reaction network executedon an ideal virtualmachine,
but it still has to be a self-replicating set. Ultimately, we are looking for
Quines that replicate independent of symbol misinterpretations of the virtual
machine.

Classification of Quines Into Functional Groups(a)

We tested 120 × 109 random seeds of length l =15 on the ideal virtual machine
and found 48376 Quines. The density of Quines in this search space can
thus be approximated to 0.401 × 10−6 , lower than before due to the extended
alphabet. We grouped together all Quines that are functionally identical. That
is, if the reaction network graphs of two Quines are homomorphic (Hell &homomorphic

graph Nešetřil, 2004) we say that they perform the same function and assign them
to the same functional group. We found 164 different groups and ranked
them according to their relative frequency. Figure 17.9 depicts four functional
groups.

The majority of the Quines (93%) span a reaction network graph of
the first type, which is at the same time the simplest reaction network. Our
manually designedQuine is of this type, too, but there are other fraglet strings
that generate the same reaction network. For example, the fraglets shown

326 | part iii — self-healing networking protocols

mXfYre

YemfXYreXmfXyre

mYfX

(c) Function 3 (0.5 %)

mXferX

XrefXmnfXerfXmnf mXX

mXfreX

∅
∅

(d) Function 151 (once)

Figure 17.9 cont.: The

third most frequent re-

action network (0.5 %)

is of type 3 (c). Only

one Quine spanned

the interesting reaction

network shown in (d).
e ≡ exch n ≡ nop r ≡
rot

in Figure 17.9(a) are different yet shorter than the strings of the manually
designed Quine.

The second and third most common function, shown in Figure 17.9(b)
and (c) respectively, are more complex as four species are involved. The latter
reaction network actually implements a reversible reaction for which two
tags X and Y are required. We cannot print the reaction networks of all func-
tions here but want to highlight a rare but interesting function: The reaction
network shown in Figure 17.9(d) involves five different species, although only
one tag, X, is involved. That is, all active fraglet species (red) react with all
blueprint species (blue). At equilibrium, the central species [match X X] is
present with double the quantity of the other species. As we will see below, a
more complex reaction network does not mean that the Quine is more robust
to execution errors.

Quantification of the Quines’ Robustness to Execution Errors (b)

We define the robustness to execution errors qexe of a Quine as the number robustness to

execution errorsof tuples (sori, serr) yielding another Quine divided by the total number of
essential misinterpretation tuples. Trivial cases such as (match, match) are
not considered.

We simulated all of the 48376 Quines that we found in an ideal environ-
ment, now on a virtual machine with execution errors as described before.
We did not find the ultimate Quine that is robust to all instruction glitches, i.e.
where qerr=1. Figure 17.10 depicts the robustness matrix of the most robust
Quine found. It is seeded by the fraglet

17. code robustness analysis | 327

Figure 17.10 Robustness
to execution errors of the
most robust Quine found:

A value of one (green) in

this matrix indicates that

the Quine is robust to an

execution error where

instruction sori is misin-

terpreted by the virtual

machine as instruction

serr . Even the most robust

Quine does not tolerate

misinterpretations of the

instructions match, fork

and tags.

X Y Z

ma
tc
h

no
p

ex
ch

sp
op

sp
us
h

ro
t

cr
os
s

fo
rk

sp
li
t

di
vi
de

sh
uf
fl
e

shuffle

divide

split

fork

cross

rot

spush

spop

exch

match

X

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

s ori

s err

[fork match X cross exch spop spush divide

split rot shuffle X fork match Y]

and exhibits a robustess to execution errors of qexe=80/143=0.56.
The reaction network spanned by this seed implements function 1 (see

Figure 17.9(a)). Our manually designed Quine, which has the same reaction
network graph, exhibits a robustness of qexe = 0. This highlights that the
robustness to execution errors is not tied to the macroscopic behavior of
the reaction network but is rather linked to the way the reaction network
is generated microscopically. By a clever arrangement of symbol sequences,
we could in theory improve the robustness of chemical programs. However
currently, there is no method of how to exploit this observation in order to
build more robust programs.

The robustness of Quines obviously depends on the instruction set. Even
though themost robust Quine is robust tomost execution errors, it is brittle to
themisinterpretation of the instructions match, fork and to tag glitches. In the
following, we examine the influence of the instruction set to the robustness
in more detail.

328 | part iii — self-healing networking protocols

fo
rk

ma
tc

h
ma

tc
h

X
ma

tc
h

Y
fo

rk
fo

rk
fo

rk
no

p
X

fo
rk

Y
fo

rk
no

p
fo

rk
ex

ch
fo

rk
fo

rk
X

fo
rk

Y0

1

2

3

4

5

6

7

8

F
re

q
u

e
n

c
y
[%
]

uniform distr.

Figure 17.11 Symbol sequence histogram as found in Quines:

Frequency of consecutive symbol sequences in the closure of the

Quines found by an exhaustive search over seed length l = 10

with the alphabet (17.3). The 1 % line illustrates the expected fre-

quency when all sequences would be distributed uniformly.

impact of the fraglets instruction set 17.2.4
to the robustness of quines

We further processed the information collected from the analysis of the 48376
Quines in order to draw statistical conclusions regarding the dependency
between the robustness to execution errors and the Fraglets instruction set.

The instructions fork and match are essential instructions for building essential in-

structionsQuines: without them or similar instructions, it is virtually impossible to
build self-replicating loops in Fraglets. We can demonstrate this with two
statistical evaluations:

First, independent of which instruction set we used, about 25% of the
symbols found in Quines are fork-instructions, followed by match and tags.
Figure 17.11 even shows that some sequence snippets including these instruc-
tions are very likely to be observed in the species that span theQuines’ reaction
network.

Second, we examined the minimal alphabet needed for realizing the 164
functional Quine groups. Figure 17.12 shows which instructions are required
for how many functions: All the Quines we found made use of the fork-
instruction, the match synchronization symbol and at least one tag.

We could have expected such a result: As mentioned in Section 5.2.4,
we intentionally force all transformation instructions to reduce the length
of the fraglet string in order to avoid infinite transformation loops. This
comes at the cost that a self-replicator must join two molecules in order to
compensate for the instructions that were consumed during execution. The
only way to elongate a molecule is to combine it with another molecule via
a synchronization instruction of the match family, which also requires tags.
Then the Quine must eventually use an instruction that splits-up the joined
molecule into pieces in order reproduce the original reactants. The fork

17. code robustness analysis | 329

Figure 17.12 Instructions required for the diversity of graph
types: Fraction of graph types requiring a certain instruction.

None of the found Quines would exist without the instructions

match, fork, and at least one tag X, Y, or Z. Graphs requiring 2 or

more tags are very seldom.

≥1
ta

g
ma

tc
h

fo
rk no
p

ex
ch

sp
li

ta
t

di
vi

de po
p

ro
t

sh
uf

fl
e

pu
sh

cr
os

s
≥2

ta
g

=3
ta

g

Instruction / Number of tags

0

20

40

60

80

100

G
ra

p
h

s
re

q
u

ir
in

g
in

st
r.
[%
]

instruction seems to be more powerful than the split reaction. Thus, a
Quine has to perpetually execute alternating join and split instructions in
order to be structurally stable: A set of molecules only regenerates itself if
join and split operations are well balanced and used in coordination.balance of

join and split

operations
Unfortunately, those essential instructions are the ones most vulnerable

to execution errors. Figure 17.13 statistically combines the execution error
matrices of all Quines examined. The matrix shows the instruction depen-
dent robustness of Quines to execution errors. Each element of this matrix
represents a misinterpretation of symbol sori as symbol serr. The value in the
corresponding matrix element denotes the fraction of Quines that were still
Quines when executed subject to the given execution error. For example, the
value highlighted by the circle indicates that 69% of all mutants of the 48376
Quines where a nop-instruction was interpreted as an exch-instruction still
replicated themselves.

The matrix demonstrates that the instructions fork, match, and the tags
are very vulnerable to execution errors. But these are exactly the instructions
needed for self-replication. Thus we conjecture that with the current Fraglets
instruction set, there is most likely no ultimate Quine that is robust to all
execution errors.

indirect instruction encoding17.3

One possible way of mitigating the effect of bit mutations (but not execution
errors) is to provide redundancy already on the bit level. So far, we assumed
that eachmemory alteration leads to a symbolmutation. Instead, we can resort
to an indirect and redundant encoding of symbols that masks bit mutations.

330 | part iii — self-healing networking protocols

X Y Z

ma
tc

h

no
p

ex
ch

sp
op

sp
us

h

ro
t

cr
os

s

fo
rk

sp
li

t

di
vi

de

sh
uf

fl
e

shuffle

divide

split

fork

cross

rot

spush

spush

exch

nop

match

Z

Y

X

0.00 0.00 0.00 0.82 0.82 0.82 0.82 0.82 0.82 0.84 0.82 0.82 0.82 1.00

0.00 0.00 0.00 0.89 0.81 0.81 0.79 0.79 0.79 0.79 0.79 0.82 1.00 0.79

0.00 0.00 0.00 0.76 0.81 0.69 0.56 0.55 0.54 0.54 0.54 1.00 0.56 0.54

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.73 0.73 0.73 0.73 0.73 0.72 1.00 0.72 0.73 0.72 0.74

0.00 0.00 0.00 0.66 0.66 0.66 0.66 0.66 1.00 0.66 0.66 0.66 0.66 0.66

0.00 0.00 0.00 0.71 0.70 0.69 0.69 1.00 0.69 0.69 0.69 0.70 0.69 0.69

0.00 0.00 0.00 0.69 0.70 0.70 1.00 0.69 0.70 0.69 0.69 0.71 0.69 0.69

0.00 0.00 0.00 0.67 0.84 1.00 0.49 0.49 0.48 0.49 0.49 0.61 0.50 0.48

0.00 0.00 0.00 0.60 1.00 0.69 0.42 0.42 0.41 0.41 0.41 0.60 0.43 0.41

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

s ori

s err

Figure 17.13 Instruction dependent ro-
bustness of Quines to mutations: The

values in this matrix represent the frac-

tion of Quines that still regenerate them-

selves when symbol sori is misinterpreted

as symbol sorr by the virtual machine.

The matrix identifies the instructions

fork, match, and the tags X, Y, and Z as

vulnerable symbols.

match

fork

exch

nop

nul

nul

nul

nul

000 001

100

010

101

111110

011

Figure 17.14 Parity-bit encoding scheme for Fraglets instructions: Bit

strings with an odd number of ones are mapped to the nul-instruction. Any

one-mutant neighbor of an even-coded instruction is nul, which causes the

fraglet to commit suicide.

Nature makes use of a similar redundancy mechanism: The genetic code
maps 43=64 nucleotide triples to only 20 amino acids. Some one-nucleotide
mutations are masked to prevent, for example, copying errors during dna
replication (Griffiths, Miller, Suzuki, Lewontin, &Gelbart, 2000, Chap. 17). In
computer science, error-detecting codes are used to protect memory content
from bit mutations caused by cosmic radiation (Slayman, 2005) or voltage
instability. The same mechanisms are used to protect information exchanged
over unreliable communication channels (Tanenbaum, 2002, Sect. 3.2).

Here, we discuss a very simple parity bit protection mechanism for parity bit

fraglet strings. Let us assume that each Fraglets symbol is encoded by a string
of n − 1 bits. We introduce an n-th parity bit and arrange the coding scheme
such that bit strings with an odd number of ones are mapped to the nul-
instruction. Figure 17.14 shows an example for n=3. With such an encoding
scheme, the one-mutant bit neighbors of all symbols are interpreted as nul-

17. code robustness analysis | 331

instruction, which leads to the self-destruction of the fraglet as soon as this
instruction is executed. Since the software continuously rewrites itself when
based onQuines, each part of the software will eventually verify itself by being
executed.

With the parity-encoding scheme we actually map code mutation tomap code mu-

tation to code

destruction
code destruction. In the traditional sequentially executed program, we cannot
simply throw away or ignore code like this. However, in the chemical model,
and because we are able to construct software based on self-healing Quines,
our code is resilient to code deletion. Thus, we do not need an error correction
mechanism; a simple error detection mechanism is sufficient.

Mutations of instructions can be effectively contained by such a parity-
encoding scheme. Other symbols, such as numbers or payload, may be
altered unrecognized by the system. However, there is a high probability
that such mutations are of transient nature and do not affect the long-term
health of the system. We envision that the instruction robustness matrix
in Figure 17.13 could further influence the development of more efficient bit
encoding schemes in the future.

summary and outlook17.4

There are several reasons why we should care about the mutational robustness
and the robustness to execution errors of distributed artificial chemistries:
First, not only data packets but active code is transmitted over unreliable
links, which leads to the alteration of code if the molecules are not protected
by an error detection mechanism. Second, unreliable hardware or external
disturbances such as cosmic radiation may result in the mutation of local
code. Third, if the underlying execution machinery (i.e. cpu) is unreliable, a
bit-level redundancy encoding scheme does not even help, because correctly
encoded instructions may be misinterpreted by the cpu after being decoded.

We have two options to continue our research to increase the robustness
to execution errors: First, we could continue the search for robust instruc-
tions, which enable Quines exhibiting a structural fixed point. Each wrongly
executed product would lead to a side-product that eventually converges back
to the replicator set. As we demonstrated, it is implausible that the current
Fraglets instruction set bears such replicators.

A second approach for the future is to develop a probabilistic instructionprobabilistic

instruction set set, in which a symbol represents a probability distribution over instructions.
In this regime, a Quine can be considered as a gas of molecules reacting in
a cloud around the expected cyclic execution trajectory. However, such a
probabilistic instruction set will most likely complicate the design process of

332 | part iii — self-healing networking protocols

human-engineered networking protocols and is more suitable as an approach
for evolved protocols.

One problem we observed is that mutations and execution errors cause
the uncontrollable elongation of fraglet strings. The elongation catastrophe elongation

catastrophephenomenon was reported recently by Decraene, Mitchell, and McMullin
(2008) in a string-based chemistry based on Holland’s broadcast language
(Holland, 1992; Decraene, 2006; Decraene, Mitchell, McMullin, & Kelly,
2007): When the strings are placed in a reactor subject to random mutations
and dilution, fitter molecules emerge which are also longer and bind with a
higher specificity. Reactions then progressively slow down until they stop,
and the system is considered dead.

As demonstrated in this chapter, we also observe a similar phenomenon
in Fraglets. The question is whether we can use the elongation catastrophe
as a signal that something went wrong and whether the chemical system
could intrinsically react and correct the phenomenon. In the next chapter, we
show how to confine rather than to prevent such elongation by introducing a
notion of energy to the chemical reaction algorithm. The competition among
reaction vessels for energy then automatically sorts out spiraling Quines –
again without the need of a central observer.

••

17. code robustness analysis | 333

chapter

1818Structural Robustness
by Energy Conservation

Introduction of a modified reaction scheduler, which conserves
virtual energy to prevent mutated code from consuming all re-
sources.

It is important to realize that in
physics today, we have no
knowledge what energy is. 18

The Feynman Lectures
on Physics

Richard Feynman

Our experiments in the previous chapter revealed a strong tendency of
Fraglets soups to suffer from the elongation catastrophe. Random sym-

bol mutations also resulted in reaction networks that produce ever-growing
strings. In this last chapter of the third part, we propose an extension of the
law of mass action scheduling algorithm that is able to confine unbounded
elongation.

The new scheduling algorithm introduces the notion of energy to an energy

artificial chemistry. The basic idea is simple: Each virtual molecule has a
certain potential energy, which is proportional to its mass. The mass of a
fraglet string is defined as its length in number of symbols. A reaction that
elongates a fraglet cannot “create” the additional energy, but has to take it
from a pool of kinetic energy, which is part of the reaction vessel. The total
energy is constant. That is, the total number of symbols in a Fraglets reactor

18. structural robustness by energy conservation | 335

is finite. Reactions convert free kinetic into bounded potential energy and
vice-versa, depending on whether fraglet strings become longer or shorter.

Such an energy conservation mechanism makes sure that the molecules
do not grow unbounded. However, as we observed in our experiments, a
random soup or mutated program still has the tendency to grow and yield
a small number of very long strings. Such a system usually terminates in a
single string, which is not able to react and replicate anymore – the system
became inert. In order to avoid this concentration ofmass in a single string we
have to carefully design the reaction algorithm to economically convert free
kinetic energy into potential energy (symbols). We thereforemimic the energy
signature of real chemical reactions. As we will show, our resulting extended
Fraglets reaction algorithm is able to prevent the elongation catastrophe.

Even though elongation is now under control, mutated programs may
still be error prone, resulting, for example, in all available energy being spent
for the production of useless garbage molecules. We therefore let multiple
reaction vessels (or cells) run the same program in parallel. The cells grow
and divide akin to natural cells. Random selection is not only applied to
molecules within the cells, but the environment also maintains a constant
population of cells, which naturally fight for not being displaced by other
growing and dividing cells. In other words, we put the system in an evolu-
tionary context. We show that such amulti-level selection scheme is robust tomulti-level

selection erroneous mutations in one of the cells.
This chapter is organized as follows: In Section 18.1, we provide back-

ground information about energy conservation in chemical reactions and
derive a simplified model that operates on abstract molecules. Section 18.2
then presents our generic energy framework for artificial chemistries that
ensures energy conservation. In Section 18.3, we demonstrate how the energy
framework can be applied to Fraglets in order to prevent the string elonga-
tion problem. In Section 18.4, we present a multi-level selection method and
discuss initial evolution experiments, which show that a chemical program
is robust to mutations in this new regime and even evolves to more efficient
cooperating clusters. Finally, after discussing out approach in Section 18.5,
we summarize this chapter and the third part of the thesis in Section 18.6.

the role of energy in chemical reactions18.1

In this section, we review the dynamic behavior of a chemical reaction and
focus on the role of energy. Figure 18.1 depicts the energy diagram of a typical
microscopic reaction event, as it proceeds from reactants (left side) to prod-
ucts (right side). The total energy is conserved (1st law of thermodynamics),

336 | part iii — self-healing networking protocols

reactants
transition

complex
products

potential

energy

kinetic

energy

(lost)

Min,r Mout,r

εkin

εpot,in

εact,r

εheat

εpot,out

εout

εret

Figure 18.1 Energy diagram of an exother-
mic reaction: The reaction r ∈ R con-

verts reactants (left side) given by the multi-

setMin into products (right side) given by

Mout. The total energy is conserved; the

collision energy εkin has to overcome the

activation energy εact,r . Some kinetic en-

ergy (heat) may be lost for further reactions:

εheat. The remaining kinetic energy is re-

turned to the vessel: εret .

meaning that the sum of potential and kinetic energy of the reactants is equal
to the total energy of the products. The collision energy εkin has to overcome
the activation energy εact. In this example, the reaction is exothermic: the
potential energy, i.e. the binding energy between atoms of the products, is
lower than that of the reactants. The remaining energy returns to the vessel
as kinetic energy, but part of it may be dissipated as heat (εheat), contributing
to the entropy of the system (2nd law of thermodynamics).

This exothermic reaction converts one part of the potential energy that
is bound in the molecules into kinetic energy. But the reaction only occurs
if enough kinetic energy is available, i.e. in macroscopic terms, if the tem-
perature is high enough. In the following, we study this energy-dependent
reaction rate on the macroscopic scale before we make the connection to the
microscopic scale. The transition to the microscopic, molecular level is neces-
sary in order to derive a reaction algorithm for our algorithmic chemistry.

macroscopic scale 18.1.1
As shown in Chapter 3, the law of mass action states that a chemical reaction
such as X + Y k�→ Z happens with an average speed of r= k [X] [Y], where
k is the kinetic coefficient associated with the reaction, and [X], [Y] are the
concentrations of reactants X and Y, respectively. The coefficient k is usually Arrhenius equa-

tiongiven by the Arrhenius equation (Arrhenius, 1884; McQuarrie, 1997):

k=Aexp(−Eact
RT
) (18.1)

where A is the pre-exponential factor for the reaction, Eact is the activation
energy barrier that must be overcome for the reaction to occur, R is the gas
constant (R=kBNA, where kB is the Boltzmann constant, and NA is the Avo-
gadro constant), and T is the absolute temperature. Such knowledge from
textbook physical chemistry is a macroscopic description of the average be-

18. structural robustness by energy conservation | 337

*A similar treat-

ment applies for

reactions other

than bimolecu-

lar; see Gillespie

(1977) for details.

havior of large quantities of molecules. In an algorithmic chemistry however,
it is necessary to simulate the microscopic behavior of the system at the level
of individual molecular collisions in order to perform the intended computa-
tions encoded within suchmolecules. Therefore we use results from statistical
mechanics for bimolecular gas phase reactions, which permit to derive the
Arrhenius equation from microscopic laws (Upadhyay, 2006).

microscopic scale18.1.2

First of all, a change in scale must happen, resulting in a microscopic kinetic
coefficient k′ = k/ (NAV) and a microscopic reaction rate of r′ = k′NXNY =
rNAV for a bimolecular* reaction involving two reactants X andY, when there
are NX instances of species X and NY instances of species Y inside volume
V , i.e. NX = [X]NAV and NY = [Y]NAV . The activation energy must also
be rescaled to the microscopic level by taking εact as the activation energy
per reaction, given by εact = Eact/NA. Note that this does not change the
exponential term of the Arrhenius equation, since

exp(−Eact
RT
) = exp(− εact

kBT
) (18.2)

The equation for themicroscopic reaction rate then becomes:microscopic

reaction rate

r′ =
Fconst79:
A

NAV
⋅
P[reaction∣collision]78888888888888888888888888889888888888888888888888888888:
exp(− εact

kBT
)d88e888f

microscopic reaction coefficient k′

⋅
Fcol78888898888:

NANB (18.3)

This equation is the product of three terms: (1) The collision frequency Fcol=collision

frequency NANB determines how often a collision occurs. The collision frequency is
proportional to themultiplicity of each reactant and hence reflects the familiar
law of mass action. (2) A constant factor Fconst=A/NAV captures the physical
details such as the mass of the molecules or the orientation in which they have
to collide. We will abstract away from this factor for our artificial chemical
algorithm and set it to Fconst=1. (3) The third factor is the exponential term
attributed to Arrhenius. It actually expresses the conditional probability thatreaction

probability a reaction is effective (i.e. happens) provided that the collision occurred:

P [reaction ∣ collision] = exp(− εact
kBT
) (18.4)

338 | part iii — self-healing networking protocols

It is important to note that we separated the reaction rate into three factors,
one that contains all the physical details, a second that reflects the law of mass
action, and a third that captures the energy-dependence of the reaction. The microscopic re-

action coeffi-

cient
product of the constant factor and the energy-dependent exponential term is
themicroscopic reaction coefficient k′.

derivation of the energy-dependent 18.1.3
reaction probability

Let us now focus on the energy term, which is given by the reaction probability
P [reaction ∣ collision]. We would like to determine the “algorithmic proce-
dure” that a single reaction has to perform such that the reaction probability
in (18.4) emerges on the macroscopic scale.

According to the collision theory, the kinetic energy of two colliding
molecules follows a chi-square distribution with three degrees of freedom
resulting from the Maxwell-Boltzmann distributed velocity components of
the molecules. However, the full kinetic energy can only be invested into the
reaction if the molecules come in touch by a frontal collision. In general, only
a fraction of the kinetic energy – the energy along the line of the molecule’s
centers – is actually exploitable by a reaction. This effective collision energy
εkin is stochastically described by an exponential distribution with mean kBT
(Upadhyay, 2006).

εkin ∼ Exp(kBT) (18.5)

We can regard a collision event as the following algorithmic procedure:
Twomolecules collide with an effective energy of εkin, distributed according to
(18.5). If the effective collision energy is greater than the activation energy of
the reaction (εkin ≥ εact) then the reaction happens. Otherwise, the collision
is elastic and the reaction is not carried out. Thus, according to this simple
algorithm, the probability that a reaction is effective is given as

P [reaction ∣ collision] = P [εkin > εact] = 1 − P [εkin ≤ εact] (18.6)

= 1 − ⎛⎝1 − exp(− εactkBT
)⎞⎠

= exp(− εact
kBT
)

18. structural robustness by energy conservation | 339

which is exactly the exponential term of the Arrhenius equation. We conclude
that if the collision energies are exponentially distributed with mean kBT
then the macroscopic behavior follows the Arrhenius equation.

This simple algorithm of (1) drawing a collision energy form an expo-
nential distribution, (2) comparing it to the activation energy of the reaction,
and (3) executing the reaction if the collision energy is greater, can efficiently
be integrated to an artificial reaction algorithm. It remains to be defined how
we should choose the parameter for the exponential distribution, i.e. how
the Boltzmann constant kB and the temperature T shall be interpreted in an
abstract setting. Scafetta and West (2007) stated that, since the term kBT is
the mean kinetic energy of a molecule, the term is equal to the total kinetic
energy in the reaction vessel divided by the current number of molecules∣Mv ∣:

kBT ≡ ∑s∈Mv εkin,s∣Mv ∣ (18.7)

We will use these observations to derive our energy-aware algorithm in the
next section.

a generic energy framework18.2
for artificial chemistries

The goal of our extended reaction algorithm is to mimic energy conservation
of real chemical reactions, although in an abstracted form. The macroscopic
dynamic behavior shall follow the Arrhenius equation, which allows for a
mathematical analysis of a chemical program under the regime of the new
algorithm. In this section, we present an energy framework that fulfills these
requirements. Like any framework, it can be customized and targeted for the
needs of a particular application case, i.e. for a particular artificial chemistry.

outline of the energy framework18.2.1

Figure 18.2 shows an overview of the energy framework. As before, the
reaction vessel contains a multiset in which the molecules (e.g. fraglet strings)reaction vessel

are stored. We now require that the reaction vessel also keeps track of the total
kinetic energy in the vessel Ekin. Note that for efficiency reason, we do not
require the vessel to keep track of each molecule’s kinetic energy or velocity
vector. Instead, the vessel just has to store a single variable containing the
total kinetic energy.

340 | part iii — self-healing networking protocols

AlgorithmA

Reaction Vessel v

• Molecule multiset:Mv

• Kinetic energy pool: Ekin

1. Determine the next reaction r ∈ R
2. Pick the reactantsMin,r fromMv

3. Determine the collision energy εkin

4. Subtract the collision energy εkin from Ekin

5. Increment the simulation time

Collision AlgorithmAcol

Reaction AlgorithmAr

1. Determine the potential energy of all reactants εpot,in

2. Determine the activation energy of the reaction εact,r

3. Decide whether the collision is reactive (εkin > εact,r)

4. Execute the reaction r∶Min,r �→Mout,r

5. Determine the potential energy of all products εpot,in

6. Calculate the remaining kinetic energy: εret

Injection AlgorithmAinj

1. Inject the productsMout,r toMv

2. Add the kinetic energy εret to Ekin

(Mv , Ekin)

(Min,r , εkin) (Mout,r , εret)

(Mv , Ekin)

Figure 18.2 Block diagram of the generic energy-aware reaction algorithm: A kinetic energy pool is added to

the reaction vessel. The algorithm is split into three parts: (1) The collision algorithm collides molecules accord-

ing to the law of mass action and determines the collision energy. (2) The reaction algorithm decides whether

the reaction is effective or elastic. In the first case the reaction is executed. (3) The injection algorithm inte-

grates the reaction products to the vessel and updates the vessel’s energy pool.

The reaction algorithm A of the artificial chemistry (S ,R,A) is now
split into three functionally different blocks: the collision algorithm, the reac- three sub-

algorithmstion algorithm and the injection algorithm.

Collision Algorithm (a)

The collision algorithmAcol inspects the vessel’s multiset and schedules the
next reaction r ∈ R. Actually it schedules the next collision, because it is
not certain whether the reaction is effective (happens) or elastic (not enough
collision energy). The collision frequency is determined according to the
law of mass action, i.e. it is given by the product of the number of reactant
molecules. Thus the collision algorithm can be implemented by simply draw-
ing molecules at random from the vessel, as it was done by Fontana and

18. structural robustness by energy conservation | 341

Buss (1994) or Decraene et al. (2008), which is especially useful when most
molecules can react with each other. If there are many different reactions
we better use a well-known algorithm such as the ones by Gillespie (1977) or
Gibson and Bruck (2000) (when the number of possible reactions is small).

The collision algorithm also determines the collision energy. In reality,collision energy

this energy can be derived form the velocity vectors of the collidingmolecules.
However, keeping track of each molecule’s kinetic energy (motion) individu-
ally would have been computationally prohibitive. A stochastic approach is
used instead. The collision energy εkin is determined based on the available
free kinetic energy in the reaction vessel, Ekin, by drawing a random variable
from the exponential distribution

εkin ∼ Exp(Ekin∣Mv ∣) (18.8)

were ∣Mv ∣ is the current number of molecules in the reaction vessel. This
distribution stems from (18.5), but uses the average kinetic energy Ekin/ ∣Mv ∣
for the term kBT as proposed by Scafetta and West (2007).

When a collision happens, the collision algorithm selects the reactantsMin,r from the vessel’s multiset and calls the reaction algorithm with the
reactants and the collision energy as arguments.

Reaction Algorithm(b)

The reaction algorithmAr has to determine if the collision is reactive. It there-determine if

the collision

is reactive
fore determines the potential energy of the reactants, εpot,in, as well as the
activation energy of the reaction, εact,r , and executes the reaction if the colli-
sion energy is greater than the activation energy (εkin ≥ εact,r). Otherwise,
the collision is elastic, in which case the collision algorithm re-injects the
reactants and the collision energy back to the vessel. If the reaction is effective
the reaction algorithm determines the potential energy of the products and
the kinetic energy that is left, εret. As shown in Figure 18.1, energy must be
conserved. In other words, the total input energy (εpot,in+ εkin) must be equal
to the total output energy (εpot,out + εret + εheat) (some energy may be lost as
heat). Finally, the reaction algorithm calls the injection algorithm with the
products and the remaining kinetic energy as arguments.

Injection Algorithm(c)

The injection algorithmAinj injects the products of the reaction,Mout,r , to
the vessel’s multisetMv and adds the collision energy that was not converted
into potential energy, εret, to the energy pool Ekin.

342 | part iii — self-healing networking protocols

In addition to rewriting the multiset, the overall algorithm also modifies
the total kinetic energy variable. The two data structures influence each
other: Endothermic reactions will not happen if the kinetic energy is too low,
while the kinetic energy pool is increased or decreased based on the reactions
executed.

customization of the framework 18.2.2

The algorithm and schema introduced above leaves several computational
aspects underspecified as it only provides an energy framework that has to be
instantiated for a specific artificial chemistry. The strength of an algorithmic
chemistry is that the reaction rules are implicitly defined by the structure
of the molecules (Dittrich et al., 2001) such that they can be redefined at
run-time. We also require that the potential energy of a molecule is implicitly
defined by its structure and that the activation energy of a reaction is defined
by the structure of its reactants and products.

The framework therefore contains hooks in form of four parametric
energy-mapping functions f (⋅) → R. By changing these functions, the
notion of energy can be redefined.

Potential energy function εpot= fpot(M): The potential energy function as-
signs a potential energy to each molecule in a multisetM(S), either in a
predefined way or as a function of the molecules’ structures.

Activation energy function εact= fact(r,Min,r ,Mout,r): The activation en-
ergy function assigns each reaction r ∈ R an activation energy, either
as a constant or as a function of the interactions between the involved
molecules.

Energy return function εret= fret(εkin, εact,Min,r ,Mout,r): The energy re-
turn function determines how much of the collision energy that has
not been transformed to potential energy by a reaction is returned to
the vessel’s kinetic energy pool after the reaction. The remaining en-
ergy is lost to the environment as heat. To simulate a thermodynami-
cally closed system one would set fret(εkin, εact,Min,r ,Mout,r)= εkin −(fpot(Mout,r) − fpot(Min,r)).

Energy flux rate re(t): Theenergy flux rate determines the amount of kinetic
energy that is injected (re > 0) or drained (re < 0) from the reaction vessel.
To simulate a thermodynamically closed system one would set re=0.

18. structural robustness by energy conservation | 343

assessment and related work18.2.3

The algorithmic framework proposed in this section mimics energy conser-
vation of chemical reactions. Reaction rates are no longer defined explicitly,
but derived from the structure of the colliding molecules. We designed the
algorithm such that the macroscopic behavior follows the Arrhenius equation.
However, it is left open to the user of the framework to define what energy
represents. For example, the potential energy could represent the binding
strength of the atoms constituting the molecule. The activation energy would
then be the kinetic energy needed to break these bonds. This freedom of
being able to arbitrarily define the meaning of energy is provided by the
parametric energy functions. They offer the designer the possibility to arbi-
trary map molecules and reactions to energy values while the framework still
operates according to the laws of thermodynamics. Note that we are using an
abstracted dimensionless form of energy, i.e. not specified in Joules. In the
context of an artificial chemistry, the energy term is just a placeholder for a
resource, which is needed to build up complexity.

An obvious alternative way to take energy into account is to apply ex-
isting exact stochastic reaction algorithms (Gillespie, 1977; Gibson & Bruck,
2000) directly, using the full equation (18.3) as the weight of the reaction. A
kinetic energy pool Ekin can still be used by substituting kBT in (18.3) with its
equivalent Ekin/ ∣Mv ∣. This leads to a sum of exponentials (over all possible
reaction weights), which is not necessarily faster than drawing a random
number according to (18.5), especially when the number of possible reactions
is large (which is often the case in algorithmic chemistries).

The advantage of our method is two fold: first, it simulates the micro-
scopic level more accurately with little or no extra computational penalty; sec-
ond, it provides a clear separation of concerns between the collision method
and the energy-aware reaction part.

Related energy models aim mostly at the study of real chemistry or
biology, especially the origin of life. These existingmodels do not seemdirectly
appropriate in an algorithmic chemistry context. Some are too complex (the
ToyChem approach by Benkö et al. (2005) defines reaction rules down to the
quantum level), others too simplified for this purpose (for example, Lancet,
Sadovsky, and Seidemann (1993) focus on equilibrium states whereas Pereira
(2005) on catalytic reactions only). Most are unable to handle constructive
systems: Many require the designer to specify rate and energy parameters
for each species and reaction exhaustively (Gordon-Smith, 2007); or assign
kinetic coefficients at random (Bagley & Farmer, 1992; Fernando & Rowe,
2007), without considering the reactants’ composition or shape. Some handle

344 | part iii — self-healing networking protocols

shape explicitly (Lancet et al., 1993; Takeuchi & Hogeweg, 2008) but not
activation energy.

a reaction algorithm to prevent 18.3
unbounded string elongation in fraglets

In this section, we show how the energy framework can be parameterized to
effectively prevent unbounded string elongation in an artificial string-based
chemistry such as Fraglets.

configuration of the energy framework 18.3.1
To limit string growth, instead of defining an arbitrary length threshold,
we limit the total energy (Etot = Ekin + Epot) and keep it at a constant level.
That is, we simulate a thermodynamically closed system. Each string binds
potential energy in proportion to its length. Unlike in nature, we allow energy
to be freely converted between kinetic and potential energy. In order to
produce longer string, the required potential energy must be taken from the
common kinetic energy pool. In order to achieve this mechanism, we define
the parametric functions of the energy framework as follows:

Potential energy: The potential energy of a molecule s ∈ S is set to its string
length, and the potential energy of a multiset is the sum of the potential
energy of its members:

fpot(s) = ∣s∣ (18.9a)
fpot(M)= ∑

s∈M
fpot(s) (18.9b)

Activation energy: Reactions that generate additional symbols require en-
ergy from the pool. The collision energy for these endothermic reactions
has to overcome the energy required for the additional symbols. Exother-
mic reactions, i.e. reactions where the products contain less symbols than
the reactants, are always effective:

fact(r,Min,r ,Mout,r) =max [0, fpot(Mout,r) − fpot(Min,r)] (18.10)

Energy return: An exothermic reaction returns the energy that corresponds
to the deleted symbols back to the kinetic energy pool; no energy is lost
as heat:

fret(εkin, εact,Min,r ,Mout,r) = εkin−(fpot(Mout,r) − fpot(Min,r)) (18.11)

18. structural robustness by energy conservation | 345

Energy flux: The system is thermodynamically closed:

re = 0 (18.12)

The total energy is fully conserved by returning the whole potential energy
difference back to the kinetic energy pool. If a reaction vessel tends to produce
longer strings, the temperature (i.e. the average kinetic energy Ekin/ ∣Mv ∣)
drops and consequently, elongation becomes less frequent. This does not
mean that elongation reactions are totally stopped. But it is less likely to
draw a collision energy high enough to overcome the activation energy for an
elongation reaction. Macroscopically, this may be interpreted as a reduction
of the reaction coefficient depending on the temperature as characterized
by Arrhenius. Competing reactions that shorten strings are spontaneous
in the sense that they do not require any collision energy in order to be
executed, because they do not build up mass. The system automatically finds
a balance between string elongation and reduction reactions and makes the
most efficient use of the available energy.

fraglets simulation of a polymerization reaction18.3.2

In order to illustrate the working principle of the energy-aware reaction
algorithmwe consider the following example, whichmimics a simple polymer
grow-shrink process akin to chain-growth polymerization. A single type of
monomer X can form polymer chains of arbitrary length i, represented as
Xi . The polymerization reaction adds one monomer to the polymer, while
depolymerization removes one monomer.

Xi
kpol�→ Xi+1 (18.13a)

Xi
kdep�→ Xi−1 for i > 1 (18.13b)

According to the energy mapping functions, each molecule is assigned a
potential energy equal to its length. Furthermore, the activation energy of the
polymerization reaction is εact,pol=1, and for the depolymerization reaction
no activation energy is required: εact,dep =0. We assign the polymerization
process a higher pre-exponential factor Apol = 2 whereas Adep = 1 in order
to favor polymerization, just to show afterwards how such elongation can

346 | part iii — self-healing networking protocols

0 100 200 300 400 500
Time [s]

0

100

200

300

400

500

600

P
o

ly
m

e
r

le
n

g
th

max. length

av. length

min. length

Figure 18.3 Unbounded polymer elon-
gation without energy constraints: Min-

imum, average, and maximum polymer

length development over time. The reac-

tion vessel is initialized with 100 polymers

of length 1; there is no energy conservation.

The average polymer length grows linearly,

because the polymerization coefficient is

larger.

be controlled via the energy conservation mechanism. This results in the
reaction coefficients

kdep(t) = Adep exp(−εact,dep ∣Mv ∣
Ekin(t)) = 1 (18.14a)

kpol(t) = Apol exp(−εact,pol ∣Mv ∣
Ekin(t)) = 2e−∣Mv ∣/Ekin(t) (18.14b)

Note that the kinetic energy Ekin(t) and thus the reaction coefficient of the
polymerization reaction kpol(t) varies over time. On the other hand, for
this reaction network only, the total number of molecules ∣Mv ∣ remains
unchanged.

Without Energy Conservation (a)

We first simulate the system without energy control, using a simple law of
mass action algorithm. This is equivalent to choosing an activation energy of
zero (εact=0) for all reactions, leading to kpol=2. Figure 18.3 shows the time
evolution of a typical simulation run. The reaction vessel is initially equipped
with 100 polymers all of length 1. Hence, the initial total potential energy is
Epot =103. The overall concentration remains constant whereas the polymer
lengths grow linearly in time. The reason for this elongation is the higher
reaction coefficient of kpol=2 compared to the depolymerization coefficient
of kdep=1.

With Energy Conservation (b)

We now repeat the simulation using the energy framework with an initial
kinetic energy pool of Ekin(0) = 9900. The system is thermodynamically
closed, meaning that the total energy is always conserved at Etot=Epot+Ekin=
104. Figure 18.4 shows the distribution of polymer lengths over time. There is

18. structural robustness by energy conservation | 347

Figure 18.4 Bounded polymer elongation
with energy constraints: Top: Minimum,

average, and maximum polymer length de-

velopment over time. Bottom: Free kinetic

energy, potential energy bound in the poly-

mers, and total energy. The reaction ves-

sel is initialized with 100 polymers of length

1. The total energy is kept constant at 104

units. The average polymer length grows

linearly until the kinetic energy of the vessel

is exhausted. Then, a stable length equilib-

rium establishes.

0

50

100

150

200

250

P
o

ly
m

e
r

le
n

g
th

0 200 400 600 800 1000
Time [s]

0

2000

4000

6000

8000

10000

12000

E
n

e
rg

y

max. length

av. length

min. length

kin. energy Ekin

pot. energy Epot

tot. energy Etot

still the same drift towards longer polymers as without energy constraints.
However, after the majority of the kinetic energy is converted into potential
energy, the average polymer length settles at a stable equilibrium where both,
the energy-dependent polymerization and the constant depolymerization
reaction reached equal coefficients. A diffusion-like behavior reshuffles the
polymers around that average length. At t →∞, the polymer lengths will be
distributed exponentially, with many monomers and a few long polymers

We can even determine the average polymer length analytically. At
equilibrium the two reaction coefficients must be equal:

k̂dep(t) = k̂pol(t) (18.15)

1 = exp(−∣Mv ∣
Êkin

) (18.16)

This leads to the equilibrium value for the free kinetic energy.

Êkin = ∣Mv ∣
ln 2

(18.17)

The potential energy is equal to the number of symbols in the vessel.

Epot=Etot − Ekin = ∑
s∈Mv

∣s∣ = ∣Mv ∣ ⟨∣s∣⟩ (18.18)

Hence, the mean string length at equilibrium is

⟨∣s∣⟩ = Êpot∣Mv ∣ = Etot∣Mv ∣ − 1
ln 2
= 104
102
− 1
ln 2
= 98.56 (18.19)

348 | part iii — self-healing networking protocols

Thismatches the value observed in Figure 18.4. Note that not all kinetic energy
has been converted to potential energy (symbols), because some polymers
always depolymerize.

This is an efficient yet flexible way of restricting length explosion in an
artificial chemistry. Unlike other approaches where the length of polymers is
restricted by throwing away molecules longer than an arbitrarily chosen max-
imum length, here, this limit is fathomed dynamically based on the available
virtual energy. In the next section, we will review hard length restrictions
and show that they lead to undesired dynamic behavior. By using the energy
framework, we can inject or drain kinetic energy to leave the system more or
less freedom to explore the state space.

mutational robustness by cell-growth 18.4
and multi-level selection

The energy-aware reaction algorithm is able to confine unbounded elongation,
but it cannot prevent a mutation from changing a healthy reaction network
into one that does not produce the right result anymore and starts to accumu-
late waste. As we realized in the previous chapter, a single harmful symbol
mutation irrecoverably pushes a stable organization into an infinite closure.

In order to solve the elongation problem in their chemistry, Decraene
et al. (2008) proposed to introduce multi-level selection where there is com-
petition for resources among multiple vessels in addition to the selective
pressure within the reaction vessel. In this section, we apply a similar method
such that a reaction vessel suffering the elongation problem is going to be
replaced by a viable mutant of another vessel.

outline of the multi-level selection algorithm 18.4.1

In Section 14.1, we showed how replicating molecules in a limited environ-
ment result in a selective pressure that eventually dilutes non-viable, i.e. non-
replicating molecules. In the same way, we now install a selective pressure
among the reaction vessels (or cells). Vessels shall be able to replicate them- cell

selves when being healthy akin to cell division. That is, several cells run in cell division

parallel and perform the same task. The total number of cells is limited. Thus
a dividing vessel displaces another randomly selected one. Consequently,
cells that divide faster are naturally selected against the defective ones.

We regard the production rate of membrane molecules (to be defined)
as the fitness of a vessel. The ultimate goal is to constrain the system such that
membrane production is linked to the efficiency of the cell with respect to

18. structural robustness by energy conservation | 349

the expected result. Once a cell decides to divide, the cell division mechanismcell division

mechanism atomically executes the following steps:

1. A new empty offspring cell (reaction vessel) is generated.

2. Half of the molecules of the dividing cell are selected randomly to move
to the offspring cell.

3. One of the migrated molecules is randomly mutated. (This step is
optional in order to allow for intentional program evolution.)

4. The new cell displaces one of the already existing cells; this maintains
a constant population of cells in the environment.

The third step intentionally mutates one molecule of the offspring. Since we
expect the cell population to be robust tomutations we now even usemutation
to introduce novelty in order to optimize the overall system. Natural selection
arises because the faster a cell is able to generate membrane molecules, i.e.
the fitter it is, the sooner it divides and thus has a selective advantage over
the other cells. A cell that is not able to produce membranes anymore will
eventually be displaced.

a simplistic version of fraglets18.4.2
For our evolution experiments we use a simplified version of Fraglets, de-
signed on purpose to show a very aggressive elongation behavior. The chem-
istry consists of polymers strings s = Σ∗ of arbitrary length over an alphabet
of only 4 symbols Σ = {A, M, f, n}. Like in traditional Fraglets, the first symbol
of a string implicitly defines the string rewriting operation applied to this
molecule as follows

AΨ + MΩ �→ ΨΩ (match and join)
fαβΩ �→ αΩ + βΩ (fork)

nΩ �→ Ω (nop)

where α, β are arbitrary symbols and Ψ, Ω are strings. A simple Quine also
exists in this chemistry:

AfAM + MfAM�→ fAMfAM�→ AfAM + MfAM
Like Fraglets, this chemistry tends to produce strings of increasing length

since the join reaction almost doubles the length on average while the two

350 | part iii — self-healing networking protocols

transformations only reduce the length by 3 (fork) or 1 (nop) symbols, respec-
tively. Therefore it is no surprise that most random soups lead to unlimited
elongation.

simulation setup 18.4.3
In this section, we study the evolutionary behavior of a manually designed
replicating Quine: {AfffAM, MfffAM}. These molecules react and, during the
reduction steps, generate two copies of themselves. Thus the concentration
within a reaction vessel grows hyperbolically when being simulated with a
law of mass action algorithm.

We put Nv =100 vessels running the initial self-replicating program in
an evolutionary context by forcing the cell to divide whenever the number
of membrane molecules (here: molecules starting with symbol M) reaches a membrane

moleculesthreshold of 1000 instances.
The experiment should demonstrate whether the initial self-replicator is

able to persist despite symbol mutation events.

simulation results 18.4.4
We carried out three different simulation scenarios: one where there is no
length restriction, one where we delete or truncate long molecules, and finally
we used our energy framework to constrain the vessel’s uptake of energy.

No Length Restriction (a)

A significant number of all possible mutations on the initial program lead
to a set of molecules with infinite closure: the molecules of such a set have
the potential to reach an infinite sequence space when reacting among each
other. Consequently, without any length restriction, such a mutation may
easily result in the accumulation of ever-growing strings. The resulting hy-
perbolically rising cpu and memory requirements prevent the simulation
of such systems to be carried out on real-world computers. None of the 20
simulation runs we carried out survived 10 generations without exhausting
our machine’s resources.

Hard Length Restrictions (b)

We then tried two simple methods to prevent strings from growing infinitely:
First, we destroyed molecules longer than a certain threshold l (arbitrarily
chosen), and second, we truncatedmolecules longer than this threshold. Both
methods prevent elongation but have an undesired side effect as discussed

18. structural robustness by energy conservation | 351

below. We performed several experiments for thresholds l = 10, 20, 30, 100
with a population size of Nv =100 vessels:

After several generations, we always observed systems where the number
of A- and M- molecules were no longer balanced. This is a consequence of
the stochastic distribution of molecules during cell division. Both deviations
from the symbolic equilibrium may result in a higher reproductive ratio of
the cell:

A cell that generates more M- than A-molecules has a selective advan-
tage by replicating faster since the membrane threshold is reached sooner.
However, if the cell carries this strategy to excess it will cease producing
A-molecules necessary for sustained replication.

A cell that instead speeds up the production of A-molecules indirectly
produces more membranes, too, due to the law of mass action. The top
subfigure of Figure 18.5 shows that the reproductive ratio of such systems is
much higher than the one of the original program. Such mutants quickly take
over the population after some generations. However, this high productivity
comes along with a lower efficiency (see Figure 18.5, middle). We measure
the efficiency as the surface to volume ratio where the surface is the numberefficiency

of membrane molecules and the volume is defined as the total number of
symbols in the cell, i.e. the sum over all molecule lengths. The vessels fully
exploit the length restriction: the average molecule length almost reaches
the length threshold l as depicted in the bottom subfigure of Figure 18.5. A
typical resulting cell multiset that speeds up production and favors A- over
M-molecules is as follows:

{MfffffffffffffffffAM278,
MfffffffffffffffffAA241,
AfffffffffffffffffAM1974,
AfffffffffffffffffAA553}

In spite of applying simple length constraints, a population of cells under
evolutionary pressure easily finds a way to increase the average reproductive
ratio without respecting any notion of efficiency with respect to virtual or
physical resources like the length of strings (virtual mass) or the cpu cycles
needed to simulate the reactions. The chemistry is only able to respect such
constraints when we integrate a notion of them into the microscopic rules of
the artificial chemistry as described below.

352 | part iii — self-healing networking protocols

0 2 4 6 8 10 12 14
Time [ms]

0.0

5.0

10.0

15.0

20.0

A
v.

M
o

le
c

u
le

L
e

n
g

th

0.0

0.1

0.2

0.3

E
ffi

c
ie

n
c

y

0

2000

4000

6000

8000

10000

N
o

rm
.

R
e

p
l.

R
a

te cell with largest value

average

cell with smallest value

threshold l

Figure 18.5 Length-exploiting replicators
for hard length restriction: Evolution

in a population ofNv = 100 cells, all

initialized with the replicating Quine.

Molecules longer than l = 20 symbols

are deleted. The three subplots show

the average measures together with the

measures of those cells with the smallest

andlargestvalue in the population:

Norm. Repl. Rate: Replication rate of

the cell, normalizedwithrespectto

the replication rate of the initial Quine.

A sudden discovery of a fast replica-

tor can be observed at time t = 7.3 s.

Efficiency: Measures how efficienta

cell produces membranes needed for

its division; i.e. fraction of membrane

molecules dividedby the total mass

of the cell (total numberof symbols).

Av. Molecule Length: Average molecule

length in the cell, i.e. total number

of symbols divided by the numberof

molecules.

Energy Conservation (c)

A better method of preventing string elongation is to gradually slow down
the production of new symbols on resource shortage. We aim at steering the
growth by controlling the system’s virtual energy inflow. By using a stochastic
approach, our energy framework simulates the microscopic energy barrier of
a reaction. This method turns out to be very effective in restricting the length
of evolved solutions.

We use the same energymapping functions f (⋅) as in the polymerization
example (see Section 18.3.1). However, unlike the chain-growth polymeriza-
tion example where the total energy was kept constant we now continuously
inject kinetic energy in order to allow the cells to grow.

Moderate Energy Injection Rate. Again we carried out simulations in a
population of Nv =100 vessels and started with a moderate energy injection
rate of re = 105/s. The shortage of kinetic energy results in linear growth
of the concentration of the membrane molecule within a cell running the
initial program. After 100 generations, most of the vessels still run the initial
program; no better solution could be found. Unlike before, the system now
cannot increase the reaction rate by excessively producing A-molecules. Any

18. structural robustness by energy conservation | 353

Figure 18.6 Maintained replicators
within the energy framework: Evolution

in a population ofNv = 100 cells, all

initialized with the replicating Quine.

Kinetic energy is limited and injected at

rate re = 107/s. The three subplots show

the average measures together with the

measures of those cells with the smallest

andlargestvalue in the population:

Norm. Repl. Rate: Replication rate of

the cell, normalizedwithrespectto

the replication rate of the initial Quine.

Efficiency: Measures how efficient a

cell produces membranes needed for

its division; i.e. fraction of membrane

molecules divided by the total mass

of the cell (total numberof symbols).

Av. Molecule Length: Average molecule

length in the cell, i.e. total number

of symbols divided by the numberof

molecules.

0 200 400 600 800 1000 1200 1400
Time [ms]

0.0

10.0

20.0

30.0

40.0

50.0

A
v.

M
o

le
c

u
le

L
e

n
g

th

0.0

0.1

0.2

0.3

0.4

E
ffi

c
ie

n
c

y

0.0

1.0

2.0

3.0

4.0

N
o

rm
.

R
e

p
l.

R
a

te

cell with largest value

average

cell with

smallest

value

production of molecules decreases the temperature and makes endothermic
reactions less frequent.

Critical Energy Injection Rate. Amoderate energy injection rate success-
fully eliminates mutants with infinite closures. However, if we increase the
energy injection by two orders of magnitude to a rate of re=107/s we observe
a qualitatively different phenomenon: The effect of injecting more energy
to an initial program is that it is able to grow hyperbolically after each cell
division because sufficient energy is available. The probability of an effective
reaction is almost one in this phase. During cell growth, the kinetic energy is
shared by an increasing number of molecules. This “cools down” the vessel,
which gradually returns back to linear growth. Arising mutants with infinite
closures start to explore the sequence space by generating longer molecules,
but due to the energy restriction the cells are limited in doing so extensively.
The existence of longer strings leads to viable mutants that incorporate these
new molecules while still being able to survive, i.e. they still have compara-
ble reproduction ratios; the average reproductive ratio remains more or less
constant over the whole simulation run as illustrated in the top subfigure of
Figure 18.6.

One of the reoccurring inventions we observed in cells after 100 genera-
tions is a cluster of molecules of different lengths that all react among each

354 | part iii — self-healing networking protocols

AΦ3

MΦ3

AΦ2

MΦ2

A

M MΦ

AΦ

∅

Figure 18.7 Reaction net-
work of the emerging self-
replicating cluster: All oppo-

nent molecules within the clus-

ter react with each other and

either annihilate each other

(A + M), replicate each other

(AΦ + MΦ), or generate two

copies of longer molecules

(AΦi + AΦi where i ≥ 2). The

double arrow head means that

two instances of the product

are being generated.

other (see Figure 18.7). The evolved reaction network can be described by the
following reaction equations

AΦi + MΦ j → Φi+ j → 2fAMΦi+ j−1 → 2AΦi+ j−1 + 2MΦi+ j−1 for i + j ≥ 0,
A + M→ ∅ otherwise.

where Φn denotes the n-fold concatenation of the copy and split pattern
Φ = fffAM. This motif reoccurs in all molecules. The resulting reactions
generate two instances of shorter, longer, or equal sized molecules. The
cluster contains a lot of very short molecules (A and M). These molecules
do not contain the necessary information to replicate themselves. However,
they react with a small number of larger molecules that contain multiple
copies of the copy and split motif. These longer molecules are maintained at
a lower concentration, which exponentially decreases with their length.

Even though the cells start to produce larger strings, the averagemolecule
size remains constant as depicted at the bottom of Figure 18.6 and the popu-
lation maintains its efficiency as shown in the subfigure above. Finally, the
subfigure at the bottom of Figure 18.8 shows the length distribution of a typi-
cal simulation run after 100 generations. Vessels that contain the mentioned
cluster are prominently present in the population. The cluster consists of
molecules of size 1, 6, 11, 16, 21, . . . , which is clearly visible in the figure.

HighEnergy InjectionRate. Whenwe further increase the inflowof kinetic
energy to re=108/s the vessels grow hyperbolically without energy shortage.
Mutants start to explore the sequence space more aggressively and without
hindrance, which leads to the same problems as discussed for the simple

18. structural robustness by energy conservation | 355

Figure 18.8 Molecule length histogram
of an energy-controlled population:

Distribution of molecule lengths. The

green curve connects molecule lengths

1, 6, 11, 16, 21, . . . , suspected to belong to

the described cluster.

0 20 40 60 80 100 120 140
Molecule length

10−6

10−5

10−4

10−3

10−2

10−1

100

F
re

q
u

e
n

c
y

(i
n

p
o

p
u

a
ti

o
n

)

constraints: The number of A- andM-molecules becomes unbalanced, which
leads to a sudden increase of the replication ratio of some cells that take over
the whole population in turn, followed by the sudden death of the whole
infected population due to the extinction of either A- or M-molecules. Thus
there exists a range of energy injection rate for which the system is able to
survive and explore. A lower injection rate leaves no energy for exploration
while a higher injection rate leads to a outbreak of fast-burning vessels that
inevitably cause the death of the whole population.

discussion18.5

In this chapter, we introduced a generic energy framework for algorithmic
chemistries that stochastically simulates the energy exchange of a reaction on
the microscopic level at which artificial chemical computing systems trans-
form information.

equivalence to wet chemistry18.5.1

One can expect the artificial chemistry to behave thermodynamically and
kinetically similar to an equivalent real chemistry, yet in a simplified form. The
resulting macroscopic dynamic behavior follows the temperature dependent
Arrhenius equation known from real chemistry. By adapting four parametric
energy functions, our framework allows the experimenter to simulate different
thermodynamic scenarios for different chemistries.

356 | part iii — self-healing networking protocols

efficiency 18.5.2

Themethod suggested avoids counting on hardware-dependent parameters
such as cpu run time to control and constrain the consumption of resources
like the approach by Decraene et al. (2008). It rather extends existing exact
stochastic simulation algorithms by an additional energy-processing step,
which requires us to draw an additional random number and compare it to
the activation energy of the reaction. When the kinetic energy in the vessel
is high, i.e. when all reactions are effective, we do not observe significant
performance drawbacks compared to traditional law of mass action algo-
rithms (Gillespie, 1977; Gibson & Bruck, 2000). When lowering the kinetic
energy, the collisions become more elastic, which results in less reaction steps
performed per physical time. However the virtual time unit that a cpu is
able to simulate per physical time unit does not decrease in this case.

effectiveness with respect 18.5.3
to the elongation problem

As an application case, we presented a solution for the well-known elongation
problem in artificial polymer chemistries. We constructed a rather aggressive
instruction set in terms of length control and were still able to keep the elon- keep the elon-

gation process

under control
gation process under control. Even if there is no mass conservation, and even
if growth is largely favored, an external constraint on energy inflow is able to
keep the string length within reasonable bounds. Furthermore, the obvious
but not optimal solution of a hard length restriction is not needed. Such a hard length re-

striction is not

needed
restriction may reveal undesired side effects like a symbolic imbalance that
only becomes apparent in stochastic as opposed to deterministic simulations
(e.g. odes).

We noted that the amount of energy that we inject influences the ex-
ploratory capability of a population of artificial cells: If the injected energy
flow is too low, the cells show linear growth and the population does not find
better solutions for the initial self-replicator. For energy injection rates that
are very high, our cells exhibit unbounded growth which leads to the same
result as for hard length restrictions: the symbols get unbalanced resulting
in a very high reproductive ratio of the affected cells. This is followed by the
sudden death of the whole population. Even if the mechanisms behind this
behavior are not comparable with those that trigger the elongation catastro-
phe in the work of Decraene et al. (2008), interestingly, the resulting effect of
the “rise and fall of the fittest” is the same.

For a narrow range ofmedium energy injection rates, the system survives
while exploration of the sequence space ismoderate, keepingmolecule lengths

18. structural robustness by energy conservation | 357

within acceptable bounds. We observed emerging “clusters” of molecules,emerging

“clusters” which all together form an autocatalytic set. Even though the closure of the set
is infinite, the dynamics of the energy-aware algorithm makes reactions that
form long strings more unlikely. This nicely reflects the nature of biochemical
reaction system where more and more complex molecules evolve over time
in the presence of enough energy.

potential of the energy framework18.5.4

However, the elongation examples do not fully make use of the capability
of our energy framework. For example, we used the smallest possible value
as activation energy, i.e. the difference in potential energy between product
and reactant molecules. In the future, we would like to have a more realistic
mapping from molecule structure to activation energy in order to simulate
enzymatic reactions, which lower the activation energy with respect to the
uncatalyzed reactions. This will hopefully lead to metabolic networks in a
constructive artificial chemistry.

We already linked the virtual potential energy of molecules to the mem-
ory resources they need. Another promising approach would be to link the
virtual kinetic energy to real electrical energy or computational power, respec-
tively. Reactions need cpu time to be executed. The activation energy and
kinetic energy gradient between products and reactants could be chosen such
that the virtual heat generated by the reaction is equivalent to the electrical
energy dissipated by the underlying hardware while executing this reaction.
The chemical program would then shrink and grow in correspondence to the
real energy invested.

application to networking protocols18.5.5

By allowing or at least tolerating mutations we now talk about evolving pro-evolving

protocols tocols. Evolution promises to optimize a system, but has the drawback that
this optimization strategy is often hard to control. In order to use the energy
framework to run and evolve networking protocols, protocol software must
be able to reliably evaluate its own fitness: The protocol’s reaction network
must generate membrane molecules when it is operating correctly; the rate of
membrane production, and hence the rate of cell division being an indirect
measure of the software’s fitness. This raises the problem of distributed fitnessdistributed fit-

ness evaluation evaluation: How can we determine whether a protocol is operating correctly
with local knowledge only? How can we make sure a reaction network does
not just exploit all energy without actually performing the desired functional-
ity? Hence, how can wemap a desired functionality to energy constraints? We

358 | part iii — self-healing networking protocols

cannot give an answer to those questions yet, and it probably needs another
research project to attack them.

summary 18.6

This chapter closes the third part of this thesis. In Chapters 14 and 15, we
introduced Quines as a method to make software intrinsically self-healing
and studied their robustness analytically on the macroscopic, molecular level.
In the previous chapter, we then examined the effect of memory mutations
and execution errors on the microscopic, symbolic level and recognized
that they are hard to mask with the current Fraglets instruction set. In this
chapter, we tried another approachby toleratingmutations. We introduced the
notion of energy and were able to successfully stop uncontrolled elongation of
molecules in infinite reaction networks. Ourmulti-level selectionmechanism
is a potential framework for future protocol evolution.

macroscopic treatment 18.6.1
We startedwith the hypothesis that faults break the self-replicating capabilities
of replicating Quines. In this case, the system can be analyzed mathemati-
cally by the Catalytic Network Equation (Stadler et al., 1993). This equation
captures the essence of the dynamics of chemical replicators and has strong
links to similar equations in biological population dynamics (Lotka-Volterra
equation (Lotka, 1910; Volterra, 1926)) and evolutionary game theory (May-
nard Smith & Price, 1973; Nowak, 2006, Chap. 4). Indeed, our system showed
homeostatic behavior, meaning that a perturbation of the code on the macro-
scopic level (by removing parts of the code) does not disrupt the function of
the protocol. The remaining code even automatically regenerates the missing
parts without actually being “aware” of the fault. This is possible because
we forced the healthy software to have a large basin of attraction. Thus, we
used the same principles for code-level robustness than for robustness against
perturbation in the network environment.

microscopic treatment 18.6.2
We identified two important causes for run-time software faults, namely spon-
taneous memory bit mutations and unreliable instruction execution. These
faults affect the microscopic structure of the chemical program. Experiments
revealed that our hypothesis is only valid for ninety percent of these faults,
and that one out of ten microscopic faults lead to a replication spiral, which
produces longer and longer molecules. This indicates that on the microscopic

18. structural robustness by energy conservation | 359

level, the system is still vulnerable to code-perturbations. We recognized that
with the current Fraglets instruction set, it is not possible to come up with
a structural fixed point, because the perturbation of one symbol sometimes
moves the system far away in state space. We hope to solve this problem in
the future with a probabilistic instruction set.

towards evolving protocols18.6.3
Mutations can be masked by a redundant binary encoding scheme. However,
unreliable execution is not easy to capture and cure. We proposed a multi-
level selection model that does not try to prevent mutations but reshape the
state space such that epidemic mutants are forced to die. Our solution is
based on the observation that the majority of infectious mutants either die
out or consume a lot of memory and cpu resources. By introducing a notion
of energy and by implicitly linking the memory requirements of a reaction
system to the speed of its computation, we were able to stop the uncontrolled
growth and elongation of replication spirals.

However, we believe that an intrinsically self-healing system will always
be an evolving system. Ingredients for evolutionary processes are replication,
selection, and variation. Variation automatically comes from the environment
in form of unreliable hardware. Replication is needed to continuously refresh
healthy software or at least to verify its integrity. Finally, selection is required
to sort out erroneous code and to proliferate the correct program.

Whether the automatic synthesis of protocols, or even their evolution,
will be required to master the complexity of the future Internet is not clear
right now. Because the chemical networking approach provides both, a for-
mal framework to analyze protocols, as well as a baseline robustness that is
needed for evolution (A. Wagner, 2007), we see the potential of cnps for
both engineered and evolved protocols.

••

360 | part iii — self-healing networking protocols

IVpartIV
Discussion

chapter1919Discussion in Relation to Existing Work

The chemical networking paradigm related to other networking
principles, programming methods, and execution models.

That simple principle
predicts almost everything
that’s happening. 19

Noam Chomsky

This chapter puts our chemical networking paradigm into the context
of other work and illustrates common links and differences. We structure

the discussion around the illustration in Figure 19.1, which situates several
programming paradigms and networking principles in a three-dimensional
space.

Most classical networking protocols are executed by immobile code,
programmed in an imperative language, and are focusing on the structural
aspects of information exchange. They reside in the bottom-left-front corner
of the cube. In contrast, chemical protocol code is mobile, rule-based, and
intrinsically dynamic. The arrows in Figure 19.1 show how the chemical
networking principle was inspired by advances along each of the three axes
and from natural chemical reaction systems. However, the advantages of
being in the top-right-back corner of the cube come at the price of increased
randomness andhigher resource requirements. Wewill discuss this additional
cost and show that intrinsic noise can be beneficial and that the increased
memory and computing power requirements are justifiable for the benefits
of the chemical model.

The first three sections of this chapter discuss the advantages of the three
paradigmatic changes and relate cnps to other work along these axes: In

19. discussion in relation to existing work | 363

Figure 19.1 Chemical networking in
relation to other paradigms: Classi-

cal programs and protocol implemen-

tations are static pieces of code, pro-

grammed in an imperative language,

focusing on the structural aspects of

(distributed) computation. Chemical

protocol code is mobile, rule-based,

and intrinsically dynamic. Fraglets was

inspired by advances along the three

axes.

Active

Networking

static code mobile code

im
p

e
ra

ti
v

e
ru

le
-b

a
se

d

st
ru

ctu
ra

l

dynam
ic

al

Chemical

Reactions

CNPs

Original

Fraglets

RBGP

Protocols

Classical

Protocols

Expert

Systems

Unix

Pipes

TCP

Java

Computer

Viruses

Flow-

based

Comm.

Rule Sys.

Data-flow

CPUs

Section 19.1, we look at the difference between imperative and rule-based pro-
gramming languages and locate Fraglets in between the two. In Section 19.2,
we show how chemical protocols programmed in Fraglets can freely chose be-
tween using mobile or static code. Section 19.3 recapitulates how the structure
of chemical protocols is linked to their behavior and how chemical protocols
are embodied in the environment of a computer network. In Section 19.4,
we then debate whether the intrinsic noise of chemical protocols is benefit
or drawback. Finally, in Section 19.5, we show that the higher robustness of
cnps comes at the price of higher resource demands.

rule-based programming models19.1

Today, most networking protocols are programmed in a imperative, procedu-imperative,

procedural ral programming language. Such implementations group together sequences
of statements in procedures that change the state of the program. The chemi-
cal metaphor suggests departing from the sequential execution and from the
state-centric view. Reacting molecules can be captured better by a rule-based
approach.

364 | part iv — discussion

rule-based programming 19.1.1

Rule-based systems organize computation as a sequence of rewriting steps, rule-based

operating on different structures such as strings, terms, graphs, or theorems.
A production rule performs two operations: matching and rewriting. When
a match is found the rule manipulates (i.e. rewrites) the structure. The rules
together with the data structures form a graph along which data elements (e.g.
packets) are processed. From the point of view of a data packet, computation
is sequential. But this does not impose that a single packet is processed by all
rules to termination before the next packet enters the system. It is possible to
match each rule to the data in parallel (Gupta, Forgy, Newell, & Wedig, 1986),
which is a huge benefit compared to procedural programs.

Flow-based programming is a similar approach where a process is de- flow-based

scribed as a flow graph in which basic tasks are connected together in a way
that indicates the data dependencies. In contrast to rule-based systems, flow-
based programs explicitly wire the flow graph. Flow-based programming
goes back to Conway’s coroutines (1963) and is still present in the Unix pipe
system (McIlroy, 1964; The Open Group, 2008). Dennis (1980) proposed a
data-flow-oriented computer architecture where multiple microprocessors
are ready to process an operation as soon as the operands are available.

existing rule-based approaches 19.1.2

So far, rule-based systems were mostly used in expert systems (Giarratano & expert systems

Riley, 2004), for example for vlsi routing (Joobbani & Siewiorek, 1985) or
medical consultations (Shortliffe, 1976). However, the idea of using rewriting
rules to structure communication in computer networks is not new: Mackert
and Neumeier-Mackert (1987) proposed their Communicating Rule Systems Communicating

Rule Systems(crs) where distributed protocol entities are represented as rule systems
that communicate via a set of connecting gates (see also Schneider, Mackert,
Zörntlein, Velthuys, & Bär, 1992). Mackert’s system was one of the original
inspirations for Fraglets. Braden, Faber, and Handley (2002) proposed a
“role-based architecture”, which also uses a set of rules as an implementation
basis. Dressler, Dietrich, German, and Krüger (2009) describe a rule-based
system, inspired by cellular signaling, for programming self-organized sensor
and actor networks.

Recently, Weise (2009) demonstrated how to evolve distributed algo-
rithms by his Rule-Based Genetic Programming (rgbp) approach (see also Rule-Based Ge-

netic Program-

ming
Weise, Zapf, & Geihs, 2007). He showed that the evolvability of protocols is
better if the program representation is based on rules. In particular, a depar-

19. discussion in relation to existing work | 365

ture from the sequential execution order lowers epistasis, i.e. the dependency
between code positions of a solution program.

fraglet rules19.1.3
Fraglets is a rule-based system. Reactions, induced by match-rules, recognize
a corresponding passive fraglet in the multiset and perform some rewriting
steps. In contrast to most rule-based systems, the matching mechanism of
Fraglets is a simple exact match between a single symbol of the active fraglet
(the rule) and the passive fraglet (the data). This enables a very efficient im-
plementation of the matching part, which is usually the biggest performance
problem of rule-based systems. For the subsequent rewriting steps, the pro-
gramming model is that of a stack-based programming language, similar to
Push (Spector et al., 2004). Since both the matching and rewriting code is
represented in the same string format as data, it is quite natural to manipulate
existing rules or generate new rules. Such self-reference is one of the key
requirements for self-healing code.

mobile code19.2

The flat code and data representation also allows Fraglets to send active code
to distant reaction vessel via the send-instruction. Thus, a chemical program
may use the principles of active networks. We already introduced the active
network approach in Section 2.2. As mentioned there, by sending code along
with the data, the remote note does not need to know how to interpret the
data. Thismakes standardization beyond the definition of the virtual machine
obsolete and leverages on-the-fly deployment of protocol code.

Active networks have been criticized for the additional overhead that is
required when each packet carries its interpreting code. In Fraglets, we can
decide on a case-to-case basis whether only data or both code and data shall
be exchanged: TheDisperser example, introduced in Section 5.4 and analyzed
in Chapter 9, only sends passive data molecules, whereas the extended design
variants, discussed in Section 10.4, broadcasts an active molecule that sends
itself back to the origin. We also made use of active code deployment in the
distributed software update example in Section 15.3, where we increased the
system’s robustness by letting the protocol continuously distribute its own
code. Finally, in the multipath protocol example, the piggybacked rewards
were active molecules that replicated the “good” forwarding rules (see Sec-
tion 16.5). Thus, the active networking motif is not only used to quickly adapt
the execution substrate to new protocols, but also to increase the robustness
of a distributed system by continuously refreshing the protocol software.

366 | part iv — discussion

dynamics 19.3

If a traditional protocol such as tcp aims at controlling its own dynamic
behavior it has to start and stop hardware-assisted timers and integrate these
events into its state machine; large parts of the state machine have to deal
with timing and race-conditions. The requirement to fully control each mi-
croscopic state change leads to a fundamentally interval-based perspective on interval-based

perspectivedynamic processes, where the protocol has to manually compute the next
time interval. Because the functional aspects of a protocol are often the prime
and sole concern in the design phase, dynamics is treated as a side effect for
later consideration or discovery.

In contrast, designers of cnps can adopt the more natural flow-based flow-based per-

spectiveperspective on communication processes and packet streams. Protocols are
first designed on themacroscopic level where they are regarded as distributed
chemical reaction networks. Designers are actually forced to care about the
dynamic behavior, because reaction networks follow the law of mass action,
a law that derives the dynamics from the structure of the reaction network.
On the microscopic level, unlike traditional protocols, chemical protocols do
no have to care about timing issues. Once the reaction network is designed,
the stochastic reaction algorithm correctly schedules the program that spans
this reaction network and the programmer never has to handle time intervals
him/herself.

the computer network as dynamic environment 19.3.1

A packet-based communication network is a very fluctuating environment.
The changes of the network characteristics are not only due to topological
changes caused by administrative interventions but mainly due to the cross
talk between different packet streams. That is, each packet sent over the
network, changes the environment for other participants. This is usually
considered to be a nuisance, but it has its benefits: Weise (2009) pointed
out the positive effect of the network’s dynamics while evolving distributed
algorithms: One evolved solution of a leader election protocol exploited the
changes in message latencies to break the symmetry of the state transitions
and converge to a global solution.

A packet network is also an inherently competitive environment because
it usually offers only best-effort delivery. Cooperation has to be enforced by
explicit congestion control algorithms, for example. This is also true for cnps
where we recognized in Section 12.1.3 that a chemical replacement of the core
transport services does not ensure fairness among different packet streams

19. discussion in relation to existing work | 367

either. Therefore, we proposed c3a, a chemical variant of a congestion control
algorithm that is even compatible and fair to tcp streams.

embodiment19.3.2

While exploiting resources, cnps at the same time explore and dynamically
adapt to the environment. Our multipath routing protocol, for example, is
able to obtain bandwidth information because it fills the link with packets; the
Quines occupy the available memory but survive when reducing it. Hence,
cnps achieve a high degree of embodiment (Quick, Dautenhahn, Nehaniv,
& Roberts, 2000): computation may be outsourced to the environment, a
concept already employed in robotics (Pfeifer, Lungarella, & Iida, 2007).

stochastic execution vs.19.4
deterministic state changes

The shift towards mobile, dynamic, rule-based systems is not for free. For
example, with rule-based software execution we lose a certain level of deter-
minism, and rate-encoded information leads to a higher message complexity.
This section shows the drawbacks and advantages of the intrinsic noise due to
random execution whereas the next section focuses on the conflict between
robustness and resource requirements.

The chemical execution model is inherently stochastic in two differentstochastic ex-

ecution model aspects: First, once a reaction is executed, reactant instances are chosen
randomly from the reactant species, and second, the reaction algorithm
determines a random reaction interval.

drawbacks of intrinsic noise19.4.1

We realized that a randomized reaction interval leads to noisy packet rates
and hence to a higher packet loss over bandwidth limited links. We there-higher

packet loss fore proposed a deterministic scheduler instead, which lowered the noise
dramatically (see Section 12.2.2). The drawback of this approach is that the
system can no longer be modeled as a Markov jump process. However, a
stochastic analysis is only feasible for very small systems anyway. Another
drawback is that the advantages of noise (see below) cannot be exploited with
deterministic reaction intervals.

The other source of randomness, the random selection of reactants, is
responsible for reordering packets. If chemical protocols are to be used inpacket re-

ordering the core of the Internet, chemical species should exhibit fifo and tail-drop

368 | part iv — discussion

behavior. Otherwise, the performance of tcp streams flowing through chem-
ical reaction vessels would drop drastically. Although tcp’s data streaming
method is efficient, there may be other strategies to transmit documents over
a network. A more chemically inspired vision is to consider a document
as a set of loosely coupled molecules that may be sent individually and in
arbitrary order to a remote node, where they re-gather. In this model, either
form of randomness is tolerable. This can be further improved by adding a
little redundancy through fountain codes, for example the raptor forward cor-
rection scheme (Luby, Shokrollahi, Watson, & Stockhammer, 2007), which
allows a receiver to reconstruct the conveyed information from a subset of
the received stream of code symbols.

advantages of intrinsic noise 19.4.2

Intrinsic random noise is an advantageous in many cases. In nature, cells are
able to control the amount of noise: When undesired, noise may be suppressed noise control

for robust behavior, for example, by negative feedback (Ullah &Wolkenhauer,
2009b; El-Samad & Khammash, 2004; Paulsson & Ehrenberg, 2000). How-
ever, some noise may be desirable to maintain variability (Shibata & Ueda,
2008; Blomberg, 2006). This has also influenced the design of networking
protocols: Several protocols use a randomly initialized timer to avoid regular
traffic patterns leading to collisions. For example, the Address Resolution
Protocol (arp) (Plummer, 1982) waits for a random interval before probing
whether an address is already in use. This intentional jitter “helps ensure that intentional jitter

a large number of hosts powered on at the same time do not all send their
initial probe packets simultaneously” (Cheshire, 2008). Another example
is the random exponential back-off feature in Carrier Sense Multiple Access random expo-

nential back-off(csma) protocols such as Ethernet (“ieee Standard 802.3,” 2008), which wait
a random time before sending the same data frame again after detecting a
collision.

Another protocol example where noise is exploited is the aras protocol
by Leibnitz et al. (2006), which mimics attractor selection of biochemical attractor selec-

tionswitches. Noise is intentionally added to the system’s behavior in order to let
the protocol explore different routing paths. In Chapter 16, we demonstrated
the same principle with our chemical multipath routing protocol. Stochastic
noise is also desired for gossip protocols. They exploit the randomness to symmetry

breakingbreak the symmetry of the network topology in order to converge faster.

19. discussion in relation to existing work | 369

deterministic approximation of stochastic cnps19.4.3

The advantage of the chemical model is that the stochastic dynamic behavior
can be approximated by deterministic odes, which are automatically deriveddeterministic

approximation from the structure of the reaction network. We introduced this analysis
method in Section 8.2 and used it extensively to study the behavior of our
protocols (e.g. in Chapter 9, Section 11.3.1, Chapter 12, Sections 14.1, and 16.5).
Compared to traditional state-machine based implementation, this simplifies
the behavioral analysis.

robustness vs. resource requirements19.5

Robustness always comes along with redundancy, and redundancy must be
paid with resources. For chemical networking protocols, this means that ro-
bustness to packet loss comes at the price of a higher message complexity, and
that robustness to unreliable execution requires more memory and comput-
ing power. In this section, we discuss the resource requirements of chemical
networking protocols in terms of bandwidth, memory and computing power.

robustness of chemical networking protocols19.5.1

We motivated the shift towards dynamical, more “analog” distributed al-
gorithms by the inherent robustness of bio-chemical reaction systems to
perturbations. Why this is the case is explained by Stepney (2010). She looked
at computation from a dynamical systems point of view, in which case robust-
ness can be seen as the ability of the system to return to the same fixed point
when perturbed. Classical programs do not “recognize” small perturbations,
meaning that a small perturbation leads the system into another fixed point,
which computes another (and wrong) result. The reason for this is the small
size of the basins of attraction that classical state-based systems exhibit.

The macroscopic solutions of cnps are presented in a fixed point with
a larger basin of attraction. A perturbation moves the system a small dis-large basin

of attraction tance from the original state. In chemical reaction networks, stoichiometric
rules force the system to move only in small steps within the neighborhood
of the current state. Therefore a perturbation usually does not lead to the
computation of a completely different result.

higher message complexity19.5.2

Pure chemical networking protocols such asDisperser (see Section 5.4) use the
packet rate to convey information. The packet rate is only slightly disturbed

370 | part iv — discussion

by a single lost packet. But this robustness to packet loss is paid by a higher higher message

complexitymessage complexity, which depends on the value being conveyed. In general,
the bandwidth requirement of pure chemical protocols is higher than classical
protocols, which encode their information symbolically.

On the other hand, no additional bandwidth is required for hybrid
chemical protocols. For continuously running algorithms that send pack-
ets anyway, such as routing or transport protocols, additional information
can be conveyed in the packet interval. That is, rate-based information is
modulated onto the packet stream, orthogonally to the symbolic payload.
This is the operating principle of our c3a congestion control algorithm (see
Section 12.3.2) as well as for the forwarding path reinforcement mechanism
of the self-healing routing protocol (see Section 16.5). For such hybrid proto-
cols that exchange representation-free information in addition to symbolic
payload, no additional bandwidth is required.

memory requirement: 19.5.3
compact vs. redundant state information and code

Chemical protocols do not require more memory per se because the protocol
logic can usually be expressed in a compact way: Compared to traditional pro- compact pro-

gram represen-

tation
grams, they outsource computation to the dynamics of the reaction network.
For example, chemical programs do not have to care about setting timers
or gathering and processing statistical information about the network. This
comes for free by interacting with the network through chemical reactions
and thus by being embodied into the network.

But despite their compactness, chemical programs usually requiremore redundant state

representationmemory because information is encoded in a macro-state by themultiplicity
of molecules. Again, this is not an issue for hybrid protocols where the vessel
hosts multiple similar packets anyway.

To obtain self-healing software, next to redundant state information, we
have to keep redundant copies of code. In Chapter 14, we demonstrated that
at least 20 replicas of each code molecule are required to achieve a sufficient
level of robustness and determinism.

computing power requirements 19.5.4

The computing power requirements of cnps depend on the momentary
reaction rates and the complexity of the microscopic transformation that each
reaction triggers. Thus, for pure chemical protocols such as Disperser, the
required computing power increases with the value stored and conveyed.

19. discussion in relation to existing work | 371

Self-healing programs also requiremore computing power because every
operation is implemented as a Quine. For each processed packet, a data-
processing Quine needs seven additional instruction steps to also replicate
itself. That is, a self-healing program is expected to consume seven times
the computing power of comparable persistent code. Such a constant factor
scales well with the complexity of programs and is usually tolerable.

summary19.6

In this chapter, we showed how the chemical paradigm pushes communi-
cation protocols towards (a) mobile code, (b) rule-based and (c) dynamic
execution, and we discussed several other approaches along these three axes.
We were surprised by the small number of existing concepts to master the
dynamic behavior of protocols, particularly with regard to the complexity
problem of the Internet.

There are other dimensions that open up at the top-right-back corner of
the cube in Figure 19.1. One additional dimension is evolvability: If future
hardware will be more unreliable, variation of code is for granted. cnps
together with the limited resources available can be used to support program
evolution. In fact, an intrinsically self-healing system, as the one that we
introduced, will become an evolving system. On the other hand, evolvability
requires a certain level of robustness (A. Wagner, 2007). The investigations
carried out in the third part of this thesis may therefore also be helpful to
ultimately find robust evolving protocols.

••

372 | part iv — discussion

chapter2020Relevance and Future Directions

On a possible development from static towards dynamic, flow-
based networking and how the chemical metaphor may act as a
signpost.

I believe in intuition and inspiration.
Imagination is more important than
knowledge. For knowledge is
limited, whereas imagination
embraces the entire world,
stimulating progress, giving birth to
evolution. 20

Albert Einstein

Shall the future Internet be controllable or autonomic? This seems
to be a major conflict as automatisms usually lead to complex unpre-

dictable phenomena. In this chapter, we argue that both is possible if we take
a step back and look at the large-scale behavior of macroscopic flows instead
of trying to predict microscopic packet interactions.

The tension between predictability and automation arises from the dif-
ferent needs of Internet users and operators. If we ask the users about their
demands, they require reliable and deterministic services to exchange, store
and process their data. Network operation engineers have another view. Over-
whelmed by the numerous changes in the network and suffering from the
effort required to manually monitor and optimize the network, they ask for
new tools to automate network management and to delegate resource alloca-
tion to the system itself. Their fear, however, is that autonomic processes will
not be controllable anymore.

20. relevance and future directions | 373

On the long run, we cannot avoid to automate certain networking tasks,
as we currently observe the end of feasible micro-management. The same
happens on the formal side: Computer scientists recognized that deterministic
proofs of functional protocol aspects are not possible for complex distributed
phenomena and started to develop probabilistic approaches. We need a
similar paradigm shift as in the physics of the 18th and 19th century where
the theory of classical object-centric mechanics had to be extended by a wave-
based concept to capture phenomena like electrodynamics and optics. We
conjecture that a similar paradigm shift in networking allows us to develop
better solutions for the future Internet. We have to move one step back,
disregard the individual packets, and rather focus on the dynamical aspects
of packet flows in order to be able to come up with new predictions on this
macro-level.

In this chapter, we sketch a possible path towards a future Internet
where not only the exchange of data (Section 20.1), but also their storage
(Section 20.2) and processing (Section 20.3) are treated as predictable flows.
That is, we are favoring enriched network services that go beyond data transfer.
We argue that despite the loss of predictability on the packet-level, large-scale
guarantees on the flow-level are still possible thanks to the chemical metaphor
and sound engineering practice.

flow-based forwarding20.1

With the congestion collapse in the 1980ies, network engineers became aware
that the dynamics of protocols essentially contribute to the success or failure
of a network. This led to a set of congestion control algorithms to which
we also added a chemical variant in Section 12.3. It seems that the choice of
an end-to-end congestion control algorithm is global and permanent. The
incompatibility between the tcp Reno and Vegas variants (Ahn, Danzig, Liu,
& Yan, 1995) has showed that coexistence between congestion algorithms is
not guaranteed, which makes a further development difficult.

We conjecture that the (a) mobile, (b) rule-based, and (c) dynamic
approach of chemical protocols will help to develop new and fair forwarding
and traffic shaping algorithms. (a) The active networking approach allows
installing forwarding code on the fly to the network’s core. Note that there is –
unlike in the Internet – no default forwarding machinery in cnps. We have
seen in Section 12.1.2 that chemical protocols can be used to dampen bursts in
the network. Similarly, cnps can be used to actively block, shape and regulate
packet streams in the forwarding engine. (b)The rule-based approach enables
the coexistence of competing or cooperating solutions. Instead of finding

374 | part iv — discussion

the optimal congestion control algorithm for the whole Internet, each user
or operator may install its own solution, which optimizes throughput and
fairness in the local environment. (c)The tight relation between the structure
of the reaction network in some network region and the flowdynamics enables
predictions about the behavior of coupled flows and flow systems.

Such a flow-centric view requires more than ever that the dynamic pro-
cesses are understood and that the influences among the algorithms can be
designed, and their interaction studied. In this thesis, we have focused on
(chemical) forwarding, but in the future we should also consider including
storage and processing.

flow-based storage 20.2

Storage usually comes with the notion of stiffness and persistence. In cnps,
storage (in a vessel) is natural, but also ephemeral. This makes sense: A
private collection of photographs, for example, is a continuous stream of
new snapshots. Another example is the stream of scientific documents: Re-
searchers carry out new experiments, publish new results, ideas and insights.
These documents have to be redundantly stored and made accessible to other
researchers. One burning issue is how to organize long-time archiving. To-
day, it has become virtually impossible to manually manage our own photo
collection or to decide what should be preserved for the future.

We also have to take a step back from the individual objects and see
databases as a temporal flow of documents. Each single document will have
a certain half-life period. When running out of storage, it is inevitable to
delete some artifacts. Perhaps it is sufficient to keep only some pictures from
our holidays twenty years ago, or the empirical details of an ancient scientific
experiment can be deleted, but not the aggregated results and assessments.

We think that a chemical view to such a temporal stream of documents
opens interesting approaches. As for transport processes, it is important to
understand the flow dynamics of such streams. Document streams intend to
exploit resources, but as memory is limited, a certain level of fairness must
be ensured among those flows, which brings us back to congestion control in
shape space.

first steps — content-centric networks 20.2.1
Recently, Van Jacobson started to promote his content-centric view of net-
working (Jacobson, 2006; Jacobson et al., 2009), which is a first step towards
the unification of storage and transmission processes. Rather than addressing
a document by the address of its host, documents are mobile and have their

20. relevance and future directions | 375

own unique name. This approach blurs the clear distinction between data
storage and data delivery, as documents may relocate to the node where they
are being used. We think that such a data-centric view is an important first
step towards self-maintaining documents.

a chemical approach20.2.2
to organize distributed storage

If we consider documents or parts of the documents as molecules, we could
use an artificial chemistry to organize their links by bonds, express their con-
version into another format by chemical reactions, and control their location
by equilibria stemming from simple interaction rules.

For example, the storage location of documents could be determined
by an artificial chemistry. Repulsion forces ensure that identical replicas of
a document are stored spatially distributed whereas attraction forces pull
a document near to where it is used. If memory runs short in one node,
documents are automatically pushed to neighbor nodes. If the pressure of
novel documents is too large, some documents even have to be deleted.

Such a system is subject to a continuous influx of new documents leading
to an automatic reorganization according to simple rules. Our hope is that
we can transpose the insights gained from controlling transport flows to
documents flows and provide a similar level or analyzability that helps to
predict the behavior of such complex dynamic systems.

flow-based processing20.3

Another problem of today’s information society and knowledge economy is
the huge amount of data available at our fingertips with a myriad of ways of
extracting information.

If we project our flow-based vision even further, a next consequent step
would be to automatically process and aggregate the content of documents.
For example, photographs could be grouped according to the pictured persons,
or related research information could be grouped or even summarized in
a continuous stream. Thus, based on existing artifacts, human-assisted or
fully automatic agents continuously produce new information-, idea-, and
insight-flows.

Note that software agents are themselves streams, namely an endless
sequence of software versions, updated through more or less regular software
patches. Overall, this leads to a system with open-ended development, which
is constantly fedwith new findings or annotations, and information extraction

376 | part iv — discussion

logic, able to produce aggregated knowledge and leading to a higher-level
organization of documents and traffic flows. As a virtual image of today’s
research process, such an automated or assisted system may assists research
and private life.

In such a vision of process flows beyond physical boundaries, privacy
and trust are of utter importance. But trust itself is also dynamic. Our trust to
other persons, institutions, and ideas constantly change during our life. Thus,
security mechanisms may also be regarded as flows of processes that interact
with us and with the data they protect.

In such a highly dynamic environment, where everything is volatile per
se and nothing persists forever, it is more than ever important to understand
the dynamic processes. We don’t believe that our methods presented in this
thesis can be applied directly to these future complex systems. But we believe
that for things to endure they have to be dynamic and – at the end – are flows.

Nur was sich ändert bleibt bestehen! 21

Sprichwort

••

20. relevance and future directions | 377

chapter2121Conclusions

What one concludes to see
depends on the chosen model
of reality. 22

H. Dieter Zeh

Stimulated by the latest advances in systems biology and artifi-
cial life, we ventured on a new approach to organize packet processing

in computer networks in a chemically inspired way. At the center of our
approach is a novel packet-scheduling algorithm stemming from chemical
reaction kinetics that treats packets as virtual molecules and intentionally
defers packet-processing time. Starting from the simple principles of rule-
based, dynamic packet processing, paired with mobile code, we developed a
theory of chemical networking protocols (cnps) that helps network engineers
design robust protocols easily and analyze them thoroughly. We recapitulate
and assess our three major findings as follows:

1. In a distributed system that runs within a chemical scheduling regime,
formal analysis of the dynamics of packet flows on the macroscopic
level becomes feasible. The behavior of chemical networking proto-
cols is described by stochastic processes or – as an approximation –
by a deterministic mathematical model based on ordinary differen-
tial equations. This enables and simplifies formal analysis of protocol
dynamics. There are a vast number of analysis tools, originally de-
veloped for natural chemical reaction systems, which we adopted to
cnps. While traditionally, only the packet flows have been modeled as
stochastic processes (e.g. in queuing theory), we also apply and impose

21. conclusions | 379

this to the packet processing. On the analysis side, this does not change
much: the same mathematical framework can be applied, but thanks to
the chemical execution engine, we are now able to derive a mathemati-
cal description of the protocol’s dynamics directly from the chemical
program. We provided chemical models for basic network components,
such as simple queues and links, and demonstrated the power of the
analysis methods by proving the convergence of a gossip-based aggre-
gation protocol (Disperser), the fairness of our chemical congestion
control algorithm (c3a), and the stable equilibrium solution of a link
load-balancing algorithm. Proofs for a protocol’s dynamics are rare in
networking, so we are pleased that ours turned out to be quite elegant.

2. Our environment forces protocol designers to come up with “fluid”
protocols that continuously track the environment and adapt to it.
This might seem to be a challenging task. But, in addition to a sound
mathematical foundation, a chemical networking approach potentially
promotes good system-wide properties when composing such proto-
cols. To support the development process, we came up with design
methods to engineer cnps: In contrast to traditional protocol design,
the dynamic behavior of cnps is specified and analyzed before the
microscopic aspects are fixed. The reaction network is synthesized
in a bottom-up approach from simple reaction motifs that exhibit a
dynamic behavior that is well understood. We offered a couple of useful
motifs for distributed arithmetic computation, source routing, traffic
shaping, neighbor discovery, anycast, gossiping, and link load balanc-
ing. These motifs are combined in the reaction graph, which serves as a
visual design instrument that makes the dynamic behavior of protocols
intuitively graspable and communicable to other engineers. We were
surprised how easy and quickly new protocol ideas came to live after
having had some experience with the chemical mindset.

3. This thesis also addressed the question whether protocols are able to
offer dynamic robustness, when faced with competition, and code sta-
bility, when faced with resource constraints or deletion attacks. We
departed from explicit rate computation and relied on the embodiment
of key information in the reaction rates. Our chemical congestion con-
trol algorithm (c3a) is able to mimic tcp, or said differently, tcp is a
chemical protocol in disguise! Code stability is obtained through con-
tinuous rewriting and code replication. We showed that such protocol
software recovers from the loss of major code parts, and we were even
able to quantify the robustness by computing the mean survival time.
An open problem is that on an unreliable execution machinery, a small

380 | part iv — discussion

percentage of errors lead to self-replicating spirals that quickly con-
sume all resources. We sketched a possible solution based on an energy
conservation scheme paired with multi-level selection. Whether the
automatic synthesis of protocols, or even their evolution, is desirable,
needed or just inevitable also remains open. From our point of view,
cnps are an attractive and well-formalizable basis for such an endeavor.

In this work we examined how chemical concepts can be transposed to net-
work design in order to obtain the same provable emergent properties that
we find in chemical systems such as stable equilibria. This requires a paradig-
matic shift from designing local state machines to weaving global reaction
networks. We hope that our work will contribute to a robust and future-proof
Internet.

••

21. conclusions | 381

Appendices

appendix

AASupplementary Material

This appendix contains supplementary material that did not fit in the
main part.

limiting the vessel capacity A.1
to restrict the reaction rate

In the following, we compute and compare the maximum reaction rate de-
manded by the law of mass action to the maximum reaction rate the cpu is
able to deliver. This is additional material to Section 11.3.2. We provide an
equation for the dimensioning of the reaction vessel for a worst-case scenario.
This result is only valid for bimolecular reactions. We base this calculation
on the following parameters that characterize our computing infrastructure:

T : denotes the cpu time required to execute one Fraglets production rule,
either a reaction or a transformation.

C: denotes the symbol capacity of the reaction vessel, which is limited by
the memory available and, based on our calculations, should be further
restricted to let the cpu cope with the law of mass action requirements.

Let us first calculate the maximum reaction rate required by the law of mass
action (rmax,loma) and the maximum reaction rate the cpu is able to achieve
(rmax,cpu). Then we have to make sure that at any time

rmax,loma < rmax,cpu (A.1)

385

worst-case scenarioA.1.1
for arbitrary bimolecular reactions
Maximum Reaction Rate Required by the Law of Mass Action(a)

In general, the symbol capacity C of a saturated vessel is distributed over Ns
instances of length ∣s∣ of species s ∈ S :

C = ∑
s∈S

Ns ∣s∣ (A.2)

The rates of all reactions r ∈ R are given by the propensity function (see (5.4)
on page 56)

ar(N(t)) = kr∏
{s∈S}

Ns(t)αs,r (A.3)

The maximum reaction rate required by the law of mass action is the maxi-
mum value returned by one of the propensity functions:

rmax,loma = sup{ar(n) ∶ r ∈ R} (A.4)

Since we are interested in the worst-case behavior, we are looking for the
vessel composition that yields the maximum reaction rate. For bimolecular
reactions the fastest rate can be achieved if themolecules are evenly distributed
between the two reactants of the fastest reaction:

rmax,loma = kmaxNs1Ns2 = kmax N2 N
2
= kmax N2

4
(A.5)

In this case, the vessel only contains two species, which allows us to compute
their cumulative length based on (A.2) as

∣s1∣ + ∣s2∣ = 2 CN (A.6)

Maximum Reaction Rate Obtainable from the cpu(b)

Next, we compute the maximum reaction rate the cpu is able to cope with.
As shown previously in Section 5.2, a Fraglets reaction first concatenates two
molecules and then executes the transformation rules in the product’s head
until the fraglet is in its normal form. The worst-case scenario in terms of
required cpu time is that the product of the reaction only contains transfor-
mation instructions, which must be executed to completion. The maximum
processing time required is thus

386 | appendix

Tmax,cpu(s1, s2) =
reaction79:
T +

transformations7888988:(∣s1∣ + ∣s2∣ − 3)T (A.7)

We previously recognized that only two species are present in the worst-case
scenario, and we also computed their length in A.6. Hence, the maximum
reaction rate yields

rmax,cpu = 1
Tmax,cpu(s1, s2) = N

2T (C − N) (A.8)

Derived Restriction of the Vessel Capacity (c)

As stated in (A.1) the worst-case reaction rate required by the law of mass
action must never exceed the rate the cpu is able to perform reactions:

rmax,loma7888888888888988888888888:
kmax

N2

4
<

rmax,cpu788888888888888888888888888988888888888888888888888888:
N

2T (C − N) (A.9)

We resolve this equation with respect to the vessel capacity C and obtain a
new restriction of

C < 1
TkmaxN

+ N (A.10)

This equation still depends on the number of molecule instances N . This
parameter defines whether the symbol capacity of the vessel is distributed
to many short molecules or a few long molecules. The above equation has
a minimum at N = √2/ (Tkmax), and hence the vessel capacity shall be
restricted to

C < (2
Tkmax

)−3/2 +√ 2
Tkmax

(A.11)

best-case scenario A.1.2
for unimolecular reactions (disperser)

Although the Disperser protocol (see Section 5.4 and Chapter 9) is based on
bimolecular reactions, one reactant is always a catalyst (C), which does not
change its quantity. The reaction network can therefore be approximated by
unimolecular reactions among the data molecules X. Here, we assume that

a. supplementary material | 387

each reaction vessel only contains NX data molecules of size ∣X∣ = 1 symbol.
This means that the vessel capacity in terms of symbols is equal to the vessel
capacity in terms of molecules:

C = ∑
s∈S

Ns ∣s∣ = NX (A.12)

Thus, each network node v i has to trigger deg(v i) reactions with a total
reaction rate of

rmax,loma = deg(v i) kmaxC (A.13)

Each reaction additionally executes a send-transformation. Thus, the
maximum reaction rate the cpu can cope with is

rmax,cpu(s1, s2) = 1
2Tkmax

(A.14)

In order to be sure that the cpu is able to deliver the reaction rate
required by the model, the capacity has to be limited to

C < 1
2Tkmax

(A.15)

versioned quineA.2

This section provides a detailed description of the Fraglets implementation
of the versioned Quine, which we used to realize autonomic and self-healing
software updates. The basic idea behind this Quine is described in Section 15.3.

In Fraglets, this reaction network is implemented by appending a version
number to the blueprint.

Bvi = [B . . . i] (A.16)

The reward verifies whether its own version number is less than the ver-
sion number of the blueprint. If yes, the product is destroyed using a nul-
instruction, otherwise the replication process is engaged. ThedetailedFraglets

388 | appendix

rewriting steps after a reaction among a reward Rvi and a blueprint Bv j are
shown below:

Rvi78889888:
[match B sdup dummy . . .]+

Bv j78888888888888888889888888888888888888:
[B . . . j] (A.17a)⇒[sdup dummy spush i . . . j] (A.17b)⇒[spush i slt . . . j j] (A.17c)⇒[slt sif nul mfork . . . j j i] (A.17d)

For j < i (new reward reacts with an old blueprint) the product destroys itself.
⇒[sif nul mfork . . . j 1] (A.18a)⇒[nul . . . j] (A.18b)⇒[] (A.18c)

Otherwise, for j ≥ i (reward reacts with blueprint of same or newer genera-
tion) the replication continues.

⇒[sif nul mfork . . . j 0] (A.19a)⇒[mfork 2 send any nop nop fork . . . j] (A.19b)⇒ [send any fork . . . j]d88e888f
remote replica

+ [nop nop fork . . . j]d88e888f
local replica

(A.19c)

[nop nop fork . . . j]d88e888f
local replica⇒[fork sdel B . . . j] (A.19d)⇒[sdel . . . j] + [B . . . j] (A.19e)⇒ [. . .]d88e88f

Av j

+ [B . . . j]d888888888888888888e888888888888888888f
Bv j

(A.19f)

••

a. supplementary material | 389

appendix

BBFraglets Instruction Set

This appendix lists the complete Fraglets instruction set provided by
Fraglets version 0.5.1. Section B.1 introduces a meta expression notation,

which is used to describe the instruction set. In Section B.2, we show the
general format of immediate- an stack-instructions. Finally, Section B.3 lists
all Fraglets instructions grouped by their function. Further information about
the Fraglets programming language can be found in Section 5.2.

fraglets meta expressions B.1

Fraglet production rules can be described by regular expression substitution
rules. For example, the exch rule that swaps two symbols is represented by

[exch (.) (.) (.) (.*)]⇒ [/1 /3 /2 /4] (B.1a)
Instead of using this traditional notation, we prefer to use Greek letters as
placeholders for substrings in the matching part (left-hand side) and reuse the
same letter in the substitution part (right-hand side). The same production
rule is written as

[exch σ α β Φ]⇒ [σ β α Φ] (B.1b)
We use the following placeholders:

α, β, . . . ,ω: Greek lowercase letters denote symbols of the finite alphabet Σ:
α, β ∈ Σ,

b. fraglets instruction set | 391

Γ, Δ, . . . , Ω: Greek uppercase letters denote possibly empty symbol strings
of arbitrary length over the alphabet Σ: Φ, Ψ ∈ Σ∗,

Γ l , Δl , . . . , Ω l : Superscripted Greek uppercase letters denote symbol strings
of length l over the alphabet Σ: Φl , Ψ l ∈ Σ l , ∣Φl ∣= ∣Ψ l ∣= l

ΓX , ΔX , . . . , ΩX : Subscripted Greek uppercase letters denote possibly empty
symbol strings of arbitrary length that must not contain symbols from
the exclusion set X : ΦX , ΨX ∈ {Σ/X}∗

Γ lX , Δl
X , . . . , Ω l

X : The previous two notations can be combined to denote
possibly empty symbol strings of length l that do not contain symbols
from the exclusion set X : Φl

X , Ψ l
X ∈ {Σ/X}l , ∣Φl

X ∣= ∣Ψ l
X ∣= l

v i , vj : Network node identifiers: v i , vj ∈ V .
In the following instruction tables, we typeset the instruction identifiers in
blue, the operand symbols in red, and the result symbols in green.

general formatB.2
of immediate and stack instructions

Most instructions come in two different variants: an immediate instruction
that uses operands embedded in the code (head of the fraglet) whereas the
corresponding stack instruction accesses its operands in the tail of the fraglet.
The general format for immediate instructions is

[iinstr σ α . . . ω Φ]⇒ [σ op(α . . . ω) Φ] (B.2a)

That is, the instruction iinstr uses the 3rd and further symbols as operands,
keeps the 2nd symbol as continuation pointer (usually a tag) and replaces
the operands with the result of the operation. The general format for stack
instructions is

[sinstr Φ ω . . . α]⇒ [Φ op(α . . . ω)] (B.2b)

The stack instruction sinstr uses the last and previous symbols as operands
and replaces them with the result of the operation. No special continuation
symbol is required: The first symbol of the string Φ determines the next
production rule applied to the product fraglet.

An underlined symbol denotes a structurally active symbol (see Sec-
tion 7.4 for details). In the following we list both, the immediate and the stack
variant next to each other if both exist.

392 | appendix

fraglets instructions B.3

In this section, we list all Fraglets instructions, grouped by their function.

synchronization instructions B.3.1

Synchronization instructions concatenate two or more fraglets and are sched-
uled according to the law of mass action (see Section 5.2.3).

Immediate Instructions (a)

Tag Production Rule
match [match σ Φ] + [σ Ψ]⇒ [Φ Ψ]
matchp [matchp σ Φ] + [σ Ψ]⇒ [matchp σ Φ] + [Φ Ψ]
matchs [matchs σ Φ] + [σ Ψ]⇒ [σ Ψ] + [Φ Ψ]
matchps [matchps σ Φ] + [σ Ψ]⇒ [matchps σ Φ] + [σ Ψ] + [Φ Ψ]
mmatch [mmatch α σ1 . . . σα Φ] + [σ1 Ψ1] +⋯+ [σα Ψα]⇒ [Φ Ψ1 . . . Ψα]
mmatchp [mmatchp α σ1 . . . σα Φ] + [σ1 Ψ1] +⋯+ [σα Ψα]⇒ [mmatchp α σ1 . . . σα Φ] + [σ1 Ψ1] +⋯+ [σα Ψα]+[Φ Ψ1 . . . Ψα]
mmatchs [mmatchs α σ1 . . . σα Φ] + [σ1 Ψ1] +⋯+ [σα Ψα]⇒ [σ1 Ψ1] +⋯+ [σα Ψα] + [Φ Ψ1 . . . Ψα]

mmatchps [mmatchps α σ1 . . . σα Φ] + [σ1 Ψ1] +⋯+ [σα Ψα]⇒ [mmatchps α σ1 . . . σα Φ] + [σ1 Ψ1] +⋯+ [σα Ψα]+[σ1 Ψ1] +⋯+ [σα Ψα] + [Φ Ψ1 . . . Ψα]

Examples (b)

[mmatch 2 X Y a] + [X b] + [Y c]�→ [a b c] (B.3a)

trivial instructions B.3.2

The nop-instruction consumes no operands and performs no operation. The
nul-instruction removes the current fraglet from the vessel. Since both in-
structions consume no operands there are no stack variants.

b. fraglets instruction set | 393

Immediate Instructions(a)

Tag Production Rule
nop, n [nop Φ]⇒ [Φ]
nul [nul Φ]⇒∅ (fraglet is removed)

Examples(b)

[nop match x ssum y 1]�→ [match x ssum y 1] (B.4a)
[nul match x ssum y 1]�→ ∅ (B.4b)

simple symbol shuffling instructionsB.3.3

The exch-instruction swaps two symbols, the dup-instruction duplicates a
symbol and destroys another one to make sure the product is shorter than
the reactant. The del-instruction deletes a symbol.

Immediate Instructions(a)

Tag Production Rule
exch, e [exch σ α β Φ]⇒ [σ β α Φ]
dup [dup σ χ α Φ]⇒ [σ α α Φ]
del [del σ χ Φ]⇒ [σ Φ]

Stack Instructions(b)

Tag Production Rule
sexch [sexch Φ β α]⇒ [Φ α β]
sdup [sdup χ Φ α]⇒ [Φ α α]
sdel [sdel Φ χ]⇒ [Φ]

Examples(c)

[sexch a b c d]�→ [a b d c] (B.5a)
[sdup x a b c d]�→ [a b c d d] (B.5b)

394 | appendix

complex symbol reordering instructions B.3.4

The rot-instruction exchanges the head and the tail at a given separation sym-
bol. The repl-instruction replaces all occurrences of a given symbol. The rev-
instruction reverses the order of all symbols whereas the cross-instruction
moves all symbols at odd positions before the symbols at even positions.

Immediate Instructions (a)

Tag Production Rule
rot [rot σ α Φ{α} α Ψ]⇒ [σ Ψ Φ{α}]
repl [repl σ α β Φ{α} α . . . Ψ{α}]⇒ [σ Φ{α} β . . . Ψ{α}]
rev, r [rev α β . . .ω]⇒ [ω . . . β α]
cross, c [cross α β γ δ . . . π ω]⇒ [α γ . . . π β δ . . . ω]

Stack Instructions (b)

Tag Production Rule
srot [srot Φ{α} α Ψ α]⇒ [Ψ Φ{α}]
srepl [srepl Φ{α} α . . . Ψ{α} β α]⇒ [Φ{α} β . . . Ψ{α}]

Examples (c)

[rot a X b c d X e f g]�→ [e f g b c d] (B.6a)
[srepl a b X c d X e f Y X]�→ [a b Y c d Y e f] (B.6b)

[rev a b c d e]�→ [e d c b a] (B.6c)
[cross a b c d e]�→ [a c e b d] (B.6d)

move between code and data stack B.3.5

The push/spush-instructions consume the first operand from the code section
(head of the fraglet) and push it to the data stack (tail of the fraglet). The
pop/spop-instructions do the opposite.

b. fraglets instruction set | 395

Immediate Instructions(a)

Tag Production Rule
push [push σ α Φ]⇒ [σ Φ α]
pop [pop σ Φ α]⇒ [σ α Φ]

Stack Instructions(b)

Tag Production Rule
spush, u [spush α Φ]⇒ [Φ α]
spop, o [spop Φ α]⇒ [α Φ]

Examples(c)

[spush 1 ssum y 5]�→ [ssum y 5 1] (B.7a)
[spop y 5 1 ssum]�→ [ssum y 5 1] (B.7b)

complex stack instructionsB.3.6

These instructions are used to reshuffle the data stack (tail of the fraglet).
sshove pushes the current tail symbol deep into the stack whereas syank
pulls a symbol from deep in the stack to the tail. The position of the deep
stack symbol is given by its relative position from the tail. The duplication
variant syankdup creates a copy of the symbol. The sshoveat and syankat

instructions don’t use a number to identify the position but search for a certain
symbol instead. Finally, the syankdupat variant searches for a certain symbol
within the stack and copies its right neighbor symbol to the tail. Immediate
variants are provided but rarely used in practice.

396 | appendix

Immediate Instructions (a)

Tag Production Rule
shove [sshove σ α β Φ Ψα]⇒ [σ Φ β Ψα]
syank [syank σ α Φ β Ψα]⇒ [σ Φ Ψα β]
syankdup [syankdup σ α Φ β Ψα]⇒ [σ Φ β Ψα β]
sshoveat [sshoveat σ α β γ Φ Ψα β Υ{β}]⇒ [σ Φ γ Ψα β Υ{β}]
syankat [syankat σ α β Φ γ Ψα β Υ{β}]⇒ [σ Φ Ψα β Υ{β} γ]
syankdupat [syankdupat σ α β Φ γ Ψα β Υ{β}]⇒ [σ Φ γ Ψα β Υ{β} γ]

Stack Instructions (b)

Tag Production Rule
sshove [sshove Φ Ψα β α]⇒ [Φ β Ψα]
syank [syank Φ β Ψα α]⇒ [Φ Ψα β]
syankdup [syankdup Φ β Ψα α]⇒ [Φ β Ψα β]
sshoveat [sshoveat Φ Ψα β Υ{β} γ β α]⇒ [Φ γ Ψα β Υ{β}]
syankat [syankat Φ γ Ψα β Υ{β} β α]⇒ [Φ Ψα β Υ{β} γ]
syankdupat [syankdupat Φ γ Ψα β Υ{β} β α]⇒ [Φ γ Ψα β Υ{β} γ]

Examples (c)

[sshove this is test a 1]�→ [this is a test] (B.8a)
[syankdupat 3 2 1 a b c a 2]�→ [3 2 1 a b c 2] (B.8b)

[syankat 3 2 1 a b c a -1]�→ [3 2 1 a c b] (B.8c)

arithmetic instructions B.3.7

The following instructions treat the two operators as numbers (integer or
floating point) and compute an arithmetic function. The instructions slt, seq,
and sgt compare the two tail symbols and are mainly used in combination
with the conditional instruction sif.

b. fraglets instruction set | 397

Immediate Instructions(a)

Tag Production Rule

sum [sum σ α β Φ]⇒ [σ (α+β) Φ]
diff [diff σ α β Φ]⇒ [σ (α−β) Φ]
mult [mult σ α β Φ]⇒ [σ (α∗β) Φ]
div [div σ α β Φ]⇒ [σ (α/β) Φ]
mod [mod σ α β Φ]⇒ [σ (α mod β) Φ]
pow [pow σ α β Φ]⇒ [σ (αβ) Φ]
min [min σ α β Φ]⇒ [σ min(α, β) Φ]
max [max σ α β Φ]⇒ [σ max(α, β) Φ]

Stack Instructions(b)

Tag Production Rule

ssum [ssum Φ β α]⇒ [Φ (α+β)]
sdiff [sdiff Φ β α]⇒ [Φ (α−β)]
smult [smult Φ β α]⇒ [Φ (α∗β)]
sdiv [sdiv Φ β α]⇒ [Φ (α/β)]
smod [smod Φ β α]⇒ [Φ (α mod β)]
spow [spow Φ β α]⇒ [Φ (αβ)]
smin [smin Φ β α]⇒ [Φ min(α, β)]
smax [smax Φ β α]⇒ [Φ max(α, β)]
slt [slt Φ β α]⇒ [Φ (β<α ? 1 : 0)]
seq [seq Φ β α]⇒ [Φ (β=α ? 1 : 0)]
sgt [sgt Φ β α]⇒ [Φ (β>α ? 1 : 0)]

Examples(c)

The following example computes the expression y=2x + 5 for x=12:
[match x spush 2 smult spush 5 ssum y] + [x 12]�→ [spush 2 smult spush 5 ssum y 12]�→ [smult spush 5 ssum y 12 2]�→ [spush 5 ssum y 24]�→ [ssum y 24 5]�→ [y 29]

(B.9)

398 | appendix

conditional instructions B.3.8

The immediate instructions eq, and lt compare two numeric symbols in the
head of the fraglet and prepend one or another symbol to the result. The stack
instruction sif is used in combination with the comparison instructions slt,
seq, sgt, or any other arithmetic instruction (see above).

Immediate Instructions (a)

Tag Production Rule

eq [eq σ τ α β Φ]⇒ [(α=β ? σ : τ) Φ]
lt [lt σ τ α β Φ]⇒ [(α<β ? σ : τ) Φ]
empty [empty σ τ Φ]⇒ [(∣Φ∣=0 ? σ : τ) Φ]

Stack Instructions (b)

Tag Production Rule
sif [sif σ τ Φ α]⇒ [(α≠0 ? σ : τ) Φ]

Examples (c)

[sif a b c d 0]�→ [b c d] (B.10a)
[sif a b c d 3]�→ [a c d] (B.10b)

[seq sif a b 2 3]�→ [sif a b 0]�→ [b] (B.10c)

splitting instructions B.3.9

These instructions make two out of one fraglet. The fork-instruction creates
a copy of the fraglet and leaves both copies with a different header symbol.
The mfork-instruction leaves multiple header symbols separate. The pop2-
instruction splits off the header symbol; this instruction is deprecated and
only provided for backwards compatibility. The split-instruction splits the
fraglet at the first occurrence of the asterisk (*) symbol whereas the splitat-
instruction does the same at a specified symbol. The release-instruction
extracts a string of symbols between the first two occurrences of the asterisk
(*) symbol as a separate fraglet. Again, there is a releaseat-instruction where
the splitting point can be specified.

b. fraglets instruction set | 399

Immediate Instructions(a)

Tag Production Rule
fork, f [fork σ τ Φ]⇒ [σ Φ] + [τ Φ]
mfork [mfork α Φα Ψα Υ]⇒ [Φα Υ] + [Ψα Υ]
pop2 [pop2 σ τ α Φ]⇒ [σ α] + [τ Φ]
split, s [split Φ{∗} * Ψ]⇒ [Φ{∗}] + [Ψ]
splitat [splitat α Φ{α} α Ψ]⇒ [Φ{α}] + [Ψ]
release [release Φ{∗} * Ψ{∗} * Υ]⇒ [Φ{∗} Υ] + [Ψ{∗}]
releaseat [releaseat α Φ{α} α Ψ{α} α Υ]⇒ [Φ{α} Υ] + [Ψ{α}]
divide, d [divide Φ Ψ]⇒ [Φ] + [Ψ] ∣Φ∣= ∣Ψ∣ or ∣Φ∣= ∣Ψ∣ + 1)
shuffle, h [shuffle α β γ δ . . . π ω]⇒ [α γ . . . π] + [β δ . . . ω]

Stack Instructions(b)

Tag Production Rule
sfork [sfork Φ σ τ]⇒ [σ Φ] + [τ Φ]
smfork [smfork Υ Φα Ψα α]⇒ [Φα Υ] + [Ψα Υ]
ssplitat [ssplitat Φ{α} α Ψ α]⇒ [Φ{α}] + [Ψ]
sreleaseat [sreleaseat Φ{α} α Ψ{α} α Υ α]⇒ [Φ{α} Υ] + [Ψ{α}]

Examples(c)

[split a b c * d e f]�→ [a b c] + [d e f] (B.11a)
[releaseat X a b X c d X e f]�→ [a b e f] + [c d] (B.11b)

transmission instructionsB.3.10

Transmission instructions send fraglets to a neighbor vessel (send), to all
neighbor vessels (broadcast), to any neighbor (anycast), inject it into a sub-
vessel (inject) or expel it to the outer vessel (expel). The newnode-instruction
is an experimental instruction, which creates a new sub-vessel on the fly.

400 | appendix

Immediate Instructions (a)

Tag Production Rule

send v i[send vj Φ]⇒ vj[Φ] if (v i , vj) ∈ E
broadcast v i[broadcast Φ]⇒ vj[Φ] for all (v i , vj) ∈ E
anycast v i[anycast Φ]⇒ vj[Φ] for one random (v i , vj) ∈ E
inject v i[inject vj Φ]⇒ vj[Φ] if vj a sub-vessel of v i
newnode v i[newnode vj Φ]⇒ vj[Φ] create vj as sub-vessel of v i
expel v i[expel Φ]⇒ vj[Φ] if v i a sub-vessel of vj

Stack Instructions (b)

Tag Production Rule

ssend v i[ssend Φ vj]⇒ vj[Φ] if (v i , vj) ∈ E
sinject v i[sinject Φ vj]⇒ vj[Φ] if vj a sub-vessel of v i
snewnode v i[snewnode Φ vj]⇒ vj[Φ] create vj as sub-vessel of v i

Examples (c)

local[send remote a b c]�→ remote[a b c] (B.12a)

inspection instructions B.3.11

Inspection instructions obtain information from the environment: node re-
turns the identifier of the reaction vessel, i.e. the address of the network
node if the vessel is the outermost vessel. The instruction length returns the
length of the fraglet not including the length and the subsequent dummy
symbol, which is deleted. The instruction hash computes a hash value of the
fraglet. The rnd-instruction obtains a random number. These instructions
consume a dummy symbol χ in order to reduce the length of the fraglet by
at least one symbol (see Section 5.2.4). The newname-instruction constructs a
new tag symbol by combining the strings of two other symbols. Finally, the
delay-instruction removes the fraglet from the vessel and re-injects it later.

b. fraglets instruction set | 401

Immediate Instructions(a)

Tag Production Rule
node v i[node σ χ Φ]⇒ v i[σ v i Φ]
length [length σ χ Φ]⇒ [σ ∣Φ∣ Φ]
hash [hash σ χ Φ]⇒ [σ hash(Φ) Φ]
rnd [rnd σ χ Φ]⇒ [σ (∼ U(−231, 231 − 1)) Φ]
newname [newname σ α β Φ]⇒ [σ “αβ” Φ]
delay [delay σ α Φ]⇒⋯τ = α⋯⇒ [σ Φ]

Stack Instructions(b)

Tag Production Rule
snode v i[snode χ Φ]⇒ v i[Φ v i]
slength [slength χ Φ]⇒ [Φ ∣Φ∣]
shash [shash χ Φ]⇒ [Φ hash(Φ)]
srnd [srnd χ Φ]⇒ [Φ (∼ U(−231, 231 − 1))]
snewname [snewname Φ β α]⇒ [Φ “βα”]
sdelay [sdelay Φ α]⇒⋯τ = α⋯⇒ [Φ]

Examples(c)

local[snode X a b c]�→ local[a b c local] (B.13a)
[slength X a b c]�→ [a b c 3] (B.13b)

[shash X a b c]�→ [a b c 100384] (B.13c)
[srnd X a b c]�→ [a b c 311937467] (B.13d)

[newname X a b c]�→ [X ab c] (B.13e)

••

402 | appendix

b. fraglets instruction set | 403

List of Figures

1.1 Mate-and-spread game . 7
1.2 Example time trace of the mate-and-spread game 7
1.3 Structure of the thesis in four parts 9

3.1 Reaction network graphs of the mate-and-spread game 28
3.2 Reaction network of a catalyzed reversible reaction 35
3.3 Next Reaction Algorithm driving a reversible reaction 36
3.4 Stochastic simulation of a reversible reaction 38

4.1 Engineering model for chemical networking protocols 46
4.2 Execution model . 48

5.1 Artificial chemistries in the engineering model 52
5.2 Reaction network of a simple distributed artificial chemistry . 55
5.3 Transformations are executed immediately 62
5.4 Stack instructions operate on the fraglet tail 64
5.5 Non-deterministic finite state machine 66
5.6 Source Routing in Fraglets . 67
5.7 Reaction network of Disperser 69
5.8 OMNeT++ simulation of Push-Sum and Disperser 70
5.9 OMNeT++ simulation of Disperser 71

6.1 Analytical methods in the engineering model 74
6.2 Chemical protocol analysis overview 80

7.1 Structural analysis in the engineering model 84
7.2 Mapping fraglet sets to abstract species 85
7.3 Wrong mapping . 86

list of figures | 405

7.4 Mapping fraglet expressions to abstract species 95
7.5 Symbol relation graph . 96
7.6 Symbol relation graph example 97
7.7 Coloring of structurally active symbols 100
7.8 Expansion of the coloring along the subgraphs 100
7.9 Mapping fraglet expressions to abstract species 101

8.1 Dynamical analysis in the engineering model 104
8.2 Reaction network of Disperser between two nodes 108
8.3 Markov chain of Disperser . 108
8.4 Classification of states . 110
8.5 Convergence time of Disperser (1) 113
8.6 Convergence time of Disperser (2) 113
8.7 Linearized perturbation state-space model 120
8.8 Linearized perturbation state-space model of Disperser 122
8.9 Perturbation impulse response 124
8.10 Effective/Approximated probability distribution of Disperser . 131
8.11 Reaction network among species complexes 133
8.12 Venn diagram of the Chemical OrganizationTheory 135

9.1 Reaction network and graph Laplacian of Disperser 140
9.2 Signal-to-noise ratio of Disperser 145
9.3 Noise of Disperser with little molecules 146
9.4 Noise of Disperser with more molecules 147
9.5 Noise of Disperser driven by bimolecular reactions 148
9.6 Performance effects of Disperser’s parameters 149

10.1 Design methods in the engineering model 154
10.2 Kirchhoff ’s current law . 158
10.3 Kirchhoff ’s voltage law . 159
10.4 Molecule conservation loops . 159
10.5 Reversible reaction in Fraglets 164
10.6 Motif to map a molecular quantity to a rate and vice-versa . . . 165
10.7 Quantity-mirroring motif . 166
10.8 Linear combination motif . 166
10.9 Product motif . 167
10.10 Exponentiation motif (1) . 167
10.11 Exponentiation motif (2) . 167
10.12 Division motif (1) . 168
10.13 Division motif (2) . 168
10.14 Difference motif . 170

406 | list of figures

10.15 Constant quantity motif . 170
10.16 Remote quantity-mirroring motif 171
10.17 Echo motif . 172
10.18 Packet loss motif . 172
10.19 Rate limitation motif . 173
10.20 Rate-limiting motif with excessive drop 174
10.21 Neighbor quantification motif 176
10.22 Neighbor quantification motif (2) 177
10.23 Connected neighbor quantification motif 177
10.24 Anycast motif . 178
10.25 Original reaction network of Disperser 179
10.26 Reaction network of the extended Disperser 180
10.27 Alternative reaction network of the extended Disperser 181
10.28 Signal-to-noise ratio of different Disperser design variants . . . 183

11.1 Implementation issues in the engineering model 186
11.2 Conceptual Fraglets network node 187
11.3 Fraglets Virtual Machine (VM) 188
11.4 Embedding of Fraglets into OMNeT++ 191
11.5 Realistic reaction vessel capacity limits 197

12.1 Traditional vs. chemical queue 201
12.2 Chemical link model . 204
12.3 Step response of a real link and its chemical model 205
12.4 Chemical link model for competing packet streams 206
12.5 Consumer vs. producer link allocation modes 207
12.6 Enzymatic link model . 208
12.7 Enzymatic shared medium link model 211
12.8 Disperser over a traditionally allocated link 212
12.9 Disperser over enzymatic links 213
12.10 Accuracy of Disperser in a network with enzymatic links (1) . . 216
12.11 Accuracy of Disperser in a network with enzymatic links (2) . . 217
12.12 TCP loopback through a reaction vessel 218
12.13 TCP loopback through a reaction vessel — measurements . . . 220
12.14 Chemcial reaction network with FIFO-order 222
12.15 TCP loopback through a deterministic vessel — measurements 224
12.16 TCP over a FIFO queue allocated link — scenario 225
12.17 TCP over an “enzymatic link” — scenario 226
12.18 TCP over a FIFO queue allocated link — measurements 227
12.19 TCP over an “enzymatic link” — measurements 228
12.20 Reaction network of C3A . 231

list of figures | 407

12.21 Network topology for congestion control simulations 234
12.22 Packet-loss dependent transmission rate in C3A 234
12.23 Single molecule stream under congestion control 235
12.24 Efficiency/Fairness of two C3A-controlled streams 236
12.25 Efficiency/Fairness of a C3A-controlled stream in competition with a

TCP stream . 238
12.26 Reaction network of C3A+ . 238
12.27 Single C3A+-controlled molecule stream 241
12.28 Efficiency/Fairness of two C3A+-controlled streams 242
12.29 Efficiency/Fairness of a C3A+-controlled stream in competition with

a TCP stream . 243

14.1 Chemical Quine in Fraglets . 260
14.2 Replicating Quine . 261
14.3 Replicating Quine subject to deletion attacks 262
14.4 Markov chain of the replicating Quine 264
14.5 Baseline robustness of the replicating Quine 265
14.6 Organizations of the replicating Quine 266
14.7 Replicating Quine subject to execution errors 267
14.8 Organizations of the replicating Quine (execution errors) . . . 268
14.9 Robustness of the replicating Quine (execution errors) 269
14.10 Organizations of the replicating Quine (memory alterations) . 270
14.11 Robustness of the replicating Quine (memory alterations) . . . 271
14.12 Distributed Quine type 1 . 272
14.13 Distributed Quine type 2 . 272
14.14 Robustness of distributed Quines (memory alterations) 272
14.15 Robustness of distributed Quines (packet loss) 273
14.16 Data-processing Quine . 274
14.17 Deterministic fixed point of the data processing Quine 277
14.18 Organizations of the data-processing Quine 279
14.19 Robustness of the data-processing Quine 280
14.20 Robustness of the data-processing Quine 281

15.1 Coexistence time and survival probability of competing Quines 284
15.2 The emergence of islands of dominance 285
15.3 Competing data-processing Quines 286
15.4 String of Quines . 288
15.5 Hypercycle Quine . 288
15.6 Separation of regeneration and replication 289
15.7 Additional replication feed from a separate vessel 290
15.8 Versioned Quine . 292

408 | list of figures

15.9 Initial spreading of the versioned Quine 293
15.10 Infection with version 2 Quines and their pervasion 294
15.11 Infection with version 1 Quines has no chance 295
15.12 Continuous injection of version 2 Quines for a certain time . . 295

16.1 Network topology for multipath routing protocol simulations . 298
16.2 Cell metaphor for the multipath routing protocol 299
16.3 Reaction network to disseminate routing table entries 301
16.4 Reaction network of a single forwarding path 305
16.5 Competition among two forwarding Quines 306
16.6 Slow diffusion of routing table entries 307
16.7 Forwarding performance with link outage 308
16.8 Forwarding performance with link outage and packet loss . . . 310
16.9 Forwarding performance with link outage and delay 311
16.10 Forwarding performance while the program code is deleted . . 313

17.1 Wild-type of the program for a symbol mutation analysis . . . 317
17.2 Mutant classification scheme . 318
17.3 Effect of one-symbol mutations — persistent rules 319
17.4 Effect of one-symbol mutations — redundant persistent rules . 320
17.5 Effect of one-symbol mutations — redundant Quines 321
17.6 Structural damage of Quines . 321
17.7 Quine detection method . 324
17.8 Frequency of Quine appearance with respect to the seed length 325
17.9 Most frequent Quine functions 326
17.10 Robustness to execution errors of the most robust Quine found 328
17.11 Symbol sequence histogram as found in Quines 329
17.12 Instructions required for the diversity of graph types 330
17.13 Instruction dependent robustness of Quines to mutations . . . 331
17.14 Parity-bit encoding scheme for Fraglets instructions 331

18.1 Energy diagram of an exothermic reaction 337
18.2 Block diagram of the generic energy-aware reaction algorithm 341
18.3 Unbounded polymer elongation without energy constraints . . 347
18.4 Bounded polymer elongation with energy constraints 348
18.5 Length-exploiting replicators for hard length restriction 353
18.6 Maintained replicators within the energy framework 354
18.7 Reaction network of the emerging self-replicating cluster . . . 355
18.8 Molecule length histogram of an energy-controlled population 356

19.1 Chemical networking in relation to other paradigms 364

list of figures | 409

List of Tables

1.1 Examples and application cases 10
5.1 Subset of elementary Fraglets transformation rules 59
5.2 Subset of Fraglets synchronization rules 59
5.3 Subset of Fraglets stack transformation rules 65
12.1 Comparison of the enzymatic link model to an M/M/1-queue . 210
12.2 Comparison of the two chemical congestion algorithm versions 243

list of tables | 411

List of Algorithms

3.1 Simple reaction algorithm for the mate-and-spread game . . . 23
3.2 Next Reaction Method . 34
5.1 Real-time Next Reaction Method 56
7.1 Closure of a set of fraglets . 88

list of algorithms | 413

List of Symbols

functions
adj(i, j) Adjacency of nodes v i and v j . 51
ar(N(t)) Propensity of each reaction r ∈ R at a given vessel composi-

tion N(t) . 31
bnd(z, v) Binding of network service z to node v 297
C f (W) Abstract closure operator on setW under function f . . . 86
Cre(W) Closure of fraglet setW under rewriting expansion 86
degin(v i) In-degree of node v i , i.e. number of links arriving at v i 140
degout(v i) Out-degree of node v i , i.e. number of links leaving v i . . 139
dom r Domain (set of reactant species) of reaction r 27
E [X(t)] Expected value of random variable X(t) 113
f (x) Net production rate; total dilution flux 192
hr(N(t)) Number of distinct combinations of reactant molecules of

reaction r at composition N(t) . 32
H(s) Frequency response / transfer function 119
img r Image (set of product species) of reaction r 28L{ f (t)} Laplace transform of function f (t) 119L−1 {F(s)} Inverse Laplace transform of function F(S) 120O(r) Order of reaction rule r . 27
path(z) List of network nodes along a routing path to service z . 299
Φ(χ) Relative net production rate; total relative dilution flux 260
P(n, t) Conditional state probability of composition n at time t 103
rank(S) Rank of matrix S . 131
re(W) Rewriting expansion function of the set of fragletsW . . . 85
Var [X(t)] Variance of the random variable X(t) 126

list of symbols | 415

matrices
A Adjacency matrix . 141
A State matrix of an lti system . 118
B Input matrix of an lti system . 118
C Output matrix of an lti system . 119
D Diffusion matrix . 126
D Feedthrough matrix of an lti system 119
I Identity matrix . 116
J Jacobian matrix . 115
Q Transition rate matrix . 105
S Stoichiometric matrix . 113
U Unit matrix . 142
Ξ Covariance matrix . 126

scalars
A Pre-exponential factor of the Arrhenius equation 335
αs,r Number of s-molecules consumed by reaction r 27
b Link bandwidth . 201
βs,r Number of s-molecules produced by reaction r 27
Γ Gaussian white noise . 123
γs,r Stoichiometric coefficient of species s in reaction r 27
C Vessel capacity (number of symbols) 193
χs(t) Concentration of molecule s . 260
cr Stochastic rate constant of reaction r 31
d Delay . 201
δ Bit mutation rate . 267
δ Deficiency . 131
Eact Activation energy (macroscopic) . 335
εact Activation energy (microscopic) . 335
εheat Heat . 340
Ekin Kinetic energy (macroscopic) . 338
εkin Kinetic energy (microscopic) . 335
Epot Potential energy (macroscopic) . 343
εpot Potential energy (microscopic) . 341
εret Energy that is returned to the vessel 340
Etot Total energy . 343
ηs(t) Noise random variable of species s 125
kB Boltzmann constant . 335

416 | list of symbols

kmax Reaction coefficient of the fastest reaction 194
kr Reaction coefficient of reaction rule r 27
λ Birth rate . 110
μ Death rate . 110
N Vessel capacity (number of molecules) 192
NA Avogadro constant: number of molecules per mole 29
Ns(t) Random variable for the quantity of species s 28
Ω Volume of the reaction vessel . 29
ρ Load factor . 171
T Max. cpu time required to execute one production rule 194
T Temperature . 335
xs(t) Mean quantity of molecule s . 113

other symbolsA Reaction algorithm . 22(i, j) Network link (edge) between nodes (vertices) v i and v j . 51
v i Network node . 52♢ Fraglets symbol wildcard . 89
w Word: string of symbols over an alphabet 57

sets, multisets, & tuples
AC Artificial chemistry . 22B Set of bindings between network services and nodes . . . 297DAC Distributed artificial chemistry . 51E Set of edges (network links) . 51E Stochastically closed subspace . 267G Network graph . 51M(S) Multiset over a set S . 28Min,r Reactant multiset of reaction rule r 27Mout,r Product multiset of reaction rule r . 27Mv Multiset of species in the reaction vessel 28Mv i Multiset of species in network node v i 52Ni Set of neighbor nodes of network node v i 51P Set of production rules . 57PW Set of production rules among fraglets in setW 85R Set of reaction rules . 22Ri Set of reaction rules amongmolecules of network node v i 52S Set of molecular species . 22Si Set of molecular species in network node v i 52

list of symbols | 417

Σ Alphabet: set of symbols . 57V Set of network nodes (vertices) . 51X State space . 103Z Set of network services . 297

vectors
1 Column vector of all ones . 109
γr Stoichiometric vector of reaction r 103
η(t) Vector of noise random variables . 125
n Concrete composition: instance of N 103
N(t) Composition: vector of molecular quantities 103
Nv(t) Molecular composition of vessel v . 28
p̂ Stationary probability distribution 105
u(t) Input signal vector of an lti system 118
x̂ Steady-state quantity vector . 114
x(t) Average composition: vector of average quantities 114
x̃(t) Perturbation vector; offset from the fixed point 115

418 | list of symbols

List of Quotes

1. “Only those who attempt the absurd will achieve the impossible. I think
it’s inmy basement. . . let me go upstairs and check.”Maurits Cornelis
Escher (1898–1972), Dutch artist. (p. vii)

2. “Will the technologies of communication and culture help us to under-
stand one another better, or will they deceive us and keep us apart?”
In the October issue of the Penthouse Magazine (1988). Roger Wa-
ters (*1943), British musician, bass player and primary lyricist for
the rock band Pink Floyd. (p. 13)

3. “The meeting of two personalities is like the contact of two chemical
substances: if there is any reaction, both are transformed.” In Jung
(1933) (revised edition: Jung, 2005, p. 49). Carl Gustav Jung (1875–
1961), Swiss psychiatrist and founder of analytical psychology. (p.
21)

4. “The symbol and the metaphor are as necessary to science as to poetry.”
In Bronowski (1958, Part 2, § 6, p. 36) (revised edition: Bronowski,
1990). Jacob Bronowski (1908–1974), British mathematician, biolo-
gist, and science historian of Polish origin. (p. 43)

5. “The outstanding feature of behavior is that it is often quite easy to recog-
nize but extremely difficult or impossible to describe with precision.”
In Rapoport (1962, p. 92). Anatol Rapoport (1911–2007), Russian-
born American Jewishmathematical psychologist, co-founder of the
general systems theory. (p. 51)

6. “The epistemological value of probability theory is based on the fact that
chance phenomena, considered collectively and on a grand scale, cre-
ate non-random regularity.” In Kolmogorov (1954). Andrey Nikolae-
vich Kolmogorov (1903–1987), Soviet Russian mathematician. (p.
73)

list of quotes | 419

7. “An abstraction is one thing that represents several real things equally
well.” Quoted in Parnas (2007). Edgser Wybe Dijkstra (1930–2002),
Duch computer scientist, winner of the 1972 Turing Award. (p. 83)

8. “One has then to develop a dynamics for such a string like structure.” In
Dirac (1955). Paul Adrien Maurice Dirac (1902–1984), British theo-
retical physicist. (p. 103)

9. “Someone who gossips to you will gossip about you.” (English proverb)
(p. 139)

10. “Complexity must be grown from simple systems that already work.”
In K. Kelly (1995). Kevin Kelly (*1952), founding editor of Wired
magazine. (p. 153)

11. “Time is not bought ready-made at the watchmaker’s.” In Bronowski
(1958, Part 2, § 5, p. 35) (revised edition: Bronowski, 1990). Jacob
Bronowski (1908–1974), British mathematician, biologist, and sci-
ence historian of Polish origin. (p. 185)

12. “Of course, there isn’t any ‘God of the Internet.’ The Internet works be-
cause a lot of people cooperate to do things together.” In “Heavenly
Father of the net” (1997). Jon Postel (1943–1998), American com-
puter scientist. (p. 199)

13. “The art of healing comes from nature, not from the physician.Therefore
the physicianmust start from nature, with an openmind.” Philip von
Hohenheim (a.k.a. Paracelsus) (1493–1541), alchemist, physician, as-
trologer, and general occultist. (p. 249)

14. “Was war also das Leben? Es war Wärme, das Wärmeprodukt former-
haltender Bestandlosigkeit, ein Fieber der Materie, von welchem der
Prozess unaufhörlicher Zersetzung und Wiederherstellung unhalt-
bar verwickelt, unhaltbar kunstreich aufgebauter Eiweissmolekel be-
gleitet war.” In Mann (1924, Chap. 5). Paul Thomas Mann (1875–
1955), German novelist and 1929 Nobel Prize laureate. (p. 259)

15. “We will now discuss in a little more detail the Struggle for Existence.” In
Darwin (1995, Chap. 3). Charles Darwin (1809–1882), British natu-
ralist outlining the theory of evolution. (p. 283)

16. “Ceux qui passent toujours par les mêmes chemins, voyent ordinaire-
ment toujours les mêmes objets; il est rare qu’à force de suivre dif-
férentes routes, on ne découvre de nouveaux sujets dignes de nos at-
tentions les plus sérieuses.” In Polinière (1728, p. vii). Pierre Polinière
(1671–1734), early investigator of electricity and electrical phenom-
ena. (p. 297)

17. “Things do not turn out the way you think they will.” In Crichton (2002).
JohnMichaelCrichton (1942–2008),American author, filmproducer
and television producer. (p. 315)

420 | list of quotes

18. “It is important to realize that in physics today, we have no knowledge
what energy is.” In Feynman, Leighton, and Sands (1963, Sect. 4.1).
Richard Feynman (1918–1988), American physicist. (p. 335)

19. “That simple principle predicts almost everything that’s happening.” In a
radio interview on kuow, Seattle (Chomsky, 2005).NoamChomsky
(*1928), American professor of linguistics, anarchist, human rights
activist, and political analyst. (p. 363)

20. “I believe in intuition and inspiration. Imagination is more important
than knowledge. For knowledge is limited, whereas imagination em-
braces the entire world, stimulating progress, giving birth to evolu-
tion.” InEinstein (1931, p. 97). Albert Einstein (1879–1955),German-
Swiss-Austrian-American physicist. (p. 373)

21. “Nur was sich ändert bleibt bestehen!” (Sprichwort) (p. 377)
22. “What one concludes to see depends on the chosen model of reality.” In

Zeh (1980). Heinz-Dieter Zeh (*1932), German theoretical physicist.
(p. 379)

list of quotes | 421

Bibliography

A

Abrash, H. I. (1986). Studies Concerning Affinity. Journal of Chemical Edu-
cation, 63, 1044–1047. English translation of Waage & Guldberg (1864).
doi:10.1021/ed063p1044

Adamatzky, A., De Lacy Costello, B., & Asai, T. (2005). Reaction-Diffusion
Computers. Elsevier.

Ahn, J. S., Danzig, P. B., Liu, Z., & Yan, L. (1995). Evaluation of tcp Ve-
gas: emulation and experiment. sigcomm Computer Communication
Review, 25 (4), 185–195. doi:10.1145/217391.217431

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers, Prin-
ciples, Techniques & Tools. Pearson Education, Inc.

Allman, M., Paxson, V., & Blanton, E. (2009). tcp Congestion Control.
rfc 5681 (Draft Standard). Internet Engineering Task Force. ietf.
Retrieved from Internet Engineering Task Force: http://www.ietf.
org/rfc/rfc5681.txt

Allman, M., Paxson, V., & Stevens, W. (1999). tcp Congestion Control.
rfc 2581 (Proposed Standard). Internet Engineering Task Force. ietf.
Retrieved from Internet Engineering Task Force: http://www.ietf.
org/rfc/rfc2581.txt

Amjad, H. (2004). Combining Model Checking and Theorem Proving. Cam-
bridge, uk.

Anckaert, B., Madou, M., & de Bosschere, K. (2007). A Model for Self-
Modifying Code. In J. Camenisch, C. Collberg, N. Johnson & P.
Sallee (Eds.), Proc. 8th International Conference on Information Hiding
(Vol. 4437, pp. 232–248). Lecture Notes in Computer Science. Berlin /
Heidelberg: Springer. doi:10.1007/978-3-540-74124-4_16

bibliography | 423

Anderson, D., Craciun, G., & Kurtz, T. (2010). Product-Form Stationary
Distributions forDeficiency Zero Chemical Reaction Networks. Bulletin
ofMathematical Biology, 72, 1947–1970. doi:10.1007/s11538-010-9517-
4

Arrhenius, S. (1884). Kongliga Svenska Vetenskaps-Akademiens Handlingar,
8, 66–93.

Aspnes, J. (2003). Randomized Protocols for Asynchronous Consensus. Dis-
tributed Computing, 16 (2–3), 165–175. doi:10.1007/s00446-002-0081-5

Athuraliya, S., & Low, S. H. (2001). An Empirical Validation of a Duality
Model of tcp andQueueManagementAlgorithms. In Proc. 2001Winter
Simulation Conference (Vol. 2, pp. 1269–1274). doi:10.1109/WSC.2001.
977445

B

Baccelli, F., Cohen, G., Olsder, G. J., & Quadrat, J.-P. (1992). Synchroniza-
tion and Linearity : An Algebra for Discrete Event Systems. Wiley Se-
ries in Probability and Mathematical Statistics. Chichester, uk: John
Wiley & Sons Ltd. Retrieved 29 September 2010, from http://www-

rocq.inria.fr/metalau/cohen/documents/BCOQ-book.pdf

Bagley, R. J., & Farmer, J. D. (1992). Spontaneous Emergence of a
Metabolism. In C. G. Langton, C. E. Taylor, D. J. Farmer & S. Rasmussen
(Eds.), Proc. 2nd Interdisciplinary Workshop on the Synthesis and Simu-
lation of Living Systems (Artificial Life ii) (pp. 93–140). Redwood City,
ca, usa: Addison-Wesley.

Bagley, R. J., Farmer, J. D., Kauffman, S. A., Packard, N. H., Perelson, A., &
Stadnyk, I. (1989). Modeling Adaptive Biological Systems. Biosystems,
23 (2–3), 113–137. Artificial Worlds Modeling Of Biological Systems.
doi:10.1016/0303-2647(89)90016-6

Bakhshi, R., Cloth, L., Fokkink, W., & Haverkort, B. (2009). Mean-Field
Analysis for the Evaluation of Gossip Protocols. Proc. 6th International
Conference on Quantitative Evaluation of Systems, 247–256. doi:10.110
9/QEST.2009.38

Ballarini, P., Mardare, R., & Mura, I. (2009). Analysing Biochemical Os-
cillation through Probabilistic Model Checking. Electronic Notes in
Theoretical Computer Science, 229 (1), 3–19. Proceedings of the Sec-
ond Workshop From Biology to Concurrency and Back (fbtc 2008).
doi:10.1016/j.entcs.2009.02.002

424 | a – b bibliography |

Banâtre, J. P., Fradet, P., & Radenac, Y. (2006). A GeneralizedHigher-Order
ChemicalComputationModel. ElectronicNotes inTheoretical Computer
Science, 135 (3), 3–13. doi:10.1016/j.entcs.2005.09.016

Banâtre, J.-P., Fradet, P., & Radenac, Y. (2005). Principles of Chemical Pro-
gramming. In Proc. 5th InternationalWorkshop on Rule-Based Program-
ming (Vol. 124, 1, pp. 133–147). Elsevier. doi:10.1016/j.entcs.2004.07.
019

Banâtre, J.-P., & Le Métayer, D. (1986). A New Computational Model and
its Discipline of Programming (Research Report No. 566). Retrieved 19
October 2010, from http://hal.inria.fr/docs/00/07/59/88/PDF/RR-

0566.pdf

Banâtre, J.-P., & Le Métayer, D. (1993). Programming by Multiset Trans-
formation. Communications of the acm, 36 (1), 98–111. doi:10.1145/
151233.151242

Banzhaf, W. (1990). The “molecular” traveling salesman. Biological Cyber-
netics, 64 (1), 7–14. doi:10.1007/BF00203625

Banzhaf, W. (1993a). Self-replicating Sequences of Binary Numbers. Foun-
dations i: General. Biological Cybernetics, 69, 269–274. doi:10.1007/
BF00203123

Banzhaf, W. (1993b). Self-replicating Sequences of Binary Numbers. Foun-
dations ii: Strings of length N=4. Biological Cybernetics, 69, 275–281.
doi:10.1007/BF00203124

Baran, P. (1964). On Distributed Communications Networks. ieee Trans-
actions on Communication Systems, 12 (1), 1–9. doi:10.1109/TCOM.1964.
1088883

Barbuti, R., Cataudella, S., Maggiolo-Schettini, A., Milazzo, P., & Troina,
A. (2005). A Probabilistic Model for Molecular Systems. Fundamena
Informaticae, 67 (1–3), 13–27.

Baumann, R. C. (2002). Soft Errors in Commercial Semiconductor Technol-
ogy: Overview and Scaling Trends. ieee 2002 Reliabiliby Physics Tutorial
Notes.

Beck, K., & Cunningham, W. (1987). Using Pattern Languages for Object-
OrientedPrograms. Inoopsla ’87Workshop on Specification andDesign
for Object-Oriented Programming.

Bella, G. (2007). Formal Correctness of Security Protocols. Springer.
Benkö, Flamm, C., & Stadler, P. F. (2005). Explicit Collision Simulation of

Chemical Reactions in a Graph Based Artificial Chemistry. In M. S.
Capcarrère, A. A. Freitas, P. J. Bentley, C. G. Johnson & J. Timmis (Eds.),
Proc. 8th European Conference on Advances in Artificial Life (ecal 2005)
(pp. 725–733). Lecture Notes in Computer Science. Berlin / Heidelberg:
Springer. doi:10.1007/11553090_73

| bibliography b | 425

Benkö, G., Centler, F., Dittrich, P., Flamm, C., Stadler, B., & Stadler, P. F.
(2008). A Topological Approach to Chemical Organizations. Artificial
Life, 15 (1), 71–88. doi:10.1162/artl.2009.15.1.15105

Benkö, G., Flamm, C., & Stadler, P. F. (2003). A Graph-Based Toy Model of
Chemistry. Journal of Chemical Information and Computer Science, 43
(3), 1085–1093. doi:10.1021/ci0200570

Berezin, S., Campos, S., &Clarke, E.M. (1998). Compositional Reasoning in
Model Checking. In Proc. International Symposium on Compositionality
(compos’97) (Vol. 1536, pp. 81–102). Lecture Notes in Computer Science.
Berlin / Heidelberg: Springer. doi:10.1007/3-540-49213-5_4

Berry, G., & Boudol, G. (1989). The Chemical Abstract Machine. In Proc.
17th acm sigplan-sigact Symposium on Principles of Programming
Languages (pp. 81–94). New York, ny, usa: acm. doi:10.1145/96709.
96717

Bertot, Y., & Castéran, P. (2004). InteractiveTheorem Proving and Program
Development Coq’Art: The Calculus of Inductive Constructions. In
Texts in Theoretical Computer Science (Vol. xxv). eatcs. Springer.

Bhargavan, K., Gunter, C. A., & Obradovic, D. (2000). Routing Informa-
tion Protocol in hol/spin. In Proc. 13th International Conference on
Theorem Proving in Higher Order Logics (tphols ’00) (pp. 53–72). Berlin
/ Heidelberg: Springer. doi:10.1007/3-540-44659-1_4

ibm. (2001). Autonomic Computing: ibm’s Perspective on the State of Infor-
mation Technology. Retrieved 30 July 2010, from http://www.research.

ibm.com/autonomic/manifesto/autonomic_computing.pdf

ieee Standard 802.3. (2008). ieee. Retrieved 16 October 2010, from ieee:
http://standards.ieee.org/getieee802/download/802.3- 2008_

section1.pdf

itu. (1996). x.25: Interface between Data Terminal Equipment (dte) and
Data Circuit-terminating Equipment (dce) for terminals operating in
the packet mode and connected to public data networks by dedicated
circuit. International Telecommunication Union.

Blomberg, C. (2006). Fluctuations for Good and Bad: The Role of Noise in
Living Systems. Physics of Life Reviews, 3 (3), 133–161. doi:10.1016/j.
plrev.2006.06.001

Bochmann, G. V. (1976). Finite State Description of Communication Proto-
cols. Computer Networks, 2 (4–5), 361–372. doi:10.1016/0376-5075(78)
90015-6

Bohacek, S., Hespanha, J., Lee, J., Lim, C., & Obraczka, K. (2003). tcp-
pr: tcp for persistent packet reordering. In Proc. 23rd Interational
Conference on Distributed Computing Systems (pp. 222–231). doi:10.11
09/ICDCS.2003.1203469

426 | b bibliography |

Bose, S. K. (2002). An Introduction to Queueing Systems. Springer.
Bracha, G., & Toueg, S. (1985). Asynchronous Consensus and Broadcast

Protocols. Journal of the ACM, 32 (4), 824–840. doi:10.1145/4221.
214134

Braden, R., Faber, T., & Handley, M. (2002). From Protocol Stack to Proto-
col Heap — Role-Based Architecture. In Proc. Hot Topics in Computer
Networks (HotNets-i). acm.

Brakmo, L., & Peterson, L. (1995). tcp Vegas: End to EndCongestion Avoid-
ance on a Global Internet. ieee Journal on Selected Areas in Communi-
cations, 13 (8), 1465–1480. doi:10.1109/49.464716

Briggs, G. E., & Haldane, J. B. S. (1925). A Note on the Kinetics of Enzyme
Action. Biochemical Journal, 19 (2), 338–339. PMID: PMC1259181

Bronowski, J. (1958). Science and Human Values. Harper & Row.
Bronowski, J. (1990). Science andHumanValues (Revised ed.). HarperPeren-

nial.
Bruggeman, F. J., Blüthgen, N., & Westerhoff, H. V. (2009). Noise Man-

agement by Molecular Networks. plos Computational Biology, 5 (9),
e1000506. doi:10.1371/journal.pcbi.1000506

Budhiraja, A., Hernández-Campos, F., Kulkarni, V. G., & Smith, F. D.
(2004). Stochastic Differential Equation for tcp Window Size: Anal-
ysis and Experimental Validation. Probability in the Engineering and
Informational Sciences, 18 (1), 111–140. doi:10.1017/S0269964804181084

Buisman, H. J., ten Eikelder, H. M. M., Hilbers, P. A. J., & Liekens, A. M. L.
(2008). Computing Algebraic Functions with Biochemical Reaction
Networks. Artificial Life, 15 (1), 5–19. doi:10.1162/artl.2009.15.1.
15101

Bunker, D. L., Garrett, B., Kleindienst, T., & Long, G. S. (1974). Discrete
simulation methods in combustion kinetics. Combustion and Flame, 23
(3), 373–379. doi:10.1016/0010-2180(74)90120-5

C

Cai, H., Shao, Z., & Vaynberg, A. (2007). Certified Self-Modifying Code. In
Proc. 2007 acm sigplan Conference on Programming Language Design
and Implementation (pldi’07) (pp. 66–77). San Diego, ca, usa: acm.
doi:10.1145/1273442.1250743

Calude, C. S., & Paŭn, G. (2001). Computing with Cells and Atoms: An In-
troduction to Quantum, dna and Membrane Computing. crc Press.

Campbell, S., Chancelier, J.-P., &Nikoukhah, R. (2006). Modeling and Sim-
ulation in Scilab/Scicos. New York, ny, usa: Springer.

| bibliography b – c | 427

Cannon, W. B. (1929). Organization For Physiological Homeostasis. Physio-
logical Review, 9, 399–431. Retrieved from http://physrev.physiology.

org/cgi/reprint/9/3/399.pdf

Cao, Y., & Petzold, L. R. (2005). Trapezoidal Tau-Leaping Formula for the
Stochastic Simulation of Chemically Reacting Systems. In Proc. Foun-
dations in Systems Biology in Engeneering (fosbe 2005) (pp. 149–152).

Cardelli, L. (2008). From Processes to odes by Chemistry. In G. Ausiello, G.
Karhumäki Juhani Mauri & C.-H. L. Ong (Eds.), Proc. 5th ifip Interna-
tional Conference OnTheoretical Computer Science (tcs 2008) (Vol. 273,
pp. 261–281). ifip. Boston, ma, usa: Springer. doi:10.1007/978-0-
387-09680-3_18

Cardelli, L., & Gordon, A. D. (1998). Mobile Ambients. In M. Nivat
(Ed.), Proc. 1st International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS’98) (Vol. 1378, pp. 140–
155). Berlin / Heidelberg: Springer. Retrieved from http://www.

springerlink.com/content/x2rka7bb8qk5hlf3

Cassandras, C. G. (1993). Discrete Event Systems. Burr Ridge, il, usa:
Richard D. Irwin, Inc., and Asken Associates, Inc.

Cau, Y., Gillespie, D. T., & Petzold, L. R. (2005). The Slow-Scale Stochastic
SimulationAlgorithm. Journal of Chemical Physics, 122 (1). doi:10.1063/
1.1824902

Cau, Y., Gillespie, D. T., & Petzold, L. R. (2006). Efficient Step Size Selection
for the Tau-Leaping Simulation Method. Journal of Chemical Physics,
124 (4). doi:10.1063/1.2159468

Chakrapani, L.N., Korkmaz, P., Akgul, B. E. S., &Palem,K.V. (2007). Prob-
abilistic System-on-a-Chip architectures. acm Transactions on Design
Automation of Electronic Systems, 12 (3), 1–28. doi:10.1145/1255456.
1255466

Chang, C.-S. (2000). Performance Guarantees in Communications Networks.
Berlin / Heidelberg: Springer.

Chatterjee, A., Vlachos, D. G., & Katsoulakis, M. A. (2005). Binomial Dis-
tribution Based Tau-Leap Accelerated Stochastic Simulation. Journal of
Chemical Physics, 122 (2). doi:10.1063/1.1833357

Cheshire, S. (2008). ipv4 Address Conflict Detection. rfc 5227 (Proposed
Standard). Internet Engineering Task Force. ietf. Retrieved from
Internet Engineering Task Force: http://www.ietf.org/rfc/rfc5227.
txt

Chiu, D.-M., & Jain, R. (1989). Analysis of the Increase and Decrease Algo-
rithms for Congestion Avoidance in Computer Networks. Computer
Networks and isdn Systems, 17 (1), 1–14. doi:10.1016/0169-7552(89)
90019-6

428 | c bibliography |

Chlamtac, I., Petrioli, C., & Redi, J. (1997). An Energy-Conserving Access
Protocol for Wireless Communication. In Proc. ieee International Con-
ference on Communications (icc 97) (Vols. 2, pp. 1059–1062). doi:10.
1109/ICC.1997.610041

Chomsky, N. (2005). Interview by Steve Scher on kuow. Radio broadcast.
Seattle, wa, usa. Retrieved 6 October 2010, from http://www.kuow.

org/program.php?id=8683

Cisco. (2010). Cisco Visual Networking Index: Forecast and Methodology,
2009—2014. Cisco Systems Inc. San Jose, ca, usa. Retrieved 28
September 2010, from Cisco Systems Inc.: http://www.cisco.com/en/
US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_

paper_c11-481360.pdf

Clarke, E. M. (2008). The Birth of Model Checking: History, Achievements,
Perspectives. In O. Grumberg & H. Veith (Eds.), 25 Years of Model
Checking — History, Achievements, Perspectives (Vol. 5000, pp. 1–26).
Lecture Notes in Computer Science. Berlin / Heidelberg: Springer.

Clement, L., & Nagpal, R. (2003). Self-Assembly and Self-Repairing Topolo-
gies. In Proc. Workshop on Adaptability in Multi-Agent Systems.

Conway, M. E. (1963). Design of a Separable Transition-Diagram Compiler.
Communications of the acm, 6 (7), 396–408. doi:10.1145/366663.3667
04

Coplien, J. O. (1991). Advanced c++ Programming Styles and Idioms.
Addison-Wesley.

Cremean, L. B., &Murray, R.M. (2003). Stability Analysis of Interconnected
Nonlinear Systems Under Matrix Feedback. In Proc. 42th ieee Confer-
ence on Decision and Control (pp. 3078–3083). doi:10.1109/CDC.2003.
1273096

Crichton, M. (2002). Prey. HarperCollins.

D

Darwin, C. (1995).The Origin of Species. Gramercy.
Dayan, P., & Abbott, L. F. (2001).Theoretical Neuroscience. mit Press.
Deckard, A., & Sauro, H. M. (2004). Preliminary Studies on the In Silico

Evolution of Biochemical Networks. ChemBioChem, 5 (10), 1423–1431.
doi:10.1002/cbic.200400178

Deckard, A. C., Bergmann, F. T., & Sauro, H. M. (2009). Enumeration and
Online Library of Mass-Action Reaction Networks. arXiv.org q-bio.NM.

Decraene, J. (2006).The Holland Broadcast Language.

| bibliography c – d | 429

Decraene, J., Mitchell, G., & McMullin, B. (2008). Unexpected Evolution-
ary Dynamics in a String Based Artificial Chemistry. In S. Bullock, J.
Noble, R. A. Watson &M. A. Bedau (Eds.), Proc. 11th International Con-
ference on the Simulation and Synthesis of Living Systems (Artificial Life
xi) (pp. 158–165). Cambridge, ma, usa: mit Press.

Decraene, J., Mitchell, G., McMullin, B., & Kelly, C. (2007). The Holland
Broadcast Language and the Modeling of Biochemical Networks. In
M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi & A. Esparcia-Alc’azar
(Eds.), Genetic Programming (Vol. 4445, pp. 361–370). Lecture Notes in
Computer Science. Berlin / Heidelberg: Springer. doi:10.1007/978-3-
540-71605-1_34

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S.,
. . .Terry, D. (1987). Epidemic Algorithms for Replicated Database Main-
tenance. In Proc. 6th Annual acm Symposium on Principles of Dis-
tributed Computing (podc ’87) (pp. 1–12). Vancouver, British Columbia,
Canada: acm. doi:10.1145/41840.41841

Dennis, J. B. (1980). Data Flow Supercomputers. Computer, 13 (11), 48–56.
doi:10.1109/MC.1980.1653418

Dewdney, A. K. (1984). In the Game Called Core War Hostile Programs
Engage in a Battle of Bits. Scientific American.

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed Stigmergetic Con-
trol for Communications Networks. Journal of Artificial Intelligence Re-
search, 9, 317–365.

Di Caro, G., Ducatelle, F., & Gambardella, L. M. (2005). AntHocNet: An
Adaptive Nature-Inspired Algorithm for Routing in Mobile Ad Hoc
Networks. European Transactions on Telecommunications (16), 443–455.
doi:10.1002/ett.1062

Di Liu, W. E., & Vanden-Eijnden, E. (2007). Nested Stochastic Simulation
Algorithms for Chemical Kinetic Systems with Multiple Time Scales.
Journal of Computational Physics, 221 (1), 158–180. doi:10.1016/j.jcp.
2006.06.019

Dirac, P. (1955). Lectures on Quantum Mechanics and Relativistic Field
Theory: Tata Intitute of Fundamental Research, Bombay.

Dittrich, P. (2001). On Artificial Chemistries. (Doctoral Thesis, University of
Dortmund).

Dittrich, P. (2005). Chemical Computing. In J.-P. Banâtre, P. Fradet, J.-L.
Giavitto & O. Michel (Eds.), Unconventional Programming Paradigms
(Vol. 3566, pp. 19–32). Lecture Notes in Computer Science. Berlin /
Heidelberg: Springer. doi:10.1007/11527800_2

Dittrich, P., & Banzhaf, W. (1997). A Topological Structure Based on Hash-
ing — Emergence of a “Spatial” Organization. In P. Husbands & I. Har-

430 | d bibliography |

vey (Eds.), Proc. 4th European Conference on Advances in Artificial Life
(ecal 1997). mit Press.

Dittrich, P., & Banzhaf, W. (1998). Self-Evolution in a Constructive Binary
String System. Artificial Life, 4 (2), 203–220. doi:10.1162/10645469856
8521

Dittrich, P., & Speroni di Fenizio, P. (2007). Chemical OrganizationTheory.
Bulletin ofMathematical Biology, 69 (4), 1199–1231. doi:10.1007/s11538-
006-9130-8

Dittrich, P., Ziegler, J., & Banzhaf, W. (2001). Artificial Chemistries - A
Review. Artificial Life, 7 (3), 225–275. doi:10.1162/106454601753238636

Dressler, F., Dietrich, I., German, R., & Krüger, B. (2009). A Rule-Based
System for Programming Self-Organized Sensor and Actor Networks.
Computer Networks, 53 (10), 1737–1750. doi:10.1016/j.comnet.2008.
09.007

Duflot, M., Kwiatkowska, M., Norman, G., Parker, D., Peyronnet, S., Pi-
caronny, C., & Sproston, J. (2010). Practical Applications of Probabilis-
tic Model Checking to Communication Protocols. In S. Gnesi & T.
Margaria (Eds.), fmics Handbook on Industrial Critical Systems. ieee
Computer Society.

E

Ehrenfest, P., & Ehrenfest, T. (1907). Über zwei bekannte Einwände gegen
das Boltzmannsche H-Theorem. Physikalische Zeitschrift, 8, 311.

Eigen, M., & Schuster, P. (1979).The Hypercycle: A Principle of Natural Self-
Organization. Springer.

Eigen, M., & Winkler, R. (1975). Das Spiel. English translation: Eigen et al.
(1993). Piper.

Eigen, M., Winkler, R., Kimber, R. B., & Kimber, R. (1993). Laws of the
Game: How the Principles of Nature Govern Chance. English translation
of Eigen &Winkler (1975). Princeton University Press.

Einstein, A. (1931). Cosmic Religion: With Other Opinions and Aphorisms.
Covici-Friede.

Eissfeldt,H. (1997). posix: aDeveloper’s View of Standards. InProc. Annual
Conference on usenix Annual Technical Conference (atec ’97) (pp. 24–
24). Anaheim, ca, usa: usenix Association.

El-Samad, H., & Khammash, M. (2004). Intrinsic Noise Rejection in Gene
Networks by Regulation of Stability. In Proc. 1st International Sympo-
sium on Control, Communications and Signal Processing (pp. 187–190).
Hammamet, Tunisia. doi:10.1109/ISCCSP.2004.1296252

| bibliography d – e | 431

Elf, J. (2004). Intracellular Flows and Fluctuations. (DoctoralThesis, Uppsala
University).

Elf, J., & Ehrenberg, M. (2003). Fast Evaluation of Fluctuations in Biochem-
ical Networks With the Linear Noise Approximation. Genome Research,
13 (11), 2475–2484. doi:10.1101/gr.1196503

Ellson, J., Gansner, E., Koutsofios, L., North, S., & Woodhull, G. (2002).
Graphviz —Open Source Graph Drawing Tools. In P. Mutzel, M. Jünger
& S. Leipert (Eds.), Graph Drawing (Vol. 2265, pp. 594–597). Lecture
Notes in Computer Science. Berlin / Heidelberg: Springer. doi:10.1007/
3-540-45848-4_57

Erlang, A. K. (1917). Solution of some Problems in theTheory of Probabilities
of Significance in Automatic Telephone Exchanges. Elektrotkeknikeren,
13.

Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., & Massoulié, L. (2004).
From Epidemics to Distributed Computing. ieee Computer, 37 (5), 60–
67.

F

Fall, K., & Vardhan, K. (2010). The Network Simulator (ns-2). Retrieved 29
June 2010, from http://www.isi.edu/nsnam/ns

Farmer, J. D., Kauffman, S. A., & Packard, N. H. (1986a). Autocatalytic
Replication of Polymers. Physica D, 2 (1–3), 50–67.

Farmer, J. D., Kauffman, S. A., & Packard, N. H. (1986b). Autocatalytic
Replication of Polymers. Physica D, 2 (1–3), 50–67.

Fehribach, J. D. (2009). Vector-Space Methods and Kirchhoff Graphs for
Reaction Networks. siam Journal on Applied Mathematics, 70 (2), 543–
562. doi:10.1137/080720115

Feinberg,M. (1972). Complex Balancing in General Kinetic Systems. Archive
for Rational Mechanics and Analysis, 49 (3). doi:10.1007/BF00255665

Feinberg, M. (1979). Lectures on Chemical Reaction Networks. Deliv-
ered at University of Wisconsin, Madison. Retrieved 2 July 2010,
from http : / / www . che . eng . ohio - state . edu / ~feinberg /

LecturesOnReactionNetworks

Fell, D. A. (1997). Understanding the Control of Metabolism. London: Port-
land Press.

Felzenszwalb, P., &Huttenlocher, D. (2004). Efficient Belief Propagation for
Early Vision. (Vol. 1, pp. 261–268). doi:10.1109/CVPR.2004.1315041

432 | e – f bibliography |

Ferm, L., Lötstedt, P., & Hellander, A. (2008). A Hierarchy of Approxima-
tions of the Master Equation Scaled by a Size Parameter. Journal of
Scientific Computing, 34 (2), 127–151. doi:10.1007/s10915-007-9179-z

Fernando, C., & Rowe, J. (2007). Natural Selection in Chemical Evolution.
Journal of Theoretical Biology, 247 (1), 152–167. doi:10.1016/j.jtbi.
2007.01.028

Feynman, R., Leighton, R., & Sands, M. (1963). The Feynman Lectures on
Physics: Volume 1 (2nd ed., Vols. 1). The Feynman Lectures on Phsyics.
Boston, ma, usa: Addison-Wesley.

Fidler, M. (2006). An End-to-End Probabilistic Network Calculus with Mo-
ment Generating Functions. In 14th ieee International Workshop on
Quality of Service (iwqos 2006) (pp. 261–270). doi:10.1109/IWQOS.2006.
250477

Fishtik, I., Callaghan, C. A., & Datta, R. (2004a). Reaction Route Graphs. i.
Theory and Algorithm. Journal of Physical Chemistry B, 108, 5671–5682.
doi:10.1021/jp0374004

Fishtik, I., Callaghan, C. A., &Datta, R. (2004b). Reaction Route Graphs. ii.
Examples of Enzyme- and Surface-Catalyzed Single Overall Reactions.
Journal of Physical Chemistry B, 108, 5683–5697. doi:10.1021/jp037401w

Fishtik, I., Callaghan, C. A., & Datta, R. (2005). Reaction Route Graphs.
iii. Non-Minimal Kinetic Mechanisms. Journal of Physical Chemistry
B, 109, 2710–2722. doi:10.1021/jp046115x

Flamm, C., Ullrich, A., Ekker, H., Mann, M., Högerl, D., Rohrschneider,
M., . . .Stadler, P. F. (2010). Evolution of Metabolic Networks: A Com-
putational Framework. Journal of Systems Chemistry, 1 (4), 1–14. doi:10.
1186/1759-2208-1-4

Floyd, S., Handley, M., Padhye, J., & Widmer, J. (2008). tcp Friendly Rate
Control (tfrc): Protocol Specification. rfc 5348 (Proposed Standard).
Internet Engineering Task Force. ietf. Retrieved from Internet Engi-
neering Task Force: http://www.ietf.org/rfc/rfc5348.txt

Floyd, S., & Fall, K. (1999). Promoting the Use of End-to-End Congestion
Control in the Internet. ieee/acm Transactions on Networking, 7 (4),
458–472. doi:10.1109/90.793002

Fontana, W. (1992). Algorithmic Chemistry. In C. G. Langton, C. E. Taylor,
J. D. Farmer & S. Rasmussen (Eds.), Proc. 2nd Interdisciplinary Work-
shop on the Synthesis and Simulation of Living Systems (Artificial Life ii)
(pp. 159–210). Redwood City, ca, usa: Addison-Wesley.

Fontana, W., & Buss, L. W. (1994). “The Arrival of the Fittest”: Toward a
Theory of Biological Organization. Bulletin of Mathematical Biology, 56
(1), 1–64. doi:10.1016/S0092-8240(05)80205-8

| bibliography f | 433

Fontana,W.,Wagner, G. P., &Buss, L.W. (1994). BeyondDigital Naturalism.
Artificial Life, 1 (1–2), 211–227.

Freitas Jr., R. A., & Merkle, R. C. (2004). Kinematic Self-Replicating Ma-
chines. Georgetown, tx, usa: Landes Bioscience. Retrieved from http:

//www.molecularassembler.com/KSRM.htm

G

Gadgil, C., Lee, C. H., & Othmer, H. G. (2005). A Stochastic Analysis of
First-Order Reaction Networks. Bulletin of Mathematical Biology, 67 (5),
901–946. doi:doi:10.1016/j.bulm.2004.09.009

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented Design. Addison-Wesley.

Gangadhar, D. K. (2005). Meta Dynamic States for Self Healing Autonomic
Computing Systems. In 2005 ieee International Conference on Systems,
Man and Cybernetics (Vol. 1, pp. 39–46). doi:10.1109/ICSMC.2005.
1571119

Gelenbe, E. (2008). Network of Interacting Synthetic Molecules in Steady
State. Proceedings of the Royal Society of London. Series A,Mathematical
and Physical Sciences, 464 (2096), 2219–2228. doi:10.1098/rspa.2008.
0001

Ghosh, D., Sharman, R., Rao, H. R., & Upadhyaya, S. (2007). Self-Healing
Systems - Survey and Synthesis. Decision Support Systems, 42 (4), 2164–
2185. doi:10.1016/j.dss.2006.06.011

Giarratano, J. C., & Riley, G. (2004). Expert Systems, Principles and Pro-
gramming (4th ed.). Course Technology.

Gibson, M. A., & Bruck, J. (2000). Efficient Exact Stochastic Simulation of
Chemical Systems with Many Species and Many Channels. Journal of
Physical Chemistry A, 104 (9), 1876–1889. doi:10.1021/jp993732q

Gillespie, D. T. (1976). A General Method for Numerically Simulating the
Stochastic Time evolution of Coupled Chemical Reactions. Journal of
Computational Physics, 22 (4), 403–434. doi:10.1016/0021-9991(76)
90041-3

Gillespie, D. T. (1977). Exact Stochastic Simulation of Coupled Chemical
Reactions. Journal of Physical Chemistry, 81 (25), 2340–2361. doi:10.
1021/j100540a008

Gillespie, D. T. (1992). A Rigorous Derivation of the Chemical Master Equa-
tion. Physica A: StatisticalMechanics and its Applications, 188 (1–3), 404–
425. doi:10.1016/0378-4371(92)90283-V

434 | f – g bibliography |

Gillespie, D. T. (2000). The Chemical Langevin Equation. Journal of Chem-
ical Physics, 113 (1). doi:10.1063/1.481811

Gillespie, D. T. (2001). Approximate Accelerated Stochastic Simulation of
Chemically Reacting Systems. Journal of Chemical Physics, 115 (4), 1716–
1733. doi:10.1063/1.1378322

Gillespie,D. T. (2002). TheChemical Langevin andFokker-PlanckEquations
for the Reversible Isomerization Reaction. Journal of Physical Chemistry
A, 106 (20), 5063–5071. doi:10.1021/jp0128832

Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. An-
nual Review of Physical Chemistry, 58, 35–55. doi:10.1146/annurev.
physchem.58.032806.104637

Gillespie, D. T., & Petzold, L. R. (2003). Improved Leap-Size Selection for
Accelerated Stochastic Simulation. Journal of Physical Chemistry, 119
(16), 8229–8234. doi:10.1063/1.1613254

Glaz, J. (1979). Probabilities and Moments for Absorption in Finite Homo-
geneous Birth-Death Processes. Biometrics, 35 (4), 813–816. JSTOR:
2530113. Retrieved from http://www.jstor.org/stable/2530113

Gómez-Uribe, C. A., & Verghese, G. C. (2007). Mass Fluctuation Kinetics:
Capturing Stochastic Effects in Systems of Chemical Reactions Through
CoupledMean-Variance Computations. Journal of Chemical Physics, 126
(2). doi:10.1063/1.2408422

Gordon-Smith, C. (2007). Evolution Without Smart Molecules. In Extend-
ing the Darwinian Framework: New levels of selection and inheritance,
workshop at the 9th European Conference on Artificial Life (ecal 2007).

Graphviz Web Page. (2010). Retrieved 3 October 2010, from http://www.

graphviz.org

Griffiths, A. J. F., Miller, J. H., Suzuki, D. T., Lewontin, R. C., & Gelbart,
W. M. (2000). An Introduction to Genetic Analysis (7th ed.). New York,
ny, usa: W. H. Freeman.

Gupta, A., Forgy, C., Newell, A., & Wedig, R. (1986). Parallel Algorithms
and Architectures for Rule-Based Systems. sigarch Computer Archi-
tecture News, 14 (2), 28–37. doi:10.1145/17356.17360

Györgi, P. (1993). omnet++: Objective Modular Network Testbed. In
Proc. International Workshop on Modeling, Analysis, and Simulation on
Computer and Telecommunication Systems (mascots ’93) (pp. 323–326).

| bibliography g | 435

H

Halpern, J. Y., & Vardi, M. Y. (1991). Model Checking vs. Theorem Proving:
a Manifesto. Artificial Intelligence and Mathematical Theory of Compu-
tation: Papers in Honor of John McCarthy, 151–176.

Handley, M., Floyd, S., Padhye, J., & Widmer, J. (2003). tcp Friendly Rate
Control (tfrc): Protocol Specification. rfc 3448 (Proposed Standard).
Obsoleted by rfc 5348. Internet Engineering Task Force. ietf. Re-
trieved from Internet Engineering Task Force: http://www.ietf.org/
rfc/rfc3448.txt

Hanggi, P., & Shuler, K. E. (1981). On the Relations Between Markovian
Master Equations and Stochastic Differential Equations. Physica A, 107
(1), 143–157. doi:10.1016/0378-4371(81)90028-5

Hasan, O., & Tahar, S. (2009). Probabilistic Analysis of Wireless Systems Us-
ingTheorem Proving. Electronic Notes in Theoretical Computer Science,
242 (2), 43–58. Proc. 1st Workshop on Formal Methods for Wireless
Systems (fmws 2008). doi:10.1016/j.entcs.2009.06.022

Haseltine, E. L., & Rawlings, J. B. (2002). Approximate Simulation of Cou-
pled Fast and Slow Reactions for Stochastic Chemical Kinetics. Journal
of Chemical Physics, 117 (15), 6959–6969. doi:10.1063/1.1505860

Hayot, F., & Jayaprakash, C. (2004). The Linear Noise Approximation for
Molecular Fluctuations Within Cells. Physical Biology, 1 (4), 205–210.
doi:10.1088/1478-3967/1/4/002

Heath, J., Kwiatkowska, M., Norman, G., Parker, D., & Tymchyshyn, O.
(2008). Probabilistic Model Checking of Complex Biological Pathways.
Theoretical Computer Science, 391 (3), 239–257. Converging Sciences:
Informatics and Biology. doi:10.1016/j.tcs.2007.11.013

Heavenly Father of the net. (1997). NetWorker.
Heinrich, R., Rapoport, S. M., & Rapoport, T. A. (1977). Metabolic Regu-

lation and Mathematical Models. Progress in Biophysics and Molecular
Biology, 32 (1), 1–82.

Heinrich, R., & Schuster, S. (1996). The Regulation of Cellular Systems.
Springer.

Hell, P., & Nešetřil, J. (2004). Graphs and Homomorphisms. Oxford Lecture
Series in Mathematics and Its Applications. Oxford University Press.

Henderson, T. R., Roy, S., Floyd, S., & Riley, G. F. (2006). ns-3 project goals.
In Proc. 2006 Workshop on ns-2: The ip Network Simulator (wns2 ’06).
Pisa, Italy: acm. doi:10.1145/1190455.1190468

Hinton, A., Kwiatkowska, M., Norman, G., & Parker, D. (2006). prism:
A Tool for Automatic Verification of Probabilistic Systems. In H. Her-
manns & J. Palsberg (Eds.), Proc. 12th International Conference on Tools

436 | h bibliography |

and Algorithms for the Construction and Analysis of Systems (tacas’06)
(Vol. 3920, pp. 441–444). Lecture Notes in Computer Science. Berlin /
Heidelberg: Springer. doi:10.1007/11691372_29

Hjelmfelt, A., Weinberger, E. D., & Ross, J. (1991). Chemical Implementa-
tion of Neural Networks and Turing Machines. Proc. National Academy
of Sciences usa, 88, 10983–10987. Retrieved from http://www.pnas.

org/content/88/24/10983.full.pdf+html

Hoare, C. A. R. (1978). Communicating Sequential Processes. Communica-
tions of the acm, 21 (8), 666–677. doi:10.1145/359576.359585

Hofmeyr, J. H. S. (2001). Metabolic control analysis in a nutshell. In T. M.
Yi, M. Hucka, M. Morohashi & H. Kitano (Eds.), Proc. 2nd Interna-
tional Conference on Systems Biology (pp. 291–300). Madison, wi, usa:
Omnipress.

Hofstadter, D. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. Basic
Books.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. Cam-
bridge, ma, usa: mit Press.

Holzmann, G. J. (1981). pan - a Protocol Specification Analyzer (Technical
Memorandum No. tm81-11271-5). Bell Laboratries. Retrieved 20 Octo-
ber 2010, from http://spinroot.com/spin/Doc/pan81.pdf

Holzmann, G. J. (1991). Design and Validation of Computer Protocols. Engle-
wood Cliffs, nj, usa: Prentice-Hall.

Holzmann, G. J. (1997). The Model Checker spin. ieee Transaction on
Software Engineering, 23 (5), 1–17. doi:10.1109/32.588521

Horn, F. (1973a). On a Connexion between Stability and Graphs in Chemi-
cal Kinetics. i. Stability and the Reaction Diagram. Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences,
334 (1598), 299–312. doi:10.1098/rspa.1973.0093

Horn, F. (1973b). On a Connexion between Stability and Graphs in Chem-
ical Kinetics. ii. Stability and the Complex Graph. Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences,
334 (1598), 313–330. doi:10.1098/rspa.1973.0094

Horn, F. (1973c). Stability and Complex Balancing in Mass-Action Systems
withThree Short Complexes. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 334 (1598), 331–342. doi:10.
1098/rspa.1973.0095

Horn, F., & Jackson, R. (1972). General Mass Action Kinetics. Archive for
Rational Mechanics and Analysis, 47 (2). doi:10.1007/BF00251225

Hsieh, Y.-W., & Levitan, S. P. (1998). Model Abstraction for Formal Ver-
ification. Proc. European Conference on Design, Automation and Test.
doi:10.1109/DATE.1998.655848

| bibliography h | 437

Hu, X.-m., Zhang, J., Xiao, J., & Li, Y. (2008). Protein Folding in
Hydrophobic-Polar Lattice Model: A Flexible Ant-Colony Optimiza-
tion Approach. Protein and Peptide Letters, 15, 469–477. doi:10.2174/
092986608784567465

Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., Lee, K.-F., & Rosenfeld,
R. (1993). The sphinx-ii Speech Recognition System: An Overview.
Computer Speech and Language, 7 (2), 137–148. doi:10.1006/csla.1993.
1007

Huet, G. (1980). Confluent Reductions: Abstract Properties andApplications
to Term Rewriting Systems. Journal of the acm, 27 (4), 797–821. doi:10.
1145/322217.322230

Hunter, J. D. (2007). Matplotlib: A 2d Graphics Environment. Computing
in Science and Engineering, 9, 90–95. doi:10.1109/MCSE.2007.55

Hurd, J. (2002). Formal Verification of Probabilistic Algorithms. (PhDThesis,
University of Cambridge, Cambridge, uk).

Hutton, T. J. (2002). Evolvable Self-Replicating Molecules in an Artificial
Chemistry. Artificial Life, 8 (4), 341–356. doi:10.1162/10645460232120
2417

I

Ikegami, T. (1999). Evolvability of Machines and Tapes. Artificial Life and
Robotics, 3, 242–245. 10.1007/BF02481188.

Ikegami, T., & Hashimoto, T. (1996). Replication and Diversity in Machine-
Tape Coevolutionary Systems. In C. G. Langton (Ed.), Proc. 5th In-
ternational Workshop on the Synthesis and Simulation of Living Systems
(Artificial Life v).

Ingalls, B. (2004). A Frequency Domain Approach to Sensitivity Analysis
of Biochemical Networks. Journal of Physical Chemistry B, 108 (3), 1143–
1152.

Islam, S. M. S., Sqalli, M. S., & Kahn, S. (2006). Modeling and Formal
Verification of dhcp Using spin. International Journal of Computer
Science and Applications, 3 (6), 145–159.

J

Jackson, J. R. (1963). Jobshop-like Queueing Systems. Management Science,
10 (1), 131–142.

438 | h – j bibliography |

Jacobson, V. (1988). Congestion Avoidance andControl. In Proc. Symposium
on Communications Architectures and Protocols (pp. 314–329). Stanford,
ca, usa: acm. doi:10.1145/52324.52356

Jacobson, V. (2006). A NewWay to look at Networking. Retrieved 8 October
2010, from http://video.google.com/videoplay?docid=-6972678839

686672840#

Jacobson, V., Braden, R., & Borman, D. (1992). tcp Extensions for High
Performance. rfc 1323 (Proposed Standard). Internet Engineering
Task Force. ietf. Retrieved from Internet Engineering Task Force:
http://www.ietf.org/rfc/rfc1323.txt

Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N., &
Braynard, R. (2009). Networking named content. In Proc. 5th acm In-
ternational Conference on Emerging Networking Experiments and Tech-
nologies (conext 2009) (pp. 1–12).

Jahnke, T., &Huisinga,W. (2007). Solving the ChemicalMaster Equation for
Monomolecular Reaction Systems Analytically. Journal ofMathematical
Biology, 54, 1–26.

Jain, R.K., Chiu,D.-M.W.,&Hawe,W.R. (1984). AQuantitativeMeasure of
Fairness and Discrimination for Resource Allocation in Shared Computer
Systems (Research Report No. tr-301).

Jelasity, M., Montresor, A., & Babaoglu, O. (2005). Gossip-Based Aggre-
gation in Large Dynamic Networks. acm Transactions on Computer
Systems, 23 (3), 219–252. doi:10.1145/1082469.1082470

Jelasity, M., Montresor, A., & Babaoglu, O. (2009). T-Man: Gossip-Based
Fast Overlay Topology Construction. Computer Networks, 53 (13), 2321–
2339. doi:10.1016/j.comnet.2009.03.013

Jiang, Y., & Liu, Y. (2008). Stochastic Network Calculus. Berlin / Heidelberg:
Springer.

Johnson, B. W. (1996). An Introduction to the Design and Analysis of Fault-
Tolerant Systems. In Fault-Tolerant Computer System Design (pp. 1–87).
Upper Saddle River, nj, usa: Prentice-Hall, Inc.

Jonsson, B., Kreiker, J., & Kwiatkowska, M. (2010). Executive Summary.
In Quantitative and Qualitative Analysis of Network Protocols (10051).
Dagstuhl Seminar Proceedings. Dagstuhl, Germany: Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

Joobbani, R., & Siewiorek, D. (1985). weaver: A Knowledge-Based Rout-
ing Expert. (pp. 266–272). doi:10.1109/DAC.1985.1585951

Jung, C. G. (1933). ModernMan in Search of a Soul (W. S. Dell & C. F. Baynes,
Trans.). London, uk: Kegan Paul.

Jung, C. G. (2005). Modern Man in Search of a Soul (2nd ed.). Routledge.

| bibliography j | 439

K

Kacser, H., &Burns, J. A. (1973). TheControl of Flux. Symposia of the Society
for Experimental Biology, 27, 65–104.

Kaizer, J. (1987). Statistical Thermodynamics of Nonequilibrium Processes.
New York, ny, usa: Springer-Verlag.

Kanada, Y. (1995). Combinatorial Problem Solving Using Randomized Dy-
namic Composition of Production Rules. (Vol. 1, p. 467). doi:10.1109/
ICEC.1995.489193

Kapral, R., & Oppo, G.-L. (1986). Competition Between Stable States in
Spatially-Distributed Systems. Physica D: Nonlinear Phenomena, 23 (1–
3), 455–463. doi:10.1016/0167-2789(86)90151-X

Károlyi, G., Péntek, Á., Scheuring, I., Tel, T., & Toroczkai, Z. (2000).
Chaotic Flow: The Physics of Species Coexistence. Proc. National
Academy of Sciences usa, 97 (25). JSTOR: 2666426. Retrieved from
http://www.jstor.org/stable/2666426

Kashiwagi, A., Urabe, I., Kaneko,K., &Yomo, T. (2006). Adaptive Response
of a GeneNetwork to Environmental Changes by Fitness-InducedAttrac-
tor Selection. plos one, 1 (1), e49. doi:10.1371/journal.pone.0000049

Kauffman, S. A. (1993).TheOrigins of Order: Self-Organization and Selection
in Evolution. Oxford University Press.

Kelly, F. P. (1976). Networks of Queues. Advances in Applied Probability, 8
(2), 416–432.

Kelly, F. P. (1979). Reversibility and Stochastic Networks. JohnWiley and Sons
Ltd. Retrieved from http://www.statslab.cam.ac.uk/~frank/BOOKS/

kelly_book.html

Kelly, F. P. (1997). Charging and Rate Control for Elastic Traffic. European
Transactions on Telecommunications, 8, 33–37.

Kelly, F. P. (2003). Fairness and Stability of End-to-End Congestion Control.
European Journal of Control, 9, 159–176.

Kelly, F. P., Maulloo, A. K., & Tan, D. K. H. (1998). Rate Control for Commu-
nication Networks: Shadow Prices, Proportional Fairness and Stability.
The Journal of the Operational Research Society, 49 (3). JSTOR: 3010473.
Retrieved from http://www.jstor.org/stable/3010473

Kelly, K. (1995). Out of Control: The New Biology of Machines, Social Systems
& the Economic World. Basic Books.

Kempe, D., Dobra, A., & Gehrke, J. (2003). Gossip-based Computation
of Aggregate Information. In Proc. 44th Annual ieee Symposium on
Foundations of Computer Science (pp. 482–491).

440 | k bibliography |

Kendall, D. G. (1953). Stochastic Processes Occurring in the Theory of
Queues and their Analysis by the Method of the Imbedded Markov
Chain.The Annals of Mathematical Statistics, 24 (3), 338–354.

Kephart, J. O., & Chess, D. M. (2003). The Vision of Autonomic Computing.
Computer, 36 (1), 41–50.

Keromytis, A. D. (2007). Characterizing Self-Healing Systems. In Proc. 4th
International Conference on Mathematical Methods, Models and Archi-
tectures for Computer Networks Security (mmm-acns).

Kleene, S. C. (1938). On Notation for Ordinal Numbers. Journal of Symbolic
Logic, 3 (4), 150–155.

Kohler, E., Handley, M., & Floyd, S. (2006). Datagram Congestion Control
Protocol dccp. rfc 4340 (Proposed Standard). Updated by rfcs 5595,
5596. Internet Engineering Task Force. ietf. Retrieved from Internet
Engineering Task Force: http://www.ietf.org/rfc/rfc4340.txt

Kolmogorov, A. (1954). Limit Distributions for Sums of Independent Random
Variables. Addison-Wesley.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. mit Press.

Krishnamachari, B., Estrin, D., &Wicker, S. (2002).Modelling Data Centric
Routing inWireless Sensor Networks (Technical Report No. ceng 02-14).

Kvasnička, V., & Pospichal, J. (2001). Autoreplicators and Hypercycles in
Typogenetics. Journal of Molecular Structure: theochem, 547 (1–3), 119–
138. doi:10.1016/S0166-1280(01)00464-X

Kwiatkowska,M., Norman, G., Segala, R., & Sproston, J. (2002). Automatic
Verification of Real-Time Systems with Discrete Probability Distribu-
tions.Theoretical Computer Science, 282, 101–150.

L

Lafontaine, D. L. J., & Tollervey, D. (2001). The Function and Synthesis of
Ribosomes. Nature Reviews. Molecular Cell Biology, 2 (7), 514–520.

Laing, R. (1977). Automaton Models of Reproduction by Self-Inspection.
Journal of Theoretical Biology, 66 (3), 437–456. doi:10.1016/0022-5193
(77)90294-6

Lancet, D., Sadovsky, E., & Seidemann, E. (1993). Probability Model for
Molecular Recognition in Biological Receptor Repertoires: Significance
to the Olfactory System. Proc. National Academy of Sciences usa, 90,
3715–3719.

Langton, C. G. (1984). Self-Reproduction in Cellular Automata. Physica D:
Nonlinear Phenomena, 10 (1–2), 135–144.

| bibliography k – l | 441

Larkin, J., & Stocks, P. (2004). Self-Replicating Expressions in the Lambda
Calculus. In Proc. 27th Australian Conference on Computer Science
(Vol. 26, pp. 167–173). Dunedin, New Zealand: Australian Computer
Society, Inc.

Le Boudec, J.-Y., &Thiran, P. (2001). Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Lecture Notes in Computer
Science. Berlin / Heidelberg: Springer.

Le Novère, N., & Shimizu, T. S. (2001). stochsim: Modelling of Stochastic
Biomolecular Processes. Bioinformatics, 17 (6), 575–576. doi:10.1093/
bioinformatics/17.6.575

Leibnitz, K., Wakamiya, N., & Murata, M. (2006). Resilient Multi-path
Routing Based on a Biological Attractor Selection Scheme. In Proc. 2nd
InternationalWorkshop on Biologically Inspired Approaches to Advanced
Information Technology (bioadit 2006) (Vol. 3853, pp. 48–63). Lecture
Notes in Computer Science. Berlin / Heidelberg: Springer.

Lieberman, E., Hauert, C., & Nowak, M. A. (2005). Evolutionary Dynamics
on Graphs. Nature, 433, 312–316.

Lotka, A. J. (1910). Contribution to theTheory of Periodic Reaction. Journal
of Physical Chemistry, 14 (3), 271–274.

Low, S. H., Peterson, L. L., & Wang, L. (2002). Understanding tcp Vegas:
A Duality Model. Journal of the acm, 49 (2), 207–235. doi:10.1145/
506147.506152

Luby, M., Shokrollahi, A., Watson, M., & Stockhammer, T. (2007). Raptor
Forward Error Correction Scheme for Object Delivery. rfc 5053 (Pro-
posed Standard). Internet Engineering Task Force. ietf. Retrieved
from Internet Engineering Task Force: http://www.ietf.org/rfc/
rfc5053.txt

Lüscher, P. (2009). Applying Ant Colony Optimization Methods in an Artifi-
cial Chemistry Context to Routing Problems. (Master Thesis, University
of Basel). Retrieved 3 October 2010, from http://cn.cs.unibas.ch/

pub/doc/2009-msthLuescher.pdf

442 | l bibliography |

M

Mackert, L. F., & Neumeier-Mackert, I. B. (1987). Communicating Rule
Systems. In Proc. ifip wg6.1 7th International Conference on Protocol
Specification, Testing and Verification (pp. 77–88). Amsterdam: North-
Holland Publishing Co.

Maggi, P., & Sisto, R. (2002). Using spin to Verify Security Properties of
Cryptographic Protocols. In Proc. 9th Inernational Workshop on Model
Checking Software (Vol. 2318, pp. 85–87). Lecture Notes in Computer
Science. Berlin / Heidelberg: Springer.

Mairesse, J., &Nguyen,H.-T. (2009). DeficiencyZero Petri Nets andProduct
Form. arXiv.org cs.DM, 0905.3158v2.

Mann, T. (1924). Der Zauberberg. S. Fischer.
Mansour, M. M., Van Den Broeck, C., Nicolis, G., & Turner, J. W. (1981).

Asymptotic Properties of Markovian Master Equations. Annals of
Physics, 131 (2), 283–313. doi:10.1016/0003-4916(81)90033-6

Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., & Bae-
sens, B. (2007). Classification With Ant Colony Optimization. ieee
Transactions on Evolutionary Computation, 11 (5), 651–665. doi:10 .
1109/TEVC.2006.890229

Martin, W., & Russell, M. J. (2003). On the Origins of Cells. Philosophical
Transaction of the Royal Society of London. Series B, Biological Sciences
Trans. R. Soc. Lond. B. Biol. Sci. 358 (1429). doi:10.1098/rstb.2002.
1183

Mathis, M., Mahdavi, J., Floyd, S., & Romanow, A. (1996). tcp Selective
Acknowledgment Options. rfc 2018 (Proposed Standard). Internet
Engineering Task Force. ietf. Retrieved from Internet Engineering
Task Force: http://www.ietf.org/rfc/rfc2018.txt

Matplotlib Web Page. (2010). Retrieved 3 October 2010, from http://

matplotlib.sourceforge.net

Matsumaru, N., Lenser, T., Hinze, T., & Dittrich, P. (2007). Toward
Organization-Oriented Chemical Programming: A Case Study with
the Maximal Independent Set Problem. In F. Dressler & I. Carreras
(Eds.), Advances in Biologically Inspired Information Systems (Vol. 69,
pp. 149–165). Studies in Computational Intelligence. Berlin / Heidelberg:
Springer. doi:10.1007/978-3-540-72693-7_8

Maynard Smith, J, & Price, G. R. (1973). The Logic of Animal Conflict. Na-
ture, 246, 15–18.

McCraig, C. (2007). From Individuals to Populations: Changing Scale in Pro-
cess Algebra Models of Biological Systems. (PhD Thesis, University of
Stirling).

| bibliography m | 443

McIlroy, M. D. (1964). The Origin of Unix Pipes. Memorandum. Retrieved
6 August 2010, from http://doc.cat-v.org/unix/pipes/

McKay, R. I., & Essam, D. (2001). Evolving Self-Reproducing Programs. In
Proc. Inaugural Workshop on Artificial Life (al’01).

McQuarrie, D. A. (1967). Stochastic Approach to Chemical Kinetics. Journal
of Applied Probability, 4 (3), 413–478.

McQuarrie, D. A. (1997). Physical Chemistry. University Science Books.
Retrieved from http://books.google.com/books?id=f-bje0-DEYUC

Meshoul, S., & Batouche, M. (2002). Ant Colony System with Extremal
Dynamics for Point Matching and Pose Estimation. In Proc. 16th Inter-
national Conference on Pattern Recognition (icpr’02) (Vol. 3, p. 30823).
Washington, dc, usa: ieee Computer Society.

Metzner, P., Schütte, C., & Vanden-Eijnden, E. (2009). Transition PathThe-
ory for Markov Jump Processes. Multiscale Modeling & Simulation, 7
(3), 1192–1219. doi:10.1137/070699500

Meyer, A. R., & Stockmeyer, L. J. (1972). The Equivalence Problem for Reg-
ular Expressions with Squaring Requires Exponential Space. In Proc.
13th on Switching and Automata Theory (swat ’72) (pp. 125–129). Wash-
ington, dc, usa: ieee Computer Society. doi:10.1109/SWAT.1972.29

Michaelis, L., & Menten, M. (1913). Die Kinetik der Invertinwirkung. Bio-
chemische Zeitschrift, 49, 333–369. Retrieved 13 August 2010, from http:

//web.lemoyne.edu/~giunta/menten.html

Mills, J.W. (2008). TheNature of the ExtendedAnalog Computer. Physica D:
Nonlinear Phenomena, 237 (9), 1235–1256. doi:10.1016/j.physd.2008.
03.041

Milner, R. (1980). A Calculus of Communicating Systems. Springer.
Minsky, M. (1967). Computation: Finite and Infinite Machines. Englewood

Cliffs, nj, usa: Prentice-Hall.
Monti, M. (2010). A Signaling Processing Approach to the Analysis of Chemi-

cal Networking Protocols. (MasterThesis, University of Basel and Univer-
sity of Pisa). Retrieved from http://cn.cs.unibas.ch/pub/doc/2010-

msthMonti.pdf

Moran, P. A. P. (1958). Random Processes in Genetics. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 54, 60–71. doi:10.1017/
S0305004100033193

Mossel, E., & Steel, M. (2005). Random Biochemical Networks: The Proba-
bility of Self-Sustaining Autocatalysis. Journal ofTheoretical Biology, 233
(3), 327–336. doi:10.1016/j.jtbi.2004.10.011

444 | m bibliography |

N

Nagle, J. (1984). Congestion Control in ip/tcp Internetworks. rfc 896.
Internet Engineering Task Force. ietf. Retrieved from Internet Engi-
neering Task Force: http://www.ietf.org/rfc/rfc896.txt

Nagpal, R., Kondacs, A., & Chang, C. (2003). Programming Methodology
for Biologically-Inspired Self-Assembling Systems. In aaai Spring Sym-
posium on Computational Synthesis.

Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models. New
York, ny, usa: Dover Publications Inc.

Nipkow, T., Paulson, L. C., & Wenzel, M. (2002). Isabelle/hol — A Proof
Assistant for Higher-Order Logic. Lecture Notes in Computer Science.
Springer.

Normand, E. (1996). Single Event Upset at Ground Level. ieee Transactions
on Nuclear Science, 43 (6), 2742–2750.

Nowak, M. A. (2006). Evolutionary Dynamics: Exploring the Equations of
Life. Cambridge, ma, usa: Belknap.

O

Oh, N., Shirvani, P. P., & McCluskey, E. J. (2002). Error detection by du-
plicated instructions in super-scalar processors. ieee Transactions on
Reliability, 51 (1), 63–75. doi:10.1109/24.994913

Øksendal, B. K. (2003). Stochastic Differential Equations: An Introduction
with Applications. Berlin: Springer.

Ong, L., & Yoakum, J. (2002). An Introduction to the Stream Control Trans-
mission Protocol (sctp). rfc 3286 (Informational). Internet Engineer-
ing Task Force. ietf. Retrieved from Internet Engineering Task Force:
http://www.ietf.org/rfc/rfc3286.txt

Otto, S. P., &Day, T. (2007). A Biologist’s Guide toMathematical Modeling in
Ecology and Evolution. Princeton, nj, usa: Princeton University Press.

Owre, S., Rajan, S., Rushby, J. M., Shankar, N., & Srivas, M. K. (1996).
pvs: Combining Specification, Proof Checking, and Model Check-
ing. In Proc. 8th International Conference on Computer Aided Checking
(pav’96) (Vol. 1102, pp. 411–414). Lecture Notes in Computer Science.
Berlin / Heidelberg: Springer.

| bibliography n – o | 445

P

Paladugu, S., Chickarmane, V., Deckard, A., Frumkin, J., McCormack, M.,
& Sauro, H. (2006). In Silico Evolution of Functional Modules in Bio-
chemical Networks. ieee Proc. Systems Biology, 153 (4), 223–235. doi:10.
1049/ip-syb:20050096

Parnas, D. L. (2007). Use the Simplest Model, But Not Too Simple: Forum.
Communications of the acm, 50 (6), 7–9. doi:10.1145/1247001.1247014

Paulsson, J. (2004). Summing Up the Noise in Gene Networks. Nature, 427
(6973), 415–418.

Paulsson, J., Berg, O. G., & Ehrenberg, M. (2000). Stochastic Focusing:
Fluctuation-enhanced Sensitivity of Intracellular Regulation. Proc. Na-
tional Academy of Sciences usa, 97 (13), 7148–7153.

Paulsson, J., & Ehrenberg, M. (2000). Random Signal Fluctuations Can
Reduce Random Fluctuations in Regulated Components of Chemical
Regulatory Networks. Physical Review Letters, 84 (23), 5447–5450. doi:1
0.1103/PhysRevLett.84.5447

Paulsson, L. C. (1988). Isabelle: The Next Seven HundredTheorem Provers.
In E. L. Lusk & R. A. Overbeek (Eds.), Proc. 9th International Confer-
ence on Automated Deduction (Vol. 310, pp. 772–773). Lecture Notes in
Computer Science. Berlin / Heidelberg: Springer.

Paulsson, L. C. (1998). The Inductive Approach to Verifying Cryptographic
Protocols. Journal of Computer Security, 6, 85–128.

Paŭn, G. (2000). Computing with Membranes. Journal of Computer and
System Sciences, 61 (1), 108–143.

Pedraza, J. M., & van Oudenaarden, A. (2005). Noise Propagation in Gene
Networks. Science, 307 (5717), 1965–1969.

Peled, D. A. (1993). All from One, One for All: On Model Checking Us-
ing Representatives. In Proc. 5th International Conference on Computer
Aided Verification (cav ’93) (Vol. 697, pp. 409–423). Lecture Notes in
Computer Science. Berlin / Heidelberg: Springer.

Pereira, J. (2005). A Biochemistry-Inspired Artificial Chemistry: lac. In
Proc. Portuguese Conference on Artificial Intelligence (epia 2005) (pp. 79–
84). doi:10.1109/EPIA.2005.341269

Perelson, A. S., & Oster, G. F. (1974). Chemical Reaction Dynamics Part ii:
Reaction Networks. Archive for Rational Mechanics and Analysis, 57 (1),
31–98. doi:10.1007/BF00287096

Perrier, J.-Y., Sipper, M., & Zahnd, J. (1996). Toward a Viable, Self-
Reproducing Universal Computer. Physica D, 97, 335–352. doi:10.1016/
0167-2789(96)00091-7

446 | p bibliography |

Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-Organization, Embodi-
ment, and Biologically Inspired Robotics. Science, 317 (5853), 1088–1093.

Plummer, D. (1982). Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission
on Ethernet Hardware. rfc 826 (Standard). Internet Engineering Task
Force. ietf. Retrieved from Internet Engineering Task Force: http:
//www.ietf.org/rfc/rfc826.txt

Pnueli, A. (1977). The Temporal Logic of Programs. In Proc. 18th ieee Sym-
posium on Foundations of Computer Science (pp. 46–57). doi:10.1109/
SFCS.1977.32

Polinière, P. (1728). Expériences de physique (3rd ed.). Paris, France: Charles
Moette.

Post, E. (1943). Formal Reductions of the Combinatorial Decision Problem.
American Journal of Mathematics, 65, 197–215.

Postel, J. (1981). Transmission Control Protocol. rfc 793 (Standard). Up-
dated by rfcs 1122, 3168. Internet Engineering Task Force. ietf. Re-
trieved from Internet Engineering Task Force: http://www.ietf.org/
rfc/rfc793.txt

Pradhan, D. K. (1996). Fault-Tolerant Computer System Design. Upper Sad-
dle River, nj, usa: Prentice-Hall, Inc.

Q

Quick, T., Dautenhahn, K., Nehaniv, C. L., & Roberts, G. (2000). The
Essence of Embodiment: A Framework for Understanding and Exploit-
ing Structural Coupling Between System and Environment. In D. M.
Dubois (Ed.), Proc. 3rd International Conference on Computing Antici-
patory Systems (casys’99) (Vol. 517, 1, pp. 649–660). aip. doi:10.1063/
1.1291299

R

Ramakrishnan, K., Floyd, S., & Black, D. (2001). The Addition of Explicit
Congestion Notification (ecn) to ip. rfc 3168 (Proposed Standard).
Internet Engineering Task Force. ietf. Retrieved from Internet Engi-
neering Task Force: http://www.ietf.org/rfc/rfc3168.txt

Ramakrishnan, N., & Bhalla, U. S. (2008). Memory Switches in Chemical
Reaction Space. plos Computational Biology, 4 (7), e1000122. doi:10.
1371/journal.pcbi.1000122

| bibliography p – r | 447

Rao, C. V., Sauro, H. M., & Arkin, A. P. (2004). Putting the “Control” in
Metabolic Control Analysis. In Proc. 7th International Symposium on
Dynamics and Control of Process Systems (dycops 7).

Rapoport, A. (1962). An Essay on Mind. Free Press.
Rathinam, M., Petzold, L. R., Cao, Y., & Gillespie, D. T. (2003). Stiffness

in Stochastic Chemically Reacting Systems: The Implicit Tau-Leaping
Method. Journal of Chemical Physics, 119 (24), 12784–12794. doi:10.
1063/1.1627296

Reder, C. (1988). Metabolic ControlTheory: A Structural Approach. Journal
of Theoretical Biology, 135 (2), 175–201. doi:10.1016/S0022-5193(88)
80073-0

Reis, G., Chang, J., Vachharajani, N., Rangan, R., & August, D. (2005).
swift: Software Implemented Fault Tolerance. (pp. 243–254). doi:10.
1109/CGO.2005.34

Reis, G. A., Chang, J., & August, D. I. (2007). Automatic Instruction-Level
Software-Only Recovery. ieee Micro, 27 (1), 36–47. doi:10.1109/MM.
2007.4

Rekhter, Y., Li, T., & Hares, S. (2006). A Border Gateway Protocol 4 (bgp-
4). rfc 4271 (Draft Standard). Internet Engineering Task Force. ietf.
Retrieved from Internet Engineering Task Force: http://www.ietf.
org/rfc/rfc4271.txt

Rosen, E., Viswanathan,A., &Callon, R. (2001). Multiprotocol Label Switch-
ing Architecture. rfc 3031 (Proposed Standard). Internet Engineering
Task Force. ietf. Retrieved from Internet Engineering Task Force:
http://www.ietf.org/rfc/rfc3031.txt

Rubel, L. A. (1993). The Extended Analog Computer. Advances in Applied
Mathematics, 14 (1), 39–50. doi:10.1006/aama.1993.1003

S

Saerens, M., Fouss, F., Yen, L., & Dupont, P. (2004). The Principal Compo-
nents Analysis of a Graph, and Its Relationships to Spectral Clustering.
In J.-F. Boulicaut, F. Esposito, F. Giannotti & D. Pedreschi (Eds.), Proc.
15th European Conference on Machine Learning (ecml 2004) (Vol. 3201,
pp. 371–383). Lecture Notes in Computer Science. Berlin / Heidelberg:
Springer.

Samant, A., & Vlachos, D. G. (2005). Overcoming Stiffness in Stochastic
Simulation Stemming from Partial Equilibrium: A Multiscale Monte
Carlo Algorithm. Journal of Chemical Physics, 123 (14). doi:10.1063/1.
2046628

448 | r – s bibliography |

Samios, C. B., &Vernon,M. K. (2003). Modeling theThroughput of tcp Ve-
gas. In Proc 2003 International Conference on Measurement and Model-
ing of Computer Systems (acm sigmetrics 2003) (pp. 71–81). San Diego,
ca, usa: acm. doi:10.1145/781027.781037

Sander, T., & Tschudin, C. (1998). Towards Mobile Cryptography. (pp. 215–
224). doi:10.1109/SECPRI.1998.674837

Sastry,N. R., & Lam, S. S. (2005). cyrf: ATheory ofWindow-BasedUnicast
Congestion Control. ieee/acm Transactions on Networking, 13 (2), 330–
342. doi:10.1109/TNET.2005.845545

Scafetta, N., &West, B. J. (2007). Probability Distributions in Conservative
Energy Exchange Models of Multiple Interacting Agents. Journal of
Physics: Condensed Matter, 19 (6), 065138 (18pp). Retrieved from http:

//stacks.iop.org/0953-8984/19/065138

Schneider, J. M., Mackert, L. F., Zörntlein, G., Velthuys, R. J., & Bär, U.
(1992). An Integrated Environment for Developing Communication
Protocols. Computer Networks and isdn Systems, 25 (1), 43–61. Formal
Description Techinique (fdt) Concepts and Tools. doi:10.1016/0169-
7552(92)90123-8

Schreckling, D., & Marktscheffel, T. (2010). An Artificial Immune System
Approach for Artificial Chemistries Based on Set Rewriting. In E. Hart,
C. McEwan, J. Timmis & A. Hone (Eds.), Artificial Immune Systems
(Vol. 6209, pp. 250–263). Lecture Notes in Computer Science. Berlin /
Heidelberg: Springer. doi:10.1007/978-3-642-14547-6_20

Scott, M., Ingalls, B., & Kærn, M. (2006). Estimations of Intrinsic and Ex-
trinsic Noise in Models of Nonlinear Genetic Networks. Chaos: An In-
terdisciplinary Journal of Nonlinear Science, 16 (2), 026107. doi:10.1063/
1.2211787

Shaw, M. (2002). “Self-Healing”: Softening Precision to Avoid Brittleness:
Position Paper. In Proc. 1stWorkshop on Self-Healing Systems (woss ’02)
(pp. 111–114). Charleston, sc, usa: acm. doi:10.1145/582128.582152

Shibata, T., & Ueda, M. (2008). Noise Generation, Amplification and Propa-
gation in Chemotactic Signaling Systmes of Living Cells. Biosystems, 93
(1–2), 126–132.

Shirvani, P., Saxena, N., & McCluskey, E. J. (2000). Software-implemented
edac protection against seus. ieee Transactions on Reliability, 49 (3),
273–284. doi:10.1109/24.914544

Shortliffe, E.H. (1976). Computer-BasedMedical Consultations: mycin. New
York, ny, usa: America Elsevier Publishing Company, Inc.

Simon, H. A. (1996).The Sciences of the Artificial (3rd ed.). Cambridge, ma,
usa: mit Press.

| bibliography s | 449

Sipper, M. (1998). Fifty Years of Research on Self-Replication: An Overview.
Artificial Life, 4, 237–257. doi:10.1162/106454698568576

Slayman, C. W. (2005). Cache and Memory Error Detection, Correction,
and Reduction Techniques for Terrestrial Servers and Workstations.
ieee Transactions on Device and Materials Reliability, 5 (3), 397–404.
doi:10.1109/TDMR.2005.856487

Spector, L., Perry, C., Klein, J., & Keijzer, M. (2004). Push 3.0 Program-
ming Language Description (Technical Report No. hc-cstr-2004-02).
Amherst, ma, usa.

Speroni di Fenizio, P., & Banzhaf, W. (2000). A Less Abstract Aritifical
Chemistry. In M. A. Bedau, J. S. McCaskill, N. H. Packard & S. Ras-
mussen (Eds.), Proc. 7th International Conference on Artificial Life (Ar-
tificial Life vii). Cambridge, ma, usa: mit Press.

Stadler, P. F., Fontana, W., & Miller, J. H. (1993). Random catalytic reaction
networks. Physica D, 63 (3–4), 378–392. doi:10.1016/0167-2789(93)
90118-K

Stepney, S. (2010). Non-Classical Computation: A Dynamical Systems Per-
spective. In G. Rozenberg, T. Bäck & J. N. Kok (Eds.), Handbook of
Natural Computing, Volume ii (Chap. 52). Berlin / Heidelberg: Springer.

Sterbenz, J. (2002). Intelligence in Future Broadband Networks: Challenges
and Opportunities in High-Speed Active Networking. (pp. 2–1–2–7).
doi:10.1109/IZSBC.2002.991742

Stevens, W. (1997). tcp Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms. rfc 2001 (Proposed Standard). Obso-
leted by rfc 2581. Internet Engineering Task Force. ietf. Retrieved
from Internet Engineering Task Force: http://www.ietf.org/rfc/
rfc2001.txt

Stewart, R. (2007). Stream Control Transmission Protocol. rfc 4960 (Pro-
posed Standard). Internet Engineering Task Force. ietf. Retrieved
from Internet Engineering Task Force: http://www.ietf.org/rfc/
rfc4960.txt

Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. Studies in Nonlinear-
ity. Westview Press.

Sunkara, V. (2009). The Chemical Master Equation with Respect to Reaction
Counts. In Proc. 18th World imacs/modsim Congress.

Suzuki, H., & Dittrich, P. (2009). Artificial Chemistry. Artificial Life, 15 (1),
1–3. doi:10.1162/artl.2009.15.1.15100

Suzuki,H.,&Ono,N. (2002). StringRewriter thatAllows theMaintenance of
Different Types of Self-Replicators. In Proc. 5th International Conference
on Humans and Computers (hc-2002) (pp. 171–178).

450 | s bibliography |

Szathmáry, E. (1991). Simple Growth Laws and Selection Consequences.
Trends in Ecology and Evolution, 6 (11), 366–370. doi:10.1016/0169-
5347(91)90228-P

T

Takács, L. (1979). On an Urn Problem of Paul and Tatiana Ehrenfest. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 86, 127–130.

Takeuchi, N., & Hogeweg, P. (2008). Evolution of Complexity in rna-like
Replicator Systems. Biology Direct, 3. doi:10.1186/1745-6150-3-11

Tanenbaum, A. (2002). Computer Networks. Prentice Hall.
Teich, M. (1992). Documentary History of Biochemistry, 1770–1940. Ruther-

ford, nj, usa: Fairleigh Dickinson University Press.
Tempesti, G., Mange, D., & Stauffer, A. (1998). Self-Replicating and Self-

Repairing Multicellular Automata. Artificial Life, 4, 259–282. doi:10.
1162/106454698568585

Tennenhouse, D., Lampson, B., Gillett, S. E., & Klein, J. S. (1996). Virtual
Infrastructure: Putting Information Infrastructure on the Technology
Curve. Computer Networks and isdn Systems, 28 (13), 1769–1790. doi:10.
1016/0169-7552(96)00009-8

Tennenhouse, D. L., &Wetherall, D. J. (1996). Towards an Active Network
Architecture. sigcomm Computer Communication Review, 26 (2), 5–17.
doi:10.1145/231699.231701

Teuscher, C. (2007). FromMembranes to Systems: Self-Configuration and
Self-Replication in Membrane Systems. Biosystems, 87 (2–3), 101–110.
Papers presented at the 6th International Workshop on Information Pro-
cessing in Cells andTissues, York, uk, 2005. doi:10.1016/j.biosystems.
2006.09.002

TheOpen Group. (2008). pipe — create an interprocess channel. The Open
Group. Retrieved 6 October 2010, fromThe Open Group: http://www.
opengroup.org/onlinepubs/9699919799/functions/pipe.html

Thompson, G. P. (2010). TheQuine Page (Self-reproducing Code). Retrieved
18 June 2010, from http://www.nyx.net/~gthompso/quine.htm

Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2000). Robust Monte Carlo
Localization for Mobile Robots. Artificial Intelligence, 128 (1–2), 99–141.

Tian, T., & Burrage, K. (2004). Binomial Leap Methods for Simulating
Stochastic Chemical Kinetics. Journal of Chemical Physics, 121 (21).
doi:10.1063/1.1810475

Timmis, J., Knight, T., De Castro, L. N., & Hart, E. (2004). An Overview
of Artificial Immune Systems. In R. Paton, H. Bolouri, M. Holcombe,

| bibliography s – t | 451

J. H. Parish & R. Tateson (Eds.), Computation in Cells and Tissues: Per-
spectives and Tools forThought (pp. 51–86). Natural Computation Series.
Springer.

Tofts, C. (1994). Processes with Probabilities, Priority and Time. Formal
Aspects in Computing, 6 (5), 536–564.

Tominaga, K., & Setomoto,M. (2008). An Artificial-Chemistry Approach to
Generating Polyphonic Musical Phrases. In M. Giacobini, A. Brabazon,
S. Cagnoni, G. Di Caro, R. Drechsler, A. Ekárt, . . . S. Yang (Eds.),Applica-
tions of Evolutionary Computing (Vol. 4974, pp. 463–472). Lecture Notes
in Computer Science. Berlin / Heidelberg: Springer. doi:10.1007/978-
3-540-78761-7_49

Tomioka, R., Kimura, H., Kobayashi, T. J., & Aihara, K. (2004). Multivari-
ate Analysis of Noise in Genetic Regulatory Networks. Journal of Theo-
retical Biology, 229 (4), 501–521. doi:10.1016/j.jtbi.2004.04.034

Tschudin, C. (1993). On the Structuring of Computer Communictions. (PhD
Thesis, University of Geneva). Retrieved 29 September 2010, from http:

//netresearch.ics.uci.edu/Previous_research_projects/agentos/

related/messengers/phd-1.ps

Tschudin, C. (2003). Fraglets - a Metabolistic Execution Model for Com-
munication Protocols. In Proc. 2nd Annual Symposium on Autonomous
Intelligent Networks and Systems (ains).

Turing, A. M. (1952). A Chemical Basis for Morphogenesis. Philosophical
Transactions of the Royal Society of London. Series B. Biological Sciences,
237, 37–72.

U

Ullah,M., &Wolkenhauer,O. (2009a). Investigating the Two-MomentChar-
acterisation of Subcellular Biochemical Networks. arXiv.org q-bio.SC,
0809.0773v3.

Ullah, M., & Wolkenhauer, O. (2009b). Stochastic Approaches in Systems
Biology.Wiley Interdisicplinary Reviews: Systems Biology and Medicine.

Upadhyay, S. K. (2006). Chemical Kinetics and Reaction Dynamics. Springer.

V

van Kampen, N. G. (1976). The Expansion of the Master Equation. Advances
in Chemical Physics, 34.

452 | t – v bibliography |

van Kampen, N. G. (2007). Stochastic Processes in Physics and Chemistry
(3rd ed.). Elsevier.

van Slyke, D. D., & Cullen, G. E. (1914). The Mode of Action of Urease and
of Enzymes in General. Journal of Biological Chemistry, 19, 141–180.

Varga, A. (2001). The omnet++ Discrete Event Simulation System. In Proc.
European Simulation Multiconference (esm 2001).

Varga, A. (2009). OMNeT++ Community Site. Retrieved 12 March 2010,
from http://www.omnetpp.org

Varga, A., & Hornig, R. (2008). An Overview of the omnet++ Simulation
Environment. In Proc. 1st Internation Conference on Simulation Tools
and Techniques for Communications (simutools ’08) (pp. 1–10).

Volterra, V. (1926). Variazioni e fluttuazioni del numero d’individui in specie
animali conviventi. Mem. Acad. Lincei Roma, 2, 31–113.

von Neumann, J. (1966).Theory of Self-Reproducing Automata. Champaign,
il, usa: University of Illinois Press.

W

Waage, P., & Guldberg, C. M. (1864). Studies Concerning Affinity. Forhan-
dlinger: Videnskabs - Selskabet i Christiania, 35.

Wagner, A. (2007). Robustness and Evolvability in Living Systems (S. A. Levin
& S. H. Strogatz, Eds.). Princeton Studies in Complexity. Princeton
University Press.

Wagner, K. (2000). Cooperative Strategies and the Evolution of Communi-
cation. Artificial Life, 6 (2), 149–179. doi:10.1162/106454600568384

Wallace, E. W. J. (2010). A Simplified Derivation of Van Kampen’s System
Size Expansion. arXiv.org q-bio.QM, 1004.4280v2.

Weeks, A., & Stepney, S. (2005). Artificial Catalysed Reaction Networks for
Search. In ecal Workshop on Artificial Chemistry.

Weise, T., Zapf, M., & Geihs, K. (2007). Rule-based Genetic Programming.
In Proc. 2nd International Conference on Bio-Inspired Models of Net-
work, Information, and Computing Systems (bionetics 2007) (pp. 8–15).
doi:10.1109/BIMNICS.2007.4610073

Weise, T. (2009). EvolvingDistributedAlgorithmswithGenetic Programming.
(Doctoral dissertation, Distributed Systems Group, fb 16, University of
Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany).

Wibling, O., Parrow, J., & Pears, A. (2004). Automatized Verification of Ad
Hoc Routing Protocols. In Proc. 24th ifip wg 6.1 International Con-
ference on Formal Techniques for Networked and Distributed Systems

| bibliography v – w | 453

(forte 2004) (Vol. 3235, pp. 343–358). Lecture Notes in Computer Sci-
ence. Berlin / Heidelberg: Springer.

Wilfredo, T.-P. (2000). Software Fault Tolerance: A Tutorial.
Wolkenhauer, O., Ullah, M., Kolch, W., & Cho, K.-H. (2004). Modeling

and Simulation of Intracellular Dynamics: Choosing an Appropriate
Framework. ieee Transactions on Nanobioscience, 3 (3), 200–207.

Wong, V., & Horowitz, M. (2006). Soft Error Resilience of Probabilistic
Inference Applications. In Proc. 2ndWorkshop on System Effects of Logic
Soft Errors (selse).

Wright, S. (1931). Evolution in Mendelian Populations. Genetics, 16 (2), 97–
159.

Y

Yamamoto, L. (2010). Evaluation of a Catalytic Search Algorithm. In J.
González, D. Pelta, C. Cruz, G. Terrazas & N. Krasnogor (Eds.), Nature
Inspired Cooperative Strategies for Optimization (nicso 2010) (Vol. 284,
pp. 75–87). Studies in Computational Intelligence. Berlin / Heidelberg:
Springer. doi:10.1007/978-3-642-12538-6_7

Yamamoto, L., & Banzhaf, W. (2010). Catalytic Search in Dynamic Envi-
ronments. In H. Fellermann, M. Dörr, M. M. Hanczyc, L. L. Laursen,
S. Maurer, D. Merkle, . . . S. Rasmussen (Eds.), Proc. 12th International
Conference on the Simulation and Synthesis of Living Systems (Artificial
Life xii) (pp. 277–284). Retrieved 24 September 2010, from http://

mitpress.mit.edu/books/chapters/0262290758chap53.pdf

Yamamoto, L., Schreckling,D.,&Meyer, T. (2007). Self-Replicating andSelf-
Modifying Programs in Fraglets. In Proc. 2nd International Conference
on Bio-InspiredModels of Network, Information, andComputing Systems
(bionetics 2007).

Z

Zeh, H.-D. (1980). Information and Determinism: Epist. Letters. Ferdinand
Gonseth Association.

Zhang, J., Chung, H.-H., Lo, A.-L., & Huang, T. (2009). Extended Ant
Colony Optimization Algorithm for Power Electronic Circuit Design.
ieee Transactions on Power Electronics, 24 (1), 147 –162. doi:10.1109/
TPEL.2008.2006175

454 | w – z bibliography |

Ziegler, J., & Banzhaf, W. (2001). Evolving Control Metabolisms for a Robot.
Artificial Life, 7 (2), 171–190. doi:10.1162/106454601753138998

Zwanzig, R. (2001). A Chemical Langevin Equation with Non-Gaussian
Noise. Journal of Physical Chemistry, 105, 6472–6473.

| bibliography z | 455

Index

2ma, see Two Moment Approxi-
mation

A

absolute temperature, 335
absorption

mean time to-, 109
organization, 265, 268, 277
state, 108, 261, 263
time to-, 109

abstract
closure operator, 86
species, 81

abstraction, model-, 74
ack, see acknowledgment
acknowledgment, 153, 298

delayed-, 217
duplicate-, 219
selective-, 217

activation
energy, 30, 335–337, 340
function, 341

active
fraglet, 161, 272, 298
networking, 16, 364
security, 16
source routing, 65

reaction, 29

adaptive response by attractor se-
lection, 19

additive
increase /multiplicative decrease,

228, 234
noise, 123

address, 296
Internet Protocol-, 216
loopback-, 217
network node-, 189
Resolution Protocol, 367

adjacency matrix, 51, 141
advantage, selective-, 290
advertised window, 217
aggregation

information-, 18
protocol, ix, 48, 378
Disperser, seeprotocol,Dis-
perser

aging, 249
ais, seeArtificial Immune System
AlChemy, 22, 24, 60
algebra

combinator-, 253
min-plus-, 15

algebraic reasoning, 75
algorithm

ChemicalCongestionControl-
, 226

index | 457

collision-, 339
evolutionary-, 254
Gillespie’s direct-, seeGillespie
injection-, 339, 340
Monte Carlo-, 31
Nagle’s-, 217
Next Reaction-, see Next Re-

action Algorithm
reaction-, 22, 28
scheduling-, 28, 57, 102, 215,

226, 333
algorithmic chemistry, 24, 45, 46,

56, see alsoFraglets, 153,
280, 314, 335

allocation
bandwidth-, 5, 14, 197, 235
efficiency, 234
enzymatic link-, 205
fairness, 234
resource-, 204, 371

alphabet, 57, 315, 348, 389
expression symbols, 89

alteration, memory-, 248
ambient calculus, 75
America Online, 248
amorphous computing, 252
analog

computer, 253
signal, 154, 169, 181, 252

analysis
chemical protocol-, 77
empirical-, 73, 188
as feedback mechanism, 72
linear stability-, 114
mathematical-, 76
Metabolic Control-, 117
perturbation-, 260
quantitative-, 75
structural-, 81

annihilation, 291
announcement, service-, 300

AntHocNet, 19, 311
AntNet, 19, 311
anycast, 175, 269
anycast, 175, 399
application layer, 184
approximation

continuous-, 76
coupledmean-variance-, 129
deterministic-, 259, 367
Linear Noise-, 124

aras, see adaptive response by at-
tractor selection

arbiter, reaction-, 185
archiving, 373
arithmetic

explosion, 87
instructions, 61, 395
motif, 162

arp, see Address Resolution Pro-
tocol

Arrhenius equation, 335, 338, 342,
354

arrow symbol, 57
artifact, 248, 373, 374
artificial

chemistry, 22, see also algo-
rithmic chemistry, 254

constructive-, 24
distributed-, 51
explicit-, 34
history, 23
implicit-, 24, 81, 83, 101,
137, 148

local-, 52
music composition, 26
optimization algorithm, 26
search algorithm, 26
string-, 24
ToyChem, 25, 342

Immune System, 252
life, 25, 247, 254

458 | algorithmic chemistry – artificial index |

assembler, 253
-like instruction, 60

assisted reaction, 161
asynchronous

Transfer Mode, 14
transmission, 14

atm, see Asynchronous Transfer
Mode

attack, deletion-, 260, 296
attraction, basin of, 251, 368
attractor, 109, see also equilibrium,

fixed point
selection, 19, 312, 367

augmented noise, 122
autocatalysis, 25
autocatalytic

randomautocatalytic set, 253
automata

cellular-, 24
self-reproducing-, 249

autonomic
computing manifesto, 250
Internet, 371
protocol, 4
software, 386
system, 250

average
distributed computation, 66
dynamic behavior, 112
kinetic energy, 340
node degree, 213

Avogadro constant, 29, 335

B

back-to-back, 188, 205, 206
balance, total balance condition, 105
Banâtre, Jean-Pierre, 25
bandwidth, 172, 173

allocation, 5, 14, 197, 235
fifo queue, 209

delay product, 203, 213, 219
limitation, 5, 15, 138, 183, 197,

255, 304, 366
chemical model, 201
enzymatic linkmodel, 205

normalized-, 214
share, 14

basin of attraction, 251, 368
behavioral equivalence, 75
best-effort, 227, 242, 365
β-reduction, 24, 60
bgp, see Boarder Gateway Proto-

col
bi-simulation, 75
bi-stable, 134

switch, 158
system, 284

bimolecular reaction, 194, 258
Fraglets, 159

binary string, species, 22
binding energy, 335
binomial

coefficient, 32
distribution, 106, 128

birth-death
chain, 109, 261
process, 109

bit
mutation, 313
parity-, 329

blood cell, 249
blueprint, 249, 253

fraglet, 272
molecule, 258

Boarder Gateway Protocol, 64
Boltzmann constant, 335
bone, 249
Boolean network, 251
bootstrap, 300

data-processing Quine, 274,
288

| index assembler – bootstrap | 459

bottom-up design, 151, 378
broadcast, 174, 177, 178

language, 331
broadcast, 399
Brownian motion, 29
building block, seemotif

C

c++, 159, 184, 188, 189
c3a, seeChemicalCongestionCon-

trol Algorithm
c3a+, 236
ca, see Cellular Automata
calculus

ambient-, 75
of Communicating Systems,

75
γ-, 25
Itô-, 124
λ-, 25
network-, 15
π-, 75
process-, 75

camouflage, 253
capacitor, 156
capacity, vessel-, see vessel capac-

ity
capsule, 16
cardinality, notation, 11
Carrier SenseMultipleAccess, 367
catalyst, 34, 84, 139, 161

conservation loop, 158
catalytic network equation, 259
catastrophe, elongation-, 331, 334
ccs, seeCalculus ofCommunicat-

ing Systems
cell

blood-, 249
division, 334, 347
eukaryotic-, 297

growth, 334
nerve-, 249

cellular
Automata, 24
signaling, 363

Cellular Automata, 249
central

observer, 248
Processing Unit, 55

chain
birth-death-, 109, 261
Markov-, 75

cham, seeChemicalAbstractMa-
chine

channel, reaction-, 104
checking, model-, 73
checkpoint, 248, 252
chemical

Abstract Machine, 26
bonds, 374
communication, 50
computing, 254
CongestionControlAlgorithm,

226
Langevin Equation, 122
Master Equation, 30, 104, 261
deterministic approximation,
see reaction rate equation

Organization Theory, 25, 85,
132, 263, 288, 320

protocol
analysis, 77
convergence proof, 116

queue model, 199
signal, 312
soup, 25
transmission, 52, 103
universe, 28, 81, 85, 132
virtual machine, 46

chemically complete, 161
chemistry

460 | bottom-up design – chemistry index |

algorithmic-, 24, 45, 46, 56,
see alsoFraglets, 153, 280,
314, 335

artificial-, see artificial chem-
istry, 254

chi-squre distribution, 337
chip, probabilistic-, 248
circle, self-replicating-, 318
circuit

design, 19
electronic-, 155
integrated-, 4
switching, 13

class, linkage-, 131
classification

mutant-, 317
of Quines, 324
state-, 108

cle, seeChemical LangevinEqua-
tion

cleavage instruction, see splitting
instruction

clock
drift, 193
physical-, 54

closed, 132
reaction system, 112
set, 85
stochastically-, 108, 267, 277
thermodynamically-, 343

closure, 85, 132
ε-, 85
finite-, 86
infinite-, 86, 313, 316, 352
off-line check, 88

cluster, 73
of Quines, 352

cme, see Chemical Master Equa-
tion

code
fountain-, 367

mobile-, 364
raptor-, 367
self-modifying-, 253
self-organization, 8
self-replicating-, 249

coefficient
binomial-, 32
microscopic reaction-, 31, 336
reaction-, 27, 30, 161, 335
stoichiometric-, 27
of variation, 144

coexistence of Quines, 283
collision

algorithm, 339
elastic-, 337, 339
energy, 335, 340
frequency, 336, 339
theory, 337

combination, linear-, 164
combinator algebra, 253
comma-separated value, 187
communicating

Rule Systems, 363
Sequential Processes, 75

communication, chemical-, 50
compartmentation, 288
competition

of data-processingQuines, 284
packet stream-, 203
of Quines, 282

compiler, 252
theory, 85

complete
chemically-, 161
Turing-, 250

complex
enzyme-substrate-, 171, 205
of species, 130

complexity
computational-, 109, 196, 369
message-, 147, 196, 368

| index chi-squre distribution – complexity | 461

problem, 3
component

compound-, 188
OMNeT++, 188
simple-, 188

composition
concrete-, 103
vector, 29
vessel-, 28, 103

compositional reasoning, 74
compound component, 188
Compuserve, 14
computation

distributed-, 169, 181
microscopic-, 253
symbolic-, 248

computational complexity, 109
computer

analog-, 253
flow-based-, 363
reaction diffusion-, 253
virus, 253
vision, 252

computing
amorphous-, 252
chemical-, 254
manifesto, autonomic-, 250
power limitation, 193

concatenation, 57, 160
concentration, 125, 259

pheromone-, 20
species-, 29

concrete composition, 103
conditional

instructions, 61, 397
probability, 103, 125
state probability, 103

configuration, self-, 250
congestion

avoidance extension for c3a,
236

collapse, 15
control, 182, 227, 372
chemical algorithm, 226
in shape space, 373

signal, 227
window, 219

connected graph, 131
connector, OMNeT++-, 188
consensus

protocol, 17
model checking, 74

requirements for algorithm, 52
conservation

energy-, 155, 334, 340, 345
mass-, 87
of packets principle, 19
rule, 155

consistent reaction system, 264
constant

Avogadro-, 29, 335
Boltzmann-, 335

constructive
strongly-, 24
system, 24, 78, 314
weakly-, 24

constructor, universal-, 249
consumer mode, 204
consumption part, 159
content-centric network, 373
continuous

approximation, 76
variable, 114

contour integral, 120
control

congestion-, see congestion con-
trol

Metabolic Control Analysis,
117

theory, 117
conventions, notational, 11
convergence

462 | component – convergence index |

Disperser, 68
proofs of chemical protocols,

116
time
Disperser, 111
vs. Signal-to-NoiseRatio, 195

conversion, energy-, 343
cooperation, emergence of-, 254
copy protection, 253
copy-on-write, 186
Coq theorem prover, 76
core

network-, 14
War, 293

coroutine, 363
correction, error-, 252
cosmic radiation, 248, 267, 329
cot, see Chemical Organization

Theory
counter-example (model checking),

74
coupledmean-variance approxima-

tion, 129
covariance matrix, 126, 141
cpu, see Central Processing Unit
critical injection rate, 276
cross, 324, 393
crs, seeCommunicatingRule Sys-

tems
csma, see Carrier Sense Multiple

Access
csp, see Communicating Sequen-

tial Processes
csv, see comma-separated value
cumulative probability distribution,

109
current law, Kirchhoff-, 155, 163,

166–168, 170
curve, saturation-, 202, 209
customer (queue), 199
cwnd, see congestion window

cyclic dependence, 286
cytoplasm, 301

D

d-channel, 14
data

fraglet, 272
packet, 14

data-processing
Quine, 272, 289
replication rate, 274

database replication, 18
DatagramCongestionControl Pro-

tocol, 228
dccp, see Datagram Congestion

Control Protocol
deadlock, 108, 261
debugging, 186
decay reaction, 163, 169, 172, 178
decision process, Markov-, 75
decouple dynamics from implemen-

tation, 59
deficiency, 131

ZeroTheorem, 130
del, 392
delay, 400
delay, bandwidth delay product, 203,

213
delayed acknowledgment, 217
deletion attack, 260, 296
deliver, 65, 186, 216
density, probability-, 109
deoxyribonucleic acid, 329
dependence, cyclic-, 286
description level

macroscopic, 7, 15
microscopic, 7, 15

design
bottom-up-, 151, 378
electronic circuit, 19

| index conversion, energy- – design | 463

flow-based-, 153
object-oriented-, 153
pattern, 151
self-healing, 272

rule, 155
detection, error-, 252, 329, 330
deterministic

approximation, 259, 367
scheduler, 221

dhcp, see Dynamic Host Config-
uration Protocol

diagnosis, 251
diagram, energy-, 334
diff, 61, 396
diffusion, 126

matrix, 126, 127
digital signal, 169
dilution

flux, 201, 259, 268, 275, 281,
301

random-, 195, 200
discovery

neighborhood-, 173
Disperser, see protocol
dissipation matrix, 126
distance vector protocol, 297
distinction code/data, 25
distributed

artificial chemistry, 51
computation, 169, 181
fitness evaluation, 356
Hash Table, 154
Quine, 269, 289
reactionnetwork, 45, 51, 203,

299
definition, 53
Disperser, 137
Fraglets, 59, 177
graph, 155
information flow, 42
structure, 28

distribution, see probability distri-
bution

div, 61, 396
divide, 324, 398
division, cell-, 334, 347
dna, see deoxyribonucleic acid
document, 374

flow, 373
mobile-, 374

domain
frequency-, 119
of reaction, 27
time-, 119

dot language, 187
down-movement, 265
drift, 126

clock-, 193
dup, 57, 59, 62, 392
duplicate

acks, 219
instruction, 252

dynamic
behavior, average-, 112
equivalence, 84
HostConfigurationProtocol,

74
dynamical systems, 368
dynamics

flow-, 373
population-, 254

E

eBay, 248
echo motif, 169
ecn, see Explicit Congestion No-

tification
economy, knowledge-, 374
edge, network, see network edge
effective reaction, 336, 339
effectiveness, Disperser, 146

464 | detection, error- – effectiveness, disperser index |

efficiency, 350
allocation-, 234
Disperser, 146

egress reaction, 199
Ehrenfest model, 107
eigenvalue, 115, 141
elastic collision, 337, 339
electrodynamics, 372
electronic circuit, 155
elongation

avoid by energy conservation,
351

catastrophe, 331, 334
spiral, 320, 358

embodiment, 378
chemical networking protocols,

5, 366
robotics, 366
routing protocol, 366

emergence
of control, 6
of cooperation, 254
of equilibrium, 7
of life, 37
of organizations, 25
of regular patterns, 24

empirical analysis, 73, 188
empty, 397
encoding

organizational-, 154
parity-, 330
rate-based-, 70, 193
representation-free-, 70, 154,

162
symbolic-, 70, 137, 146, 154

end-to-endprinciple, 15, 227, 372
endoplasmic reticulum, 301
energy, 333

activation-, 30, 335–337, 340
binding-, 335
collision-, 335, 340

conservation, 155, 334, 340,
345

conversion, 343
diagram, 334
flux rate, 341
framework, 338
kinetic-, 338
mapping function, 341
model, 25
pool, 342
potential-, 333, 340
return function, 341

engine, forwarding-, 198, 201, 241,
278, 372

engineering
method, 5
model, ix
two-level chemical-, 44

software-, 4
top-down-, 59

entropy, 335
enzymatic

link allocation, 205
mac protocol, 208
reaction, 205

enzyme, 6, 171
enzyme-substrate

complex, 171, 205
epidemics, 17, 76
epistasis, 363
ε-closure, 85
eq, 61, 397
equation

Arrhenius-, 335, 338, 342, 354
catalytic network-, 259
Fokker-Planck-, 124, 125
Langevin-, 122
Lotka-Volterra-, 357
Lyapunov matrix-, 127
master-, seeChemicalMaster

Equation

| index efficiency – equation | 465

Maxwell-, 155
Michaelis-Menten-, 171, 212
quadratic-, 213
reaction rate-, 114
stochastic differential-, 122

equilibrium, 7, see also attractor,
fixed point, 18, 105, 116

emergence, 7
flow balance, 156
location-, 374
solution, 153

equivalence
behavioral-, 75
dynamic-, 84

ergodicity, 107
error

correction, 252
detection, 252, 329, 330

Ethernet, 56, 188, 278, 367
eukaryotic cell, 297
Euronet, 14
event

OMNeT++-, 188
scheduler, 185
system, 187

evolution, 358
evolutionary

algorithm, 254
game theory, 357
graph theory, 284

evolvability, 363
evolving protocol, 356
exact stochastic reaction algorithm,

104
exception, 92, 248
exch, 56, 57, 59, 91, 98, 322, 324,

328, 392
executable program, 184
execution

model, 56
stochastic, 366

sequential-, 7
thread, 60

exhaustive
reactionnetwork exploration,

82
search, 322
state-space expansion, 74

exothermic reaction, 335, 343
expansion

Ω-, 125
rewriting-, 85
Taylor-, 115, 125

expel, 399
expert systems, 363
explicit artificial chemistry, 34
Explicit Congestion Notification,

227
exploration, sequence-space-, 85
explosion

arithmetic-, 87
sequence-space-, 83
structural-, 87

expression
Fraglets-, 89
gene-, 297
matching, 90
regular-, 90
substitution, 94
verification, 90

expressive power
of logic, 75
of transformations, 62

extensive, 86
external perturbation, 118
extinction, 108, 282
extraction, information-, 374

466 | equilibrium – extraction, information- index |

F

factor
load-, 171, 207
pre-exponential-, 335

fair queuing, 14
fairness, 200

allocation-, 234
index, 235
max-min-, 227
among Quines, 282

false positive, 97
feedback signal, 252
feedthrough matrix, 119
fever, 257
fifo, see first-in / first-out
fill-level, queue-, 200
finite

closure, 86
memory, seememory limita-

tion
multiset, 190
State Machine, 64, 74
state-space, 104, 190

first-in / first-out, 14, 200, 210
chemical algorithm, 220

first-passage time, 109, 261
fixation probability, 284
fixed point, see also attractor, equi-

librium, 131
of the data-processingQuine,

274
of infinite closure, 88
non-trivial-, 134
of optimal operation, 251
perturbation, 115
of replicating Quine, 260
stability, 114
structural-, 320, 358

flock, 249
flow

document-, 373
dynamics, 373

flow-based
computer, 363
design, 153
forwarding, 372
processing, 374
programming, 363
storage, 373

flow-centric, 373
flux

dilution-, 201, 259, 268, 275,
281, 301

probability-, 105
focusing, stochastic-, 134
Fokker-Planck equation, 124, 125
Fontana, Walter, 24
food fraglet, 285
fork, 57, 59, 95, 160, 258, 315, 319–

322, 324, 326–328, 398
formal reasoning, 75
forwarding

engine, 198, 201, 241, 278, 372
flow-based-, 372
packet-, 17, 83, 92, 273
Quine, 302
rule, 297
state, 296

fountain code, 367
fraglet, 56

active-, 161, 272, 298
blueprint-, 272
data-, 272
food-, 285
neutral-, 265, 268, 280, 296
passive-, 161, 217, 298
persistent-, 67, 83, 117, 161,

180, 191, 217, 314
make self-healing, 273

reward-, 272, 286, 288, 302

| index factor – fraglet | 467

Fraglets, 26, see also algorithmic
chemistry, 56–63

as algorithmic chemistry, 58
bimolecular reaction, 159
expression, 89
instruction, 391–400

anycast, 175, 399
arithmetic, 61, 395
broadcast, 399
conditional, 61, 397
cross, 324, 393
del, 392
delay, 400
deliver, 65, 186, 216
diff, 61, 396
div, 61, 396
divide, 324, 398
dup, 57, 59, 62, 392
empty, 397
eq, 61, 397
exch, 56, 57, 59, 91, 98, 322,
324, 328, 392

expel, 399
fork, 57, 59, 95, 160, 258,
315, 319–322, 324, 326–
328, 398

hash, 400
inject, 399
inspection, 61, 399
length, 61, 400
lt, 61, 397
match, 57, 59, 61, 94, 96, 315,
319, 320, 324–328, 364,
391

matchp, 57, 61, 83, 161, 273,
274, 314, 317, 391

matchps, 391
matchs, 391
max, 396
mfork, 398
min, 396

mmatch, 160, 161, 391
mmatchp, 64, 391
mmatchps, 391
mmatchs, 391
mod, 396
mult, 61, 396
newname, 400
newnode, 399
node, 61, 400
nop, 95, 161, 315, 319, 322,
324, 328, 392

nul, 57, 329, 392
pop, 322, 394
pop2, 398
pow, 396
push, 394
release, 398
releaseat, 398
reordering symbols, 393
repl, 393
rev, 324, 393
rnd, 400
rot, 322, 393
sdel, 392
sdelay, 400
sdiff, 396
sdiv, 396
sdup, 63, 392
send, 57, 61, 65, 169, 186,
189, 196, 364, 399

seq, 63, 396
sexch, 63, 392
sfork, 398
sgt, 396
shash, 400
shove, 395
shuffle, 324, 398
shuffling symbols, 392
sif, 63, 397
sinject, 399
slength, 400

468 | fraglets index |

slt, 396
smax, 396
smfork, 398
smin, 396
smod, 396
smult, 62, 63, 396
snewname, 400
snewnode, 399
snode, 400
split, 57, 59, 61, 91, 160,
321, 322, 328, 398

splitat, 324, 398
splitting, 397
spop, 324, 394
spow, 396
spush, 324, 394
sreleaseat, 398
srnd, 400
ssend, 84, 399
sshove, 395
sshoveat, 395
ssplitat, 398
ssum, 63, 94, 95, 396
stack, 62
sum, 61, 396
syank, 395
syankat, 395
syankdup, 395
syankdupat, 395
synchronization, 391
transmission, 398
trivial, 391
weight, 160

instruction set, 60–63
integration, 186
language, 69, 185
library, 184
meta expression, 389
multi-molecular reaction, 160
processor, 185
rule-based system, 364

simplistic version, 348
timer, 187
unimolecular reaction, 160
version 0.5.1, 389
virtual machine, 69, 87, 184,

221
Frame Relay, 14
framework

energy-, 338
mobility-, 188

free kinetic energy, 340
frequency

collision-, 336, 339
domain, 119
response, 117, 119

fsm, see Finite State Machine
function

energy mapping-, 341
monotonic-, 213

functional programming, 253
future Internet, 371

G

gain, frequency-dependent, 119
game

mate-and-spread-, 7
as artificial chemistry, 23

theory, evolutionary-, 357
Gamma, 25
γ calculus, 25
gate

logic-, 4
OMNeT++-, 188

Gaussian
distribution, 126
white noise, 123

gene
expression, 297
Regulatory Network, 124

generator of organization, 266

| index frame relay – generator of organization | 469

genetic programming, 253
genome, 297
Gillespie’s direct algorithm, 31
global state, 103
gossip protocol, 17, 154

Disperser, 66
mathematical analysis, 76
model checking, 74

gp, see genetic programming
graph

connected-, 131
evolutionary graph theory, 284
graphviz, 187
homomorphic-, 324
Kirchhoff-, 157
network-, 51
reachability-, 85
reaction
route-, 157

reaction network-, 28, 155
rewriting, 25
species, 22
symbol relation-, 93
symmetric-, 138
transition-, 108

grapher module, 187
graphviz, 187
grid topology, 283
grn, seeGeneRegulatoryNetwork
growth

cell-, 334
hyperbolic-, 258, 282

H

habitat, 285, 288
halting problem, 88
handshake, three-way-, 217
hardware, redundant-, 249
hash, 400
hash-table, 185, 191

header
field, 56
packet-, 15
symbol, 56

healing, self-, 250
software, 7

heat, 335, 341
higher-order

Logic, 76
moment, 113

history of artificial chemistry, 23
Hoare logic, 254
hol, seeHigher-Order Logic
homeostasis, 251, 357

software-, 254
homomorphic graph, 324
human assistance (theorem prov-

ing), 75
hybrid model, 243
hyperbolic

growth, 258, 282
saturation, 171

Hypercycle, 254, 286
hypothesis, mapping-, 92

I

ibms autonomic computing man-
ifesto, 250

idempotent, 86
identity, system-, 250
idiomatic motif, 159
image

of reaction, 28
processing, 19

immediate instruction, 390
imperative programming, 249, 362
implicit artificial chemistry, 24, 81,

83, 101, 137, 148
in silico, 26
independent neighbor node, 175

470 | genetic programming – independent neighbor node index |

index
fairness-, 235
Jain-, 234

indifferent, 117
inert, 264, 277, 316

vessel, 29
inference

logical-, 75
probabilistic-, 252

infinite
closure, 86, 313, 316, 352
reaction network, 83
regression, 161, 249
seed, 88

infinitesimal generatormatrix, 105
information

aggregation, 18
extraction, 374
society, 374

initial probability distribution, 109
inject, 399
injection

algorithm, 339, 340
rate, 274
critical-, 276
normalized-, 275

input matrix, 118
inspection

instructions, 61, 399
logger, 187
self-, 24

instruction
assembler-like-, 60
duplicate-, 252
Fraglets, see Fraglets instruc-

tion
set
probabilistic-, 330

integral, contour-, 120
integrated

circuit, 4

Services Digital Network, 14
integration, Fraglets-, 186
Internet

autonomic-, 371
future-, 371
Protocol, 3
address, 216

intrinsic packet loss, 274
invasion of a competitor, 289
ip, see Internet Protocol
irreducible, Markov process, 108
Isabelle, 76
isdn, see Integrated Services Dig-

ital Network
isochronous execution in gossip pro-

tocols, 68
isomerization reaction, 106
Itô calculus, 124

J

Jacobianmatrix, 115, 118, 126, 127,
140

Jain index, 234
jitter, 222
join instruction, see synchroniza-

tion instruction
joint probability distribution, 144

K

Kendall queue notation, 199
kinetic energy, 338

average-, 340
free-, 340
total-, 338

Kirchhoff
graph, 157
law, 155
current, 155, 163, 166–168,
170

| index index – kirchhoff | 471

voltage, 156
Kleene

second recursion theorem, 249
star, 90

knowledge economy, 374

L

λ
calculus, 25
expression, 22, 253

Langevin equation, 122
Langton loop, 253
language

broadcast-, 331
dot-, 187
Fraglets-, 69, 185

Laplace transform, 119
Laplacian matrix, 141
latency, queue-, 200
lattice of organizations, 132, 264
law

Kirchhoff-, 155
of mass action, 30, 58, 254
design, 153
microscopic derivation, 336
scheduler, 33, 220

layer, application-, 184
length, 61, 400
length reduction principle, Fraglets-

, 61, 161
library

Fraglets-, 184
matplotlib, 187

life
artificial-, 25, 247, 254
emergence of, 37

LightweightUnderlayNetworkAd
hoc Routing, 74

limitation

bandwidth-, 5, 15, 138, 183,
197, 255, 304, 366

chemical model, 201
enzymatic linkmodel, 205

computing power, 193
memory-, 190

line-of-center model, 337
linear

combination, 164
coupling, 146
Noise Approximation, 124
Disperser, 141

reaction network, 112
stability analysis, 114
Temporal Logic, 73
time-invariant system, 117

linearization, 114, 117
Disperser, 140

link
allocation, enzymatic-, 205
bandwidth, see bandwidth
load-balancing, 207, 306
virtual vessel, 201

linkage class, 131
lna, seeLinearNoiseApproxima-

tion
load factor, 171, 207
load-balancing, link-, 207, 306
local

reaction-rules, 52
species, 52

location equilibrium, 374
locus, 315
logger

inspection-, 187
state-, 187
trace-, 187

logging, 186, 187
logic

gate, 4
Hoare-, 254

472 | kleene – logic index |

parallelism, 26
sub-molecular-, 24

logical
inference, 75
reasoning, 75

loop
Langton-, 253
reaction network graph, 157,

171
routing-, 301
state-dependent-, 253
transformation-, 61, 161, 327

loopback address, 217
loss, packet-, 169, 296
Lotka-Volterra equation, 357
low-pass filter, 203, 241
lt, 61, 397
ltl, see Linear Temporal Logic
lunar, seeLightweightUnderlay

Network Ad hoc Rout-
ing

Lyapunov matrix equation, 127

M

mac, seeMediumAccess Control
machine, virtual-, see virtual ma-

chine
macroscopic

description level, 7, 15
dynamic model, 112
variable, 113

mainframe, 17
majority voting, 248
Mann, Thomas, 257
mapping

energy-, 341
hypothesis, 92
species-, 83

Markov
chain, 75

decision process, 75
jump process, 103, 261
irreducible, 108

process, 199
mass conservation, 87

Disperser, 68
Push-Sum, 68

master equation, seeChemicalMas-
ter Equation

match, 57, 59, 61, 94, 96, 315, 319,
320, 324–328, 364, 391

matching
exact-, 364
expression-, 90
pattern-, 61
signature, 221
tag-, 58

matchp, 57, 61, 83, 161, 273, 274,
314, 317, 391

matchps, 391
matchs, 391
mate-and-spread game, 7

as artificial chemistry, 23
mathematical

analysis, 76
object, species, 22
symbols, meaning, 11

matplotlib, 187
matrix

adjacency-, 51, 141
covariance-, 126, 141
diffusion-, 126, 127
dissipation-, 126
feedthrough-, 119
infinitesimal generator-, 105
input-, 118
Jacobian-, 115, 118, 126, 127,

140
Laplacian-, 141
Lyapunovmatrix equation, 127
notation, 11

| index logical – matrix | 473

output-, 119
rank, 131
singular-, 109
state-, 118
stochastic-, 105
stoichiometric-, 113
transition rate-, 105
unit-, 142

matter, 257
max, 396
max-min fairness, 227
maximum

Segment Size, 217
transmission rate, 206

Maxwell
-Boltzmanndistribution, 337
equation, 155

mca, seeMetabolic Control Anal-
ysis

mds, seemeta dynamic state
mean

coupledmean-variance approx-
imation, 129

time to absorption, 109
mean-field theory, 76
mechanics, statistical-, 336
Medium Access Control, 208
medium, shared-, 208
membrane, 347

computing, 26
memory

alteration, 248
limitation, 190
shared-, 200

mesoscopic dynamicalmodel, 121–
130

message complexity, 147, 196, 368
messenger

paradigm, 16
ribonucleic acid, 301

meta

Dynamic State, 251
expression, Fraglets, 389
heuristics, stochastic-, 19

metabolic
Control Analysis, 117
network, 356
pathway, 117

method, engineering-, 5
mfork, 398
Michaelis-Menten equation, 171,

212
microscopic

computation, 253
description level, 7, 15
dynamic model, 102–112
reaction coefficient, 31, 336
reaction rate, 336

min, 396
min-plus algebra, 15
mind, 251
miniaturization, 4
minimal independent set, 154
mirroring, quantity-, 164
M/M/1 queue, 207
M/M/1/K queue, 199
mmatch, 160, 161, 391
mmatchp, 64, 391
mmatchps, 391
mmatchs, 391
M/M/c queue, 207
mobile

code, 364
document, 374

mobility, 3
framework, 188

mod, 396
mode

consumer-, 204
producer-, 205

model, 69
abstraction, 74

474 | matter – model index |

checking, 73
probabilistic-, 74

Ehrenfest-, 107
energy-, 25
engineering-, ix
execution-, 56
line-of-center-, 337
macroscopic dynamic-, 112
mesoscopic dynamic-, 121–130
microscopic dynamic-, 102–

112
moderate active networks, 16
module, grapher-, 187
molecular

concentration, 29
quantity, 28
mean, 113

species, 22
node local, 52

structure, 22
molecule, 22

blueprint-, 258
conservation loop, see reaction

network loop
transient-, 59, 160
window-, 229

moment, 109
-generating function, 16
higher-order-, 113

monitoring, 251
monomer, 344
monotone, 86
monotonic function, 213
Monte Carlo algorithm, 31
morphogenesis, 24
motif, 158

arithmetic-, 162
echo-, 169
Fraglets language-, 159
idiomatic-, 159

networkneighborhooddiscovery-
, 173

quantity mirroring-, 164
rate limitation-, 170
replication feed-, 287
self-healing-, 272
transmission-, 168

mpls, seeMulti Protocol Label Switch-
ing

mrna, seemessenger ribonucleic
acid

mss, seeMaximum Segment Size
mult, 61, 396
Multi Protocol Label Switching, 14
multi-level selection, 334, 347, 358
multi-molecular reaction in Fraglets,

160
multinomial probability distribu-

tion, 112
multiplexing, statistical-, 14
multiplicative noise, 123
multiset

finite-, 190
notation, 11
observer, 185
product-, 27
reactant-, 27
rewriting system, 56
vessel-, 28

multivariateGaussian distribution,
126

music composition, chemical-, 26
mutant, 284

classification, 317
mutation

bit-, 313
rate, 268
symbol-, 314

| index moderate active networks – mutation | 475

N

Nagle’s algorithm, 217
natural selection, 254
neighbor node, 51

independent-, 175
neighborhood

discovery, 173
network-, 51, 52, 291, 300
one symbol-, 317

nerve cell, 249
nervous system, 70
network

active-, 364
Boolean-, 251
calculus, 15
probabilistic-, 16

circuit-switched-, 13
connection-oriented-, 13
content-centric-, 373
core, 14
edge, see also link
set, 51

gene regulatory-, 124
graph, 51
link, see network edge
metabolic-, 356
neighborhood, 51, 52, 291, 300
discovery motif, 173

node, 52
address, 189
set, 51

packet-switched-, 14
paradigms, 13
processor, 16
sensor-, 363
simulator, see simulator, 188
social-, 17
telegraph-, 13
telephone-, 13

wireless sensor-, seeWireless
Sensor Network

Network Simulator
version 2, 73
version 3, 73

Neumann, von, see vonNeumann
neutral fraglet, 265, 268, 280, 296
newname, 400
newnode, 399
Next Reaction Algorithm, 33

extension for distributed re-
actors, 54

node, 61, 400
node, network-, seenetwork node
noise, 122, 129

additive-, 123
advantages, 367
augmented-, 19, 122
drawbacks, 366
Gaussian white-, 123
LinearNoiseApproximation,

124
multiplicative-, 123

non-trivial fixed point, 134
nop, 95, 161, 315, 319, 322, 324,

328, 392
normal form

fraglet, 59
λ-expression, 24

normalized
bandwidth, 214
injection rate, 275

notational conventions, 11
ns2, see Network Simulator 2
ns3, see Network Simulator 3
nucleus, 297
nul, 57, 329, 392
nutrient, 19

476 | nagle’s algorithm – nutrient index |

O

object-oriented
design, 153
programming, 158

objective, research-, 4
observer

central-, 248
multiset-, 185

ode, seeOrdinaryDifferential Equa-
tion

Ω expansion, 125
OMNeT++, 73, 184, 188

connector, 188
Disperser simulation, 67
event, 188
gate, 188
plug-in, 187

one symbol neighborhood, 317
open reaction system, 112
optics, 372
optimization

algorithm, chemical-, 26
self-, 250

order, reaction-, 27, 162
OrdinaryDifferential Equation, 114,

202
catalytic network equation, 259

organization, 6, 133, 263
absorption-, 265, 268, 277
generator, 266
lattice, 264
as macro-state, 251
semi-, 132, 321

organizational encoding, 154
oscillation, 231
out-degree, 139, 141, 214
output matrix, 119
outsourcing of computation, 153,

369
overshoot, 69

P

P-systems, 26
package density, 4
packet

conservation, 19
data-, 14
forwarding, 17, 83, 92, 273
header, 15
loss, 169, 296
intrinsic-, 274
probability, 276

queue, 198
reordering, 217
stream competition, 203
-switched network, 14

pan, see Protocol ANalyzer
paradigm, see also principle

messenger-, 16
networking-, 13
shift, 153, 372

parallel execution of reactions, 29
parallelism, logic-, 26
parity

bit, 329
encoding, 330

part
consumption-, 159
production-, 160

partial order reduction, 74
passive fraglet, 161, 217, 298
path reinforcement, 298, 302
pathway

metabolic-, 117
redundant-, 6

pattern
design-, 151
self-healing, 272

formation, 37
matching, 61
replication feed-, 287

| index object-oriented – pattern | 477

stripe-, 284
payload, 253, see also piggyback
pctl, see Probabilistic Temporal

Logic
persistent

fraglet, 67, 83, 117, 161, 180,
191, 217, 314

make self-healing, 273
storage, 373

perturbation, 368
analysis, 260
external-, 118
fixed point-, 115
variable, 115

Petri Net, 74, 132
phase-type distribution, 109, 262
pheromone, 19, 311
physical

clock, 54
time, 188, 193

π-calculus, 75
piggyback, 70, see also payload
pixel, 283
plug-in, OMNeT++-, 187
Point-to-Point Protocol, 188
pointer, smart-, 186
Poissonprobability distribution, 112
policy, scheduling-, 199
Polinière, Pierre, 295
polymerization, 344
pool, energy-, 342
pop, 322, 394
pop2, 398
population dynamics, 254
posix, 184
potential energy, 333, 340

function, 341
pow, 396
power set, notation, 11
ppp, see Point-to-Point Protocol
pre-exponential factor, 335

pressure, selective-, 259, 284, 347
prime number, 25
principle, see also paradigm

conservation of packets-, 19
end-to-end-, 15, 227, 372

priority queue, 33, 185
prism, 75
privacy, 375
pro-rata, 204
proactive routing, 297, 312
probabilistic, see also random, stochas-

tic
chip, 248
inference, 252
instruction set, 330
model checking, 74
network calculus, 16
reasoning, 252
Temporal Logic, 75
Timed Automata, 75

probability
conditional-, 103, 125
density, 109
distribution
binomial-, 106, 128
chi-square-, 337
cumulative-, 109
Gaussian-, 126
initial-, 109
joint-, 144
Maxwell-Boltzmann-, 337
multinomial-, 112
multivariateGaussian-, 126
phase-type-, 109, 262
Poisson-, 112
stationary, 105

fixation-, 284
flux, 105
packet loss-, 276
reaction-, 336
state- (conditional), 103

478 | payload – probability index |

problem
reliability-, 4

problem, halting-, 88
procedural programming, 362
process

birth-death-, 109
calculus, 75
Markov-, 199
MEta LAnguage, 74
stochastic-, 103
time-homogeneous-, 104

processing, flow-based-, 374
processor, Fraglets-, 185
procreation, 249
producer mode, 205
product

bandwidth delay-, 203, 213
multiset, 27
normalized-, 60

production
part, 160
rule, 57, 185

production rule, 363
programming

flow-based-, 363
functional-, 253
genetic-, 253
imperative-, 249, 362
object-oriented-, 158
procedural-, 362
Rule-Based Genetic-, 363
rule-based-, 363

promela, seePROcessMEta LAn-
guage

propensity, 31, 185, 221
simplified-, 54, 104

protection
copy-, 253
self-, 251

protein, 257
folding, 19

protocol
aggregation-, ix, 48, 378
ANalyzer, 74
AntHocNet, 19
AntNet, 19
aras, 19, 312
autonomic-, 4
BoarderGateway-, seeBoarder

Gateway Protocol
consensus-, 17
model checking, 74

Disperser, 66–69, 300
analysis, 137–148
Chemical Langevin Equa-
tion, 124

closed reaction system, 112
convergence proof, 116
convergence time, 111
effectiveness, 146
efficiency, 146
Fraglets implementation, 67
limited bandwidth, 209
LinearNoiseApproximation,
127, 141

neighborhooddiscovery, 177
not active-networking, 364
OMNeT++ simulation, 67
perturbation analysis, 120
reaction coefficient, 138
stochastic convergence anal-
ysis, 105

distance vector-, 297
DynamicHostConfiguration-

, seeDynamicHostCon-
figuration Protocol

enzymatic mac-, 208
evolving-, 356
gossip-, 17, 137, 154
analysis, 76
model checking, 74

| index problem – protocol | 479

Internet-, see Internet Proto-
col, 188

Push-Sum, 66
routing, 3
Information-, see Routing
Information Protocol

self-healingmultipath-, 295
source-, 65

security-
model checking, 74

self-healingmultipath routing-
, 295

standardization, 16
stochastic-, 17
StreamControl Transmission-

, see StreamControl Trans-
mission Protocol

t-man-, 18
topology management-, 18
TransmissionControl-, seeTrans-

mission Control Proto-
col

proving, theorem-, 75
pta, see Probabilistic Timed Au-

tomata
push, 394
Push language, 62
Push-Sum protocol, 66
Python

matplotlib, 187

Q

quadratic equation, 213
quantitative analysis, 75
quantity

mirroring, 164
remote-, 168, 177

signal, 154, 163, 168–170, 178
of species, 28
variance, 126

quantum mechanics, 25, 342
quasi steady-state, 109, 263, 266,

268, 271, 277
queue

chemical model, 199
fifo-, 14, 189, 210
fill-level, 200
latency, 200
M/M/1-, 207
M/M/1/K-, 199
M/M/c-, 207
notation according toKendall,

199
packet-, 198
priority-, 33, 185
reaction priority-, 185
-server-link triple, 204
waiting time, 15, 208

queuing
fair-, 14
theory, 15

Quine, 249
classification, 324
cluster, 352
coexistence in the network, 283
competition
of data-processing-, 284
in a vessel, 282

cooperative linkage, 285
data-processing-, 272, 289
replication rate, 274

distributed-, 269, 289
forwarding-, 302
in Fraglets, 258
replicating-, 258
resource requirements, 278
Riboquine, 297
support-, 287
survival time, 263
template, 273
versioned-, 290

480 | proving, theorem- – quine index |

Willard van Orman, 249
quinification, 273, 278, 316

R

radiation, cosmic-, 248, 267, 329
random, see alsoprobabilistic, stochas-

tic
autocatalytic set, 253
dilution, 195, 200
search, 322
variable, 103, 114
exponentially distributed, 31

rank, matrix-, 131
raptor code, 367
rate

injection-, 274
critical-, 276

limitation motif, 170
maximum transmission-, 206
mutation-, 268
reaction rate equation, 114
reaction-
microscopic-, 336

signal, 154
transition-, 103

rate-based encoding, 70, 193
rbgp, seeRule-BasedGenetic Pro-

gramming
reachability, 108, see also absorp-

tion state
graph, 85

reachable state, 108
reactant multiset, 27
reaction, 157, 171

active-, 29
algorithm, 22, 28
energy-aware-, 339
exact stochastic-, 104

arbiter, 185
assisted-, 161

bimolecular-, 194, 258
Fraglets, 159

catalyzed-, 34
channel, 104
coefficient, 27, 30, 161, 335
microscopic-, 31, 336
selection, 195

consistent reaction system, 264
decay-, 163, 169, 172, 178
-diffusion, 24
computer, 253

domain of, 27
effective-, 336, 339
egress-, 199
enzymatic-, 205
exothermic-, 335, 343
image of, 28
isomerization-, 106
kinetics, 25
multi-molecular-
Fraglets, 160

network
graph, 155
infinite-, 83
linear-, 112
loop, 157, 171
sensitivity, 117

notation, 22
order, 27, 162
priority queue, 185
probability, 336
propensity, 31
simplified, 54

rate
equation, 114
maximum-, 193
microscopic-, 336

reversible-, 325
route graph, 157
rule, 22
node local, 52

| index quinification – reaction | 481

scheduler, 187
system, 6
closed-, 112
open-, 112

unimolecular-, 57, 194
Fraglets, 160

vessel, 22, 28, 338
real-time scheduling, 54
reasoning

algebraic-, 75
compositional-, 74
formal-, 75
logical-, 75
probabilistic-, 252

recognition, speech-, 252
recurrent state, 108
reduction

partial order-, 74
spiral, 320

redundancy, 248
self-organization of, 252
software-, 252

redundant
hardware, 249
pathway, 6

regression, infinite-, 161, 249
regular expression, 90
reinforcement, path-, 298, 302
release, 398
releaseat, 398
reliability problem, 4
reliable transmission, 3
remote quantitymirroring, 168, 177
tcp-, 217, 219, 226–228, 231, 239,

372
reordering

instructions, 393
packet-, 217

repair, self–, 249
repl, 393
replicating Quine, 258

replication
database-, 18
feed pattern, 287
self-, 24, 249

representation-free encoding, 70,
154, 162

reproduction, self-, 253
requirement specification, 72
research objective, 4
resource allocation, 204, 371
response

frequency-, 117, 119
step-, 119, 203
transient-, 117

resting time, 105
reticulum, endoplasmic-, 301
rev, 324, 393
reversible

reaction, 325
weakly-, 131

reward fraglet, 272, 286, 288, 302
rewriting

expansion, 85
multiset-, 56
string-, 57

ribonucleic acid, 286
messenger-, 301

Riboquine, 297, 301
ribosome, 297
rigorousmathematical analysis, 76
rip, see Routing Information Pro-

tocol
rna, see ribonucleic acid
rnd, 400
robotics, 252

embodiment, 366
robustness

to execution errors, 265, 324,
325

tomemory alteration, 191, 267
to symbol mutations, 317

482 | real-time scheduling – robustness index |

to noise, 20
to packet loss
Disperser, 69
gossip protocols, 69

rot, 322, 393
Round Trip Time, 218

minimum, 228
variation, 237

round-robin scheduler, 14
router, 14, 43, 231
routing

Information Protocol, 76
loop, 301
proactive-, 297, 312
table, 299

rtt, see Round Trip Time
rule

conservation-, 155
design-, 155
forwarding-, 297
graph rewriting-, 25
production-, 57, 185, 363
reaction-, 22
node local, 52

synchronization-, 57, 159
transformation-, 57

rule-based
programming, 363
Fraglets, 364
Genetic Programming, 363

S

saturation
curve, 202, 209
hyperbolic-, 171

scalar variable, notation, 11
scheduler

deterministic-, 221
event-, 185
law of mass action-, 33, 220

reaction-, 187
round-robin-, 14

scheduling
algorithm, 28, 57, 102, 215,

226, 333
ant colony approach, 19
policy, 199
real-time-, 54

Scilab, 262
sctp, see Stream Control Trans-

mission Protocol
sdel, 392
sdelay, 400
sdiff, 396
sdiv, 396
sdup, 63, 392
search

algorithm, chemical-, 26
exhaustive-, 322
random-, 322

second recursion theorem,Kleene’s-
, 249

security
active networks, 16
protocols (model checking),

74
Transport Layer-, 76

seed, 85, 269, 274, 288, 321
infinite-, 88
self-maintaining-, 322

segment, tcp-, 216
selection

multi-level-, 334, 347, 358
natural-, 254

selective
acknowledgment, 217
advantage, 290
pressure, 259, 284, 347

self-
adaption, 248
configuration, 250

| index rot – self- | 483

healing, 250
software, 7, 247
software-only, 252

inspection, 24
maintaining
seed, 322
semi-, 133

modifying code, 253
optimization, 248, 250
organization
of code, 8
of redundancy, 252

protection, 251
repair, 249
replicating
circle, 318
code, 249
set, 253
spiral, 318

replication, 24, 249
reproducing automata, 249
reproduction, 253
*-properties, 251

semi
organization, 132, 321
self-maintaining, 133

send, 57, 61, 65, 169, 186, 189, 196,
364, 399

sensitivity, reactionnetwork-, 117
sensor network, 363, see alsowire-

less sensor network
seq, 63, 396
sequence-space

exploration, 85
explosion, 83

sequential execution, 7
service, 296

announcement, 300
Service Oriented Architecture, 3
set

closed-, 85

minimal independent-, 154
network edge-, 51
network node-, 51
notation, 11
random autocatalytic-, 253
reaction rule-, 22
node local, 52

self-replicating-, 253
species-, 22
node local, 52

theory, 85
-valued set function, 86

settling time, 163
seu, see Single Event Upset
sexch, 63, 392
sfork, 398
sgt, 396
shaping, traffic-, 372
share, bandwidth-, 14
shared

medium, 208
memory, 200

shash, 400
shift, paradigm-, 153, 372
shove, 395
shuffle, 324, 398
shuffling instructions, 392
sif, 63, 397
signal, 117

analog-, 154, 169, 181, 252
chemical-, 312
congestion-, 227
digital-, 169
feedback-, 252
quantity-, 154, 163, 168–170,

178
rate-, 154
theory, 78, 230

Signal-to-Noise Ratio, 107
Disperser, 141, 178, 180
vs. convergence time, 195

484 | semi – signal-to-noise ratio index |

signaling, cellular-, 363
signature, matching-, 221
simple

component, 188
Promela INterpreter, 74

simulation time, 193
simulator

network-, 73, 188
ns2, see ns2
ns3, see ns3
OMNeT++, see omnet++

Single Event Upset, 267
singular matrix, 109
sinject, 399
sink, 189
sleep, 54
slength, 400
slow start, tcp-, 219
slt, 396
smart pointer, 186
smax, 396
smfork, 398
smin, 396
smod, 396
smult, 62, 63, 396
snewname, 400
snewnode, 399
snode, 400
snr, see Signal-to-Noise Ratio
soa, see Service Oriented Archi-

tecture
social network, 17
society, information-, 374
socket, 189
software

autonomic-, 386
engineering, 4
homeostasis, 254
redundancy, 252
self-healing-, 7, 247
update, 289

version, 374
solution, equilibrium-, 153
soup, 25, 185
source, 189

routing, 65
spatially distributed vessel, 51
species, 22

abstract-, 81
distinction in Fraglets, 83
mapping, 83
node local, 52
notation, 11
as queue, 199

specification, requirement-, 72
speech recognition, 252
spin, see Simple Promela INterpreter
spiral, 115

elongation-, 320, 358
reduction-, 320
self-replicating-, 318

split, 57, 59, 61, 91, 160, 321, 322,
328, 398

splitat, 324, 398
splitting instructions, 397
spop, 324, 394
spow, 396
spush, 324, 394
sreleaseat, 398
srnd, 400
ssend, 84, 399
sshove, 395
sshoveat, 395
ssplitat, 398
ssum, 63, 94, 95, 396
stability, linear stability analysis, 114
stack instructions, 62, 390
standardization, 16
state

absorption-, 108, 261, 263
classification, 108
forwarding-, 296

| index signaling, cellular- – state | 485

global-, 103
logger, 187
machine, 15
matrix, 118
meta dynamic-, seeMetaDy-

namic State
probability (conditional), 103
reachable-, 108
recurrent-, 108
transient-, 108
transition, 103

state-change vector, 29, 103
state-dependent loop, 253
state-space, 103

expansion, exhaustive, 74
exponential growth, 112
finite-, 104, 190

stationary probability distribution,
105

statistical
mechanics, 336
multiplexing, 14

steady-state
quasi-, 109, 263, 266, 268, 271,

277
step response, 119, 203
stochastic, see alsoprobabilistic, ran-

dom
correct simulation, 31
differential equation, 122
execution model, 366
focusing, 134
matrix, 105
meta heuristics, 19
process, 103
protocol, 17
reaction algorithm, 104
routing, 18
switching, 134
variation, 114

stochastically closed, 108, 267, 277

stoichiometric
coefficient, 27
matrix, 113
rules, 368
vector, 103

storage
flow-based-, 373
persistent-, 373

store and forward, 14
StreamControl TransmissionPro-

tocol, 14
string

chemistry, 24
rewriting, 57

stripe pattern, 284
strong active networks, 16
strongly constructive, 24
structural

analysis, 81
explosion, 87
fixed point, 320, 358

structurally active symbol, 95
structure

molecular-, 22
sub-molecular-, 24
of the thesis, 8

sub-molecular logic, 24
substitution, expression-, 94
sum, 61, 396
support Quine, 287
survival

of the common, 282, 285
time, 262, 277

swap instruction, see exch
switch, 14
switch, bi-stable-, 158
switching, stochastic-, 134
syank, 395
syankat, 395
syankdup, 395
syankdupat, 395

486 | state-change vector – syankdupat index |

symbiosis, 286
symbol

exclusion set, 89
header-, 56
mathematical-, meaning, 11
mutation, 314
relation graph, 93
string, species, 22
structurally active-, 95
synchronization-, 61
wildcard, 89

symbolic
computation, 248
encoding, 70, 137, 146, 154

symmetric graph, 138
symmetry breaking, 367
syn, 217
syn-ack, 217
synchronization

instructions, 391
rule, 57, 159
symbol, 61
time-, 188
Fraglets to omnet++, 189

synchronize
simulation to physical time,

55
system, 69

Artificial Immune, seeArtifi-
cial Immune System

autonomic-, 250
constructive-, see constructive

system
event-, 187
expert-, 363
identity, 250
linear time-invariant-, 117
nervous-, 70
reaction-, 6
tag-, 56

systemic trajectory, 122, 124, 129

T

t-man, 18
table, routing-, 299
tag

matching, 58
system, 56

tail-drop, 200
chemical algorithm, 220

τ-leaping, 195
Taylor expansion, 115, 125
tcp, seeTransmissionControl Pro-

tocol
-friendly, 230
Rate Control, 228

telegraph, 13
telephone, 13
temperature, 30, 344

absolute-, 335
template, Quine-, 273
test bed, 73
tfrc, see tcp-friendly Rate Con-

trol
theorem

Deficiency Zero-, 130
Kleene’s second recursion-, 249
proving, 75

theory
collision-, 337
compiler-, 85
control-, 117
evolutionary
game-, 357
graph-, 284

mean-field-, 76
set-, 85
signal-, 78, 230

thermodynamically closed, 343
thermodynamics, 25, 126, 335
thesis, structure, 8
thread, execution-, 60

| index symbiosis – thread, execution- | 487

three-way handshake, 217
throughput, 205, 217, 296
time

to absorption, 109
domain, 119
first-passage-, 109, 261
-homogeneous process, 104
mean time to absorption, 109
physical-, 188, 193
resting-, 105
round trip, see round trip time
settling-, 163
simulation-, 193
survival-, 262, 277
synchronization, 55, 188
Fraglets to omnet++, 189

timer, 15
Fraglets-, 187

tls, see Transport Layer Security
token, 6
top-down engineering, 59
topology, 85

grid-, 283
management, 18
toroidal-, 68, 283

toroidal topology, 68, 283
total

balance condition, 105
kinetic energy, 338

ToyChem, 25, 342
trace

logger, 187
packet sequence-, 73

traffic shaping, 372
trajectory, systemic-, 122, 124, 129
transform, Laplace-, 119
transformation

expressive power, 62
loop, 61, 161, 327
processing time, 194
rule, 57

immediate execution, 59
transient

molecule, 59, 160
response, 117
state, 108

transition
graph, 108
rate, 103
matrix, 105

state-, 103
transmission

instructions, 398
asynchronous-, 14
chemical model, 52
chemical-, 103
Control Protocol, 3, 64, 255
mathematical analysis, 76
over enzymatic links, 223
Reno, 217, 219, 226–228,
231, 239, 372

segment, 216
slow start, 219
Vegas, 228, 236, 238, 372

maximum transmission rate,
206

motif, 168
reliable-, 3

Transport Layer Security, 76
trivial instructions, 391
trust, 375
Turing

complete, 63, 250
machine, 24
patterns, 24

TwoMomentApproximation, 129

U

udp, seeUser Datagram Protocol
unconventional computing, 21
undecidable, 88

488 | three-way handshake – undecidable index |

underline, 95
unimolecular reaction, 57, 194

in the enzymatic link model,
206

Fraglets, 160
unit matrix, 142
universal constructor, 249
universe

age of-, 263
chemical-, 28, 81, 85, 132

unreliable
computing, 4
execution environment, 248

update
function, 17
software-, 289

User Datagram Protocol, 188

V

value, comma-separated-, 187
variable

continuous-, 114
macroscopic-, 113
perturbation-, 115
random-, 103, 114

variance
coupledmean-variance approx-

imation, 129
Disperser, 107
quantity-, 126

variation
coefficient of-, 144
stochastic-, 114

vector
composition-, 29
notation, 11
state-change-, 29, 103
stoichiometric-, 103

Vegas, tcp-, 228, 236, 238, 372
velocity, 338

verification, expression-, 90
version, software-, 374
versioned Quine, 290
vessel

capacity, 203
dynamic adaptation, 195
limit, 194, 201

composition, 28, 103
inert-, 29
multiset, 28
reaction-, 22, 28, 338
spatial distribution, 51
virtual link-, 201
volume, 29
well-stirred-, 23, 26

virtual
circuit, 14
connection, 14
link vessel, 201
machine, 323, 325, 364
chemical-, 46
Fraglets, 69, 87, 184, 221

path, 14
virtualization, 17
virus, computer-, 253
vision, computer-, 252
vm, see virtual machine
voltage, 4

law, Kirchhoff-, 156
volume, 125

vessel-, 29
von Neumann machine, 53
voting, majority-, 248

W

waiting time, queue-, 15, 208
War, Core-, 293
weakly

constructive, 24
reversible, 131

| index underline – weakly | 489

Web 2.0, 3
weight, 160
well-stirred, 23, 26
wild-type, 284, 315
wildcard symbol, 89
window

advertised-, 217
molecule, 229

wire-speed, 61
Wireless Sensor Network, 18
word, 57
world wide web, 3
wsn, seeWireless SensorNetwork

X

x.25, 14

490 | web 2.0 – x.25 index |

