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Abbreviation  

 

ATP    adenosine triphosphate 

B-cell    bone marrow-dependent lymphocyte 

BM    bone marrow 

bp    base pairs 

BSA    bovine serum albumin 

cDNA    complementary DNA 

°C    degree Celsius 

CD    cluster of differentiation 

c-kit    tyrosine kinase receptor for stem cell factor 

cTEC    cortical thymic epithelial cell 

CTP    cytosine triphosphate 

DC    dendritic cells 

DMEM    Dulbecco`s modified Eagle`s medium 

DMSO    dimethylsulfoxide 

DNA    deoxyribonucleic acid 

DN    double negative T-cell 

dNTP    2`-Deoxyribonucleoside-5`-Triphosphate 

DP    double positive T-cells 

dscDNA    double stranded DNA 

DTT    dithiothreitol 

E    embryonic day of gestation 

EB    elution buffer 

ECM    extracellular matrix 

EDTA    ethylenediaminetetraacetic acid 

i.e.    as for example 

EtOH    ethanol 

FACS    fluorescent-activated cell sorter 

FCS    fetal calf serum 

FITC    fluorescein isothiocyanate 

FTOC    fetal thymic organ culture 

g    gram 

G    gravity 

GAPDH    glyceraldehydes-3-phospahte dehydrogenase 

GTP    guanosine triphosphate 

h    human 

hr    hour 

HEPES    N-2-Hydroethylpiperazine-N`-2-ethansulfonic acid 

H&E    Hematoxylin and eosin 

HSC    hematopoietic stem cell 

Ig    immunoglobulin 

ISH    in situ hybridization 

K    cytokeratine 

Kb    kilo base 

KDa    kilo Dalton 

L    liter 

LB    lurea broth 

LCM    laser capture micro dissection 

LN    lymph node 

M    molar 

2-ME    2-Mercaptoethanol 

MHC    major histocompatibility 

min    minute 

mL    milliliter 

μL    micro liter 

mM    milli mole 

mRNA    messenger RNA 

mTEC    medullary thymic epithelial cell 
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NK    natural killer cell 

ng    nano gram   

NTP    nucleotide triphosphate 

O.D.    optical density 

O.N.    over night 

ORF    open reading frame 

PBS    phosphate-buffered saline 

PCR    polymerase chain reaction 

PE    phycoerythrin 

pg    pico gram 

pH     negative logarithm of the hydrogen ion concentration 

qRT-PCR   quantitative real time PCR 

Rag    recombination activating gene 

RNA    ribonucleic acid 

rpm    revolutions per minute 

RT    room temperature 

s    second   

SCID    severe combined immuno-defcient 

SDS    sodium dodecyl sulfate 

SP    single positive T-cell 

ssDNA    single stranded DNA 

SSC    standard saline citrate 

TBS    Tris buffered saline 

TCR    T-cell receptor 

TE    tris (10mM/EDTA (1mM) buffer 

TEC    thymic epithelial cell 

Tris    Tris-Hydroxymethyl-Aminomethane 

TTP    thymidine triphosphate 

U    unit 

UTC    uracyl triphosphate 

UV    ultraviolet 

VDJ    variability, diversity, and joining regions 

wt    wild type   
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Summary 

 

The thymus structure composes of clear morphological regions. The T-cell precursors enter 

the thymus in the cortico-medullary junction and migrate through the cortex towards the sub 

capsular region and back through to the cortex into the medulla. During this migration process 

the thymic epithelial cells provide the microenvironment for the maturation and selection of 

the majority of the peripheral T-cells. The thymic epithelial cells have their origin in the 

endodermal cells of the ventral aspect of the 3
rd

 pharyngeal pouch while endodermal cells of 

the dorsal aspect of the 3
rd

 pharyngeal pouch give rise to the parathyroid glands. For a better 

understanding of genes which might be involved in determination of endodermal cells to the 

thymic epithelial cell fate, the gene expression profile of the ventral aspect of 3
rd

 pharyngeal 

pouch was compared to the dorsal aspect of 3
rd

 pharyngeal pouch using microarrays. The 

analysis revealed 69 genes which were up regulated in the ventral aspect of 3
rd

 pharyngeal 

pouch. Eleven genes with the largest differential expression values were further assessed 

(Gata-2, dll-1, C1qdc2, Samd5, Msx2, Msx1, Ehox, Tgfbi, Unc5c, FoxG1, 1110006E14Rik) 

using RT-PCR and whole mount in situ hybridization. The genes dll-1, Tgfbi, Msx1 and 

Msx2 are involved in the Notch, Tgfβ and Bmp pathways, respectively. All these pathways 

are associated with thymus development. The role of the genes Ehox, Gata-2, C1qdc2, Samd5 

and Unc5c in thymus development is so far undefined. 

Gata-2, a transcription factor, known to be involved in hematopoiesis, was the only gene of 

which its expression was detected by gene chip data, RT-PCR and whole mount in situ 

hybridization. These results identified Gata-2 as a novel candidate that might be involved in 

the thymic epithelial cell development. To characterize the function of Gata-2 in thymus 

development, Gata-2 was specifically deleted in thymic epithelial cells using Foxn1-Cre. The 

thymi of 3, 6, 13, and 25 weeks old mice were removed and detailed studies were performed. 

FACS analysis of these thymi revealed an increased thymus cellularity in DN1-DN4, CD4, 

and CD8 in 6 weeks old thymi and onwards. The thymus architecture which was analyzed by 

H&E and immunohistochemistry (UEA-1, CK8, CK18, ERTR7) was unaffected when Gata-2 

was deleted in TECs. The assessment of TEC population of Gata-2 KO mice did not show 

any difference. But the gene expression analysis of Gata-2 deficient TECs for the genes c-Jun, 

CXCL-12, CCL-25, IL-7, c-Fos, c-kit ligand, Edn-1, Edn-Ra, und Edn-Rb showed that 

CXCL-12 and c-kit ligand were higher expressed. CXCL-12 is involved in homing of T-cell 

precursors while c-kit L is involved in survival and proliferation of T-cell precursors.  
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In conclusion, Gata-2 might negatively regulate the transcription of CXCL-12 and c-kit 

ligand. A lack of Gata-2 expression in thymic epithelial cells, therefore, might lead to an 

increased T-cell precursor attraction and survival/proliferation, thus, explaining the higher 

cellularity observed in thymus of Gata-2 deficient mice.         
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I.  Introduction 

 

In the past years several breakthrough experiments provided important results for a better 

understanding of the molecular mechanisms of the thymus development. But the advances 

which are made so far remain small when compared to the progress in research addressing the 

cellular pathway and the molecular mechanisms of developing T-cells. The unique function of 

the thymus in establishing and maintaining the T-cell pool makes the thymus crucial organ in 

the immune system. The aim of this project was therefore to characterize the genetic program 

that determines thymic epithelial cell fate and differentiation and, in particular, new genes 

critically involved in this process. Among 11 genes which were selected upon Affymetrix 

Gene Chip data analysis, Gata-2, a transcription factor, was chosen for an extended in vivo 

model study.  

 

1.1. Thymus function and structure 

 

The thymus structure composes of clear morphological regions. The cortico-medullary 

junction (CMJ) in which the T-cell precursors enter the thymus and migrate through the 

cortex (C) towards the sub capsular area (SCA) and back through cortex to the medulla (M) 

(Fig. 1.1a). Petrie et al. suggested a more detailed division of the thymus into several zones 

depending on where the developing T-cells migrate to after their entrance into the thymus 

(Fig.1.1b,c). The thymus stroma, which is responsible for the thymus structure and provides 

the matrix on which thymocytes develop, can be divided into two groups depending on their 

expression of CD45. The further identification of the thymic stroma lacking the pan 

hematopoietic marker CD45 is based on keratin expression. The keratin
+
 cells represent the 

thymus epithelium and the keratin
-
 cells represent a mixture of mesenchymal cells. Keratin

+
 

cells are composed of two major subsets: cortical thymic epithelial cells (cTEC) and 

medullary thymic epithelial cells (mTEC) (Gray et al., 2007) while the keratin
-
 cells include 

fibroblasts, non-fibroblastic mesenchymal cells (Muller et al., 1993), capsule- and septae 

forming connective tissue cells and endothelial cells forming the thymus vasculature (Muller 

et al., 1993; Raviola et al., 1972; Anderson et al., 2000). The majority of the mTEC and cTEC  

can be further distinguished upon their expression of keratin (K) expression pattern. While the 

mTEC are K5
+
K8

-
, cTEC are K5

-
K8

+
 (Klug et al., 1998; Klug et al., 2002). 
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The cortical thymic stroma consists of epithelial cells that are closely associated with the early 

maturation stages of developing T-cells. The medullary thymic stroma consists of epithelial 

cells together with the hematopoietic macrophages and dendritic cells which interact with 

mature thymocytes (Anderson et al., 2001; Petrie et al., 2007). Finally, dendritic cells and 

macrophages, that are CD45
+
 hematopoietic cells, are also important elements of thymus 

stroma. 

The successful completion of the thymus development has his importance in providing the 

required primary lymphoid an unique microenvironment for the differentiation of the 

hematopoietic precursor cells into functional T-cells. The maturation and selection during 

thymocyte development are affected by the thymic stroma. The outcome is the production of 

self-restricted but self-tolerant T-cells. The establishment of a functional T-cell repertoire is 

achieved by positive and negative thymic selection. Positive selection occurs upon low 

affinity binding of the T-cell receptor (TCR) with a peptide self-MHC (major 

Fig 1.1: A) Thymus section from a healthy mouse stained with hematoxylin and erythrosine. M: medulla, C: 

cortex, CMJ: cortico-medullary junction, SCA: sub capsular area B) Zones 1 to 7. The diagonal line separates 

the zones for outward movement of DN cells (upper left) from those defined by movement of DP and SP cells 

inward (lower right). C) The pattern of progenitor migration within the thymus is depicted by an overlay of 

lymphoid cells. (This figure has been partially adapted from Petrie et al., 2007)  
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histocompatibility complex) complex expressed by the cTEC that results in the transduction 

of survival and differentiation signals in the 

developing thymocytes. Thymocytes that fail to 

receive these signals do not undergo positive 

selection and die by neglect. Negative selection 

occurs when the TCR of thymocytes engages a 

peptide-MHC ligand in the mTEC with high 

affinity that leads to the apoptotic death of the 

cell. Thus the thymus generates a repertoire of 

peripheral T-cells that are largely self-tolerant 

(Anderson et al., 2002; von Boehmer 2004; 

Kyewski et al 2006; Martinic et al., 2006). For 

these reasons fewer than 5% of the developing 

thymocytes survive and leave the thymus as 

mature T-cells. For auto-reactive T-cells that 

escape regular negative selection additional 

mechanisms regulates their function in 

periphery e.g. by regulatory T-cells (FoxP3
+
, 

CD4
+
, CD25

+
). 

 

1.2 Thymus organogenesis 

 

1.2.1. The pharynx 

 
The pharyngeal apparatus develops from a series 

of bulges found on the lateral surface of the 

head, the pharyngeal arches, which consist of a 

number of different embryonic cell types (Fig. 

1.2). Each arch has an external covering of the 

ectoderm and inner covering of endoderm and 

between these a mesenchymal filling of neural 

crest with a central core of mesoderm. The 

ectoderm forms the epidermis and the sensory neurons of the epibranchial ganglia (Verwoerd 

et al., 1979; D’Amico-Martel et al., 1983; Couly et al., 1990), while the endoderm gives rise 

Figure 1.2 The pharyngeal arches. A) Side 

view. The segments of the hindbrain, the 

rhombomeres, are labeled R1 through R7. The 

3 crest streams destined for the pharyngeal 

arches are shown in orange. B) A longitudinal 

section through the pharyngeal arches showing 

the different embryonic populations that 

contribute to the arches. The ectoderm which 

surrounds the outer face of the arches is green, 

while the endoderm which forms the inner 

surface of the pharynx is labeled in red. The 

neural crest is shown in orange and the 

mesodermal core of the arches is blue. C) A 

transverse section through the third pharyngeal 

arch showing the arch components and the 

surrounding structure. Otic vesicle (OV), hind 

brain (HB), notochord (N).  (The figure has 

been adapted from Graham et al., 2001)  
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to the epithelial lining of the pharynx, and forms the taste buds as well as the thyroid, 

parathyroid and thymus (Le Douarin et al., 1975, Cordier et al., 1980). The neural crest forms 

the skeletal and connective tissues of the arches (Noden, 1983a; Couly et al., 1993; Trainor et 

al., 1994).  

 

1.2.2. Pharyngeal pouches 

 

In mammals the walls of the developing pharyngeal regions consist of a series of individual 

pairs of branchial (a.k.a. pharyngeal) arches, designated ba1-ba4 and ba6. The boundaries of 

each arch are demarcated on the embryo`s surface by intervening grooves. The anterior region 

of the foregut, which forms the primitive pharynx, expands toward the surface within this 

framework and is directed along the intervals between the branchial arches. Consequently, 

bind ending sacs extend from the foregut laterally in the direction of the embryo`s body 

surface, producing a bilateral series of different pharyngeal pouches (pp) that are lined by 

endodermal epithelium. These pouches designated 1
st
, 2

nd
, 3

rd
 and 4

th
 are located between ba1, 

ba2, ba3 and ba4 and ba6, respectively. Since the thymus emerges in mice from the 3
rd

 pp, its 

formation is juxtaposed to the 3
rd

 and 4
th

 branchial arches (ba3 and ba4). The developing 

endodermal lining is at specific locations directly juxtaposed to the surface ectoderm. 

Consequently thin, narrow diaphrahms, known as pharyngeal membranes, are formed that 

connect the separate arches. 

At E10.5 the neural crest cells are adjacent to endodermal lining (Fig. 1.3) (Gordon et al., 

2004; Le Douarin and Jotereau, 1975). These mesenchyme surround the emerging thymus 

primordium and provide molecular signals that are necessary for the expansion of the TEC 

(Jenkinson et al., 2003; Revest et al., 2001b; Suniara et al., 2000). Interfering with the 

mesenchymal derivatives from neural crest cells during the functional development of the 

epithelial primordium inhibits thymic development in a manner similar to that observed in 

congenital conditions such as the DiGeorge syndrome or the fetal alcohol syndrome 

(Ammann et al., 1982; Bockman, 1997; Suniara et al., 2000). In the fetal thymus, neural crest 

derived mesenchymal cells contribute to the thymic capsule and septae, and can also be 

located within the thymic cortex where they interact with immature thymocytes as shown by 

immunohistochemistry analysis (Anderson et al., 1997; Owen et al., 2000; Suniara et al., 

2000). As thymus development proceeds, the mesenchyme of neural crest origin surrounding 

the pharyngeal organs is replaced by mesodermal mesenchyme (Yamazaki et al., 2005).  
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 The first morphological signs of thymus organogenesis are apparent approximately at day 

10.5 of gestation (E10.5). Around E11.5 the mouse thymus primordium emerges as an 

epithelial anlage budding from the ventral endodermal lining of the 3
rd

 pharyngeal pouch 

while dorsal aspect of this invagination develop into the parathyroid glands (Rowen et al., 

2002). Each organ is surrounded by a mesenchymal capsule that still contacts both the surface 

ectoderm and the pharyngeal endoderm. Seeding of lymphoid precursors cells into the 

epithelial primordium occurs at about E12.5 and is paralleled by rapid epithelial cell 

proliferation and differentiation giving eventually rise to the typical thymus structure which 

consists of medulla that is surrounded by the cortex.  

By E13.5, the parathyroid and the thymus are separated from the pharynx and these two 

organs start to migrate into their final destination. The thymus descends to the mediastinum 

where it sits on the top of the heart with the two lobes touching each other at the midline 

while the parathyroid glands are positioned at the lateral margins of the thyroid gland. 

 

 

 

Fig.1.3 Formation of the early thymic rudiment in mouse. Neural crest derived mesenchymal cells 

surround the endoderm of the 3
rd

 pp. At E11.5, a thymic rudiment buds from the endoderm, consisting of 

epithelial cells surrounded by a neural crest-derived capsule. Around this time point hematopoietic cells 

migrate into the epithelial anlage. At E12.5 patterning and differentiation begin via epithelial-thymocyte 

interactions. (The figure has been adapted from Manley et al., 2000)  
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1.2.3 Neural crest cells as a source of mesenchyme 

 

The majority of the mesenchymal cells that fill the pharyngeal arches are the progeny of 

neural crest cells and are crucial for thymus organogenesis and thymus functions (Anderson et 

al.. 2001; Manley et al., 2000; Rodewald 2004; Owen et al., 2000; Petrie 2002). Neural crest 

cells are of ectodermal origin and originate at the most dorsal aspect of the neural tube. Their 

importance lies in the ability to migrate extensively and generate various differentiated cell 

types such as neural cells, smooth muscle cells and chondrocytes. Neural crest cell from the 

2
nd

 and 4
th

 rhombomeres migrate to the 3
rd

 and 4
th

 pharyngeal arch whereas neural crest cells 

from the 3
rd

 and 5
th

 rhombomeres enter the migrating as separate streams of an adjacent 

rhombomere. Once in their respective pharyngeal regions, they transform to 

ectomesenchymal cells and interact with epithelial cells of the pharyngeal endoderm. This 

interaction is important for the proliferation, migration, and differentiation of the epithelial 

cells  (Bockman, 1997). A possible molecular link between neural crest derived mesenchyme 

and thymus epithelium is provided via fibroblast growth factors (Fgf) and their receptors 

(FgfR). Fgf7 and Fgf10 are expressed by the mesenchyme surrounding the embryonic thymus 

epithelium, and the latter expresses FgfR2-IIIb. Defects in this signaling pathway perturb 

thymus development (Revest et al., 2001), demonstrating a growth-promoting role for 

mesenchyme toward thymic epithelium. Signals via Fgfs also induce TEC proliferation 

(Erickson et al., 2002; Rossi et al., 2007), and protect thymus epithelium from injury by 

irradiation (Min et al., 2002) or by conditions of graft versus host disease (Rossi et al., 2002).  

 

1.2.4. Interference with epithelial-mesenchymal interaction 

 

The cellular interactions between endodermal epithelium and mesoderm and ectodermal 

mesenchyme are responsible for the formation of a regular thymus was experimentally 

verified in mice and chicken (Auerbach, 1960). Removal of E12.5 thymus and culturing it as 

fetal thymic organ culture (FTOC) produces robust epithelial proliferation. This does, 

however, not occur if the thymus has been stripped of its mesenchyme (Suniara et al., 2000).  

The fibroblast growth factors (Fgf) are involved in the epithelial-mesenchymal interactions 

(Xu et al., 1999), which are assumed to regulate directly the differentiation and/or 

proliferation of the thymic epithelial cells. Such interactions show the importance in the 

organogenesis of many organs, such as in the limb development, where the mesenchymal 

production of fibroblast growth factors stimulates the growth and differentiation of Fgf-

receptor-bearing epithelial cells (Xu et al., 1999). 
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Mice lacking either Fgf10 (Ohuchi et al., 2000) or its receptor FgfR2-IIIb (Revest et al., 

2001a) display a thymus that is reduced in size (Revest et al., 2001b). These results suggest a 

role for specific Fgfs for epithelial-mesenchymal interactions during thymus development. 

However, signals of Fgf10 via its receptors, FgfR2-IIIb, seem not to be essential for the 

commitment to a thymic epithelial cell fate and the ability to support thymocyte development, 

as mice deficient for Fgf10 or its receptor display a phenotypically regular maturation of the 

few thymocytes that are present in their thymus. However, any conclusion as to the 

competence of the thymus in these mutant mice to generate a regular repertoire of functional 

T-cells is unknown, since FgfR2-IIIb deficient mice die at birth because those mutant mice 

fail to develop lungs. A time constrained role of the mesenchyme for thymic epithelial cell 

development was claimed by Jenkinson and colleagues who provide evidence that the 

differentiation of immature thymic epithelia into cortical and medullary phenotypes is after 

E12 independent of a sustained interaction with mesenchyme (Jenkinson et al., 2003). 

However, the continued presence of Fgf7 and Fgf10 is necessary to support the proliferation 

of thymic epithelial cells leading to thymus growth.  

A role for mesenchyme in thymic development has also been shown in experiments using 

reaggregate thymus organ cultures (RTOC) (Anderson et al., 1993; Anderson et al., 1997) 

which proved that mesenchymal fibroblasts are necessary for the maturation of thymocytes 

precursors beyond the most immature, intrathymic developmental stage i.e. DN1 (c-kit
+
, 

CD44
+
, CD25

-
) thymocytes (Anderson et al., 1993). However, it remains uncertain just how 

mesenchymal cells influence thymocytes development. Possible mechanisms include the 

generation of specific components of the extracellular matrix (ECM) and/or soluble growth 

factors such as cytokines (Banwell et al., 2000). 

 

1.2.5 Epithelial patterning, differentiation and crosstalk between thymocytes and epithelium 

 

Around E12 hematopoietic cells colonize the thymus which undergoes further patterning and 

differentiation (Gill et al., 2003; Rodewald 2004). Around that time, first signs of cortex and 

medulla separation occur which are accompanied with a change in keratin expression pattern 

in the epithelium and adult thymic epithelial cells can be distinguished according to their 

expression of the keratin (K) expression. Majority of the adult mTEC are K5
+
K8

-
 while cTEC 

are K5
-
K8

+
 (Klug et al., 2002; Ritter et al., 1993). Several reports suggests that the 3

rd
 pouch 

epithelium at E11.5 express K5 but not K8 (Ritter et al., 1993; Gill et al., 2002) whereas 

others found co-expression of K5 and K8 (Benett et al., 2002). At the embryonic stage of E12 
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and E13 majority of the TECs express K5 and K8 (Bennett et al., 2002; Gill et al., 2002). 

These double positive TEC are thought to be the progenitors of mature single positive K5
+
K8

-
 

and K5
-
K8

+
 TECs. A blockade in T-cell development such as in the common γ chain (γc

-
) or 

RAG2
-/-

 γc
-
 mice, the majority of the thymic epithelial cells fail to differentiate and remain in 

the stage of K5
+
K8

+
 stage (Rodewald et al., 1998) which indicates that an interaction of T-cell 

progenitors with the developing thymic epithelial cells are necessary for the TEC 

differentiation but the initial patterning of the embryonic thymus is T-cell independent and 

only dependent on the expression of Foxn1 in the epithelium. The necessity of the crosstalk 

between the T-cell progenitors (CD45
+
CD25

-
) and TEC have been further supported by mice 

experiments by Rodewald and their colleagues who used a Kit
W/W

 γc- mice, a mutant in which 

thymocytes development was completely abrogated (Rodewald et al., 1997). These mice had 

a severely dysmorphic thymus structure but their architecture could be restored when the 

thymus was grafted postnatally into a recipient mice that provide wild type hematopoietic 

stem cells (Rodewald et al., 1997). However, according to the studies of Klug et al. and 

Jenkinson et al. signals for thymocyte signals are not required for the initial differentiation of 

TEC progenitor in to cTEC and mTEC lineage but influence later stages of TEC 

differentiation (Klug et al., 2002; Jenkinson et al., 2005). 

1.2.6 Origin of thymic epithelial cells: Dual origin versus single-origin model     

 

Until 2006 there has been a controversial discussion about the origin of the two different TEC 

types. The dual origin model is mainly supported by very early experiments performed by 

Cordier, Haumont and Hereman. This model suggests that both the third pharyngeal cleft 

ectoderm and the third pharyngeal pouch endoderm contribute physically to the thymus 

during organogenesis. The facts are drawn from histological sectioning and reconstruction 

approach to compare thymus organogenesis in nude and wild-type embryos (Cordier and 

Haumont, 1975; 1980). Cordier and Heremanns reported that the endodermal and ectodermal 

germ layers made physical contact at E9.5, followed by a strong proliferation of the ectoderm 

positioned at the 3
rd

 pharyngeal cleft. These changes result in a situation where the ectodermal 

cells cover the 3
rd

 pouch endoderm for a period from E10.5 to E11.5.  At E12.5 this 

compound structure detaches from both the ectoderm and endoderm and gives rise to the 

thymus primordium. Markedly diminished proliferation of the ectoderm was reported for 

nude embryos leading to the conclusion that the primary nude defect affects ectodermal cell 

(Cordier and Haumont, 1975; 1980). 



16 
 

Independent of these observations and interpretations, strong functional evidence supporting 

the “single-origin” model had existed since 1975, when Le Douarin and Jotereau generated 

bird chimaeras by transplanting quail pharyngeal endoderm to the somatopleura of a 3 day old 

chick (Le Douarin and Jotereau, 1975). The graft had been taken from a donor at the 15-

somite stage, a time when neither the development of the 3
rd

 pharyngeal pouch had yet 

occurred nor pro-thymocytes had homed to the anatomical area from which the tissue for 

transplantation was taken. Upon engraftment, the donor endoderm developed into a thymus 

able to support T-cells of chick origin. Importantly, the epithelial cells in both the cortical and 

medullary compartments of the thymus were exclusively of quail origin. However, these 

experiments provided evidence that purified pharyngeal endoderm was sufficient to generate 

the epithelial component of both the cortical and medullary compartments. These data also 

conveyed that, at least in birds, cells in the developing endoderm have adopted a fate for 

thymic epithelial cells well before the formation of the 3
rd

 pharyngeal pouch. These 

experiments did neither test the commitment to a single cell lineage directly but their data 

provide a stringent assessment of the developmental potential of the pharyngeal endoderm (Le 

Douarin and Jotereau, 1975). 

Two independent experimental approaches finally settled the discussion. Rossi et al. injected 

single TECs isolated from E12 thymus anlagen of enhanced yellow fluorescent protein (YFP) 

transgenic mice into wild-type E12 thymus lobes that were then transplanted under the kidney 

capsule of recipient mice to allow thymus development to occur. Analysis of cells from the 

transplanted thymus lobes showed that, in all experiments in which fluorescent progeny cells 

were detected, the cells had contributed to both cTEC and mTEC lineage. Contribution to a 

single TEC lineage was markedly absent (Rossi et al., 2006). Bleul et al., on the other hand, 

addressed TEC progenitor activity in thymus organogenesis using genetic in situ labeling. 

They crossed the well established Rosa26R-eYFP (enhanced yellow fluorescent protein) 

reporter mice with a cre-expressing mice (hK14::Cre-ERT2) (where ER is human estrogen 

receptor). The cre-recombinase was driven by the human K14 promoter which is active in 

epithelial progenitor cells. This way eYFP protein was produced only after cre-mediated 

chromosomal rearrangement. This way they turned on eYFP expression.  Although no labeled 

cells were found in the thymus at birth, numbers of eYFP
+
 TEC per thymus increase with age 

after birth. Upon eYFP expression analysis in the thymus they identified three different 

progenies: 1) mTEC clusters, 2) cTEC clusters or 3) mTEC and cTEC progeny. These 

patterns suggested that TEC progenitors exhibiting eYFP after cre-mediated recombination at 

the Rosa26 locus give rise to groups of genetically related progeny (Bleul et al. 2006).  
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1.2.7 TEC progenitor differentiation into cTEC and mTEC and their function  

 

Although cTEC can be identified using flow cytometry according to their expression of the 

epithelial-cell adhesion molecule 1 (EpCAM1) and Ly51 (Derbinski et al., 2001), their cTEC 

development has not been fully understood. However, Wnt pathway seems to be involved in 

the cTEC development. Osada et al. have shown that an ablation of KREMEN1 (kringle 

containing transmembrane protein 1) in mice, a negative regulator of WNT signaling, leads to 

an abnormal cTEC architecture (Osada et al., 2006). Regarding the function of cTEC more 

details are known. cTECs express on their cellular surface MHC class I and II (Takahma et 

al., 2006) and are important to mediate positive selection (Anderson et al., 1994). CD83, also 

expressed on cTECs, seems to be an important candidate for the positive selection of CD4
+
 T-

cells (Fujimoto et al., 2002). CD83 deficient mice have a specific block in CD4
+
 single 

positive thymocytes development without increased CD4
+
CD8

+
 double or CD8

+
 single 

positive thymocytes which results in a selective 75%-90% reduction in peripheral CD4
+
 T-

cells, predominately within the naïve subset. For positive selection of CD8
+
 T-cells, 

proteasome catalytic subunit called β5t which is exclusively expressed by cTEC plays a role. 

In general proteasomes are responsible for generating peptides presented by the class I MHC 

molecules. Proteasome subunit β5t deficient mice show a reduction in CD8
+
 T-cell 

development. They suggested that β5t is important for generation of MHC class I restricted 

CD8
+
 T-cell repertoire during thymus positive selection (Murata et al., 2007).  

mTECs can be distinguished from cTEC due to their expression of EpCAM and a lack for the 

expression of Ly51 (Derbinski et al., 2001), whereas analysis of tissue sections identifies a 

dominant K5
+
K8

-
 phenotype (Klug et al., 1998). Furthermore, mTECs contained within 

individual islets were shown to arise clonally and thus providing the first direct evidence for 

the existence of TEC progenitors (Rodewald et al., 2001). Like cTEC, mTEC express MHC-

class I and II molecules on their surface and abnormal mTEC development leads in most of 

the cases to autoimmunity (Naquet et al., 1999). For a functional T-cell tolerance thymocytes 

with high affinity for peptide-self-MHC complex must be eliminated and regulatory 

FoxP3
+
CD4

+
CD25

+
 T-cells (Treg) must be positively selected (Fontenot et al., 2005). Studies 

of Achenbrenner et al. showed that mTEC play a role in Treg-cell development although the 

nature of the interactions that lead to Treg-cell selection is not fully understood 

(Aschenbrenner et al., 2007). mTEC population can be further divided into two distinct 

mTEC subsets the CD80
-
 mTECs that express a limited array of tissue restricted antigens 

(TRA) and the AIRE expressing CD80
+
 mTECs which express a wide array of TRA 
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(Derbinski et al., 2001, 2005; Anderson et al., 2002). AIRE (auto immune regulator), a 

transcriptional regulator, plays a central role in tolerance and in human a defect of AIRE 

expression leads to autoimmune polyendocriopathy-candidiasis-ectodermal dystrophy 

(APECED) (Bjorses et al., 1998, Bleschschmidt et al., 2002). Mice deficient of AIRE reveal a 

reduced expression of TRA in mTEC and have organ specific autoimmunity and defective 

tolerance induction (Anderson et al., 2002, Liston et al., 2003, Gillard et la., 2007). Another 

interesting candidate which is important for the normal cellularity and architecture of mTEC 

are lymphotoxin-β receptor (LTβR) on thymocytes and lymphotoxin-β ligand. An interruption 

of their signaling leads to structural defects which are associated with failure in T-cell 

selection and autoimmunity (Boehm et al., 2003). RANK (receptor activator of nuclear factor-

κB) ligand which is expressed on CD3
-
CD4

+
 inducer cell population is important for the 

maturation of RANK-expressing CD80
+
Aire

+
 mTEC progenitors into CD80

+
Aire

+
 mTEC 

(Rossi et al., 2007). Kelly and Scollay described initially the CD3
-
CD4

+
, also known as 

lymphoid tissue inducer cell (LTi), inducer cell population in neonatal lymph nodes (Kelly et 

al., 1992) and Mebius characterized them further as fetal-liver derived hematopoietic 

population that is distinct from and unable to give rise to T and B-cells (Mebius et al., 1996, 

1997). These cells are capable to provide RANK-ligand mediated and also lymphotoxin 

mediated signals which regulate the formation of stromal microenvironment that support 

lymphocyte recruitment and organization (Cupedo et al., 2002). Regarding thymus 

development Naquet et al., have shown that NF-κB signaling are important in the formation 

and organization of the thymic medulla (Naquet et al., 1999). Mice deficient in NF-κB 

signaling, such as inhibitor of NF-κB signaling (IKKα), have mTEC abnormalities and organ 

specific autoimmunity (pancreas and liver). Furthermore, the expression of CCL-19 and CCL-

21 which are important for attracting developing T-cells into the medulla were also reduced 

(Lomada et al., 2007). These findings fit with the observation that were made in RANK-

deficient mice which resulted in absence of AIRE
+
 mTECs and deficiency in the stroma with 

symptoms of autoimmunity (Rossi et al., 2006).  

1.2.8 Genes involved in the thymus development 

 

Foxn1, a member of the forkhead box transcriptions factor (Kaestner et al., 2000; Coffer et 

al., 2004; Jonsson et al., 2005),  is the only gene that is known to be necessary specifically for 

thymus epithelial development (Nehls et al., 1994; Nehls et al., 1996). Foxn1 contains a 

winged-helix/forkhead DNA-binding domain and a transcriptional activation domain (Boehm 

et al., 2003; Schuddekopf et al., 1996). Mice deficient of Foxn1 gene are nude and the thymus 
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anlage fails to differentiate to form a functional organ (Nehls et al., 1994). This phenotype of 

the thymus becomes evident as early as E12.5 or E13.5 (Cordier et al., 1980; Boehm et al., 

2003; Bleul et al., 2001; Tsukamoto et al., 2005). The thymus of the Foxn1 deficient mice has 

a near absence of hematopoietic cells, which might be related to the loss of expression of 

chemokines CCL-25, a ligand of CCR-9, and CXCL-12, a ligand of CXCR4, in the 

embryonic nude thymus (Bleul et al., 2000). Little is known about genes controlling the 

expression of Foxn1. It has been proposed that Foxn1 expression is regulated through 

members of the Wnt family (Balciunaite et al., 2002). Using whole mount in situ 

hybridization in developing thymus, Foxn1 expression can be already detected at E11.5 and is 

expressed in most of the TEC, if not in all embryonic and adult TECs (Nehls et al. 1996). 

More recent study that used an anti-Foxn1 antibody suggests that Foxn1
+
Keratin

+
 and Foxn1

-

Keratin
+
 TEC exist in the embryonic thymus and that the amount of Foxn1

-
Keratin

+
 TEC can 

be 80% of adult TECs (Itoi et al., 2007).  

The molecular mechanism of the thymus development is a complex process and not all 

candidate genes which are involved in its development have been described. But several in 

vivo experiments mainly in mice have been helpful to understand the role of several genes 

including Hoxa3 (Manley et al., 1998), Eya1 (Xu et al., 2002; Zou et al., 2006), Six1 (Zou et 

al., 2006; Laclef et al., 2003), Pax1 (Dietrich et al., 1995; Wallin et al., 1996; Su et al., 2000; 

Su et al., 2001), Pax3 (Conway et al., 1997), Pax9 (Peters et al., 1998; Hetzer-Egger et al., 

2002), Edn-1 (Kurihara et al., 1994) and Tbx1 (Jerome et al., 2001). A mutation in these 

genes leads to thymus aplasia, hypoplasia or failure of the thymus lobes to migrate toward the 

chest. All the genes are expressed in multiple cell lineages during the embryonic development 

and hence their loss of function causes pleitotropic defects (Manley et al., 2000; Blackburn et 

al., 2004; Hollander et al., 2006). Since these genes are involved in the formation of the 3
rd

 

pharyngeal pouch and thus upstream of the thymus organogenesis, the genes might 

nevertheless be involved in the later stages of the thymus development or in the thymus 

epithelium itself. Hoxa3, Pax1 and Pax9 are such genes which are expressed in the thymus 

epithelial according to PCR data (Wallin et al., 1996; Gillard et al., 2007; Dooley et al., 

2005). In order to understand the functions of these genes in thymic epithelium, a TEC 

specific deletion would be necessary. An example for such a study was the blocking of the 

Bmp signaling using Noggin under the control of the Foxn1 promoter. Transgenic expression 

of the BMP antagonist Noggin in thymic epithelial cells under the control of a Foxn1 

promoter in the mouse leads to dysplastic thymic lobes of drastically reduced size that are 

ectopically located in the neck at the level of the hyoid bone (Bleul et al., 2005).  
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1.3 T-cell development in the thymus 

 

1.3.1 Commitment of T-cell development in the fetus 

 

The thymus is the main site for the generation of T-cells and requires periodic or continuous 

input of hematopoietic progenitors to maintain T-cell development (Donskoy et al., 1992; 

Foss et all., 2001). The earliest T-cell progenitors that are detected in the thymus express 

CD4
lo

c-kit
+
CD44

+
Thy-1

-
Sca-1

+
 (Wu et al., 1991). These precursors are also capable to give 

rise to B-cells, NK and dendritic cells (Matsuzaki et al., 1993; Godfrey et al., 1993). In order 

to determine the fate of the T-cell precursors Notch signaling seems to be important. In mice a 

deletion of Notch1 or RBP-J, a signal transducer downstream of Notch in HPC, results in 

complete defect of T-cell development (Radkte et al., 1999; Han et al., 2002). An enforced 

expression of the intracellular fragment of Notch (ICN1), an active form of notch, in 

hematopoietic precursor cells induced the ectopic appearance of CD4
+
CD8

+
 positive (DP) 

cells (Pui et al., 1999). In fact, both ligands delta like-1 (dll-1) and delta-like 4 (dll-4) are 

expressed in the thymus (Hozumi et al., 2003; Schmitt et al., 2004; Heinzel et al., 2007). The 

TEC specific deletion of dll-4 using Foxn1-Cre Hozumi et al. showed that no DP were present 

and DNs did not express Thy1, TCRαβ or TCRδγ. Closer analysis of the DN proved that no 

T-cell commitment occurred (Hazumi et al., 2008).  

 

1.3.2 Thymocyte precursors seeding and migration to the developmental thymus  

 

A major focus of research into the function of the thymus has been dedicated to delineate the 

precise pathways by which hematopoietic precursor cells develop into mature T-cell of the 

α/β T-cell lineage. The precursor cells originate from the hematopoietic stem cells (HSCs), 

which at the time of their seeding to thymus are still located in the aorta-gonad-mesonephros 

(AGM) region or fetal liver (Gekas et al., 2005; Godin and Cumano, 2002). The HSC pool in 

the placenta occurs prior to and during the initial expansion of HSC in the fetal liver (Gekas et 

al., 2005). The hematopoietic progenitors in the bone marrow (BM) are quite heterogeneous 

and can be divided into subpopulations according to their expression of Flt3 and vascular cell 

adhesion molecule 1 (VCAM-1) expression (Lai et al, 2006). In the small fraction of 

Flt3
hi

VCAM-1
-
 multipotent progenitors Lai et al. identified cells which express CCR-9, a 

receptor for CCL-25. The Flt3
hi

VCAM-1
-
CCR-9

+
 migrate into the thymus and had the 

capability to differentiate into B-, T- and dendritic cells. Furthermore, they express Notch1 



21 
 

and Hes1, a direct downstream target of Notch1, in a higher level than their counterpart 

Flt3hiVCAM-1
-
CCR-9

-
 (Lai et al., 2007). Although CCR-9 knockout revealed no deficiency 

in the thymocytes development, competitive reconstitution of CCR-9 knockout bone marrow 

revealed that CCR-9 enables superior repopulation by bone marrow progenitors (Uehara et 

al., 2002, Schwarz et al., 2007). It is possible that CCL-25/CCR-9 mediated cell attraction 

may have therefore only a synergistic effect on recruitment of thymocyte precursors. 

For the homing of the T-cell precursors CXCL-12, a ligand of CXCR-4, has been identified 

(Bleul et al., 2000). CXCL-12 and its receptor CXCR-4 deficient mice have a similar 

phenotype which is an impaired expansion of thymocytes subpopulations during 

embryogenesis resulting in decreased numbers of CD3
-
CD4

-
CD8

-
 (DN1) and CD4

+
CD8

+ 
(DP) 

thymocytes. This demonstrates not only the important role of CXCL-12 in the migration 

progress, but also its critical role for the migration of T-cells from medulla to cortex for 

normal T-cell development. Furthermore CXCL-12 has been implicated in homing of bone 

marrow derived precursors (Ara et al., 2003). In postnatal thymus CXCL-12 is expressed in 

medulla and on scattered cells in the cortex (Misslitz et al., 2004). During embryonic 

development of the thymus CXCL-12 is expressed at E12.5 onward (Bleul et al., 2000).  

 

Using additional cell surface markers, the population of DN cells can be further subdivided in 

the mouse into at least four distinct populations. The most immature population of T-cells 

(known as DN1) is defined by the cell surface expression of CD44 (phagocyte glycoprotein-

1/Pgp-1), CD117 (c-kit, tyrosine kinase receptor for stem cell factor), CD127 (IL-7 receptor 

α-chain), and CD90 (Thy-1) but with the notable absence of CD25 (IL-2 receptor α chain) 

(Godfrey and Zlotnik, 1993; Wu et al., 1991). The expression of CD25 marks the progression 

from DN1 to a DN2  (CD44
+
CD25

+
) stage in thymocyte development (Godfrey et al., 1993). 

This developmental stage is characterized by the start of the rearrangement of the β-, γ- and δ-

loci of the T-cell receptor (TCR) (von Boehmer and Fehling, 1997). The subsequent loss of 

CD44 expression defines the DN3 (CD44
-
CD25

+
) stage of early T-cell development. DN3 

population lack CD117 expression and have completed their rearrangement of the β-, γ- and 

δ-locus. These cells are now in the position to either express a pre-TCR consisting of a 

successfully rearranged β-chain plus the surrogate, invariant TCR α-chain (pTα, gp33) or, 

alternatively, to express a complete γ/δ TCR. Thymocytes that are unsuccessful in expressing 

any of these two receptors fail to receive survival signal and consequently undergo apoptosis 

before transiting to the DN4 (CD44
-
CD25

-
) cell stage. In contrast, cells that successfully 

express the pre-TCR on their cell surface begin to proliferate, and reach the developmental 
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stage of CD4
+
CD8

+
 (double positive, DP) thymocytes. The majority of developing 

thymocytes have a DP phenotype.  

 

 

 

These cells have successfully rearranged their TCRβ-locus and are rescued from apoptotic 

cells death and selected for further maturation, before TCRα expression, by signaling through 

a pre-TCR composed of the TCRβ chain paired with a pre-TCRα (pTα) chain and associated 

with CD3 (Groettrup et al., 1993; Saint-Ruf et al., 1994; Fehling et al., 1995; von Boehmer et 

al., 1997). Mice that fail to express a TCRβ-chain exhibit impaired DN-double positive 

transition while recombination-activating gene (RAG)-1 or RAG-2 deficient mice have 

complete arrest at the CD44
lo

CD25
+
 stage (Moore et al., 1996). The stage of DP thymocytes 

follows that of DN cells and is attained via a transitional intermediary phenotype referred to 

as immature single positive (ISP) cells. At the ISP-stage, immature thymocytes express either 

CD4 or CD8 and are distinguished from mature single positive thymocytes by their lower cell 

surface expression of their TCR β-chain (Paterson and Williams, 1987; Yu et al., 2004). The 

ISP to DP transition leads to the generation of a large pool of DP thymocytes (Yu et al., 

Figure 1.4 Development of T-cell in the thymus. The thymus consists of two distinct regions: medulla 

and cortex. Each contains specialized thymic epithelial cell subsets. The hematopoietic precursors enter 

the thymus via the cortico-medullary junction (CMJ). Thymocytes differentiation can be followed 

phenotypically by the expression of cell-surface markers, CD4, CD8, CD44, CD25 and CD3. (DN1: 

CD44
+
CD25

-
; DN2: CD44

+
CD25

+
; DN3: CD44

+
CD25

-
; DN4: CD44

-
CD25

-
).  During the maturation these 

cells travel from the CMJ to through the cortex to the sub-capsular zone (SCZ). (The figure has been 

adopted from Takahama et al., 2006)  
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2004). At the ISP stage of maturation, the rearrangement of the TCRα-locus is initiated which 

coincides with cell`s active phase of proliferation. No rearrangement of the α-locus occurs 

until the proliferation phase has ended. This sequence of events ensures that each successful 

TCRβ-chain rearrangement gives rise to many DP thymocytes. In consequence, DP cells with 

identical TCRβ-chain will independently rearrange their α-chain locus so that eventually a 

single DN4 cell with an unique TCR-β chain will express a diverse repertoire of α-chains. 

Each of these cells can independently rearrange their α-chain genes once the cells stop 

dividing, so that a single functional β-chain can be associated in the progeny of these cells 

with many different α-chains. The expression of α/β TCR allows now for positive thymic 

selection by peptide/MHC complexes. 

 

1.3.3 Positive and negative selection in the thymus 

 

DP thymocytes are subjected to consequence of selection processes so that only mature T-

cells are exported from the thymus which are functional and self-tolerant. In this context, the 

terms positive and negative selection denote two separate but interconnected steps in selection 

of a correct TCR repertoire. Positive and negative selection are both dependent on 

lymphostromal interactions within the thymus (Anderson et al., 1999; Chidgey and Boyd, 

2001; Jameson and Bevan, 1998; Klein and Kyewski, 2000; Sebzda et al., 1999). Positive 

selection occurs if the TCR on DP thymocytes engages with a sufficient high affinity a self-

MHC ligand on cortical TECs. Such interaction and their signal(s) will result in the survival 

and further differentiation of DP thymocytes (Bevan, 1997; Palmer et al., 1993; von Boehmer 

et al., 1997). Cells either unable to recognize any peptide-MHC-ligand with a lower affinity 

than required for positive selection will die by a process known as death by neglect. 

(Boursalian et al., 1999; Raff, 1992; Sprent et al., 2001). Upon positive selection of the DP, 

they develop further to CD4
+
 or CD8

+
 single positive (SP) cells. Transcriptions factors which 

are involved in the fate determination of CD4
+
 and CD8

+
 cells were characterized. RUNX1 

and RUNX3 a member RUNX (runt-related transcription factor) family and Th-POK/c-Krox 

(T-helper-inducing POZ/Kruppel-like factor) have been in the focus of recent studies. 

Furthermore, GATA-3 binding protein 3 (GATA-3) and thymocyte selection-associated 

highly mobility group box (TOX), are crucially involved in the CD4/CD8 lineage decision. 

RUNX1 and RUNX3 sequentially interact with the Cd4 silencer (Taniuchi et al., 2002). 

Germline deletion of the Cd4 silencer resulted in de-repression of CD4 expression in both DN 

thymocytes and CD8
+
 T-cells (Leung et al., 2001, Zou et al., 2001), but the conditional 
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deletion of the Cd4 silencer in mature CD8
+
 T-cells did not cause de-repression of CD4 

expression (Zou et al., 2001). At the DN stage, Cd4 silencer may act to actively repress Cd4 

transcription, but it is dispensable for keeping Cd4 silenced in peripheral CD8
+
 cells 

(Taniuchi et al., 2004). RUNX1 was found to bind to Cd4 silencer in DN cells and RUNX3 to 

bind to the Cd4 silencer in CD8
+
 positive cells (Taniuchi et al., 2002). RUNX3 expression is 

up regulated during the differentiation of CD4
+
CD8

low
 thymocytes into CD8

+
 T-cells (Dave et 

al., 1995). There, RUNX3 binds to the Cd4 silencer element and silences Cd4 gene 

transcription (Taniuchi et al., 2002) and RUNX3 binds also to the Cd8 enhancer element and 

reinitiate Cd8 transcription (Sato et al 2005). Additionally, RUNX proteins bind to a sequence 

in the gene of Th-POK and extinguished Th-POK expression thus promoting CD8
+
-T-cell 

differentiation (Setoguchi et al., 2008). Regarding TOX Aliahamd et al. and Hedrick et al. 

have shown that TOX is important for maintaining or up-regulating CD4 expression in 

positively selected DP thymocytes (Aliahamd et al., 2008, Hedrick et al., 2008). TOX-

deficient thymocytes do not become CD4
+
CD8

low
 cells but instead become CD4

low
CD8

low
 and 

failed to become CD4
+
 cells (Aliahamd et al., 2008). GATA-3 is mainly expressed in the 

CD4
+
 cells and has been therefore suggested to be important for CD4 lineage commitment 

(Hendriks et al., 1999). The deletion of GATA-3 in DP cells markedly reduced the CD4
+
 

population (Pai et al., 2003) but it is not a lineage specific factor since forced expression of 

GATA-3 does not redirect MHC class-I restricted thymocytes to differentiate into CD4
+
 T-

cells (Hernadez et al., 2003). Positive thymic selection is effected by cTECs. Using 

reaggregated thymic organ cultures (RTOC), it has been well established that MHC class II 

positive cTECs are both necessary and sufficient for positive selection of DP of the α/β TCR 

lineage to CD4
+ 

SP cells (Anderson and Jenkinson, 1997; Anderson et al., 1997). After the 

positive selection thymocytes migrate from the cortex into the medulla. This migration is 

mediated by chemokines CCR-7 which is expressed on SP thymocytes that past positive 

selection (Adachi et al., 2001). CCR-7 ligands CCL-19 and CCL-21 are expressed on 

medullary epithelial cells (Ueno et al., 2004).  

 

The main function of negative selection which commonly occurs in mTEC is to remove 

strongly self-reactive T-cells which have a high affinity/avidity for MHC-self-peptide 

complex (Kappler et al., 1987, Kisielow et al., 1988). This way negative selection prevents 

the peripheralization of most auto reactive antigen (Mathis et al., 2004). But Huseby et al. 

have shown in their study that this might not be the only function of negative selection. They 

studied the effect of a reduction of negative selection on TCR specificity, by examining the 



25 
 

proliferative response of mature immortalized T-cells resulting from various thymic 

developmental conditions. When negative selection, but not positive selection, was mediated 

by a single MHC-peptide complex, the resultant TCRs were partially highly cross-reactive for 

many different peptide-MHC complexes. This study demonstrated that, after TCR 

rearrangement, most T-cells display a very high affinity for MHC. They concluded that the 

negative selection is involved in focusing T-cell response on foreign peptides bound to self 

rather than foreign MHC alleles and that germline-encoded TCR segments are predisposed to 

react with a feature(s) shared among all MHC proteins (Hersby et al., 2005).  

A most basic requirement of negative selection is the thymic expression and presentation of 

self-antigen to developing thymocytes. The importance of thymic peripheral antigen 

expression is controlled by the gene AIRE, Anderson et al. demonstrated that AIRE-deficient 

mice had reduced expression of peripheral antigens in the mTECs (Anderson et al., 2002). 

Further studies have revealed that although mTECs provide the antigen, thymic dendritic cells 

were capable of capturing the antigen and presenting it to both MHC class I- and II-restricted 

thymocyte to induce negative selection (Gallegos et al., 2004). For the negatively selected 

thymocytes Bcl-2 family members Bim, Bax and Bak are implicated to be involved in the 

induction of apoptosis. Mice deficient of Bim or combined deficiency of Bax and Bak, can 

cripple negative selection (Bouillet et al., 2002, Rathmell et al., 2000).  

 

1.3.4 The final step: export from the thymus 

 

After positive and negative selection are completed the correctly selected T-cells exit from the 

medulla or cortico-medullary junction, but for emigration it is not a prerequisite for the T-

cells to be in medulla or cortico-medullary junction. In adult mice CCR-7 up-regulation after 

positive selection mediates thymocytes migration to the medulla. CCR-7 or CCR-7 ligand 

deficient mice generate SP thymocytes that do not traffic to the thymic medulla. Nonetheless, 

CCR-7 deficient thymocytes are able to emigrate directly from the cortex (Ueno et al., 2004). 

Treatment with FTY20, an inhibitor of thymocyte emigration, let to the accumulation of 

CCR-7 WT SPs in medullary perivascular spaces (Kurobe et al., 2006). Thus, the perivascular 

space in the medulla and cortico-medullary junction may not be the vessels used for 

thymocyte egress. Studies of egress from fetal thymic organ cultures suggested that CCR-7 

plays a role in the neonatal period (Ueno et al., 2002). Furthermore, disruption of stromal cell-

derived factor (SDF)-1/CXCR-4 interaction by genetic deficiency or pharmacologically with 

AMD3100 led to a decreased migration in fetal thymic organ culture. In vivo treatment with 
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AMD3100 in newborn mice led to accumulation in the thymus of CD4 SP and fewer CD4 T 

cells in spleen (Vianello et al., 2005). Emigration of CD8 SP was not affected, so CD4 and 

CD8 may differ in their thymic emigration requirements, at least in the neonatal period. 

Another interesting candidate which might play a role in thymocyte emigration is CD69. Feng 

et al., have shown that constitutively expression of CD69, an early activation marker, inhibit 

the export of mature SP from the thymus (Feng et al., 2002) similar to FoxJ1, a transcription 

factor, transgenic mice which also showed an impaired thymic exodus (Srivatsan et al., 2005). 

More recent studies have discovered that Krüppel-like factor (KLF) 2 as well is involved in 

thymocyte emigration. The thymus development of the KLF-2 deficient mice is normal but 

the mature thymocytes are not capable to leave the thymus (Carlson et al., 2006).       

 

1.4 GATA binding protein-2 (Gata-2) 

 

In this study, Gata-2 was identified as a potential candidate to be involved in early thymus 

development. Therefore, a short overview of the Gata-2 and their family members is given.  

1.4.1 Gata proteins 

 

Gata factors are a group of 

evolutionarily conserved 

transcriptional factors that play 

crucial roles in the development and 

differentiation of all eukaryotic 

organisms. All Gata members are 

capable to recognize and bind to a 

specific DNA sequence WGATAR 

(W = A or T and R = A or G). In 

vertebrates, the Gata family 

comprises six members (from Gata-1 to Gata-6) that can be separated into two subgroups 

based on spatial and temporal expression patterns. Gata-1,-2,-3 are expressed in 

hematopoietic cell lineages and are essential for erythroid and megakaryocyte differentiation, 

the proliferation of hematopoietic stem cells, and the development of T-cells (Weiss et al., 

1995). However, their expression is not limited to hematopoietic cells but is also present in 

brain, spinal cord and inner ear where they play a role in the development of these structures 

Figure 1.5 Structure and homology of the vertebrate Gata 

proteins. All Gata factors share a similar zinc finger binding 

domain. (The figure has been adopted from Viger et al., 

2009)  
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(George et al., 1997; Nardelli et al., 1999; Lillevali et al., 2004). In contrast, the Gata-4,-5,-6 

proteins are mainly found in tissues of mesodermal and endodermal origin such as the heart, 

gut and gonads (Molketin et al., 2000). Disruption of Gata-4 and Gata-6 genes in mice results 

in early embryo lethality due to defects in the heart tube formation and extra embryonic 

endoderm development (Kuo et al., 1997; Morrisey et al., 1998; Koutsourakis et al., 1999). 

Gata-5 deficiency is not lethal but the female exhibit genitourinary abnormalities (Molketin et 

al., 2000). The transcription factor Gata-1 is essential for erythroid differentiation as it 

activates all the known erythroid-specific genes upon binding to specific DNA-motifs 

(Shimizu et al., 2005; Crispino et al., 2005). Mice deficient of Gata-1 die from severe anemia 

(Pevny et al., 1991). In contrast to other Gata members, Gata-3 is the only gene that has been 

associated with the immune-system. Because Gata-3 deficient mice die between E11 and E12 

postcoitum due to severe abnormalities in the nervous system and in fetal liver hematopoiesis 

(Pandoffi et al., 1995) conditionally deficient mice of Gata-3 were generated and studied 

using the cre-lox system. When Gata-3 was deleted using G3-lckCre, a cre recombinase 

driven by the proximal lck promoter, Th-cells failed to differentiate into Th2 cells (Pai et al., 

2004). These studies showed that Gata-3 is sufficient to direct the differentiation of Th cells 

into the Th2 pathway. Furthermore, Gata-3 is necessary for optimal β-selection. The DN3 to 

DN4 transition is dependent on successful β-selection which requires successful 

rearrangement and expression of TCRβ chain to couple with pTCRα. In Gata-3 deficient DN3 

cells the TCRβ chain was significantly diminished (Pai et al., 2003). 

 

1.4.2 Gata-2 and Endothelin-1 

 

Gata-2 was cloned in 1990 (Yamamoto et al., 1990). Gata-2 is expressed at the stem and 

progenitor stage, including erythroid lineage, in hematopoiesis. In addition, Gata-2 transcripts 

are also present in the embryonic brain, endothelial cells, urogenital organs, liver, and cardiac 

muscle. Since the expression of Gata-2 is strongest in stem and progenitor level, Gata-2 

deficient embryos failed to survive beyond the stage of primitive hematopoiesis (Tsai et al., 

1995). The analysis in of Gata-2
+/-

 showed that Gata-2 haploinsufficiency leads to the reduced 

number of hematopoietic stem cells and increased percentage of apoptotic cells (Rodrigues et 

al., 2005).  But so far no functional evidence of Gata-2 in thymic epithelial cells has been 

implicated. 

In contrast to Gata-2, the importance of Endothelin-1 (Edn-1) in thymus development, 

however, has been described. So far three isoform of Edn molecules have been described 
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Edn-1, -2, -3 and two Endothelin receptors Edn-Ra and Edn-Rb. These receptors have 

different affinity for endogenous ligands (Inoue et al., 1989; Masaki et al., 2005). Edn-Ra has 

a high affinity for Edn-1 and Edn-2 while Edn-Rb has equal affinity to all three Edn isoforms 

(Arai et al., 1990; Sakurai et al., 1990; Ihara et al. 1992). Edn-1 is a 21 amino acid vasoactive 

peptide initially characterized as a product of endothelial cells of the vascular wall 

(Yanagisawa et al., 1988). Edn-1 is expressed in the epithelium and mesodermal core of the 

pharyngeal arches while its receptor Edn-Ra is expressed in neural crest-derived 

ectomesenchyme. In mice the expression of Edn-1 and Edn-Ra can already be detected at the 

developmental stage of E9.5. Defects in Edn-1/Edn-Ra pathway result in the malformation of 

pharyngeal-arch-derived craniofacial structures in mice (Clouthier et al., 1998; Kurihara et al., 

1995, 1994; Maemura et al., 1996). Edn-1 deficient mice die shortly before birth due to 

mechanical obstruction of the upper airways and inability to open the mouth because of poor 

musculature in the mandibular region. Edn-1 and Edn-Ra deficient mice have abnormalities in 

all organs developed from the pharyngeal arches whose origin is mainly neural-crest derived 

like the mandible, thyroid, tongue, middle and outer ear, temporal bones and the thymus 

which is hypoplastic and displaced (Kurihara et al., 1995; Clouthier et al., 1998; Sato et al., 

2008). These finding strongly suggest that Edn-1 and Edn-Ra may participate in the 

epithelial-mesenchymal interactions to promote pharyngeal pouch development.  

The Edn-1 promoter contains at least two essential protein binding motifs. One of these, 

TTATCT, is located at bp -136 to -131, upstream of the start site and is similar to other 

eukaryotic sequences known to interact with one or other Gata factors (Lee et al., 1991). The 

other motif, TGACTAA, is positioned at bp -108 to -102 and binds Jun and Fos family 

members (Lee et al., 1991). Co-transfection of endothelial cell line with Gata-2, c-Jun and c-

Fos expressing plasmids has then demonstrated to transactivate the Edn-1 promoter of a 

reporter plasmid (Kawana et al., 1995). These in vitro studies indicate that Gata-2 is capable 

to control the expression of Edn-1.  
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II. Thesis Objectives 
 

2.1 Analysis of the gene expression of the cells from the ventral aspect of the third 

pharyngeal pouch at E10.5 using the Affymetrix Gene Chip 

The genetic program which drives the thymic epithelial cell fate and the differentiation is still 

ill defined. Therefore, the aim of this project is to characterize the genetic program that 

determine thymic epithelial cell fate and differentiation and, in particular, new genes critically 

involved in this process. For this reason genetic expression profile of the cells from the 

ventral aspect of the 3
rd

 pp is analyzed using the Affymetrix Gene Chips at the time point of 

E10.5 of gestation. 

2.2 Verification of the Affymetrix Gene Chip data  

Although Gene Chips represent a very reliable and standardized technology significant noise 

which can arise from the unreliable hybridization reaction can falsify the results (Greco et al., 

2007). Therefore, the second objective of the thesis is to confirm the gene expression data 

using RT-PCR and in situ hybridization and to find an appropriate candidate for further 

detailed analysis. 

2.3 In vivo study by deleting a candidate gene specifically in the thymic epithelial cells 

and assess the genes function in thymic epithelial functionality and development 

Once a candidate gene is identified, it is important to study its function in the thymic 

epithelial cells. The most effective way is to abrogate the expression of the candidate gene 

specifically in the thymic epithelial cells using the cre-lox system. The third objective is to 

interrupt the expression of the candidate gene using the Foxn1 promoter driven cre which is 

specifically expressed in the TEC and to study the consequence of the aborted gene 

expression in the TEC development and function.  
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III. Material and Methods 

 

3.1 Materials 

 
3.1.1 Mice 

 

The C57BL6, B6;D2-Tg(Foxn1-Cre)8Ghr,designated Foxn1-Cre, and B6.Gata-2
loxP/loxP

 were 

housed in our animal facility in the accordance with Institutional and Cantonal Review 

Boards. B6.Gata-2
loxP/loxP

 mice were kindly provided by Dr. S.H. Orkin (Bosten, MA, USA). 

For developmental staging, the day of the virginal plug was designated as E0.5.  

 

3.1.2 Tissues 

 

Tissues were obtained from adult mice and embryos at distinct developmental stages. Mouse 

embryos at E10.5 and thymi of 3, 6, 13 and 25 weeks old mice were embedded in optimum 

cutting temperature (O.C.T.) (Tissue-Tec, Miles, Elkhart, IN) and dissected into 10μm for 

laser dissection and 6μm for hematoxylin and eosins staining (H&E) and 

immunohistochemistry analysis.  

 

 3.1.3 Cell lines 

 

The following cell lines were used as part of this thesis work: 

Cell line Origin Reference 

cTEC 1.2 Mouse thymic cortical epithelium (Kasai et al., 1996) 

cTEC 1.4 Mouse thymic cortical epithelium (Kasai et al., 1996) 

cTEC C9 Mouse thymic cortical epithelium (Kasai et al., 1996) 

mTEC 2.3 Mouse thymic medullary epithelium (Kasai et al., 1996) 

mTEC 3.10 Mouse thymic medullary epithelium (Kasai et al., 1996) 

mTEC C6 Mouse thymic medullary epithelium (Kasai et al., 1996) 

HEK293 Human kidney (Graham et al., 1977) 

 



31 
 

Cells were grown at 37°C and in 5% CO2 in Iscove`s Mod. Dulbecco`s Medium (IMDM) 

containing 2% fetal calf serum (FCS). To detach cell from vessels, cells were incubated for 2-

3 minutes in undiluted Trypsin solution (Invitrogen Cooperation, Basel, CH). 

 

3.1.4 Cell cultures, plastic ware and chemicals 

 

IMDM was supplemented with 2.2g NaHCO3 (Invitrogen Cooperation, Basel, CH) and 15mL 

of 200mM L-Glutamine (Invitrogen Cooperation, Basel, CH). Additional supplements were 

employed according to the specific requirements (see 3.1.4.1 and 3.1.4.2). Sterile disposable 

plastic ware for tissue culture was purchased from Falcon Labware (Oxnard, CA, USA). 

Chemicals were purchased from Fluka (Buchs, Switzerland), Sigma (St. Louise, MO, USA) 

and other commercial venders as indicated.  

 

Supplements for thymic epithelial cells 

 

For 1000mL of IMDM for TECs, 10mL of 1M Hepes, 1mL of Gentamycin (50mg/mL) and 

100 mL of FCS were added. 

 

Supplements for HEK 293 cells 

 

For 1000mL of media for HEK 293 cells, 20mL of FCS and 100µL of β-Mercaptoethanol 

(1M) were added.  

 

3.1.5 Statistical evaluation of data 

 

For the analysis of the obtained data from qRT-PCR and fluorescence activated cell sorting 

student`s t-test was applied whenever possible.  
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3.1.5 Antibodies 

 

Used in FACS:   

   

Antibody Clone Source 

Anti-CD44 PE IM7 eBioScience 

Anti-CD25 FITC PC61.5 eBioScience 

Anti-c-kit APC 2B8 eBioScience 

Anti-CD19 Biotin ID3 Generated in the lab 

Anti-CD4 Biotin GK1.5 eBioScience 

Anti-Gr1 Biotin RB6.8C5 eBioScience 

Anti-NK1.1 Biotin PK136 eBioScience 

Anti-CD3ε Biotin 145-2C11 eBioScience 

Anti-CD8 Biotin 53-67.2 eBioScience 

Anti-CD11c Biotin N418 eBioScience 

Anti-CD11b Biotin H1/70 eBioScience 

Anti-CD4 PE GK1.5 RM4-5 eBioScience 

Anti-CD24 FITC M1/69 eBioScience 

Anti-CD3  1452 CLM Generated in the lab 

Anti-CD3 Cy5 KT3 Generated in the lab 

Anti-CD8 PeCy7 53-67 BioLegend 

Anti-CD69 FITC H1.2F3 eBioScience 

Anti-CD62L FITC HEL-14 eBioScience 

Anti-MHCII FITC AF6-120.1 eBioScience 

Anti-G8.8 Bio G8.8 Generated in the lab 

Anti-CD45 APC 30-F11 eBioScience 

Anti-SA PE According to  

company not given 

eBioScience 

Anti-SA PeCy7 According to  

company not given 

eBioScience 
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Used in immunohistology:    

 

Antibody 

 

Clone 

 

Source 

Anti-CK5, rabbit   

Anti-CK8, goat   

Anti-ERTR7,    

   

Used in whole mount in-situ hybridization:   

   

Antibody  Source 

Anti-Digoxigenin Fab  Roche Biochemicals 

 

3.1.6 Standard buffers 

 

The buffers were prepared according to manufacturer’s manuals or have been purchased 

directly from the supplier. 

Name Composition 

FACS Buffer 2% BSA, 0.1% NaN3 in PBS 

Saline sodium citrate (SSC) (Eurobio)  150 mM NaCl, 15mM Na-Citrate 

Tris-acetate-EDTA (TAE) 40mM Tris/Acetate, pH 8.0, 1mM EDTA 

Tris-EDTA (TE) 10mM Tris/Cl, pH 8.0, 1mM EDTA 

Phosphate buffered saline 1x (PBS) 0.14M NaCl, 2.7mM KCl, 6.5mM 

Na2HPO4, 1.5mM KH2PO4, pH 7.3, 

autoclaved 

20% Paraformaldehyd (PFA) 2g electron microscopy-grade para-

formaldehyd in 10mL PBS and 10µL 10M 

NaOH. 

Maleic acid buffered tween (MABT) 100mM maleic acid, 150mM NaCl, 0.1% 

Tween 20, pH 7.5 

Phosphate buffered salin with tween (PBT) 0.1% Tween in PBS 
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3.2 Methods 

 

3.2.1 Laser capture micro dissection 

 

The preparation of the tissue for LCM was carried out as follows: 

- Embryos were immediately removed from the euthanized pregnant mice of E10.5 

days of gestation and rapidly frozen in O.C.T. (Tissue-Tec, Miles, Elhart, IN) 

using a plastic support submerged in a mixture of dry ice (stored at -80°C until 

use) and a few mL of isopentyl (Fluka, Buchs, CH). 

- For sectioning by the cryotome (Roche, Basel, CH) the embedded tissue was 

placed onto the support block at -20°C with some O.C.T.. Once O.C.T. was 

solidified, each edge of the block was cut with a razor blade to form a small 

rectangular shape. 

- The 10µm thick sections were mounted on glass slides covered with a 1mm thin 

polyethylene foil (PALM Microlaser Technologies, Germany) which were treated 

first with RNaseZap (Ambion, CA, USA) and then UV radiated in a cell culture 

sterile hood for 30-60 min.  

- The sections were dried in air for 2 minutes and ethanol (Fluka, Buchs, CH) fixed 

for 45s.  

- The sections were fixed and stained for 1 min in a solution in which cresylviolette 

was dissolved in 100% ethanol and washed for few seconds in 70% ethanol and 

dehydrate in 100% EtOH for 1 min.  

- After a short drying on air (couple seconds) the sections were kept in -80°C until 

they were needed. 

Only DEPC-treated water was used to prepare the different ethanol containing solutions and 

all working space was cleaned with RNaseZap to avoid contamination with RNases.  

- The tissue of interest was micro dissected using the laser of the microscope 

according to the manufacturer’s recommendations 

- The micro dissected tissue was catapulted by slight increasing the energy (Δ5-10 

U) of the laser.  

- All micro dissected tissues were catapulted in to the PALM AdhesiveCaps (PALM 

Microlaser Technologies, Germany).  
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- At the end of each LCM session which last at maximum one hour the cap was 

closed and resuspended immediately in cell lysis buffer or Trizol.  

 

3.2.2 Total RNA extraction for micro dissected tissue 

 

For the RNA isolation the RNAeasy Micro Kit (Qiagen AG, Hombrechtikon, Switzerland) 

was used. In short: 

- 350µL of cell lysis buffer were added to the laser captured cells and vortexed for 

20 sec. 

- 350µL of 80% ethanol were added and applied to the columns provided 

- The columns were spun at 14000g for 20 sec. This step was repeated one more 

time using the flow through 

- DNase was added according to the manufacturer’s recommendation 

- The columns were washed by adding 750µL of RLT buffer and spun at 14000g for 

20 sec. 

- 500µL of RPE buffer were added and spun at 14000g for 20 sec. 

- 750µL 80% ethanol were added and spun at 14000g for 2 min. 

- The columns were dried by spinning it at 14000g for 5 min. 

- 14µL of RNase free water were added and spun at 14000g for 1 min. This step was 

repeated using the flow through 

 

3.2.3 Two round Amplification of RNA and synthesis of cRNA 

 

- Day1: Total RNA was resuspended in 1µL RNase free water and 1µL T7-oligo 

(5µM) were thoroughly mixed in 0.5mL tube and incubated at 70°C for 6 min and 

cooled for 2 min on ice and spun down at 12.000g for 20 sec. 

- 3µL of RT-Premix 1 were added to the RNA and mixed thoroughly and spun full 

speed at 4°C for 10 sec. 

- The samples were than incubated at 42°C for 1 h and after that incubated at 72°C 

for 10 min.  

- SS Premix 1 was prepared and 32.5µL (final volume 37.5µL) of the SS Premix 1 

were added to each sample tube and mixed thoroughly and spun for 10 sec at 4°C.  
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- The samples were then incubated at 16°C for 2 h. After that, 1µL of DNA 

polymerase (5U/µL) was added to each sample tube, mixed and incubated for 10 

min at 16°C.  

- The samples were then transferred into a fresh 1.5mL tube and 104µL of RNase 

free water were added. 

- In order to precipitate the cDNA 2µL of glycogen (5mg/mL) than 48µL of 7.5 M 

Ammonium-acetate and finally 480µL of pre-cooled (-20°C) absolute ethanol 

were added and mixed thoroughly. 

- The cDNA was spun at 12.000g at 4°C for 20 min and the supernatant was 

removed. 

- The cDNA was washed with 800µL pre-cooled (-20°C) 70% ethanol and 

centrifuged at 12.000g for 5 min. 

- Supernatant was removed and the pellet was dried for 5-10 min and the pellet was 

dissolved in 2µL RNase-free water. 

- Day2: 7µL of IVT Premix 1 were added to each sample (final volume 9µL), 

mixed, and incubated at 40°C for 5 min. 1µL of enzyme mix was added and the 

samples were placed into a pre-warmed 37°C box and left at 37°C for 6 h. Every 

hour the sample tubes were mixed and spun down at 12.000g for few seconds and 

then placed back into 37°C. 

- 90µL RNase-free water were added to the cRNA product, mixed and spun. 

- To purify the cRNA 350µL of RLT buffer (Qiagen, AG, Hombrechtikon, 

Switzerland) were added and mixed with 250µL 100% ethanol. 

- The samples were loaded onto RNeasy mini column (Qiagen, AG, 

Hombrechtikon, Switzerland) and spun for 20 sec at 12.000g at 4°C. In order to 

increase the yield the flow through was reloaded and this step was repeated. 

- The columns were washed with 500µL of RPE buffer (Qiagen, AG, 

Hombrechtikon, Switzerland) and spun for 20 sec at 12.000g at 4°C. The flow 

through was discarded. This step was repeated one more time. 

- The columns were dried by spinning them for 1 min 12.000g at 4°C and after that 

column were transferred to a new 1.5mL tube. 

- 30µL of RNase free water were added onto the center of the column, incubated for 

3 min at room temperature and spun 1 min 12.000g at 20°C. The column was 

reloaded with 30µL of RNase free water and re-eluted.  
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- The concentration of RNA was calculated from the OD measurement at 260nm 

wave length.  

260/280 ratio was used to determine the quality of the cRNA.  

- The purified cRNA was transferred into a new 0.5mL tube and the total volume 

was reduced using speed-vacuum to a final volume of 4µL. 

- Day 3: 1µL of random primers (0.2µg/µL) was added to the cRNA and mixed and 

incubated at 70°C for 10 min and incubated on ice for 2 min and spun for 20 sec at 

12.000g at 4°C. 

- 5µL of RT Premix 2 were added (final volume 10µL) and mixed gently and 

incubated first at 25°C for 10 min and then at 42°C for 1 hour.  

- In order to remove the RNA template, 1µL of RNase H (2U/µL) was added and 

incubated at 37°C for 20 min and finally incubated at 95°C for 5 min to inactivate 

the RNaseH. The samples were cooled down immediately on ice for 2 min and 

spun for 20 sec at 12.000g at 4°C. 

- 2µL of T7-Oligo (5µM) primer were added to the samples and incubated at 70°C 

for 6 min. The samples were cooled on ice for 2 min and spun for 20 sec at 

12.000g at 4°C. 

- After that, 62µL of SS Premix 2 were added to each sample (final volume 75µL), 

mixed and incubated at 16°C for 2 h.  

- 2µL of T4 DNA polymerase 5U/µL (Invitrogen, USA) were added to each tube 

and incubated for 10 min at 16°C. 

- The reaction was transferred to 1.5mL tube and 15.7µL of RNase-free were added.  

- To precipitate the cDNA 2µL of glycogen (5mg/mL) then 48µL of 7.5 M 

Ammonium-acetate and finally 480µL of pre-cooled (-20°C) absolute ethanol 

were mixed together. 

- The cDNA was spun at 12.000g at 4°C for 20 min and the supernatant was 

removed. 

- The cDNA was washed with 800µL pre-cooled (-20°C) 70% ethanol and 

centrifuged at 12.000g for 5 min. 

- Supernatant was removed and the pellet was dried for 5-10 min and the pellet was 

dissolved in 20µL RNase-free water by shaking for 5 min at 40°C. The cDNA was 

spun at 12.000 g at 4°C. 

- 20µL of IVT Premix 2 (see below) were added to a final volume 40µL, mixed and 

incubated for 16 hours at 37°C.  
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- Day 4: 60µL of RNase-free water were added to the samples and mixed.  

- The samples were loaded onto RNeasy mini column (Qiagen, AG, 

Hombrechtikon, Switzerland) and spun for 20 sec at 12.000g at 4°C. In order to 

increase the yield the flow through was reloaded and this step was repeated. 

- The columns were washed by applying 500µL of RPE buffer (Qiagen, AG, 

Hombrechtikon, Switzerland) and spun for 20 sec at 12.000g at 4°C. The flow 

through was discarded. This step was repeated one more time. 

- The columns were dried by spinning it for 1 min 12.000g at 4°C and after that 

columns were transferred to a new 1.5mL tube. 

- 50µL of RNase free water were added into the center of the column, incubated for 

3 min at room temperature and spun for 1 min 12.000g at 20°C. The columns were 

reloaded with 50µL and re-eluted.  

- The OD at 260nm wave length was measured for the calculation of concentration 

and the samples were stored at -80°C until needed.  

 

3.2.3 Quantitative PCR (real time PCR) 
 

The primers for qRT-PCR were designed so that the amplicon were relatively short in size (< 

250bp) to ensure a maximum amplification. Primers pairs were ordered from Sigma-Aldrich, 

USA and Microsynth, Switzerland. The primers were designed using FastPCR 4.0. The 

amplified products were loaded on a 1% agarose/ethidium bromide gel for verification of the 

amplicon size.  

- Depending on the concentration of the cDNA 1-4 µL of cDNA were added, 1µL 

(10µM) of the forward primer, 1 µL (10µM) of reverse primer and 6µL of 2x 

SybrGreen master mix (Qiagen AG, Hombrechtikon, Switzerland) and water were 

mixed to the final volume of 12µL. The sequence of the respective used primers can 

be found in Appendix 1.     

The real-time PCR was performed using Rotor-Gen (Corbett Research, Australia) and the RT-

PCR data analysis was performed using Rotor-Gen 6 (Corbett Research, Australia).     

Two round amplification of the total RNA: 

PCR conditions: The reactions were incubated for 10 min at 95°C and subsequently for 15 sec 

at 95°C and 1 min at 60°C, for the denaturation, the annealing and the elongation of 

amplificons, respectively. These subsequent steps were repeated 40 times.   
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Analysis: 

The baseline of the amplification plot was selected from cycle 6 to cycle 15 (default settings). 

In case the measured fluorescence was detected earlier than cycle 15, the baseline was 

adjusted appropriately according the manufacturer’s instructions as well as the threshold for 

the Ct values. The specificity of the amplicons was verified by loading the samples on a 1% 

agarose/ethidium bromide gel. Only samples with the proper amplicon size were considered 

for the calculation of the Ct values.  

The ΔΔCt-value was calculated as following: 

 ΔΔCt = ΔCt
1
 (RT-data from condition 1) - ΔCt

2
 (RT-data from condition 2) where ΔCt

 
= Ct 

gene of interest – Ct housekeeping gene e.g. GAPDH  

The fold change in RNA expression levels was calculated as following: 

Fold change = 2
ΔΔCt

   

 

 

3.2.4 Total RNA extraction and RT-PCR for non-micro dissected tissues 

 

Isolation of total RNA: 

 

- The extracted tissue was homogenized in 1mL Trizol reagent per approx. 100 mg 

tissue using a Polytron homogenizer for 20-30 sec. If the total RNA was isolated 

from cell cultures or from purified thymocytes or from TECs, 1mL of Trizol 

reagent was resuspended with 10
4
-10

6
 cells. In case of less than 10

4
 cells, the 

RNAeasy Micro Kit was used. 100µL of BCP were added to the mixture and 

mixed for 30 sec. 

- Next, the mixture was incubated at room temperature for 5 min, centrifuged at 

12,000g for 15 min at 4°C in a micro-centrifuge. The aqueous phase was 

transferred into a new 1.5mL tube and 500µL of isopropanol (Sigma, Buchs, 

Switzerland) was added. The mixture was then left for 15 min at the room 

temperature for precipitation of the RNA. 

- The RNA was then centrifuged at 12,000g for 15 min at 4°C. The supernatant was 

removed, the RNA pellet was washed afterwards with 75% ethanol (Fluka, Buchs, 

CH) and centrifuged at 12,000g for 5 min. 
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- The supernatant was removed and the pellet was allowed to dry for 5 min under  in 

a RNase free environment. The RNA pellet was then resuspended in 20-50µL of 

RNase free water. 

- The RNA quality was confirmed by gel electrophoresis. For RNA amount smaller 

than 50ng Agilent Bio Chip (Agilent Technology, USA) was used for the quality 

assurance. All samples considered were found to have intact RNA. The samples 

were then stored at -80°C until they were further processed. 

 

cDNA synthesis: 

As a negative control, a test reaction was included whereby the reverse transcriptase was 

omitted on purpose.  

- For the preparation of the reverse transcription, 9µL of total RNA were added to a 

0.5mL micro-tube containing the following master mix solution (per 9µL: 5µL of 

5x First strand buffer (Invitrogen, Basel, CH), 1µL DTT 0.1M (Invitrogen, Basel, 

CH), 1µL dNTP 10mM, 1µL DNAseI 10U/µL (Roche, Basel, CH), SuperaseIn 

20U/µL (Ambion, Huntingdon, UK) and RNase free water. The final volume after 

adding all the reagents for cDNA synthesis was 25µL. The total RNA never 

exceeded 5µg of RNA to ensure a maximum efficiency of synthesis. The mixture 

was then gently mixed and incubated in a thermal cycler for 30 min at 37°C for 

digesting the genomic DNA contaminants and was incubated for 10 min at 65°C in 

order to inactivate the DNase. 

- 1µL of a mixture of oligo dT (500ng/µL) and random hexamers N6 (500ng/ µL) 

was added.  

- Next, the samples were incubated in a thermal cycler for 5 min at 70°C to allow 

the secondary structure of the RNA to denature. The samples were then chilled on 

ice for 2 min to avoid the reformation of the secondary structure of the RNA. 

- 1µL of Superscript III (200U/µL) (Invitrogen, Basel, Switzerland) was added to 

each sample. After having gently mixed the sample and briefly spun down the 

mixture, the samples were incubated in a thermal cycler for 1 h at 50°C.The cDNA 

was stored at -20°C until the samples were further processed. 
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Conventional PCR amplification: 

As a positive control, a test reaction was included whereby the used cDNA originated from a 

tissue known to express the examined gene. 

- Each lyophilized oligonucleotide (Sigma, USA and Microsynth, Switzerland) was 

stored in TE-buffer with a final concentration of 100µM and aliquoted in samples 

of 10µM in TE-buffer. 

- Up to 10ng of cDNA were added to a master mix consisting of 1µL forward and 

1µL reverse primer, 1µL dNTP 10mM, 0.1µL Taq polymerase 2.5U/µL (Sigma, 

Switzerland), 4µL 10x PCR buffer (Invitrogen, USA) and filled up with water to a 

final volume of 40µL in a 96 well-plate. 

- The plate was then transferred to a thermocycler using the following PCR 

conditions: 2 min at 95°C and subsequently for 30 sec at 94°C and then 40 sec at 

55°C - 65°C (depending on the optimal annealing temperature of the primers) 

finally for elongation 30 sec – 60 sec at 68°C (depending on the amplicon size). 

These subsequent steps were repeated 34 times. 

Analysis: 

For the analysis of the amplicon, 15µL of each PCR reaction were examined by gel 

electrophoresis using a 1% agarose/ethidium bromide gel (0.25µg/mL). The GelDoc2000 

system (Biorad, Switzerland) was used to verify the specificity of amplicon. 

 

3.2.5 Whole mount in-situ hybridization 

 

Preparation of RNA probe: 

- Specific primers were used to amplify the area from a gene of interest using 

standard PCR-protocol and cloned into a pCR-Topo 2.1 vector (Invitrogen, USA). 

- The products of the PCR reaction were run on a 1% agarose/ethidium bromide gel 

(0.25µg/mL). The proper PCR products were cut out from agarose gel and purified 

using the Gel Extraction Kit (Qiagen, Germany) according to manufacturer`s 

instructions. 

- SP6 and T7 RNA polymerase, 20U/µL (Invitrogen, USA) were used to generate 

sense and antisense probes. For this purpose 1µg of DNA template was added to 

4µL of 5x transcription buffer (Invitrogen, USA) and 2µL Dig-labeled NTP 
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mixture (Roche, Switzerland), 1µL RNaseIn (Ambion, USA), 2µL RNA 

polymerase (Invitrogen, USA) were mixed and RNase free water was added to a 

final volume of 20µL.  

- The mixture was incubated at 37°C for 2 hours. 

- After that RNA was precipitated by adding 100µL of isopropanol and 1µL 

glycogen (Ambion, USA) and spun at 12.000 g for 15 min, washed once with 70% 

ethanol. The pellet was dried and dissolved in 50µL of RNase free water.  

- In order to estimate the amount of RNA and confirm the size of the product 2µL of 

the samples were run on a 1% agarose/ethidium bromide gel.  

 

As negative control sense probe was used. DEPC water was used to prepare all the solutions.  

- E10.5 mouse embryos were taken out from pregnant mice and kept on ice-cold 

PBS. 

- A 1mL pipette tip, with the end cut off, was used to transfer the embryos in small 

volume of PBS to a 15mL conical tube of ice-cold 4% para-formaldehyd in PBS 

made fresh from a 20% PBS stock solution. The embryos were gently inverted 

several times, then replaced with fresh 4% para-formaldehyd solution and 

incubated for 2 h at 4°C.  

- The embryos were washed three times 5 min in ice cold PBT and then washed 

three times in 100% methanol and stored in methanol until further processed. 

- Day1: the embryos were bleached in a solution containing 30% H2O2:methanol 

(Sigma-Aldrich, USA) 1:5 for 2 h and then rinsed with methanol three times. 

- The embryos were rehydrated through 75, 50, 25% methanol/PBT, spending 20 

min in each methanol concentration. After that the embryos were washed three 

times 5 min in PBT for 20 min each. 

- The embryos were transferred to 2mL tubes using a cut pipette tip. In order to 

allow efficient washing, the maximum number of 2 embryos processed in a single 

2mL tube during procedure.  

- The embryos were treated then with 10µg/mL proteinase K (Merck, Germany) in 

PBT and rinsed briefly with PBT. Since the embryos were very fragile the solution 

were added very gently. Then they were post fixed for 20 min in 4% para-

formaldehyd, 0.1% glutaraldehyde (St. Louise, MO, USA) in PBT. 

- The embryos were rinsed and washed four times 5 min with PBT and than rinsed 

with 2mL hybridization buffer (see below) made fresh from the stock.  
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- After the embryos were settled in the tube the hybridization buffer was replaced 

with fresh 2mL hybridization buffer and then replaced again with 2mL 

hybridization buffer and incubated at 65°C, three times, for 1 h each. 

- Finally 2mL pre-warmed hybridization buffer with approximately 1µg/mL of 

digoxigenin-labeled RNA probe was added and incubated at 65°C over night. 

- Day2: The solutions were removed and stored at -20°C for reuse. The embryos 

were rinsed twice and then washed 30 min with pre-warmed hybridization buffer 

at 65°C. 

- After that the embryos were rinsed twice and washed 30 min and 1 h with pre-

warmed washing solution at 65°C and washed for 30 min with 1:1 washing 

solution/MABT at room temperature.  

- The embryos were washed for four time 30 min with MABT at room temperature 

and then replaced with MABT + 2% Boehringer Blocking Reagent (Boehringer 

Ingelheim, Germany) for 1 h. 

- After that blocking solution was added to the embryos for 1-2 h and incubated at 

room temperature. 

- The blocking solution were than replaced by 1mL of 1/5000 diluted anti-Dig Fab 

(Roche, Switzerland) in Blocking solution and incubated at 4°C over night.  

- Day 3: The embryos were first rinsed, than four times washed for 15 min, than 30 

min and finally twice for 1 h each. 

- The embryos were incubated in 1mL BM Purple AP Substrate (Roche, 

Switzerland) until clear signal was observed.   

 

Hybridization Buffer 

Stock concentration  Final concentration  Volume 

Formamide, 100% 

20xSCC, pH 5, with citric acid 

EDTA, 0.5 M, pH 8 

Yeast ribonucleic acid core particle, 20mg/mL 

Tween 20, 10% 

50% 

1.3x 

5 mM 

50µg/mL 

0.2% 

25mL 

3.25mL 

0.5mL 

125µL 

1mL 
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CHAPS, 10% 

Heparin, 50mg/mL 

H2O 

0.5% 

100µg/mL 

2.5mL 

100µL 

17.5mL 

Total  50mL 

 

3.2.6 Enrichment of TEC population using Percol 

 

- The thymus dissected from the mice and placed in ice cold 2% FCS containing 

IMDM. 

- The fat residues were removed and small holes were pinched into the lobes 

- The lobes were placed into 1mL HBSS containing Collagenase D (final 

concentration of 1mg/mL) and DNase (final concentration 20µg/mL) in a 5mL 

tube and incubated for 5 min at 37°C water bath.  

- The lobes were pipetted up and down about 20-30 times with a 1mL tip. After 5 

min incubation in 37°C water bath the supernatant were transferred into 5mL PBS 

containing 2% FCS.  

- Fresh HBSS containing Collagenase D (final concentration of 1mg/mL) and 

DNase (final concentration 20µg/mL) were added and the steps were repeated 3-5 

times. 

- For the last digestion 5µg/mL of DNase were added. 

- Cells were washed with PBS 2% FCS, resuspended in 5mL PBS 2% FCS. EDTA 

was added to a final concentration of 10mM and the cells were incubated for 5 min 

at 37°C. After that cells were washed with PBS 2% FCS and resuspended in 2mL 

PBS 2% FCS, filtered through a nylon mesh (40µm).  

- Cells were counted. 

- 3mL of Percoll (Amersham, USA) with a density of 1.115 kg/m
3
 were added to the 

cells and mixed well in a tube which was coated with  PBS 2% FCS. After that, 

3ml of Percoll (Amersham, USA) with a density of 1.063 kg/m
3
 were carefully 

pipetted and overlaid with 2mL PBS.  

- Cells were than centrifuged for 30 min at 4°C at 1220g without using the brakes of 

the centrifuge. 
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- Cells were harvested from the upper layer with a Pasteur-pipette (TEC-fraction) 

into a fresh tube with PBS 2% FCS.  

- The cells were than washed again with PBS 2% FCS twice and finally 

resuspended in 1mL to 2mL PBS 2% FCS, cells were count and 2-3x10
6
 cells 

were used for staining. 

 

3.2.7 Staining protocol for flow cytometry 

 

The antibodies for the staining were diluted to manufacturer`s recommendations.  

- To obtain thymocytes the dissected thymus were placed in 1mL of 2% FCS 

containing IMDM medium and mashed through a nylon mesh (40µm). Thus 

obtained cell suspension was harvested and resuspended and washed once in PBS 

2% FCS buffer and finally resuspended in 1 – 2mL PBS 2%FCS buffer. 

- The cells were filtered through a nylon mesh (40µm) and cells were counted.  

- For the staining of single positive and double positive cells population 1x10
6
 cells 

and for the double negative population 2x10
6
 cells were used and distributed into a 

96 well round bottom plates. 

- Cells were spun down and resuspended well in 100µL of antibody solution/1x10
6
 

cells and incubated for 30-45 min on ice in the dark.  

- After that cells were washed twice and harvested for flow cytometry. 

 

3.2.8 Cell proliferation assays  

 

The cells used for the cell proliferation assays were obtained from the lymph nodes.  

For all assays un-stimulated cells with anti-CD3 were used.  

 

H3-Thymidine assay:  

 

- For the thymidine labeling of the cells 0.1x10
6
 cells / well were seeded into a 96 

well plate. 

- The cells were than stimulated with anti-CD3 with the following concentrations: 

0.1µg/mL, 2.5µg/mL, 5µg/mL and 10µg/mL.  

- The supernatant of the cells were discarded after 48 hours and exchanged with 

100µL containing 1µCurie of H3-Thymidine.   
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- The cells were than harvested and counted using the cell harvester 

 

CFSE assay: 

 

- For the CFSE labeling of the cells 10-20 x 10
6
 cells were resuspended with 

1mL PBS and 1mL PBS containing 10µM of CFSE. 

- The cells were quenched using equal volume of FCS. 

- 1x10
6
 cells were than distributed / well into a 24 well plate. 

- The cells were stimulated with 4µg/mL of anti-CD3 antibody for 48 hours.  

- After that the cells were harvested and cells were stained for CD4 and CD8 as 

described previously.  
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IV. Results 

4.1 Introduction 

 

The thymus and the parathyroid glands develop in mice from the ventral and the dorsal aspect 

of the 3
rd

 pp. To identify the molecular events that determine the early thymus development 

and thymus fate commitment, the gene expression profile was compared between the ventral 

and the dorsal circumference of 3
rd

 pp lining in mouse E 10.5 embryos. Laser capture micro 

dissection (LCM) was used to isolate endodermal cells of these two distinct regions. Total 

RNA was extracted, the quality of each sample was verified using the Agilent Chip analysis, 

the nucleic acids were amplified using the standard unbiased approach and the cRNA was 

finally analyzed using gene chips.  

Because only minute amounts of RNA could be isolated from the cell of the ventral-anterior 

aspect of 3
rd

 pp (100-1000 pg) several technical issues needed to be addressed: 

1. total amount of 10ng total RNA needs to be collected 

2. the isolated RNA needs to be of a sufficiently high quality for a two round 

amplification 

 

Therefore, a new methodological protocol for RNA isolation from small amount of cells 

(1000-2000 cells), captured from LCM, had to be established. This included the development 

of methods for staining of tissue sections for RNA isolation to be used for LCM and to find a 

ideal method for the RNA isolation that ensures a high RNA quality in pico to nano gram 

range. The Agilent Bioanalyzer was used for the quality confirmation of the isolated RNA. 

After hybridization of cRNA to the gene chip in the core facility of Biocenter, Basel, the data 

were normalized and thus obtained candidate genes from the data analysis were selected 

according to the following criteria: 

1. Genes that were significantly higher expressed in the ventral aspect of the 3
rd

 pp compared 

to the dorsal aspect of 3
rd

 pp was considered for further analysis because these genes might be 

up regulated for the early thymus development and/or TEC fate commitment. 2. Only genes 

that were at least 2-fold higher expressed in the ventral aspect of the 3
rd

 pp compared to the 

dorsal aspect of the 3
rd

 pp were considered to be significant and studied in more details. 

Candidate genes fulfilling these criteria were verified first by quantitative PCR (qPCR) using 

cDNA synthesized from independent RNA samples of the ventral and dorsal 3
rd

 pp, 

respectively. In addition, the expression patterns of selected candidate genes were further 
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analyzed by whole mount in situ hybridization. The genes to be analyzed displayed an 

increased expression of at least 2 fold difference when analyzed by gene arrays and qRT-

PCR. Among 69 genes that were obtained after the evaluation of the gene chip data, Gata 

binding protein 2 (Gata-2) was chosen for further analysis. 

 

Using an in vivo model, the Gata-2 gene was conditionally deleted by using Foxn1-Cre mice, 

a cre that is expressed in the thymic epithelial cells. In this study, thymus cellular architecture, 

thymus cellularity and thymus function of 3, 6, 13 and 25 weeks were analyzed. Furthermore, 

qRT-PCR was performed on cDNA synthesized from sorted thymic epithelial cells at the time 

points of 3, 6 and 13 weeks and the expression of AP-1 complex, CXCL-12, CCL-25, IL-7, c-

kit L, Edn-1, ETA and ETB were quantified. The following sections of this thesis will describe 

these results in detail.  

4.2 Optimization of RNA purification from endodermal epithelial cells isolated by LCM 

 

4.2.1 Isolation of RNA from LCM captured endodermal epithelial cells 

 

Since 10µg of RNA are required and since not sufficient amount of RNA is to be recovered 

from cells by LCM, two RNA amplification steps had to be introduced. To assure that the 

RNA quality meets the necessary conditions the staining dye was changed to cresylviolette 

because this dye can be dissolved in 100% EtOH, thus reducing the RNAse activity and 

offering the possibility to fix the section at the same time as the sections were stained. 

Furthermore, the time for drying the sections was also reduced to two minutes, before they 

were stored in -80°C until they were needed. Before the new protocol was established in our 

laboratory, the cells were stained with toluidin blue, dried for 1-2 hours and then the cells 

were dissected with LCM for several hours and RNA was isolated using the Trizol reagents. 

This method led to a significant degradation of the RNA. Therefore, several methods were 

tested for the RNA isolation (RNA isolation using Trizol, RNA isolation Kit from Palm, total 

RNA isolation Kit from Agilent, RNA-Micro Kit from Ambion and RNeasy Micro Kit and 

Mini Kit from Qiagen). The optimal quality of RNA was obtained from the Qiagen RNeasy 

Micro Kit which also reduced the preparation time to only 30 minutes. These changes 

improved the quality of the RNA significantly in comparison to the protocols that were used 

previous in our laboratory (Fig 4.1). Taken together these results reveal that the new 

established protocol is better suited to obtain high quality of RNA from LCM dissected cells. 
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4.2.2 Expression of Foxn1 in the 3
rd

 pp 

 

To verify the feasibility of LCM on the 3
rd

 pp endothelium and to test the correctness of 

dorsal and ventral distinction, we analyzed the expression of the genes Gcm2 and Foxn1 

using qRT-PCR. Using whole mount in situ hybridization Foxn1 mRNA can be detected as 

early as E11.25 in the anterior part of the ventral circumference of the 3
rd

 pp (Gordon et al., 

2001; Manley et al., 2004). Gcm2, on the other hand, is expressed at E10.5 and E11.5 

throughout the dorsal aspect of the 3
rd

 pp. Cells from the posterior and anterior part of the 

ventral aspect of the 3
rd

 pp of E10.5 embryos were therefore dissected, and cDNA was 

synthesized from the RNA and qRT-PCR was performed. Foxn1 mRNA was already 

detectable by qRT-PCR at E10.5 in the anterior part of the ventral aspect of the 3
rd

 pp whereas 

Gcm2 was expressed at the same time point only in the dorsal aspect of the 3
rd

 pp (Fig.4.2). 

These results were in agreement with the results of Balciunaite et al. (Balciunaite et al., 2002) 

Fig. 4.1: Agilent Biochip Data analysis. Ribosomal 18S and 28S are outlined A) Profile of a RNA 

sample with very high quality. B) Nucleotide marker, which runs with every biochip to confirm the 

size of the rRNA. C) Isolation of RNA from LCM dissected cells (1000-2000) of the ventral aspect of 

3
rd

 pp using the previously established protocol using toluidin blue staining and Trizol D) Isolation of 

cells using the new protocol and cresylviolette staining.  
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who have shown that Gcm2 expression is limited in the dorsal aspect of the 3
rd

 pp and Foxn1 

expression in the ventral aspect of 3
rd

 pp. These results indicate that the commitment to a 

thymic epithelial cell fate is already set at E10.5 and that the earliest signs for a commitment 

start in the anterior part of the ventral circumference of the 3
rd

 pp. In consequence of these 

findings, cells only of the anterior part of the ventral aspect and of the dorsal circumference of 

the 3
rd

 pp were used for comparative analysis of gene expression.    

 

 

 

 

4.2.3 RNA amplification for microarray analysis 

 

Substantial amounts of cRNA (10µg cRNA per Chip) are required for gene expression studies 

using gene chips. Since the numbers of endodermal epithelial involved in the early thymic 

development is limited, a reliable amplification method for small amount of RNA had to be 

established. A linear amplification protocol was therefore employed that consists of two 

cycles of cDNA synthesis each followed by in vitro transcription (Eberwine et al. 1992). 

These methods were further optimized by the Biocenter Core facility and adopted for the 

Fig. 4.2: Isolation of RNA from 3
rd

 pp at E10.5 developmental. A) The ventral aspect of 3rd pp is 

divided into anterior and posterior part. B) qRT-PCR of Foxn1 gene from the cells of anterior and 

posterior part of the ventral aspect of 3rd pp. Foxn1 was not detectable in the anterior aspect of 3rd pp 

(n=3). C) qRT-PCR for the genes Gcm2 and Foxn1 from the cells of the dorsal and ventral aspect of 

3rd pp (n=3).  
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synthesis and amplification of cRNA. After two rounds amplification steps of the RNA the 

average size of the RNA length was reduced to 500 nucleotides after the first round of 

amplification, and to 200 nucleotides after the second amplification step (Fig. 4.3). 

 

3.3 Identification of genes associated with thymic epithelial cell fate commitment  

 

4.3.1 Analysis of genes differentially expressed at E10.5 between the dorsal and ventral 

aspect of the 3
rd

 pp 

 

The gene expression profile was compared at E10.5 between 

cells isolated from the dorsal aspect of the 3
rd

 pp and the anterior 

part of the ventral aspect of 3
rd

 pp. To perform statistically 

relevant data sets, three independent samples of each group were 

generated and analyzed using Affymetrix Mouse Gene Chip 430 

2.0. This array contains over 39000 transcripts. The signal 

intensity measured on the gene chips was normalized using the 

D-chip program (Li et al., 2003).  

Given these conditions, approximately half of the gene transcripts represented on the 

Affymetrix gene chip provided a present call meaning that ca. 

19500 genes were expressed in the cells which were analyzed.  

To verify the differences in the expression of Foxn1 and Gcm2 

as observed by qRT-PCR the gene chip data were analyzed. As 

demonstrated in Fig. 4.5 Gcm2 transcripts were only detected in 

the dorsal aspect of the 3
rd

 pp whereas Foxn1 specific mRNA 

Fig. 4.4: Differential gene 

expression: Sixty-nine genes 

were differentially up-regulated 

in the ventral aspect of 3rd pp 

and 126 genes were up-

regulated in the dorsal aspect of 

the 3rd pp.  

 

Fig. 4.3: RNA amplification. Only one sample of cell from dorsal aspect of 3rd pp (D) and one 

sample of the anterior part of the ventral aspect of 3rd pp (V) are shown. These two samples are 

representative of the six samples, 3 from ventral and 3 from the dorsal aspect of 3
rd

 pp. 
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was only detected in the anterior-ventral aspect of the 3
rd

 pp. The intensity values for Foxn1 

were lower when compared to those for Gcm2, a finding which is in keeping with previous 

data (Gordon et al., 2001). 

The intensity level of the fluorescence signals of each gene obtained from the gene chips 

corresponds with the expression level. To narrow the potential candidate genes of interest 

down the threshold of expressional level in the anterior-ventral aspect of the 3
rd

 pp had to be 

at least twice as high as in the dorsal aspect of the 3
rd

 pp or the other way around. Sixty-nine 

genes were revealed to be expressed at least 2-fold higher in the anterior- ventral aspect of the 

3
rd

 pp while 126 genes were up-regulated in the dorsal aspect of the 3
rd

 pp. Among the known 

genes to be expressed more prominently in epithelia commitment to a thymic fate, Gata-2 was 

most differential. 

Eleven genes with the largest differential expression values were further assessed. First, qRT-

PCR was used to confirm the differences in expression detected by microarray analysis 

because genes identified by DNA arrays with more than two-fold difference in expression 

cannot be eliminated as false nor be accepted as true without validation using qRT-PCR 

(Rajeevan et al., 2000, 2001). However, this data revealed that only five of eleven (Gata-2, 

C1qdc, Msx1, delta-like 1, Unc5-homolog) were indeed expressed equal or more than 2 fold 

when compared to control sequences. Among the genes analyzed, C1qdc was detected most 

abundantly followed by Unc5-homolog and Gata-2 expression. The outcome of an analysis of 

a gene chip is highly dependent of bioinformatics and statistical methods used for such a large 

data set and so far, no unified approach to analyze microarray data has been suggested. The 

discrepancy in gene expression level observed between gene chip data and RT-PCR were 

previously reported even if the filtering criteria were highly stringent (Rajeevan et al., 2000; 

Zhao et al., 2004).  
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Fig. 4.6: Changes in gene expression as analyzed by microarrays and RT-PCR, respectively. Fold 

change increase of genes expressed in the ventral aspects as determined by Affymetrix gene chips A) and 

qRT-PCR0 B). The qRT-PCR data were normalized to GAPDH expression. Numbers of independent qRT-

PCR analysis (n=3). EST1431094 represents RIKEN cDNA 1110006E14 gene. 

Fig. 4.5: Microarray analysis. At E10.5, Gcm2 was only detected in the dorsal aspect of 3rd pp whereas 

Foxn1 was detected only in the anterior part of the ventral aspect of 3rd pp. The signal for Foxn1 is weaker 

when compared to that of Gcm2. The presented data is the average from three independent analysis. 
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Probe Set ID Gene Title Gene Symbol Gene function 

    

1450333_a_at GATA binding protein 2 Gata-2 - cell differentiation 

- cell fate determination 

1420360_at delta like-1  dll-1 - ligand of Notch signaling 

pathway 

1417393_a_at C1q domain containing 2 C1qdc2 unknown 

1437403_at sterile alpha motif domain 

containing 5 

Samd5 unknown 

1449559_at homeobox, msh-like 2 Msx2 - BMP signaling pathway 

- negative regulation of 

apoptosis 

1448601_s_at homeobox, msh-like 1 Msx1 - BMP signaling pathway 

- negative regulation of 

apoptosis 

1419229_at reproductive homeobox 4 

A-G 

Ehox - regulation of transcription 

1448123_s_at transforming growth factor, 

beta induced 

Tgfbi - cell adhesion 

1449522_at Unc5 homolog C Unc5c - apoptosis 

- regulation of cell migration 

1418357_at Forkhead box G1 FoxG1 - regulation of mitotic cell    

cycle 

- dorsal/ventral pattern 

formation 

1431094_at RIKEN cDNA 1110006E14 

gene 

1110006E14Rik unknown 

 

 

 

 

 

Table 1. Table of candidate genes. The probe set ID represents the genes on Affymetrix Gene chip 430 2.0.  



55 
 

4.3.2 Whole mount in situ hybridization for candidate genes  

 

 

To assess the special expression of those genes with a higher than 2-fold change in expression 

between the ventral and dorsal aspect of the 3
rd

 pp as measured by qRT-PCR whole mount in 

situ hybridization was carried out on E10.5 wild 

type embryos (Fig 4.7). The expression of Gata-

2, C1qdc2, delta like-1, and Unc5 homolog C 

was analyzed by this method.  

Msx1 belongs to the homeobox gene family and 

has its role in controlling cell proliferation and 

differentiation. Msx1 is important for the teeth, 

cleft palate and cranial skeleton development 

(Satokata et al., 1994). Msx1 expression was 

previously been tested by whole mount in situ 

hybridization in E10.5 mouse embryos and was 

localized to an area of mesenchyme that (i) immediately underlying the apical endodermal 

ridge (AER) and (ii) is situated to craniofacial region especially in the branchial arches of ba1, 

2  and olfactory pits (Tribioli et al., 2002). To assess the specificity of the analysis, both a 

Gata2 Bmp4 C1qdc2 Unc5c

c 

A 

B 

dll-1 

Fig.  4.7: Whole mount in situ hybridization of candidate genes in E10.5 embryo. A) Anti-

sense probe. B) Sense probe as negative control.  Bmp4 antisense probes were used as positive 

control. For negative control sense probes were generated for each gene of interest negative 

control.  (4x magnification, two independent experiments were done for each gene) 

 

3rd 

Fig.  4.8: Whole mount in situ 

hybridization for the Gata-2 mRNA. 

Detection of Gata-2 gene mRNA form the 

3rd pp. (10x magnification) 
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positive (BMP4 antisense probe) and negative controls (sense probes of the tested sequences) 

were included in this study. The BMP4 expression displayed a pattern as previously reported 

with the staining of the limb`s progress zone below the AER. Two different anti-sense RNA 

probes were designed and tested for each of the four candidate genes. A thorough analysis for 

C1qdc2 and Unc5 respectively, revealed that for neither probe sets a signal was detected in 

E10.5 embryos. Of all candidate genes analyzed by whole mount in situ hybridization only 

Gata-2 sequence provided a positive signal localized in the ventral aspect of the 3
rd

 pp (Fig. 

4.8). The results from the whole mount in situ hybridization do not correspond to the 

expression profile obtained from gene chip and qRT-PCR. According to gene chip data, the 

gene C1qdc2 was more than 5-fold higher expressed in the anterior-ventral aspect of 3
rd

 pp 

and according to qRT-PCR, C1qdc2 was even higher expressed than Gata-2 and Unc5 was 

expressed at the similar level of Gata-2. Among the genes that were analyzed by all three 

methods, Gata-2 was the only gene of which its expression was detected by all three methods. 

These results indicate that at the time point E10.5 Gata-2 might play a role in the thymic fate 

decision and/or development. 

 

 

 

 

First, I determined the kinetics of Gata-2 during early thymic embryonic development. To this 

end, thymic epithelial cells (TEC) were sorted as MHCII
+
, EpCAM

+
 and CD45

-
 cells from 

suspensions of thymic tissue. RNA was isolated from samples isolated at E12.5, E13.5, E14.5, 

E15.5, E16.5 and E17.5, cDNA was synthesized and qRT-PCR was performed (Fig. 4.9). For 

methodological reasons, endodermal epithelial cells in the anterior-ventral aspect of the 3
rd

 pp 

were isolated by LCM at the time point of E10.5 (Fig. 4.2a). The expression of Gata-2 

decreased very significantly in the cause of embryonic thymus development with a dramatic 

Fig. 4.9: Gata-2 expression kinetics during embryonic thymus development. The expression of the 

genes was studied by using qRT-PCR. (n=3 for all time points). Δ-ct values were normalized to 

GAPDH. The expression level of Gata-2 for the time points E12.5 to E17.5 was compared to E10.5. The 

fold changes were calculated from ΔΔ-ct values and show a decreased Gata-2 expression after E10.5. 
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drop between E10.5 and E12.5. Subsequently, the decrease continued, albeit to a lesser degree 

until E16.5 when a transient increase occurred. Thereafter, the Gata-2 gene level was again 

diminished. It is interesting to observe that the expression of Gata-2 is drastically reduced at 

the time point E12.5 when compared to E10.5. At E12 thymus anlage has a high proportion of 

proliferating TECs and this proliferation declines as gestation proceeds (Jenkinson et al., 

2007) and Gata-2 has been reported to have a capability to negatively regulate the cell 

proliferation (Wakil et al., 2006) indicating the role in Gata-2 in TEC proliferation.  

 

4.4 Generation and analysis of mice deficient for Gata-2 expression in thymic epithelial 

cells  

 

4.4.1. TEC targeted inactivation of Gata-2 

 

Because Gata-2 deficient mice die at E10.5 secondary to anemia and hence before the thymus 

anlage is formed, the use of conventional knock-out mice did preclude an analysis of the role 

Gata-2 in thymus organogenesis. A tissue specific deletion of Gata-2 was therefore employed 

to avoid embryonic lethality. For this purpose, the tissue directed gene deletion was achieved 

by the use of the cre-lox system. Mice with loxP sequences flanking 5´ exon5 and positioned 

in exon6 were crossed to mice that express the cre recombinase under the transcriptional 

control of the Foxn1 locus (Fig. 4.10). Thus, the DNA binding domain which is encoded in 

the exon5 is deleted disabling Gata-2 protein to bind to the target DNA sequence to induce 

transcription of Gata-2 target genes. Because Foxn1 is only expressed in the TECs and some 

cells of the skin, double transgenic mice were expected to develop normally with possible 

exception of the thymus. (Mice with a TEC-targeted deletion of Gata-2 gene will be referred 

as Gata-2 KO mice)    
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4.4.2. Thymus architecture of Gata-2 deficient mice 

 

To determine the impact of a Gata-2 deficiency on thymus structure H&E stainings were 

performed on thymus tissue sections cut from 3, 6, 13 and 25 weeks old thymi. The thymus of 

Gata-2 KO mice revealed no difference in the morphological organization of cortex and 

medulla when compared to Gata-2 deficient mice. To detail further the architecture of the 

thymic microenvironment, fluorescence staining and confocal microscopy were used (Fig. 

4.11a, b). cTEC and mTEC were distinguished by their difference in the expression of cellular 

markers: Anti-CK18 antibody stains cTEC, whereas anti-CK5 and anti-UEA-1 antibodies 

identify mTEC. The antibody ER-TR7 was used to stain the fibroblasts in the thymus. Neither 

the composition nor the architecture of the thymic microenvironment were altered as a 

consequence of Gata-2 deletion. Hence, these results indicate that the Gata-2 deficiency in 

TECs does not appear to affect the organization and composition of thymic epithelial cells.   

Fig. 4.10: Deletion of DNA-binding domain of Gata-2 using the Cre/loxP-system. Cre-

protein recognizes the loxP sizes that are located in the intron between the 4
th

 and 5
th

 exon 

and in the 6
th

 exon. Upon Cre mediated deletion the DNA-binding domain of Gata-2 is 

deleted. 
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Fig. 4.11a: Analysis of thymus architecture of 3 and 6 weeks of age. H&E staining was used for 

morphological analysis. TECs were immunohistochemically stained for CK18 (red), CK5 (green) and 

UEA-1 (red). ERTR7 (blue) stains fibroblasts.  
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Fig. 4.11b: Analysis of thymus architecture of 13 and 25 weeks of age. H&E staining was used for 

morphological analysis. TECs were immunohistochemically stained for CK18 (red), CK5 (green) and 

UEA-1 (red). ERTR7 (blue) stains fibroblasts.  
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4.4.3 Analysis of the thymus of Gata-2 KO mice 

 

4.4.3.1 Gata-2 expression was significantly reduced after E12.5 in Foxn1-Cre
+
::Gata-2

loxP/loxP
 

mice 

 

To quantify the efficiency of cre mediated 

deletion of Gata-2 in Gata-2 KO, qRT-PCR was 

performed. Foxn1 driven cre is detectable at 

E12.5 in only few TECs that express Foxn1 

(Zuklys et al., 2009). Nevertheless, the Gata-2 

expression was ~7 fold decreased in E12.5 old 

TECs of Gata-2 KO mice and was merely 

detectable in E13.5 (~170 fold decreased), 

respectively. Gata-2 transcript could not be 

detected after E13.5 in TECs of Gata-2 KO mice 

(Fig 4.12). 

4.4.3.2 Higher total thymocyte numbers present in the Gata-2 KO mice 

 

In order to analyze the thymus of Gata-2 KO mice in more detail the thymus from 3, 6, 13 and 

25 weeks old mice were removed and thymocytes were stained.  

In the three weeks old mice no difference was observed in the total cellularity of the thymus, 

but in the six weeks old Gata-2 KO mice the total thymocyte numbers were increased by 46% 

in male and 43% in females when compared to their wild type controls, respectively. The 

increased cellularity of the thymus was observed at the time points of 13 weeks (25% increase 

in males, 34% increase in females) and 25 weeks (35% increase in males, 60% increase in 

females) old mice (Fig. 4.12). These results suggest that Gata-2 KO thymus might be able to 

support more thymocyte either by stimulating the thymocyte proliferation/survival or/and 

attracting more thymocyte precursors. 

 

 

Fig. 4.12: Gata-2 expression in sorted 

TECs. TECs (MHCII
hi

, MHCII
int

, G8.8
+
, 

CD45
-
) form E12.5, E13.5 E14.5 and 6 

weeks were screened for Gata-2 expression.  
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4.4.3.3 Increased absolute thymocyte at all T-cell developmental stages 

 

FACS analysis was performed to test whether the increased cellularity was associated with an 

expansion of all thymocyte sub-population or, alternatively, whether a particular development 

stage was more numerous as a consequence of a lack of Gata-2 expression in TECs. First, Lin
-
 

thymocytes (i.g. with an immature phenotype) were first investigated: DN1 (CD44
+
,CD25

-
, 

Lin
-
), DN2 (CD44

+
, CD25

+
, Lin

-
), DN3 (CD44

-
, CD25

+
, Lin

-
) and DN4 (CD44

-
, CD25

-
, Lin

-
). 

Although the distribution of the different immature (i.g. DN) thymocyte subpopulation in the 

Gata-2 KO were similar to that of littermate control, the absolute DN cellularity were 

significantly increased in the Gata-2 KO mice six weeks of age and older (Fig. 4.13). Second 

the DP, CD4
+
 and CD8

+
 thymocytes were analyzed. Gata-2 KO mice with an age of six 

weeks and older had a significantly increased DP, CD4
+
 and CD8

+
 thymocytes. No statistical 

analysis were possible for the mice of three weeks of age due to low sample number but the 

preliminary results indicate no difference neither in the DN population nor in the DP, CD4
+
 or 

CD8
+
 (Fig. 4.14 a,b). This experiment showed that Gata-2 deficiency in the TEC did not have 

any differential effect the size of the different thymocyte subpopulations. However, the 

increased absolute numbers indicated that either a stronger cell proliferations in the Gata-2 

deficient mice occurred in the very early stage of the T-cell development or alternatively that 

more T-cell precursors were attracted into the thymus. Analysis of the bone marrow derived 

T-cell precursors (CD44
+
, CD117

+
, CD25

-
, CD45

-
) revealed that the relative numbers in Gata-

2 KO were similar when compared to littermate controls but the absolute numbers were 

significantly increased at the times investigated, indicating that more precursors were present 

in the thymus of Gata-2 KO mice (Fig. 4.16). 

Fig. 4.13: Thymic cellularity. A)  Males B) Females  
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 Fig. 4.14a: Analysis of DN1-DN4 population of Gata-2 KO mice. Staining was performed using 

anti-CD44, anti-CD25 on lineage negative cells (B220
-
, CD45

-
, CD11b

-
, CD11c

-
, CD19

-
, CD4

-
, CD8

-
, 

NK1.1
-
, Gr-1

-
). A) 3 weeks (male: n=2/group; female: n=2/group), B) 6 weeks (male: n=4/group; 

female: n=4/group).   



64 
 

 

 

 

 

Fig. 4.14b: Analysis of DN1-DN4 population of Gata-2 KO mice. Staining was performed using anti-

CD44, anti-CD25 on lineage negative cells (B220
-
, CD45

-
, CD11b

-
, CD11c

-
, CD19

-
, CD4

-
, CD8

-
, 

NK1.1
-
, Gr-1

-
). C) 13 weeks (male: n=3/group; female: n=3/group) D) 25 weeks (male: n=3/group; 

female: n=6/group).  
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 Fig. 4.15a: Analysis of SP and DP thymocytes. Staining was performed using anti-CD4, anti-CD8. A) 

3 weeks (male: n=2/group; female: n=2/group), B) 6 weeks (male: n=4/group; female: n=4/group).   
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Fig. 4.15b: Analysis of SP (CD4
+
, CD8

+
) thymocytes. Staining was performed using anti-CD4, anti-

CD8. C) 13 weeks (male: n=3/group; female: n=3/group), D) 25 weeks (male: n=3/group; female: 

n=6/group).  
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Fig. 4.16 Analysis of T-cell precursors (CD44
+
, CD117

+
, CD25

-, 
Lin

-
). A) 3 weeks (male: n=2/group; 

female: n=2/group), B) 6 weeks (male: n=4/group; female: n=4/group), C) 13 weeks (male: n=3/group; 

female: n=3/group), D) 25 weeks (male: n=3/group; female: n=6/group).  
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4.4.3.4 Differences in T-cell cellularity are not observed in the periphery 

 

Next, the impact of a lack of Gata-2 expression in TECs on the peripheral T-cell cellularity of 

mature T-cells was investigated. Lymph nodes and the spleen were isolated from 6 weeks, 13 

weeks and 25 weeks of female mice and analyzed for the relative frequency of CD4 and CD8 

T-cells, respectively. The total spleen and lymph node cellularities of Gata-2 KO were similar 

to control mice when analyzed at any of the indicated time points (Fig. 4.17a,b,c). The 

detailed analysis of naïve CD4 cells (CD44
lo

, CD62L
hi

), effector CD4 cells (CD44
hi

, 

CD62L
lo

); memory CD4 cells (CD44
hi

, CD62L
hi

), and naïve CD8 cells (CD44
lo

, CD62L
hi

) 

and effector/memory CD8 (CD44
hi

, CD62L
hi

) showed no difference in relative and absolute 

cell numbers when Gata-2 KO mice were compared to their littermate controls (Fig. 4.17 

a,b,c). Taken together, the peripheral T cell compartment of spleen and lymph nodes were not 

affected by the Gata-2 deficient thymus. 
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Fig. 4.17a: Phenotypic analysis of splenic and lymphatic T-cells. Cells were stained with CD62L, CD44, CD4 and 

CD8. Naïve CD4 (CD44
lo

, CD62L
hi

), effector CD4 (CD44
hi

, CD62L
lo

), memory CD4 (CD44
hi

, CD62L
hi

); naïve CD8 

(CD44
hi

, CD62L
hi

) and memory/effector (CD44
hi

, CD62L
hi

).  6 weeks old females (n=3/group) 
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Fig. 4.17b: Phenotypic analysis of splenic and lymphatic T-cells. Cells were stained with CD62L, CD44, CD4 and 

CD8. Naïve CD4 (CD44
lo

, CD62L
hi

), effector CD4 (CD44
hi

, CD62L
lo

), memory CD4 (CD44
hi

, CD62L
hi

); naïve CD8 

(CD44
hi

, CD62L
hi

) and memory/effector (CD44
hi

, CD62L
hi

).  13 weeks old females (n=3/group) 
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Fig. 4.17c: Phenotypic analysis of splenic and lymphatic T-cells. Cells were stained with CD62L, CD44, CD4 and 

CD8. Naïve CD4 (CD44
lo

, CD62L
hi

), effector CD4 (CD44
hi

, CD62L
lo

), memory CD4 (CD44
hi

, CD62L
hi

); naïve CD8 

(CD44
hi

, CD62L
hi

) and memory/effector (CD44
hi

, CD62L
hi

).  25 weeks old females (n=4/group) 
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4.4.3.5 The proliferative capacity of mature T-cell derived from Gata-2 KO is normal  

 

To study whether Gata-2 deficiency in the TEC has an influence on T-cell proliferation 

capacity, CD4
+
 and CD8

+
 peripheral T-

cells were isolated from lymph nodes 

and stimulated by CD3 cross-linking as 

a mitogenic stimulus. Cell proliferation 

was subsequently assayed 48 hours later 

using thymidine incorporation and 

CFSE (carboxyflourescein diacetate-

succinimidyl ester) labeling. For the 

experiment, cells from lymph node of 6 

weeks old females were isolated and 

resuspended in 1mL PBS with or 

without 10µM of CFSE. The cells were 

stimulated with 4µg/mL of anti-CD3 

antibody for 48 hours and then stained 

with anti-CD4 and anti-CD8 antibody 

for FACS analysis. For the 
3
H-thymidine labeling 1x10

5
 cells were seeded into a single well 

of a 96 well plate. The cells were than stimulated with plate-bound anti-CD3 with the 

following concentrations: 0, 0.1 µg/mL, 2.5µg/mL, 5µg/mL and 10µg/mL. After 48 hours the 

supernatant were exchanged with media containing 1µCurie of H3-Thymidine to quantify 

DNA via DNA synthesis. The peripheral CD4 and CD8 of Gata-2 deficient mice did not show 

any differences in their proliferative behavior when compared to their control mice (Fig. 

4.18). These results indicated that Gata-2 deficiency restricted in the TECs did not affect the 

proliferative capacity CD4 and CD8 single positive T-cells. CFSE staining was used as an 

alternative method to quantify T-cell proliferation and the number of divisions in response to 

mitogenic anti-CD3 stimulation, because CFSE is equally partitioned among daughter cells 

with each cell-division.  At the end of 48 hours CD4 and CD8 T-cells of both groups had 

undergone four cell divisions (Fig.4.19). This indicates that the proliferative behavior upon 

anti-CD3-stimulation was not disturbed in the CD4
+
 and CD8

+
 T-cells which developed with 

the support of Gata-2 deficient TECs. 

 

Fig. 4.18: Measurement of 
3
H-Thymidine uptake in 

response to anti-CD3 stimulation. Following anti-

CD3 concentration was used: 0, 0.1, 2.5, 5, 10 µg/mL. 

(Gata-2 KO: n=4; Littermate Control: n=3) 
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4.4.3.6 Increase TEC cellularity in Gata-2 KO mice of six weeks of age 

 

TECs represent in many ways an exceptional epithelial cell type least not because of their 

architectural organization representing a three-dimensional network of cells largely 

independent of a basal membrane (van Ewijk et al., 1999). To test whether Gata-2 deficiency 

led to a change in TECs numbers, thymic epithelial cells from female mice in the age of 3, 6, 

13 and 25 weeks were analyzed by FACS. Furthermore, a ratio of total thymocytes and TECs 

were calculated to see whether TEC deficient of Gata-2 were capable to support more 

thymocytes than the control group (4.20). At all time points, the TEC numbers from Gata-2 

KO remained similar to their controls. Even the thymocytes/TEC ratio between Gata-2 KO 

mice and the control group remained unchanged in mice of three and six weeks of age. 

However, 13 and 25 weeks old mice, which lack Gata-2 in their TECs, had a significant 

increase in thymocyte/TEC ratio. These results indicate that TECs of Gata-2 KO were capable 

to support more T-cells in their development.     

 

 

 

 

Fig. 4.19: Quantification of T-cell proliferation by CFSE from sorted CD4 and CD8 T-cells isolated from 

lymph nodes. 10 x 10
6
 cells were resuspended in 10µM of CFSE containing PBS. Cells were stimulated for 48 

hours with soluble anti-CD3.  
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4.4.3.7 RT-PCR revealed an increased expression of c-kit ligand, Edn-1 and CXCL-12 in 

Gata-2 KO TECs 

 

To find an explanation for the increased numbers of thymocytes in the Gata-2 deficient 

thymus the gene expression of TECs were analyzed. TECs were sorted from six weeks old 

mice from Gata-2 KO and the control group, RNA isolated, cDNA synthesized and RT-PCR 

was performed for genes which were related to cell-cycle progression, cell migration and 

survival, respectively (Fig. 4.21). In vitro experiments have shown that Gata-2 is important 

for expression of c-Fos and c-Jun (AP-1 complex) in endothelial cells. To test whether a lack 

 

Fig. 4.21 RT-PCR analysis of Gata-2 KO TECs. TECs (CD45
-
, MHCII

hi
, MHC

int
, G8.8

+
) from Gata-2 KO and 

littermate controls were sorted, RNA extracted and cDNA synthesized. Δ-Ct values were normalized to GAPDH 

and the fold changes were calculated from ΔΔ-ct-values. (* = p<0.05)   

 

Fig. 4.20: TEC analysis of Gata-2 KO mice. Total TEC (CD45
-
, MHCII

hi
, MHC

int
, G8.8

+
) population of 

female Gata-2 KO and control mice at the time points 3 (n=3/group), 6 (n=6/group), 13 (n=3/group) and 25 

(n=3/group) weeks were compared. 
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of Gata-2 in TECs resulted in an alteration of AP-1 complex quantitative RT-PCR was used 

for the expression of c-Fos and c-Jun. Endothelin-1 (Edn-1), Endothelin receptor Ra/Rb (Edn-

Ra, Edn-Rb), IL-7, IL-15 and c-kit ligand have been shown to be involved in proliferation 

or/and survival of various cell types (Massa et al.. 2006; Rodewald et al., 1997; Ludwik et al., 

1998; El Wakil et al., 2006). c-Jun was slightly increased (1.5 fold) while Edn-1 (0.4 fold), 

Edn-Ra (0.2 fold) and Edn-Rb (0.3 fold) expression was milder decreased  in its expression in 

TECs (Masatoshi et al., 1995). In the thymus CXCL-12 and CCL-17 are responsible for 

migration/homing of thymocytes and its precursors. The analysis of the RT-PCR data 

revealed that the CXCL-12 and c-kit ligand expression was increased 3 to 4 fold in TECs of 

Gata-2 KO mice. These results indicate that more T-cell precursors might migrate and that 

they might survive longer in the thymus. The expression of AP-1, CCL-25, IL-7 and IL-15 

remained unchanged.  
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V. Discussion 

 

The thymus is the primary lymphoid organ for the generation and selection of T-cells 

(Rodewald et al., 1998). The loss of thymic function by malformation of the thymus results in 

limited individual capacity to maintain a broad T-cell antigen receptor repertoire or in worse 

cases in a complete lack of the adaptive immune-system (Hong et al., 2001). Therefore, it is 

important to understand the mechanisms and to characterize the genetic program that 

determines thymic epithelial cell fate and differentiation. In this context, this thesis intends to 

identify the molecular players in early thymus development by analyzing the gene expression 

profile and to understand in an in vivo study the function of one particular candidate gene: 

Gata-2. 

The RNA isolation protocol which was specifically established for the purpose of this study 

made it possible to pool small amounts of RNA in a high quality so that a reliable 

amplification of RNA was possible for gene expression profiling by Affymetrix Gene Chip. 

Sufficient RNA quality as determined by Agilent Chip was given since the 18 and 28 

ribosomal RNA peaks were clearly present in all samples tested (Fig. 4.1). Once the protocol 

for isolation of small amount of RNA was successfully established, cells and then RNA of the 

anterior part of the ventral aspect of the 3
rd

 pp were isolated where Foxn1 is expressed as 

early as E10.5. Hence, the specific mechanisms that control early thymocyte development are 

initially located to the anterior aspect of ventral aspect of 3
rd

 pp.  

To verify the obtained gene expression data of the anterior part of the ventral aspect of 3
rd

 pp, 

qRT-PCR and whole mount in situ hybridization was utilized. The fold change difference in 

gene expression that resulted from Affymetrix gene chip data differed from the gene 

expression data obtained from qRT-PCR except for the genes Msx1, FoxG1 and 

1110006E14Rik. Although the other candidate genes showed a similar expression in the 

anterior part of the ventral aspect of the 3
rd

 pp, the actual fold change of differential 

expression in comparison to the dorsal circumference when assessed by RT-PCR differed 

from that of the Affymetrix data set. The highest expressed gene according to qRT-PCR 

analysis was C1pdc2 with an 11-fold change over the dorsal aspect of the 3
rd

 pp. The gene 

C1pdc2 encodes a 308 amino acid long protein with an unknown function. Therefore, it is 

difficult to assess the role the gene C1qdc2 in thymus development. In regards to Gata-2 

expression, a higher level of transcript was identified in Affymetrix gene chip data. This 

discrepancy in the results between Affymetrix gene chip data and qRT-PCR was previously 
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reported (Rajeevan et al., 2000, 2001; Zhao et al., 2004). The main reason for the differences 

observed is due to the methods how the expression of a gene was determined by gene chip 

and qRT-PCR. Gene chips are limited by its insensitivity to identify transcripts of low 

abundance like genes expressed at a low levels or in a small fraction of cells studied. Even 

transcripts of high abundance could be missed by DNA microarray as well due to the poor 

hybridization between the probes and the labeled cRNA targets (Cao et al., 2004). One factor 

that could affect the hybridization step is the sequence targeted by the gene chip probes. Since 

majority of the probes on the gene chip are 3’-biased and limited to match the target 

generation characteristics of the sample amplification method (in this case two rounds of 

amplification was performed). The sequences at the 3`end might not have ideal characteristics 

(G-C and A-T ratio, low repeating sequences to avoid dimerization) for hybridization. 

Furthermore, the outcome of results from gene chip is also dependent on the program which is 

utilized to analyze the data set. Independent of the precise fold changes, both methods 

confirm the differences in the level of expression of the candidate genes when comparing the 

dorsal and the anterior-ventral part of the 3
rd

 pp. In general DNA microarrays are powerful 

tools that enable the global analysis of a variety of different cell-systems because expression 

of thousands of gene can be analyzed simultaneously. However, more sensitive evaluation 

with qRT-PCR is necessary because genes identified by DNA array with a two-to fourfold 

difference in expression cannot be eliminated as false nor be accepted as true without 

validation (Rajeevan et al., 2001, Zhao et al., 2004). 

Candidate genes that had by RT-PCR a two- and higher fold increase in expression in the 

ventral-anterior aspect were further analyzed by in situ hybridization. For positive control 

Bmp4 was chosen. The expression patterns of the genes Bmp4 and dll-1 (delta-like 1) were 

previously described (Mathura et al., 2000, Grotewold et al., 2001, Teppner et al., 2007). 

Bmp4 was detectable in the apical ectodermal ridge (AER) and in the mesechyme of the 

genital tubercle while dll-1 staining was detected in the somitocoele adjacent to the caudal 

epithelium (Fig. 4.7) indicating that the technique itself was successful. For the genes Unc5h3 

and C1qdc2 no signals were obtained. C1qdc2 transcript consists of 1301 bp and encodes a 

protein of 308 aa. So far, no studies have been performed to identify the function of this 

protein. First reports about Unc receptors derived from studies from Caenorhabditis elegans 

(C. elegans): unc5, unc6 and unc40 (Hedgecock et al., 1990). These three receptors are 

involved in axonal pattering and cell migration. In vertebrates the family of the Unc5 family 

include: Unc5h1, Unc5h2, Unc5h3 (Unc5c) and Unc5h4. These receptors are capable to bind 

Netrin-1, a soluble factor that either can induce attraction or repulsion of axon growth 
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depending on to which receptor Netrin-1 binds (Baker et al., 2006, Round et al., 2007). In 

neuronal development a binding to Unc5 receptors leads to repulsion, suggesting that Unc5 

receptors are involved in cell migration (Guijarro et al., 2006, Barallobre et al., 2005). 

Expression studies of the different Unc5 receptors in E11.5 embryos have shown that Unc5h1 

expression is restricted to the ventral spinal cord, whereas Unc5h2 is present in the 

developing eye, inner ear, vasculature and limb buds. The detection of the transcript of 

Unc5h3 is strongest in migrating neural crest cells and in the anterior and posterior part of the 

proximal limb mesenchyme while Unc5h4 expression is restricted to a thin line at the base of 

the forelimb and to the limb bud (Engelkamp, 2002). Mice deficient of Unc5h3 are vital but 

have abnormalities in postnatal cerebella neuronal migration (Ackerman et al., 1997). The 

mesenchymal cells mediate epithelial cell proliferation and have an inductive effect on 

epithelial cell morphogenesis and have their origin in neural crest cells. A remove of the 

neural crest cells leads to a failure in thymus, formation (Bockman et al., 1984). The fact that 

Unc5h3 is expressed in neural crest cells and are involved in migration processes might 

indicate its potential role in the very early stage of neural crest cell migration which is needed 

for the thymus development. In fact, Unc5h3 is expressed in the thymus of six weeks old mice 

(UniProt Consortium). Since no positive signal was obtained even in the neural crest cells, it 

is possible that the two probes used for whole in situ hybridization for Unc5h3 did not anneal 

to mRNA which might explain the results (Fig. 4.7). Since no information for C1qdc2 is 

available, it is hard to assess whether the results of whole mount in situ hybridization is 

reflecting the expression pattern of C1qdc2 at the time point of E10.5.  

Several of the genes identified by gene expression profiling and RT-PCR (Gata-2, dll-1, 

Msx1, Msx2, Ehox, Tgfbi, Unc5c, FoxG1) have been linked to play a role in E10.5 thymus 

anlage except for the genes 1110006E14Rik, C1qdc2 and Samd5 with unknown role in 

thymus development. Gata-2, Msx1, Msx2, Unc5h3 and FoxG1 are transcription factors. 

Msx1 and Msx2 are homeobox transcription factors which are important for the development 

of the structures derived from the cranial and cardiac neural crest cells. During embryonic 

development Msx1 expression is detected in the mesechyme of the first arch as early as E9.5. 

At E10.5 Msx1 transcript is restricted to the lateral mesenchyme in the buccal half of the first 

arch and is present in a medial stripe of the mesenchymal cells in the second arch (MacKenzie 

et al., 1997), but at E11.5 Msx1 was detectable in the thymus anlage by in situ hybridization 

(Bleuel et al., 2005). A deficiency of Msx1 exhibits agenesis of the teeth, a cleft palate, and 

abnormalities of the cranial skeleton (Satokata et al., 1994). Furthermore, Msx1 is crucial for 

the epithelial-mesenchyme interaction during tooth development (Chen et al., 1996, Bei et al., 
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1998). Msx2 deficiency is less severe than Msx1 mutations since Msx2 mice are vital and 

fertile. Mice homozygous for a targeted mutation in Msx2 have a defect in the development of 

the frontal bone due to a failure of neural crest-derived calvarial osteogenic cells (Satokata et 

al., 2000; Ishii et al., 2003). Neither Msx1 nor Msx2 mutation analysis have reported a defect 

in thymus development, but double mutation analysis of Msx1 and Msx2 deficient mice have 

a dislocated thymus (Ishii et al., 2005). Whether the thymus structure or function is altered in 

Msx1
-/-

/Msx2
-/-

 mice have not been addressed in this study. Several upstream regulators of 

Msx genes have been identified including Bmp and Fgf pathways. In Fgf8 deficient mice, 

which have a small or an absent thymus, Msx1 is down regulated in the 1
st
 and 2

nd
 pp at the 

time point of E10.5 in mice development (Abu-Isha et al., 2002). Bmps are expressed broadly 

in the pharyngeal ectoderm and endoderm and influence the development of cranial and 

cardiac neural crest-lineage cells (Waldo et al., 2001; Ohnemus et al., 2002). In E9.5 mice, 

lacking Msx1 and Msx2 expression, Bmp4 was significantly elevated in the cranial 

mesenchyme including the migrating neural crest cells, the maxillary prominence, the distal 

part of the 1
st
 and 2

nd
 pharyngeal arch and the body wall epithelium suggesting the role of 

Msx genes as a negative regulator of Bmp signals in these structures (Ishii et al., 2005). The 

role of Bmp4 in thymus development has been shown by Bleul and his colleagues using 

transgenic mice which express the Bmp antagonist noggin under the control of the Foxn1 

promoter. At E10.75, Bmp4 is strongly expressed in Foxn1-positive epithelial cells of the 

ventral and medial part of the 3
rd

 pp as well as in the neural crest derived mesenchymal cells 

that surround the anlage (Bleul et al., 2005). In thymus, Msx1 is detectable in the capsular 

mesenchymal cells as early as E12.5 but not in the TECs suggesting BMP signals might play 

a role in the epithelial-mesenchymal interaction that shapes the thymic stroma (Bleul et al., 

2005; Ohnemus et al., 2002; Bockman et al., 1984). The Affymetrix gene chip data confirms 

the pathways that are involved in the thymus development: Bmp- and Fgf pathways. Msx1 is 

involved in both pathways. However, how Fgf and Bmp4 signaling affects Msx1 expression 

in thymus development need to be addressed. According to gene chip data and RT-PCR data 

expression of Msx1 is 4.3 fold and 6.2 fold increased, respectively. In regards to Msx2 

expression the literature does not provide sufficient information to confirm the results of Fig. 

4.6. Taken together, Msx1 and Msx2 might play a role in thymus migration from the 

pharyngeal region to the mediastinum and act as a mediator for mesenchymal-epithelial 

interaction during thymus development.  

Tgfbi (transforming growth factor-β induced) is a secreted protein induced by transforming 

growth factor-β (Tgfβ-β). It was identified in human adenocacinoma cell line treated with 
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Tgf-β (Skonier et al., 1992). Tgfbi is a component of extracellular matrix in lung and mediates 

cell adhesion and migration though interacting with integrins via integrin receptors: α3β1, 

αvβ1, and αvβ5 (LeBaron et al., 1995; Billings et al., 2000; Kim et al., 2002, Nam et al., 

2003; Jeong et al., 2004). In many tumor cell lines including lung, breast, colon and leukemia, 

as well as in human lung and breast tumor specimen Tgfbi expression is inactivated. 

Furthermore, mice lacking Tgfbi develop with a higher frequency tumors than their wild-type 

littermates because Tgfbi deficient cells have a higher cell proliferation through aberrant 

activation of cyclin D1 pathway (Zhang et al., 2009). These finding suggest that the 

expression of Tgfbi at E10.5 in the ventral aspect of 3
rd

 pp might play a role in migration of 

the thymus anlage and that the induction of Tgfbi expression is caused by other Tgf-β family 

members like Tgf-β1 which is expressed in the neural crest derived mesenchymal cells in 

E10.5 mice and in fetal thymus (Schmid et al., 1991).    

Delta-like homolog 1 (dll-1) and delta-like homolog 4 (dll-4) are ligands in the Notch 

signaling pathway which are required for cell differentiation and patterning processes during 

mammalian embryogenesis. Activation of Notch is depended upon binding to ligands 

belonging to the Delta or Jagged/Serrate families. Dll-1 and dll-4 are expressed in the fetal 

thymus anlage and can be detected as early as E12 and is dependent on Foxn1. In Foxn1-

deficient mice (nude mice) dll-1 and dll-4 are not detected (Tsukamoto et al., 2005). Although 

the necessity of dll-1 and dll-4 for the thymocyte development is well established, the role of 

notch ligands in thymus-thymocytes crosstalk have been unclear (Schmitt et al., 2002, Koch 

et al., 2008, Hozumi et al., 2008). A recent study has revealed that enforced expression of dll-

1 in B-cells is capable to induce mTEC proliferation and maturation indicating that Notch 

signaling is involved in TEC-thymocyte interaction (Masuda et al., 2009). According to RT-

PCR and Affymetrix gene chip data dll-1 transcript is present in the 3
rd

 pp as early as E10.5 

(Fig. 4.6), suggesting that the dll-1 is already present on the thymic epithelial cells before the 

thymocyte precursors enter the thymus around E12 and Notch signaling is not operating at 

E10.5 in the ventral aspect of the 3
rd

 pp.  

Gene Chip (4-fold) and RT-PCR (2-fold) have identified Ehox as another transcript that is up 

regulated in the ventral-anterior aspect of 3
rd

 pp.  ES cell-derived homeobox (Ehox) gene is an 

X-linked paired like homeobox that is proposed to have a dual role in tropoblast stem cells 

and compartment of the developing placenta, as well as during development of the pharyngeal 

pouches, and possibly delineates the area that becomes thymus (Jackson et al., 2003). At the 

murine developmental stage of E10.5 whole mount in situ hybridization have shown that 
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Ehox expression in the pharyngeal region was restricted to the ventral aspect of 3
rd

 pp 

(Jackson et al., 2002; Jackson et al., 2003). A detailed promoter study of Ehox revealed 

several consensus binding sites for transcription factors which include GATA, DeltaEF, 

NKX25, USF, AP4, AP1, NF-Y and SP1 (Lee et al., 2006).  Interestingly, Gata-2 was also up 

regulated in the ventral-anterior aspect of 3
rd

 pp suggesting a role of Gata proteins in 

regulation of Ehox expression. Whether Gata-2 actually binds to the promtor of Ehox needs to 

be clarified. Since no studies of Ehox deficient mice are available and the characterization of 

the protein is insufficient, it is difficult to assess the function of Ehox in thymus development.  

Another candidate gene which was identified to be up regulated in the 3
rd

 pp is FoxG1.  

FoxG1 is expressed in the telecephalon, optic and otic vesicles and in the pharyngeal 

endoderm (Pratt et al., 2002; Arnold et al., 2006). In FoxG1 deficient mice the telecephalon is 

severely disrupted, but a thymus phenotype was not reported (Pratt et al., 2002).. 

Furthermore, gene chip data analysis has shown that FoxG1 is down regulated in Tbx1 

deficient mice (Ivins et al., 2005). Interestingly, a specific deletion of Tbx1 gene in the 

pharyngeal pouches using FoxG1-cre in mice showed a phenotype similar to 22q11 DiGeorge 

syndrome (22q11DS) because pharyngeal arches fail to develop with an exception to the 1
st
 

pharyngeal arch. 22q11DS characteristics are craniofacial abnormalities, thymus gland 

hypoplasia or aplasia, hypocalcaemia and cardiac outflow tract defects (DiGeorge 1965; 

Shprintzen et al., 1978). Because of the defects observed in Tbx1 deficient mice, it is unlikely 

that FoxG1 might play role in the thymus development later than E10.5. The development of 

the pharyngeal area occurs earlier than E10.5. It is possible that FoxG1, as a downstream 

target of Tbx1, is one of the regulators for the pharyngeal arch development in the very early 

of embryogenesis.  

Sterile alpha motif domain-containing protein 5 (Samd5) and 1110006E14Rik are two other 

genes which have an up regulated expression in the ventral-anterior aspect of 3
rd

 pp when 

compared to the dorsal part of the 3
rd

 pp. A thorough search in NCBI, Ensembl and Uniprot 

for those two genes revealed no functional description or details about the expression pattern 

in mice. Therefore, it is difficult to make any conclusions from the Affymetrix gene chip and 

RT-PCR data for the role of Sam5 and 1110006E14Rik in thymus development. 

Gata molecules have not yet been linked to the mechanisms operational in thymus 

development. At E10.5, Gata-2 expression as detailed by whole in situ hybridization is 

localized to the entire aspect of 3
rd

 pp. RT-PCR shows Gata-2 expression throughout the 

embryonic development of the thymus starting from E10.5 to E17.5 in the TECs and the 
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ventral-anterior aspect of the 3
rd

 pp, respectively (Fig. 4.9). Gata-2 expression was highest at 

E10.5 and drops rapidly at E12.5 and onwards suggesting the role of Gata-2 rather in the very 

early stage of thymus development when first morphological signs of thymus organogenesis 

are apparent. Whole mount in situ hybridization of Gata-2 and Ehox showed a similar 

expression pattern in the ventral circumference of 3
rd

 pp. As previously described, Ehox has a 

Gata-2 binding site in its promoter region and has been suggested to play a role in the 

delineating the area that becomes thymus (Jackson et al., 2003; Lee et al., 2006). However, 

this interaction needs to be proven. 

Gata-2 gene was conditionally deleted in TECs. For this purpose, Foxn1-cre was utilized 

which expresses cre in thymic epithelial cells from E11.5 onwards (Zuklys et al., 2009). The 

deletion of Gata-2 was confirmed by RT-PCR of sorted TECs from mice embryos of E11.5, 

E12.5 and 6 weeks old mice, respectively. The deletion was, however, incomplete in E11.5 

mice. Gata-2 transcript was detected, although its expression level was decreased in 

comparison to controls. This could be explained by the delayed Cre expression in Foxn1 

positive TECs (Zuklys et al., 2009). A deletion of Gata-2 in earlier developmental stage of 

thymus was considered because the RT-PCR and Affymetrix gene chip data showed that 

Gata-2 transcript was most abundant at the time point of E10.5 (Fig. 4.6). Hoxa3-Cre and 

Fgf15-Cre are two mice strains which express the cre protein earlier than E10.5. Hoxa3 is 

expressed as early as E8.5 in the surface ectoderm of the pharyngeal region and extends into 

pharyngeal endoderm and mesoderm (Zhang et al., 2005). Mice deficient of Hoxa3 do not 

develop thymus, parathyroid, as well as thyroid (Manley et al., 1995). Fgf15 is expressed at 

E9 onwards and is expressed specifically in the pharyngeal epithelia and in the developing 

brain. Fgf15 deficient mice present heart defects and die between E13.5 and E18.5 or shortly 

after birth, respectively (Vincentz et al., 2005). For our purpose Hoxa3-Cre mice could not be 

used because the genes Gata-2 as well as Hoxa3 are located in the chromosome 6. For a 

successful deletion of Gata-2 by Hoxa3-Cre a crossing over is needed and therefore, would 

have been out of the time scale of this thesis because the crossing-over frequency between 

these two genes is about 12%. The deletion of Gata-2 by Fgf15-Cre however, was feasible. 

Unfortunately, the expression of Fgf15-Cre was not consistent. Only six mice out of 48 were 

tested positive for Fgf15-Cre (12.5%). Due to the low frequency of Fgf15-Cre
+
 expressing 

mice, the use of this mice strain was stopped.  

The TEC specific deletion of Gata-2 was confirmed using qRT-PCR in mice E12.5 and E13.5 

and in 6 weeks old mice on sorted TECs (CD45
-
, G8.8

+
, MHCII

+
). For morphological studies 
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and detailed analysis of thymus architecture of Foxn1-Cre
+
::Gata2

loxP/loxP
 H&E and 

immunofluorescence (CK18, CK5, UEA-1) were used, respectively. The stainings of thymus 

from 3, 6, 13, and 25 week old thymus showed no difference in their expression of CK18, 

CK5, and UEA-1 when compared to their littermate controls. Furthermore, the thymi of 

Foxn1-Cre
+
::Gata2

loxP/loxP
 showed a clear distinction of cTEC and mTEC area indicating that 

Gata-2 deficiency do not disturb the development of thymus structure .  

Analysis of the thymus cellularity revealed that Foxn1-Cre
+
::Gata2

loxP/loxP
 mice have an 

increased thymocyte numbers. Interestingly, this increased was only observed in mice older 

than 3 weeks which suggests the thymus of Foxn1-Cre
+
::Gata2

loxP/loxP
 until the week 3 

developed similar to the littermate controls. The largest difference in thymocyte cellularity 

was observed in the Gata-2 KO mice of 6 week of life. Thymocyte subpopulations and their 

maturational progression in Foxn1-Cre
+
::Gata2

loxP/loxP
 thymus was unaltered between mutant 

and wild-type mice.  The increase of T-cell cellularity was not due to a disturbed T-cell 

development or block at a certain stage of T-cell development. Hence, the increased 

thymocyte numbers in Foxn1-Cre
+
::Gata2

loxP/loxP
 mice might be rather due to a higher 

attraction of T-cell precursors (CD44
+
, CD117

+
, CD25

-
, CD45

-
) or due to a stronger 

proliferation of the T-cell precursors. The attraction of T-cell progenitors to the thymus 

depends on the interaction of chemokines and their receptors. Among 36 chemokines, only 3 

(CCL-21, CCL-25, CXCL-12) shows DN1 fetal thymocytes-attracting activity (Alves et al., 

2009). Moreover, when antibodies are used to block CCL-21 or CCL-25 pathways fetal 

thymus attraction is significantly inhibited in contrast to CXCL-12 where no effect in T-

precursor attraction is observed indicating that neither CXCL-12 nor its ligand CXCR4 is 

required for the migration of T-precursors to the fetal thymic primordium (Alves et al., 2009). 

These results confirm previous data in which CXCL-12 or its receptor CXCR4 deficiency led 

to normal accumulation of T-precursors to their thymic primordium at E11.5 and E12.5 (Bleul 

et al., 2000). CXCL-12 is expressed on cTECs but not on mTECs (Plotkin et al., 2003). In 

hematopoietic chimeras where CXCR4 is conditionally deleted very early after entry into the 

thymus, mutant thymocytes stop developing at the DN1 stage (Plotkin et al., 2003). A gene 

expression of thymic epithelial cells from 6 weeks old mice analysis of Foxn1-

Cre
+
::Gata2

loxP/loxP
 showed an increased expression of CXCL-12 (3 fold) compared to their 

littermate controls while CCL-25 expression remained unaltered (Fig 4.21). The increased 

expression of CXCR12 might lead to a higher recruitment of T-cell precursors and thus 

increasing the total thymocyte cellularity. Another candidate that has been implicated with 

promotion of T-cell proliferation is c-kit ligand. A block of c-kit has been shown to inhibit 
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proliferation of CD25
+
 thymocytes which include DN2 population, thus strongly indicating 

that stromal production of Kit ligand is essential for proliferation and also for differentiation 

of sub-population of DN1 (Godfrey et al., 1992; Rodewald et al., 1997; Massa et al., 2006, 

Massa et al., 2006). In vitro studies using Gleevec to prevent c-kit signaling have shown that 

proliferation and development of DN1 (CD25
-
CD44

+
c-kit

high
) and DN2 (CD25

+
CD44

+
c-

kit
high

) are dependent on c-kit – c-kit ligand interaction when DN1 and DN2 are grown in 

presence of OP9d1 and IL-7 (Massa et al., 2006). In TECs of Gata-2 deficient mice, c-kit 

ligand transcript was (~4 fold) up regulated (Fig. 4.21) indicating that a higher expression of 

c-kit ligand might be another reason for an increased thymus cellularity. If an increased c-kit 

ligand expression on TECs would lead to an increased cell proliferation of DN1 and DN2 in 

their development, need to be verified. Interestingly, from more than 80 mice analyzed, about 

4 Gata-2 KO did not show any difference to their controls. A possible explanation is that 

Gata-2 was not deleted in enough TECs due to a lower amount of Foxn1-Cre
+
 TECs to cause 

a phenotype. 

To characterize the TECs of Gata-2 KO mice TECs of Foxn1-Cre
+
::Gata2

loxP/loxP
 at the stage 

of 3, 13, and 25 weeks were analyzed. The TEC numbers of Gata2 KO mice did not differ 

significantly from the control mice. However, the thymocyte/TEC ratio was significantly 

increased at the week of 13 and 25 while thymocyte/TEC ratio of 3 and 6 weeks old mice did 

not change (Fig. 4.20) indicating that the thymus of Gata-2 KO mice are capable to support 

more T-cells. However, the data especially from week 13 and 25, should be considered only 

as preliminary results, because the numbers of mice used for the experiment might have been 

too low to assess the TEC population. At least 6-10 thymi per group would provide a better 

reflection of the actual TEC population in Gata-2 KO and their littermate control.    

Because TECs support T-cell development thymidine incorporation assay and CFSE assay to 

quantify the proliferation of thymocytes after CD3-activation was chosen as a functional 

readout to test whether Gata-2 deficiency in TECs have an influence on thymocyte function. 

Therefore, T-cells from lymph nodes were isolated and analyzed. The results showed no 

difference when cell proliferation of thymocytes that developed in the thymus of Gata-2 KO 

mice were compared to their controls suggesting Gata-2 deficient TECs are capable to 

develop functional thymocytes comparable to wild-type mice. 

Endothelin-1 is a 21-amino acid vasoactive peptide initially characterized as a product of 

endothelial cells (Masaki et al., 1993; Masaki et al., 1991). Edn-1 deficient mice have a 

significant smaller thymus which fails to fuse in the midline (Kurihara et al., 1995). In vitro 
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experiments have shown that Gata2 and AP-1 are capable to control Edn-1 expression. TECs 

from Gata-2 deficient mice were tested if the Edn-1 expression was altered. As Fig. 4.21 

shows, the Edn-1 transcript and Edn-Ra and Edn-Rb are decreased in TECs of Gata-2 KO 

mice. c-Jun and c-Fos expression remained unaltered, indicating that a lack of Gata-2 for Edn-

1 expression is not compensated by AP-1 complex. These findings support the idea that Edn-1 

might also be controlled by Gata-2 in vivo (Kawana et al., 1995). However, several studies 

have shown that Edn-1 and Edn-Ra are over expressed in several cancer types including 

breast, colon stomach and prostate (Kusuhara et al., 1990; Ali et al., 2000, Smollich et al., 

2008). Evidence suggests that Edn-1 and the receptors Edn-Ra and Edn-Rb promotes tumor 

by increasing the survival and proliferation of tumor cell lines (Nelson et al., 1995, 1996). 

These studies contradict the finding of increased thymocyte in Gata-2 KO mice suggesting 

that the increased thymocyte phenotype observed in Gata-2 KO mice is not due to the Edn-1 

pathway which can mediated cell proliferation/survival. The decreased expression of Edn-Ra 

and Edn-Rb cannot be explained because there is no published data which correlates Gata-2 

or Edn-1 expression with transcription of Edn-Ra and Edn-Rb. However, it is possible that 

Edn-Ra and Edn-Rb receptor regulation might be dependent on level of Edn-1 expression 

since the RT-PCR data of the two receptors was reduced in a similar level as Edn-1 itself.  

 

 

 

 

 

 

 

 

 

 

 



86 
 

VI. Conclusions & Outlook 
 

This thesis describes an established protocol which enables to recover small amounts of RNA 

(in pg range) from micro dissected cells. This method combined with gene expression 

analysis using gene chip allows the identification of gene expression profile from tiny 

anatomical sites like the ventral-anterior aspect of 3
rd

 pp. After a careful evaluation and 

verification of the gene chip data the Gata-2 gene was chosen as a candidate for detailed 

studies. So far, Gata-2 has not been associated with thymus development. Unfortunately, a 

deletion of Gata-2 in the ventral aspect of 3
rd

 pp at the time point of E10.5 when Gata-2 

expression was highest during thymus development was not feasible. The interruption of 

Gata-2 transcription at the time point of E12.5-13.5 showed that deletion of the Gata-2 gene 

in TECs has a minor effect on thymus development. The difference observed was an enlarged 

thymus size due to a higher thymus cellularity which can be explained by an increased 

expression of CXCL-12 and c-kit ligand.  

Several issues still need to be addressed to understand the detailed function of Gata-2 in 

thymus development and in TECs. An issue that has not been addressed in this thesis is, if the 

increased/decreased expression of CXCL-12, c-kit ligand and Edn-1 is really translated to the 

protein level. An ideal experiment would be a western blot or FACS analysis for these two 

proteins on sorted TECs. Based on the presented data, it is unlikely that Gata-2 have an effect 

in thymus development at least in Foxn1-Cre
+
::Gata-2

loxP/loxP
 because an effect is seen only 

after the 6
th

 week and at later time points.  

In this study, only genes which were up regulated in their transcription in the ventral aspect of 

3
rd

 pp in the early thymus development were considered. During every phase of 

embryogenesis genes are not only up regulated but also down regulated like sonic hedgehog 

(Shh) and Fgf8 expression in limb development where Shh expression is down regulated at a 

certain time point. The thymus is not an exception. Therefore, attention should also be paid to 

those genes which were down regulated in the early thymus development.  
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VII. Appendix 
 

7.1 Gene Chip Data 
 Gene D1 D2 D3 V1 V2 V3 fold change d. o. m. paired t-statistic paired P-value 

1450333_a_at GATA binding protein 2 50.18 44.39 42.05 682.82 364.33 458.63 11.11 456.65 4.914 0.039004 

1436041_at heart and neural crest derivatives expressed transcript 2 91.3 72.19 54.57 470.05 434.39 595.46 6.9 429.27 7.06 0.019477 

1434376_at CD44 antigen 45.4 78.94 48.59 395.66 387.92 400.36 6.84 337.65 21.042 0.002251 

1423760_at CD44 antigen 38.08 81.55 41.49 306.8 376.31 231.93 5.68 251.79 7.477 0.017422 

1423753_at BMP and activin membrane-bound inhibitor, homolog (Xenopus laevis) 113.71 116.58 92.52 704.46 589.54 544.38 5.6 501.83 10.296 0.009301 

1417393_a_at RIKEN cDNA 1110035L05 gene 212.66 119.04 141.46 896.99 713.92 908.36 5.34 682.28 12.991 0.005874 

1417466_at regulator of G-protein signaling 5 81.18 56.55 87.56 481.64 309.47 368.17 5.21 312.33 6.691 0.021612 

1420360_at dickkopf homolog 1 (Xenopus laevis) 66.09 28.87 44.26 187.48 280.28 234.29 5.06 187.05 4.619 0.043813 

1439422_a_at RIKEN cDNA 1110035L05 gene 279.84 140.08 194.46 975.31 909.46 1214.91 5.04 827.77 7.862 0.015794 

1448147_at tumor necrosis factor receptor superfamily, member 19 73.49 116.25 88.49 495.72 573.53 317.41 4.96 367.96 4.968 0.038206 

1437403_at RIKEN cDNA E130306M17 gene 88.74 69 88.55 377.59 397.73 466.33 4.95 330.57 11.794 0.007112 

1449559_at homeo box, msh-like 2 57.29 49.6 49.15 232.51 215.81 247.47 4.5 180.8 13.695 0.005289 

1448601_s_at homeo box, msh-like 1 75.34 54.86 74.79 284.35 218.49 384.58 4.3 227.12 5.143 0.035793 

1419229_at EHOX-like 68.73 53.27 50.85 202.87 228.29 286.61 4.21 182.35 5.665 0.02978 

1429896_at RIKEN cDNA 5830408B19 gene 47.4 45.82 47.13 227.25 169.74 147.76 3.88 134.63 5.582 0.030627 

1450923_at transforming growth factor, beta 2 81.2 50.72 93.02 236.93 334.55 287.34 3.83 212.21 5.229 0.034676 

1422912_at bone morphogenetic protein 4 413.16 283.96 436.16 1411.06 1232.82 1607.91 3.79 1042.65 13.689 0.005294 

1453102_at fibronectin leucine rich transmembrane protein 3 328.39 418.24 348.67 1402.5 1232.19 1388.85 3.69 976.86 11.739 0.007179 

1424186_at RIKEN cDNA 2610001E17 gene 198.62 302.47 141.24 887.31 687.34 677.91 3.52 537.1 6.151 0.025427 

1420838_at neurotrophic tyrosine kinase, receptor, type 2 92.99 64.15 89.39 295.28 287.93 258.6 3.51 199.69 7.618 0.0168 

1448123_s_at transforming growth factor, beta induced 114.5 94.77 69.26 346.98 231.32 381 3.45 227.24 4.469 0.046594 

1426255_at neurofilament, light polypeptide 82.04 353.09 157.81 725.17 638.72 648.16 3.41 474.96 4.561 0.044865 

1450729_at heparan sulfate 2-O-sulfotransferase 1 558.45 646.94 562.43 2391.02 1880.15 1715.05 3.4 1408.2 6.34 0.023987 

1451071_a_at ATPase, Na+/K+ transporting, alpha 1 polypeptide 387.59 208.02 138.48 870.64 930.7 647.15 3.34 571.36 7.043 0.019572 

1449522_at unc-5 homolog C (C. elegans) 125.78 119.6 92.06 321.49 327.9 447.4 3.25 252.86 4.786 0.040996 

1448687_at RIKEN cDNA 1110035L05 gene 115.16 74.46 86.49 279.15 258.65 359.38 3.22 204.39 5.423 0.032365 

1418172_at heme binding protein 1 80.71 69.6 75.03 222.48 232.49 261.32 3.17 163.97 10.125 0.009614 

1434129_s_at lipoma HMGIC fusion partner-like 2 191.02 253.98 183.85 773.4 567.56 558.68 3.04 424.85 5.132 0.035937 

1429310_at fibronectin leucine rich transmembrane protein 3 321.06 497.27 306.9 1162.89 952.06 1272.79 3.01 753.24 4.89 0.039373 

1454691_at neurexin I 38.2 54.39 35.91 111.66 118.4 136.47 2.88 80.12 6.493 0.022906 

1424638_at cyclin-dependent kinase inhibitor 1A (P21) 446.32 360.56 374.89 1299.88 974.54 1058.48 2.81 715.23 9.641 0.010589 

1439489_at G protein-coupled receptor 120 44.31 38.35 55.89 119.7 139.93 131.72 2.8 83.63 7.671 0.016572 

1460204_at cytoplasmic tyrosine kinase, Dscr28C related (Drosophila) 68.85 84.1 64.67 216.31 179.55 202.27 2.75 126.8 7.232 0.01859 

1428816_a_at GATA binding protein 2 39.89 38.51 37.23 105.9 84 119.12 2.66 63.78 4.902 0.039191 

1421365_at follistatin 39.01 41.33 36.35 109.81 83.1 112.26 2.62 62.93 5.606 0.030374 

1420941_at regulator of G-protein signaling 5 33.72 52.81 37.92 108.28 113.42 104.06 2.6 67.02 9.012 0.012089 

1433796_at RIKEN cDNA 2310067E08 gene 320.52 236.45 245.41 708.53 624.5 742.19 2.59 424.25 10.419 0.009086 

1428550_at RIKEN cDNA 1810015A11 gene 89.99 40.03 69.6 148.94 166.04 183.61 2.5 100.1 4.521 0.045612 

1416529_at epithelial membrane protein 1 59.35 98.23 75.55 189.41 223.29 170.87 2.49 116.59 8.158 0.014695 

1435631_x_at SH3-domain GRB2-like B1 (endophilin) 124.44 84.87 85.79 228.18 224.47 277.75 2.47 144.93 5.387 0.032774 

1419429_at ciliary neurotrophic factor receptor 144.06 86.55 61.7 254.8 238.97 231.52 2.46 143.88 6.346 0.023945 

1418010_a_at SH3-domain GRB2-like B1 (endophilin) 1174.7 2144.1 1368.71 4368.54 3862.52 3154.07 2.45 2249.96 4.604 0.044074 

1455385_at SH3-domain GRB2-like B1 (endophilin) 125.38 87.33 93.08 241.49 223.94 272.33 2.42 144.39 7.351 0.018008 

1416900_s_at growth differentiation factor 1 150.68 87.68 76.61 252.52 234.25 267.76 2.41 147.65 5.18 0.035303 

1454672_at neurofilament, light polypeptide 43.94 109.51 66.92 176.27 168.37 188.53 2.41 103.71 4.377 0.048445 

1426543_x_at RIKEN cDNA 2310067E08 gene 85.7 129.85 117.83 268.84 297.99 219.79 2.35 150.31 5.72 0.029226 

1425895_a_at inhibitor of DNA binding 1 384.81 457.7 287.3 984.15 829.26 830.89 2.34 502.89 6.87 0.020539 

1415871_at transforming growth factor, beta induced 26.86 40.79 27.75 74.35 65.86 79.01 2.31 41.22 4.774 0.041182 

1419592_at unc-5 homolog C (C. elegans) 39.15 37.44 40.19 99.52 80.24 84.79 2.28 49.72 7.19 0.018801 

1421679_a_at cyclin-dependent kinase inhibitor 1A (P21) 168.4 136.45 168.13 299.34 413.44 371.83 2.28 202.57 4.342 0.049158 



88 
 

1449877_s_at kinesin family member C5A 109.42 66.2 69.67 203.55 198.67 154.17 2.28 104.11 6.187 0.025143 

1433845_x_at dual specificity phosphatase 9 750.77 549.98 494.58 1273.19 1280.28 1540.14 2.27 762 4.843 0.040093 

1422592_at catenin delta 2 97.09 140.69 103.75 262.8 225.72 269.33 2.24 140.21 5.07 0.03677 

1424797_a_at paired-like homeodomain transcription factor 2 26.36 22.69 19.59 46.64 54.35 53.34 2.24 28.35 4.654 0.043196 

1416630_at inhibitor of DNA binding 3 856.03 892.85 578.23 1788.97 1566.82 1711.95 2.19 918.52 6.355 0.023878 

1435980_x_at wingless-related MMTV integration site 6 35.43 30.56 28.02 66.25 66.26 69.52 2.16 36.04 6.894 0.020398 

1435110_at DNA segment, Chr 10, Brigham & Women's Genetics 0792 expressed 552.05 710.27 606.44 1466.93 1361.85 1177.48 2.14 712.92 6.723 0.021415 

1424842_a_at Rho GTPase activating protein 24 57.68 89.06 59.52 140.64 175.01 121.71 2.13 77.41 8.064 0.015033 

1440204_at RIKEN cDNA 3110039M20 gene 27.26 24.07 36.42 55.42 68.99 66.59 2.13 33.85 4.694 0.042517 

1455436_at RIKEN cDNA 2900052J15 gene 37.59 35.2 31.33 73.12 70.14 78.71 2.12 38.96 5.904 0.02751 

1418357_at forkhead box G1 202.76 293.05 230.32 517.03 460.11 537.28 2.09 264.36 5.391 0.032723 

1449249_at protocadherin 7 32.08 43.22 33.39 64.89 75.41 84.77 2.06 38.74 4.965 0.038255 

1431094_at RIKEN cDNA 1110006E14 gene 54.75 66.44 81.11 131.8 135.17 149.14 2.06 71.7 10.253 0.009379 

1425784_a_at olfactomedin 1 202.39 255.16 225.09 434.64 404.96 547.12 2.04 235.16 4.589 0.044352 

1435321_at RIKEN cDNA 3732412D22 gene 558.25 493.54 664.39 1059.94 1292.65 1093.78 2.02 578.97 4.732 0.041881 

1442865_at hypothetical protein C130007D14 48.48 49.26 44.86 101.15 85.01 99.73 2.02 48.26 6.394 0.023596 

1419708_at wingless-related MMTV integration site 6 76.97 55.16 91.45 154.94 137.34 150.59 2 73.61 6.602 0.02218 

1437250_at Similar to FLJ10116 protein (LOC381269), mRNA 51.27 69.75 76.36 126.49 145.01 121.1 2 65.73 5.449 0.032065 

1418762_at decay accelerating factor 1 58.71 55.37 64.21 22.97 33.41 32.13 -2.02 -29.88 -4.826 0.040356 

1425567_a_at annexin A5 426.92 456.02 388.2 197.38 192.07 247.64 -2.02 -214.77 -5.409 0.032518 

1457349_at Similar to Tetratricopeptide repeat protein 6 (TPR repeat protein 6) (LOC217602), mRNA 68.5 69.59 87.2 39.15 32.95 40.02 -2.02 -37.64 -5.137 0.035871 

1419309_at glycoprotein 38 701.83 592.95 684.39 262.57 284.14 425.8 -2.04 -336.54 -5.597 0.030475 

1418374_at FXYD domain-containing ion transport regulator 3 70.39 67.36 64.29 31.68 33.78 32.38 -2.05 -34.33 -5.01 0.037607 

1418507_s_at RIKEN cDNA D130043N08 gene 214.72 254.56 213.21 118.58 121.63 93.33 -2.05 -116.37 -8.355 0.014025 

1438139_at hypothetical protein E130310N06 207.1 213.72 236.4 80.39 93.48 148.09 -2.05 -111.65 -6.806 0.020915 

1423461_a_at ubiquitin-like 3 293.34 279.72 244.73 106.33 134.95 153.96 -2.08 -141.39 -4.567 0.044749 

1436584_at sprouty homolog 2 (Drosophila) 185.63 189.04 212.18 80.92 120.92 80.74 -2.08 -102.32 -4.995 0.037819 

1420965_a_at ectodermal-neural cortex 1 335.23 364.21 309.3 168.83 143.49 170.08 -2.09 -175.18 -7.171 0.018898 

1424214_at RIKEN cDNA 9130213B05 gene 271.96 194.13 243.17 108.17 82.14 149.95 -2.09 -123.15 -5.13 0.035963 

1451499_at Ca2+-dependent activator protein for secretion 2 60.13 74.64 79.03 27.41 41.29 31.63 -2.09 -37.1 -5.773 0.02872 

1442542_at RIKEN cDNA B130023L16 gene 167.64 226.95 204.21 95.45 111.93 78.76 -2.1 -104.46 -5.761 0.028834 

1455845_at cDNA sequence BC030477 108.12 112.95 102.74 37.87 51.06 63.11 -2.1 -56.23 -5.078 0.036662 

1436142_at RIKEN cDNA 3526401B18 gene 53.61 78.95 73.74 23.29 38.66 32.44 -2.17 -37.24 -6.061 0.026156 

1417625_s_at chemokine orphan receptor 1 181.99 136.01 172.46 68.56 79.58 75.43 -2.18 -88.35 -4.51 0.045814 

1456005_a_at BCL2-like 11 (apoptosis facilitator) 957.51 1140.97 1239.06 404.29 472.01 651.49 -2.18 -602.52 -16.07 0.00385 

1426083_a_at B-cell translocation gene 1, anti-proliferative 500.84 622.26 591.14 208.98 340.95 228.6 -2.19 -310.37 -9.727 0.010405 

1456410_at expressed sequence AU045128 195.73 175.75 158.51 92.1 69.36 79.76 -2.2 -96.28 -8.427 0.01379 

1416983_s_at forkhead box O1 173.83 172.78 175.21 55.59 93.91 83.78 -2.21 -95.39 -6.133 0.025569 

1452624_at leucine rich repeat transmembrane neuronal 1 68.45 75.83 63.64 31.7 30.31 31.62 -2.22 -38.19 -7.298 0.018265 

1442445_at RIKEN cDNA 2610027H17 gene 44.47 53.42 40.57 14.32 23.95 22.55 -2.22 -25.17 -5.005 0.037674 

1456424_s_at phospholipid transfer protein 400.81 421.97 347.23 145.39 166.26 208.88 -2.24 -215.92 -5.026 0.037381 

1433855_at 4-aminobutyrate aminotransferase 102.01 132.61 97.53 49.92 49.96 47.78 -2.25 -61.57 -5.412 0.032487 

1449109_at suppressor of cytokine signaling 2 387.09 407.27 406.31 181.94 177.88 174.5 -2.25 -223.6 -13.368 0.00555 

1454889_x_at RIKEN cDNA C630016B22 gene 120.57 110.42 116.04 41.25 64.71 47.71 -2.25 -64.32 -5.718 0.029254 

1435448_at BCL2-like 11 (apoptosis facilitator) 522.23 617.79 498.86 231.54 213.03 278.83 -2.26 -303.46 -5.234 0.034623 

1451466_at DNA segment, Chr 16, ERATO Doi 472, expressed 285.08 280.73 339.51 91.64 154.29 152.85 -2.26 -168.64 -6.744 0.02129 

1419301_at frizzled homolog 4 (Drosophila) 752.06 884.63 1086.37 316.99 376.44 503.39 -2.28 -510.15 -10.733 0.008569 

1460623_at src family associated phosphoprotein 2 188.66 260.75 303.67 72.99 138.33 116.99 -2.28 -140.9 -5.779 0.028661 

1436405_at dedicator of cytokinesis 4 40.83 65.31 51.36 18.29 29.42 21.42 -2.29 -29.71 -5.998 0.026689 

1435349_at neuropilin 2 204.23 266.12 212.2 94.33 91.53 112.52 -2.3 -128.34 -5.058 0.036938 

1434530_at expressed sequence R75022 251.18 298.86 272.24 112.59 113.38 128.69 -2.32 -156.51 -9.111 0.011833 

1416714_at interferon consensus sequence binding protein 1 115.85 141.96 113.86 51.22 53.07 52.63 -2.36 -70.93 -7.185 0.018825 

1439622_at Ras association (RalGDS/AF-6) domain family 4 70.02 86 65.47 22.84 31.22 38.57 -2.39 -42.92 -4.777 0.041132 

1429897_a_at DNA segment, Chr 16, ERATO Doi 472, expressed 277.09 269.9 358.18 105.71 141.56 132.82 -2.4 -175.97 -5.956 0.027049 

1456632_at RIKEN cDNA D930021L15 gene 57.6 97.07 93.6 21.61 49.73 31.84 -2.4 -48.11 -5.644 0.029983 

1417156_at keratin complex 1, acidic, gene 19 278.36 290.22 273.98 114.85 108.24 128.9 -2.41 -164.5 -12.484 0.006355 

1425503_at glucosaminyl (N-acetyl) transferase 2, I-branching enzyme 67.37 113.08 89.41 27.23 46.41 36.05 -2.41 -52.51 -5.926 0.027317 

1419154_at transmembrane protease, serine 2 118.83 117.65 118.71 42.7 53.21 50.14 -2.42 -69.49 -9.753 0.01035 

1459906_at diacylglycerol kinase, eta 108.99 129.29 132.69 46.57 48.44 56.34 -2.43 -72.8 -9.008 0.012099 

1455106_a_at creatine kinase, brain 1398.64 1360.46 1049.34 525.46 458.43 565.7 -2.46 -749.9 -5.27 0.034167 

1455158_at integrin alpha 3 349.01 367.55 458.61 140.8 167.81 165.3 -2.49 -234.09 -6.423 0.023392 
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1438231_at forkhead box P2 162.01 181.31 195.76 68.44 74.46 70.59 -2.51 -107.38 -8.282 0.014269 

1448557_at RIKEN cDNA 1200015N20 gene 66.97 90.11 84.66 31.54 33.53 29.98 -2.53 -48.85 -6.372 0.023757 

1438540_at Transcribed sequences 293.21 299.96 254.89 127.09 94.43 108.46 -2.56 -172.21 -8.681 0.013011 

1420911_a_at milk fat globule-EGF factor 8 protein 1034.3 913.22 977.96 311.67 356.44 452.47 -2.6 -598.32 -7.888 0.015694 

1434875_a_at high mobility group nucleosomal binding domain 3 712.63 616.01 556.26 181.51 227.94 314.85 -2.6 -386.66 -4.461 0.046755 

1448823_at chemokine (C-X-C motif) ligand 12 564.19 757.91 612.46 291.32 235.04 221.49 -2.6 -397.37 -5.479 0.031734 

1436761_s_at RIKEN cDNA 1200015N20 gene 48.76 57.22 73.28 17.69 28.57 23.06 -2.61 -36.84 -4.908 0.039101 

1451342_at spondin 1, (f-spondin) extracellular matrix protein 87.18 79.47 103.7 32.31 39.69 30.99 -2.61 -55.65 -4.933 0.038719 

1423952_a_at keratin complex 2, basic, gene 7 650.23 521.55 622.41 176.81 247.11 263.13 -2.63 -372.24 -5.642 0.030004 

1458880_at Transcribed sequences 165.19 138.89 155.06 59.25 53.35 63.35 -2.63 -95.98 -8.611 0.01322 

1422837_at sciellin 72.87 76.33 90.96 24.96 40.89 25.29 -2.65 -50.09 -4.853 0.039933 

1441165_s_at calsyntenin 2 129.61 138.43 136.72 53.36 53.08 47.56 -2.66 -84.11 -9.768 0.010319 

1427508_at cDNA sequence BC020108 189.96 187.78 125.85 63.56 57.65 65.51 -2.68 -105.05 -4.377 0.048433 

1417574_at chemokine (C-X-C motif) ligand 12 1417.92 1385.55 1463.59 484.67 462.18 644.52 -2.69 -893.94 -18.556 0.002892 

1433891_at G protein-coupled receptor 48 260.36 321.39 267.98 97.59 106.15 110.48 -2.7 -178.5 -9.175 0.011672 

1417399_at growth arrest specific 6 82.62 108.5 112.26 31.86 33.61 42.68 -2.78 -64.52 -5.931 0.027273 

1438232_at forkhead box P2 222.71 279.59 295.37 82.24 105.39 95.78 -2.79 -170.75 -8.426 0.013796 

1456283_at neuropilin (NRP) and tolloid (TLL)-like 1 46.51 40.35 50.77 7.84 20.63 20.37 -2.82 -29.61 -4.427 0.047415 

1439827_at a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 12 126.11 161.78 123.94 46.96 54.42 44.19 -2.82 -88.18 -7.797 0.016055 

1429185_at RIKEN cDNA 8430436L14 gene 124.32 171.74 158.5 46.9 61.76 47.46 -2.88 -98.89 -7.605 0.016855 

1418157_at nuclear receptor subfamily 2, group F, member 1 1512.75 1767.51 1449.01 559.65 373.44 694.26 -2.91 -1034.83 -5.461 0.031931 

1426301_at activated leukocyte cell adhesion molecule 154.17 156.92 170.03 67.31 62.13 38.46 -2.91 -105.82 -5.877 0.027757 

1450684_at ets variant gene 1 118.2 124.86 102.42 34.26 39.11 44.93 -2.92 -75.46 -7.019 0.019698 

1435832_at leucine rich repeat containing 4 82.35 72.61 96.87 30.29 30.51 24.5 -2.92 -55.21 -5.503 0.03147 

1451991_at Eph receptor A7 225.28 198.24 236.11 54.47 78.12 90.71 -2.96 -145.22 -7.627 0.016761 

1435554_at RIKEN cDNA C630016B22 gene 177.95 251.81 246.13 41.85 121.89 60.4 -3.02 -150.67 -7.884 0.015709 

1422607_at ets variant gene 1 133.56 172.8 156.75 34.28 58.6 60.7 -3.04 -103.85 -11.143 0.007958 

1416097_at leucine rich repeat containing 4 118.75 109.16 116.77 38.38 36.24 38.56 -3.05 -77.2 -12.343 0.0065 

1440990_at hypothetical protein 4832420M10 221.38 228.27 288.61 61.95 91.33 87.77 -3.05 -165.18 -7.788 0.016089 

1459749_s_at hypothetical protein 6030410K14 120.93 179.47 147.28 47.78 53.98 43.76 -3.07 -100.58 -6.585 0.022291 

1449893_a_at leucine-rich repeats and immunoglobulin-like domains 1 214.08 173.37 216.64 82.57 60.21 61.32 -3.1 -138.96 -6.976 0.019934 

1437466_at activated leukocyte cell adhesion molecule 159.41 149.26 115.6 54.12 43.86 39.17 -3.1 -95.43 -8.718 0.012903 

1449368_at decorin 210.56 243.03 319.9 77.22 99.62 69.66 -3.11 -174.96 -4.559 0.044898 

1434917_at cordon-bleu 235.93 218.42 194.29 55.01 64.61 84.57 -3.13 -145.88 -6.288 0.024372 

1438718_at Transcribed sequences 243.61 297.48 362.97 74.78 125.5 86.25 -3.14 -206.17 -5.457 0.031982 

1449533_at RIKEN cDNA 1810057C19 gene 119.65 129.63 115.69 31.99 37.43 49.98 -3.15 -83.06 -7.944 0.015478 

1425506_at RIKEN cDNA 9530072E15 gene 160.39 260.32 278.42 56.32 103.65 58.33 -3.18 -159.49 -4.658 0.043127 

1454984_at expressed sequence AW061234 124 213.36 214.13 42.47 71.45 57.8 -3.2 -126.61 -5.273 0.034136 

1417343_at FXYD domain-containing ion transport regulator 6 631.26 557.28 540.22 179.58 137.1 219.91 -3.21 -396.09 -9.382 0.01117 

1419549_at arginase 1, liver 161.92 144.82 200.57 44.84 60.23 52.08 -3.21 -116.58 -5.901 0.027539 

1427300_at LIM homeobox protein 8 142.99 188.18 149.14 49.3 41.19 55.9 -3.3 -111.52 -6.128 0.025612 

1429418_at CDC14 cell division cycle 14 homolog B (S. cerevisiae) 469.3 831.94 742.98 189.72 279.45 150.11 -3.31 -475.77 -4.806 0.040677 

1438558_x_at forkhead box Q1 101.72 65.77 74.75 22.78 22.63 28.58 -3.32 -56.25 -4.419 0.047577 

1427537_at epiplakin 1 134.1 195.45 196.9 51.27 73.33 31.6 -3.35 -122.77 -4.888 0.039395 

1448944_at neuropilin 292.9 253.82 328.46 86.77 76.54 93.19 -3.36 -205.04 -11.064 0.00807 

1425779_a_at T-box 1 1093.6 879.5 843.65 236.57 281.05 305.21 -3.42 -664.81 -6.375 0.023731 

1418084_at neuropilin 530.93 548.07 638.35 175.36 140.43 170.53 -3.56 -411.34 -11.487 0.007493 

1437983_at sal-like 1 (Drosophila) 408.13 524.85 512.72 122.75 156.64 122.75 -3.58 -346.86 -10.345 0.009216 

1438042_at short stature homeobox 2 71.38 93.01 116.05 21.94 30.38 25.16 -3.58 -67.35 -5.185 0.035237 

1424694_at RIKEN cDNA 2010011I20 gene 214.17 208.07 198.23 50.01 57.35 62.86 -3.61 -149.15 -13.246 0.005651 

1421088_at glypican 4 663.05 659.02 751.2 206.39 196.61 165.69 -3.68 -502.3 -10.192 0.00949 

1439260_a_at ectonucleotide pyrophosphatase/phosphodiesterase 3 120.17 128.04 164.54 31.08 42.19 37.58 -3.71 -100.56 -7.253 0.018485 

1438200_at sulfatase 1 2218.61 2606.62 2537.01 642.75 741.2 600.56 -3.75 -1805.21 -12.904 0.005952 

1434210_s_at solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 26 232.08 199.94 182.8 53.58 51.85 58.25 -3.76 -150.48 -8.678 0.013019 

1437401_at insulin-like growth factor 1 184.49 210.52 200.08 58.62 46.05 54.03 -3.76 -145.44 -11.238 0.007825 

1427436_at sine oculis-related homeobox 2 homolog (Drosophila) 346.29 326.53 230.55 100.2 65.53 75.56 -3.78 -221.25 -6.353 0.02389 

1449254_at secreted phosphoprotein 1 53.12 59.24 64.96 10.99 18.92 16.54 -3.78 -43.56 -10.891 0.008326 

1416953_at connective tissue growth factor 405.19 444.05 399.29 107.79 110.72 98.97 -3.89 -310.05 -20.599 0.002348 

1438531_at RIKEN cDNA A730054J21 gene 252.2 197.75 285.62 47.39 52.06 84.41 -4.01 -184.09 -8.328 0.014113 

1435670_at RIKEN cDNA E130018K07 gene 233.51 211.49 190.52 58.46 62 39.12 -4.03 -159.64 -13.225 0.005669 

1454727_at expressed sequence AI173486 283.19 348.23 349.56 65.37 89.26 81.94 -4.11 -247.17 -13.869 0.005159 
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1436319_at sulfatase 1 747.16 1025.89 907.6 193.68 251.51 196.85 -4.15 -677.66 -9.887 0.010075 

1416761_at hydroxysteroid 11-beta dehydrogenase 2 1464.08 1348.15 1534.18 358.17 320.06 340.69 -4.27 -1108.35 -19.28 0.00268 

1455464_x_at uroplakin 1B 88.94 133.5 117.95 24.84 31.38 18.25 -4.61 -88.82 -6.752 0.021236 

1454974_at netrin 1 155.14 137.57 131.72 26.94 32.77 25.05 -4.92 -112.5 -11.579 0.007377 

1433787_at RIKEN cDNA B230343H07 gene 139.14 123.02 148.67 19.03 35.58 24.92 -5.12 -110.06 -8.648 0.013109 

1449244_at cadherin 2 463.27 411.63 556.89 84.38 86.04 106.67 -5.25 -386.7 -9.665 0.010536 

1443832_s_at serum deprivation response 240.61 259.78 214.92 52.09 39.88 37.02 -5.62 -195.8 -14.56 0.004684 

1434413_at insulin-like growth factor 1 215.74 388.38 263.83 46.09 50.84 57.22 -5.67 -238.43 -4.672 0.042891 

1452473_at RIKEN cDNA E130201N16 gene 348.28 229 323.3 36.69 63.65 55.04 -5.81 -248.24 -5.467 0.031862 

1455893_at RIKEN cDNA 2610028F08 gene 352.45 440.44 503.79 45.31 92.02 61.55 -6.44 -364.52 -8.194 0.014568 

1418496_at forkhead box A1 786.59 1165.03 1057.45 147.83 141.97 153.15 -6.81 -856.48 -7.409 0.017732 

1422833_at forkhead box A2 370.54 242.31 375.24 41.56 30.07 69.36 -7.21 -285.31 -7.033 0.019624 

1448201_at secreted frizzled-related sequence protein 2 612.54 492.82 567.44 57.9 76.83 77.78 -7.9 -487.1 -10.483 0.008977 

1416779_at serum deprivation response 188.85 221.59 220.58 9.57 30.53 30.06 -9.1 -188.7 -20.792 0.002305 

1416468_at aldehyde dehydrogenase family 1, subfamily A7 435.37 781.63 500.59 55.92 58.98 45.77 -10.69 -519.13 -5.013 0.037559 

1416967_at SRY-box containing gene 2 1361.95 1750.51 1838.75 72.97 117.75 216.68 -12.2 -1517.15 -13.167 0.005718 

1416778_at serum deprivation response 900.64 1047.28 840.1 31.04 49.45 62.42 -19.51 -879.06 -13.255 0.005644 

 

7.2 Primers    

RT-PCR primers       

Gene Forward Reverse  Gene Forward Reverse 

Gata binding protein 2 tgctgtggctggctgaatcc ctctgcagcaactggacacc  CCL-21 gtgtctgttcagttctcttgc gctgccttagtacagccag 

CD44 gttcccgcactgtgactcat tgtcccattgccaccgttgat  CCL-25 cagcacaggatcaaatggaat
g 

ggttgcagcttccactcactt 

bmp4 acgtagtcccaagcatcaccc acagtccccatggcagtagaa  CXCL-12 gctgccttagtacagccag cgttttcaaattatctgggagaa
aga 

neurofilament, light chain tgctgccagcctgtgcatgg attcgtgttgtgtgtgtggt  c-Kit ligand aaggagatctgcgggaatcctg
tga 

actgctactgctgtcattcctaag
g 

heart&neural crest derivatives expressed 
transcript 2 

aagacactgcgcctggccac tctccgccttgaaggcctcc  CD-80 gagtctggaacccatctgca gaagcgaggctttgggaaac 

POU domian, class 3, transcription factor 1 aagcgcacgtccatcgaggt tccttctgccgccggttgca  TSLP aggctaccctgaaactga ggagattgcatgaaggaatac 

homeo box, msh-like 1 aaaccaggcaggacttgcac tgctgccaaagcgcttagag  c-Fos agtctgctggggcttacgcca gattccggcacttggctgcag 

delta like -1 gcttcaccatcctgggcgtg ccgctgttatactgcaacagg   acccagtctgctggggcttacg gattccggcacttggctgcag 

BAMBI cagtaaactgctggctggac agcctccaagggcggctgag  c-Jun cctgcaccggtattttggggag ttacagtctcggtggcagcct 

Ehox like tgatgacgcctctgtggggt aggggtctgcacgtggctcc   gtcacctccgcggcacagccg
gt 

ttggcgtagaccggaggctcac 

homeo box, msh-like 2 ctctatgccacgccggttgg tcaggagcagagttggcacc     

TGF-beta 2 tgacatgagctacctgggtc ccacatgactcacactgacg  Primers für in-situ 
hybridization 

    

dickkopf homolog 1 aggtccattctggccaactc tggaatcacttgcttgggca  Gene Forward Reverse 

follistatin tgacaatgccacatacgcca tcttccgagatggagttgca  bmp4 aacctcagcagcatcccaga caacatggaaatggcactcag 
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Gene Forward Reverse  Gene Forward Reverse 

epithelial membrane protein 1 atgactggagtgaaccgtgc ataacccaccaatgcgatgc  delta like -1 gattcgtcgacaagacctgc tagcatggcaccagcaacac 

FoxG1 ttagttggcaacactgccca atgcggcatttgcgcaacac  BAMBI tgtgaaggtctcctgcaagc aagggcagttctgcatctgc 

T-box 3 tttcaagtagagctggctgc agcccggaagggccattacc  Ehox like tctcaaggatgctgtggtca aacatgctggtggaaggcag 

Gata2 Genotyping ccaggatgggtggaacatac gaaggaccccaagaacaca
a 

 homeo box, msh-like 1 aaacccatgatccagggctg tgcagtctcttggccttagc 

Endothelin-1 cttagggagtgttcgtgtctg tatgacagtgcagaaaggtga
ggt 

 homeo box, msh-like 2 agttggttgagccgagtctc gcaaacatccatcctggagtc 

  gacatggaggcgtttgctatttg
t 

tgccgattcttctcttatgcg   TGF-beta induced     

Gcm2 gaggcaagaagcactcagg
aca 

cttcccagcatgcctttacac  dickkopf homolog 1 atcatcagactgtgccgcag tttcaaggactaccagccga 

IL-7 gggagtgattatgggtggtga
g 

tgcgggaggtgggtgtag  epithelial membrane protein 1 tgttgctttgacctgggctg agggaatgcacggttcactc 

IL-7 attatgggtggtgagagccg gttcattattcgggcaattactat
ca 

 FoxG1 acccgtcaatgacttcgcag aggttgttctcaaggcctgc 

IL-15 gaatacatccatctcgtgct ccaggtcatatcttacatctatc
c 

 T-box 3 acagtatccggagcatccac tggttacacagcccatggtg 
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