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General Summary 

 

Considerable progress has been made in recognizing microvesicles as important 

mediators of intercellular communication rather than irrelevant cell debris. 

Microvesicles released by budding directly from the cell membrane surface either 

spontaneously or in response to various stimuli are called ectosomes. Of particular 

interest is that ectosomes released by polymorphonuclear neutrophils (PMN-Ect) 

down regulate the inflammatory potential of macrophages. This finding was a real 

surprise since PMNs are known to be proinflammatory cells par excellence. Thus the 

very same cells known for their destruction capacity have the property of releasing 

ectosomes, which inhibit further macrophage activation, although various cytokines 

released by PMNs are chemotactic for macrophages. This might be a powerful 

regulatory mechanism responsible for the control of excess inflammation. In my 

thesis I wanted to  

 
(1)  see whether the same ectosomes have also the property to down regulate 

dendritic cells (DCs), so as to prevent the activation of the acquired 

immune system (T cells), when it is not required (section 1). 

 
(2) see whether ectosomes from other cells would have similar properties. For 

this we investigated ectosomes released by erythrocytes (section 2). 

 
(3) define the signaling pathways induced by ectosomes (section 3). 
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(1) PMN-Ect were recently shown to induce an anti-inflammatory response on human 

monocyte-derived macrophages (HMDMs). I found that PMN-Ect also inhibited the 

LPS-induced maturation of human monocyte-derived DCs (MoDCs). This effect was 

evidenced by reduced expression of cell surface markers (CD40, CD80, CD83, CD86 

and HLA-DP DQ DR), inhibition of cytokine release (IL-8, IL-10, IL-12, and TNFα), 

and new morphological and functional characteristics (reduced phagocytic activity, 

and increased TGF-β1 release). Importantly, the skewed MoDC differentiation 

resulted in a reduced capacity to activate T-cells, suggesting an active role for PMN-

Ect in adaptive immunity as well. 

 

(2) Microvesicles derived from erythrocytes during storage had all the properties of 

ectosomes. E-ecto revealed an inhibitory potential on zymosan A and LPS activated 

HMDMs as shown by down-regulation of IL-8 and TNFα release. However, different 

from PMN-Ect, E-ecto did not enhance the release of TGF-β1. In addition, the effect 

of E-ecto was found to be long lasting. Thus, E-ecto transfused with erythrocytes may 

account for some of the immunosuppressive effects seen after blood transfusions  

 

(3) The receptors and signaling pathways involved in ectosome-induced down-

modulation are unknown. I showed that the encounter of PMN-Ect with HMDMs 

induced an immediate calcium flux. Mer receptor as well as the phosphatidylinositol 

3-kinase (PI3K)/Akt pathway were activated, and NFκB translocation and 

phosphorylation were blocked. Consequently, the transcription of many 

proinflammatory genes in zymosan A activated HMDMs were reduced. Finally, my 

data revealed that TGF-β1 release induced by PMN-Ect was not related to a 

modification in its transcription.  
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Taken together these results suggest that ectosomes have a profound effect on the 

innate immune system, here macrophages, as well as on the induction of the adaptive 

immune system, here DCs, globally reprogramming these cells toward an 

immunosuppressive and possibly tolerogenic phenotype.  
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General Introduction 

 

Various eukaryotic cell types release membrane-derived microvesicles under specific 

physiologic conditions. Whereas this fact was relatively unknown, and was not 

considered important until recent years, latest studies point toward a common 

mechanism that involves these vesicles in intercellular cross-talk (1). Interestingly, 

this phenomenon seems conserved during evolution, since even bacteria are described 

to release microvesicles that are important components of biofilms, and a major signal 

trafficking system (2, 3).  

 

Vesiculation is a physiological mechanism that is used in cell growth, protection and 

activation. For example, in the mechanism of mineral formation in cartilage, bone, 

and predentin, calcification is initiated by matrix vesicles released by chondrocytes, 

osteoblasts, and odontoblasts (4). Vesicle formation is also an important autodefense 

mechanism protecting against complement attack, by allowing the removal of the 

C5b-9 attack complex from the cell surface as shown for polymorphonuclear 

neutrophils (PMNs), oligodendrocytes, platelets and erythrocytes (5-10). It is reported 

that microvesicle-release increase upon pathological conditions like inflammation, 

injury, vascular dysfunction, or cancer (1, 11-13). 

 

A major problem in microvesicle literature is the rather confusing nomenclature. 

Various names have been used including particles, microparticles, vesicles, 

microvesicles, nanovesicles, exosomes, dexosomes, argosomes and ectosomes. 

Whereas their formation mechanisms, size and effects are different, one common 

point between all is the fact that their protein and lipid compositions are similar to that  
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of the cell membrane from which they originate (1, 14). A more rigorous 

differentiating nomenclature awaits to be established. In the meantime, the major 

point in distinguishing them is the budding mechanism (budding into an intracellular 

compartment vs. surface budding). 

 

Exosomes are defined as small membrane vesicles formed by inward budding of 

endosomal membranes, called multivesicular bodies. When multivesicular bodies fuse 

with the plasma membrane, exosomes are released extracellularly (15, 16). Exosomes 

that are between 30 to 100 nm in diameter, are secreted from various cell types, 

including reticulocytes (17), mast cells (18), dendritic cells (DCs) (19), platelets (20), 

B-lymphocytes (21), T-lymphocytes (22), epithelial cells (23),  and tumor cells (24). 

Dendritic cell-derived exosomes are also called dexosomes (25). The biological 

functions of exosomes largely depend on their surface proteins and the cell types from 

which they originate. The two prominent functions are to eliminate obsolete proteins 

during cell maturation, and to mediate intercellular communication by transferring 

material among cells (15, 26, 27). However, exosomes are best described in the 

immune system, where they are capable to present specific antigens to 

T-lymphocytes, and therefore have strong immunostimulatory activities (14-16, 26). 

Indeed, exosomes were considered as potential candidates for cancer vaccines, and 

several clinical trials have been established (28-30). In contrast with this theory, 

recent studies show that exosomes could also exhibit immune suppressive effects (31-

33). 

 

The other category of vesicles includes ectosomes and microvesicles that are released 

by budding directly from the cell membrane surface (i.e. ectocytosis) (10, 34-36). 
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Many eukaryotic cells, including tumor cells, release ectosomes, either spontaneously 

or in response to various stimuli (10, 34, 37-40). Commonly, ectosomes are rightside-

out vesicles with cytosolic content, and expose phosphatidylserine (PS) in the outer 

leaflet of their membrane (10, 35). Depending on their cellular origin, ectosomes have 

been associated with a broad spectrum of biological activities. However, the effects 

observed were mainly procoagulant and proinflammatory (37, 39, 41-44). 

 

Characteristics and molecular properties of human polymorphonuclear neutrophil-

derived ectosomes (PMN-Ect) have recently been described (34, 35). PMN-Ect have a 

diameter of 50-200 nm, and express a specific set of receptors (complement receptor 1 

(CD35), CD11a, CD11b, CD-16, L-selectin (CD62L), HLA class I), enzymes 

(myeloperoxidase, elastase, metalloproteinase-9, proteinase-3), complement proteins 

(CD46, CD59), and a marker of the cells they originate (CD66b). The absence of 

CD14, CD32, CD55, CD63 and CD87 was described as evidence of selection during 

sorting (34, 35). Gasser et al. reported that PMN-Ect block inflammatory response of 

human monocyte-derived macrophages (HMDMs) to zymosan A and 

lipopolysaccharide (LPS) by inhibiting the release of TNFα, and reducing the release 

of IL-8 and IL-10 (45). PMNs having a major role in defense against pathogens and in 

inflammatory process, these results were unexpected (46). PMNs phagocytose, and 

eventually eliminate invading microorganisms by means of potent antimicrobial 

agents released during the process of degranulation. This microbicidal weaponry, 

because of the lack of specificity, can lead to severe tissue damage if not controlled 

(46, 47). Early release of immunosuppressive PMN-Ect might have an essential role 

in counterweighing these proinflammatory mechanisms (45).  
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Gout is a disease caused by the deposition of monosodium urate monohydrate (MSU) 

crystals in articular and periarticular tissues. The acute inflammation manifests as 

massive infiltration of PMNs into the joints, and inflammatory cell activation leading 

to dramatic clinical signs and symptoms. However even in the absence of clinical 

intervention, acute gouty arthritis undergoes self-resolution within a few days (48). 

The underlying responsible for the resolution of the inflammation still remains 

unknown. Recent observations imply that macrophages attracted by PMNs to the site 

of inflammation might play a major role in its resolution (49-51). Indeed, Yagnik and 

colleagues have demonstrated that macrophages do not release proinflammatory 

cytokines like IL-1β, IL-6 and TNFα, in contrast release the anti-inflammatory 

cytokine TGF-β1, in presence of MSU crystals or in human cantharidin-induced skin 

blisters (52). These results are similar with the ones obtained with macrophages that 

have encountered PMN-Ect in presence of stimuli (45). Whether PMN-Ect are 

involved in the resolution of inflammation in acute gout remain to be tested. 

 

An important property of PMN-Ect is the PS exposed on the outer membrane leaflet 

(35). Similarly, cells undergoing apoptosis start to loose their membrane asymmetry, 

and PS appears on the surface (53). Apoptotic cells (ACs) and the exposure of PS are 

the subject of numerous studies. The clearance of ACs by phagocytes like 

macrophages and DCs occurs in a non-inflammatory manner, and there is growing 

evidence that their phagocytosis results in powerful anti-inflammatory or even 

immunosuppressive effects (54). Interestingly, PMN-Ect and ACs not only share PS 

exposure on their surface, but also their anti-inflammatory effects on macrophages 

(45, 55).  
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Thus, we were interested to investigate the effects of PMN-Ect on human monocyte-

derived DCs (MoDCs), and this is the subject of the first section. For this purpose, we 

analyzed the morphology, maturation and function of non-stimulated and 

LPS-stimulated MoDCs in presence of PMN-Ect.  

 

In the meantime, we were also interested in ectosomes released by other cells than 

PMNs. The essential cells to be transfused are erythrocytes, and during blood storage 

erythrocyte-derived ectosomes (E-ecto) are formed in large quantities. Moreover, 

although generally not accepted, clinical studies suggest that transfusions might be 

immunosuppressive (56-58). A recent study reported that transfusions of erythrocytes 

might be responsible for a diminished survival in cancer patients (59). The properties 

of E-ecto, and their effects on HMDMs are the topics of the second section.  

 

Having the results of the effects of PMN-Ect on HMDMs and MoDCs, and E-ecto on 

HMDMs, we started to study the receptors and signaling pathways involved in 

ectosome-induced immunosuppression. In the third section, we report the inhibitory 

mechanisms used by PMN-Ect in HMDMs. 
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Section 1: 

Polymorphonuclear Neutrophil-Derived Ectosomes Interfere 

with the Maturation of Monocyte-Derived Dendritic Cells 

 

 

Abstract 

Polymorphonuclear neutrophils (PMNs) are a key component of the innate immune 

system. Their activation leads to the release of potent antimicrobial agents through 

degranulation. Simultaneously, PMNs release cell surface-derived microvesicles, 

so-called ectosomes (PMN-Ect). PMN-Ect are rightside-out vesicles with a diameter 

of 50–200 nm. They expose phosphatidylserine in the outer leaflet of their membrane 

and down-modulate monocyte/macrophage-activation in vitro. In this study, we 

analyzed the effects of PMN-Ect on maturation of human monocyte-derived dendritic 

cells (MoDCs). Intriguingly, exposing immature MoDCs to PMN-Ect modified their 

morphology, reduced their phagocytic activity, and increased the release of TGF-β1. 

When immature MoDCs were incubated with PMN-Ect and stimulated with the TLR4 

ligand LPS, the maturation process was partially inhibited as evidenced by reduced 

expression of cell surface markers (CD40, CD80, CD83, CD86, and HLA-DP DQ 

DR), inhibition of cytokine-release (IL-8, IL-10, IL-12, and TNFα), and a reduced 

capacity to induce T cell proliferation. Together these data provide evidence that 

PMN-Ect have the ability to modify MoDC maturation and function. PMN-Ect may 

thus represent an as yet unidentified host-factor influencing MoDC maturation at the 

site of injury, thereby possibly impacting on downstream MoDC-dependent immunity.  
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Introduction  

Many eukaryotic cells release small vesicles by ectocytosis (i.e., ectosomes), either 

spontaneously or in response to various stimuli (1, 2). Data on the function(s) of 

ectosomes have accumulated recently. Depending on their cellular origin, ectosomes 

have been associated with a broad spectrum of biological activities. Ectosomes 

derived from endothelial cells have been described to bind monocytic cells and to 

induce procoagulant activity (3), whereas ectosomes derived from platelets and 

monocytes were shown to directly promote hemostasis and induce inflammation by 

activating endothelial cells (4, 5). As for monocyte-derived ectosomes, their 

proinflammatory potential has been linked to their potential to mediate the rapid 

secretion of IL-1β and to express tissue factor (6, 7, 8).  

Activated human polymorphonuclear neutrophils (PMNs) release ectosomes at the 

time of degranulation. PMN-Ect have been well characterized (9, 10, 11). They are 

rightside-out vesicles with cytosolic content and a diameter of 50–200 nm and expose 

phosphatidylserine (PS) in the outer leaflet of their membrane. Contrasting other 

ectosomes, PMN-Ect have recently been shown to inhibit the inflammatory properties 

of human monocyte-derived macrophages in vitro. Induction of TGF-β1 secretion by 

macrophages and the exposure of PS on the surface of PMN-Ect were shown to 

contribute independently to this effect (11).  

Dendritic cells (DCs) function as sentinels of the immune system, bridging innate and 

acquired immunity. In their tissue of residence, immature DCs (iDCs) internalize and 

proteolytically process self- and non-self antigens (Ags). When Ag uptake and 

processing occurs under inflammatory conditions, for example, conditions 

characterized by concomitant pattern recognition signals delivered to iDCs via 
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pathogen-derived products, iDCs change their morphology, shut down phagocytosis, 

and increase expression of costimulatory molecules and secretion of cytokines. 

Simultaneously, DCs migrate into secondary lymphoid organs (i.e., spleen or lymph 

nodes). DCs activated and induced to mature under inflammatory conditions are then 

capable of priming and fully activating naive CD4+ and CD8+ T cells. By contrast, 

partially and/or "inappropriately" activated iDCs are thought to induce immunological 

tolerance to Ags presented on their surface (12, 13, 14, 15). The precise factors 

determining immunogenic vs. tolerogenic DC-mediated priming remain to be defined.  

PMN-Ect share important biological properties with apoptotic cells, including the 

expression of PS (9, 10, 11, 16). Apoptotic cells have been identified as major 

regulators of DC function both in vitro and in vivo (12, 13, 14, 15, 17, 18, 19, 20). PS, 

both on apoptotic cells as well as when incorporated into artificial liposomes, has been 

identified as a major factor influencing monocyte-derived dendritic cell (MoDC) 

maturation and function (21, 22, 23, 24). Furthermore, vesicles expressing PS released 

by tumor cells have recently been shown to down-regulate the activation of DCs, thus 

impairing the possible immune response against tumor Ags (25).  

Although it is plausible that during the early phase of an immune response PMN-Ect 

interact with DCs, no data characterizing such interactions exist. In this study, we 

investigated the impact of PMN-Ect on MoDCs. Specifically, we examined the 

maturation of MoDCs in the presence/absence of PMN-Ect and the functional activity 

of MoDCs that were matured in the presence of PMN-Ect.  
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Materials and Methods  

Collection of PMN-Ect 

To isolate PMNs, a fresh buffy coat was diluted 1/1 (v/v) with PBS-EDTA (2 mM), 

mixed with 0.25 vol of 4% dextran T500 (GE Healthcare Bio-Sciences), and left for 

30 min for erythrocyte sedimentation. Leukocyte-rich supernatant was aspirated and 

centrifuged for 10 min at 200 x g. The pellet was resuspended in 9 ml of ultrapure 

water to lyse erythrocytes. Isotonicity was restored by addition of 3 ml of KCl (0.6 M) 

and 40 ml of NaCl (0.15 M). Cells were then centrifuged for 10 min at 350 x g and 

resuspended in 20 ml of PBS-EDTA. This suspension was layered over 20 ml of 

Histopaque-1077 (Sigma-Aldrich) and centrifuged for 30 min at 350 x g. The PMN-

rich pellet was recovered and washed twice in PBS-EDTA. All manipulations were 

performed at 4°C, thus minimizing PMN activation (10, 11).  

For stimulation, pooled PMNs (1 x 107 cells/ml) from healthy blood donors were 

diluted 1/1 (v/v) in prewarmed (37°C) RPMI 1640 (Invitrogen Life Technologies) 

with 1 µM fMLP and incubated for 20 min at 37°C. PMNs were removed by 

centrifugation (4000 x g for 15 min at 4°C), and PMN-Ect contained in the supernatant 

were concentrated with Centriprep centrifugal filter devices (molecular mass 10,000 

MW cut-off; Millipore) and stored in aliquots at –80°C until use (10, 11).  

Isolation, culture, and maturation of MoDCs 

MoDCs were derived from monocytes isolated from fresh buffy coats. A buffy coat 

was diluted 1/1 (v/v) with HBSS (Invitrogen Life Technologies), layered over 

Histopaque-1077, and centrifuged for 30 min at 350 x g. PBMCs were washed and 

cultured in complete medium (RPMI 1640, 1% L-glutamine, 1% 
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penicillin/streptomycin, and 10% FCS) for 1 h at 37°C in 6-well plates or in 75-ml 

flasks. After incubation, nonadherent cells were removed by washing twice with 

prewarmed RPMI 1640. The remaining adherent cells were then cultured in complete 

medium supplemented with 50 ng/ml GM-CSF and 50 ng/ml IL-4 (ImmunoTools). 

On days 2 and 5, the media including the supplements were replaced. On day 6, 

nonadherent immature MoDCs (iMoDCs) were harvested, counted, and plated in 6- or 

24-well plates (1 x 105 cells/ml) in fresh medium containing GM-CSF and IL-4 (50 

ng/ml each) (26, 27). On day 6, LPS (10 ng/ml final concentration; Sigma-Aldrich) 

and/or PMN-Ect was added. MoDCs and supernatants were collected 24 h later.  

Flow cytometric analysis 

Flow cytometric analyses of cell surface markers were performed using the following 

mouse mAbs conjugated with FITC: CD14, CD40, CD80, CD83, CD86, and HLA-DP 

DQ DR (Serotec) and with PE: CCR7 (BD Biosciences/BD Pharmingen). In each 

experiment, parallel stainings with isotype-matched controls IgG1-FITC, IgG2a-FITC 

(Serotec), and IgG2a-PE (BD Biosciences/BD Pharmingen) were performed. After 

each incubation, cells were spun down, resuspended in PBS/1% BSA, and labeled for 

30–45 min at 4°C with appropriate Abs. After labeling, cells were washed twice in 

PBS/1% BSA and data were acquired with a FACSCalibur flow cytometer (BD 

Biosciences) and analyzed using Summit software (DakoCytomation). A minimum of 

10,000 events were collected per dataset.  

Detection of apoptosis 

Detection of apoptotic and/or necrotic cells was performed using FITC-conjugated 

annexin V (AnV; BD Biosciences/BD Pharmingen) and Via-Probe (BD 
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Biosciences/BD Pharmingen), a nucleic acid dye (7-aminoactinomycin D) used for the 

exclusion of nonviable cells. MoDCs were washed twice with cold PBS and 

resuspended in AnV-binding buffer (BD Biosciences/BD Pharmingen) at a 

concentration of 1 x 106 cells/ml. Aliquots of 100 µl were stained with 5 µl of AnV-

FITC and 2 µl of Via-Probe and incubated for 15 min at room temperature in the dark. 

Samples were then diluted in 400 µl of binding buffer and analyzed by flow 

cytometry.  

Endocytic activity 

Endocytic activity of MoDCs was measured by assessing uptake of FITC-conjugated 

dextran (molecular mass, 40,000 kDa; Molecular Probes) (27). To that end, cells were 

incubated with 0.5 mg/ml FITC-conjugated dextran in complete medium for 15, 30, or 

45 min at 37 and 4°C to measure specific uptake vs. nonspecific binding, respectively. 

MoDCs were then washed three times and analyzed by flow cytometry.  

Quantitation of cytokines by ELISA 

Relevant supernatants were collected and spun for 10 min at 500 x g at 4°C to remove 

cellular debris. The concentrations of IL-8, IL-10, IL-12p70, TNFα, and TGF-β1 were 

measured using OptEIA ELISA kits (BD Biosciences) according to the 

manufacturer’s instructions. All samples were measured in duplicates.  

T cell proliferation assay 

iMoDCs incubated for 24 h with 1) medium alone, 2) medium and PMN-Ect, 3) 

medium and LPS, and 4) medium and LPS and PMN-Ect were collected and washed 

twice to remove excess PMN-Ect and LPS. CD3+ T cells, obtained by positive 
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magnetic selection with CD3+ microbeads (Miltenyi Biotec), were labeled with 0.25 

mM CFSE at room temperature for 10 min in the dark. The reaction was stopped by 

adding cold complete medium. Cells were then washed twice with cold medium and 

seeded at a 1:1 ratio (if not stated otherwise) with MoDCs. After 5 days of culture, 

proliferation of CFSE-labeled T cells was assessed by flow cytometry.  

PS blocking assay 

On day 6, before coincubation with MoDCs, PMN-Ect were preincubated for 30 min 

at 4°C with recombinant AnV (50 µg/ml final concentration; BD Biosciences/BD 

Pharmingen) and then washed. MoDCs and supernatants were collected after 24 h.  

Statistical analysis 

Datasets were tested for normality. For normally distributed data, parametric analysis 

(two-tailed paired Student’s t test) and for non-normally distributed data 

nonparametric analysis (Wilcoxon-matched pairs test) were performed using 

GraphPad Prism software. Data are expressed as mean ± SEM. A p < 0.05 was 

considered statistically significant.  
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Results  

PMN-Ect modified the morphology of MoDCs 

We first assessed the effects of PMN-Ect on MoDC morphology. Before LPS 

exposure, iMoDCs were round, whereas after 24 h of LPS maturation the name-giving 

dendritic morphology became evident (Fig. 1A). The major finding was that the 

formation of dendrites was inhibited by PMN-Ect when MoDCs were matured with 

LPS. In line with the literature, there were no significant scatter modifications between 

iMoDCs and LPS-matured MoDCs (mMoDCs) (Fig. 1B: Ø vs. LPS) (21, 28). 

Intriguingly, the incubation of MoDCs with PMN-Ect, exposed or not to LPS, 

produced a shift of the scatter of the MoDCs (Fig. 1B), indicating that the PMN-Ect 

had a direct effect on MoDC morphology. We could not detect a modification of 

PMN-Ect on MoDC viability, tested both via AnV and Via-Probe binding (data not 

shown).  
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Figure 1. PMN-Ect change the morphology of human MoDCs. iMoDCs were 

incubated for 24 h with 1) medium alone (Ø), 2) medium + PMN-Ect, 3) medium + 

LPS (10 ng/ml), and 4) medium + LPS + PMN-Ect. A, When observed by light 

microscopy (original magnification, x20), iMoDCs were round, whereas after LPS 

activation dendrites became apparent in a large fraction of the cells (indicated by 

arrows). The appearance of dendrites by mMoDCs was largely abolished by 

PMN-Ect. B, Forward scatter (FSC)/side scatter (SSC) characteristics were used as a 

quantitative readout of changes in MoDC morphology. To define the modifications of 

FSC/SSC, the percentage of gated cells in a arbitrary circle are indicated. The 

FSC/SSC characteristics of MoDCs were significantly modified when exposed to 

PMN-Ect for both iMoDCs and mMoDCs (for iMoDCs, p = 0.024; for mMoDCs,      

p = 0.013; n = 5). 

  



 29 

PMN-Ect down-regulated the endocytic activity of MoDCs 

We next examined whether PMN-Ect have an impact on the endocytic activity of 

MoDCs. MoDCs were incubated with FITC-conjugated dextran at 37°C to measure 

specific uptake and at 4°C to quantify nonspecific binding. As expected, mMoDCs 

lost partially their capacity to phagocytose dextran particles (Fig. 2). PMN-Ect 

significantly reduced the endocytic capacity of iMoDCs (Fig. 2A) as well as mMoDCs 

(Fig. 2B). Strikingly, PMN-Ect reduced iMoDC phagocytosis to the level of 

phagocytosis observed in mMoDCs. At 4°C no incorporation of FITC-conjugated 

dextran by MoDCs was observed (Fig. 2). These data indicate that PMN-Ect alter the 

endocytic capacity of MoDCs.  

 
 
 
 
 
 
Figure 2. PMN-Ect reduce MoDC 

phagocytosis. MoDCs were incubated 

with FITC-conjugated dextran at 37°C 

and examined at different time points by 

flow cytometry to measure specific 

uptake. A, The phagocytosis level of 

iMoDCs plus PMN-Ect was 

significantly lower than iMoDCs          

(p = 0.002). B, PMN-Ect reduced 

significantly the phagocytosis level of 

mMoDCs (p = 0.005). The results are 

presented as mean MFIs ± SEM of five 

independent experiments. 
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PMN-Ect down-regulated the phenotypic maturation of MoDCs 

Having shown that PMN-Ect influence MoDC morphology and endocytic capacity, 

we next asked the question whether PMN-Ect impact on expression of surface 

markers of nonactivated vs. mMoDCs as well. The data of six independent 

experiments were analyzed using the two-tailed paired Student t test. Of interest, 

iMoDCs exposed to PMN-Ect consistently expressed less CD40, CD86, and HLA-DP 

DQ DR than iMoDCs incubated without PMN-Ect (illustrated in Fig. 3), although 

these differences did not reach statistical significance.  

 As expected, coincubation of iMoDCs with LPS induced significant up-regulation of 

surface markers indicative of MoDC maturation (mMoDCs): CD40 (mean 

fluorescence intensity (MFI), 72.05 ± 10.02 vs. 175.9 ± 36.74; p = 0.026), CD83 

(6.308 ± 0.681 vs. 17.48 ± 2.991; p = 0.007), CD86 (104.5 ± 18.11 vs. 121 ± 20.01; p 

= 0.021), HLA-DP DQ DR (1049 ± 62.92 vs. 1402 ± 74.28; p < 0.001). Up-regulation 

of CD80 was evident as well, but did not reach statistical significance (7.795 ± 1.019 

vs. 9.487 ± 1.282; p = 0.14; Fig. 3).  

mMoDCs coincubated with PMN-Ect, in contrast, expressed significantly less CD40 

(MFI, 175.9 ± 36.74 vs. 127.1 ± 40.73; p = 0.027), CD80 (9.487 ± 1.282 vs. 7.665 ± 

0.9681; p = 0.019), CD83 (17.48 ± 2.991 vs. 11.74 ± 1.932; p = 0.042), CD86 (121 ± 

20.01 vs. 78.93 ± 19.23; p = 0.002), and HLA-DP DQ DR (1402 ± 74.28 vs. 1014 ± 

124.8; p = 0.029) than mMoDCs alone (Fig. 3).  

Together these data are evidence that PMN-Ect have the potential to modify MoDC 

maturation as judged by the expression pattern of various cell surface markers.  

 



 31 

 

 

 
 

 

Figure 3. PMN-Ect inhibit up-regulation of key surface markers of human MoDCs. 

iMoDCs were incubated for 24 h with 1) medium alone (Ø), 2) medium + PMN-Ect, 

3) medium + LPS (10 ng/ml), and 4) medium + LPS + PMN-Ect. Cells were then 

collected, washed, and analyzed by flow cytometry for cell surface expression of 

CD14, CD40, CD80, CD83, CD86, and HLA-DP DQ DR (filled histograms). Open 

gray lines represent staining with matched control Abs. The results shown are from 

one representative experiment. The indicated numbers represent the mean MFIs of six 

independent experiments. 
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PMN-Ect inhibited the cytokine release of MoDCs 

We next assessed whether the effect of PMN-Ect on MoDC phenotype was 

accompanied by changes in their release of cytokines (IL-8, IL-10, IL-12p70, and 

TNFα). Levels of IL-8, IL-10, IL-12p70, and TNFα remained unchanged when 

iMoDCs were incubated with PMN-Ect as compared with iMoDCs alone (Fig. 4). 

Compared with iMoDCs alone, secretion of each of these cytokines was up-regulated 

when iMoDCs were matured with LPS (IL-8: 274.8 ± 44.39 vs. 24 346 ± 9410 pg/ml; 

p = 0.002; IL-10: 30.27 ± 12.98 vs. 241.5 ± 51.72 pg/ml; p = 0.002; IL-12p70: 3.71 ± 

0.52 vs. 23.8 ± 3.14 pg/ml; p = 0.002; TNFα: 107 ± 24.83 vs. 3168 ± 912.9 pg/ml; p = 

0.002).  

 Importantly, and in line with the effect of PMN-Ect on cell surface maturation 

markers, coincubation of mMoDCs with PMN-Ect strongly down-modulated the 

release of IL-10 (241.5 ± 51.72 vs. 144.4 ± 56.56 pg/ml; p = 0.002), IL-12p70 (23.80 

± 3.140 vs. 9.053 ± 1.629 pg/ml; p = 0.014), and TNFα (3168 ± 912.9 vs. 983.8 ± 

361.9 pg/ml; p = 0.002) and slightly but significantly reduced the release of IL-8 (24 

346 ± 9410 vs. 17 237 ± 7071 pg/ml; p = 0.01).  

Of note, variability in the absolute concentrations of cytokines was important and 

somewhat unpredictable. This variability might originate largely from the fact that for 

each experiment cells and PMN-Ect from different donors were used. For example, as 

shown in Fig. 4, cells from one donor reacted very strongly to LPS and, compared 

with other donors, released huge amounts of IL-8, IL-10, and TNFα. Importantly, 

however, also in this donor a relative reduction was observed when iMoDCs were 

matured in the presence of PMN-Ect.  
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Because our results might have been modified by the fact that the PMN-Ect were from 

different donors than the MoDCs, we repeated the same studies using an autologous 

system. However, similar differences in the expression of surface markers and 

cytokine release were observed using PMN-Ect and MoDCs from the same donor 

(four independent experiments, data not shown).  

 

 

 

Figure 4. PMN-Ect inhibit the release of inflammatory cytokines by LPS-matured 

human MoDCs. iMoDCs were incubated for 24 h with 1) medium alone (Ø),              

2) medium + PMN-Ect, 3) medium + LPS (10 ng/ml), and 4) medium + LPS + 

PMN-Ect. Concentrations of IL-8, IL-10, IL-12, and TNFα were analyzed in 

supernatants. The results of five experiments done in duplicates are shown. 
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MoDCs exposed to PMN-Ect released TGF-β1 and expressed less CCR7 

Since TGF-β1 is known to be a central down-regulator of DCs, we measured its 

release when these cells were exposed to PMN-Ect. Strikingly, PMN-Ect increased 

the release of TGF-β1 from MoDCs in all experiments performed, whether the cells 

were immature (43.42 ± 19.64 vs. 217 ± 46.61 pg/ml; p = 0.002) or LPS matured 

(90.63 ± 24.43 vs. 260.3 ± 59 pg/ml; p = 0.002). Identical results were found whether 

the MoDCs and the PMN-Ect were from the same donor or not (Fig. 5A).  

Since the expression of the chemokine receptor CCR7 in DCs is inhibited by TGF-β1 

(29), we measured surface expression of CCR7 in different cells and found that it was 

reduced when MoDCs were LPS matured in the presence of PMN-Ect (21.13 ± 4.25 

vs. 12.7 ± 4.67% positive cells, p = 0.003; Fig. 5B).  

MoDCs exposed to PMN-Ect stimulated T cell proliferation poorly 

Given that PMN-Ect were found to impact on phenotypic maturation and the amount 

of inflammatory cytokines released by MoDCs, we next examined the 

immunostimulatory capacity of MoDCs exposed to PMN-Ect. When MoDCs were 

incubated with PMN-Ect without LPS, no significant effect on T cell proliferation was 

observed. By contrast, MoDCs coincubated with PMN-Ect at the time of LPS 

exposure induced significantly less T cell proliferation than their non-PMN-Ect-

exposed counterparts (mean decrease in percent proliferating cells: 20.4%; p < 0.001; 

Fig. 6). The effect was seen using MoDCs suppressed by autologous and allogeneic 

PMN-Ect. The results observed in a MoDC:T cell ratio of 1 was also observed at a 

ratio of 1:10 (data not shown).  
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Figure 5. PMN-Ect increase the release of anti-inflammatory cytokine TGF-β1 and 

decrease the chemokine receptor CCR7 by human MoDCs. iMoDCs were incubated 

for 24 h with 1) medium alone (Ø), 2) medium + PMN-Ect, 3) medium + LPS 

(10 ng/ml), and 4) medium + LPS + PMN-Ect. A, Concentrations of TGF-β1 were 

analyzed in supernatants (n = 10). •, Allogeneic experiments (n = 5) and  and dotted 

lines autologous experiments (n = 5). B, Surface expression of CCR7 was analyzed by 

flow cytometry and results are indicated in percent positive cells. CCR7 was 

significantly reduced when MoDCs were LPS-matured in the presence of PMN-Ect 

(n = 6). 
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Figure 6. Human MoDCs matured in the presence of PMN-Ect are less efficient 

inducers of T cell proliferation. iMoDCs were incubated for 24 h with 1) medium 

alone (Ø), 2) medium + PMN-Ect, 3) medium + LPS (10 ng/ml), and 4) medium + 

LPS + PMN-Ect. Cells were washed and incubated with CFSE-stained CD3+ T cells. 

A, Proliferation of T cells was assessed by flow cytometry after 5 days of coculture 

(representative of n = 12). B, T cells proliferated significantly less (p < 0.001) when 

exposed to MoDCs coincubated with PMN-Ect at the time of LPS activation.              

•, Allogeneic experiments (n = 8) and , autologous experiments (n = 4). 

 

The activities of PMN-Ect were reversed by AnV binding 

PS exposure on PMN-Ect has previously been shown using AnV binding (10). Since 

PS might be involved in the functional property of PMN-Ect to down-regulate the 

maturation of MoDCs, we coated first the PMN-Ect with recombinant AnV before 

adding them to the MoDCs. For mMoDCs, this coating reversed the inhibitory effects 

of PMN-Ect on expression of surface markers (for CD40, CD83, CD86, and HLA-DP 

DQ DR) (Fig. 7, cf LPS plus PMN-Ect and LPS plus PMN-Ect/AnV). We could not 

analyze the release of cytokines, because AnV per se induced an activation of MoDCs.  
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Figure 7. The effects of PMN-Ect were reversed by AnV binding. iMoDCs were 

incubated for 24 h with 1) medium alone (Ø), 2) medium + PMN-Ect, 3) medium + 

PMN-Ect preincubated with AnV (PMN-Ect/AnV), 4) medium + LPS (10 ng/ml), 5) 

medium + LPS + PMN-Ect, and 6) medium + LPS + PMN-Ect/AnV. Cells were then 

collected, washed, and analyzed by flow cytometry for cell surface expression of 

CD40, CD83, CD86, and HLA-DP DQ DR (filled histograms). Open gray lines 

represent staining with matched control Abs. The results shown are from one 

representative experiment (n = 4). The indicated numbers represent the MFI for 

CD40, CD86, and HLA-DP DQ DR and the percentage of positive cells for CD83. 
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Discussion 

  

In the present study, we identified a new pathway by which activated human 

polymorphonuclear leukocytes, through the release of ectosomes, skew DC 

differentiation. It is likely that PMN-Ect released in vivo interact with tissue-resident 

iDCs at the site of injury or infection, i.e., when iDCs are exposed to maturation-

inducing substances released from bacteria (14, 30). LPS and zymosan trigger, 

respectively, TLR4 and TLR2 receptors on iDCs (13, 31, 32) and induce maturation 

with release of specific cytokines (TNFα, IL-12, etc.) and increased expression of 

costimulatory molecules such as CD80 and CD86, CD40, CD83, and HLA class II 

molecules (12, 15, 33). In this study, we showed that PMN-Ect inhibited the 

maturation of iMoDCs by LPS and induced new morphological and functional 

characteristics with a resulting reduced capacity to activate T cells. In addition, 

iMoDCs exposed to PMN-Ect released TGF-β1 and it might well be that to some or a 

larger extent TGF-β1 was responsible for the down-regulation of TLR4-mediated 

maturation of iDCs, as observed by others (15, 34), and of surface expression of 

CCR7 (29). During DC maturation, the up-regulated CCR7 is responsible for directing 

the migration of DCs to the lymph nodes. It has been shown that CCR7 controls the 

cytoarchitecture, the rate of endocytosis, the survival, the migratory speed, and the 

maturation of the DCs (35), so that a reduced expression of CCR7 might interfere with 

normal immune response. PMN-Ect have already been shown to induce the release of 

TGF-β1 from macrophages, a release, which was responsible in part for the inhibition 

of macrophage activation by LPS and zymosan (11). Hence, it appears that PMN-Ect 

have down-regulating properties at different levels in the inflammatory process, which 

lead to T cell activation. Interestingly, similar properties have been ascribed to cells 
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undergoing apoptosis. Good evidence indicates that exposure of iDCs to apoptotic 

cells induces a tolerogenic – as opposed to an immunogenic-DC phenotype (12, 13, 

15, 18, 20).  

Together these observations highlight the complexity of the inflammatory process, 

which on one hand has to be amplified so as to trigger a specific immune response, 

but also has to limit excessive inflammation and prevent autoimmunity. For instance, 

apoptotic PMNs may have a protective role in allowing the termination of acute 

inflammation due to their overexpression of CCR5, which may adsorb CCL3 and 

CCL5 away from their targets, and thus act as "terminators" of chemokine signaling 

during the resolution of inflammation (36, 37). Ectosomes are released at the early 

phase of PMN activation, when much phagocytic and inflammatory activity is still 

needed at the site of injury, whether this injury is related to cell necrosis and/or 

infection. But such local inflammation requires control as well and does not need 

systematically DCs to provoke T cell stimulation and an acquired immune response. 

Our results indicate that such early down-regulation is a property of PMN-Ect, which 

in the local context may participate in the control of autoimmune responses, similarly 

to what has been suggested for apoptotic cells (15, 19, 20, 22). However and by 

contrast to apoptotic cells, PMN-Ect have the particularity to be involved very early in 

inflammation, a time point, which might be crucial for determining later aspects of the 

cascade responsible for acquired immunity, in that sense not terminator of 

inflammation, but responsible for controlling the immune response.  

Two aspects merit attention. First the effects of PMN-Ect on resting iMoDCs and then 

those on the maturation process of MoDCs induced by LPS. The morphological and 

phenotypic changes of iMoDCs cocultured with PMN-Ect were subtle. There was a 
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minimal change in the forward and side scatters seen by FACS analysis and a 

nonsignificant but repeatedly observed very slight reduction of the expression of 

costimulatory molecules (CD40, CD86) and HLA class II molecules. However, 

iMoDCs that were exposed to PMN-Ect lost their phagocytic activity as indicated by a 

clearly reduced uptake of dextran particles. Thus, PMN-Ect may actively change the 

biological behavior of iDCs. Neither PS liposomes (a model of apoptotic cells) nor 

apoptotic primary cells (keratinocytes, monocytes, T and B cells) or cell lines were 

reported to induce similar functional changes in iDCs (21, 38). Recently, βig-h3, a 

protein expressed by iDCs and macrophages, has been shown to be involved in 

phagocytosis and suppressed during maturation of DCs. Whether PMN-Ect suppress 

the expression/production of βig-h3 remains an intriguing hypothesis (39). The 

comparisons between the expression of costimulatory and HLA class II molecules on 

iDCs induced by either apoptotic PMNs or PMN-Ect show divergent trends as well. 

Whereas both down-modulate CD40, CD80, and CD86 on iDCs, apoptotic PMNs 

increase CD83 and HLA class II, whereas PMN-Ect did the opposite (40). From the 

foregoing it seems evident that whereas there might be similarities in the responses 

induced by Ect and apoptotic cells, these responses are not identical.  

Compared with their influence on iMoDCs, the impact of PMN-Ect on the LPS-

induced maturation process of MoDCs was more obvious, significantly affecting 

phenotype, release of proinflammatory cytokines, and their immunogenicity vis-à-vis 

allogeneic T cells. Effects of PMN-Ect on LPS-induced maturation are analogous to 

those obtained with apoptotic cells and PS liposomes (19, 21, 24, 33, 38, 41, 42). 

Specifically, DCs exposed to PS liposomes before LPS maturation expressed 

significantly lower levels of CD40, CD80, CD83, CD86, HLA-ABC, and HLA-DR, 

secreted significantly less IL-10 and IL-12, and had impaired ability to activate 
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allogeneic T cells (21). These data might indicate that PS per se plays a major role in 

interfering with the maturation process of DCs.  

The mechanisms underlining the biological effects of PMN-Ect on DCs remain 

speculative. In many respects, they may be similar to those proposed for the down-

regulation of DCs by apoptotic cells, including the high expression of PS, which in 

multiple experiments has been shown to allow specific binding of apoptotic cells to 

macrophages or DCs (16, 22, 43, 44, 45, 46). AnV is known to interfere with the 

binding of PS-expressing cells/particles to macrophages (11). In the experiments 

performed here, we could reverse the down-regulation of surface markers of MoDCs 

by PMN-Ect by incubating first the PMN-Ect with AnV, suggesting that the 

expression of PS on PMN-Ect was responsible for their property to modify MoDCs. 

However, PMN-Ect, which had bound AnV, induced by themselves the release of 

TNFα by iDCs, indicating that AnV might have induced/blocked other interactions 

not directly related to PS as well.  

Apoptotic cells and ectosomes released by the same type of cells express different sets 

of proteins. For instance, PMN-Ect express high levels of complement receptor 1 and 

CD66b (9, 10), whereas these molecules are down-regulated on apoptotic PMNs (47). 

Apoptotic cells express on their surface nuclear components (48), which will not be 

present on ectosomes released by live, activated cells. Thus, it is likely that diverse 

sets of proteins on dying cells vs. ectosomes will allow different functional activities, 

although many of the basic properties might be very similar.  

For instance, the specific release of TGF-β1 induced by the binding of PMN-Ect to 

iMoDCs is most likely one of the essential mediators reprogramming the DCs so that 

it has a lower reactivity to LPS. Indeed TGF-β is a major player in modulating the 
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activity of iDCs and their maturation (15, 25, 49, 50). It is produced by iDCs exposed 

to apoptotic cells as well and under such conditions reprograms the DCs to become 

tolerogenic (15, 20). Whether iDCs exposed to PMN-Ect have similar properties, i.e., 

become tolerogenic, remains to be tested.  

In conclusion, we suggest that, in addition to regulating macrophage activation (11), 

PMN-Ect may have the potential to influence the outcome of Ag-specific immunity by 

playing an active role in shaping DC-dependent immunity. In vivo models of 

inflammation/infection will now have to test the relevance of the here-proposed 

activities of PMN-Ect.  
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Section 2: 

Erythrocyte-derived Ectosomes have           

Immunosuppressive Properties 

       
 
 

Abstract  

Several clinical studies have suggested that blood transfusions are 

immunosuppressive. Whereas there have been reports describing immunosuppression 

induced by leukocytes or fragments thereof, the possibility that microparticles 

released by erythrocytes during storage are also involved was not investigated. We 

present here evidence that such microparticles have all the properties of ectosomes 

including size, the presence of a lipid membrane, and the specific sorting of proteins. 

These erythrocyte-derived ectosomes (E-ecto) fixed C1q, which was followed by 

activation of the classical pathway of complement with binding of C3 fragments. 

Similarly to ectosomes released by polymorphonuclear neutrophils, they express 

phosphatidylserine on their surface membrane, suggesting that they may react with 

and down-regulate cells of the immune system. In vitro, they were taken up by 

macrophages, and they significantly inhibited the activation of these macrophages by 

zymosan A and LPS, as shown by a significant drop in TNFα and IL-8 release 

(respectively, 80% and 76% inhibitions). In addition, the effect of E-ecto was not 

transient but lasted for at least 24 hours. In sum, E-ecto may interfere with the innate 

immune system/inflammatory reaction. Therefore, E-ecto transfused with erythrocytes 

may account for some of the immunosuppressive properties attributed to blood 

transfusions.
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Introduction   

Many eukaryotic cells release vesicles spontaneously or under appropriate 

stimulation. Exosomes are preformed membrane vesicles, which are stored in cellular 

compartments named multivesicular bodies, and secreted after fusion of the 

multivesicular bodies with the cell membrane [1]. Many hematopoietic cells, 

including reticulocytes, platelets, and leukocytes secrete exosomes, which have 

different functions. For example, for reticulocytes, exosomes mediate the clearance of 

obsolete proteins such as the transferrin receptor [2]. Beside the release of preformed 

vesicles, many cells shed small membrane vesicles, which are budding directly from 

the cell membrane [3]. This reaction was initially described as providing protection 

against complement attack, as it allows the removal of the C5b-9 attack complex from 

the cell surface of polymorphonuclear neutrophils (PMNs), oligodendrocytes, and 

even erythrocytes [4-6]. Stein and Luzio coined the term ectocytosis for the release of 

right-side-out oriented vesicles (ectosomes) from the surface of PMNs attacked by 

complement [7]. However, ectocytosis did not only correspond to the removal of the 

C5b-9 complex but also to a specific sorting of membrane proteins into the shed 

ectosomes. Enrichment in cholesterol and diacylglycerol in the ectosome membrane 

attested for a specific sorting of lipids as well. Thus, ectocytosis is different from 

exocytosis, which describes the release of preformed vesicles. Despite these clear 

differences, it is often difficult to distinguish between the two types of vesicles, 

particularly when they are harvested from in vivo materials, supernatants of cell 

cultures or blood prepared for transfusion [8-10]. Most authors described such 

material as “microparticles” or “microvesicles”, even “nanovesicles”.  

Stored blood for transfusion in humans contains microparticles formed by exo- and 

ectocytosis from leukocytes, platelets and erythrocytes. The number of such particles 
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increases over time during storage, so that large quantities of microparticles are 

transfused together with erythrocytes. Since the use of leukocyte- and platelet-

depleted erythrocyte transfusions, it is likely that mostly erythrocyte-derived 

microparticles are transfused, probably ectosomes or possibly cell debris that 

accumulated during storage. Erythrocytes release ectosomes (E-ecto) after 

complement attack and in vitro when ATP is depleted. The importance of the 

progressive loss of lipid membrane during blood storage was initially described by 

Haradin et al. [11] and shown later to result from the formation of large numbers of 

haemoglobin-containing vesicles (E-ecto). Interestingly, spectrin is absent from E-

ecto despite being an abundant protein in the cell-membrane cytoskeleton. This 

selective absence of spectrin might provide indications about the mechanisms 

responsible for the budding of the cell membrane and release of E-ecto. By contrast, 

E-ecto are enriched in several membrane proteins, in particular in 

glycophosphatidylinositol-linked proteins such as decay accelerating factor (DAF) 

and acetylcholine esterase [12]. The expression of phosphatidylserine (PS) in the 

outer-membrane leaflet of the E-ecto indicates that the lipid asymmetry of the two 

membrane leaflets has been lost, at least in part. The expression of PS varies 

according to the stimulus used to produce E-ecto in vitro; e.g. powerful stimuli such 

as Ca2+ ionophores lead to high level PS expression [12-19].  

 

The exposure of antigen presenting cells to PS-expressing particles induces transient 

tolerance for danger signals with ensuing down-regulation of the immune response, as 

suggested by the literature regarding cells undergoing apoptosis [20], PMN-derived 

ectosomes [21], and PS-expressing liposomes [22]. Many clinical studies suggest that 

transfusions might be immunosuppressive, although these observations are not 
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generally accepted [23-25]. However, a recent clinical study indicated that 

transfusions of erythrocytes might be responsible for a diminished survival in cancer 

patients [26].   

In the present study, we analyzed the pool of microparticles released by stored 

leukocyte-depleted erythrocytes; after having demonstrated that they had all the 

properties of ectosomes, we tested their capacity to interfere with the activation of 

macrophages by zymosan A and LPS. The main finding was that they down-regulated 

the capacity of these Toll-like ligands to activate macrophages. 
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Materials and Methods  

Antibodies and reagents 

All antibodies used were mouse anti-human monoclonal antibodies (mAb): 

glycophorin A (GPA), CD35/ CR1, CD55/DAF, CD59. The following mAb directed 

against GPA, CD45, CD41 were phycoerythrin (PE) coupled. We also used mAb 

fluorescein isothiocyanate (FITC) directed against GPA, C1q, C3d, and Annexin V 

(AnV) FITC; they were all purchased from BD Biosciences (San Jose, CA, USA). 

Zymosan A from Saccharomyces cerevisiae and Cytochalasin D were from Sigma (St 

Louis, MO, USA); lipopolysaccharide (LPS) and human C1q were from Calbiochem 

(San Diego, CA, USA); PMSF and EDTA from Serval Feinbiochemicals (Heidelberg, 

Germany). Human TGF-β1 Duoset ELISA development system were from R&D 

Systems (Minneapolis, MN, USA). OptEIA ELISA kits for IL-8, IL-10, and TNFα 

were from Becton Dickinson (San Diego, CA, USA).  

Erythrocytes 

Human erythrocytes were purified from fresh blood of healthy volunteers using 

dextran sedimentation. Briefly, the blood was centrifuged at 680 x g for 7 min, and 

plasma and buffy coat were removed. Remaining blood cells were mixed with 4% 

Dextran T500 (Amersham Pharmacia Biotech, Dübendorf, Switzerland) and PBS and 

left on ice for 40 min. After sedimentation, the supernatant (SN) was removed with 

the upper layer of the erythrocytes, and the rest of the purified red blood cells (RBC) 

were washed five times with DMEM medium, each time removing the upper layer of 

the cells with the SN. The final contamination with leukocytes was reduced to less 

than one leukocyte / 10,000 RBC. We added an excess of erythrocytes, ratio 
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(100 erythrocytes for one macrophage) to activated human monocyte-derived 

macrophages (HMDM) in the experiment described below. 

Erythrocyte supernatants 

Blood units were obtained from healthy volunteer donors. Blood units were submitted 

to standard procedure preparation and storage of packed erythrocytes. Briefly, whole 

blood (450 mL) was collected in plastic bags (triplicate bag system with an integrated 

whole blood filter Leucoflex Sang Total 1, Macopharma, Tourcoing, France) with 

63 mL citrate phosphate dextrose in the primary bag. Bags were stored at room 

temperature (RT), and filtration took place 3 hours following donation. After 

centrifugation (10 min, 1500 x g, 20°C), packed leuko-depleted erythrocytes (LD-E) 

were separated from plasma and transferred into the satellite bags containing 100 mL 

saline-adenine-glucose-mannitol. Storage time for packed LD-E before tests was 

25 days. The SNs of packed LD-E were obtained through a centrifugation (10 min, 

1000 x g, 4°C), which of the SNs, was repeated in the same conditions to clear all 

residual erythrocytes. The SNs containing E-ecto were concentrated with Centriprep 

centrifugal filter devices (10,000 MW cut-off; Millipore) and stored in aliquots at 

-80°C until use.  

Staining and FACS of erythrocyte-derived ectosomes   

After concentration, E-ecto were incubated with 10 µl of antibodies for 30 min at RT 

in the dark into tubes preloaded with a known density of fluorescent TruCountTM bead 

lyophilized pellets (BD Biosciences). We used to identify E-ecto anti-GPA FITC, and 

for leukocytes- and platelet-derived microparticles respectively, anti-CD45-PE and 

anti-CD41-PE.  
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In a separate experiment, E-ecto were incubated for 30 min at RT in the dark with 5 µl 

of FITC-conjugated AnV and 10 µl of PE-conjugated GPA in the absence or presence 

of 2.5 mM CaCl2. The mixture was then diluted in PBS containing 2.5 mM CaCl2 and 

analyzed by flow cytometry within 30 min. 

Analysis of E-ecto was performed using a FACSort flow cytometer (BD Biosciences). 

Data from 20,000 events were acquired and analyzed with the use of CELLQuestTM 

software (BD Biosciences).  

E-ecto and TruCount beads were identified by their size, as assessed by the 

logarithmic amplification of their forward scatter (FSC) and side scatter (SSC) signals. 

E-ecto were localized within R1 region. The TruCount beads were localized in R2 

region (see Fig 1A).  

Transmission electron microscopy of ectosomes/ negative staining  

After concentration, E-ecto were resuspended in PBS and then fixed in 

1% glutaraldehyde (final concentration) for 20 min at RT. E-ecto were then adsorbed 

to parlodion-coated copper grids. After washing, samples were stained with 

2% uranylacetate before being observed in a Philips Morgani 268 D transmission 

electron microscope operated at 80 kV. 

SDS-PAGE, Silver Stain and Western blot 

Concentrated E-ecto were ultracentrifuged (60 min at 200,000 x g at 4°C), and the 

pellet was resuspended in sample buffer containing 1% SDS and DTT. Erythrocyte 

membranes were prepared as described previously [27]. The erythrocytes were 

washed in 0.9% NaCl and hemolyzed, and their respective membranes were 

solubilized with 0.5% Triton X-100 in the presence of 5 mM EDTA and 1 mM PMSF. 

The same amount of erythrocytes and E-ecto-protein quantified using a Bradford 
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protein assay (Pierce, Rockford, IL, USA) was run on gradient 5-20% polyacrylamide 

gels. After SDS-PAGE, silver stain, or Western blotting with mouse anti-human GPA 

clone JC159, anti-CR1 (CD35) clone 3D9, anti-DAF (CD55) clone BRIC216, or anti-

CD59 clone MEM-43/5 was performed. As control, we used a monoclonal mouse 

anti-human factor D. All of the monoclonals were used at 1:1000 dilution. The 

proteins were detected, respectively, with silver stain solutions or anti-mouse IgG 

biotinylated followed with HRP-streptavidin (Milan Analytica, LaRoche, 

Switzerland) and ECL (Amersham Pharmacia Biotech). 

Binding of C1q on ectosomes and complement activation 

E-ecto were isolated as described above. E-ecto were then ultracentrifuged and 

incubated after gentle resuspension for 30 min at 4°C in 100 µL 0.9% NaCl alone or 

0.9% NaCl supplemented with 1 µg purified human C1q (Calbiochem), normal 

human serum (NHS; 30% final dilution), or heat-inactivated NHS (30% final 

dilution); serum heat inactivation was achieved after its exposure of 30 min at 56°C. 

The binding of C1q was then detected using an anti-C1q FITC antibody. The 

deposition of C3 fragments was detected using an anti-C3d FITC antibody.  

Membrane labeling of ectosomes  

An amphiphilic cell linker dye kit (PKH67, Sigma Chemical Co.) was used, as 

described by the manufacturer. Briefly, E-ecto resuspended in 200 µL Diluent C/dye 

solution (dye diluted 1/200) were incubated with gentle shaking for 1 min at room 

temperature. Then, RPMI 1640 (1 mL; without phenol red) was added to stop the 

reaction. Labeled E-ecto were separated from the unbound dye by ultracentrifugation 

(20 min, 160,000 x g at 4°C) and washed with 0.9% NaCl. 
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Confocal fluorescence microscopy 

HMDM were generated on eight-well culture slides (Falcon, Becton Dickinson). After 

7-10 days of culture, macrophages were washed several times with serum-free 

DMEM medium and incubated with fluorescently labeled E-ecto for 30 min. For 

some experiments, HMDM were pretreated with 0.5 µM cytochalasin D in DMEM 

for 60 min at 37°C prior to washes and incubation with ectosomes. Analysis was 

performed on an Axiovert confocal laser scanning microscope (LSM 510) from Zeiss 

AG (Feldbach, Switzerland). The lens used was a Zeiss Plan-Neofluar 100x. The 

acquisition software was LSM 510 (Zeiss AG). The imaging medium was Vectashield 

fluorescence mounting medium 

Isolation and culture of human monocyte-derived macrophages  

Monocytes were isolated from fresh buffy coats as described previously [28]. Briefly, 

a buffy coat was diluted 1/1 (vol/vol) with HBSS, layered over Ficoll-Hypaque 

(Sigma Chemical Co.), and centrifuged for 30 min at 350 g. Monocytes were 

recovered, washed twice in HBSS, and layered over a Percoll gradient. Percoll was 

prepared by mixing 1 vol 1.5 M NaCl with nine vol Percoll (Sigma Chemical Co.). 

The Percoll gradient was done by mixing 1.5/1 (vol/vol) isosmotic Percoll with 

PBS/citrate (NaH2PO4 1.49 mM, NaH2PO4 9.15 mM, NaCl 139.97 mM, 

C6H5Na3O7.2H2O 13 mM, pH 7.2). Isolated monocytes were resuspended at 

2x106 cells/mL in DMEM supplemented with 100 U/mL penicillin, 100 g/mL 

streptomycin, and 2 mM L-glutamine. Monocytes were then allowed to adhere for 1 h 

at 37°C on culture plates. Adherent monocytes were washed three times with 

prewarmed DMEM and finally incubated for 7 days in DMEM supplemented with 

10% NHS (pooled from 40 healthy donors). The culture was maintained in 5% CO2 at 
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37°C, and the medium was changed at days 3 and 7. Macrophages were used between 

days 7 and 10. 

Activation of human monocyte-derived macrophages  

HMDM were washed several times with prewarmed DMEM without NHS. 

Subsequently, each well was filled with 250 µL (final volume) fresh DMEM without 

NHS. Zymosan A (5 µg /mL final concentration) or LPS (10 ng/mL final 

concentration) and/or E-ecto were added, and SN were collected 15 h later (if not 

stated otherwise). The amount of ectosome-protein used in our experiments was 

quantified by using a Bradford protein assay, and assays were performed in triplicate. 

Results are representative of six independent experiments. 

Collection of supernatants and analysis of cytokines  

HMDM SNs were collected and spun for 10 min at 800 x g at 4°C (Mikro 24-48R 

centrifuge, Hettich, Bäch, Switzerland) to remove cell debris. Cytokine concentrations 

were determined by ELISA according to the manufacturer’s instructions. 

ATP depleted erythrocyte-derived ectosomes 

ATP depletion of fresh-packed LD-E was carried out as described previously by 

Pascual et al. [15] with small modifications. In brief, LD-E were incubated under 

sterile conditions in 50 mL Falcon tubes at 20% hematocrit and 300 mOsM in a 

medium consisting of 50 mM glycylglycine, 5 mM KCI, 130 mM NaCl, 0.5 mM 

EDTA, and antibiotics (200 U/ml penicillin G, 0.2 mg/ml streptomycin) at pH 7.4. 

After incubation for 24 h at 37°C, the erythrocytes were pelleted through two 

successive centrifugations for 7 min at 480 x g. The SN containing ectosomes was 

collected and ultracentrifuged for 60 min at 4°C and 200,000x g. The 

ultracentrifugation was repeated to wash the ectosomes. 
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Ca2+ Ionophore erythrocyte-derived ectosomes 

Ectosomes were prepared according to Allan et al. [29] with minor modifications. 

Briefly, erythrocytes were resuspended in 3 vol TBS containing 1 mM CaCl2 and 

5 µM ionophore A23187 (Sigma Chemical Co.) and incubated at 37°C for 30 min. 

After addition of EDTA to a final concentration of 5 mM, the erythrocytes were 

pelleted through two successive centrifugations for 7 min at 480 x g. The SN 

containing ectosomes was then ultracentrifuged for 60 min at 4°C and 200,000 x g. 

The ultracentrifugation was repeated to wash the ectosomes. 

PMN-derived ectosomes 

PMNs were isolated from fresh buffy coats of normal donors, according to the 

technique described previously [30]. Briefly, a fresh buffy coat was diluted 1/1 (v/v) 

with 2 mM PBS-EDTA, mixed gently with 0.25 vol 4% Dextran T500, and left for 

30 min for erythrocyte sedimentation. The leukocyte-rich SN was aspirated and 

centrifuged for 10 min at 200 x g. The pellet was resuspended for 1 min in 9 mL 

ultrapure water to lyse erythrocytes. Isotonicity was restored by addition of 3 mL 

0.6 M KCl and 40 mL 0.15 M NaCl. Cells were then centrifuged 10 min at 350 x g 

and resuspended in 20 mL 2 mM PBS-EDTA. This suspension was layered over 

20 mL Ficoll-Hypaque and centrifuged for 30 min at 350 x g. The PMN-rich pellet 

was recovered and washed twice in 2 mM PBS-EDTA. All manipulations were 

performed at 4°C. For stimulation, PMNs (107 cells/mL) were diluted 1/1 (v/v) in 

prewarmed (37°C) RPMI 1640 (Life Technologies, Basel, Switzerland) with 1 µM 

fMLP from Sigma Chemical Co. and incubated for 20 min at 37°C. PMNs were 

removed by centrifugation (4000 x g at 4°C), and the SNs were concentrated with 

Centriprep centrifugal filter devices (10,000 MW cut-off, Millipore) and stored in 

aliquots at -80°C until use. 
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Statistical analysis 

For the comparison of the cytokine levels released by zymosan activated HMDM, in 

the absence or presence of ectosomes, we performed statistical analysis using paired 

t-test. p<0.05 was considered significant. 
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Results  

Erythrocytes are known to release microparticles during storage before being 

transfused. We first characterized the properties of such microparticles isolated from 

leukocyte-depleted erythrocytes stored for 25 days in the blood bank (300 ml packed 

erythrocytes). 

 

FACS analysis of erythrocyte-derived microparticles (ectosomes) 

released during conventional blood storage 

Microparticles were isolated by differential centrifugation of leukocyte-depleted, 

packed erythrocytes (see Materials and Methods) and analyzed by FACS. They were 

identified by their size, as assessed by the logarithmic amplification of FSC and SSC 

signals (Fig. 1A). Ectosomes were localized within the R1 region. Flow cytometry 

analysis demonstrated that they were derived from erythrocytes, as >95% reacted with 

an antibody against GPA, a known, specific marker of erythrocytes (Fig. 1, B and C). 

There was no contamination with platelet-derived microparticles or leukocyte-derived 

ectosomes, as assessed by the absence of reaction with a specific marker of platelets 

CD41 and leukocytes CD45 (Fig. 1, B and C). Using an amphiphilic membrane dye, 

we observed the incorporation of the lipid dye, indicating the existence of a lipid 

membrane (Fig. 1D). This latter observation confirmed that microparticles of 

erythrocytes are vesicles with a membrane, most likely deriving from the erythrocyte 

membrane by ectocytosis [7]. Thus, we will refer to these vesicles as E-ecto.  

PS expression is a marker for the loss of lipid membrane asymmetry of a cell and is 

found on cells undergoing apoptosis. Ectosomes released by PMNs express PS as 

well, indicating that ectocytosis is accompanied by a scrambling of PS in the cell 

membrane. By flow cytometry, we found that AnV bound specifically to E-ecto 
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(Fig. 1F). Thus, the E-ecto expressed PS similarly to other ectosomes and apoptotic 

cells. 

 

 

 

 
 
Figure 1. FACS analysis of E-ecto. (A) Representative flow cytometric dot plot of 

E-ecto. The region R1 represents FSC/SSC light-scatter gate of E-ecto. The region R2 

represents the known density TruCount beads. (B and C) E-ecto were identified as 

GPA-positive events in the lower-right quadrant. The double-staining with anti-CD45 

(leukocyte marker) showed the absence of contamination with leukocyte-derived 

ectosomes (B). The same holds true for the anti-CD41 staining (platelet marker), 

where no platelet-derived ectosome contamination was observed (C). (D) The double-

staining with anti-GPA and a membrane dye showed that a large population of E-ecto 

incorporated the lipid dye, confirming the existence of a lipid membrane. (E and F) 

Flow cytometric dot plot of E-ecto double-stained with AnV-FITC and anti-GPA-PE. 

In the presence of binding buffer (F), a large part of the GPA-positive population 

binds AnV-FITC, attesting for the expression of PS on E-ecto. When incubated in 

calcium-depleted binding buffer, no binding of AnV-FITC was observed (E). 
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Electron microscopy analysis of erythrocyte-derived ectosomes  

Electron microscopy showed that E-ecto represented a heterogeneous population of 

vesicles with sizes between 50 nm and 500 nm, the smaller vesicles corresponding 

almost to the nanovesicles released by erythrocytes, activated by Ca2+ ionophores, as 

described recently by Salzer et al. [31] (Fig. 2). 

 

 

 

 

 
 
Figure 2.  Electron microscopy of E-ecto. Picture of a standard E-ecto preparation 

showing heterogeneity in size (arrows), which ranged from 50 to 500 nm. 

Original size bar: 200 nm. 
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Proteins expressed by the membrane of ectosomes 

One of the general characteristics of ectosomes is that they do not express membrane 

proteins in the same ratios than the cells from which they derive. By SDS-PAGE 

analysis, it was evident that this was also the case for E-ecto (Fig. 3A). Although 

many proteins were present on erythrocyte and ectosome membranes, some were 

found predominantly on erythrocytes or E-ecto, indicating a specific sorting of 

proteins into and out of the membrane patch, which buds out of the cell (Fig. 3A). We 

did not specifically analyze any protein enrichments. As GPA was used as a marker, 

we controlled for its expression. GPA was present as dimers and monomers on 

erythrocytes and E-ecto and at a similar ratio (Fig. 3B). In addition, E-ecto expressed 

the three major complement regulators of erythrocytes, CD35 (CR1), CD55 (DAF), 

and CD59 (Fig. 3C), which is in line with previous work analyzing ectosomes 

released by ATP-depleted erythrocytes. CD35, as transmembrane protein, and CD55, 

a GPI-anchored protein, have been shown to be present and enriched slightly 

(i.e., 1.3-fold) on ectosomes [15]. In other words, it is unlikely that the E-ecto are 

particularly sensitive to complement attack. 

Having established the general structure of E-ecto, we turned to define their 

properties. 
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Figure 3. Protein expression of erythrocyte membranes and E-ecto. (A) The 

erythrocyte membranes (Em) and E-ecto (Ec) were fractionated by SDS-PAGE, 

followed by staining with silver stain reagents. The pattern of proteins of E-ecto 

showed that many proteins were present on erythrocyte membranes and ectosomes, 

with some found predominantly on erythrocyte membranes or E-ecto, indicating a 

specific sorting of proteins into and out of E-ecto at the time of their formation. The 

arrows show some proteins expressed predominantly on E-ecto. The molecular weight 

is indicated on the left. (B and C) The erythrocyte membranes and the E-ecto proteins 

were subjected to SDS-PAGE. After transferring to a nitrocellulose membrane, the 

membrane was reacted with antibodies, (B) anti-GPA, which showed that GPA was 

present as monomers and dimers on erythrocyte membranes and E-ecto. The 

molecular weight is indicated on the right. (C) Anti-CD35, -CD55, and -CD59 

confirmed the expression of complement regulatory proteins on erythrocyte 

membrane proteins and E-ecto. The molecular weight is indicated on the left. 
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Binding of C1q to E-ecto and activation of complement 

An important feature of apoptotic cell death is the specific recognition and removal of 

apoptotic cells by professional phagocytes. The binding of C1q to apoptotic 

cells/bodies is of critical importance for their removal by phagocytes. To find out 

whether C1q would also bind to E-ecto, we incubated them with purified C1q or 

directly with NHS. C1q was detected on E-ecto after incubation with purified C1q 

(Fig. 4A) and more interestingly, after incubation in whole serum, in which C1q is 

part of the macromolecular C1 complex (Fig. 4B). No signal was detected in the 

absence of C1q (Fig. 4A) and in the negative control using heat-inactivated human 

serum (Fig. 4B).  

To investigate whether once bound to E-ecto, C1q had the potential to activate 

complement, we analyzed binding of complement C3 fragments. We incubated E-ecto 

with NHS and analyzed for the presence of C3 fragments with an anti-C3d mAb. As 

shown in Figure 4C, C3 fragments were bound after incubation in normal serum but 

not so when the serum was heat-inactivated. Thus, similarly to apoptotic cells, E-ecto 

fix complement C1q and allow complement activation and binding of C3 fragments. 
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Figure 4. C1q binds to E-ecto and activates complement. FACScan histogram of 

ectosomes incubated for 30 min at 4°C (A) in the absence or presence of purified C1q 

or (B and C) in the presence of NHS or heat-inactivated NHS (HIS). In the presence 

of C1q or NHS, anti-C1q mAb showed the binding of C1q on ectosomes (A and B). 

This binding did not occur in the presence of heat-inactivated NHS (B). In the 

presence of NHS, C3 fragments bound E-ecto, as detected by the anti-C3d mAb but 

not in the presence of heat-inactivated NHS (C). 
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HMDMs bind and ingest ectosomes 

The expression of PS and possibly other undefined changes in the membrane structure 

is likely to induce macrophages to recognize, bind, and phagocytose E-ecto. This was 

evident when studied by confocal microscopy. Fluorescently labeled E-ecto incubated 

for 30 min with HMDMs were phagocytosed, as reflected by the intense fluorescent 

staining of the cells (Fig. 5A). In contrast, when HMDMs were preincubated with 

cytochalasin D, a potent inhibitor of phagocytosis, they showed almost no 

fluorescence and hence, no uptake of E-ecto (Fig. 5B). 

 

 

 
 

Figure 5. Confocal microscopy of phagocytosis. HMDM were incubated with 

fluorescently labeled ectosomes for 30 min, fixed, and analyzed by confocal laser 

microscopy. (A) HMDM bind and ingest E-ecto in the absence of cytochalasin D.   

(B) Alternatively, macrophages were preincubated with cytochalasin D (CytD) prior 

to the addition of ectosomes. The lens used was a Zeiss Plan-Neofluar 100x from 

Zeiss AG. 
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E-ecto have immunosuppressive effect on macrophages 

Apoptotic cells as well as PMN-derived ectosomes have anti-inflammatory and 

immunosuppressive properties [20, 21, 32]. This may be related to the expression of 

PS [22]. Accordingly, it was of interest to test whether E-ecto that express PS as well 

could affect HMDM when these cells were activated. Thus, we coincubated E-ecto 

with HMDM in the presence or absence of zymosan A or LPS for 15 h. SN were 

analyzed for TNFα, IL-10, IL-8, and TGF-β1. First and as a control, we did not 

observe any modification in cytokine release by resting HMDM when exposed to E-

ecto (not shown), but E-ecto inhibited the activation of HMDM by zymosan A. 

Whereas zymosan A induced release of TNFα, IL-10, and IL-8 by HMDM, the 

simultaneous addition of E-ecto was responsible for a significant decrease in the 

release of all three cytokines (Fig. 6, A–C). The inhibition was dose-dependant (Fig. 

6, A–C). We next investigated the time-dependent effect of E-ecto on cytokine 

secretion by zymosan-activated HMDM. E-ecto induced a rapid and sustained, 

inhibitory effect on the release of TNFα, IL-10, and IL-8 (Fig. 6, A–C). In this 

experiment, we also tested as control the effect of erythrocytes alone and in the 

presence of E-ecto. Erythrocytes in excess by themselves had no effects on the release 

of TNFα by zymosan A-activated macrophages (Fig. 6D) nor did their addition to E-

ecto; i.e., the E-ecto effect was not modified by the presence of erythrocytes. These 

effects were similar to those observed previously with PMN-ectosomes, with a major 

difference; i.e., E-ecto did not induce the release of TGF-β1 (Fig. 6E). Indeed, PMN-

ectosomes induce on their own the release of TGF-β1 by HMDM, a release that is not 

modified by activating agents such as zymosan A or LPS [21]. The induction of TGF-

β1 release was thought to explain the down-regulation of HMDM so that they react 

only weakly or not at all when exposed to zymosan A. As we could find no TGB-β1 
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release induced by E-ecto, we repeated the experiments in parallel with PMN-

ectosomes prepared as described previously (Fig. 6F). The results confirmed the 

differences between the two types of ectosomes. To see whether these differences 

were intrinsically a result of differences in the cell origin or possibly to level of PS 

expression, we repeated the experiments with E-ecto, formed by in vitro aging of 

erythrocytes or (ATP depletion, not shown) by incubating erythrocytes with Ca2+ 

ionophores (Fig. 6F). Again, PMN-derived ectosomes induced TGF-β1 release, 

whereas none of the E-ecto could do so (Fig. 6F). By contrast, all three types of 

ectosomes had inhibitory effects on the release of TNFα, IL-10, and IL-8 (Fig. 6F).  

LPS induced the release of TNFα, IL-8, and IL-10 but had no effect on TGF-β1 

release. When HMDM were stimulated with LPS, E-ecto produced an inhibition of 

TNFα, IL-8 (Fig. 6G), and IL-10 (not shown) release similar to that induced on the 

zymosan A-activated HMDM. In a control experiment, LPS-stimulated HMDM 

released no TGF-β1 when exposed to E-ecto (not shown).  
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 Figure 6. E-ecto have immunosuppressive properties. (A–C, left) HMDM were 

incubated in medium alone, medium with zymosan A, and medium with zymosan A 

and ectosomes overnight. SN were harvested and analyzed by ELISA, respectively, 

for (A) TNFα, (B) IL-10, and (C) IL-8. (Each point corresponds to one experiment.) 

(Center) HMDM were incubated in medium with zymosan A in the absence of 

ectosomes (0), medium with zymosan A, and different concentration of ectosomes    

(1, 2.5, 5 μg/mL) overnight. SN were harvested and analyzed for (A) TNFα, 

(B) IL-10, and (C) IL-8. (Right) HMDM were incubated in medium with zymosan A, 

medium with zymosan A, and ectosomes for up to 24 h. SN were harvested after 1, 3, 

6, and 24 h for A and B and analyzed for (A) TNFα, (B) IL-10, and (C) IL-8. (D) 

HMDM were incubated overnight in medium with zymosan A, medium with zymosan 

A and E-ecto, medium with zymosan A and erythrocytes (E), and medium with 
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zymosan A + E-ecto and erythrocytes. SN were harvested and analyzed for TNFα. (E) 

HMDM were incubated in medium with zymosan A in the absence of ectosomes (0), 

medium with zymosan A, and different concentration of ectosomes (1, 2.5, 5 μg/mL) 

overnight. SN were harvested and analyzed for TGF-β1. (F) HMDM were incubated 

in medium with zymosan A, medium with zymosan A and E-ecto, zymosan A, E-ecto, 

and Ca2+ ionophore (Ca Iona), and zymosan A and PMN-ecto overnight. SN were 

harvested and analyzed, respectively, for TGF-β1, TNFα, IL-10, and IL-8. (G) 

HMDM were incubated in medium with LPS and medium with LPS and ectosomes 

overnight. SN were harvested and analyzed, respectively, for TNFα and IL-8. Assays 

were performed in triplicate. Results are representative of six independent 

experiments. Error bars indicate SEM. 
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The inhibition of macrophages by erythrocyte-derived ectosomes is 

long-lasting. 

Macrophages were preincubated with E-ecto for 60 min and next washed with 

prewarmed medium to remove the remaining ectosomes. Macrophages were then left 

to recover (1 h, 24 h) before overnight stimulation with zymosan A. The release of 

TNFα, IL-8, and IL-10 by zymosan A-activated macrophages was inhibited up to 24 h 

after the contact between ectosomes and macrophages (Fig. 7, A–C), indicating a 

lasting alteration of the macrophage signaling machinery. The release of TGF-β1 was 

not modified (not shown). 

 

 

 

 

 
 
Figure 7. E-ecto have a lasting effect. HMDM were incubated in medium with E-ecto 

for 1 h, unbound ectosomes were washed, and HMDM were let to settle down during 

24 h and 1 h before exposing them to zymosan A overnight. SN were harvested and 

analyzed for (A) TNFα, (B) IL-10, and (C) IL-8. The effects of E-ecto only on 

HMDM are identical to medium only; i.e., without zymosan A stimulation, no 

measurable cytokine amounts are released. Assays were performed in triplicate. 

Results are representative of three independent experiments. Error bar indicates SEM. 
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Discussion 

In the present study, we could demonstrate that ectosomes derived from erythrocytes 

during storage have inhibitory potential on activated macrophages, indicating that 

they are active players in the regulation of inflammation.  

A major aspect in cell biology is communication, which occurs through a direct 

contact between cells or by means of soluble substances, which react with cells. The 

fact that microvesicles released by cells influence other cells is a rather new concept 

but is a basic mechanism to deliver a message in a highly concentrated manner 

(multiple epitopes/costimulation) or to add a missing molecule. The vesicles released 

by dendritic cells (exosomes) can trigger an immune response, and the proteins of a 

vesicle can be incorporated in the cellular membrane to which it has bound [33, 34]. 

Because of the numerous functions of microvesicles, we can no longer have multiple, 

unclear definitions. Therefore, we propose, as suggested years ago by Stein and Luzio 

[7], that we define them as ectosomes when they are formed by budding out of a cell 

membrane, have a lipid membrane, and express a selection of membrane proteins. The 

release of preformed vesicles formed in multivesicular bodies has been defined as 

exosomes from the start. Undefined terminology such as “vesicles, particles, 

microparticles” should be used only when the origin of these vesicles remains 

undefined.  

According to this definition, the microparticles found in stored erythrocyte 

concentrates are clearly ectosomes, as evidenced here and by other groups [16, 17, 

35–38]. We showed here that in stored erythrocyte concentrates, more than 95% of 

the microparticles originate from erythrocytes, as shown by the expression of GPA on 

their surface. The presence of GPA by FACS indicated as well that they are 
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outside-out vesicles, thus formed by budding. They were not contaminated by 

leukocyte or platelet-derived particles, as they did not express CD45 or CD41, which 

allowed us to define their function more precisely. They had a lipid membrane, and 

they expressed a selective series of membrane proteins, which we did not characterize 

further, as the absence of given proteins, such as spectrin, and the enrichment of 

others, including GPI-anchored proteins (e.g., acetylcholinesterase), have already 

been demonstrated several times. The presence of the three complement regulators 

and inhibitors (CR1/CD35, DAF/CD55, CD59) indicates, however, that they might be 

resistant to complement attack and thus, would not be lysed easily [12, 15].  

The expression of PS was also confirmed by the evident calcium-dependent binding 

of AnV. The exposure of PS has been suggested to induce and enhance thrombogenic 

activity [39, 40]. However, the expression of PS may be linked to other properties, 

such as the binding of C1q of the complement cascade [41]. Apoptotic cells and 

bodies express PS, bind C1q, and activate complement [20]. Ectosomes derived from 

PMNs have similar properties [42, 43]. Whether this binding is a general property of 

cells that have rearranged their membrane by scrambling the lipid molecules remains 

to be demonstrated, as the expression at the membrane of specific intracellular 

proteins such as calreticulin might be involved as well [44, 45]. Here, we 

demonstrated the binding of C1q, not only when purified C1q was added to E-ecto but 

also directly from whole serum. It may well be that C1q binds to PS or another lipid 

component of the membrane. C1q binding was followed by complement activation 

and fixation of C3 fragments, which are likely to favor binding to specific receptors 

on cells, particularly the newly described C3b receptor on fixed phagocytes [46, 47].  

A “light” complement activation occurs on apoptotic cells as well, and C1q appears to 

be important, not only for the uptake of apoptotic cells but also for the prevention of 
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autoimmunity [48]. PS expression on dying cells in itself is also linked with 

recognition by phagocytes in down-regulating inflammation and preventing the 

immunization against autoantigens [20]. Thus, we have tested whether E-ecto have 

the capacity to down-regulate the reactivity of macrophages in an assay of 

macrophage activation. The E-ecto had evident capacity to inhibit the release of 

TNFα by macrophages exposed to zymosan A or LPS, known to react with TLR-2 

and TLR-4, respectively. IL-8 and IL-10 were down-regulated as well, indicating that 

the E-ecto-induced down-regulation of macrophages was a global reaction not 

restricted to one cytokine only. Whereas IL-8 and TNFα are known, proinflammatory 

cytokines, the reduction in IL-10 was unexpected in this context, as IL-10 is in 

general considered as an anti-inflammatory/ immunosuppressive cytokine. However, 

when the kinetics of the cytokine releases were analyzed, it became clear that the 

release of IL-10 occurs after that of IL-8 and TNFα and may represent another 

mechanism to limit inflammation that may have been induced by the proinflammatory 

cytokines. If that is the case, it would not be surprising that less release of TNFα and 

IL-8 in the presence of E-ecto is by itself directly responsible for less IL-10 release.  

Differently to ectosomes released by PMNs and vesicles released by different tumor 

cells, E-ecto did not enhance the release of TGF-β, suggesting that ectosomes 

originating from different cells, despite their common PS expression, have additional 

and specific interactions with macrophages. PS-liposomes are known to promote 

TGF-β secretion [49, 50], which could be an indication of the role of PS alone, when 

no other interactions occur. E-ecto might express other molecules capable of 

modulating the role of PS and/or having direct inhibitory activities on macrophages 

such as CD47 [51].  
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We specifically studied E-ecto found in stored blood. Erythrocytes release ectosomes 

under other experimental conditions, such as in vitro aging (ATP depletion) or Ca2+ 

ionophore exposure. Although all vesicles are formed by ectocytosis, there is no 

evidence that the ectosomes released by different stimuli express the same molecules 

and have similar properties [31]. Here, by correcting for the amount of protein, we 

found that all had similar inhibitory activity (i.e., TNFα IL-8, and IL-10 suppression, 

no TGF-β stimulation), although the strengths of these activities differed slightly, and 

Ca2+ ionophore-derived ectosomes were the least inhibitory. As a cautionary note, it 

has to be mentioned that even if our Ca2+ ionophore-ectosomes were washed before 

incubation with macrophages, a part of the Ca2+ ionophores probably remained 

trapped into the Ca2+ channel of the E-ecto and may have been released in the 

phagocyte, which has taken up the E-ecto. Thus, it is difficult to be certain that the 

reaction of the phagocytes exposed to Ca2+ ionophore-produced ectosomes is 

“ionophore”- independent. 

Of particular interest were the lasting effects of E-ecto on activated macrophages. 

Indeed, the endocytosis of E-ecto had modified the macrophage for at least 24 h so 

that it did not react to further stimulation. This observation suggests that the signaling 

processes related to TLR-2 stimulation were downregulated or inhibited by an active, 

lasting process. Thus, the phagocytosis of E-ecto does not produce only a direct, anti-

inflammatory signal to macrophages but also keeps the proinflammatory potential of 

macrophages down. How long this effect is lasting, particularly in vivo, remains an 

intriguing question. 

It is known that every blood transfusion contains large amounts of E-ecto, most of 

which are probably removed efficiently by the fixed phagocytes, possibly with C3 

fragment fixation being involved in the rapid recognition of the E-ecto. The property 
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of E-ecto to down-regulate the activity of macrophages may be relevant for those that 

travel to the spleen. Whether a related down-regulation on specific immune cells 

might occur in vivo is certainly speculative; however, considering the disputed, 

immunosuppressive activity of blood transfusion, investigations in this field should be 

pursued. 
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Section 3: 

Polymorphonuclear Neutrophil - Derived Ectosomes inhibit 
NFκB activation in zymosan activated human macrophages in 

a Mer tyrosine kinase dependent manner 
 
 
 

Abstract 

At the earliest stage of activation, human polymorphonuclear neutrophils release 

vesicles, which bud from the cell surface. These vesicles, called ectosomes 

(PMN-Ect), expose phosphatidylserine in the outer membrane leaflet. They inhibit the 

inflammatory response of human monocyte-derived macrophages and dendritic cells 

to LPS and zymosan, and induce TGF-β1 release, suggesting a reprogramming 

towards a tolerogenic phenotype. The receptors and signaling pathways involved have 

not yet been defined. Here, we demonstrated that PMN-Ect induced an immediate 

calcium flux in macrophages indicating that signaling processes were immediately 

activated. PMN-Ect interfered with zymosan A activation of macrophages via 

inhibition of NFκB translocation and NFκB p65/RelA phosphorylation. Mer tyrosine 

kinase receptor and phosphatidylinositol 3-kinase (PI3K)/Akt pathway played a key 

role in this immunomodulatory effect as shown by using specific Mer blocking 

antibodies and LY 294002, a PI3K inhibitor. As a result, PMN-Ect reduced the 

transcription of many proinflammatory genes in zymosan A activated macrophages. 

Of interest, the TGF-β1 release induced by PMN-Ect was not related to a 

modification in its transcription. In sum, PMN-Ect modulated the inflammatory 

response of macrophages by different means including rapid signaling possibly 
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responsible for the release of TGF-β1, and via Mer receptor regulated PI3K/Akt and 

NFκB pathways.  

Introduction 

In general, intercellular communication occurs via membrane contact, soluble 

mediators (e.g. hormones, cytokines, chemokines), and small molecular mediators 

(e.g. nucleotides, bioactive lipids, nitric oxide ions) (1-3). However, recent evidence 

emphasizes the transfer of information by small vesicles released by one cell to its 

target cell (4-6). In the literature such vesicles got various names including 

microvesicles, nanovesicles, particles and microparticles. Specific vesicles released 

from multivesicular bodies (preformed vesicles) from various cell types have been 

named exosomes, and best described in the immune system, where they are capable to 

present specific antigens to T-lymphocytes (7-10). Others, released at the time of cell 

activation by budding directly from the cell surface, i.e. by ectocytosis, have been 

named logically ectosomes (11, 12).  

Ectosomes are released by human polymorphonuclear neutrophils (PMN-Ect) at the 

time of cell activation. Interestingly, such ectosomes did not increase inflammatory 

processes; to the contrary they were shown to down-modulate cellular activation of 

macrophages (13) and dendritic cells (DCs) (14). In human monocyte-derived 

macrophages (HMDM), PMN-Ect could inhibit the release of TNFα, and reduce the 

release of IL-8 and IL-10 induced by zymosan A and lipopolysaccharide (LPS) (13). 

When immature monocyte-derived dendritic cells (MoDCs) were exposed 

simultaneously to PMN-Ect and LPS, their morphology was modified, their 

phagocytic activity and the expression of cell surface markers (CD40, CD80, CD83, 

CD86, and HLA-DP DQ DR) were reduced, the cytokine-release (IL-8, IL-10, IL-12, 
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and TNFα) was inhibited, and their capacity to induce T cell proliferation was 

impaired (14). These data suggested that ectosomes induce a tolerogenic phenotype in 

immature dendritic cells, similarly to what has been described for apoptotic cells 

(ACs). 

So far, the mechanisms responsible for the biological effects of PMN-Ect remain 

speculative. The phosphatidylserine (PS) exposed in the outer membrane leaflet of 

PMN-Ect may be a major factor influencing macrophages and DCs, as shown for ACs 

and liposomes (15-18). Similarly to ACs, PMN-Ect have been shown to induce the 

release of TGF-β by macrophages and dendritic cells, which might be responsible for 

the down-regulation of their TLR-mediated maturation (19-22).  

Recent studies revealed that TAM (Tyro3, Axl, Mer) receptor tyrosine kinases bind 

PS, and APC-produced TAM ligands  are bridging these interactions in a calcium 

dependent manner (e.g., growth-arrest-specific 6 (GAS6) and Protein S) (23, 24). 

TAM receptors, expressed in a large variety of cells, including macrophages and DCs, 

are shown to have the capacity to down-modulate the inflammatory response (25, 26). 

In vivo and in vitro studies demonstrate that these receptors are required for AC 

clearance and homeostatic regulation of the immune system (27-30). Most of the 

analyses concerning ACs and TAM receptors have been carried out with the Mer 

receptor. Recently, ACs have been proposed to inhibit DC activation via the induction 

of Mer which activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and 

inhibits NFκB (31).  

The transcription factor NFκB has a major role in regulating many aspects of cellular 

activity, in inflammation, cell proliferation, differentiation and cell survival (32). The 

mammalian NFκB protein family consists of five proteins p50, p52, p65 (RelA), c-

Rel and RelB found in homodimers and heterodimers (32-34). In the cytoplasm, 
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NFκB is regulated by a class of inhibitor proteins, called IκBs (34, 35).  Upstream 

activating signals cause the phosphorylation of IκBs, their ubiquitination and 

subsequent degradation, allowing NFκB dimers to enter the nucleus (32, 34-36). Once 

translocated in the nucleus, NFκB undergoes post-translational modifications, like 

phosphorylation of the p65 subunit at serine 276 and serine 536, that affect its 

transcriptional activation (32). Whether PMN-Ect interfere with the NFκB signaling 

pathway is currently undefined. 

We have previously shown that PMN-Ect have immediate inhibitory effects on 

HMDMs and DCs (13, 14). In the present study, we investigated whether PMN-Ect 

modify the NFκB signaling pathways of HMDMs. We also analyzed the early 

transcriptional responses of HMDMs to PMN-Ect with or without TLR-2 stimulation.  
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Materials and Methods 

Isolation, culture and maturation of HMDMs 

HMDMs were derived from monocytes isolated from fresh buffy coats. A buffy coat 

was diluted 1/1 (v/v) with Hanks balanced saline solution (HBSS; GIBCO, Invitrogen, 

UK), layered over Histopaque-1077 (Sigma, St Louis, MO, USA), and centrifuged for 

30 min at 350 x g. Monocytes were recovered, washed and cultured in Dulbecco 

modified essential medium supplemented with 1% penicillin/streptomycin and 

1% L-glutamine (DMEM+) for 1 h at 37°C. After incubation, non-adherent cells were 

removed by washing twice with pre-warmed DMEM+. The remaining adherent cells 

were then cultured in DMEM+ supplemented with 10% normal human serum (NHS). 

The culture was maintained in 5% CO2 at 37°C, and the medium was replaced at days 

4 and 7. On day 7 to 10, HMDMs were washed, and PMN-Ect and/or zymosan A 

(5 μg/ml final concentration; Sigma) were added in fresh DMEM+ without NHS (13).  

Collection of PMN-Ect 

To isolate PMNs, a fresh buffy coat was diluted 1/1 (v/v) with PBS-EDTA (2 mM), 

mixed with 0.25 vol 4% Dextran T500 (GE Healthcare Bio-Sciences AB, Uppsala, 

Sweden), and left for 30 min for erythrocyte sedimentation. Leukocyte-rich 

supernatant was aspirated and centrifuged for 10 min at 200 x g. The pellet was 

resuspended in 9 ml ultrapure water to lyze erythrocytes.  Isotonicity was restored by 

addition of 3 ml KCl (0.6 M) and 40 ml NaCl (0.15 M). Cells were then centrifuged 

10 min at  350 x g and resuspended in 20 ml PBS-EDTA. This suspension was layered 

over 20 ml Histopaque-1077 and centrifuged for 30 min at  350 x g. The PMN-rich 
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pellet was recovered and washed twice in PBS-EDTA. All manipulations were 

performed at 4°C, thus minimizing PMN activation (11-14). 

For stimulation, pooled PMNs (1x107 cells/ml) from healthy blood donors were 

diluted 1/1 (v/v) in prewarmed (37°C) RPMI 1640 (GIBCO, Invitrogen) with 1 µM 

fMLP, and incubated for 20 min at 37°C. PMNs were removed by centrifugation 

(4000 x g for 15 min at 4°C), and PMN-Ect contained in the supernatant were 

concentrated with Centriprep centrifugal filter devices (molecular mass 10,000 MW 

cut-off; Millipore) and stored in aliquots at -80°C until use (11-14).  

Calcium measurement 

For calcium (Ca2+) imaging, glass coverslip-grown HMDMs were loaded with the 

fluorescent Ca2+ indicator fluo-4 AM (Invitrogen; 5 µM final concentration) for 60 

min at 37°C. Cells were then washed with Krebs Ringer containing 1 mM CaCl2 and 

the coverslips were mounted on a thermostated perfusion chamber. Experiments were 

started by adding PMN-Ect or zymosan A. DMEM+ medium or lanthanum, a 

nonspecific cellular Ca2+ channel blocker, were used as negative controls. Changes in 

fluo-4 fluorescence were monitored with a Nikon Eclipse TE2000-E fluorescent 

microscope equipped with a CFI APO TIRF 60x objective. Changes in fluorescence 

were detected by exciting at 488 nm and recording the emission at 510 nm via an 

electron multiplier C9100-13 Hamamatsu CCD camera. Image analysis was 

performed with the Openlab imaging system. 

Detection of NFκB activation  

HMDMs were cultured in 96 well plates for 7 days. The phosphorylation level of 

NFκB p65/RelA was quantified with Cellular Activation of Signaling ELISA (CASE) 

(SABiosciences, MD, USA), according to the manufacturer’s instructions. In some 
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experiments, HMDMs were treated with 20 µg/ml of αMerTK antibody (AF891; 

R&D Systems, MN, USA) or with 50 µM of the PI3K inhibitor LY 294002 

(SABiosciences) for 1 h at 37°C prior to PMN-Ect and/or zymosan A incubation. All 

samples were measured in duplicates or triplicates and the results are given as an 

absorbance ratio of phosphorylated NFκB p65/RelA protein / total p65/RelA protein. 

Fluorescence microscopy 

HMDMs were generated on 8-well culture slides (Falcon, Becton Dickinson). After 

7 to 10 days of culture, HMDMs were washed with DMEM+ without NHS and 

incubated 20 min with or without zymosan A in absence/presence of CD66b-FITC 

(GeneTex Inc., TX, USA) labeled PMN-Ect. Then, HMDMs were washed, fixed with 

4% paraformaldehyde, and permeabilized with 0.1% Triton X-100 in PBS. Staining 

was performed by incubation with anti-NFκB primary antibody (RelA, sc-109) (Santa 

Cruz Biotechnology Inc., Heidelberg, Germany) followed by Cy5 donkey anti-rabbit 

secondary antibody (Jackson ImmunoResearch Europe Ltd., Suffolk, UK). Labeled 

cells were mounted with Vectashield containing DAPI (Vector Laboratories, 

Burlingame, CA, USA). Analysis was performed on an Olympus BX61 microscope 

from Olympus Schweiz AG (Volketswil, Switzerland).  

 
RNA extraction, labeling, and microarray hybridization 

For microarray experiments, we cultured monocytes isolated from fresh buffy coats of 

4 healthy donors (2 males and 2 females between the ages of 20 to 45) for 7 days at 

37°C. At day 7, HMDMs were cultured for another 3 h alone, in presence of 

PMN-Ect, with zymosan A, and with zymosan A and PMN-Ect. Then, total RNA was 

extracted using the Trizol method (Invitrogen), and cleaned up with RNeasy MinElute 

Cleanup Kit (Qiagen Inc., Valencia, CA). RNA quantity was measured with 
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NanoDrop 1000 Spectrophotometer (NanoDrop Technologies, DE, USA), and 

integrity was assessed using the Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA). 

The GeneChip expression two-cycle target labeling kit (Affymetrix, CA, USA) was 

used for all samples according to manufacturer’s instructions. Labeled cRNA was 

hybridized to GeneChip Human GenomeU133A 2.0 Array (Affymetrix) for 16 hours 

at 45°C. Then, the arrays were washed and stained with streptavidin-phycoerythrin, 

and fluorescent images were recorded on a GeneChip Scanner 3000 (Affymetrix).  

Microarray analysis 

Microarray data were summarized using gcrma (as implemented in the Bioconductor 

package). Data were then median-centered on a per-gene and per-patient basis. These 

normalized data were then visualized using hierarchical clustering (Euclidean distance 

metric, complete linkage). 

Quantitative real-time RT-PCR  

At day 7, HMDMs were cultured for 3 h alone, in presence of PMN-Ect, with 

zymosan A, and with zymosan A and PMN-Ect. After 3 h, total RNA was isolated 

with the Nucleospin RNA/Protein (Macherey-Nagel, Düren, Germany) and was 

reverse transcribed by Moloney murine leukemia virus reverse transcriptase (Promega 

Biosciences, Inc.) in the presence of random hexamers (Promega) and 

deoxynucleoside triphosphate. The reaction mixture was incubated for 5 min at 70°C 

and then for 1 h at 37°C. The reaction was stopped by heating at 95°C for 5 min. 

SYBR-PCR was performed based on SYBR green fluorescence (SYBR green PCR 

master mix; Applied Biosystems, Foster City, CA). Primers for GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase), IL-1β, IL-6, IL-8, IL-12, TNFα, 

TGF-β, TXNIP, and CXCR4 are shown in Table 1. The difference in the cycle 
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threshold (ΔCT) value was derived by subtracting the CT value for GAPDH, which 

served as an internal control, from the CT value for transcripts of interest. All 

reactions were run in duplicate by using an ABI 7500 sequence detection system 

(Applied Biosystems). mRNA expression levels of the transcripts were calculated 

relative to GAPDH from the ΔCT values using the formula 2-ΔCT.  

 

GAPDH fwd ATTGCCCTCAACGACCACT 
rev GCACAGGGTACTTTATTGATGG  

IL-1β fwd GGGCCTCAAGGAAAAGAATC 
rev AGCTGACTGTCCTGGCTGAT 

IL-6 fwd CAGTTCCTGCAGAAAAAGGC 
rev ATCTGAGGTGCCCATGCTAC 

IL-8 fwd ACATACTCCAAACCTTTCCACCC 
rev CAACCCTCTGCACCCAGTTTTC 

IL-12 fwd CATAACTAATGGGAGTTGCCTGGC 
rev AACGGTTTGGAGGGACCTCG 

TNFα fwd GAGTGACAAGCCTGTAGCCCATGTTGTAGC 
rev GCAATGATCCCAAAGTAGACCTGCCCAGAC 

TGF-β1 fwd TCCGCAAGGACCTCGGCTGGA 
rev ATCATGTTGGACAGCTGCTCC 

TXNIP fwd CTAAGCAGCAGAACATCCAG 
rev CGGTGATCTTCAGGAATGAC  

CXCR4 fwd GCCTGAGTGCTCCAGTAGCC 
rev TGGAGTCATAGTCCCCTGAGC 

 

Table 1. Primers for quantitative real-time RT-PCR. 

 

Quantitation of cytokines by ELISA 

HMDM supernatants were collected and spun for 10 min at 500 x g at 4°C to remove 

cellular debris. The concentrations of TNFα and TGF-β1 were measured using 

OptEIA ELISA kits (Becton Dickinson) according to the manufacturer’s instructions. 

All samples were measured in duplicates. 
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Statistical analysis 

Data sets were tested for normality. For normally distributed data, parametric analysis 

(two-tailed paired Student t-test), for non-normally distributed data non-parametric 

analysis (Wilcoxon matched pairs test) were performed using GraphPad Prism 

software (GraphPad Software Inc.). Data are expressed as mean ± SEM. A p value 

less than 0.05 was considered statistically significant. 
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Results 

PMN-Ect induce immediate Ca2+ release from intracellular stores in 

HMDMs 

Calcium (Ca2+) is a universal intracellular signal that mediates various cellular 

processes (37, 38). We were interested in investigating whether Ca2+ signaling is 

involved in HMDM activation upon encounter with PMN-Ect or zymosan A. HMDMs  

were loaded with the fluorescent Ca2+ indicator Fluo-4,  and the intracellular Ca2+ 

concentration ([Ca2+]i) was monitored. As shown in Fig.1A the addition of PMN-Ect 

was accompanied by repetitive [Ca2+]i oscillations, which occurred only seconds after 

their addition. Interestingly, addition of zymosan A was also accompanied by an 

increase in the [Ca2+]i, however, in contrast to the pattern observed after addition of 

PMN-Ect, the signal obtained with zymosan A was a single peak, which subsequently 

declined back to resting levels (Fig.1B). Interestingly, when both PMN-Ect and 

zymosan A were added simultaneously, they did not give rise to synergistic signals 

but both the oscillations and peak increase in the [Ca2+]i were maintained (Fig.1C). 

These results indicate that the HMDM Ca2+ signaling patterns generated by PMN-Ect 

and zymosan A are different. Since amplitude and frequency modulations of Ca2+ 

signals activate differential gene transcription (39-41), we next investigated the major 

transcription factors controlling the proinflammatory genes, NfκB.  
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Figure 1. Single-cell intracellular calcium imaging on human macrophages. HMDMs 

grown on glass coverslips for 7 days were loaded with fluo-4 AM (5 µM final 

concentration) for 60 min at 37°C. Traces show changes in fluorescence detected by 

exciting at 488 nm and recording the emission at 510 nm. Experiments were 

performed in Krebs Ringer containing 1 mM CaCl2. Experiments were started by 

adding (A) PMN-Ect, (B) zymosan A, or (C) both. DMEM medium or lanthanum 

were used as negative controls. DMEM medium made no changes, and in the 

presence of lanthanum, intracellular Ca2+ was released, but further signals were 

blocked. Image analysis was performed with the Openlab imaging system. Results are 

representative of multiple HMDMs analyzed from different donors. 
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PMN-Ect inhibit NFκB activation in HMDMs 

NFκB dimer p50/p65 is typically sequestered in the cytoplasm by its interaction with 

IκB. Upon stimulation, IκB is phosphorylated, ubiquitinated, and degraded, allowing 

NFκB dimer to enter the nucleus (32, 34-36). Since phosphorylation of NFκB p65 at 

serine 536 (Ser536) is reported to enhance its transcriptional activation (32), we 

measured phosphorylation of NFκB p65 in resting or zymosan-stimulated HMDMs in 

absence/presence of PMN-Ect, after 20 and 45 min (Fig.2). PMN-Ect alone had no 

effect on NFκB p65 Ser536 phosphorylation. In contrast, zymosan A alone induced a 

significant Ser536 phosphorylation of NFκB p65 compared to resting HMDMs. 

Strikingly, the effect of zymosan A was to a large extent suppressed by PMN-Ect (at 

20 min, p=0.04; at 45 min, p=0.04; n=3). These results demonstrate that PMN-Ect 

have the capacity to interfere with NFκB p65 Ser536 phosphorylation at the time of 

HMDM stimulation, suggesting an NFκB transactivation inhibitory effect of 

PMN-Ect.  

To see whether this reduced phosphorylation was related to interference with the 

translocation of NFκB to the nucleus, we performed immunofluorescence 

microscopy. We first labeled PMN-Ect with CD66b-FITC, and incubated HMDMs 

with labeled PMN-Ect, and zymosan alone, or zymosan and labeled PMN-Ect for 20 

min. We then probed all samples with anti-NFκB antibody. In resting HMDMs and in 

presence of PMN-Ect, NFκB was mainly in the cytoplasm (Fig. 3 A, C). In contrast, 

in zymosan-stimulated HMDMs, NFκB was translocated to the nucleus (Fig. 3 B). 

When co-incubated with zymosan and PMN-Ect, the translocation of NFκB to the 

nucleus was clearly blocked (Fig. 3 D). This inhibition of nuclear translocation is 

probably responsible for the reduced phosphorylation of NFκB.  
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Figure 2.  Inhibition of NFκB p65 phosphorylation in zymosan A-stimulated human 

macrophages by PMN-Ect. HMDMs were incubated with medium alone (NS) with or 

without PMN-Ect, and with medium supplemented with zymosan A with or without 

PMN-Ect. At 20 and 45 minutes, the phosphorylation of NFκB p65 was analyzed.     

*, ZymA + PMN-Ect vs. ZymA p < 0.05. Results are the mean ± SEM of three 

independent experiments. 
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Figure 3. Immunofluorescence microscopy of the inhibition of NFκB translocation in 

the nucleus by PMN-Ect in zymosan A-stimulated human macrophages. HMDMs 

were incubated with (A) medium alone, (B) medium + PMN-Ect, (C) medium + 

zymosan A, and (D) medium + zymosan A + PMN-Ect, for 20 min. Cells were then 

fixed, stained with anti-NFκB primary antibody (RelA, sc-109) followed by Cy5 

donkey anti-rabbit secondary antibody, and analyzed by immunofluorescence 

microscopy. In B and D, green dots correspond to CD66b-FITC pre-labeled PMN-Ect 

that are present in the cytoplasm. The imaging medium was Vectashield fluorescence 

mounting medium containing DAPI, and the analysis was performed on an Olympus 

BX61 microscope.  



 104 

PMN-Ect induce Mer and PI3K dependent inhibition of NFκB  

TAM receptors, and more specifically Mer, are involved in the uptake of AC by 

APCs, and in the ensuing immunosuppression (23, 25-30). Despite many structural 

differences, PMN-Ect share important biological properties with ACs, including the 

surface expression of PS, which might be bridged to Mer (12-14). To determine 

whether PMN-Ect activate downstream signaling via Mer, we pre-treated HMDMs 

with αMerTK antibody for 1h, then incubated the cells with zymosan A and/or 

PMN-Ect for 45 min and measured NFκB p65 phosphorylation. As shown in Fig. 4 

and expected, NFκB p65 phosphorylation was highly increased in non-treated 

HMDMs stimulated with zymosan A, an effect that was blocked by PMN-Ect. By 

itself αMerTK had no effect on the phosphorylation of NFκB in resting or zymosan A 

activated cells. The pre-incubation with αMerTK however abolished the inhibitory 

activity of PMN-Ect on zymosan A activated cells, suggesting that Mer is required for 

the biological activity of PMN-Ect. 

In a recent study, ACs inhibition of mouse DC activation by Mer was mediated by the 

activation of the PI3K/Akt pathway, which was directly responsible for blocking 

NFκB signaling (31). Moreover, activation of PI3K/Akt pathway is shown to 

negatively regulate NFκB in human monocytic cells (42). So, we investigated whether 

PI3K have a role in the inhibitory effects of PMN-Ect. We pre-treated HMDMs with 

LY 294002, a PI3K inhibitor, for 1 h, and measured NFκB p65 phosphorylation after 

45 min incubation with zymosan A and/or PMN-Ect. Resting or zymosan A-

stimulated HMDMs treated with LY 294002 showed similar NFκB p65 

phosphorylation when compared to their non-treated counterparts. In contrast, 

LY 294002 abolished the inhibitory effect of PMN-Ect on zymosan A-stimulated 

HMDMs (Fig. 4).   
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Together, these results demonstrate that PMN-Ect have immediate inhibitory effects 

on zymosan A-stimulated HMDMs by Mer tyrosine kinase and the PI3K/Akt pathway 

mediated inhibition of NFκB signaling.  

 

 

 

 

Figure 4. Roles of Mer and PI3K in PMN-Ect-induced inhibition of NFκB p65 

phosphorylation in zymosan A-stimulated human macrophages. HMDMs were 

pretreated with 20 µg/ml of αMerTK antibody, or with 50 µM of the LY 294002, and 

then incubated with medium alone (NS), or with medium supplemented with 

zymosan A with or without PMN-Ect. At 45 minutes, the phosphorylation of 

NFκB p65 was analyzed. *, ZymA + PMN-Ect vs. ZymA p < 0.05. Results are the 

mean ± SEM of three independent experiments. 
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Gene expression profiling in presence of PMN-Ect  

Little is known about the immediate effects of zymosan A and/or PMN-Ect on the 

gene expression profiling of HMDMs, which contrasts with their known effects on the 

release of various proinflammatory cytokines. In order to further define the inhibitory 

activity of PMN-Ect, we investigated the early gene expression profiles of resting and 

zymosan A-stimulated HMDMs in the absence/presence of PMN-Ect. Monocytes 

isolated from fresh buffy coats of 4 donors (2 males and 2 females between the ages 

of 20 and 45) were cultured for 7 days at 37°C. The resulting HMDMs were cultured 

for another 3 h alone, in presence of PMN-Ect, zymosan A, or both, before extracting 

their mRNAs to perform microarray analyses with Affymetrix GeneChip HGU133A 

2.0 that determines the expression level of about 14500 human genes.  The complete 

data will be deposited in NCBIs Gene expression Omnibus (GEO) 

(www.ncbi.nlm.nih.gov/geo).  The first observation was the important differences in 

the gene expression profile between the different individuals, with the first donor 

being the most distant to the other three as shown in the dendrogram (Fig. 5).  

However, the observations for zymosan A and the effects of PMN-Ect were the same 

for all 4 individuals. Zymosan A produced a massive shift in the gene expression, 

including many proinflammatory mediators, whereas the modulation induced by 

PMN-Ect on resting and zymosan A activated cells was limited but present in all 

samples. Despite the fact that there were quite strong inter-individuals differences in 

the strength of the responses induced by zymosan A and/or PMN-Ect, the trend 

included always the same general set of genes. Whereas zymosan A induced a clear 

increase in proinflammatory gene expression such as IL-1β, IL-6, IL-8, IL-12 and 

TNFα, it was surprising that PMN-Ect did not reduce in a measurable way the 

expression of these genes, although many others were modified independently of the 



 107 

presence of zymosan A. At that stage we felt that the sensitivity of our gene profiling 

might have been limited and missed small differences in the expression of 

proinflammatory genes.  

 

 

 

 

Figure 5. Dendrogram of microarray samples. The dendrogram constructed using 

hierarchical clustering (Euclidean distance metric, complete linkage) shows that the 

differences induced by zymosan A were clearly more important than those produced 

by PMN-Ect in all 4 individuals. Ind.: individual differences, Z.: zymosan A-induced 

differences, E.: PMN-Ect-induced differences. 
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Analysis of gene expressions by real-time RT-PCR  

Thus, we selected 8 genes of interest, IL-1β, IL-6, IL-8, IL-12, TNFα, TGF-β, TXNIP 

and CXCR4 associated with inflammation and NFκB signaling pathway, and 

measured their mRNA levels after 3h in resting or stimulated HMDMs in 

absence/presence of PMN-Ect by real-time RT-PCR. Levels of IL-1β, IL-6, IL-8, 

IL-12, and TNFα mRNA were highly increased when HMDMs were stimulated by 

zymosan A with increases going from 14 to almost 4500 folds (Fig. 6). In the 

presence of PMN-Ect, the increases of all 5 gene-mRNA were evidently reduced, 

however the reduction was only 2-4 fold. These results might explain the data 

obtained by the gene profiling, which provided evidence only for major shifts. To 

confirm that the observations made by RT-PCR corresponded to the release of 

cytokines, we measured the TNFα in the supernatants of the previous experiment. 

TNFα was very low, or even under the detection limits under resting conditions, 

increased up to 1400 fold when the cells had been exposed to zymosan A for 3 h, and 

the suppression activity of PMN-Ect reduced TNFα release by 2-3 fold but still many 

log fold higher than the resting conditions (Fig. 7A). Similar results have been 

obtained in the past for the other cytokines as well (13), thus confirming that our 

RT-PCR results corresponded to protein synthesis and release. 

Interestingly, we observed that the mRNA levels of TXNIP and CXCR4 decreased 

when HMDMs were stimulated with zymosan A, whereas in the presence of PMN-Ect 

we observed constantly a slight increase in both, stimulated as well as non-stimulated 

cells (Fig. 6). Importantly, TGF-β mRNA levels showed no significant changes under 

all conditions (Fig. 6).  
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Figure 6. Analysis of genes associated with inflammation and NFκB signaling 

pathway by quantitative real-time RT-PCR. HMDMs were incubated for 3 h 

with medium alone (NS), medium + PMN-Ect, medium + zymosan A, and medium + 

zymosan A + PMN-Ect. The differential expression of IL-1β, IL-6, IL-8, IL-12, 

TNFα, TGF-β1, TXNIP and CXCR4 were measured by quantitative real-time 

RT-PCR. Results were normalized to NS=1. 
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PMN-Ect induce rapid TGF-β1 release 

Since TGF-β1 mRNA levels of the macrophages were unaffected by exposure to 

PMN-Ect, and/or zymosan A stimulation, we measured its release in the supernatants 

of HMDMs used for the microarray experiments (3h of incubation). Confirming 

previous data (13), PMN-Ect increased the release of TGF-β1 from HMDMs in all 4 

donors, whether the cells were exposed or not to zymosan A. On its own, zymosan A 

had no effects on TGF-β1 release (Fig. 7B). Thus and contrary to the effects of 

PMN-Ect on the transcription of zymosan A induced proinflammatory mediators, the 

TGF-β1 release is an early and direct effect of PMN-Ect independently of the 

presence of zymosan A.  

 

Figure 7.   

Cytokine measurements in the 

supernatants of human 

macrophages cultured for 

microarray experiments. 

HMDMs were incubated for 

3 h with medium alone (NS), 

medium + PMN-Ect, medium 

+ zymosan A, and medium + 

zymosan A + PMN-Ect. 

Concentrations of (A) TNFα 

and (B) TGF-β1 were 

analyzed in supernatants. 

Errors bars indicate SEM of 

measurements done in 

triplicates. 
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Discussion 

Whereas the involvement of PMNs in enhancing inflammation by the release of 

multiple mediators and enzymes has been extensively studied, the mechanisms 

responsible for the control of this reaction are less well understood. That activated 

PMNs release ectosomes possessing anti-inflammatory and immunosuppressive 

properties is a new in vitro finding, which suggests that the very same cells known to 

be central in inflammation are involved in controlling it as well (13, 14). In the current 

study, we deepened these findings by defining essential signaling pathways 

responsible for the biological properties of PMN-Ect and the consequences on the 

transcriptional machinery of HMDMs.  

After their first contact with HMDMs, PMN-Ect induce in a few seconds a specific 

Ca2+ flux pattern (Fig. 1). Ca2+ is a major player in cellular information processing, and 

different Ca2+ signals can trigger various transcriptional responses (37, 39-41).  The 

complexity of the Ca2+ fluxes does not allow to further speculate on what signaling 

pathways have been activated, but it is of particular interest that the oscillation of Ca2+  

produced by PMN-Ect are preserved even in the presence of zymosan A.  These 

immediate effects might be responsible for the rapid release of TGF-β1 which might 

be involved in PMN-Ect induced HMDM down-modulation. Indeed TGF-β1 released 

upon AC uptake plays an important role in modulating macrophages towards an anti-

inflammatory phenotype (22, 43). When we analyzed the TGF-β1 mRNA levels of 

HMDMs at 3h after incubation with PMN-Ect in absence or presence of stimulation, 

we could not detect any significant changes. Thus, TGF-β1 was released as 

immediate-early response of HMDMs to PMN-Ect (Fig. 7B and (13)).  
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The key and central finding of our study is that PMN-Ect inhibited the NFκB p65 

phosphorylation seen in zymosan A activated HMDMs. Corresponding to this finding, 

the NFκB translocation to the nucleus was blocked by PMN-Ect. This inhibition of 

NFκB was responsible for the down-regulation of major proinflammatory genes 

although in mathematical terms this inhibition was much less pronounced that the 

activation due to zymosan A. Indeed zymosan A induced a manifold (14 to 4500) 

increase of mRNA expression of proinflammatory cytokines, versus a 2-4 fold 

inhibition of this high activation by PMN-Ect. However, a 2-4 fold drop in the 

production of cytokines may well be significant in immunological terms, particularly 

if one adds the specific signals induced by PMN-Ect directly such as TGF-β1 release 

(Fig. 7B). Interestingly there are several studies on ACs down-modulation of 

macrophages, which report that NFκB is unaffected (44), or translocated to the 

nucleus but inactive (45). These results emphasize that despite similarities between 

PMN-Ect and ACs, there are also major differences in the pathways used to down-

regulate inflammatory signals. Of note, in some experimental setups testing for the 

effects of ACs or PS expressing liposomes, macrophages or dendritic cells had to be 

pre-incubated sometimes several hours with ACs or PS liposomes in order to see an 

inhibitory effect on inflammatory stimuli (15, 46). In the present study the biological 

effects of PMN-Ect were observed immediately and were not dependent on a first 

phase of protein synthesis indispensable for ACs or PS-liposomes effects. This again 

differentiates ectosomes form ACs and might suggest that the fluctuations in Ca2+ 

fluxes induced by PMN-Ect were an indication that specific signaling pathways were 

activated and responsible for immediate inhibition.   

Mer is centrally involved in the inhibition of NFκB by PMN-Ect as demonstrated by 

using a blocking antibody. Recent in vivo and in vitro studies showed that Mer is 
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required for the “tolerogenic” clearance of ACs by macrophages and DCs (25, 27, 28, 

47). PMN-Ect share PS exposure with ACs (12), and PS may play a key role in many 

of the immunomodulatory effects of both PMN-Ect and ACs. However we do not 

know how the binding occurs, and beside PS many other cell surface components or 

soluble factors released by the target cells might be involved. For instance Gas6 

secreted by HMDMs might be an efficient link to the PS exposed on PMN-Ect (23). 

Evidently, other possibilities will have to be explored, including the recently 

described Tim receptors (48), which might induce additional signaling pathways 

responsible for the modulation of the cellular response. 

Our results showed that PMN-Ect induced inhibition of HMDMs by Mer-mediated 

activation of the PI3K/Akt pathway, with a resulting blockade of NFκB (Fig. 4). Sen 

et al. demonstrated similar results with AC-induced inhibition of mouse DCs (31).  

Consistent with our findings, activation of PI3K/Akt pathway in LPS-stimulated 

human monocytes regulated negatively NFκB, and limited TNFα and tissue factor 

expression (42). In contrast, TLR2-mediated induction of the PI3K/Akt pathway has 

been reported to up-regulate the NFκB p65 transactivational activity (49). These 

differences might be explained by the experimental models and protocols used 

(human vs. mouse cells, different cell types and stimuli). 

Whether the cell modifications induced by PMN-Ect are long-lasting is unknown, 

although the real-time RT-PCR data of TXNIP and CXCR4 might suggest a 

reprogramming of the cell. For instance, thioredoxin-interacting protein (TXNIP) 

blocks thioredoxin, which is a transcriptional co-activator through interaction with 

transcription factors such as NFκB (50, 51). PMN-Ect induced upregulation of 

TXNIP might be a complementary mechanism for the inhibition of NFκB pathway. 

Upregulation of CXCR4 might have been induced by TGF-β1 (52, 53). High CXCR4 
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expression increase HMDM susceptibility to its specific chemokine SDF-1, and thus 

leading HMDMs to migrate away from PMNs (52). PMN-Ect have been shown to 

have long lasting effects on human immature DCs by modifying their morphology 

and phagocytic properties (14). In addition, HMDM activation is inhibited by a short 

pre-exposure to ectosomes derived from erythrocytes (for 1 h, 24 h before testing 

HMDM activation) (54). Thus, part of the biological effect produced by PMN-Ect 

may require protein synthesis in the target cells. The released TGF-β1 might be 

involved in these changes (22), although not directly via NFκB inhibition as seen in 

Fig. 4. In addition, this cannot explain the durable effects of erythrocyte-derived 

ectosomes on macrophages, since such ectosomes do not induce TGF-β1 (54) . 

Although the present study demonstrates that PMN-Ect “reprogram” HMDMs by 

inhibiting NFκB via Mer and PI3K/Akt pathways, other complementary mechanisms 

might still exist. Recent studies report that microvesicles (i.e. ectosomes) may contain 

mRNAs that can be delivered to other cells (55-57). Based on this suggestion, Valadi 

et al. found that mast cell exosomes contain and transfer mRNAs and microRNAs 

(miRNAs), and proposed to call this RNA “ exosomal shuttle RNA” (58). miRNAs 

are a class of evolutionarily conserved, small, non-coding RNA molecules that play 

important regulatory roles in various biological processes (59, 60). PMN-Ect contain 

small RNAs as well (C.E. unpublished data), which may be involved in late effects of 

PMN-Ect.  

In summary, we showed that, when PMN-Ect bind the target macrophages, a specific 

Ca2+ flux signal is induced. Mer receptor as well as the PI3K/Akt pathway is activated, 

and NFκB translocation and phosphorylation are blocked so that the proinflammatory 

gene transcription is reduced (Fig. 8). The role of PMN-Ect in reprogramming 

macrophages merits further attention. 
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Figure 8. Model to explain the inhibitory effect of PMN-Ect on zymosan A activated 

human macrophages. Binding of zymosan A (Z) to TLR2/Dectin1 activates the NFκB 

pathway. PMN-Ect via Mer tyrosine kinase receptor (MerTK) down-regulate NFκB 

by activating PI3K/Akt pathway, which inhibits the translocation and transactivation 

of NFκB. PMN-Ect induce an immediate calcium flux in HMDMs, and a rapid release 

of TGF−β1.   : activation or release;  : inhibition;       : interactions not known. 
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Conclusion and Future Perspectives 

 

PMN-Ect were shown to induce the release of TGF-β1 by human monocyte-derived 

macrophages (HMDMs) in vitro, and additionally block their inflammatory response 

to zymosan A and LPS by down-regulating the release of IL-8 and TNFα. 

Importantly, ectosome-to-cell contact was sufficient for this immunomodulatory 

function (1). We further investigated the role of PMN-Ect in the immune system, and 

showed that they have the potential to influence not only the innate but also the 

adaptive immunity by playing an active role in shaping dendritic cell (DC)-dependent 

response. We reported that PMN-Ect inhibit the LPS-induced maturation of human 

monocyte-derived DCs, and induce new morphological and functional characteristics 

which result in a reduced capacity to activate T-cells (2).  

 
In addition, we confirmed that erythrocytes release also ectosomes (E-ecto) that 

revealed an inhibitory potential on activated HMDMs, indicating an active role in the 

regulation of inflammation as well (3). Importantly, E-ecto are released in large 

amounts during blood storage (4), which might explain the immunosuppressive 

effects seen after transfusions, although these observations are not generally accepted 

(5-8).  

 

A very interesting property of E-ecto was their lasting effects on activated 

macrophages. The phagocytosis of E-ecto had modified the macrophage for at least 24 

hours so that it did not react to further stimulation (3). Preliminary results obtained 

with PMN-Ect showed similar effects (Fig. 1). These observations suggest that the 

signalling processes related to TLR-2 stimulation were down-modulated by an active 
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lasting process. Thus, the phagocytosis of ectosomes seems not only to produce a 

direct anti-inflammatory signal to HMDMs, but also to keep their proinflammatory 

potential down. How long this effect lasts, and what are the cellular mechanisms 

involved, particularly in vivo, remain intriguing questions. 

 

 

 

 

 

Figure 1. Long lasting effect of PMN-Ect on zymosan A-stimulated human 

macrophages. 24, 3 and 1 hours before overnight zymosan A stimulation, HMDMs 

were incubated with PMN-Ect for 1 hour, and then unbound PMN-Ect were washed 

away. At T0, PMN-Ect were not removed from the medium. The proinflammatory 

cytokine TNFα was analyzed in supernatants. In presence of PMN-Ect without 

stimulation no measurable amounts of cytokines was released. Assays were performed 

in duplicates. Results are representative of 3 similar experiments. Error bar indicates 

standard error of the mean. 
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In vivo models of inflammation/infection will now have to test the relevance of the 

activities of ectosomes (the project will start in 2009). A model of acute peritoneal 

inflammation induced by thioglycollate or zymosan A should allow us to gain insight 

into the effects of E-ecto on the kinetics and extent of zymosan A-induced peritoneal 

inflammation, and inhibition thereof. An alternative is to study the immune response 

to i.p. injected human E-ecto (or human PMN-Ect) as compared to the proteins 

obtained from the same solubilized ectosomes. The expectation would be that 

ectosome as such are not inducing an immune response as opposed to the protein 

extract. Indeed the PS of ectosomes might down-regulate directly the immune 

response. 

 

In many respects, ectosomes may be similar to apoptotic cells (ACs), including the 

high expression of PS, which in multiple experiments has been shown to allow 

specific binding of ACs to macrophages or dendritic cells (9-14). In a recent study, 

AC-induced inhibition of mouse DCs was shown to depend on Mer-mediated 

activation of PI3K/Akt pathway, with a resulting inhibition of NFκB (15). Similar to 

these findings, we could demonstrate that PMN-Ect induced modulation of the 

inflammatory response of HMDMs via Mer tyrosine kinase receptor regulated 

PI3K/Akt and NFκB pathways (Eken et al., submitted). As a next study, it would be 

of great interest to define if Mer tyrosine kinase receptor, and PI3K/Akt and NFκB 

pathways are also responsible for the immunoregulatory effects of PMN-Ect in 

MoDCs. If such, a common regulatory mechanism would suggest that PMN-Ect have 

indeed a defined role in downmodulating major antigen presenting cells. 

 



 127 

Whereas there might be similarities in the responses induced by ectosomes and ACs 

as well, these responses are not identical. By contrast to ACs, ectosomes have the 

particularity to be involved very early in inflammation, a time point, which might be 

crucial for determining later aspects of the cascade responsible for acquired immunity. 

In that sense, ectosomes might not terminate the inflammation, but control the 

immune response. However, ectosomes originating from different cells do not have 

the same effects as well. For example, unlike PMN-Ect, E-ecto did not induce the 

release of TGF-β1 from HMDMs (3). And interestingly, platelet-derived ectosomes 

seems to have down-regulatory effects, and those, similar to PMN-Ect, induce TGF-

β1 release from HMDMs (unpublished data, Sadallah, Eken et al.). Furthermore, 

microvesicles released by tumor cells have recently been shown to skew monocyte 

differentiation into DCs toward the generation of a myeloid immunosuppressive cell 

subset, thus impair the possible immune response against tumor (25). These findings 

suggest that ectosomes originating from different cells might have additional and 

specific characteristics. Thus, it would be interesting to investigate the effects of E-

ecto and platelet-derived ectosomes on MoDCs, and tumor-derived ectosomes on 

HMDMs, and the cellular pathways of human macrophages and DCs involved in their 

immunosuppressive effects. A comparison between all might help us generate a more 

precise definition of ectosomes.  

 
 
Although we demonstrated that PMN-Ect down-modulate HMDMs by inhibiting 

NFκB via Mer and PI3K/Akt pathways, other complementary mechanisms might still 

exist. Microvesicles (i.e. ectosomes) contain mRNAs that can be delivered to other 

cells (16-18). Recently, Valadi et al. reported that mast cell exosomes contain and 

transfer mRNAs and microRNAs (miRNAs) that can be functional in the recipient 
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cells, and proposed to call this RNA “exosomal shuttle RNA” (esRNA) (19). Of note, 

miRNAs are a class of evolutionarily conserved, small, non-coding RNA molecules 

that play important regulatory roles in various biological processes (20, 21). During 

microarray experiments, we found that also PMN-Ect contain small RNAs (Fig. 2), 

which might be involved in their “reprogramming” effects. However, further research 

is needed to confirm these results. 

 

 

 

 

Figure 2. Bioanalyzer analysis of PMN-Ect. The graph and the electrophoresis lane 

show that PMN-Ect contain small RNAs (arrows). 

 

 

Another complementary mechanism might be the peroxisome proliferator-activated 

receptor (PPARs) induced regulation. PPARs (PPARα, PPARβ/δ, PPARγ) are a 

family of nuclear receptor proteins that function as transcription factors regulating the 

expression of target genes (22). PPARs are implicated in major metabolic and 
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inflammatory regulations (23). In vitro and in vivo studies has showed that PPARγ 

mediate anti-inflammatory effects on several immune cell types (24). Additionally, a 

recent study demonstrated that activated human platelets shed PPARγ in 

microparticles (25). Whether ectosomes have PPARγ, or activate PPARγ of 

encountered cells remain to be tested. 

 

In the light of all these results, we suggest that ectosomes have the potential to 

reprogram macrophages and dendritic cells toward an immunosuppressive phenotype. 

Further investigations in “ectosome biology” should help in understanding the 

regulation of the innate and adaptive immunity. 
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